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Abstract

Hierarchical Methods for Optimal Long-Term Planning

by

Jason Andrew Wolfe

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Stuart Russell, Chair

This thesis addresses the problem of generating goal-directed plans involving very many
elementary actions. For example, to achieve a real-world goal such as earning a Ph.D.,
an intelligent agent may carry out millions of actions at the level of reading a word or
striking a key. Given computational constraints, it seems that such long-term planning
must incorporate reasoning with high-level actions (such as delivering a conference talk
or typing a paragraph of a research paper) that abstract over the precise details of their
implementations, despite the fact that these details must eventually be determined for the
actions to be executed. This multi-level decision-making process is the subject of hierarchical
planning.

To most effectively plan with high-level actions, one would like to be able to correctly
identify whether a high-level plan works, without first considering its low-level implementa-
tions. The first contribution of this thesis is an “angelic” semantics for high-level actions that
enables such inferences. This semantics also provides bounds on the costs of high-level plans,
enabling the identification of provably high-quality (or even optimal) high-level solutions.

Effective hierarchical planning also requires algorithms to efficiently search through the
space of high-level plans for high-quality solutions. We demonstrate how angelic bounds can
be used to speed up search, and introduce a novel decomposed planning framework that
leverages task-specific state abstraction to eliminate many redundant computations. These
techniques are instantiated in the Decomposed, Angelic, State-abstracted, Hierarchical A*
(DASH-A*) algorithm, which can find hierarchically optimal solutions exponentially faster
than previous algorithms.



i

Contents

1 Introduction 1
1.1 Classical Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Hierarchical Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 10
2.1 Classical Planning and Search . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 State-Space Search Problems . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Planning Problems: Representations and Examples . . . . . . . . . . 13
2.1.3 State-Space Search Algorithms . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Partial-Order Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 AND/OR Graph Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 AND/OR Search Problems . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Bottom-Up Search Algorithms . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Top-Down Search Algorithms . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Hybrid Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Hierarchical Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Historical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 This Thesis: Simplified Hierarchical Task Networks . . . . . . . . . . 51

3 Decomposed Hierarchical Planning 60
3.1 Decomposition, Caching, and State Abstraction . . . . . . . . . . . . . . . . 61

3.1.1 Decomposition and Caching . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.2 State Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Exhaustive Decomposed Search . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Cost-Ordered Decomposed Search . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.1 DSH-LDFS: Recursive Top-Down Search . . . . . . . . . . . . . . . . 70
3.3.2 DSH-UCS: Flattened Search . . . . . . . . . . . . . . . . . . . . . . . 74



ii

4 Angelic Semantics 77
4.1 Angelic Descriptions for Reachability . . . . . . . . . . . . . . . . . . . . . . 78

4.1.1 Reachable Sets and Exact Descriptions . . . . . . . . . . . . . . . . . 78
4.1.2 Optimistic and Pessimistic Descriptions . . . . . . . . . . . . . . . . . 81
4.1.3 Simple Angelic Search . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Angelic Descriptions with Costs . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.1 Valuations and Exact Descriptions . . . . . . . . . . . . . . . . . . . 85
4.2.2 Optimistic and Pessimistic Descriptions . . . . . . . . . . . . . . . . . 88

4.3 Representations and Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.1 Interface for Search Algorithms . . . . . . . . . . . . . . . . . . . . . 91
4.3.2 Declarative Representations: NCSTRIPS . . . . . . . . . . . . . . . . 93
4.3.3 Procedural Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Origins of Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4.1 Computing Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.2 Angelic Semantics, STRIPS, and the Real World . . . . . . . . . . . 105

5 Angelic Hierarchical Planning 108
5.1 Angelic Hierarchical A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1.1 Optimistic AH-A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1.2 AH-A* with Pessimistic Descriptions . . . . . . . . . . . . . . . . . . 112

5.2 Singleton DASH-A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 DASH-A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.3 Initial Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.4 Subsumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.5 Same-Output Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3.6 Caching and State Abstraction . . . . . . . . . . . . . . . . . . . . . 150
5.3.7 Correctness of DASH-A* . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3.8 Analysis of DASH-A* . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.4 Suboptimal Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 Experimental Results 161
6.1 Implemented Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.2 Nav-Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3 Discrete Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4 Bit-Stash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7 Related Work 174
7.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.1.1 Explanation-Based Learning . . . . . . . . . . . . . . . . . . . . . . . 174



iii

7.1.2 Nondeterministic Planning . . . . . . . . . . . . . . . . . . . . . . . . 175
7.1.3 HTN Planning Semantics . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2 Hierarchies of State Abstractions . . . . . . . . . . . . . . . . . . . . . . . . 176
7.3 Hierarchical Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 178
7.4 Hierarchies in Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.5 Interleaving Planning and Execution . . . . . . . . . . . . . . . . . . . . . . 180
7.6 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8 Conclusion 183
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.2.1 Classical Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.2.2 Beyond Classical Planning . . . . . . . . . . . . . . . . . . . . . . . . 185

8.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



iv

Acknowledgments

This dissertation would not have been possible without the help and support of advisors,
colleagues, friends, and family.

First and foremost, I would like to thank my advisor Stuart Russell. His wisdom, ency-
clopedic knowledge of the field, and ample guidance have shaped many of the ideas in this
dissertation, and helped me become a better writer, researcher, and thinker.

I would also like to thank Bhaskara Marthi, who originated this research project, con-
tributed to and helped refine many of the ideas presented here, and has taught me a lot
about research over the years.

I am very grateful to Professors Christos Papadimitriou and Rhonda Righter for serving
on my dissertation committee, and offering helpful comments on this manuscript. Along
with Professor Dan Klein, they also helped guide this research in its earlier stages by serving
on my qualifying exam committee.

This space is unfortunately too short to thank all those who have shaped my educa-
tion and research, including a great number of brilliant faculty and students throughout
undergrad and grad school at Berkeley. Conversations with Malik Ghallab, Pieter Abbeel,
and many of the great researchers at Willow Garage stand out especially. Working on side-
projects with Aria Haghighi and Dan Klein was also a great pleasure.

My fellow RUGS members have been a never-ending source of great conversations, inspi-
ration, and helpful suggestions on countless research ideas, papers, and talks over the years:
Norm Aleks, Nimar Arora, Emma Brunskill, Kevin Canini, Shaunak Chatterjee, Daniel
Duckworth, Nick Hay, Gregory Lawrence, Bhaskara Marthi, Brian Milch, David Moore,
Rodrigo de Salvo Braz, Erik Sudderth, and Satish Kumar Thittamaranahalli.

I am also grateful for all of the reviewers, researchers, and others I’ve had the pleasure to
interact with throughout graduate school. In particular, the ICAPS community has inspired
and welcomed papers based on many of the ideas in this thesis.

Last and far from least, I would like to thank my friends and family. My parents, Rich
and Sue, have always offered unconditional love and support for my endeavors, whatever
they may be. I can’t thank you enough! My girlfriend, Sarah Reed, has been a pillar of
support and a perfect partner in crime over the past three years — I can’t wait for you to
join me as Dr. Reed! To all of my family and friends: I can’t tell you how much your love,
support, and understanding mean to me — you’ve helped make my time in graduate school
the best of my life thus far.



1

Chapter 1

Introduction

A central aspect of intelligence is the ability to plan ahead, selecting actions to do based
on their expected impact on the world, including their influence on potential future action
choices. In fact, nearly all actions that humans actually carry out on a day-to-day basis —
striking a key, articulating a word, and so on — are only useful insofar as they take us tiny
steps closer to achieving our long-term goals. Since the early days of Artificial Intelligence,
hierarchical structure in behavior has been recognized as perhaps the most important tool
for coping with the complex environments and long time horizons encountered in such real-
world decision-making. Humans, who execute on the order of one trillion primitive motor
commands in a lifetime, appear to make heavy use of hierarchy in their decision making—
we entertain and commit to (or discard) high-level actions such as “write a Ph.D. thesis”
and “run for President” without preplanning the motor commands involved, even though
these high-level actions must eventually be refined down to motor commands (through many
intermediate levels of hierarchy) in order to take effect.

Consider a simulated robot tasked with cleaning up a room by delivering a set of objects
(e.g., dirty cups, magazines) to target regions (e.g., dishwasher, coffee table), an example
that will be used throughout this thesis. To accomplish this task, the robot must execute a
coordinated sequence of many thousands of low-level “primitive” actions, corresponding to
small movements of its base and arm, articulations of its gripper, and so on. Attempting to
find such a solution by directly searching over the space of all possible such sequences seems
like a hopeless, or at least misguided, pursuit. A more sensible approach might be to attack
the problem top-down, first deliberating about possible orderings for the high-level tasks,
and then refining promising candidate plans, progressively filling in details such as base
placements, grasp positions, and ultimately low-level trajectories, until a primitive solution
is discovered.

This reasoning process is captured by hierarchical planning, which encodes each abstract
task (such as “put away magazine 1” or “navigate to location (5,5)”) as a high-level action
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(HLA), defined by a set of possible implementations in terms of other actions. The principal
computational benefit of using high-level actions seems obvious: high-level plans are much
shorter, and thus good high-level plans ought to be much easier to find. However, this
benefit can be fully realized only if high-level solutions can be identified—that is, only if we
can establish that a given high-level plan can be refined to a primitive plan that achieves the
goal, before explicitly considering its implementations. Moreover, if we desire an efficient
solution — e.g., one that minimizes the total time taken to clean the room — we also
require a method to assess the costs of high-level plans. For example, if we could conclude
that “put away the magazine, then put away the cup” is a high-level solution, and moreover,
is guaranteed to be cheaper than “put away the cup, then put away the magazine” (perhaps
the cup is currently on the coffee table), we can immediately discard the latter plan and
focus all of our efforts on refining the former plan into a high-quality primitive solution.

The primary challenges in implementing such an approach are twofold.

First, for this approach to work, the planner needs to know what high-level actions
do. For example, to conclude that “put away the magazine, then the cup” is a high-level
solution, the planner must know that “put away the magazine” can lead to a state where
the magazine is on the coffee table, and moreover, “put away the cup” can be executed from
that state to accomplish its stated goal. While many previous hierarchical planners have
used precondition-effect annotations for HLAs, no existing proposals have correctly captured
the full transition dynamics of HLAs, and thus supported the identification of high-level
solutions. The first aim of this thesis is to rectify this situation and thereby realize the full
benefits of hierarchical structure in planning.

Second, given a hierarchy (and perhaps transition models for its HLAs), we require
efficient algorithms for searching through the space of hierarchical plans for high-quality
solutions. While previous research has proposed a wide variety of hierarchical planning
algorithms, the focus has typically been on the precise forms of hierarchy representation
and refinement operations. Given these choices, a simple backtracking depth-first search has
typically been used to find any primitive solution compatible with the hierarchy (perhaps
with a greedy bias towards lower costs). Comparatively little attention has been paid to the
problem of finding high-quality or optimal hierarchical plans. Filling this gap is the second
primary objective of this thesis.

The ultimate goal of this line of work is to enable autonomous agents that exhibit robust,
high-quality behaviors in real-world environments. In the general case, this requires reasoning
about uncertain knowledge, probabilistic uncertainty, the actions of other agents, and so on.
This thesis takes one step in this direction, tackling the simplest possible sequential decision
problems, while leaving more expressive features such as uncertainty for future work. The
remainder of this chapter provides a high-level overview of these classical planning problems,
hierarchies, and the motivations behind and contributions of the dissertation.
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1.1 Classical Planning

The techniques discussed in this thesis are (thus far) geared towards classical planning prob-
lems, which are sequential, discrete, deterministic, and fully observable. Section 2.1 describes
these problems in detail; in short, their objective is to find a (shortest) path in a graph with
states for nodes and actions for edges, from a particular initial state to a goal state. For
example, suppose that the state of our example environment is captured by a set of discrete
variables corresponding to grid points for the objects, robot base, gripper, and so on. If,
in addition, our robot knows the precise initial state of the environment and can exactly
predict the outcomes of its actions, then its cleaning task is a classical planning problem (see
Figure 1.1).

Since planning problems are graph search problems, they can be solved optimally with
generic procedures such as Dijkstra’s algorithm. The main feature distinguishing planning
from ordinary graph search is representation: a planning problem implicitly specifies an
graph that has one state for each allowable combination of state variable values, and is
thus exponentially large. This is accomplished by specifying the transition functions of
actions compactly, in terms of preconditions on state variables that must hold before their
execution, and effects that generate new values for a subset of state variables after execution.
For instance, the BaseR(1, 2) action moves our robot’s base right one square to (2, 2), and
can be executed when the base is mobile at (1, 2) and (2, 2) is free of obstacles. (The action
must be parameterized by the current position, because its preconditions and effects are
determined by the action type and parameters but cannot depend on the current state.) The
exponential size of the state space renders simple algorithms such as Dijkstra’s intractable
for all but the smallest problems, while opening doors to more complex algorithms that can
exploit the structure of planning problems to more quickly find (optimal) solutions.

1.2 Hierarchical Planning

Hierarchical decision-making has been studied since the early days of AI: in 1962, Herbert
Simon wrote “Hierarchy ... is one of the central schemes that the architect of complexity
uses.” Planning is no exception, and a wide variety of approaches to hierarchical planning
have been proposed over the past four decades. Section 2.3 describes these approaches and
their key properties in some detail; for now, we briefly summarize hierarchical task network
(HTN) planning, the approach broadly taken in this thesis.

In hierarchical task network planning, in addition to the “primitive” classical planning do-
main, we are given a hierarchy consisting of high-level actions (HLAs). Each HLA is defined
by a set of allowed refinements into other actions, high-level or primitive. In our example
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Figure 1.1: A “discrete manipulation” robotic planning problem, and a subset of states
encountered along an optimal solution. A mobile robot base (blue octagon) can move to
white squares of the grid, and its gripper (green cross) can extend to squares adjacent to
the base that are not occupied by objects. The gripper can hold one object at a time, and
can pick up and put down objects that are adjacent to it. In the initial state (top left), a
magazine and cup must be moved from their initial positions to their goal regions (shown
with dotted lines). To deliver the objects, the robot first unparks, moves one square to the
right, parks, and extends the gripper to the right (top right). Then, it picks up the magazine
(center left), unparks, and starts navigating to the lower table (center right). Upon arrival,
it parks, extends the gripper down, places the magazine to the left and picks up the cup
(bottom left). Finally, it navigates to the top right and puts down the cup, completing the
optimal solution (bottom right).
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[GOGRASP(o), GODROP(o), H0] 

H0

[NO-OPs*]

[MOVEBASE(xb,yb), GRASP(o)] [MOVEBASE(xb,yb), DROPAT(o,x,y)] 

[GODROPAT(o,x,y)] 

[BASE?(·), NAV(xb,yb)] [NO-OPBaseAt=(xb,yb)]

[REACH(xg,yg), GET?(·)] [REACH(xg,yg), PUT?(·)] [NO-OPBaseAt=(xb,yb)][REACH(0,0), UNPARK, NAV(xb,yb), PARK]

[GRIPPER?(·), REACH(xg,yg)] [NO-OPGripperOffset=(xg,yg)]

Figure 1.2: A schematic depiction of a hierarchy for the example domain. Primitive actions
are in green, and HLAs are in black.

domain, we might consider an HLA GoDrop(o) that attempts to drop object o at a goal loca-
tion, with refinements [GoDropAt(o, x, y)] ranging over potential goal positions (x, y) for o.
Refinements can also be recursive; for instance, we might also include an HLA Nav(x, y) that
attempts to navigate the base to (x, y), with refinements [BaseL/R/U/D(·),Nav(x, y)], or
the empty sequence if the robot is already at (x, y). Figure 1.2 sketches a complete hierarchy
for the example domain, including these and other HLAs. Given a hierarchy, planning begins
with a plan consisting of a single “top-level” HLA called H0, and proceeds by repeatedly
expanding HLAs out into their refinements until a fully primitive solution is generated.

In addition to ruling out primitive plans that do not conform to the hierarchy, the hope
is that solutions can be separated from non-solutions at a high level (where plans are short),
thus quickly pruning large fractions of the search space. In the ideal case, this could reduce
the time complexity of planning from exponential (in the length of the final solution) to
linear (Korf, 1987).

Unfortunately, previous attempts to identify high-level solutions have not been fully
successful. The basic approach taken has been to assign precondition and effect annotations
to the high-level actions, in essentially the same form as supplied for the primitive actions.
This has a certain simplistic appeal; unfortunately, however, in most cases it is not possible
to correctly capture all of the preconditions and effects of an HLA in this form (unless, e.g.,
the HLA admits only one refinement into a single primitive action sequence). For example,
consider a simple HLA h with refinements [a] and [b], where a is a primitive action with
precondition u ∧ v and effect e ∧ f , and b is a primitive action with precondition u ∧ w
and effect e ∧ g (see Figure 1.3). Then, u and e are clearly a precondition and effect of h
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h

[a]

[b]

preconditions effects

u
v
u
w

e
f
e
g

? ?

Figure 1.3: An example HLA h with two immediate refinements, [a] and [b]. The precondi-
tions and effects of a and b are given, but the corresponding annotations for h are unclear.

(respectively), but what of the remaining variables? It seems that the best we can do is
to omit them from our description of h entirely, but this omission can deceive us in several
ways. First, suppose that f is a goal of our problem; then, our description would seem to
entail that h is not a solution (when in fact, we could always choose refinement [a]). Second,
suppose that e ∧ ¬f ∧ ¬g is our goal; then, we have the opposite problem: our description
suggests that h is a solution, when in fact each of a and b causes one of the goal conditions
to be violated.

A primary contribution of this dissertation is a solution to this problem, using a more
expressive angelic language for HLA descriptions that can include possible preconditions and
effects. Other contributions include a set of techniques for exploiting hierarchical structure
in optimal planning, and several new families of hierarchically optimal search algorithms that
exploit these techniques (along with angelic descriptions, in some cases) for faster planning.
The main limitation of the techniques and algorithms described in this thesis compared to
previous work in hierarchical planning is that we assume that the refinements of each HLA are
fully ordered sequences of actions, and do not allow actions generated by different HLAs to
be interleaved in a final solution. This assumption simplifies the analysis of HLA descriptions
and other algorithmic techniques, while still allowing for natural hierarchies in many domains
(such as our running example). However, as we discuss later, it can be somewhat restrictive
in other domains, and we hope that future work will relax this restriction.

1.3 Outline of the Thesis

The dissertation begins with a detailed review of background material and previous work
upon which our contributions are built. Chapter 2 is divided into three sections; the first and
last formally introduce classical planning problems and hierarchies, in considerably more de-
tail than the brief summaries above. The remaining section describes AND/OR graph search
problems, generalizations of classical planning problems that most commonly arise in non-
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deterministic or multi-agent planning settings, and reviews the broad classes of algorithms
used for solving them. While the methods proposed in this thesis cannot yet be applied to
solve AND/OR graph search problems, they will use techniques and algorithms developed
for AND/OR graph search to more efficiently solve classical planning problems. Minor con-
tributions of this section include a novel formalization of AND/OR search problems that
can succinctly express both top-down and bottom-up search algorithms, which have primar-
ily been considered separately in the literature, as well as a novel hybrid algorithm that
combines some of the best features of both approaches.

Next, Chapters 3, 4, and 5 describe the primary contributions of the thesis.

Chapter 3 begins by proposing a simple method to decompose search for refinements of
a high-level plan into separate subproblems, one for each action in the plan. For example,
every optimal solution to put away a magazine via [GoGrasp(m),GoDrop(m)] consists of
an optimal solution to grasp the magazine while ending in a particular intermediate state,
followed by an optimal solution to put it away from this state. (Note that the reverse
implication does not hold, because some intermediate states will result in a more efficient
overall solution than others.) The advantage of decomposition is that subproblems may
be repeated across the search space, and solution information from one instance can be
cached and reused at later instances of the same subproblem. Furthermore, we show how
to dramatically increase this caching by taking advantage of state abstraction in the form of
HLA-specific relevance information. For example, the optimal solutions to GoGrasp(m) do
not depend on the positions of objects other than the magazine (and any nearby objects),
and can thus be shared between GoGrasp(m) subproblems from different world states that
agree on all relevant variable values (but with, e.g., different cup positions). The chapter
concludes with a sequence of increasingly efficient planning algorithms that can exploit these
techniques to find hierarchically optimal solutions exponentially faster than previous brute-
force algorithms.

Chapter 4 takes a step back from planning algorithms to consider the question of HLA
descriptions introduced above. We introduce a novel angelic semantics for high-level actions,
which provides descriptions of the effects of HLAs that are true—that is, they follow logically
from the refinement hierarchy and the descriptions of the primitive actions. If achievement
of the goal is entailed by the true descriptions of a sequence of HLAs, then that sequence
must, by definition, be reducible to a primitive solution. Conversely, if the sequence provably
fails to achieve the goal, it is not reducible to a primitive solution. When extended to include
action costs, this semantics also allows for the identification of provably optimal high-level
plans. The key insight behind the angelic approach is that the planning agent itself (not an
adversary) will ultimately choose which refinement to make. Thus, instead of considering
only preconditions and effects of an HLA h that hold under all refinements of h, we propose
descriptions that generate a set of all states reachable by any refinement of h.

Unfortunately, such exact descriptions will typically be too large and computationally
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expensive to be of practical utility. Thus, we propose principled optimistic and pessimistic
approximations to the exact descriptions, which compactly describe bounds on the reachable
sets and costs of high-level plans. For example, an optimistic description of h in our above
example might have precondition u and effect e∧ +̃f ∧ +̃g, meaning that h is definitely not
applicable when u is false, and after executing h, e will definitely be made true, and f and g
may possibly be made true as well. A pessimistic description could simply pick a refinement,
stating that when u ∧ v is true, h can definitely make e ∧ f true (and possibly reach other
states as well). We prove that optimistic and pessimistic descriptions of individual actions
can be chained together to provide correct bounds on the outcomes of high-level sequences,
and provide concrete representations and algorithms for computing such bounds efficiently.
The chapter concludes by discussing potential approaches for computing angelic descriptions,
and the relationships between angelic descriptions and descriptions of ordinary “primitive”
actions (which are often intended to correctly capture even lower-level real-world processes).

Chapter 5 describes hierarchical planning algorithms that can take advantage of angelic
descriptions and cost bounds. Our first algorithm, Angelic Hierarchical A* (AH-A*), applies
the well-known A* algorithm to search through the space of high-level sequences generated
by a hierarchy, using optimistic bounds as admissible heuristics that guarantee optimality
of a discovered solution. AH-A* also includes a novel application of pessimistic descriptions
for pruning, based on domination relationships among prefixes of generated plans. The re-
mainder of the chapter builds upon this algorithm, incorporating the decomposition methods
of Chapter 3 along with other, novel improvements, culminating in the DASH-A* (Decom-
posed, Angelic, State-abstracted, Hierarchical A*) algorithm. DASH-A* is a hierarchically
optimal planning algorithm built upon a novel AND/OR graph search space, which can si-
multaneously reason about high-level actions and sequences at varying levels of action and
state abstraction. Cost and reachability bounds provided by angelic HLA descriptions are
used to quickly eliminate large swaths of provably suboptimal plans from the search space,
leading to further exponential speedups over AH-A* or decomposed planning alone. Finally,
we conclude with a brief discussion of bounded suboptimal variants of these algorithms, which
can trade off solution quality for computation time in a principled manner, and may be a
better fit for many practical applications.

Chapter 6 describes implementations of the algorithms introduced in the previous chap-
ters, and compares their empirical performance with previous algorithms for (hierarchically)
optimal planning, on a selection of discrete planning domains.

Chapter 7 discusses relationships to other planning research not covered in Chapter 2, as
well as connections to work in other areas of AI and farther afield.

Finally, Chapter 8 concludes with a brief summary of the major contributions of the
thesis, and a discussion of interesting directions for future work.

Some of the material in this thesis has been published in a series of conference papers
and technical reports. The angelic approach was developed by Bhaskara Marthi, Stuart
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Russell and myself, initially described at the International Conference on Automated Plan-
ning and Scheduling (ICAPS) in 2007 (Marthi et al., 2007a,b), and extended to include cost
information the following year (Marthi et al., 2008, 2009). The first algorithm of Chap-
ter 3 was presented at ICAPS in 2010, along with an implementation of our example mobile
manipulation domain on a physical robot (Wolfe et al., 2010).
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Chapter 2

Background

This thesis presents several new families of search algorithms that use hierarchies of
high-level actions to efficiently find high-quality solutions to the simplest sequential decision
problems. Section 2.1 describes these classical planning problems in detail, including relevant
background material on problem representation, practical implementation details, and search
strategies. Then, Section 2.2 discusses AND/OR search problems, which generalize classical
planning problems by adding, e.g., nondeterminism. While the algorithms presented in this
thesis can not (as yet) solve this more general class of problems, they will use the machinery
presented to solve classical planning problems more effectively. Finally, Section 2.3 reviews
historical approaches to hierarchical planning, and presents the definition of hierarchy used
throughout the thesis.

The formalisms presented in this chapter sometimes deviate from their typical presenta-
tions. In particular, we attempt to simplify each formalism as much as possible, by presenting
compilations that remove common additional features without compromising expressiveness.
The purpose of these deviations is to reduce descriptive complexity, and thus present more
comprehensible and easily analyzable results and search algorithms.

2.1 Classical Planning and Search

2.1.1 State-Space Search Problems

This section presents a standard representation-independent formalism for state-space search
problems, which describes shortest-path problems in weighted, directed (multi-)graphs.

Definition 2.1. A state-space search problem is given by a tuple (S,A, T , C, s0, s∗):

• S is the state space.
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• A is the action space, where As ⊆ A is the subset of actions applicable in state s.

• T (s, a) is the transition function, specifying the state T (s, a) reached after doing action
a ∈ As in state s ∈ S.

• C(s, a) is the accompanying cost function, specifying the finite cost C(s, a) ∈ [0,∞) of
doing action a from state s.

• s0 is the initial state

• s∗ is the goal state

In graph terminology, S is the set of nodes, each s ∈ S and a ∈ As generates an edge
from s to T (s, a) with cost C(s, a), and the task is to find a path from s0 to s∗ (where the
sum of edge costs is minimized). The successors of a state s are those states reachable from
s by applying a single action.

Remark. It is more common to assume a set of goal states G. We can always transform
a problem with multiple goal states into our formalism by adding a new goal state s∗, and a
zero-cost action that leads from states in G to s∗.

Assumption 2.1. We assume that S and A are finite. We also assume without loss of
generality that C(s, a) = 0 or C(s, a) ≥ 1, which can always be ensured by multiplying all
costs by the reciprocal of the smallest non-zero action cost.

To simplify notation, we extend T and C to the full domain ofA by assuming the existence
of a dummy sink state s⊥ 6= s∗ with As⊥ = ∅. Then, T (s, a) = s⊥ and C(s, a) =∞ if a /∈ As
We also overload the transition and cost functions to work on sequences of actions in the
obvious way, so if action sequence a = [a1, ..., an], then we say that a has length n and define

T (s, a) := T (T (T (s, a1), ...), an)

C(s, a) := C(s, a1) + C(T (s, a1), a2) + ...+ C(T (s, a1:n−1), an),

where a1:n−1 refers to the subsequence of a including actions with indices from 1 to n − 1
(i.e., all but the last action). Under these simplifications, an action sequence a is applicable
from state s iff T (s, a) 6= s⊥, or, equivalently, iff C(s, a) <∞.

Definition 2.2. A solution a is a finite sequence of actions a ∈ A∗ where T (s0, a) = s∗.

Definition 2.3. The optimal cost c∗(s) to reach the goal s∗ from a state s ∈ S is

c∗(s) := min
a∈A∗ | T (s,a)=s∗

C(s, a).
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Definition 2.4. An optimal solution a∗ is a solution with minimal cost:

T (s0, a
∗) = s∗ and C(s0, a∗) = c∗(s0).

Assumption 2.2. To ensure that all optimal solutions have finite length, we assume (for
now) that the search space is free of zero-cost cycles:

¬
(

(∃s ∈ S, a ∈ A+) T (s, a) = s and C(s, a) = 0
)
.

With this assumption in place, we have the following results, which will be useful in
proving the termination of search algorithms.

Lemma 2.3. Given any cost c ∈ [0,∞), there are a finite number of action sequences a ∈ A∗
with cost C(s0, a) ≤ c.

Proof. Since the state and action spaces are finite, there are finitely many plans with length
at most (c+ 1)|S|. By the pigeonhole principle, every plan a with |a| > (c+ 1)|S| must visit
some state at least c+ 1 times. By Assumption 2.1 and Assumption 2.2, C(s0, a) > c.

Theorem 2.4. Every search problem either has no solutions, or admits a finite-length opti-
mal solution.

Proof. Suppose that there exists a solution with finite cost c. By Lemma 2.3, there exist
finitely many plans with cost ≤ c, each of finite length, and among these at least one must
have minimal cost and thus be an optimal solution.

Now, a search algorithm takes a search problem (and perhaps additional information) as
input, and either outputs a solution, outputs failure (indicating that no solution exists), or
fails to terminate.

Definition 2.5. A search algorithm is sound if, when it returns a plan, that plan is always
a solution.

Definition 2.6. A search algorithm is complete if, when a solution exists, it always even-
tually returns one. If no solution exists, it may return failure or fail to terminate.

Definition 2.7. A search algorithm is optimal if, when a solution exists, it always eventually
returns an optimal solution. If no solution exists, it may return failure or fail to terminate.

Of course, there is typically a trade-off between search time and solution quality, with
optimality lying at one extreme. Other common points on this curve include satisficing
algorithms, which attempt to find any solution (perhaps within a given fixed cost bound)
as quickly as possible, and bounded suboptimal algorithms, which attempt to find a solution
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whose cost is at most a given multiple of the optimal cost. This thesis will primarily be
concerned with optimal search algorithms.1 The reason is that while other criteria may
sometimes be more useful in practice, understanding optimal search in a given setting is
typically a prerequisite for developing algorithms that can make a principled tradeoff between
solution quality and execution time.

2.1.2 Planning Problems: Representations and Examples

Classical planning studies very large search problems, in which the problem specification
implicitly represents an exponentially larger state-space graph. Typically, the states are
specified by assignments to a set of discrete variables. While most of the algorithms in
this thesis are representation-independent (depending only on black-box functions such as
T ), we present two common representations — STRIPS and SAS+ — to support examples
and later discussions of concrete implementations. Determining (bounded) plan existence in
both representations is PSPACE-complete (Bylander, 1994; Jonsson and Bäckström, 1998).
While more expressive formalisms such as ADL (Pednault, 1989) and PDDL (Ghallab et al.,
1998) exist, many of their additional features can be efficiently compiled back into STRIPS
(e.g., (Nebel, 2000)), and STRIPS and SAS+ suffice for the problems considered here.

This section also describes our discrete robotic manipulation domain, and its represen-
tation in SAS+, which will serve as a running example throughout the thesis.

2.1.2.1 STRIPS

STRIPS is a simple, widely used representation language for planning problems (Fikes and
Nilsson, 1971). A STRIPS planning problem is presented in two parts: a domain that
specifies a set of predicates and action schemata that capture the basic physics for a class of
problems, and a problem instance that specifies a fixed set of objects, the set of propositions
true in the initial state, and a set of goal propositions.

We present STRIPS by example, using a simple “nav-switch” domain (Marthi et al.,
2008). In this domain, a single agent can navigate on a grid, moving one square up, down,
left, or right at each step. Figure 2.1 shows a simple 3 × 3 example. The domain is made
slightly more interesting by the addition of a single global “switch” that can face horizontally
or vertically; move actions cost 2 if they go in the current direction of the switch and 4
otherwise. The switch can be flipped from horizontal to vertical and back with cost 1, but
only from a subset of designated squares (e.g., (2, 1), (3, 2), and (2, 3) in Figure 2.1). The
goal is always to reach a particular square (e.g., (3, 3)) with minimum cost. For example, in

1More precisely, our focus is on hierarchically optimal search algorithms, to be defined in Section 2.3.
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Figure 2.1: An instance of the nav-switch STRIPS planning domain.

the problem instance depicted in Figure 2.1, the only optimal solution is to go right, flip, up
two, flip, and right again, incurring a total cost of 10.

This nav-switch domain can be encoded in (typed) STRIPS as follows.

• The problem state is captured by six predicates:

– AtX(x) and AtY(y), where x ∈ Xs, y ∈ Ys, representing the position of the agent;

– LeftOf(xl, xr) where xl, xr ∈ Xs, representing that xl is left of xr;

– Below(yd, yu) where yd, yu ∈ Ys, representing that yd is below yu;

– H, representing the orientation of the switch (true for horizontal); and

– CanFlip(x, y) where x ∈ Xs, y ∈ Ys, representing that the switch can be flipped
from position (x, y).

• The action schemata are UpH(yfrom, yto), DownH(yfrom, yto), LeftH(xfrom, xto),
RightH(xfrom, xto), UpV(yfrom, yto), DownV(yfrom, yto), LeftV(xfrom, xto), and
RightV(xfrom, xto), which move the agent one square in a direction when the switch
is in the specified orientation, and FlipH(x, y) and FlipV(x, y), which flip the switch
to the specified orientation. Each action schema consists of a precondition that must
hold for the action to be applicable, an effect that is made to hold by executing it, and a
cost. Preconditions and effects are conjunctions of literals, which are possibly-negated
predicate applications. For example, the schema UpH(yfrom, yto) where yfrom, yto ∈
Ys has precondition AtY(yfrom) ∧ Below(yfrom, yto) ∧ H, effect ¬AtY(yfrom) ∧ AtY(yto),
and cost 4. In other words, to move from position (x, yfrom) to (x, yto) with action
UpH(yfrom, yto), the agent must be at the initial position, the destination must be
one square above this position, and the switch must be horizontal. After doing this
action, the agent is at the new position, and no longer at the initial position. Similarly,
FlipH(x, y) has precondition AtX(x) ∧ AtY(y) ∧ CanFlip(x, y) ∧ ¬H, effect H, and cost
1. The remaining eight action schemata are defined analogously.
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Then, a problem instance for this domain specifies a set of objects for each type, an initial
state, and a goal state. For the instance in Figure 2.1, these are as follows.

• Objects: Xs = {x1, x2, x3}, Ys = {y1, y2, y3}. Each predicate generates a set of ground
Boolean propositions that can be true or false in a given state of the problem, one for
each allowed combination of objects; thus, |S| = 2p where p is the number of ground
propositions. Similarly, each action schema generates a set of ground actions, which
define the transition and cost functions T and C.

• Initial state: AtX(x1) ∧ AtY(y1) ∧ H ∧ LeftOf(x1, x2) ∧ LeftOf(x2, x3) ∧ Below(y1, y2) ∧
Below(y2, y3) ∧ CanFlip(x2, y1) ∧ CanFlip(x2, y3) ∧ CanFlip(x3, y2). All unspecified propo-
sitions are false in the initial state.

• Goal: AtX(x3) ∧ AtY(y3), a conjunction of propositions that must be achieved.

The sole optimal solution to this problem is [RightH(x1, x2),FlipV(x2, y1), UpV(y1, y2),
UpV(y2, y3), FlipH(x2, y3),RightH(x2, x3)], with cost 10.2

In principle, this separation of domain and problem instance allows one to consider lifted
solution algorithms that operate directly on the first-order predicates and action schemata.
However, many competitive planning algorithms ground a STRIPS instance before plan-
ning, expanding each predicate and action schema out into its legal propositions and ground
actions. In addition to enabling lifted solution algorithms, the domain/instance separa-
tion allows us to meaningfully consider domain-configurable planning algorithms that use
additional domain-specific knowledge (e.g., a manually specified action hierarchy) to more
effectively plan in the (potentially infinitely) many problem instances in that domain.

2.1.2.2 SAS+

SAS+ (Bäckström, 1992) is a generalization of ground STRIPS that allows for multi-valued
state variables, which we will assume in parts of this thesis. A SAS+ problem is represented
by a tuple (V ,D,A, s0, s∗):

• V is the set of multi-valued state variables. Each state variable v ∈ V takes on values
from a domain Dv. Each state in the state space S assigns a value to each variable, so
S =

⊗
v∈V Dv. We write s[v] for the value of variable v in state s.

2Note that, as described, nav-switch instances have two goal states (one per switch orientation). To
conform with the above single-goal-state restriction, we can add a zero-cost action Goal with precondition
that the agent is at the goal position and effect H, and add H as a goal condition.
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• Each action a ∈ A is represented by precondition prea and effect posta, which specify
values for subsets of the state variables Vprea and Vposta , plus a cost ca.

3 Action a is
applicable in state s if (∀v ∈ Vprea ) s[v] = prea[v]. After doing a, state s′ = T (s, a)
satisfies

s′[v] =

{
posta[v] if v ∈ Vposta

s[v] otherwise.

• The initial state s0 is a complete assignment to state variables.

• The goal state s∗ is also a complete assignment to state variables.4

SAS+ often allows for more concise and natural representations than STRIPS. For in-
stance, an SAS+ version of the nav-switch domain would replace the three Boolean propo-
sitions AtX(xi) with a single state variable AtX with domain {1, 2, 3}.

2.1.2.3 Running Example: Discrete Manipulation

As a running example, we use a discrete version of a robotic mobile manipulation do-
main (Wolfe et al., 2010). In this domain (see Figure 1.1), a mobile robot navigates through
a grid environment to deliver each of a set of objects to its goal region. Objects are located
on tables, which represent obstacles to the robot base; to manipulate them, when parked
the base can extend a gripper up to a fixed distance, which can pick up or put down objects
from any direction. Objects can only be picked up from non-goal locations, and put down
in goal locations.5 The robot’s gripper must be located on the same square as the base
when the base is mobile (unparked). Efficient solutions must optimize details ranging from
the top-level task ordering, down to object and base placements, to paths for the base and
gripper through the space.

Consider an n × n instance of this domain, where the base can traverse squares in set
F , the gripper can reach up to r squares from the base, and the set of movable objects is
O where each o ∈ O has initial position oi and set of goal positions oG. We assume the set
of all initial positions and goal regions are disjoint with F . We can encode this instance in
SAS+ with the state variables shown in Figure 2.2 and the actions in Figure 2.3.

3A distinction is traditionally made between preconditions and prevail conditions, which we omit because
it is not relevant to this thesis.

4Traditionally, the goal is allowed to be a partial assignment. As mentioned in the previous sections, we
can always accommodate this case by adding a zero-cost goal action with the original goal as precondition,
which sets all remaining variables to (arbitrarily chosen) canonical values.

5These constraints are included because they reduce the reachable state space significantly, without
affecting optimal solution quality in most cases.



CHAPTER 2. BACKGROUND 17

args variable domain init represents

Parked {true, false} true is the base parked or mobile?

BaseAt F (1, 7) position of the robot base

Holding O ∪ {none} none object currently held

GripperOffset {(x, y) : |x|+ |y| ≤ r} (0, 0) gripper offset from base

o ∈ O ObjectAt(o) oG ∪ {oi, held} oi position of object o

o ∈ O CanMove(o) {true, false} true can o be moved?

x, y ∈ [1 n] Free(x, y) {true, false} · is table position (x, y) free?

Figure 2.2: State variables for an SAS+ encoding of the discrete manipulation domain

In the optimal solution shown in Figure 1.1, the robot begins by moving one square
to the right with [Unpark,BaseR(1, 7),Park], and extending its gripper to pick up the
magazine with [GripperR(2, 7, 0, 0),GetR(2, 7, 1, 0,m)]. After moving the gripper back
onto the base, the robot unparks and navigates to the bottom table, which contains both
the cup and the goal area for the magazine. Upon arrival at position (7, 4), the robot extends
the gripper down one square, drops the magazine to the left and picks up the cup to the right,
and moves the gripper back home. Finally, the base unparks, navigates to (10, 7), parks,
extends the gripper up or right one square, and drops the cup on the table to complete the
task.

2.1.3 State-Space Search Algorithms

This section briefly reviews several textbook state-space search algorithms (Russell and
Norvig, 2009), as well as some practical techniques for making these algorithms efficient.

2.1.3.1 (Symbolic) Breadth-First Search

When every action has unit cost, the simplest optimal search algorithm is breadth-first search
(BFS). This algorithm (see Algorithm 2.1) maintains a fringe of newly discovered states, and
a closed set of states previously explored. In the ith iteration of the loop, the fringe contains
the set of states reachable from s0 with cost i, but not less. When the fringe contains s∗, an
optimal solution of length i has been found, and this cost is returned. (If an actual solution
is desired, a little extra bookkeeping is required to extract and return it.)

BFS traditionally operates on a single state at a time, where fringe is a queue and
closed is a hash set. In this case, it finds a solution in time linear in the number of states
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action precondition effect cost

Park Parked = false Parked = true 5

Unpark
Parked = true,
GripperOffset = (0, 0)

Parked = false 2

BaseL(x, y)
Parked = false,
BaseAt = (x, y)

BaseAt = (x− 1, y) 2

GripperL(x, y, gx, gy)

Parked = true,
BaseAt = (x, y),
GripperOffset = (gx, gy),
Free(x+gx−1, y + gy) = true

GripperOffset = (gx− 1, gy) 1

GetL(x, y, gx, gy, o)

Parked = true,
BaseAt = (x, y),
GripperOffset = (gx, gy),
ObjectAt(o) = (x+gx−1, y+gy),
CanMove(o) = true,
Holding = none

ObjectAt(o) = held ,
Holding = o,
Free(x+gx−1, y+gy) = true

1

PutL(x, y, gx, gy, o)

Parked = true,
BaseAt = (x, y),
GripperOffset = (gx, gy),
ObjectAt(o) = held ,
Free(x+gx−1, y+gy) = true,
Holding = o,
(x+gx−1, y+gy) ∈ oG

ObjectAt(o) = (x+gx−1, y+gy),
Holding = none,
Free(x+gx−1, y+gy) = false,
CanMove(o) = false

1

... (Base, Gripper, Get, Put for directions U, R, D)

Goal (∀o ∈ O) CanMove(o) = false · = goal 0

Figure 2.3: Actions for an SAS+ encoding of the discrete manipulation domain. Constraints
imposed by the variable domains in Figure 2.2 are implicit.
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Algorithm 2.1 (Symbolic) Breadth-First Search

function BFS()
fringe ← {s0}
closed ← {}
steps ← 0
while fringe 6= ∅ do

if s∗ ∈ fringe then return steps
closed ← closed ∪ fringe
fringe ← {s′ : s ∈ fringe and a ∈ As and s′ = T (s, a)} \ closed
steps← steps+ 1

return ∞

reachable from s0 while incurring no more than the optimal solution cost. As written in
Algorithm 2.1, another possibility exists: T , fringe and closed can be represented implicitly,
e.g., using logical formulae or binary decision diagrams (BDDs) (Bryant, 1992). In this case,
each iteration of the loop can be carried out symbolically, without ever explicitly enumerating
the states reachable at each depth (Cimatti et al., 1997), potentially leading to exponential
speedups.6 The algorithms described in Chapter 5 build upon this idea, in the context of
hierarchical planning.

When actions can have variable costs, the natural generalization of BFS is Dijkstra’s algo-
rithm (Dijkstra, 1959). The next section reviews the A* algorithm, which extends Dijkstra’s
algorithm to allow for the use of heuristic information.

2.1.3.2 A* Search

A* (Hart et al., 1972) is an optimal search algorithm that can leverage heuristic cost bounds
to increase search efficiency. The algorithm maintains a fringe of newly discovered states
paired with the cost to reach them from s0 along some particular path, as well as a closed
hash table mapping previously explored states to the optimal cost to reach them from s0.
The fringe is represented as a priority queue (e.g., heap), sorted by f(s) = c+ h(s), where c
is the cost incurred to reach s from s0 and h(s) is a heuristic lower bound on the remaining
cost to reach s∗ from s.

Definition 2.8. A heuristic function h(s) is admissible iff it never overestimates the cost
to reach the goal: (∀s ∈ S) h(s) ≤ c∗(s).

Theorem 2.5. (Hart et al., 1972) A* tree search (i.e., without a closed map) is optimal if
h is admissible.

6Other planning algorithms such as SATPLAN (Kautz and Selman, 1992) are based on similar ideas.
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Algorithm 2.2 A*
function A*()

fringe ← a priority queue on pairs (s, c) ordered by min c+h(s), initially containing {(s0, 0)}
closed ← an empty mapping from state to optimal solution cost
while fringe not empty do

(s, c)← fringe.RemoveMin()
if s = s∗ then return c
if closed [s] = undefined then

closed [s]← c
for a ∈ As do fringe.Insert((T (s, a), c+ C(s, a)))

else assert c ≥ closed [s] /* otherwise, h is inconsistent */

return −∞

A* tree search is optimal under an admissible heuristic because f(s) is a lower bound
on the cost of the cheapest solution that passes through s, and thus when s∗ is first popped
from the queue, every state on some optimal path to s∗ must have already been expanded.

The optimality of A* graph search (as shown in Algorithm 2.2) depends on a stronger
condition:

Definition 2.9. A heuristic function h(s) is consistent iff it obeys the following triangle
inequality:

(∀s, a) h(s) ≤ h(T (s, a)) + C(s, a).

Under a consistent heuristic, if s′ is a successor of s, then f(s′) ≥ f(s).

Theorem 2.6. (Hart et al., 1972) A* graph search is optimal when h is consistent.

Consistency ensures that when s is first popped from fringe, its associated cost c is
optimal, and subsequent occurrences of s can be safely skipped.

Because A* examines only states with f(s) ≤ c∗(s0), A* can avoid examining a significant
portion of the state space when h is accurate. However, if there are many states on or near an
optimal trajectory, A* still must examine the exponentially many states with f(s) < c∗(s0)
even given an almost-perfect heuristic (Helmert and Röger, 2008).

Given a STRIPS planning problem, a variety of methods exist to automatically construct
consistent heuristics for use with A* search, including pattern databases (Culberson and
Schaeffer, 1996), planning graphs (Blum and Furst, 1995), causal graphs (Helmert, 2004),
and landmarks (Richter and Westphal, 2010).
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2.1.3.3 Suboptimal Search Algorithms

While optimal solutions are clearly desirable if we can find them, on sufficiently large prob-
lems A* can require too much time or memory to be practical. A variety of related search
algorithms exist that can trade off optimality for computation time, while still providing
bounds on the sub-optimality of the discovered solution.

The canonical such algorithm is weighted A* (Pohl, 1970), which is simply A* where the
heuristic value h(s) is multiplied by a weight w ≥ 1. Weighted A* is guaranteed to find a
solution whose cost is at most w × c∗(s0), and often does so much faster than A*, because
it greedily puts more weight on the estimated distance to the goal than the cost paid so
far. Many variants upon this approach have been proposed, with explicit estimation search
(Thayer and Ruml, 2010) being a recent promising contender.

One problem with weighted A* is that one must select the sub-optimality bound w in
advance. Another family of anytime algorithms, including anytime repair A* (Likhachev
et al., 2003), relax this restriction by repeatedly searching with decreasing values of w until
computation time runs out, returning the best solution found thus far.

2.1.3.4 Practical Considerations

In addition to effective search algorithms and heuristics, efficient state-space planners require
the ability to quickly compute the successors of a state. In particular, the most significant
challenge is efficiently generating the set of actions As applicable in a given state s.

For instance, consider the nav-switch domain presented in Section 2.1.2.1. In principle, in
an n×n world there are 8n2 possible move actions (e.g., LeftH(x1, x1)) and 2n2 flip actions
(e.g., FlipH(x1, y1)). However, in any given state of the world, at most 5 such actions
are applicable (moving one step, or flipping the switch). Efficiently generating this set of
applicable actions directly, without explicitly testing every possible action for applicability,
can reduce planning time by several orders of magnitude even in modestly-sized instances.

Data structures for this problem are called successor generators, and they are typically
built up in two steps. First, static analysis is used to ground the action schemata, generating
only ground actions that are potentially applicable in any state reachable from s0. Then,
these ground actions are organized into a data structure that supports efficient queries for
the subset applicable in a particular reachable state. Helmert (2006) provides a detailed
overview of these techniques; we briefly summarize them here, to serve as a basis for later
discussion of related techniques in the hierarchical setting.

First, we must generate the feasible ground actions, by grounding each action schema.
Consider the UpH(yfrom, yto) action schema. This schema allows for nonsensical actions
such as UpH(y1, y1), which can never be applicable because Below(y1, y1) is always false.
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In particular, the Below predicate is constant : no legal action affects it, and so its values
in the initial state must persist throughout planning. Such constant predicates can be
automatically identified, and any ground action that does not match their instantiation in s0
can be pruned (and then the constant predicates can be removed from the domain entirely).
Because the number of possible ground actions can be many orders of magnitude larger than
the consistent ones, rather than generate them all and then prune the inconsistent ones, it
is often desirable to generate the consistent ground actions directly. This can be done by
formulating a constraint satisfaction problem (CSP) in which the variables are the arguments
to the action schema and the constant predicates in its precondition are the constraints. Each
solution to the CSP generates a consistent ground action instantiation.

Second, we organize this set of consistent actions into a successor generator data structure
that supports efficient lookups for the actions applicable in a particular reachable state. A
simple method is to build a decision tree, where each internal node tests a single proposition
p in state s. The actions are partitioned into three sets: those that require p, those that
require ¬p, and those that don’t care. Each leaf of the tree holds a set of ground actions
with the same precondition. At query time, the applicable actions for a state are generated
by traversing the tree, following the applicable and “don’t care” branches from each node
(when they exist), and unioning the sets of actions at the leaves reached.

2.1.4 Partial-Order Planning

If we have access to a structured description of a planning domain (e.g., STRIPS descrip-
tions), methods other than state-space search are possible. In partial-order planning, per-
haps the best-studied alternative, plans are partially ordered networks of actions reaching
backwards from the goal. Partial-order planning was pioneered in NOAH (Sacerdoti, 1975),
systematized in TWEAK (Chapman, 1987) and SNLP (Mcallester and Rosenblitt, 1991),
and studied and extended by many other researchers. While this thesis is only concerned
with fully ordered planning algorithms, we briefly summarize the main ideas for comparison
with previous hierarchical planning approaches, many of which were implemented within a
partial-order planning framework.

The central intuition behind partial-order planning is least commitment. At each step,
a partial-order planning algorithm attempts to make a smallest commitment that can make
progress towards solving the problem. By deferring arbitrary choices until later, the planner
will not have to backtrack over values for these choices if a fundamental inconsistency in its
plan is later discovered.

Specifically, a partial-order planner searches through the space of partially ordered plans,
which include actions (possibly with some arguments as-yet unspecified), causal links (e.g.,
action a effects a precondition of action b), and ordering constraints (e.g., a must come before
b). In a solution, every precondition and goal condition must be satisfied by a causal link from
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an action or the initial state, but actions concerned with different subsets of propositions need
not be ordered. Partial-order planners are also often lifted, allowing as-yet uninstantiated
variables as arguments to actions in their partial plans. At each planning step, a conflict in
the current plan – either an unsatisfied precondition, or a threat to a causal link – is selected,
and the algorithm branches over possible resolutions to this conflict. When an irresolvable
conflict is detected, search must backtrack and try another branch.

2.2 AND/OR Graph Search

The previous section described classical planning problems, in which the search space is
effectively an OR-graph: from each state (or partial-order plan), the agent gets to choose
which action (or plan modification) to do next. Such problems are a subset of the larger
class of AND/OR graph search problems, which include AND-nodes at which the agent
must solve a set of subproblems to find a solution. AND/OR search problems arise in a
wide variety of applications, including nondeterministic and probabilistic planning (where
AND-nodes represent the observation of an uncertain outcome), natural language parsing
(where AND-nodes represent sub-parses for adjacent sentence fragments), and hierarchical
planning (where AND-nodes represent a sequence of abstract actions).

Unlike in classical search, where A* is the dominant optimal algorithm, in AND/OR
search there exist a variety of non-dominated optimal search algorithms. Which algorithm
is best in a particular situation can depend on a variety of factors, including whether the
search space is a tree, directed acyclic graph (DAG), or general directed cyclic graph (DCG),
whether the “top-down” or “bottom-up” branching factor is bigger, what heuristics are
available, and so on.

This section defines a formalism for AND/OR graph search problems that generalizes
the state-space formalism in the previous section, and reviews several relevant families of
optimal AND/OR search algorithms.

2.2.1 AND/OR Search Problems

2.2.1.1 Formalism

This section presents a generic formalism for AND/OR search problems, combining ideas
and notation from a variety of sources (Kumar et al., 1985; Kambhampati et al., 1995;
Felzenszwalb and McAllester, 2007)

The basic entity in this formalism is a subproblem, which roughly corresponds to a state
in the state-space framework. The problem-solving agent is given a single root subproblem
P0 to solve. Each subproblem may be terminal (trivially solved), or it may admit a set
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of decompositions (called refinements) into sets of other subproblems. All subproblems
appearing in at least one refinement must be solved to solve the parent subproblem. Thus,
solutions correspond to graphs in which P0 is the root, all leaves are terminal, and each
nonterminal subproblem (OR-node) has a single child corresponding to a refinement (AND-
node), each of whose child subproblems is the root of a solution graph. Figure 2.4 shows an
example AND/OR graph and the tree it represents, and Figure 2.5 shows the two solutions
for this graph.

Definition 2.10. An AND/OR search problem is given by a tuple (P0,Z,R):

• P0 is the root subproblem.

• Z(p) returns an optimal solution (discussed shortly) for subproblem p if p is terminal,
and otherwise returns NT (for nonterminal).

• R(p) returns the refinements of nonterminal subproblem p. Each refinement i ∈ R(p)
can be written as a production πi →gi λi ρi where πi = p. The meaning is that a
solution to subproblem λi with cost cλ and a solution to subproblem ρi with cost cρ
combine to yield a solution to the original subproblem πi = p with cost gi(cλ, cρ). gi is
a cost function, often just addition, which we discuss further in Section 2.2.1.3.

Remark. This formalism assumes that every refinement consists of exactly two subprob-
lems. Any AND/OR search with pairwise factorable cost functions can be compiled into this
form, which leads to significantly simpler search algorithms in many cases.7

Assumption 2.7. We assume that each subproblem has a finite set of refinements, and that
the set of all subproblems reachable by refinements of P0 is finite.

For concreteness, Algorithm 2.3 shows perhaps the simplest AND/OR search algorithm,
depth-first tree search (DFS). Of course, DFS is not optimal because it returns the first
discovered solution regardless of cost, and not complete because it may, e.g., get stuck in a
loop examining the first refinement while the second refinement represents a trivial solution.

Definition 2.11. The solution set for a subproblem p or refinement i, written 〈〈p〉〉 or 〈〈i〉〉,
is recursively defined by:8

〈〈p〉〉 :=

{
{Z(p)} if Z(p) 6= NT⋃
i∈R(p)〈〈i〉〉 otherwise.

〈〈i〉〉 := {sol(i, zλ, zρ) : zλ ∈ 〈〈λi〉〉 and zρ ∈ 〈〈ρi〉〉},
7All of the search algorithms we describe can be adapted to directly handle general refinements containing

zero or more subproblems, at the cost of some algorithmic complexity.
8With certain caveats regarding cyclic solutions, to be discussed in Section 2.2.1.3.
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Algorithm 2.3 Depth-First Tree Search
function DFS(p)

if Z(p) 6= NT then return Z(p)
for i ∈ R(p) do

zλ ← DFS(λi)
if zλ 6= ⊥ then

zρ ← DFS(ρi)
if zρ 6= ⊥ then

return sol(i, zλ, zρ)

return ⊥
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where sol(i, zλ, zρ) is a solution constructor that returns a node with label i, left child zλ,
and right child zρ.

Each node in a solution graph is also labeled with a cost.

Definition 2.12. The cost of a solution z is written c(z ). This cost is given for terminal
solutions. For nonterminal solutions z = sol(i, zλ, zρ), c(z ) := gi(c(zλ), c(zρ)). Solution
costs are always finite.

Remark. For algorithmic convenience, we will sometimes assume a dummy solution ⊥ with
c(⊥) =∞, representing the lack of any solutions.

Finally, optimal costs and solutions are defined in the obvious ways.

Definition 2.13. The optimal cost for subproblem or refinement x is c∗(x) := minz∈〈〈x〉〉 c(z ).

Definition 2.14. The set of optimal solutions for x is 〈〈x〉〉∗ := {z : z ∈ 〈〈x〉〉 and c(z ) =
c∗(x)}, just those solutions with minimal cost.

Figure 2.6 shows optimal costs and solutions for an example AND/OR graph.

2.2.1.2 Examples

We briefly present some example AND/OR search problems. We defer discussion of our
application to hierarchical planning to Chapters 3 and 5.

A first, trivial example shows that AND/OR search problems include state-space search
problems as a special case. Let P0 = s∗, and for each state s and action a ∈ As define a
refinement T (s, a)→+ s as . Subproblem s0 is terminal with cost 0, and action subproblems
as are terminal with cost C(s, a).

Turn-based games can also be solved using AND/OR search (i.e., minimax). If after
taking action a from state s, the opponent has two possible responses that lead to states s1
and s2, this generates a refinement s →max s1 s2 . Probabilistic planning is similar, except
the cost function computes the expected cost (averaged over the probabilities of reaching
states si) rather than the maximum.

2.2.1.3 Cost Functions

The previous examples included a variety of refinement cost functions g·, including addition,
maximum, and expectation. This section reviews some key properties of cost functions,
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Figure 2.6: A concrete instantiation of the AND/OR graph of Figure 2.4 with terminal costs
and additive cost functions (left), and the corresponding optimal costs and solution (right).

which have implications for the structure of the search space and types of search algorithms
that can be used.

A first property of many cost functions is monotonicity.

Definition 2.15. A cost function gi is monotonic iff, for all costs c1, c2, c3 ∈ [0,∞),

c1 ≤ c2 ⇒ (g(c1, c3) ≤ g(c2, c3) and g(c3, c1) ≤ g(c3, c2))

A search problem is monotonic iff all refinement cost functions are monotonic.

This property is essential for ensuring compositionality of optimal solutions, holds for all
of the above cost functions, and is necessary for all of the search algorithms we consider.

Theorem 2.8. In a monotonic search problem, if any solution exists for nonterminal sub-
problem p, there always exists a refinement i ∈ R(p) s.t. there exist solutions for λi and ρi,
and moreover, every combination of optimal solutions for λi and ρi yield an optimal solution
for p:

(∀p : 〈〈p〉〉 6= ∅) (∃i ∈ R(p)) 〈〈λi〉〉 6= ∅ and 〈〈ρi〉〉 6= ∅ and

(∀zλ ∈ 〈〈λi〉〉∗, zρ ∈ 〈〈ρi〉〉∗) sol(i, zλ, zρ) ∈ 〈〈p〉〉∗

Proof. Consider any optimal solution z ∈ 〈〈p〉〉∗, and suppose z = sol(i, zλ, zρ). Let z ∗λ ∈
〈〈λi〉〉∗ and z ∗ρ ∈ 〈〈ρi〉〉∗ be arbitrary optimal solutions for λi and ρi. By definition of op-
timality, c(z ∗λ) ≤ c(zλ) and c(z ∗ρ ) ≤ c(zρ). Thus, by monotonicity of gi, gi(c(z ∗λ), c(z ∗ρ )) ≤
gi(c(zλ), c(zρ)), and sol(i, z ∗λ , z

∗
ρ ) is optimal for p.

Moreover, lower and upper bounds on optimal costs compose similarly:
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Theorem 2.9. In a monotonic search problem,

(∀p)

((
(∀i ∈ R(p)) c∗(i) ∈ [ui, vi]

)
⇒ c∗(p) ∈

[
min
i∈R(p)

ui, min
i∈R(p)

vi

])
(∀i) ((c∗(λi) ∈ [uλ, vλ] and c∗(ρi) ∈ [uρ, vρ]) ⇒ c∗(i) ∈ [gi(uλ, uρ), gi(vλ, vρ)])

Proof. The lower bound in the first statement follows because each solution for p must be a
solution for some refinement i ∈ R(p), and the upper bound follows because every solution
to a refinement i ∈ R(p) is a solution to p. The second statement follows directly from
monotonicity of g·.

In other words, if we know that every refinement of p costs at least c, then p must cost at
least c. Similarly, if some refinement costs at most c, p must cost at most c. For refinements,
monotonicity of g· ensures that plugging in lower bounds yields a lower bound, and similarly
for upper bounds.

Another key property is superiority.

Definition 2.16. A cost function gi is superior iff, for all costs c1, c2 ∈ [0,∞),

gi(c1, c2) ≥ max(c1, c2).

A search problem is superior iff all refinement cost functions are superior.

Superiority means that the cost of a solution is never less than the cost of its constituent
sub-solutions. This property is necessary for bottom-up search algorithms, discussed shortly,
and holds for all of the above cost functions except expectation (used in probabilistic plan-
ning). Superiority also has consequences for cyclic solutions, which we discuss next.

2.2.1.4 Cycles and Cyclic Solutions

AND/OR graphs can contain cycles (see Figure 2.7), whenever a subproblem p can include
itself in a (refinement of a) refinement of itself. The mere existence of cycles has implications
for the applicability and performance of various search algorithms, as in the pure OR-search
setting. Not all cycles are created equal, however: some cyclic AND/OR graphs admit
finite-cost cyclic solutions, and others do not.

Definition 2.17. A cyclic solution is a subgraph of an AND/OR graph that

1. is a solution: contains P0, one child of each OR-node, and every child of each AND-
node;
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2. is cyclic: contains at least one node that is an ancestor of itself; and

3. can be labeled with a consistent set of costs, so that each OR-node has cost equal to
that of its child, each AND-node has cost equal to g(·, ·) of its children’s costs, and P0

is labeled with finite cost.

This thesis is only concerned with search problems that do not admit cyclic solutions.
The existence of cyclic solutions is related to superiority (see Definition 2.16). In particular,
strictly superior search problems cannot have cyclic solutions. Since addition is not strictly
superior, we define an additional condition later that ensures that our search spaces are free
of cyclic solutions.

2.2.1.5 Algorithm Overview

This thesis will have use for optimal AND/OR search algorithms, of which there are at least
four broad classes.

• Algorithms that can find cyclic solutions include value iteration (Bellman, 1957), policy
iteration (Howard, 1960), and real-time dynamic programming (Barto et al., 1995).
These algorithms are typically overkill (i.e., slow compared to competing algorithms)
for problems without cyclic solutions, so we do not consider them further.

• Bottom-up search algorithms start with the set of terminal subproblems, and work
upwards, building up larger and larger optimal solutions until a solution to the root
subproblem is reached. Bottom-up algorithms are especially effective at handling cycles
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in the search space (but cannot find cyclic solutions). They tend to work well when
the set of terminal subproblems is small, and the “upwards” branching factor is small
(e.g., probabilistic context-free grammar parsing).

• Top-down search algorithms build and refine an explicit subgraph downwards from P0.
At each step a nonterminal leaf is expanded, and updated cost bounds are propagated
upwards towards the root. Cycles in the search space can be problematic for these
algorithms, but they can be much more efficient than bottom-up algorithms when the
“top-down” branching factor is smaller (e.g., chess checkmate problems).

• Finally, hybrid search algorithms combine elements of both top-down and bottom-up
algorithms, capturing some of the desirable properties of both.

The next three sections describe the last three classes in more detail, including at least one
relevant algorithm from each class.

2.2.2 Bottom-Up Search Algorithms

2.2.2.1 Framework

Bottom-up AND/OR search algorithms begin with the set of terminal subproblems, whose
optimal solutions are known a priori. At each search step, they compose two known optimal
solutions to build an optimal solution to a new, larger subproblem. This process continues
until an optimal solution for the root subproblem P0 is generated.

In this sense, bottom-up algorithms are analogous to state-space search algorithms like
Dijkstra’s algorithm and A* search. In fact, the bottom-up algorithms we discuss are direct
generalizations of these state-space algorithms for the AND/OR search setting.

While our AND/OR search space was defined top-down in terms of P0 and R, bottom-up
algorithms need access to the set of terminal subproblems and the inverse of R.

Definition 2.18. The set of terminal subproblems T := {p : Z(p) 6= NT}.

Definition 2.19. The predecessor function P(p, closed) (the inverse of R) takes a subprob-
lem p and a mapping “closed” from subproblems to optimal solutions (including p), and
returns a set of pairs (pnew, znew) for each refinement i ∈ R(pnew) where pnew /∈ closed,
λi, ρi ∈ closed, p ∈ {λi, ρi}, and znew = sol(i, closed [λi], closed [ρi])

In other words, P(p, closed) returns the set of all new solutions that can be built from
the optimal solution to p and other optimal solutions in closed .

Finally, like A*, bottom-up algorithms can use heuristic functions to guide their searches.
However, the definition of a heuristic is somewhat more involved in this setting.
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Definition 2.20. Consider any solution for P0 that includes a solution to p, and remove
the solution to p, leaving a “hole”. Call the remaining partial solution a solution context
for p. This context corresponds to a particular context cost function, which yields a cost
for P0 when passed a cost for p. (With additive costs, this function just adds the costs of
the remaining leaves.) Define the optimal context cost g∗p(·) for a subproblem p to be the
infimum over all such context cost functions.

Remark. In the additive case, the optimal context cost function is g∗p(x) = x+c∗(P0)−c∗(p)

Now, a bottom-up heuristic is just a function that estimates the optimal context cost.
Admissibility and consistency are defined as in the single-agent setting.

Definition 2.21. An admissible bottom-up heuristic is a set of functions (one per subproblem
p) ĝp(·) that satisfy

(∀x) ĝp(x) ≤ g∗p(x).

Definition 2.22. A consistent bottom-up heuristic is a set of functions (one per subproblem
p) ĝp(·) that satisfy

(∀i ∈ R(p)) ĝp(gi(c
∗(λi), c

∗(ρi))) ≥ max (ĝλi(c
∗(λi)), ĝρi(c

∗(ρi))) .

In fact, Definitions 2.8 and 2.9 for state-space search are special cases of these more
general definitions, for additive cost functions under the mapping given in Section 2.2.1.2.

2.2.2.2 A* Lightest Derivation

A* lightest derivation (A*LD, (Klein and Manning, 2003; Felzenszwalb and McAllester,
2007)) is a straightforward generalization of A* to the AND/OR setting (see Algorithm 2.4).If
the heuristic ĝ is set to the identity, Knuth’s lightest derivation (KLD, (Knuth, 1977)), a
generalization of Dijkstra’s algorithm, is recovered as a special case. Figure 2.8 shows the
steps taken by KLD to optimally solve an example graph.

Theorem 2.10. (Felzenszwalb and McAllester, 2007) When applied to a monotone, superior
search problem with a consistent heuristic, A*LD always terminates with an optimal solution.

Felzenszwalb and McAllester (2007) also developed a hierarchical extension of A*LD
called HA*LD, which we discuss in Chapter 7.

2.2.3 Top-Down Search Algorithms

This section describes a framework for top-down search largely inspired by Kumar et al.
(1985), as well as two algorithms within this framework: AO* and LDFS.
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Algorithm 2.4 A* Lightest Derivation
function A*LD( )

fringe ← a priority queue on pairs (p, z ) ordered by min ĝp(c(z )), initially {(p,Z(p)) : p ∈ T}
closed ← an empty mapping from subproblems to their optimal solutions
while fringe not empty do

(p, z )← fringe.RemoveMin()
if p = P0 then return z
if closed [p] = undefined then

closed [p]← z
for (p′, z ′) ∈ P(p, closed) do

fringe.Insert((p′, z ′))

return ⊥
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2.2.3.1 Framework

Top-down AND/OR search algorithms maintain an explicit graph, in which OR-nodes cor-
respond to subproblems and AND-nodes correspond to refinements. Initially, this graph
contains a single node corresponding to P0. At each search step, a single leaf subproblem
node is selected to Expand, generating nodes corresponding to its refinements and their
subproblems and adding them to the graph. Throughout search, each node maintains a
summary, including a lower bound on its optimal cost and a flag indicating whether its op-
timal solution is yet known, computed from the summaries of its children in the graph (see
Figure 2.9).

The pseudocode in Algorithm 2.5 and Algorithm 2.6 provides a modular scaffolding for
top-down AND/OR search algorithms, upon which several of the search algorithms in this
thesis will be built.

The first set of functions construct and operate on graph nodes. MakeOrNode and
MakeAndNode actually construct the nodes, each of which has a name (subproblem for
OR, refinement for AND), lists of parents and children, and a current summary. Then,
GetOrNode keeps a cache of constructed OR-nodes, so that multiple occurrences of a
subproblem share the same OR-node, which has one parent for each constructed refinement
referencing it.9

The last two functions in Algorithm 2.5 provide the interface used by search algorithms.
MakeRootNode creates a root OR-node with no parents, corresponding to the initial
subproblem P0. Then, Expand expands a leaf node, constructing one child AND-node
per refinement, each of which has two child OR-nodes corresponding to subproblems in the
refinement (which are fetched from the cache, or created and cached if not yet present).

Next, Algorithm 2.6 describes pseudocode for operations on node summaries. First,
function CurrentSummary(n, b) computes the current summary of a node n from the
current summaries of its children, taking into account an existing lower cost bound b. A
summary ẑ encapsulates what is known about a subproblem p (or refinement) given the
current graph:

• ẑ.children is a the set of child nodes this summary depends on. ẑ.children is empty for
leaf nodes, a singleton containing the current-best child (with the lowest lower bound,
breaking ties towards unrefinable nodes) for OR-nodes, and a list of both children at
AND-nodes.

9Because we are not searching for cyclic solutions, we could skip this caching and perform a tree search
instead. Algorithms for searching trees are typically simpler, but can be exponentially less efficient than the
corresponding graph algorithms.
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Algorithm 2.5 Top-Down AND/OR Graph Framework

function MakeOrNode(p)
return a node n with

n.name = p,
n.parents = []
n.children = leaf
n.summary = h(p)

function MakeAndNode(parent , i)
return a node n with

n.name = i,
n.parents = [parent ]
n.children = [GetOrNode(n, λi),GetOrNode(n, ρi)]
n.summary = CurrentSummary(n, 0)

function GetOrNode(parent , p)
if cache[p] = undefined then cache[p]←MakeOrNode(p)
cache[p].parents.Insert(parent)
return cache[p]

function MakeRootNode()
return MakeOrNode(P0)

function Expand(n) /* n.children = leaf and n.summary .refinable? */

n.children ← [MakeAnd(n, i) for i in R(n.name)]
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Algorithm 2.6 Summaries
function CurrentSummary(n, bound) /* n.children 6= leaf */

if n is an OR-node then
best← a dummy node with best.summary .lb =∞ and ¬best.summary .refinable?
for c ∈ n.children do

if c.summary .lb < best.summary .lb or
(c.summary .lb = best.summary .lb and ¬c.summary .refinable?) then
best← c

return a summary with ẑ.children = [best],
ẑ.refinable? = best.summary .refinable?, and
ẑ.lb = max(best.summary .lb, bound)

else /* n is an AND-node with 2 children */

[ẑλ, ẑρ]← [n.children[0].summary ,n.children[1].summary ]
return a summary with ẑ.children = n.children,

ẑ.refinable? = ẑλ.refinable? or ẑρ.refinable?, and
ẑ.lb = max(gn.name(ẑλ.lb, ẑρ.lb), bound)

function ExtractSolution(n) /* n is an OR-node with ¬n.summary .refinable? */

if n.summary .lb =∞ then return ⊥
if n is a leaf then return Z(n.name)
c← the child in singleton n.summary .children
return sol(c.name,ExtractSolution(c.children[0]),ExtractSolution(c.children[1]))

function UpdateSummary(n)
old← n.summary
n.summary ← CurrentSummary(n, old.lb)
return ¬ (old.lb = n.summary .lb and old.refinable? = n.summary .refinable?)
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Figure 2.9: Steps to solve the AND/OR graph of Figure 2.6 using a top-down algorithm.
Unexpanded leaf nodes (depicted with dashed borders) are assigned heuristic cost bounds.
All other non-terminal nodes are assigned a summary based on the summaries of their
descendants. Nodes with green borders are solved (unrefinable), and others are refinable.
Blue lines indicate the current-best children of unsolved nodes, and green lines indicate
optimal solutions for solved nodes. After expanding nodes a, c, and b (from left to right), a
provably optimal solution is discovered. Node e remains unexpanded, because its heuristic
cost bound guarantees that all solutions containing e are more expensive than the optimal
solution at right.

• ẑ.refinable? is false iff the graph contains a provably optimal solution for p (i.e., if a
best child of an OR-node or all children of an AND-node are solved / not refinable),
and otherwise true.10

• ẑ.lb is a lower bound on solution cost, ẑ.lb ≤ c∗(p) computed from the current graph.
If ¬ẑ.refinable?, then the lower bound is exact: ẑ.lb = c∗(p). For an AND-node n, the
lower bound is gn.name(x, y) where x and y are the lower bounds of the node’s children.
For an OR-node, it is the maximum of its current bound and the lower bound of its
best child.11

When ẑ.refinable? = false, ExtractSolution(n) can be used to recursively extract
an optimal solution for n.name by walking the graph, following n′.children pointers at each
OR-node n′. Finally, function UpdateSummary(n) simply replaces the summary of node n
with its current summary, returning a flag indicating whether the summary’s cost or refinable
status was modified.

When a subproblem node is first created (as a leaf node, by MakeOrNode), its summary
is initialized to h(p) where h is a top-down heuristic function. If p is terminal (Z(p) 6= NT ),

10The interpretation of this flag will change slightly in Chapter 5.
11The maximum prevents information loss with inconsistent heuristics, to be discussed shortly.
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then h(p).refinable? = false. Otherwise, h(p).refinable? = true with a heuristic lower cost
bound h(p).lb. In both cases, h(p).children is empty. As usual, we call h(·) admissible if it
never overestimates the true cost:

Definition 2.23. A top-down heuristic h(·) is admissible iff

(∀p) h(p).lb ≤ c∗(p).

We could define a consistency property on h(·) as well. However, unlike in bottom-
up search, we will see that consistency is not required for correctness of top-down search
algorithms.

Definition 2.24. A summary ẑ of a node n is correct iff ẑ.lb ≤ c∗(n.name) and ¬ẑ.refinable?
⇒
(
(n.summary .lb =∞ and 〈〈n.name〉〉∗ = ∅) or ExtractSolution(n) ∈ 〈〈n.name〉〉∗

)
.

Theorem 2.11. Consider any graph initialized to MakeRootNode(), and modified by any
sequence of Expand and UpdateSummary operations on its nodes, for any monotonic (but
not necessarily superior) search problem and admissible heuristic h(·). Every summary in
this graph is correct.

Proof. First, note that by definition and admissibility of h(·), these properties hold for each
leaf node constructed by MakeOrNode immediately after construction. Thus, they hold
for the initial graph MakeRootNode().

Now, if these properties hold at every node in the graph, then they continue to hold at ev-
ery node after calling Expand on any leaf node or UpdateSummary on any non-leaf node.
Expand creates child connections that faithfully represent the decomposition structure of
the original problem. Summaries of new nodes created by Expand and those updated by
UpdateSummary must be valid by correctness of h(·), Theorem 2.8, Theorem 2.9, and the
fact that the maximum of two valid lower bounds is also a valid lower bound.

Corollary 2.12. Any top-down search algorithm that begins with a graph initialized to
MakeRootNode(), applies an arbitrary sequence of Expand and UpdateSummary oper-
ations, and then returns ExtractSolution(root) when ¬root.summary .refinable? always
returns optimal solutions (or fails to terminate).

We conclude with a few more definitions, which will be of use in proving properties of
top-down search algorithms.

Definition 2.25. A node n is consistent iff it is a leaf node, or UpdateSummary(n) =
false.

In other words, a node is consistent iff its current summary correctly reflects the infor-
mation available at itself and its immediate children in the graph. Next,
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Definition 2.26. The active subgraph for a node is the subgraph reachable from that node,
retaining only edges from a node n to children in n.summary .children.

Remark. If ¬n.summary .refinable?, the active subgraph for that node corresponds to an
optimal solution.

Assumption 2.13. A consistent, active subgraph for a node may contain cycles, even when
a problem does not admit cyclic solutions. This can only occur when h(·) assigns a lower
bound of 0 to a subproblem p with c∗(p) > 0. We henceforth assume that this is not the case.

Given that forward and backward single-agent search are symmetric, the large differences
between top-down and bottom-up AND/OR search may be surprising. As one might guess,
the asymmetry arises due to AND-nodes. In particular, in a bottom-up search (or a forwards
or backwards single-agent search), when a node is selected for expansion its optimal solution
(in one direction) is known, and need not be revisited. In contrast, when a node is expanded
in a top-down search we typically do not know its optimal context (or optimal solution).

2.2.3.2 AO*

AO* (Martelli and Montanari, 1973; Kumar et al., 1985) is a simple, optimal top-down
search algorithm (see Algorithm 2.7). At each step, it selects an arbitrary refinable leaf in
the active subgraph of the root to expand, and then updates the summaries of this node and
its ancestors to restore consistency to the graph.12 This process continues until the root is
labeled unrefinable (see Figure 2.9).

By Corollary 2.12, we know that AO* is optimal when it terminates. Termination is
guaranteed when the search space is free of cycles.

Lemma 2.14. At the beginning of each iteration, every node in AO*’s current graph is
consistent.

Proof. The initial graph is consistent. Expanding a node n can render n itself, but no
other nodes, inconsistent. UpdateAncestors restores consistency by propagating changes
upwards in the graph, with each call to UpdateSummary(n′) making n′ consistent but
possibly rendering the parents of n′ inconsistent, until a set of nodes are reached whose
summaries are unchanged and thus whose parents must remain consistent.

Theorem 2.15. In a search space without cycles, AO* is guaranteed to terminate with an
optimal solution (or failure, if no solutions exist).

12The version presented is technically an instance of B (Bagchi and Mahanti, 1983), because it gains
efficiency by never propagating decreases in lower bounds that may arise due to inconsistencies in h(·).
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Algorithm 2.7 AO*
function AO*()

root ←MakeRootNode()
while root .summary .refinable? do

n ← ChooseLeaf(root)
Expand(n)
UpdateAncestors(n)

return ExtractSolution(root)

function ChooseLeaf(n)
while n.children 6= leaf do

n← any c ∈ n.summary .children where c.summary .refinable?

return n

function UpdateAncestors(n)
if UpdateSummary(n) then

for p ∈ n.parents do
UpdateAncestors(p)

Proof. At the start of each iteration, every node is consistent, and root.summary .refinable? =
true. By the definition of consistency and lack of cycles, ChooseLeaf must find a refinable
leaf node to Expand in finite time. By lack of cycles, UpdateAncestors must terminate.
Because the set of all subproblems is finite and each subproblem can be Expanded at most
once, the algorithm can only carry out a finite number of iterations, and must eventually
terminate.

If the search space contains cycles, however, UpdateAncestors and hence AO* can
fail to terminate. Even when there are no cycles, a single iteration of the naive cost revision
algorithm implemented by UpdateAncestors can take time exponential in the number
of nodes in the graph. For example, Figure 2.10 shows a simple graph structure where
each leaf expansion causes an exponential number of calls to UpdateAncestors, each of
which increases the cost bound of a node by 1 (as if the tree corresponding to the graph
was represented explicitly). In trees the worst case is a line graph, in which case each call
to UpdateAncestors must update the entire graph, and thus the algorithm as a whole
has cost O(N2) where N is the depth of the final solution (this worst case holds for any
top-down search algorithm in the framework of Algorithm 2.5).
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Figure 2.10: A worst-case graph for AO*’s cost revision operation (UpdateAncestors).
Each layer of expansion doubles the cost bound at the root, but each call to
UpdateSummary only increases a node’s cost bound by 1. Thus, the total runtime for
expanding a node at layer k is O(2k).

Algorithm 2.8 LDFS
function LDFS()

root ←MakeRootNode()
while root .summary .refinable? do LDFS-Pass(root)
return ExtractSolution(root)

function LDFS-Pass(n)
if n.children = leaf then

Expand(n)
else if n is consistent then

LDFS-Pass(the first refinable node in n.summary .children)

if ¬UpdateSummary(n) then LDFS-Pass(n)
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2.2.3.3 LDFS

Learning depth-first search (LDFS, (Bonet and Geffner, 2005)), is another optimal top-down
search algorithm. LDFS was originally described for explicit AND/OR graphs; Algorithm 2.8
shows a straightforward adaptation for our implicit setting.

Rather than searching all the way from the root to a leaf at each iteration, LDFS makes a
series of passes over the graph. Each pass recursively explores the descendants of each node
until it becomes solved, or its lower bound is increased. Because LDFS does not attempt to
maintain consistency throughout the graph (just along a current path from the root), it can
avoid updating summaries of nodes that are irrelevant to an optimal solution. Moreover,
LDFS is optimal even in cyclic graphs, unlike AO* (which can fail to terminate).

Theorem 2.16. (Bonet and Geffner, 2005) LDFS is guaranteed to terminate with an optimal
solution when one exists. If not, it may fail to terminate.

However, these advantages come at a price: LDFS is constrained to always explore the
same (e.g., first) child at each AND-node until it becomes solved, and thus cannot balance
its expansions between children of AND-nodes. Specifically, the best leaf to expand in an
AND/OR graph is likely the leaf with maximal uncertainty among those in a current optimal
subtree, because this will yield the maximum amount of information for a fixed amount of
effort. If costs are divided roughly equally between the children of AND-nodes, this will often
be the shallowest leaf eligible for expansion. In contrast, LDFS is constrained to expand a
deepest leaf, which will often carry much less weight (see Figure 2.11).

Moreover, while LDFS is guaranteed to find optimal solutions even in the presence of
cycles, in the worst case it may require O(c∗(P0) ∗ |P|) calls to UpdateSummary to do
so (where |P| is the total number of subproblems). For example, Figure 2.12 shows a
graph where LDFS will perform poorly, requiring 99 summary updates of the root (with
no further expansions) before optimality of the left branch is proven. This is preferable to
the infinite loop that would ensue in AO*’s UpdateAncestors, but still far worse than
the performance of a bottom-up algorithm such as KLD (whose runtime is independent of
solution costs).

2.2.4 Hybrid Search Algorithms

As we have seen, bottom-up algorithms have a number of advantages compared to top-
down algorithms, especially in search spaces with cycles. However, bottom-up algorithms
are inappropriate for problems with a vast number of terminal subproblems, which will
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Figure 2.11: An AND/OR graph where LDFS’s inability to balance refinements at AND-
nodes may be inefficient. Expanding the leaf with heuristic bound 40 is likely to increase
the cost bound of the left subtree (and thus prove optimality of the right subtree) much
more quickly than expanding the leaf with bound 1 (e.g., assuming approximately relative
heuristic error). However, because LDFS has already traversed the left branch, it cannot
expand the leaf with bound 40 until the leaf with bound 1 has been solved (or proven to
have cost at least 7, solving the problem).

+

1

1
1

2

50

100

+
2

1

1

2

∞

+

50

Figure 2.12: A cyclic AND/OR graph in which LDFS’s cost revision strategy performs poorly.
The dashed node has just been expanded, and found to be a dead-end (thus increasing its
cost bound from 1 to ∞). After returning to the root to restore consistency along the path
traversed (updating the root’s bound to 3), LDFS requires 98 passes down the right branch,
raising the cost bound of the root by 1 in each pass, to prove optimality of the left branch.
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Algorithm 2.9 AO∗KLD Cost Revision
function UpdateAncestors(n)

activeBounds ← an empty map from active nodes to previous lower bounds
fringe ← min-priority queue on n.summary .lb, breaking ties towards ¬n.summary .refinable?
AddActiveAncestors(activeBounds, n)
for (n, bound) ∈ activeBounds do

n.summary ← CurrentSummary(n, bound)
if n.summary .lb <∞ then fringe.Insert(n)

while fringe 6= ∅ do
n← fringe.RemoveMin()
activeBounds.Remove(n)
for p ∈ n.parents do

if p ∈ activeBounds then
ẑ ← p.summary
p.summary ← CurrentSummary(p, activeBounds[p])
if ẑ 6= p.summary then fringe.Insert(p) /* change priority if present */

function AddActiveAncestors(activeBounds, n)
oldBound← n.summary .lb
if n 6∈ activeBounds and UpdateSummary(n) then

activeBounds[n]← oldBound
n.summary ← s⊥ /* s⊥.lb =∞ */

for p ∈ n.parents do
AddActiveAncestors(activeBounds, p)
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be our focus. Fortunately, it is easy to construct hybrid search algorithms that use an
overall top-down search strategy like AO*, while gracefully handling cycles by replacing
UpdateAncestors with a version of a bottom-up algorithm such as KLD.

Proposals for hybrid algorithms include CFCREV∗ (Jiménez and Torras, 2000), which is a
very complex hybrid of relatives of AO* and KLD, and Loopy AO* (Hansen and Zilberstein,
2001), which combines AO* with Value or Policy Iteration and is designed for finding cyclic
solutions. We present a very simple hybrid algorithm, a direct combination of AO* and
KLD, which we call AO∗KLD (see Algorithm 2.9). This algorithm replaces the recursive
UpdateAncestors used by AO* with a version that uses dynamic programming to restore
consistency in a constant number of passes through the set of ancestors that need updating.

This version of UpdateAncestors first calls AddActiveAncestors to identify the
set of nodes whose summaries need to change and record their current lower cost bounds. If
a node has not yet been added to the active set, and it is no longer consistent, it is added
to the active set and its summary is set to the worst possible value (with a lower bound
of ∞). This ensures that all stale information due to cycles is forgotten, and guarantees
that all potentially affected parents will be made inconsistent (regardless of any potential
heuristic inconsistencies).13 Then, holding all current summaries outside the active set fixed,
UpdateAncestors runs a variant of KLD to compute the correct summaries of nodes
inside this set in a single pass. In this process, the recorded bounds in activeBounds are
used to ensure that no information is forgotten.

The resulting algorithm explores the space in the same manner as AO*, while avoiding
the pathologies of the former. In particular, it is guaranteed to terminate even in search
spaces with cycles, and its worst-case runtime is roughly O(N2), the best asymptotically
possible for any top-down search algorithm.

2.3 Hierarchical Planning

Hierarchical planning has a long history, beginning with state abstraction in GPS (Newell
and Simon, 1972), macro-operators in STRIPS (Fikes et al., 1972), and hierarchical task
networks in NOAH (Sacerdoti, 1975). This section introduces hierarchical planning via an
overview of these historical approaches, then presents the precise hierarchical formalism upon
which the remainder of the thesis is based.

For our purposes, the objective of hierarchical planning is to solve the the classical plan-
ning problems of Section 2.1 faster (the relevance of AND/OR search to this pursuit will
become clear in later chapters). As in that section, we assume a search problem described by
a tuple (S,A, T , C, s0, s∗), and our objective is to find an (optimal) solution a ∈ A∗, where

13It may be possible to improve on this step when the heuristic is consistent, or it can be guaranteed that
a node does not depend on any stale information from affected cycles.
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we now refer to actions in A as primitive actions.

In addition, hierarchical planning supplies us with a set of high-level actions (HLAs) that
represent abstract, temporally extended behaviors. The basic idea is to use these HLAs to
solve a problem at successively more detailed levels of abstraction, rather than searching
directly for a primitive solution that reaches all the way from s0 to s∗. At each planning
step, a high-level plan is elaborated to take more details into account, by expanding some
HLA into one of a number of possible refinements consisting of lower-level actions. Because
a high-level plan necessarily omits some details, it may not actually admit an expansion into
a primitive solution, and in such cases search must backtrack and try a different refinement
at a higher level.

In a perfect world, we would avoid such backtracking by restricting our attention to high-
level solutions, plans that are guaranteed to admit at least one expansion into a primitive
solution. Moreover, we would be able to decompose the problem of finding a primitive
expansion of this plan into separate subproblems, one per HLA in the plan. In this case,
the complexity of search would be greatly reduced, to the sum of the complexities of the
multiple searches, and not their product (Minsky, 1963). For instance, suppose that we are
given a uniform hierarchy in which each HLA has r possible expansions into l (high-level)
actions, and the primitive actions are found at depth d. In this best case, the total number
of actions considered to find a solution of length ld is just O(r ∗ ld). In contrast, if the
primitive branching factor is b, the cost of finding this solution without the hierarchy would
be exponentially greater: O(bl

d
).

Of course, to achieve these exponential speedups, we require the ability to identify high-
level solutions. Hierarchical planning systems with this ability are said to possess the down-
ward refinement property, first defined by Bacchus and Yang (1991).

Definition 2.27. A hierarchy possesses the downward refinement property if it can support
a proof that a plan is a high-level solution (i.e., admits at least one expansion into a primitive
solution).

A planning algorithm can commit to a high-level solution, focusing solely on refinements
of this solution, without sacrificing completeness. The converse of this property, first defined
by Tenenberg (1988), is also of interest.

Definition 2.28. A hierarchy possesses the upward solution property if it can support a proof
that a plan is not a high-level solution (i.e., admits no expansions into primitive solutions).

A planning algorithm can prune a high-level non-solution, ignoring this plan and all of
its refinements, without sacrificing optimality.

Both of these properties can dramatically improve the efficiency of a planner, by ruling
out unnecessary swaths of the search space. While some previous planners have possessed
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the upward solution property, we will see that the downward refinement property has been
much more difficult to achieve. Chapters 4 and 5 describe some of the first hierarchical
planning algorithms that possess versions of both of these properties.

2.3.1 Historical Approaches

As mentioned above, a wide variety of approaches to hierarchical planning have been pro-
posed over the past decades. These approaches all have in common the notion of high-level
actions, but differ in the meaning of these HLAs, how abstract plans are constructed, and
the overall search strategy for finding a primitive solution. We will divide the previous
approaches into three broad classes.

First, ABSTRIPS HLAs are defined by subgoals that specify what must be achieved, but
leave the question of how it should be achieved open to the planner. Second, macros are
simple HLAs that admit a single primitive expansion. Finally, hierarchical task networks
include aspects of both approaches, defining HLAs by a set of possible expansions into
lower-level actions, typically accompanied by additional annotations that attempt to specify
and/or constrain what the HLA achieves.

2.3.1.1 ABSTRIPS

HLAs based on state abstraction are defined by sets of subgoals to be achieved at a particular
point in a high-level plan. This approach was pioneered in the GPS system (Newell and
Simon, 1972), fully automated in the ABSTRIPS system (Sacerdoti, 1974), and subsequently
formalized and analyzed by Knoblock et al. (1991) and others.

The basic idea in this approach is to assign each proposition in a planning problem a
criticality level in 1, . . . , L. A sequence of primitive actions is said to be correct at level l
if it is a solution to the simpler planning problem where all preconditions at level < l are
completely ignored (technically, a homomorphic abstraction of the original problem (Korf,
1980)). Then, planning begins with the empty plan, which is correct at level L+ 1. At each
search step, an attempt is made to extend a correct plan at level l + 1 to a correct plan at
level l, by interspersing actions to satisfy the new preconditions at level l. Sometimes this
will not be possible, and search will have to backtrack and try a different plan at a higher
level. This process continues until a correct plan is found at level 1, which by definition
solves the original planning problem.

Intuitively, the criticality levels should roughly reflect how difficult a given proposition
is to achieve. Constant and key goal propositions should be assigned the maximum level L,
and unimportant propositions that are easy to achieve in any situation should be assigned
lower criticality. For instance, Sacerdoti (1974) supposed that when turning on a lamp, the
fact that the object in question is actually a lamp is most critical, followed by that he is in
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the same room as the lamp, then that the lamp is plugged in, and finally that he is next to
it. ABSTRIPS included a technique for automatically inferring these levels from a planning
domain, which was subsequently improved upon, most notably by Knoblock (1990).

The efficiency of this approach depends on two key properties: (1) how much easier it is
to expand a plan at level l+ 1 to a plan at level l than to find a plan at level l directly, and
(2) how much backtracking is required. If the abstract plan does not sufficiently constrain
the planning process, or too much backtracking is needed, it will be faster to just perform
ordinary state-space planning (i.e., just search for a plan at level 1 directly). Various methods
have been proposed for constraining the expansion process and thus improving the first
ratio (e.g., (Knoblock et al., 1991)); however, these techniques may increase the amount of
backtracking, so there is no guarantee that they will improve performance.

With this fact in mind, Bacchus and Yang (1991) set out to understand when backtracking
across levels could be avoided. The result of this investigation was a semantic definition of the
downward refinement property (DRP, Definition 2.27), along with some checkable conditions
that could be used to guarantee the DRP in a particular ABSTRIPS hierarchy. For example,
the DRP holds if each action only has preconditions and effects in a single level, or if the
state spaces for literals ≤ l are completely connected for any value of literals > l (for all l).14

Unfortunately, these conditions are quite restrictive, e.g., the first condition means that the
overall problem consists of L completely separate, non-interacting planning problems.

Further study has not yet discovered general classes of ABSTRIPS hierarchies that satisfy
the DRP (and in fact, this may be a fruitless pursuit (Giunchiglia and Walsh, 1993)). Never-
theless, as long as the DRP “almost” holds and backtracking is minimized, ABSTRIPS-style
planning can be an effective hierarchical planning method, either alone or in combination
with other methods.

2.3.1.2 Macros

A macro is an HLA with a single allowed expansion into a particular sequence of primitive
actions. Macros first appeared in the STRIPS system (Fikes et al., 1972) as generalizations
of portions of previous solutions that could be applied to solve new planning problems.

A significant advantage of macros is that they behave exactly like primitive actions.
Given STRIPS descriptions for a macro-action sequence, it is trivial to construct an exact
STRIPS description of the macro-operator, by just collecting the preconditions and effects
not provided or neutralized by other actions in the sequence. Thus, it is easy to check if an
abstract plan containing macro HLAs is a “high-level” solution.

Unfortunately, because macros are (by definition) inflexible, it is typically difficult or
impossible to find a compact set of powerful macros that suffice to solve all of the problems in

14These properties are related to the independent and serializable subgoals studied by Korf (1987).
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a given planning domain. Of course, completeness and optimality can always be retained by
augmenting (rather than replacing) the primitive actions in a domain with macros (Russell
and Norvig, 2009). While this technique has been used with some success in satisficing
planning (Botea et al., 2005), it can only hurt an optimal planner since the set of states that
must be examined can be no smaller than in the original instance.

Thus, macros have found greater utility as tools for solving a single problem instance
within specialized solution procedures. For instance, Korf (1985) showed that policies for
“serially decomposable” problems such as Rubik’s cube can be represented as small macro
tables that can be applied with no search at all. Closer to this work, Jonsson (2009) demon-
strated a technique that caches solutions to subgoals within a particular planning problem
as macros, enabling certain exponential-length solutions (such as in the Towers of Hanoi) to
be discovered and represented in polynomial time.

2.3.1.3 Hierarchical Task Networks

In hierarchical task networks (HTNs), upon which this thesis is based, each HLA is defined
by a set of allowed refinements that specify different methods for accomplishing a task.
Each refinement consists of a sequence of (high-level) actions, or more generally, a partially
ordered network of actions.

Unlike macros, HTNs allow for choices in how each HLA should be implemented. This
greater flexibility makes it much easier to design general-purpose hierarchies that can be
successfully applied across a wide range of problem instances in a domain.

Unlike ABSTRIPS, HTNs can encode procedural knowledge about how a task should be
accomplished. This has a number of benefits for real applications, including efficiency, easy
encoding of domain constraints, and easily interpretable, hierarchically structured solutions.

In addition to the procedural knowledge encoded by the structure of the hierarchy, each
HLA in an HTN is typically annotated with additional knowledge to help guide search
towards a solution. A wide variety of such annotations have been proposed, including in-
formation about when an HLA should be applied (i.e., preconditions), what it accomplishes
(i.e., effects), preferences on its refinements, and so on.

The first HTN planner was NOAH (Sacerdoti, 1975), which has been succeeded by a
plethora of other planners including NONLIN (Tate, 1977), SIPE (Wilkins, 1983), SIPE-
2 (Wilkins, 1990), O-PLAN (Drummond and Currie, 1989), UMCP (Erol et al., 1994b),
DPOCL (Young et al., 1994), AbNLP (Fox and Long, 1995), SHOP (Nau et al., 1999), and
SHOP2 (Nau et al., 2001). All of these planners use HTNs to more efficiently find solutions
to classical planning problems (or generalizations thereof). They differ primarily in the ways
in which plans and refinements are represented, the HLA annotations and how they are
used, and overall search strategies. Rather than discuss each individual planner in detail,
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this section examines the similarities between approaches and the dimensions along which
they differ.

First, similarities. In all cases, a planner is supplied with a primitive (e.g., STRIPS)
planning problem, along with a (typically declarative) description of a hierarchy. The hier-
archy is specified as a set of HLA schemata, each of which names a type of task that may be
encountered in the domain. As in STRIPS action schemata, each HLA schema may take a
set of arguments, which name objects in the domain to operate upon (e.g. MoveTo(a, b)).
Each HLA is associated with a set of refinement schemata, each of which corresponds to a
particular method of accomplishing the task, and may take arguments in addition to those
provided to the HLA (e.g., [PickFrom(a, c),PlaceOn(a, b)]). The refinements may be
specified as sequences of actions (high-level or primitive), but are typically partially ordered
networks of actions, as in partial-order planning.

Much as in partial-order planning, HTN planners are typically satisficing, and based
on depth-first search through the space of abstract, lifted partial-order plans (which may
contain unbound variables). A notable exception is SHOP (Simple Hierarchical Ordered
Planner, (Nau et al., 1999)), which conducts a depth-first search over fully ordered plans.
Each search step may refine an HLA (expanding it out into its possible methods), or perform
other operations such as the addition of an action, ordering constraint, causal link, or variable
binding constraint. Such elaboration of a given plan continues until a primitive solution is
found, or an inconsistency in the plan is detected and the search backtracks. Optimizing or
even cost-sensitive search strategies are typically not considered: the closest we have seen are
heuristics encoded in the hierarchy that attempt to explore refinements in order of expected
cost, combined with a depth-first branch-and-bound search (Nau et al., 2003).

To reason about high-level plans and the correctness of HTN planning algorithms, a
semantics for abstract plans is needed. Erol et al. (1994b) proposed such a semantics,
associating the meaning of each a high-level plan with the set of all fully ordered, grounded,
primitive plans that could be generated by repeated elaborations of the above sort.

In a subsequent paper, Erol et al. (1996) examined the complexity of HTN planning.
Surprisingly, they proved that general HTN planning is undecidable, even in a finite state
space. Planning can be made decidable by disallowing cyclic hierarchies (in which an HLA
can be generated by one of its refinements), or requiring refinements to be fully ordered
action sequences. Erol et al. (1996) also proved that when high-level plans are grounded and
totally ordered, the setting for this thesis, planning is PSPACE-hard (in EXPTIME).

The first dimension of variation between approaches concerns the overall search strategy.
While most planners use the same basic depth-first search strategy and set of plan elabora-
tions (HLA refinement, causal link establishment, ordering constraint, binding constraint),
they differ in their choices of which to apply when. In addition to these elaborations, some
planners (e.g., (Young et al., 1994; Estlin et al., 1997; Kambhampati et al., 1998; Gerevini
et al., 2008)) also allow actions to be directly added via means-end analysis (not just from
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refinement of existing HLAs). Finally, many planners have also included “critics”, more
or less arbitrary procedures that can modify a plan after elaboration to take into account
constraints, resource limitations, domain-specific guidance, and so on. (Erol et al., 1995).

Among these planners, SHOP and SHOP2 choose a notable strategy: they always choose
to refine a first HLA in their current plan. As a consequence, when an HLA is refined
the precise state of the world it will be executed from is known, and HLA specifications
can include arbitrary procedures that generate, prune, and heuristically order their sets of
refinements based on this state.

Another planner of note is UCPOP+PARSE (Barrett and Weld, 1994), which turns the
usual approach upside-down. Rather than generating plans top-down, it combines ordinary
state-space planning with a procedure that prunes primitive prefixes that are not consistent
with an HTN-style hierarchy.

The second dimension of variation involves the additional HLA annotations, which are
typically used to prune undesirable plans from the search space (with some partial exceptions
described in Chapter 7). These annotations are necessary because as described thus far,
HLAs are just implicit representations of sets of primitive plans. All of the information that
allows us to conclude anything about what a plan achieves — whether it works or fails, its
necessary ordering constraints, causal links, and so on — lives only at the bottom level in
the descriptions of the primitive actions. HLA annotations purport to carry this information
upwards in the hierarchy, and enable informed decisions about which high-level plans can be
pruned, without first expanding them into ground primitive plans.

Aside from the SHOP family of planners just discussed, these annotations are typically
declarative specifications, much like STRIPS descriptions. A wide variety of such annotation
types have been proposed, including:

• Supervised conditions : abstract causal links between actions in a refinement

• Unsupervised conditions : ordinary preconditions to be achieved by actions external to
an HLA

• Usewhen conditions : preconditions that must hold to do an HLA, but which the planner
should not actually try to achieve

• High-level effects : effects that may be asserted as direct consequences of doing an
HLA (regardless of the refinement chosen, potentially sacrificing soundness), or treated
as constraints on the planning process (e.g., the refinement chosen must include a
primitive that causes the effect)

• External conditions (Tsuneto et al., 1998): automatically derived preconditions that
are required by every refinement of an HLA
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Erol et al. (1994b) analyzed these proposals in some detail. They can be broadly divided
into three classes: (1) those that capture constraints already imposed by the structure of the
hierarchy (e.g., external conditions) and have no effect on the hierarchy semantics; (2) those
that add additional constraints, and may disallow primitive solutions that would otherwise
be allowed by the hierarchy (e.g., supervised, unsupervised, and usewhen conditions, and the
second type of high-level effect); and (3) those that add additional solutions, and compromise
soundness with respect to the primitive domain (e.g., the first type of high-level effect).

The first and third classes of conditions seem uncontroversially beneficial and detrimental,
respectively. As for the second class, to the extent that the constraints imposed are seen as
part of, rather than descriptions of, the structure of the hierarchy, they do not compromise
the correctness of hierarchical search (and may be able to speed up search significantly).
However, the way in which these constraints are used often lacks a well-defined semantics.
For instance, the well-known Gift of the Magi problem (Russell and Norvig, 2009) illustrates
that an apparently inconsistent high-level plan can sometimes be expanded to a consistent
primitive solution by a combination of refinement and interleaving. On the other hand, pro-
posals with a well-defined semantics have been so constraining that they rule out hierarchies
that can effectively decompose a problem, and thus have not found much use in practice
(Yang, 1990).

In summary, while many hierarchical planners use precondition–effect annotations for
HLAs, their exact meaning is often unclear. After the collapse of the “hierarchical” track at
the first International Planning Competition, McDermott (2000) wrote as follows:

The semantics of hierarchical planning have never been clarified . . . the hierarchi-
cal planning community is used to thinking of library plans as advice structures,
which was a drastic departure from our assumption that the basic content of the
plan library contained no “advice”, only “physics”. . . . The problem is that no
one has ever figured out how to reconcile the semantics of hierarchical plans with
the semantics of primitive actions.

2.3.2 This Thesis: Simplified Hierarchical Task Networks

In this thesis, we adopt a simplified version of the hierarchical task network (HTN) formalism
described in the previous section, assuming that plans are fully ordered, grounded sequences
of (high-level) actions. We also make an number of minor, mostly cosmetic simplifications
to ease theoretical analysis and algorithm design.

Without a doubt, these simplifications reduce the expressiveness of a hierarchy (as il-
lustrated by the complexity results reported above). However, by doing so they enable a
number of theoretical and practical tools for reasoning about and improving search through
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hierarchical plan space.15 These tools are sufficiently powerful that we are able to, unlike
in previous works, focus on hierarchically optimal planning algorithms that are guaranteed
to find a least-cost solution among those generated by the hierarchy. The remainder of this
section formally defines our simplified HTN formalism, and presents an example hierarchy
and simple search algorithm for concreteness. Then, the next three chapters introduce these
tools and a variety of novel, hierarchically optimal search algorithms built upon them.

In particular, Chapter 3 describes two caching methods that capitalize on hierarchical
structure, and presents hierarchically optimal search algorithms that exploit this caching
for efficient search without the need for any HLA annotations. Then, Chapter 4 introduces
and analyzes a novel “angelic semantics” that assigns correct precondition-effect annota-
tions to HLAs, which can be used to prune, commit to, and bound the costs of high-level
plans without first reducing them to primitive action sequences (and thus satisfies both the
downward refinement and upward solution properties). Finally, Chapter 5 presents hier-
archically optimal planning algorithms that use these annotations, including several that
leverage the caching techniques of Chapter 3 by incorporating ideas from AND/OR graph
search (Section 2.2).

2.3.2.1 Formalism

We assume a classical planning problem (S,A, T , C, s0, s∗), as described in Section 2.1.1. On
top of this problem, we assume we are given an action hierarchy.

Definition 2.29. An action hierarchy consists of:

• Â, a set of high-level actions (HLAs),

• H0 ∈ Â, a designated top-level action, and

• I(h), a function that specifies the set of immediate refinements of HLA h, each of
which is a sequence of exactly two actions a ∈ (A ∪ Â)2.

The reader no doubt notices similarities to the AND/OR search framework presented in
Section 2.2.1.1; we proceed with some analogous definitions here, deferring a full exploration
of the connections between the frameworks to Chapter 5.

Remark. This formalism assumes that every refinement consists of exactly two actions.
Any hierarchy can be converted to this form, by factoring longer refinements and padding
shorter refinements with no-op primitives.16

15As discussed in Chapter 8, we hope that these techniques will eventually be generalized to apply in a
variety of more expressive settings.

16We assume that we can add no-op primitives to the primitive domain, since they do not change the set
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Assumption 2.17. We assume that the set of HLAs Â is finite, and each HLA has a finite
set of refinements.

In what follows, we let a ++ b denote the concatenation of action sequences a and b, and
a1 and a2:|a| denote the first and remaining actions (respectively) of sequence a.

Definition 2.30. A high-level plan a can be refined at position i iff ai ∈ Â, yielding refine-
ments Ii(a) wherein ai is replaced by one of its immediate refinements:

Ii(a) := {a1:i−1 ++ b ++ ai+1:|a| : b ∈ I(ai)}.

Then, a primitive refinement of a high-level action or plan is a primitive action sequence
reachable by repeated refinement operations.

Definition 2.31. The primitive refinements I∗(a) of an action sequence a consist of all
primitive action sequences in A∗ reachable by repeated refinement operations:

I∗(a) =


{[a]} if a = [a] and a ∈ A⋃

r∈I(a) I∗(r) if a = [a] and a ∈ Â
{ra1 ++ ra2:|a| : ra1 ∈ I∗([a1]) and ra2:|a| ∈ I∗(a2:|a|)} if |a| > 1.

We will also occasionally be concerned with the set of all plans (primitive or not) reachable
by repeated refinement operations:

Definition 2.32. The transitive refinements I+(a) of an action sequence a consist of all
action sequences (primitive or not) reachable by one or more refinement operations from a.

Our objective will typically be to find a hierarchically optimal solution, a primitive so-
lution that reaches s∗ from s0 with minimal cost among all primitive refinements of H0.
To simplify our formal definition of hierarchical optimality, we first make another cosmetic
simplification:

Assumption 2.18. Every primitive refinement a ∈ I∗(H0) applicable in s0 is a solution:

(∀a ∈ I∗(H0)) T (s0, a) ∈ {s⊥, s∗},

or, equivalently,
(∀a ∈ I∗(H0)) C(s0, a) <∞⇔ T (s0, a) = s∗,

of basic solutions. In light of this translation, we sometimes ignore the binary restriction when it leads to
a simpler presentation. Note that no-op primitives add trivial zero-cost cycles to the state space; we thus
replace Assumption 2.2 with related restrictions below.
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This might seem extraordinarily restrictive, but in fact it is without loss of generality:
given any hierarchy, we can simply add a new top-level action H′0 with a single refinement
[H0,no-op

s∗ ], where no-ops∗ is a zero-cost primitive action with precondition that the cur-
rent state is the goal state, and no effects.17 With this simplification, hierarchical optimality
can be defined as follows.

Definition 2.33. A hierarchically optimal solution a∗ is a primitive refinement of H0 with
minimal cost from s0:

a∗ ∈ arg mina∈I∗([H0]) C(s0, a)

Remark. Because the hierarchy may constrain the set of allowed primitive action sequences,
the cost of a hierarchically optimal solution must be greater than or equal to the cost of the
cheapest primitive solution c∗(s0).

We accept this potential optimality gap, in exchange for the significant efficiency gains
that can be provided by the hierarchy.

For now, we do not consider any annotations on the HLAs in a hierarchy, including
high-level preconditions or effects. However, we note that the former can be simulated
in our framework, by prefixing the refinements of an HLA with a no-opc primitive with
precondition c as described above.

Finally, we sometimes impose additional constraints on the types of cycles that can appear
in the hierarchy.

Definition 2.34. A hierarchy is recursive iff there exists an HLA h and a transitive refine-
ment of h that contains h:

(∃h ∈ Â, a ∈ I+([h])) h ∈ a.

Definition 2.35. A hierarchy is forward cycle-free (FCF) if there does not exist a state s,
HLA h, and transitive refinement a of h that contains h, immediately preceded by a primitive
prefix that cycles back to s from s:

¬(∃s ∈ S, h ∈ Â, a ∈ I+([h]), i ∈ [1, |a|]) T (s, a1:i−1) = s and h = ai.

As we will see in the next section, recursion is a powerful property that allows for natural
encodings of goal-directed HLAs for tasks such as navigation. While such HLAs can introduce
forward cycles, they are often not problematic for search algorithms; as we saw in Section 2.2,
the real issue is with cycles that do not make progress or increase the cost of a candidate
plan, as these can lead to cyclic solutions or finite-cost, infinite-length plans. The precise
definition of a problematic cycle can differ based on the setting. For now, we consider
hierarchical search problems that are forward, zero-cost cycle-free (FZCF).

17This transformation also simplifies hierarchical search algorithms, removing the need to explicitly con-
sider a goal state/criterion.
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Definition 2.36. A hierarchy is forward, zero-cost cycle-free (FZCF) if there does not exist
a state s, HLA h, and transitive refinement a of h that contains h, immediately preceded by
a primitive prefix that cycles back to s from s with zero cost:

¬(∃s ∈ S, h ∈ Â, a ∈ I+([h]), i ∈ [1, |a|]) T (s, a1:i−1) = s and C(s, a1:i−1) = 0 and h = ai.

Remark. Many natural hierarchies seem to be forward, zero-cost cycle-free. In particular, if
the state space is free of zero-cost cycles, a hierarchy is forward zero-cost cycle-free as long as
it does not contain left-recursive HLAs that can appear as the first action in their transitive
refinements.

Right-recursive HLAs do not violate this property, as they introduce at least one positive-
cost primitive action. In fact, the next section describes two FZCF hierarchies that include
right-recursive HLAs.

2.3.2.2 Example Hierarchies

This section presents three example hierarchies.

First, the following trivial hierarchy generates a standard forward search space (see Sec-
tion 2.1), and will be useful when analyzing the properties of hierarchical search algorithms.

Definition 2.37. The “flat” hierarchy consists of a single HLA H0, which has recursive
refinements [a,H0] for each primitive action a ∈ A, plus one additional refinement [no-ops∗ ].

Theorem 2.19. Primitive refinements of H0 applicable in s0 are in one-to-one correspon-
dence with solutions to the original planning problem with the same costs.

Proof. Trivial.

Next, we discuss a hierarchy for the simple nav-switch domain of Section 2.1.2.1, which
has three HLA types. First, a HLA Nav(xfrom, yfrom, xto, yto) navigates from (xfrom, yfrom)
to (xto, yto) without flipping the switch. Nav(xfrom, yfrom, xto, yto) has nine refinements:[
no-opAtX(xto)∧AtY(yto)

]
for when the agent is at the destination (xto, yto), and eight other re-

finements of the form [LeftH(xfrom, xfrom−1),Nav(xfrom−1, yfrom, xto, yto)] that make a sin-
gle move followed by a recursive Nav. Second, the top-level HLA Go(xfrom, yfrom, xto, yto)
goes to (xto, yto) from (xfrom, yfrom), perhaps flipping the switch at one or more locations
along the way. Go(xfrom, yfrom, xto, yto) has two types of refinements: either a direct
[Nav(xfrom, yfrom, xto, yto),Goal] without flipping, or sequence [Nav(xfrom, yfrom, xs, ys),
FlipH/V(xs, ys), Go(xs, ys, xto, yto)], which navigates to a location (xs, ys) from which the
switch can be flipped, flips it, and then recursively goes to the destination.
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[GO(x,y)] 

H0

[LEFT?(·), NAV(xs,ys)] [NO-OPAtX(xs) AtY(ys)]

[NAV(xs,sy), FLIP?(·), GO(x,y)] [NAV(x,y), GOAL] 

[UP?(·), NAV(xs,ys)] ...
Figure 2.13: A hierarchy for the nav-switch domain (omitting arguments corresponding to
the current position).

HLA Refinements

H0 [GoGrasp(o),GoDrop(o),H0] for o : CanMove(o) or [no-ops∗ ]
GoGrasp(o) [MoveBase(xb, yb),Grasp(o)] for (xb, yb) in reach of o
GoDrop(o) [GoDropAt(o, x, y)] for (x, y) ∈ oG
GoDropAt(o, x, y) [MoveBase(xb, yb),DropAt(o, x, y)] for (xb, yb) in reach of (x, y)
Grasp(o) [Reach(dx, dy),Get?(·)] where (dx, dy) next to o
DropAt(o, x, y) [Reach(dx, dy),Put?(·)] where (dx, dy) next to (x, y)

Reach(dx, dy) [Gripper?(·),Reach(dx, dy)] or
[
no-opGripperOffset=(dx,dy)

]
MoveBase(x, y) [Reach(0, 0),Unpark,Nav(x, y),Park] or

[
no-opBaseAt=(x,y)

]
Nav(x, y) [Base?(·),Nav(x, y)] or

[
no-opBaseAt=(x,y)

]
Figure 2.14: A hierarchy for the discrete manipulation domain. (See Figure 1.2 for a graphical
depiction.)
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Finally, we describe a realistic hierarchy for the discrete manipulation domain of Sec-
tion 2.1.2.3, which will serve as a running example throughout the thesis. (See Figure 2.14,
and the graphical depiction in Figure 1.2.) To solve the problem (H0), we GoGrasp(o)
an object o, GoDrop(o) it at its goal, then recursively H0 (or stop, if all objects are de-
livered). GoGrasp(o) navigates to a base position within reach of o with MoveBase,
then grasps it using Grasp(o), which refines to a Reach followed by a primitive Get?(·)
(from some direction). Similarly, to drop an object o at its goal with GoDrop(o), we first
select a goal position (x, y) to GoDropAt(o, x, y) it at. Then, GoDropAt(o, x, y) refines
to a MoveBase to get the base in range followed by DropAt(o, x, y), which positions the
gripper with Reach and then places the object with primitive Put?(). Finally, Reach and
Nav recursively refine into sequences of primitive Gripper?(·) and Base?(·) actions that
move the gripper or base by one square in a given direction. This hierarchy structures the
solution space, but leaves all of the details mentioned above open for optimization.

Practical techniques for programmatically generating the set of refinements of an HLA
(applicable from a given state) given the structure of a hierarchy are discussed in Section 4.3.

2.3.2.3 Simple Hierarchically Optimal Search

This section describes a very simple hierarchically optimal search algorithm, both for con-
creteness and as a starting point for the more sophisticated algorithms to come. In particular,
it defines a state space for hierarchical search, to which a standard algorithm like uniform-cost
search (i.e., Dijkstra’s algorithm) can be applied to find a hierarchically optimal solution.
This state-space representation is similar to approaches used by several previous planners
(Barrett and Weld, 1994; Kuter et al., 2005).

The “hstates” in this state space are tuples (s, a) consisting of a state s ∈ S from the
original problem, and a sequence of remaining (possibly high-level) actions a to do from s.
The initial hstate is (s0, [H0]), and the goal hstate is (s∗, []). Finally, the successor hstates
from a reachable non-goal hstate (s, a) (with non-empty a) are:

• (T (s, a1), a2:|a|) with cost C(s, a1), if a1 ∈ A is primitive.

• (s,b ++ a2:|a|) with cost 0 for each b ∈ I(a1), if a1 ∈ Â is high-level

In other words, if the first action is primitive we apply it to the state portion of the hstate,
and otherwise we consider all refinements of the remaining sequence at this first action.
Figure 2.15 shows some example hstates encountered along an optimal solution to the discrete
manipulation problem instance of Figure 1.1. Optimal state-space search algorithms applied
to this formulation are hierarchically optimal, for FZCF hierarchies.
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H0

GOGRASP(m)   GODROP(m)    H0 

MOVEBASE(2,7)    GRASP(m)  GODROP(m)    H0 

REACH(0,0)   UNPARK    NAV(2,7)    PARK   GRASP(m)  GODROP(m)  H0 

 NO-OPGripperOffset=(0,0)  UNPARK    NAV(2,7)    PARK   GRASP(m)  GODROP(m)  H0 

0

0

0

0

0

UNPARK    NAV(2,7)    PARK   GRASP(m)  GODROP(m)  H0 0

NAV(2,7)    PARK   GRASP(m)  GODROP(m)  H0 2

BASER(·)  NAV(2,7)    PARK   GRASP(m)  GODROP(m)  H0 2

NAV(2,7)    PARK   GRASP(m)  GODROP(m)  H0 4

Figure 2.15: The first nine “hstates” encountered along an optimal solution for the discrete
manipulation instance of Figure 1.1. Each hstate consists of a state (the relevant fragment
of which is shown at left) paired with a sequence of actions remaining to do from this state.
Each hstate is labeled with the total cost incurred to reach it, shown at left.
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Lemma 2.20. For any s ∈ S and h ∈ Â, only a finite number of hstates are reachable from
(s, [h]) with zero cost in a FZCF hierarchy.

Proof. Let N = |S| × |Â ∪ A| + 2. There are only finitely many successor chains of length
N beginning with (s, [h]). By the pigeonhole principle, each such chain must include two
hstates (s′, a′) and (s′′, a′′) where s′ = s′′ and a′1 = a′′1. By Definition 2.36, these hstates are
not reachable from one another with zero cost.

Lemma 2.21. For any s ∈ S, h ∈ Â, and finite cost c ∈ [0,∞), only a finite number of
hstates are reachable from (s, [h]) with cost ≤ c in a FZCF hierarchy.

Proof. Let Z be the finite set of zero-cost states reachable from (s, [h]) by Lemma 2.20. Each
element of Z can have only finitely many successors, each of which is in Z or has cost ≥ 1.
Thus, only finitely many states have cost < 1. Recursively applying this logic c + 1 times
establishes that only finitely many hstates are reachable with cost ≤ c.

Theorem 2.22. Hierarchical uniform-cost search (H-UCS), which is just uniform-cost search
applied to this state space, is hierarchically optimal for FZCF hierarchies.

Proof. This state space generates the primitive refinements of Definition 2.31 in a straight-
forward, left-to-right manner, with pruning for inapplicable prefixes. Because every prefix
of an applicable primitive refinement must be applicable, and because every hstate reached
while generating a primitive refinement has cost no greater than the final primitive refine-
ment, if search terminates it must terminate with a hierarchically optimal solution. Finally,
by Lemma 2.21, the algorithm must terminate as long as a finite-cost solution exists.

We note that H-UCS may be faster or slower on this problem than UCS on the original
state space (depending on how many plans the hierarchy rules out, versus how many different
suffixes each state may appear with). While unlikely to be very useful in practice, H-UCS
serves as a useful starting point for algorithms to come.
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Chapter 3

Decomposed Hierarchical Planning

This chapter introduces a novel family of algorithms that search for hierarchically optimal
solutions in the formalism of Section 2.3.2.1, without any additional annotations on the HLAs
involved. These algorithms improve on the simple H-UCS algorithm of Section 2.3.2.3 by
exploiting the structure of hierarchical plan space with two complementary techniques.

The first technique is decomposition, which divides the task of finding solutions for a
high-level plan a into separate subproblems, one per action in the plan. More precisely,
decomposition exploits the fact that every primitive refinement of a = [h1, h2] that optimally
reaches state s′′ from s is a concatenation of a primitive refinement of h1 that optimally
reaches some intermediate state s′ from s with a primitive refinement of h2 that optimally
reaches s′′ from s′ (see Figure 3.1). The advantage is that, e.g., the optimal primitive
refinements of h1 from s can be computed and cached the first time they are needed, and
then reused throughout the search space each time this subproblem reappears. However,
decomposed caching alone is not too powerful, since optimal search must still explore all
states reachable under the hierarchy (while incurring no more than the optimal cost).

The second technique, state abstraction, builds upon decomposition, greatly increasing
the opportunities for caching and sharing of solutions. The basic observation is that typ-
ically, only a portion of the state is relevant for doing a given HLA. For example, when
planning for a robot base movement Nav(x, y), only the current position of the robot base is
relevant; similarly, when planning for a gripper movement Reach(x, y), only the robot base
and gripper positions and the positions of nearby objects are relevant. Subproblems that
differ only in irrelevant parts of the state share the same optimal primitive refinements, and
thus state abstraction can be incorporated into a decomposed planning algorithm by simply
ignoring irrelevant parts of the state when identifying repeated subproblems. Chapter 7
describes relationships to related definitions of state abstraction used in previous work in
hierarchical reinforcement learning and planning.
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h1

s0

6

3

h2

5

a1

a2
a3

a4

a5

a4
a5

s3

s4

s1

s2

3

4

8
9

Figure 3.1: A schematic of a high-level plan [h1, h2], where h1 has primitive refinements [a1],
[a2] and [a3], and h2 has primitive refinements [a4] and [a5]. Plan [h1, h2] can reach states
s3 and s4 from s0, with optimal solutions [a1, a4] and [a1, a5] (respectively). Note that while
[a2] is the cheapest primitive refinement from h1 (and the optimal solution to reach state
s2 via h1), a2 does not appear in any optimal primitive refinement of [h1, h2] because the
refinements of h2 are more expensive from intermediate state s2 than from s1.

These techniques are formalized in the next section. Then, the following section presents a
simple exhaustive search algorithm that utilizes decomposition and state-abstracted caching.
Finally, the last section presents a pair of cost-ordered algorithms (like H-UCS) that exploit
decomposition and state abstraction without exploring the entire hierarchical search space,
and thus may be more useful in practice.

3.1 Decomposition, Caching, and State Abstraction

3.1.1 Decomposition and Caching

The basic idea behind decomposition is to recursively divide the hierarchical search space
into subproblems, each of which is concerned with the outcomes of a single (high-level)
action, and then patch together the solutions to these subproblems. The advantage over
algorithms that search directly through the space of high-level plans (like H-UCS) is that a
given subproblem only needs to be solved a single time, and then the discovered solutions can
be reused whenever this subproblem is encountered again. The resulting decomposed search
space is analogous to the AND/OR graphs of Section 2.2, where an OR-node represents a
single-HLA subproblem and an AND-node represents a sequential subproblem for the actions
in a particular refinement of some HLA. However, decomposed hierarchical search cannot
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be captured directly in the formalism of Section 2.2.1.1, because each subproblem may have
multiple types of optimal solutions corresponding to different reachable states, and these
types are not known a priori but must be discovered through search (see Figure 3.1).

Specifically, this chapter considers a simple class of forward subproblems, which are es-
sentially equivalent to the “hstates” of Section 2.3.2.3.

Definition 3.1. A forward subproblem p is a tuple (s, a), which corresponds to doing (some
primitive refinement of) sequence a ∈ (A∪Â)∗ from state s ∈ S. For subproblem p = (s, a),
we define p.state := s and p.actions := a.

As in Section 2.3.2.3, the objective is to solve the root subproblem (s0, [H0]). Solutions
to subproblem (s, a) correspond to primitive refinements of a that are applicable from s.

Definition 3.2. The solutions z ∈ 〈〈(s, a)〉〉 to forward subproblem (s, a) consist of all
primitive action sequences z .seq ∈ I∗(a) that are applicable from s, along with their costs
c(z ) := C(s, z .seq) and resulting states z .outcome := T (s, z .seq).1

We also define a concatenation operation on solutions, and a set of trivial (empty) solu-
tions:

Definition 3.3. >s is the empty solution for state s: 〈〈(s, [])〉〉 = {>s}. The concatena-
tion operation z1 ++ z2 produces a new solution by concatenating the actions of z1 and z2,
adding their costs, and taking the outcome state of z2. Concatenation is only defined when
z1.outcome = p2.state, where z2 ∈ 〈〈p2〉〉.

Finally, we define a refinement operator, which generalizes the successor function of
Section 2.3.2.3 by adding bookkeeping for solutions.

Definition 3.4. The forward refinement operator R(p, z ) takes a nonterminal forward sub-
problem p = (s, a) with a 6= [] and a solution with z .outcome = s, and produces a list of
pairs of next forward subproblems and corresponding solutions to reach their initial states,
by applying the first action of a to s if primitive or refining it if high-level:

R((s, a), z ) =


∅ if a1 ∈ A and a1 /∈ As

{((T (s, a1), a2:|a|), z ++ a1)} if a1 ∈ As
{((s,b ++ a2:|a|), z ) : b ∈ I(a1)} if a1 ∈ Â,

where z ++ a extends solution z with primitive action a by appending a to z .seq, adding
C(z .outcome, a) to c(z ), and updating z .outcome to T (z .outcome, a).

1While the cost and outcome state are redundant given the action sequence, they are included in the
solution so that they can be retrieved in constant time (independent of the length of the action sequence).
In some problems (e.g., Towers of Hanoi), this can make an exponential difference in runtime.



CHAPTER 3. DECOMPOSED HIERARCHICAL PLANNING 63

For example, suppose that solution z has z .outcome = s and z .seq = [a1, a2], HLA h has im-
mediate refinements [a3, h] and [a4, a5], and a3 leads to state s′ from s whereas a4 is inapplica-
ble from s. Then, R((s, [h, a6]), z ) = {((s, [a3, h, a6]), z ), ((s, [a4, a5, a6]), z ))}, and these pairs
have further refinements R((s, [a3, h, a6]), z ) = {((s′, [h, a6]), z ′)} and R((s, [a4, a5, a6]), z ) =
{}, where z ′.outcome = s′ and z ′.seq = [a1, a2, a3].

This refinement operator can be used to generate solutions by repeated application,
yielding the same search space used by H-UCS.

Theorem 3.1. The solutions 〈〈p〉〉 for forward subproblem p = (s, a) can be computed by:

〈〈p〉〉 =

{
{>s} if a = []

{z1 ++ z2 : (p ′, z1) ∈ R(p,>s) and z2 ∈ 〈〈p ′〉〉} otherwise.

Proof. Same as the proof of Theorem 2.22.

However, solutions can also be generated via decomposition, by exploiting the following
equivalence.

Theorem 3.2. If a is nonempty with first action a1 and remaining actions a2:|a|, then the
solution set for forward subproblem p = (s, a) satisfies:

〈〈p〉〉 = {z1 ++ z2 : z1 ∈ 〈〈(s, [a1])〉〉 and z2 ∈ 〈〈(z1.outcome, a2:|a|)〉〉}.

Proof. Follows directly from Definition 2.31.

In other words, the solutions for an action sequence subproblem can be generated by
first solving a subproblem for its first action, and then solving additional subproblems for
its remaining actions, one for each reachable intermediate state (see Figure 3.2). Because
solutions with different outcome states cannot be directly compared without taking the
context of the subproblem into account (e.g., a cheap solution leading to a bad state might
be worse than an expensive solution leading to a good state, see Figure 3.3), the definition
of optimal solutions in this setting is more complex than in the formalisms of the previous
chapter.

Definition 3.5. The optimal solutions 〈〈p〉〉∗ for a forward subproblem p consist of the
minimum-cost solutions to reach each state:

〈〈p〉〉∗ := {z : z ∈ 〈〈p〉〉 and c(z ) = c∗(p, z .outcome)},

where c∗(p, s) is the minimum cost of any solution for p that reaches state s:

c∗(p, s) := min
z∈〈〈p〉〉:z .outcome=s

c(z ).
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GOGRASP(m) GODROP(m)

GOGRASP(m) GODROP(m)

+

Figure 3.2: Given a specific intermediate state for action sequence
[GoGrasp(m),GoDrop(m)], the task of finding an optimal solution decomposes
into separate, independent subproblems: one to reach this intermediate state from s0 using
GoGrasp(m), and one to follow with GoDrop(m).

a1 a2:|a|

s0 s*

8
5
3

10

12
17

Figure 3.3: The bottom-left sequence is the cheapest refinement of a1, and the top-right
sequence is the cheapest refinement of a2:|a|. However, the overall optimal solution (with total
cost 17) passes through the center state, and does not include either of these refinements.
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Hierarchically optimal search algorithms need only consider a minimal subset of 〈〈p〉〉∗ con-
taining a single optimal solution per reachable state (see Figure 3.4).

3.1.2 State Abstraction

Within this formalism, state abstraction amounts to the observation that if s1 and s2
only differ in ways irrelevant to action a, then forward subproblems (s1, [a]) and (s2, [a])
have the same sets of optimal solutions. In particular, suppose we are given a function
EnterContext(s, a) that captures this notion of relevance.

Definition 3.6. Let s′ = EnterContext(s, a) capture the context of state s relevant for
doing action a. The result is a new partial state s′ defined on a subset of the variables of
s, with the same values given by s (i.e., a projection of s onto the variables relevant to
a). This function must satisfy the following condition: if s′ = EnterContext(s1, a) =
EnterContext(s2, a), then (∀b ∈ I∗(a)) C(s1,b) = C(s2,b) and no action in b affects
a variable not defined in s′.2

For a primitive action a, the relevant variables are just those mentioned in its precondition
or effect: Vprea ∪Vposta . Then, the variables relevant to an HLA are the variables relevant to any
primitive action appearing in one of its primitive refinements. This notion of relevance can
be automatically computed, starting at the primitive actions and moving up the hierarchy
towards H0 (to which all variables in s0 are typically relevant).

Since a partial state generated by EnterContext(s, a) is in effect a complete state for
the subproblem of doing a, we will henceforth use the term “state” to refer to these partial
states as well as complete states for the overall problem. We also assume that the transition
and cost functions, refinement operator, and other definitions above have been extended in
the obvious way to work on partial states.

Given a known (optimal) solution set for a subproblem p = (s, a), it is trivial to construct
an (optimal) solution set for another subproblem p ′ = (s′, a) with EnterContext(s, a) =
EnterContext(s′, a).

Definition 3.7. Define a contextualization operation Contextualize(s, s′), which pro-
duces a state with all variable values from s′, along with any remaining variable values from
s that were not defined in s′. Furthermore, extend the solution concatenation operation so
that (z ++ z ′).outcome = Contextualize(z .outcome, z ′.outcome).

2This condition is sufficient for primitive actions as considered here that lack conditional effects, since
when b is applicable, its effects on s1 and s2 are guaranteed to be the same. With conditional effects, we
would also have to require that the final values for variables defined in s′ are the same in both cases.
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Figure 3.4: Reachable states and optimal costs for the forward subproblem of GoGrasping
the magazine from the initial state of Figure 1.1. For instance, the sole optimal solution to
reach the left state is [no-opGripperOffset=(0,0), Unpark,BaseR(1, 7), no-opBaseAt=(2,7), Park,
GripperR(2, 7, 0, 0), no-opGripperOffset=(1,0), GetR(2, 7, 1, 0,m)].

Given a solution z1 with z1.outcome = s, a subproblem p = (EnterContext(s, a), a),
and a solution z2 ∈ 〈〈p〉〉, this contextualization corresponds to combining the variables
relevant to a from z2.outcome with the remaining (irrelevant) variables from z1.outcome,
which remain unchanged by any primitive refinement of a (see Figures 3.5 and 3.6).

Theorem 3.3. Consider a subproblem p = (s, a), and let Z be the optimal solutions for the
abstracted version of this subproblem: Z = 〈〈(EnterContext(s, a), a)〉〉∗. Then,

〈〈p〉〉∗ = {>s ++ z : z ∈ Z}.

Proof. Follows directly from Definitions 3.6 and 3.7.

The effectiveness of state abstraction as defined here can depend heavily on the par-
ticular encoding of the problem state. For instance, the Free(x, y) state variables for our
discrete manipulation example are essentially redundant given ObjectAt(o) for each object
o. However, they can dramatically increase the potential for state abstraction. For example,
GoGrasp(o) only needs to depend on the values of Free(x, y) for squares (x, y) neighboring
ObjectAt(o), whereas without Free(·) it would need to depend on ObjectAt(o′) for each other
object o′.

More general versions of this idea are possible. For instance, one can restrict the context
to include only precondition (but not effect) variables, at the cost of a somewhat more in-
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{    }
{    }

{    }

MOVEBASE(2,7) = 9

*

MOVEBASE(2,7) = 9

*

MOVEBASE(2,7) = 9

*

(same context)
abstract

contextualize

Figure 3.5: Solution sharing between MoveBase(2, 7) subproblems for different states
with the same context EnterContext(·, a), and thus the same optimal solutions. Top
left: Two MoveBase(2, 7) subproblems where the magazine is at different locations.
Bottom left: a common abstraction of the subproblems, where state s is replaced with
EnterContext(s,MoveBase(2, 7)), which omits the irrelevant detail of the magazine
position. Bottom right: the optimal solution set is directly computed for the abstracted
subproblem. Top right: the solution sets for both original subproblems are generated by
contextualizing this solution set, adding back the original magazine position.
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GOGRASP(c)

(same context)
abstract

GOGRASP(c)

GOGRASP(c)

Figure 3.6: A more interesting example of state abstraction. Top: the planner encounters
two subproblems of grasping the cup from quite different states. Bottom: these two states
share the same state-abstracted context, which includes only the configuration of the robot,
cup, and which squares neighboring the cup are occupied by some object (the identity of
which is irrelevant to the grasp).
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Algorithm 3.1 SAHTN
function Solutions-A((s, a))

p ← (EnterContext(s, a), a)
if cache[p] = undefined then

cache[p]← ·
⋃

(p′,z ′)∈R(p,>p.state)
Solutions-P(z ′, p′.actions)

return cache[p]

function Solutions-P(z ,a)
sols← {z}
for i from 1, ..., |a| do

sols← ·
⋃

z∈sols ·
⋃

z ′∈Solutions-A((z .outcome,ai))
z ++ z ′

return sols

function SAHTN()
return the sole element of Solutions-A((s0,H0)), or failure if empty

volved contextualization operation and more complex equality checks for states. Or, one can
abstract away the identities of exchangeable objects, so that, e.g., the results of navigation
planning can be shared between identical robots.

3.2 Exhaustive Decomposed Search

Algorithm 3.1 shows pseudocode for a simple, exhaustive, hierarchically optimal search al-
gorithm called SAHTN (State-Abstracted HTN). This algorithm explores the space of all
subproblems reachable by decomposition and refinement from (s0,H0) up to equivalence
determined by EnterContext(·, ·), by directly implementing Theorems 3.1 and 3.2.

SAHTN consists of two mutually recursive functions. Solutions-A computes the op-
timal solutions for a single-action subproblem p = (s, a) and caches them under the pair
(EnterContext(s, a), a), by applying one step of the refinement operation R and then
unioning the results of Solutions-P on each refinement. The results are collected with a
statewise-minimum ·

⋃
operator, which retains a single minimum-cost solution for each reach-

able state, and discards the remaining solutions. Then, Solutions-P computes the solutions
for an action sequence by applying the decomposition enabled by Theorem 3.2. Finally, the
top-level SAHTN procedure simply returns the sole result of Solutions-A((s0,H0)).

3

Theorem 3.4. In forward cycle-free hierarchies, SAHTN is hierarchically optimal.

3Recall Definition 2.1 and Assumption 2.18, which guarantee (without loss of generality) that the search
problem has at most a single goal state s∗, and no primitive refinement of H0 reaches a state other than s∗
from s0.
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Proof. The optimality of SAHTN follows directly from Theorems 3.1, 3.2, and 3.3.

Remark. In hierarchies with forward cycles (Definition 2.35), SAHTN fails to terminate.

It is easy to construct domains in which SAHTN is exponentially faster than H-UCS or
primitive search algorithms like UCS. For example, in the Towers of Hanoi domain, SAHTN
can find exponential-length optimal solutions in polynomial time as long as z1 ++ z2 concate-
nates sequences lazily (e.g., building a graph that compactly describes the final solution).

While it is possible to extend SAHTN to handle problems with cycles, we instead move
directly to the cost-ordered algorithms of the next section. In addition to gracefully handling
(non-zero-cost) cycles, these algorithms explore only the portion of the hierarchy necessary
to find an optimal solution, and can thus be much more efficient than SAHTN.

3.3 Cost-Ordered Decomposed Search

This section presents two related algorithms for cost-ordered hierarchically optimal search
with decomposition and state abstraction. In other words, these algorithms perform the
same basic computations as SAHTN, but use a (set of) priority queues to examine a sub-
problem reachable with minimum cost from s0 at each search step (like H-UCS). The primary
advantage is that the first discovered solution must be hierarchically optimal, and thus the
remainder of the search space need not be explored.

We first describe a top-down algorithm called DSH-LDFS (Decomposed, State-abstracted,
Hierarchical LDFS), whose overall search strategy is similar to LDFS (Section 2.2.3.3). This
algorithm maintains a graph of OR-nodes, each of which represents a uniform-cost search
for optimal solutions to a single-HLA subproblem. Summary information and solutions are
propagated upwards in the graph, where they create subsequent subproblems at higher levels
when more actions remain (via Theorem 3.2).

DSH-LDFS is hierarchically optimal in FZCF hierarchies, but its performance can suffer
due to the inherent inefficiencies of top-down search (especially in the presence of cycles).
We present it primarily to help explain a second algorithm called DSH-UCS (Decomposed,
State-abstracted H-UCS) that performs the same basic computations as DSH-LDFS more
efficiently using a single global priority queue.

3.3.1 DSH-LDFS: Recursive Top-Down Search

Algorithm 3.2 shows pseudocode for DSH-LDFS, a recursive, top-down, cost-ordered, hi-
erarchically optimal search algorithm. Search is carried out in a graph of OR-nodes, each
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Algorithm 3.2 DSH-LDFS
function MakeOrNode()

return a node n with
n.queue = [], a priority queue on (z ,a) or (z , child) tuples, ordered by

c(z ) + child.queue.PeekMin() (or 0, breaking ties towards (z , a))
n.closed = []
n.solutions = MakeChannel()

function GetOrNode(queue, z ,a)
s← EnterContext(z .outcome, a1)
if cache[(s, a1)] = undefined then

cache[(s, a1)]←MakeOrNode()
for (p′, z ′) ∈ R((s, a1),>s) do

cache[(s, a1)].queue.Insert((z ′, p′.actions))

Subscribe(cache[(s, a1)].solutions, λ.z ′ queue.Insert((z ++ z ′,a2:|a|)))
return cache[(s, a1)]

function DSH-LDFS-Pass(n, c)
while n.queue.PeekMin() ≤ c do

entry ← n.queue.RemoveMin()
if entry = (z ,a) then

if n.closed [(z .outcome,a)] = undefined then
n.closed .Insert((z .outcome,a))
if a = [] then

Publish(n.solutions, z )
break

else
n.queue.Insert((z ,GetOrNode(n.queue, z ,a)))

else /* entry = (z , child) */

DSH-LDFS-Pass(child, c− c(z ))
n.queue.Insert((z , child))

function DSH-LDFS()
sols← []
root ← GetOrNode(sols,>s0, [H0])
while root .queue.PeekMin() <∞ do

if sols is not empty then return sols[0][0]
DSH-LDFS-Pass(root , root .queue.PeekMin())

return ⊥
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of which represents a partially completed search for the optimal solutions of a particular
single-action forward subproblem (s, a).

The search strategy of DSH-LDFS is a variant of learning depth-first search (see Sec-
tion 2.2.3.3). Each iteration of the top-level DSH-LDFS loop initiates a DSH-LDFS-Pass
that recursively explores the subgraph rooted at a node, until its lower bound is increased or
a new optimal solution (for a previously unseen output state) is generated. Throughout this
process, each OR-node n corresponding to forward subproblem p = (s, a) maintains three
pieces of state about its current search.

First, n.queue is a priority queue on tuples t representing subsets of refinements of p,
ordered by a lower bound on the cost of the next optimal solution for a that might be
produced from t. The first element of each tuple is a solution z to reach z .outcome from
s by a primitive refinement of a prefix of an immediate refinement of a (or simply [a] if a
is primitive). Then, the second element can be either an action sequence a or an OR-node
child. If the former, the tuple is unexplored, and sequence a specifies the actions remaining
to do from z .outcome, e.g., (z .seq ++ a) ∈ I+(a). If the latter, the tuple is in progress, and
child is an OR-node corresponding to an in-progress search for optimal solutions to a next
subproblem from z .outcome. The queue is ordered by the lower cost bound of each tuple,
which is c(z ) plus the current bound of child for in-progress tuples, breaking ties towards
unexplored tuples (which helps surface solutions faster).

Next, n.closed is a closed list representing the set of unexplored tuples that have already
been processed (i.e., have generated a corresponding in-progress tuple). The first time an
unexplored tuple (z , a) is popped from the queue, z is guaranteed to be an optimal solution
to reach z .outcome from s by a primitive refinement of a prefix of an immediate refinement
of a (and a is the remaining suffix of the immediate refinement). Because this solution is
optimal, future instances of this state and remaining action sequence can be ignored.

Finally, n.solutions is a communication channel, a data structure used throughout this
thesis when a growing set of operations must be carried out on a growing set of data. A new
datum d can be published to a channel c using Publish(c, d). Similarly, interested parties can
subscribe to a channel c using Subscribe(c, f), where f is a callback function. The channel
ensures that f(d) is called once for each datum d and callback f , regardless of the order in
which the publications and subscriptions are made. In this case, each datum published on
n.solutions is an optimal solution for a different outcome state of the subproblem represented
by n, and each callback subscribed to n.solutions represents a different parent context in
which the subproblem corresponding to n has appeared.

The search logic of DSH-LDFS is captured by DSH-LDFS-Pass(n, c), which recursively
explores OR-node n and its descendants until a new optimal solution for n is found and
published, or the lower cost bound of n is increased above c. Each iteration of the main loop
pops the best tuple off the queue and operates on it as follows.
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• If the entry (z , a) is unexplored and not on the closed list:

– If it has no remaining actions (a = []), z represents an optimal primitive refinement
of a that reaches a new state z .outcome, and this optimal solution is published.

– Otherwise a 6= [], and the OR-node corresponding to doing the first action in a
from z .outcome is retrieved from the cache (or created if needed). A subscription
to its solution channel is registered, which inserts an unexplored entry correspond-
ing to doing the remaining actions in a from each solution state, and the child
itself is added to the queue.

• Otherwise, the entry is in progress (z , child), and search recursively descends into child
with the cost c(z ) to reach child within this subproblem subtracted from the current
bound c. When the recursive call completes, child is added back to the queue, either
with greater cost than before, or having published a new solution (generating a new
queue entry at n, and perhaps other nodes as well, via subscription callbacks).

Intuitively, DSH-LDFS is hierarchically optimal because it implicitly considers the same
sets of plans as H-UCS, and just explores them in a more efficient manner by exposing and
then exploiting the existence of repeated subproblems. In particular, if GetOrNode is
modified to return a fresh OR-node on each call without caching the results, DSH-LDFS
(very nearly) degrades to a baroque implementation of H-UCS.4

Theorem 3.5. DSH-LDFS is hierarchically optimal in FZCF hierarchies.

Proof. First, note that the cost bound n.queue.PeekMin() of an OR-node n can never
decrease. Thus, when DSH-LDFS-Pass(n, c) is called, it must always be the case that
n.queue.PeekMin() ≥ c. Now, in an FCZF hierarchy, if DSH-LDFS-Pass(n, c) is on the
call stack, a recursive call on the same node DSH-LDFS-Pass(n, c′) must have c′ < c. Thus,
this recursive call must terminate immediately, and we need not worry about leaving nodes
in an inconsistent state during recursive calls. Moreover, the total number of single-action
forward subproblems N ≤ |S||Â ∪ A| is finite, so we need not worry about infinitely deep
recursive chains.

Next, we prove the invariant that, before each iteration of the loop in DSH-LDFS-Pass,
for every OR-node n representing a subproblem p = (s, [a]), and every primitive solution
z ∈ 〈〈p〉〉, the priority queue of n (plus published solutions, and a child entry that would be
added back after an in-progress recursive call completes) contains some entry that admits
a primitive solution z ′ ∈ 〈〈p〉〉 where z ′.outcome = z .outcome and c(z ′) ≤ c(z ), and whose
current cost bound is ≤ c(z ′).

4Specifically, this modified DSH-LDFS would perform the same computations as H-UCS (up to tiebreak-
ing), except that it would eliminate fewer repeated “hstates” from the search space.
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This invariant is trivially satisfied by the initial node GetOrNode(·, s0, [H0]), which
contains one queue entry for each immediate refinement of H0 from s0. Now, we just need
to show that each iteration of the loop preserves the invariant. There are several cases.

First, if an unexplored entry (z , a) is discarded due to an item on the closed list cor-
responding to a previous entry (z ′, a) with z ′.outcome = z .outcome, because the queue is
monotonic we must have c(z ′) ≤ c(z ). Thus, for any primitive solution z ++ z ′′ where
z ′′ ∈ 〈〈(z .outcome, a)〉〉, z ′ ++ z ′′ must reach the same state with no greater cost, and this
entry can be safely discarded without compromising the invariant.

When the unexplored entry is not discarded and has nonempty sequence a 6= [], it
temporarily delegates its solutions to a child OR-node. The operations carried out by
GetOrNode obey the refinement and decomposition equations proved correct above, and
so long as the child obeys the invariant, it will be maintained at this node by the added child
entry. When a = [], the invariant ensures that the discovered solution z must be optimal for
z .outcome. Then, z is published, creating new entries at all parent subproblems and return-
ing control of the invariant for solutions passing through this state. In the final in-progress
case, the contents of the queue at this level are not changed (other than re-prioritizing the
current element), and so the invariant is preserved so long as it is preserved at lower levels.

Applying this invariant to the root node shows that DSH-LDFS is hierarchically optimal
as long as it terminates. For termination, we note that for a given subproblem, there are at
most 1+ |S||I(a)| unique entries that can be added to the closed list (where |I(a)| represents
the total number of actions in the immediate refinements of a). Thus, the while loop at each
node can carry out at most a finite number of non-recursive iterations before terminating
with a new solution or cost bound increased by at least 1. Because the recursion depth is at
most N , each call must eventually terminate in this manner. Finally, because the number of
subproblems, possible output states, and optimal solution cost are all finite, the algorithm
must terminate with at most a finite number of calls to DSH-LDFS-Pass.

DSH-LDFS can be much more efficient than SAHTN when there exist many state-
abstracted subproblems that are not forward-reachable with less than the hierarchically
optimal solution cost. Moreover, it is easy to see that the number of refinement operations
carried out can be no greater than H-UCS. However, the performance of DSH-LDFS can
still be dominated by our previous algorithms, because of the high overhead of propagating
costs in a top-down search graph (see Section 2.2.3).

3.3.2 DSH-UCS: Flattened Search

This section presents DSH-UCS, which performs the same basic decomposed search as DSH-
LDFS with lower overhead, using a single “flat” priority queue. The basic insight behind
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Algorithm 3.3 DSH-UCS
function MakeSubproblem(mincost)

return a node n with
n.solutions = MakeChannel()
n.mincost = mincost

function DecomposeSubproblem(queue, z ,a, sp)
s← EnterContext(z .outcome, a1)
if cache[(s, a1)] = undefined then

cache[(s, a1)]←MakeSubproblem(c(z ))
for (p′, z ′) ∈ R((s, a1),>s) do

queue.Insert((z ′, p ′.actions, cache[(s, a1)]))

Subscribe(cache[(s, a1)].solutions, λ.z ′ queue.Insert((z ++ z ′,a2:|a|, sp)))

function DSH-UCS()
root←MakeSubproblem(0)
fringe ← [(>s0, [H0] , root)], a priority queue on (z ,a, sp) tuples ordered by c(z )+sp.mincost ,

breaking ties towards tuples with a = [].
closed ← []
while fringe 6= ∅ do

(z ,a, sp)← fringe.RemoveMin()
if closed [(z ,a, sp)] = undefined then

closed .Insert((z ,a, sp))
if a = [] then

if sp = root then return z
else Publish(sp.solutions, z )

else
DecomposeSubproblem(fringe, z ,a, sp)

return ⊥
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DSH-UCS is that every time DSH-LDFS actually performs expansions within an OR-node
n (i.e., enters the while loop in DSH-LDFS-Pass(n, c)), the cost of the forward context
encapsulated by the call stack (i.e., root .queue.PeekMin() − c) is always the same. In
particular, it is always equal to the minimum cost to reach this subproblem from s0 under
the hierarchy. This means that all of the queues and closed lists in DSH-LDFS can be
collapsed into a single fringe and closed list, as in a bottom-up search, where each entry
now includes a pointer to its subproblem (c.f., OR-node), and the minimum cost to reach
that subproblem is added to its total cost. In other words, the optimal context cost for each
subproblem is represented explicitly, rather than as a recursive chain of prefix costs.

Algorithm 3.3 shows pseudocode for DSH-UCS, which involves only minor modifications
(and simplifications) to the code in Algorithm 3.2. The top-level search encapsulated by
DSH-UCS now resembles a standard Dijkstra-style search, where unexplored entries for all
existing subproblems are mingled in the same priority queue, and so there is no longer any
need for in-progress entries. Each unexplored entry consists of a tuple (z , a, sp), where sp
corresponds to the OR-node at which this entry would have lived (now called a subproblem),
and z and a capture a solution for a prefix of a refinement of sp and its corresponding suffix
(as in DSH-LDFS). The priority of the entry is given by c(z )+sp.mincost , where sp.mincost
is the cost of the cheapest solution that leads to sp, equivalent to the context cost with which
sp would always be explored in DSH-LDFS. The basic operations carried out in each loop
iteration are identical to DSH-LDFS (with in-progress entries and recursion removed).

Lemma 3.6. Given equivalent tiebreaking choices, after an equivalent number of while loop
iterations (excluding the recursive case in DSH-LDFS), entries in the queue and closed list
of DSH-UCS are in one-to-one correspondence with unexplored entries on the queues and
closed lists of all OR-nodes in DSH-LDFS.

Proof. The operations carried out in Algorithm 3.2 and Algorithm 3.3 are in direct corre-
spondence.

Theorem 3.7. DSH-UCS is hierarchically optimal in FZCF hierarchies.

Proof. Follows directly from Theorem 3.5 and Lemma 3.6.

Because it performs the same basic computations with lower overhead, DSH-UCS should
be preferred to DSH-LDFS for most direct applications. However, DSH-LDFS is still of
interest for comparison (and perhaps combination) with the recursive top-down algorithms
explored in Chapter 5.
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Chapter 4

Angelic Semantics

This chapter returns to the issue of HLA annotations discussed in Section 2.3.1.3, intro-
ducing a novel “angelic semantics” that correctly captures the transition models of HLAs (in
the formalism of Section 2.3.2.1). Unlike previous proposals, angelic descriptions of HLAs
are true; that is, they follow logically from the refinement hierarchy and the descriptions
of the primitive actions. Coupled with a sound, efficiently implementable approximation
scheme, these descriptions can enable algorithms that realize the full benefits of hierarchical
structure in planning.

Specifically, if achievement of the goal is entailed by the true descriptions of a sequence
of HLAs, then that sequence must, by definition, be reducible to a primitive solution. Con-
versely, if the sequence provably fails to achieve the goal according to the descriptions, it
is not reducible to a primitive solution. Thus, the downward refinement property and its
converse are automatically satisfied. Finally, if the descriptions entail neither success nor
failure of a given plan, then further refinement will resolve the uncertainty.

So far so good. But, what can truly be asserted about the preconditions or effects of a
high-level action? Chapter 2 described two unambiguous types of such assertions. First, an
HLA with a single primitive refinement (a macro) can easily be assigned a correct description;
however, most interesting HLAs are not macros, and the tricky issues arise with multiple
refinements. Second, an HLA can correctly be assigned a precondition (called an external
condition) when some action in every primitive refinement requires it.1

This section moves beyond these restricted cases to describe full transition models for
arbitrary HLAs, which correctly specify all of their preconditions and effects. This requires
abandoning STRIPS-style conditions that are required to hold under all refinements, and

1One might also attempt to assign an HLA an effect that appears in all refinements. Indeed, in this case
any successful execution of the HLA must result in a state where the effect holds. However, to guarantee
that the effect is made to hold, the precondition of the HLA must also be strong enough to guarantee that
at least one primitive refinement of the HLA will be applicable from a given state.
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instead focusing on all possibilities that can occur under any refinement. This is a form of
nondeterminism, but a key observation is that the planning agent itself (not an adversary)
will ultimately choose which refinement to take, and thus which possibility is achieved.

A similar distinction between adversarial and non-adversarial refinements of abstract
specifications occurs in the semantics of programming languages. For example, a multi-
threaded program is correct only if it works under all legal thread sequencings, because
the actual sequencing depends on unknown (“adversarial”) properties of the machine and
process scheduler. On the other hand, a nondeterministic algorithm succeeds iff some se-
quence of choices succeeds—the choices are assumed to be made with the aim of succeeding.
In the programming languages literature, the term angelic nondeterminism is used for this
case (Jagadeesan et al., 1992). Thus, we call our proposal an angelic semantics for HLAs.

This chapter begins with an overview of a simplified angelic approach that ignores solution
costs and is only concerned with reachability, to demonstrate the basic concepts and how they
fit together. This is followed by a detailed presentation of the full angelic approach, which
incorporates action costs and thus can be used for hierarchically optimal search. Finally,
the chapter concludes by discussing practical representations for angelic descriptions and
hierarchies, sketching a potential approach for computing descriptions, and briefly exploring
connections between the approach and the descriptions of (e.g, STRIPS) “primitives” that
are often intended to encapsulate more complex, real-world behaviors.

Planning algorithms based on the techniques introduced here are the topic of Chapter 5.

4.1 Angelic Descriptions for Reachability

4.1.1 Reachable Sets and Exact Descriptions

We begin with the concept of a reachable set : the reachable set of HLA h from state s is
the set of all states reachable with finite cost from s by some primitive refinement of h (see
Figure 4.1). If (and only if) the goal state s∗ is reachable from the start state s0 by a given
high-level plan, this plan is a solution, and can be expanded to a primitive refinement that
solves the original problem. In fact, we have already seen an extension of this concept in the
guise of solutions to forward subproblems: the reachable set of action a from state s is just
{z .outcome : z ∈ 〈〈(s, [a])〉〉}. Figure 3.4 shows a concrete example of a reachable set in our
discrete manipulation domain.

Then, the exact description of an HLA is simply its reachable set, specified as a function
of the initial state s.

Definition 4.1. The exact description Ēh of an action h is a mapping from an initial state
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h1
s0 s*

Figure 4.1: The exact reachable set of h1 (depicted by a dashed oval) from the initial state
is the set of all states reachable by primitive refinements of h1 (depicted by solid lines).

to the set of states reachable by doing some refinement of h from s:

Ēh(s) := {s′ : s′ = T (s, a) and a ∈ I∗(h) and s′ 6= s⊥}.

Remark. If a is primitive, then Ēa(s) = {T (s, a)} \ {s⊥}.

Exact descriptions can be extended to functions of sets of states, where the output is the
set of states reachable from some initial state via some refinement (see Figure 4.2).

Definition 4.2. If S is a set of initial states, then

Ēh(S) :=
⋃
s∈S

Ēh(s).

With this extension, the exact description for a sequence of actions a is just the functional
composition of the exact descriptions of its constituent actions.

Definition 4.3. Given an action sequence a = [a1, . . . , an],

Ēa := Ēan ◦ . . . ◦ Ēa1 .

This composition respects the semantics of the original problem. In fact, it is essentially
a restatement of the decomposition results of Section 3.1.1.
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h1
h2

s0 s*

Figure 4.2: The exact reachable set for sequence [h1, h2] is the union of the reachable sets
of h2 from each state reachable by h1. Because this reachable set contains the goal state s∗,
plan [h1, h2] is a high-level solution.

Theorem 4.1. When exact descriptions that obey Definition 4.1 are extended and composed
via Definitions 4.2 and 4.3, the resulting sequence descriptions are correct:

(∀s ∈ S, a ∈ (A ∪ Â)∗) Ēa(s) = {s′ : s′ = T (s, a′) and a′ ∈ I∗(a) and s′ 6= s⊥}.

Thus, there exists a primitive refinement of a sequence that reaches a state if and only if that
state is contained in the exact reachable set of the sequence.2

(∀s, s′ ∈ S, a ∈ (A ∪ Â)∗) s′ ∈ Ēa(s)⇔ (∃a′ ∈ I∗(a)) s′ = T (s, a′).

Exact descriptions theoretically satisfy the downward refinement and upward solution
properties, allowing us to correctly separate high-level solutions from non-solutions in all
cases.

Corollary 4.2. An action sequence a ∈ (A ∪ Â)∗ is a solution iff s∗ ∈ Ēa(s0).

Of course, to reap the benefits of these properties in practice, we would require the
ability to efficiently evaluate these exact descriptions. Unfortunately, this is too much to
ask for in general; for instance, a single evaluation of ĒH0 for the flat hierarchy described
in Section 2.3.2.2 must be PSPACE-complete in general, since it provides an answer to the
STRIPS plan existence problem.

2We defer proofs of the theorems in this section to Section 4.2, which includes proofs of more general
results that take action costs into account.
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To sidestep this result, we introduce optimistic descriptions, which generate an upper
bound (superset) of the exact reachable set, and pessimistic descriptions, which generate a
lower bound (subset) of the exact reachable set. Compact, efficiently evaluable optimistic
and pessimistic descriptions always exist (for some degree of accuracy). Moreover, optimistic
descriptions support proofs that a sequence cannot reach the goal under any refinement, while
pessimistic descriptions support proofs that a sequence surely reaches the goal under some
refinement. The price paid for approximation is that in some cases neither inference will
apply, and the refinements of a plan must be examined to resolve the uncertainty.

4.1.2 Optimistic and Pessimistic Descriptions

An optimistic description never underestimates the true reachable set of an HLA, and a
pessimistic description never overestimates its true reachable set (see Figure 4.3).

Definition 4.4. Ōa and P̄a are optimistic and pessimistic descriptions (respectively) of an
action a ∈ (A ∪ Â) iff

(∀s ∈ S) P̄a(s) ⊆ Ēa(s) ⊆ Ōa(s).

Both optimistic and pessimistic descriptions must be exact for primitive actions:

(∀s ∈ S, a ∈ A) P̄a(s) = Ēa(s) = Ōa(s).

Like exact descriptions, optimistic and pessimistic descriptions can be extended to sets
of states and sequences of actions while still preserving their respective properties.

Theorem 4.3. When extended to sets and sequences following Definitions 4.2 and 4.3,
optimistic and pessimistic descriptions still provide valid bounds on reachable sets:

(∀s ∈ S, a ∈ (A ∪ Â)∗) P̄a(s) ⊆ Ēa(s) ⊆ Ōa(s).

If a state is contained in the pessimistic reachable set of a sequence, there exists a primitive
refinement of that sequence that reaches that state. Moreover, if there exists a primitive
refinement that reaches a state, that state must be contained in the optimistic reachable set.(

∀s, s′ ∈ S, a ∈ (A ∪ Â)∗
)
s′ ∈ P̄a(s)⇒

(
(∃a′ ∈ I∗(a)) s′ = T (s, a′)

)
⇒ s′ ∈ Ōa(s)

If follows directly that if the pessimistic reachable set of a sequence contains the goal,
that plan is a solution; and if the optimistic reachable set does not contain the goal, that
plan is not a solution (see Figure 4.4):

Corollary 4.4. If s∗ ∈ P̄a(s0), then a is a solution. If s∗ /∈ Ōa(s0), then a is not a solution.
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h1h2
s0 s*

optimistic

exact

pessimistic

Figure 4.3: Possible optimistic (dotted rectangle) and pessimistic (solid oval) reachable sets
for the example in Figure 4.2. Because the optimistic set contains the goal state but the
pessimistic set does not, further refinement is required to determine that [h1, h2] is a high-
level solution.

h3

s0 s*

h4 h5 h6

Figure 4.4: Optimistic and pessimistic reachable sets for two other plans. [h4, h5, h6] is
provably a solution, because its pessimistic set contains the goal. [h3] is provably not a
solution, because its optimistic reachable set does not contain the goal.
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Planning algorithms can prune non-solutions without considering them further, and com-
mit to solutions to the exclusion of all other plans, while remaining both sound and complete.
Moreover, when the pessimistic reachable set of a plan contains a state, a planning algorithm
can decompose the task of finding a successful primitive refinement of this plan that reaches
this state into independent subproblems, one per action in the plan.

Theorem 4.5. If a = [a1, . . . , an] and sn ∈ P̄a(s0), then:

1. (∃s1, ..., sn−1 ∈ S)(∀1 ≤ i ≤ n) si ∈ P̄ai(si−1)

2. (∀1 ≤ i ≤ n) (∃bi ∈ I∗(ai)) si = T (si−1,bi)

3. Concatenating any such bi yields a primitive refinement of a that reaches sn from s0

In other words, there must exist a sequence of concrete intermediate states, starting with
s0 and ending with sn, where each state can pessimistically reach the next via the next action
in the plan. For each such subproblem si →ai si+1, there must exist at least one solution,
and any combination of independently discovered solutions of this sort can be concatenated
to yield a successful primitive refinement for the entire sequence.

Concrete, practical representations for optimistic and pessimistic descriptions and reach-
able sets are discussed in Section 4.3.

4.1.3 Simple Angelic Search

Algorithm 4.1 shows pseudocode for a simple (non-optimal) angelic hierarchical planning
algorithm called SAS (Simple Angelic Search), which uses optimistic and pessimistic de-
scriptions to gain efficiency in the three ways just described. While (as discussed shortly) we
do not expect SAS to perform well in practice, we present it to concretely illustrate the ways
that angelic descriptions can be used in search. We defer discussion of practical (optimal)
angelic planning algorithms to Chapter 5.

SAS begins with a top-level call to SAS(s0,H0, s∗), which attempts to find a primitive
refinement of actionH0 that reaches state s∗ from s0. This procedure contains the main loop,
which operates on a queue of potential high-level plans, starting with the sequence [H0]. Each
iteration pops a plan from the queue, immediately discards it if it fails to optimistically reach
the goal, commits to and decomposes it if it pessimistically reaches the goal, and otherwise
refines it (at some HLA) and places its refinements back on the queue.

Decomposition is handled by DecomposeSolution, which first computes the pes-
simistic reachable sets at each point in the plan. Then, stepping backwards from the goal,
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Algorithm 4.1 Simple Angelic Search
function SAS(s0, a, s∗)

fringe ← {[a]} /* A queue */

while fringe 6= ∅ do
a← fringe.RemoveFirst()
if s∗ ∈ Ōa(s0) then

if s∗ ∈ P̄a(s0) and |a| 6= 1 then
return DecomposeSolution(s0,a, s∗)

else
for a′ ∈ Ii(a) do /* At any HLA index i */

fringe.Insert(a′)

return failure

function DecomposeSolution(s0, [a1, ..., an] , sn)
sol← []
S0 ← {s0}
for i = 1, ..., n− 1 do

Si ← P̄ai(Si−1)

for i = n, ..., 1 do
si−1 ← some s ∈ Si−1 where si ∈ P̄ai(si−1)
if ai is primitive then sol← [ai] ++ sol
else sol← SAS(si−1, ai, si) ++ sol

return sol
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it chooses a sequence of concrete intermediate states (by Theorem 4.5), and solves each en-
suing HLA subproblem by a recursive call to SAS.3 Finally, it concatenates these solutions
and returns the resulting primitive solution. This solution decomposition is related to the
decomposed search strategy performed by algorithms in Chapter 3. The difference is that
here search is still carried out over complete plans, and decomposition is applied only after
a high-level solution is identified, rather than throughout search.

If the agent does not require a primitive solution, just a certificate of solvability, the
algorithm can stop as soon as the first pessimistically succeeding plan is found. Or, in
intermediate situations, an agent may interleave planning and execution, solving just the
first problem in the decomposition before starting to execute actions in the real world.

SAS is sound and complete for non-recursive hierarchies, but may loop forever in recursive
hierarchies, even given access to exact angelic descriptions. The issue is that while pessimistic
descriptions guarantee that a primitive refinement of a plan exists, they do not provide any
guarantee that a given plan is good, or makes progress towards the goal in a meaningful
way. For instance, consider a navigation problem in an infinite grid world. Every plan is a
high-level solution, and SAS can repeatedly commit to plans that actually take the agent
farther and farther away from its goal. This issue arises because SAS does not have access
to (estimates of) action costs, a shortcoming that is addressed in the next section.4

4.2 Angelic Descriptions with Costs

The previous section described the outcome of a high-level plan by its reachable set of states.
However, these reachable sets say nothing about costs incurred along the way. This section
describes a full version of the angelic semantics that includes cost information, enabling
algorithms that can find good plans quickly by focusing on better-seeming plans first, and
pruning provably suboptimal high-level plans without refining them further.

4.2.1 Valuations and Exact Descriptions

In this extended angelic semantics, we are concerned not only about which states are reach-
able by a high-level plan from some state, but also, for each reachable state, the minimum
cost to reach it by some refinement.

3Finding the intermediate states efficiently requires the ability to regress sets through the pessimistic
descriptions, which we discuss briefly in Section 4.3.

4While it is possible to avoid these issues and construct a sound, complete, terminating version of SAS
(Marthi et al., 2007a), the efficiency of this algorithm would still suffer from the basic issues mentioned here.
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Figure 4.5: Exact valuations for the example in Figure 4.2. Each primitive refinement is
labeled with its cost, and each state is labeled with the minimum cost to reach it from s0.
All states outside the dashed reachable sets are assigned infinite cost.

Definition 4.5. Denote the minimum cost to reach s′ from s by any primitive refinement
of a by c∗((s, a, s′)). This can be expressed directly, or in terms of forward solution sets:

c∗((s, a, s′)) := min
a′∈I∗(a):T (s,a′)=s′

C(s, a′) = min
z∈〈〈(s,a)〉〉:z .outcome=s′

c(z ).

Full angelic descriptions return valuations, which extend reachable sets to include optimal
cost information of this sort.

Definition 4.6. A valuation is a function v : S → [0,∞]. The initial valuation v0 has
v0(s0) = 0 and v0(s) =∞ for all s 6= s0.

Figure 3.4 shows an exact valuation for the GoGrasp(·) HLA in the discrete manipulation
domain.

Definition 4.7. The exact description Eh of h is a mapping from a state s to a valuation,
which specifies the minimum cost to reach each state by some refinement of h from s:

Eh(s) := v where (∀s′ ∈ S) v(s′) = c∗((s, h, s′)).

Remark. If s′ is not reachable by any refinement of h, Ea(s)(s
′) =∞. Thus, this definition

of exact descriptions generalizes the definition in the previous section:

Ea(s)(s
′) <∞⇔ s′ ∈ Ēa(s).
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Exact descriptions can be extended to functions of valuations, by taking the minimum
total cost to reach each output state over all states reachable in the input valuation (see
Figure 4.5):

Definition 4.8. If v is an initial valuation and Eh is an exact description, then

Eh(v)(s′) := min
s∈S

(v(s) + Eh(s)(s
′)) .

With this extension, the exact description for a sequence of actions a is again just the
composition of the exact descriptions of its constituent actions.

Definition 4.9. Given an action sequence a = [a1, . . . , an],

Ea := Ean ◦ . . . ◦ Ean .

This composition process produces correct exact descriptions for sequences:

Theorem 4.6. (Generalization of Theorem 4.1.) When exact descriptions that obey Def-
inition 4.7 are extended and composed via Definitions 4.8 and 4.9, the resulting sequence
descriptions are correct:

(∀s, s′ ∈ S, a ∈ (A ∪ Â)∗) Ea(s)(s′) = c∗((s, a, s′))

Proof. The proof is by induction. When N = 1, the theorem follows trivially from Defini-
tion 4.7. When N > 1,

min
(s1,...,sN−1)

N∑
i=1

Eai(si−1)(si) = min
(s1,...,sN−1)

(
EaN (sN−1)(sN) +

N−1∑
i=1

Eai(si−1)(si)

)

= min
sN−1

(
EaN (sN−1)(sN) + min

(s1,..,sN−2)

N−1∑
i=1

Eai(si−1)(si)

)
= min

sN−1

(
EaN (sN−1)(sN) + EaN−1

◦ . . . ◦ Ea1(v0)(sN−1)
)

= EaN ◦ . . . ◦ Ea1(v0)(sN)

These full exact descriptions allow us to correctly separate hierarchically optimal high-
level solutions from non-optimal solutions (and non-solutions) in all cases:

Corollary 4.7. An action sequence a ∈ (A ∪ Â)∗ is a hierarchically optimal solution iff
Ea(s0)(s∗) = EH0(s0)(s∗) (and EH0(s0)(s∗) <∞, i.e., the problem is solvable).

Of course, such full exact descriptions are even less likely to be practically applicable
than the reachability versions of Section 4.1.1. Thus, for practical implementations of these
concepts we again turn to optimistic and pessimistic descriptions, which will provide correct
bounds on the exact valuations of high-level plans.
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4.2.2 Optimistic and Pessimistic Descriptions

Full optimistic and pessimistic descriptions produce valuations that never overestimate or
underestimate (respectively) the true cost to reach a state (see Figure 4.6). We first define
a notion of domination for valuations, which generalizes the subset relation over reachable
sets to incorporate costs.

Definition 4.10. A valuation v1 weakly dominates another valuation v2, written v1 � v2,
iff it assigns no greater cost to each state:

v1 � v2 ⇔ (∀s ∈ S) v1(s) ≤ v2(s).

Moreover, v1 strictly dominates v2, written v1 ≺ v2, iff it assigns strictly lower cost to each
reachable state:

v1 ≺ v2 ⇔ (∀s ∈ S) v2(s) =∞ or v1(s) < v2(s).

We now formally define optimistic and pessimistic descriptions in terms of domination.

Definition 4.11. An optimistic description of an HLA h is one whose output valuation
always dominates the corresponding exact valuation, and a pessimistic description is one
whose output valuation is always dominated by the exact valuation:

(∀s ∈ S) Oh(s) � Eh(s) � Ph(s).

For primitive actions a ∈ A, we require that the descriptions are exact: Oa = Ea = Pa.

By extending these descriptions to input valuations and sequence of actions in the same
manner as exact descriptions (see Definitions 4.8 and 4.9), we obtain valid bounds on the
reachable states and costs of high-level sequences.

Theorem 4.8. When optimistic and pessimistic descriptions that obey Definition 4.11 are
extended and composed via Definitions 4.8 and 4.9, the resulting sequence descriptions are
correct:

(∀v, a ∈ (A ∪ Â)∗) Oa(v) � Ea(v) � Pa(v).

Proof. When |a| = N = 1, this follows trivially from Definition 4.11. Using induction for
N > 1, for optimistic descriptions (the pessimistic case is symmetric):

OaN ◦ . . . ◦Oa1(v0)(sN) = min
sN−1

OaN (sN−1)(sN) +OaN−1
◦ . . . ◦Oa1(v0)(sN−1)

≤ min
sN−1

EaN (sN−1)(sN) + EaN−1
◦ . . . ◦ Ea1(v0)(sN−1)

= EaN ◦ . . . ◦ Ea1(v0)(sN)
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Figure 4.6: An exact valuation for a hypothetical plan (left), and potential optimistic (center)
and pessimistic (right) approximations of this valuation.

Much of the remainder of this thesis will be concerned with the following consequences
of this theorem.

Corollary 4.9. If the optimistic valuation of a sequence a assigns cost c to a state s′, then
no primitive refinement of a reaches s′ with cost strictly less than c:

(∀s, s′ ∈ S, a ∈ (A ∪ Â)∗) Oa(s)(s′) = c ⇒ ¬(∃a′ ∈ I∗(a)) s′ = T (s, a′) and C(s, a′) < c.

Similarly, if the pessimistic valuation of a sequence a assigns cost c to a state s′, then at
least one primitive refinement of a reaches s′ with cost no greater than c:

(∀s, s′ ∈ S, a ∈ (A ∪ Â)∗) Pa(s)(s′) = c ⇒ (∃a′ ∈ I∗(a)) s′ = T (s, a′) and C(s, a′) ≤ c.

Proof. Follows directly from Theorem 4.8, Theorem 4.6, and Definition 4.5.

As a special case, we note that if Oa(s0)(s∗) > EH0(s0)(s∗), then no primitive refinement
of a is a hierarchically optimal solution. During planning, such provably suboptimal plans
can be immediately discarded, without sacrificing hierarchical optimality. Thus, optimistic
descriptions are analogous to admissible heuristics in the state-space setting (see Section 2.1).
Continuing the analogy, we can define a consistency property for HLA descriptions.

Definition 4.12. The overall optimistic and pessimistic transition functions are consistent
iff refining a high-level plan never leads to weaker bounds:(

∀a ∈ (A ∪ Â)∗, i, v, s
)

(∀a′ ∈ Ii(a)) Oa(v)(s) ≤ Oa′(v)(s),(
∀a ∈ (A ∪ Â)∗, i, v, s

)
(∃a′ ∈ Ii(a)) Pa′(v)(s) ≤ Pa(v)(s).
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In Chapter 5, we present a hierarchically optimal search algorithm based on A*, which
can be more efficient when given consistent optimistic descriptions.

Similarly, if Pa(s0)(s∗) = EH0(s0)(s∗) then some primitive refinement of a is hierarchically
optimal, and a planning algorithm can correctly commit to this plan to the exclusion of
all others. In addition, the agent can decompose the task of finding an optimal primitive
refinement of a into independent subproblems, one per action in a.

Theorem 4.10. If a = [a1, . . . , an] and Pa(s0)(sn) = c <∞, then:

1. (∃s1, ..., sn−1 ∈ S) (∀1 ≤ i ≤ n) Pai(si−1)(si) = ci and
∑
ci = c,

2. (∀1 ≤ i ≤ n) (∃bi ∈ I∗(ai)) T (si−1,bi) = si and C(si−1,bi) ≤ ci, and

3. Let b := b1 ++ ...++ bn. Then b ∈ I∗(a), T (s0,b) = sn, and C(s0,b) ≤ c.

Proof. (1) follows directly from Definition 4.9. (2) follows from Corollary 4.9. (3) follows
from Definition 2.31.

In other words, when a plan a pessimistically reaches state sn from s0 with cost c, there
must exist intermediate states si such that each action ai in a pessimistically reaches si from
si−1, and the pessimistic costs of these individual steps add up to c. These intermediate
states effectively decompose the problem, generating independent subproblems for each ai
(where the objective is to find a primitive refinement of ai that reaches si from si−1 with no
more than the pessimistic cost). Finally, concatenating any solutions to these subproblems
generates a primitive refinement for a that reaches sn from s0 with cost no greater than c.

To use these results in practice we need to choose a compact representation for valuations,
which can be progressed through the approximate descriptions of a sequence in turn. In
the interest of maintaining compactness, we may sometimes choose to use an approximate
progression algorithm that loses some information.

Definition 4.13. An approximate progression algorithm corresponds to a relaxation of Def-
inition 4.8, yielding (further) approximated descriptions Õh(v) and P̃h(v) for each pair of
original descriptions Oh and Ph. This algorithm is correct iff the errors only further weaken
the descriptions:

(∀a ∈ (A ∪ Â), v) Õh(v) � Oh(v) and Ph(v) � P̃h(v).

Correct approximate progression algorithms can safely be used in planning, without
compromising the results of Theorems 4.8 and 4.10.

Theorem 4.11. Theorems 4.8 and 4.10 hold under any correct approximate progression
algorithm, replacing each Oa and Pa with their approximated counterparts Õa and P̃a (and
replacing

∑
ci = c with

∑
ci ≤ c in part 1 of Theorem 4.10).
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Proof. Composing approximated optimistic descriptions always yields a sequence description
that dominates the sequence description of the original (non-approximated) descriptions:

Õa2(Õa1(v)) � Oa2(Õa1(v))

� Oa2(Oa1(v)),

where the second step uses the fact that descriptions produced by Definition 4.8 are mono-
tonic – that is, if v1 � v2, then Oa(v1) � Oa(v2). The pessimistic result is analogous.

Note that approximate progression may not preserve consistency. That is, even if a set
of optimistic descriptions are consistent, their approximated counterparts may not be.

4.3 Representations and Inference

The previous section showed, via Theorems 4.8 and 4.10, that optimistic and pessimistic
descriptions for high-level actions can provide correct bounds on the outcomes and costs of
high-level plans. To utilize these results, a method for evaluating optimistic and pessimistic
descriptions on sequences of actions is needed. We consider a simple such method based on
progression, computing a valuation for a sequence of actions by beginning with the initial
valuation v0 and progressing through each action description in turn (i.e., vi+1 = Oai(vi)),
just as action sequences are typically evaluated in state-space planning.

To put this method into practice, compact representations for approximate angelic de-
scriptions and valuations are required, along with efficient algorithms for progressing val-
uations through angelic descriptions. This section begins by describing a simple, generic
interface that captures the details of a hierarchy and angelic descriptions needed for an-
gelic hierarchical planning algorithms based on progression. We then describe two concrete
possibilities for satisfying this interface. First, we describe a STRIPS-like language for declar-
atively specifying hierarchies and angelic descriptions, along with concrete algorithms that
satisfy the interface by manipulating the declarative specifications. While this declarative
language is sufficient to capture useful angelic descriptions for simple domains such as the
nav-switch example of Section 2.1.2.1, further extensions are needed to effectively capture
the behaviors of more complex HLAs such as those encountered in our discrete manipulation
domain. We thus describe a second possibility, which is to write code that directly imple-
ments the interface for each HLA type, and thus escape the limitations of any particular
declarative language.

4.3.1 Interface for Search Algorithms

This section describes a programmatic interface for HLAs that implements the hierarchy
definitions of Section 2.3.2.1 and angelic methods of this chapter, which will be used by
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the search algorithms in the next chapter. Concretely, this interface includes methods for
progressing input valuations through the optimistic and pessimistic descriptions of an HLA
to generate output valuations, generating its immediate refinements (restricted to those that
may be applicable from a given reachable set), and computing its state-abstracted context
for a particular input reachable set.

This interface is general enough to capture a wide variety of methods for implementing
these operations on HLAs. However, it includes one simplifying assumption: that the repre-
sentation for valuations is simple, consisting of an (arbitrary) reachable set representation,
along with a single cost bound to reach states in this set.

Definition 4.14. A simple valuation v := (S, c) consists of a reachable set of states S
together with a single cost bound c. Valuation v assigns cost c to all states in S, and ∞ to
all other states.

The restriction to simple valuations means that a single valuation cannot represent cor-
relations between potential reachable states and costs. For example, an optimistic simple
valuation describing the outcome of GoGrasp(m) from Figure 3.4 would have to assign the
entire reachable set a lower cost bound of 11 (or less), losing information about the greater
cost to reach states where the grasp was carried out from the top, bottom, or right side of
the table.

Approximate progression with simple valuations is also typically not consistent. Thus,
we will henceforth consider a simpler form of reachability consistency on the optimistic
descriptions:

Definition 4.15. The overall optimistic transition function is reachability consistent iff
refining a high-level plan or using a smaller input set never leads to a larger reachable set:(

∀a ∈ (A ∪ Â)∗, S, i) (∀a′ ∈ Ii(a)) Ōa(S) ⊇ Ōa′(S)(
∀a ∈ (A ∪ Â)∗, S ⊇ S ′) Ōa(S) ⊇ Ōa(S ′).

We restrict our attention to simple valuations primarily because they enable the (simpler,
more effective) application of powerful search techniques, including the decomposed search
strategy of Chapter 3 and a pruning technique based on pessimistic descriptions (described
in then next chapter). For example, after doing GoGrasp(m) from a state where the robot’s
base begins in a different state, the reachable set will be the same, but the valuation will
typically be different (because different costs will be assigned to each reachable state). By
giving up on the ability to represent the differences in costs to reach each state, we thus
dramatically increase the potential for state-abstracted caching.

However, it is likely that with some added algorithmic complexity, we could construct
algorithms based on non-simple valuations that could still take full advantage of decom-
position and pruning techniques. The end of the next section discusses potential ways to
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move beyond simple valuations, while still allowing for compact representations and efficient
inference algorithms.

We now introduce the HLA interface, which consists of four methods for each action
a. Under the assumption of simple valuations, the inputs to optimistic and pessimistic
descriptions can be reachable sets rather than full valuations, deferring responsibility for
tracking the costs to reach these sets to the search algorithm.

• OptimisticOutcomeAndStatus(a, S) takes an action a and optimistic reachable
set S as input, and returns a tuple (S ′, c, refinable?) representing the output optimistic
set S ′ and optimistic step cost c, plus a binary flag refinable?. If refinable? = true, then
a is a high-level action that can be refined from S using ImmediateRefinements(a, S).
Otherwise, refinable? = false indicates that a cannot be refined from S. This is always
the case for primitive actions a ∈ A, but can also be used when |S| > 1 for high-level
actions that cannot be productively refined without more information about the input
state.5

• PessimisticOutcome(a, S) takes an action and pessimistic reachable set as input,
and returns a tuple (S ′, c) representing the output pessimistic set and step cost.

• EnterContext(S, a) returns the subset of S relevant for doing a, allowing the ex-
ploitation of state abstraction (see Section 3.1.2).

• ImmediateRefinements(h, S) takes a high-level action h and an optimistic reachable
set as input, and returns a set of immediate refinements of h, each of which is a sequence
of actions. Immediate refinements with no applicable primitive refinements from S need
not be returned in this set.

Primitive actions can be automatically retrofitted to this interface (since they are never
refinable, ImmediateRefinements is omitted), using a version of the progression algorithm
described in the next section.

4.3.2 Declarative Representations: NCSTRIPS

This section defines a fully declarative representation for hierarchies and angelic descriptions
in STRIPS domains, and specifies algorithms that operate on these representations to satisfy
the HLA interface declared in the previous section. These declarative specifications follow

5For example, it probably does not make sense to try to generate a detailed grasp plan from a reachable
set where the position of the robot base is still uncertain. This is essentially a hint to the search algorithm
about the order in which the hierarchical search space should be explored, and could no doubt be replaced
by more principled techniques such as improved meta-level search control.
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the tradition of domain-independent STRIPS planning, wherein the knowledge required for
planning is completely separated from the algorithms for operating on this knowledge. Such
declarative descriptions can be simple to specify, and free the hierarchy designer from wor-
rying about details such as progression algorithms. Moreover, declarative specifications can
be exploited for other kinds of inferences, including regression and automatic description
verification. Drawbacks of this approach include the complexity of implementing efficient
generic inference algorithms for a particular declarative language, along with any limitations
that this particular language may place on the ease (or possibility) of expressing certain
types of descriptions.

Specifically, this section first describes a method for representing reachable sets of states
as disjunctive normal form (DNF) logical formulae. It then presents a STRIPS-style rep-
resentation for high-level action schemata and their refinements, and sketches an algorithm
for efficiently generating the immediate refinements of an HLA that may be applicable from
a given set of states (represented in DNF). Finally, it concludes by introducing a repre-
sentation for optimistic and pessimistic descriptions called NCSTRIPS (Nondeterministic,
Conditional STRIPS), and defining a generic progression algorithm that can efficiently gen-
erate optimistic and pessimistic DNF reachable sets and cost bounds from these descriptions
and a DNF specification of an input set.

4.3.2.1 DNF Reachable Sets

The algorithms discussed in this section consume and produce reachable sets represented as
disjunctive normal form (DNF) formulae. A DNF formula is a disjunction of clauses, each
of which is a conjunction of literals (possibly-negated propositions). The extension of the
reachable set consists of those states whose propositions satisfy the formula. For example, in a
simple STRIPS domain with propositions a, b, c, and d, the formula (a∧¬b∧c)∨(¬a∧¬b∧c∧d)
represents a set with three states: a ∧ ¬b ∧ c ∧ ¬d, a ∧ ¬b ∧ c ∧ d, and ¬a ∧ ¬b ∧ c ∧ d.

DNF is a convenient representation for reachable sets because each conjunctive clause
represents a partial state, i.e., a set of states where some propositions have the same values
in all states, and the remaining propositions may take on any combination of values. As we
will see, this is convenient because it is easy to test whether a given partial state (possibly)
satisfies a given precondition, by simply testing if propositions that are present have the
required values. Moreover, satisfiability of a DNF formula can be tested in constant time (it
is satisfiable iff it is not empty). However, DNF representations can also be exponentially
larger than other potential representations such as binary decision diagrams (BDDs); we
briefly discuss potential such alternative representations at the end of the section.
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4.3.2.2 NCSTRIPS Hierarchies

We first describe how the structure of a hierarchy, consisting of parameterized HLA types and
their allowed immediate refinements, can be specified using NCSTRIPS HLA schemata that
generalize the STRIPS action schemata of Section 2.1.2.1. We present this representation
via example, using examples from our nav-switch hierarchy (see Sections 2.1.2.1 and 2.3.2.2).
Each HLA schema consists of the following components.

• A set of typed parameters for the HLA. For instance, Go(x1, y1, x2, y2) has parameters
x1 and x2 with type Xs and parameters y1 and y2 with type Ys.

• An optional precondition, which specifies constraints on the allowed bindings of the
HLA parameters (Go(x1, y1, x2, y2) has none).

• A set of refinement schemata, each of which consists of the following components.

– A set of typed parameters introduced in the refinement.

– An optional precondition, which specifies constraints on the refinement and HLA
parameters under which this refinement is applicable.

– An expansion, a sequence of actions (high-level or primitive) with arguments taken
from the HLA or refinement parameters.

For example, Go(x1, y1, x2, y2) has three refinement schemata:

1. The first schema corresponds to navigating directly, without flipping the switch. It has
no parameters, no precondition, and the simple expansion Nav(x1, y1, x2, y2).

2. The second schema corresponds to flipping at least one switch, when the current
switch position is horizontal. It has parameters x′ of type Xs and y′ of type Ys,
preconditions SwitchAt(x′, y′) and H, and expansion [Nav(x1, y1, x

′, y′), FlipV(x′, y′),
Go(x′, y′, x2, y2)].

3. The third schema is similar to the second, but applies when the current switch position
is vertical (replacing H by ¬H and FlipV by FlipH)

We now briefly sketch an algorithm for generating the immediate refinements of a particu-
lar instantiation of an NCSTRIPS action schema from a particular reachable set (represented
in DNF). A first, naive approach would be to enumerate all possible instantiations of each
refinement schema (ranging over all allowed values for the parameters), and then prune those
instantiations in which the refinement preconditions are not satisfied by any clause in the
DNF formula representing the input set. However, just like when grounding STRIPS action
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schemata, this may be highly inefficient when many of the possible refinements include in-
consistent variable bindings or are inapplicable from the input state set. Fortunately, the
solution to that problem discussed in Section 2.1.3.4 can also be applied here: to generate
the applicable refinements, we can construct a constraint satisfaction problem (CSP) for each
refinement schema, where the variables are the parameters of the schema and the constraints
are its preconditions with extension given by the DNF formula. The solutions to each such
CSP can be efficiently enumerated, and each such solution generates a consistent immediate
refinement that is applicable from the current input set.6

4.3.2.3 NCSTRIPS Angelic Descriptions

We now present the NCSTRIPS representation for optimistic and pessimistic descriptions,
and describe an algorithm for efficiently progressing DNF reachable sets through these de-
scriptions.

We first introduce the basic concepts by returning to the example of Section 1.2. In
this example, the task was to construct a correct transition model for a simple HLA h with
refinements [a] and [b], where a is a primitive action with precondition u∧ v and effect e∧ f ,
and b is a primitive action with precondition u ∧ w and effect e ∧ g (see Figure 1.3).

Now, a first way to construct a correct transition model of h is to use a form of conditional
effects. In particular, we can assign h an NCSTRIPS description consisting of two clauses,
one corresponding to the STRIPS description of a and one for the STRIPS description of b.

u ∧ v → e ∧ f
u ∧ w → e ∧ g

Then, given a particular initial state, e.g., where u, v, and w are true and e, f, and g are
false, we can apply this description to generate the reachable set of h as follows. First, we
represent the state as a conjunctive clause of literals: u∧v∧w∧¬e∧¬f ∧¬g. Then, for each
conditional effect, we see if its precondition is satisfied by the clause (in this case, both are),
and if so, generate an output clause in which the effect literals are made to hold. Finally, we
disjoin the resulting clauses, reaching the DNF formula (u ∧ v ∧ w ∧ e ∧ f ∧ ¬g) ∧ (u ∧ v ∧
w ∧ e ∧ ¬f ∧ g), which correctly describes the two concrete states reachable by h from this
initial state. As we will see, the same basic logic can be applied to generate the reachable
set from a set of input states represented in DNF, by progressing each clause independently
and then disjoining the results.

While this conditional effect strategy can always represent the exact transition model
of an HLA (by, in the worst case, including one clause for each primitive refinement), as

6However, unlike in Section 2.1.3.4, these CSPs must be solved at runtime, each time the immediate
refinements of an HLA are generated. Thus, it may be desirable to do additional compilation beforehand,
e.g., based on the values of constant predicates identified in a preprocessing phase.
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described earlier such exact descriptions are typically far too large and/or expensive to be
useful in practice. For instance, if an HLA g could potentially set each of 10 propositions
to be true or false, 1024 clauses of the above sort would be needed to describe its exact
transition model. We thus introduce a further notational extension, possible effects, which
can much more compactly (often approximately) describe the transition model of an HLA.

In particular, in addition to allowing STRIPS-style effects of the form x or ¬x, which
definitely cause x to be true or false (respectively), we also consider possible effects of the
form +̃x, −̃x, and ±̃x. A possible-add effect +̃x of proposition x may cause x to be made
true, or leave x with its former value. Similarly, a possible-delete effect −̃x either sets x
to false or has no effect on x. Finally, ±̃x represents a combination of a possible-add and
possible-delete, and may leave x true or false regardless of its former value. These possible
effects directly generate a reachable sets of states from a single description clause, and can
thus lead to much more compact descriptions; for instance, the description of g above could
be captured by a single clause with no precondition and effects ±̃x1, ..., ±̃x10.

Thus, when a clause has multiple possible effects, the semantics is that any combination
of the possible effects may apply (and so the outcome is a DNF clause / partial state). This
means that the correlations between variables cannot be captured, and so descriptions of this
sort will typically be approximate. For instance, the pair of effects x∧ y and ¬x∧¬y cannot
be represented exactly by a single clause with possible effects, because ±̃x ∧ ±̃y represents
the combinations ¬x ∧ y and x ∧ ¬y in addition to the desired pair.

Now, returning to our earlier example, we can express an optimistic description of h using
a single clause with possible effects:

u→ e ∧ +̃f ∧ +̃g.

That is, when u is true, h definitely has effect e, and possibly-adds f and g as well. The
reachable set generated by this description always includes all states actually reachable by
h, but may include other states as well (for instance, where both f and g are set to true,
or where f is set to true despite v being false in the input state). Similarly, a single-clause
pessimistic description of h might simply pick a refinement, e.g.,

u ∧ v → e ∧ f,

because NCSTRIPS cannot capture the correlations between both v and f and w and g in
a single clause.

Formally, an NCSTRIPS representation of an optimistic or pessimistic description con-
sists of a set of clauses, each of which has a precondition, effect, and cost expression. The
precondition of each clause is a conjunction of literals, as in ordinary STRIPS. The effect
is a conjunction of literals as in STRIPS, together with an additional set of possible-add,
possible-delete, and ±̃ effects that can be made to hold by doing the HLA when the precon-
dition is met.
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For example, an optimistic description of Go(x1, y1, x2, y2) in the nav-switch domain can
be expressed with a single clause:

AtX(x1) ∧ AtY(y1)→ ¬AtX(x1) ∧ ¬AtY(y1) ∧ AtX(x2) ∧ AtY(y2) ∧ ±̃H

with lower cost bound 2(|y2 − y1| + |x2 − x1|). That is, when the agent is at (x1, y1), this
action can move the agent to (x2, y2), possibly flipping the switch along the way, with cost
at least twice the Manhattan distance between the positions.

Similarly, a pessimistic description of Go(x1, y1, x2, y2) might assume that the agent
makes no further Flips, using two clauses:

AtX(x1) ∧ AtY(y1) ∧ H→ ¬AtX(x1) ∧ ¬AtY(y1) ∧ AtX(x2) ∧ AtY(y2) and

AtX(x1) ∧ AtY(y1) ∧ ¬H→ ¬AtX(x1) ∧ ¬AtY(y1) ∧ AtX(x2) ∧ AtY(y2),

where the first clause has upper cost bound 4|y2− y1|+ 2|x2−x1| and the second has bound
2|y2 − y1|+ 4|x2 − x1|

To describe the semantics of these descriptions, we explain how they generate an explicitly
enumerated output valuation from a single input state. First, the set of NCSTRIPS clauses
is filtered, retaining only clauses whose preconditions are met by the input state. Then,
the effect description each remaining clause is expanded out into a set of ordinary STRIPS
effects, one per subset of the possible effects. Each such effect is applied to the initial state,
generating a reachable state with cost generated by the cost expression of the corresponding
clause. Finally, any duplicate states are collapsed, retaining the minimum cost over all
clauses that generated a state.

To generate the output valuation of an NCSTRIPS description from a set of input states
represented by a DNF formula, we could first expand the formula out into an explicit set of
states, apply this procedure to each state, and then disjoin the results (via Definition 4.8).
However, this procedure would have runtime linear in the number of states allowed by the
input formula, which can be exponentially larger than its representation. We thus describe
an alternative procedure, which operates directly on the DNF representation of the input
set and computes an output DNF reachable set in time linear in the input size.

This algorithm operates by progressing each pair consisting of a conjunctive clause of
the input DNF formula and a clause of the description separately, and then disjoining the
results. Each pair is progressed by:

1. conjoining description clause preconditions onto the DNF clause (and skipping this
pair if a contradiction is created),

2. making all added (resp. deleted) literals true (resp. false), and finally

3. removing literals from the clause if false (resp. true) and possibly-added (resp. possibly-
deleted).
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Moreover, each such pair also produces a cost bound. When progressing optimistic (resp.
pessimistic) valuations, we simply take the min (resp. max) of all these bounds to get the
final cost bound, producing an output simple valuation. Regression through NCSTRIPS
descriptions can be implemented similarly.

As a concrete example, consider progressing the reachable set

AtX(0) ∧ ¬AtX(1) ∧ AtY(0) ∧ ¬AtY(1)

(where H is unknown) through the above descriptions of Go(0, 0, 0, 1). The optimistic de-
scription has only a single clause, which yields an optimistic result of

AtX(0) ∧ ¬AtX(1) ∧ ¬AtY(0) ∧ AtY(1)

with cost 2. The pessimistic description has two clauses; after conjoining the preconditions
and applying the effects, these produce the output clauses and costs

AtX(0) ∧ ¬AtX(1) ∧ ¬AtY(0) ∧ AtY(1) ∧ H

with cost 4 and
AtX(0) ∧ ¬AtX(1) ∧ ¬AtY(0) ∧ AtY(1) ∧ ¬H

with cost 2. Combining these and projecting back to a simple valuation gives the final result

(AtX(0) ∧ ¬AtX(1) ∧ ¬AtY(0) ∧ AtY(1) ∧ H) ∨
(AtX(0) ∧ ¬AtX(1) ∧ ¬AtY(0) ∧ AtY(1) ∧ ¬H)

with cost 4, which could be further simplified to just

AtX(0) ∧ ¬AtX(1) ∧ ¬AtY(0) ∧ AtY(1).

The existence of this simple, efficient progression algorithm is a primary reason for con-
sidering this particular combination of representations (NCSTRIPS descriptions and DNF
formulae). However, these representations have a number of disadvantages as well. First,
since each (DNF clause, NCSTRIPS description clause) pair can generate a clause in the
final DNF reachable set, the number of DNF clauses (and thus reachable set representation
size) can grow exponentially with plan length. Fortunately, if a reachable set description
grows too large, we can always choose to simplify its formula at runtime. For example, we
can always drop clauses from pessimistic formulae, or drop variables from optimistic clauses
(and then merge duplicate or subsumed clauses) without sacrificing correctness.

More importantly, NCSTRIPS descriptions and simple valuations with DNF reachable
sets do not allow for compact representations of correlations between uncertain variable
values, and between uncertain variable values and costs. While in some domains (such as
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nav-switch) this is not problematic, in other domains it may prevent the effective use of
angelic techniques. For instance, consider an HLA GoShopping corresponding to a trip
to the grocery store where any number of items might be purchased, and where the cost of
the trip is the dollar amount spent. An optimistic simple valuation of GoShopping would
have to include the possibility that the agent bought every item in the store with a lower
cost bound of 0, because it is also possible that the agent might come home empty-handed.
To effectively handle such examples, more expressive representations for descriptions and
valuations are needed that can take these correlations into account.

One simple extension would be to replace the single cost bound in simple valuations with
an arithmetic expression, for example a weighted linear combination of indicator variables
(e.g., GoShopping costs 2 × BoughtMilk + 3 × BoughtCookies). Affine algebraic decision
diagrams (AADDs, (Sanner and McAllester, 2005)), an extension of BDDs that include
costs, present an even more promising alternative, enabling compact specifications of both
reachable sets and costs with additive or multiplicative structure. This is a potentially
fruitful area for future work, which may be key for enabling declarative specifications of
angelic descriptions that are useful in many practical domains.

4.3.3 Procedural Specifications

Even with the extensions just described, however, it could be difficult to implement compact,
accurate, efficiently computable declarative descriptions for HLAs in some domains. For ex-
ample, after doing the GoDrop(o) HLA in our discrete manipulation domain, the base of
the robot will always reside at some position within grasping distance of some destination lo-
cation of o. Expressing this fact in NCSTRIPS would, among other things, require the ability
to express universally quantification in NCSTRIPS description clauses (e.g., allowing clauses
to introduce their own intermediate variables, such as potential destination locations of o).
Taking this example a step farther, a declarative description of GoDrop(o) for a real robot
could be extremely complex, and it is unlikely that a generic inference algorithm operating on
this description could compete with, e.g., specialized inverse kinematics algorithms typically
used to find feasible robot arm configurations in existing mobile manipulation systems.

These examples suggest that in some cases, it may be desirable to abandon interme-
diate declarative representations, and simply write code for each HLA type that directly
implements the interface of Section 4.3.1. This section describes this procedural approach,
which we have used to implement our discrete manipulation hierarchy (as well as a pre-
liminary application to a physical robot, discussed in Chapter 7). The advantages of the
approach include its simplicity, generality, and easy integration with existing specialized
inference procedures (e.g., inverse kinematics for feasible grasps). On the other hand, proce-
dural specifications may be more difficult to write, verify, and compose than the declarative
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Figure 4.7: Possible factored, simple valuations for the example in Figure 4.6.

definitions discussed in the previous section.

To implement this approach, we must still choose a particular representation for reachable
sets that the implemented procedures for each HLA type will operate on. In our implemen-
tation of the discrete manipulation domain, we use a factored reachable set representation
that generalizes DNF clauses for the case of multi-valued state variables (i.e., SAS+).

Definition 4.16. A factored state set S is defined by, for each state variable v ∈ V, a set
S[v] ⊆ Dv of allowed domain values. The extension of this set is

⊗
v∈V S[v].

This representation is quite restrictive, but has the significant advantages of simplicity
and guaranteed compactness: each valuation is just a list of allowed values for each state
variable, plus a single cost bound. Figure 4.7 shows example simple, factored valuations for
the exact valuation depicted in Figure 4.6.

Given this representational choice, the procedural implementations for HLAs in the dis-
crete manipulation domain are fairly straightforward.

As a simple example, our optimistic description of Nav(x, y) reaches the destination
position with cost equal to twice the minimum Manhattan distance from a possible current
position (recall that each move step has cost 2). Its pessimistic description is vacuous (i.e.,
its pessimistic output set is empty), its immediate refinements are just those specified in
Section 2.3.2.2, and its context retains only possible values for BaseAt and Parked.

A more interesting example is GoDrop(o), which again is always refinable with re-
finements from Section 2.3.2.2 and a vacuous pessimistic description. Its context includes
BaseAt,Parked,GripperOffset,Holding, and Free(x, y) for all positions (x, y) between the grip-
per and base, or within radius r of an allowed drop position for o. Finally, its optimistic
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outcome always has the robot holding o, with its base and gripper offsets changed to the
sets of all values that can result after a legal drop of o (see Figure 5.8). The corresponding
optimistic cost is the minimum of two possible values.

1. If the robot’s current base position is a possible destination position (i.e., the robot
can possibly drop off the object without moving its base): the sum of the put cost, and
the minimum Manhattan distance between a current gripper location and a location
neighboring a dropoff location for o, and

2. The sum of

• the minimum Manhattan distance between the current gripper offset and (0, 0)
(to move the gripper home before a base movement),

• the cost to park and unpark the base,

• the minimum over all destination base locations of the sum of:

– twice the smallest Manhattan distance from a current possible base location,
and

– the Manhattan distance for the gripper from the destination base position to
the nearest dropoff position for o, and

• the cost of the put action itself (1).

In effect, we efficiently compute a lower bound on the cost to drop object o by computing
simple functions on the input reachable set and the output reachable set, without ever having
to enumerate the (potentially numerous) elements of either set. This description can be
quite accurate for distant drop destinations where the cost is dominated by large navigation
distances, or quite weak when many manipulations must be done in close quarters. However,
by refining the action and selecting concrete base and drop locations, much of the slack in
the descriptions is quickly removed.

Finally, our implementation of H0 optimistically reaches the goal state, with optimistic
cost bound computed with a bipartite matching heuristic that estimates the minimum cost
to put away all of the remaining objects.

4.4 Origins of Descriptions

This section elaborates on two aspects of the gap between high-level and primitive action
descriptions, in light of the angelic approach.
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4.4.1 Computing Descriptions

The bulk of this thesis assumes that HLA descriptions are given as part of the hierarchy, rely-
ing on the implementer to ensure their correctness. Algorithms for automatically computing
HLA descriptions from the structure of a hierarchy could thus significantly ease the pro-
cess of hierarchy design. Moreover, when combined with algorithms for automatic induction
of hierarchical structure, they could enable fully domain-independent angelic hierarchical
planning.

This section describes a simple algorithm for computing exact reachability descriptions
(ignoring costs) in fully grounded domains, starting from the structure of the hierarchy
and the descriptions of the primitive actions. This algorithm is not likely to be useful in
practice, because it lacks the ability to produce approximate or lifted descriptions (i.e., it
generates a separate exact description for each instantiation of each HLA, rather than a
single description per HLA type that applies across all possible arguments to the HLA).
Nevertheless, we include it as a potential first step towards reaching the above goals.

A first observation is that in a finite, fixed planning domain with a finite, FZCF hierarchy,
it is theoretically easy to compute exact descriptions for all of the HLAs. For instance, one
could simply apply DSH-UCS to find an optimal solution set for each HLA from each initial
state (at great computational cost).

The remainder of this section describes a more efficient bottom-up method to compute
these descriptions, which can make use of symbolic representations and exploit the compo-
sitional relationships between HLA descriptions in a domain. We assume that descriptions
are represented implicitly, specifying the set of allowable transitions (s, s′) using, e.g., logical
formulae or BDDs (as mentioned in Section 2.1.3.1) over two copies of the propositions of
the domain (one for s and one for s′). Then, the exact descriptions of the primitive actions
are known, and the description of each HLA h must obey the equation

Eh =
⋃

a∈I(h)

Ea|a| ◦ ... ◦ Ea1 .

This defines a system of equations for the HLA descriptions. If the hierarchy is not
recursive, this system can be evaluated directly to compute descriptions of all HLAs (starting
at the lowest level, and proceeding upwards to H0).

In recursive hierarchies the equations are coupled, however, and this approach does not
apply. Algorithm 4.2 shows an algorithm that works in general hierarchies, via an applica-
tion of the Kleene fixed-point theorem. The algorithm begins by initializing the primitive
descriptions to their exact values and the HLA descriptions to the empty set (e.g., false). It
also creates a set “updated” of actions whose description information may be inconsistent
with their parents, initially containing the set of primitives A. Then, at each step the al-
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Algorithm 4.2 Computing Exact Descriptions
function ComputeExactDescriptions()

for a ∈ A do
Ea ← {(s, s′) : s⊥ 6= s′ = T (s, a)}

for h ∈ Â do
Eh ← ∅

updated← A
while updated 6= ∅ do

a← updated.RemoveFirst()
for each HLA h and refinement a ∈ I(h) where a ∈ a do

new ← Ea|a| ◦ . . . ◦ Ea1
if Eh \ new 6= ∅ then

Eh ← Eh ∪ new
updated.Insert(h)

return E·

gorithm removes one action a from updated, computes the most current description of each
refinement of each HLA h that includes a, adds any newly discovered transitions to the
description of h, and finally adds h to updated if its description was changed. The algorithm
is guaranteed to terminate with the correct descriptions since there are a finite number of
actions, and each action’s transition model can only be updated a finite number of times
(once per possible transition, of which there are a finite number given the finite state space).

A variant of Algorithm 4.2 could also be used to compute optimistic and pessimistic de-
scriptions, by allowing simplification steps that approximate a current description by a more
compact upper or lower bound. Costs could also be incorporated, by using symbolic-numeric
representations such as AADDs. This raises the difficult problem of how to automatically
trade off description size with accuracy, however (a largely unsolved problem).

Moreover, to be useful in practice, we require lifted algorithms that can discover com-
pact, approximate descriptions of the sort described in Section 4.3.2, which will be applicable
across all problem instances in a given domain. While one could attempt to apply Algo-
rithm 4.2 directly using a lifted transition function representation such as PDDL (an more
expressive extension of STRIPS) or even first-order decision diagrams, there is no guarantee
of termination in such cases. Effective algorithms for this case may have to move beyond
the strictly deductive approach of Algorithm 4.2 to include inductive generalizations, which
can be necessary for generating useful descriptions of cyclic HLAs such as our Manhattan-
distance-based optimistic descriptions for Navigation HLAs.
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4.4.2 Angelic Semantics, STRIPS, and the Real World

Somewhat farther afield, it is also of interest to compare angelic descriptions of HLAs —
which correctly capture HLA semantics with respect to primitive, e.g., STRIPS, transition
models — with the “primitive” STRIPS descriptions themselves, which are often intended to
correctly capture real-world processes whose true transition models are given by the laws of
physics. For instance, consider the “primitive” action PutL(·) in our discrete manipulation
domain. Our SAS+ description of this action includes a precondition requiring that the
robot’s gripper grasps an object in a particular grid cell, and an effect stating that the object
is now resting on the table in the cell to the left of the gripper. This description necessarily
glosses over many details of the real world in order to make the problem description and
solution processes practical (a form of state abstraction, as discussed in Section 2.3.1.1 or
Section 3.1.2).7 In particular, in a physical instantiation of this domain, both precondition
and effect descriptions would correspond to an infinite set of states of the real world, including
continuous object positions, joint angles, internal gear positions, and so on.

What, then, are the semantics of the “primitive” description in terms of these sets?
Since we would like the plans discovered by our planning system to actually work in the
real world, they must in some sense be analogous to pessimistic descriptions. Recall that
pessimistic descriptions require that, for every state in the output set, there exists a state
in the input set from which it can be reached (by some primitive refinement). This seems
to be too strong a statement for our example, however; no doubt, there are unreachable
world states that satisfy the output description, including those with infeasible joint angles,
where the objects, gripper, or table are in collision, the internal gears are in impossible
configurations with respect to the joint angles, and so on. Instead, it seems that the primitive
STRIPS descriptions have a different interpretation, which we call intersecting semantics.
Such descriptions state that, for every state in the input set, there exists a state in the output
state that it can reach, essentially corresponding to ordinary (demonic) nondeterminism. In
other words, in classical planning, primitive actions represent a line below which the world
is not assumed to be fully controllable (i.e., the planning algorithm is not allowed to affect
the low-level controllers used to implement the primitive actions), whereas everything above
this line is fully controllable by the agent.

As one might expect, intersecting descriptions can be chained according to the same basic
theorems as pessimistic descriptions, at least with respect to reachability. The primary dif-
ference is that since they are essentially a worst-case analysis, intersecting descriptions trade
the ability to represent all solutions for the ease and compactness of representation of the
existence of any solution. Thus, explicit combinations of angelic and intersecting descrip-
tions seem like a particularly fruitful area for future work, offering the potential to reap the
computational benefits of intersecting descriptions without sacrificing low-level completeness

7Simon (1962) discussed this issue at some length.
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or solution quality. For example, by combining angelic uncertainty where applicable with
adversarial (intersecting) nondeterminism, pessimistic-intersecting descriptions could accu-
rately capture the important possibilities available to a planning agent, while easing the
representational burden by ignoring the less important details. Marthi et al. (2007a) provide
an overview of such pessimistic-intersecting descriptions, further elaboration of which we
leave for future work.

In light of this discussion, we can aim to provide an answer to the question “why an-
gelic hierarchical planning?” In short, angelic hierarchical planning allows us to leverage
incomplete or approximate knowledge about high-level tasks. If we could express our dis-
crete manipulation domain in STRIPS at a higher (e.g., blocks-world-like) level that omitted
details like precise object positions, and perhaps even the robot itself, without sacrificing
completeness or solution quality too much, we would almost certainly prefer that. This is
simply too much to ask for in general, however: detailed reasoning about object and robot
positions is sometimes needed to ensure feasibility (e.g., in cluttered environments), and can
be crucial for finding high-quality solutions. On the other hand, many of the high-level
tasks encountered in a real planning instance are easy: free-space navigation, or picking up
an object on the edge of an uncluttered table, for example. Angelic hierarchical planning
allows us to express the primitives of a problem at a low enough level that solution quality
and feasibility can be guaranteed, while automatically identifying and leveraging knowledge
about such easy subproblems that appear during planning (see Figure 4.8). This enables
planning agents that reason at the highest level of abstraction possible for a given task in a
given context, rather than having to settle on a single fixed abstraction level in advance for
an entire problem.
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Figure 4.8: An illustration of how angelic reasoning can help focus computational effort
on the hard problems encountered during search. The figure shows schematic depictions
of potential optimistic and pessimistic reachable sets and cost bounds for the GoGrasp(c)
HLA from three different states. Top: the object is on the edge of the table, and can be easily
grasped. Simple angelic descriptions can likely capture this fact, yielding equal optimistic
and pessimistic sets (corresponding to states after the grasp) with tight cost bounds (i.e.,
the grasp is definitely feasible with cost at most 6, and must cost at least 5). Center: the
object is clearly out of reach, and cannot be grasped. Again, simple angelic descriptions can
likely capture this fact, producing empty reachable sets and infinite cost bounds. In both of
these “easy” cases, the agent need not think about the low-level details of the GoGrasp(c)
HLA further (unless it is fairly certain that the top action will be part of its final plan, and
the precise cost ends up mattering to determine its optimality). Bottom: The object is just
within reach and there is a lot of clutter. In this case, the descriptions may provide weak
information: the grasp may be feasible with cost at least 7, or it may be infeasible. Thus,
further refinement of the GoGrasp(c) HLA is needed to accurately determine its feasibility
and cost from this state.
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Chapter 5

Angelic Hierarchical Planning

The previous chapter presented an “angelic” framework for generating bounds on the
reachable sets and costs of high-level plans. This chapter introduces several classes of algo-
rithms that can exploit these bounds to find hierarchically optimal solutions efficiently.

We first describe Angelic Hierarchical A* (AH-A*), an extension of H-UCS (see Sec-
tion 2.3.2.3) that directly searches over potential high-level sequences and uses optimistic
and pessimistic bounds to guide the search and prune provably dominated plans.

Then, we move on to algorithms that combine angelic descriptions with decomposition
and state abstraction (see Chapter 3), which turn out to be naturally complementary. Start-
ing with the simple setting in which each HLA can reach at most a single state, we show that
the pairing of angelic bounds with decomposition generates AND/OR graphs that can be
searched using the techniques of Section 2.2 for hierarchically optimal solutions. We general-
ize this algorithm to work on arbitrary hierarchies, introducing a number of novel extensions
and modifications along the way. The resulting Decomposed, Angelic, State-abstracted Hi-
erarchical A* (DASH-A*) algorithm simultaneously reasons about subproblems at various
levels of state and action abstraction, and can find hierarchically optimal plans exponentially
faster than previous algorithms (including the others in this thesis).

Finally, we briefly describe modifications of these hierarchically optimal algorithms for
bounded suboptimal search. The resulting algorithms can find solutions faster at the expense
of solution quality, and may be a better fit for some practical applications.
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5.1 Angelic Hierarchical A*

5.1.1 Optimistic AH-A*

Section 2.3.2.3 presented a simple, hierarchically optimal algorithm called H-UCS, which
performs a state-space-style search over “forward subproblems” (s, a) consisting of a state
s and a remaining high-level plan a to do from s. The queue of H-UCS was ordered by
the total cost of the primitive actions executed thus far to reach state s, without regard
for the remaining sequence a. This section describes the Angelic Hierarchical A* (AH-A*)
algorithm, which in its simplest “optimistic” incarnation converts H-UCS to an A* algorithm
by charging for the remaining sequence a using its optimistic cost bound. More formally,
the heuristic h((s, a)) is given by Oa(s)(s∗), the optimistic bound on the cost of the cheapest
primitive refinement of a that reaches the goal from s.

The following section describe how pessimistic bounds can be incorporated into AH-A*,
but we first elaborate on several aspects of the “optimistic” version.

First, the bounds Oa(s)(s∗) can be computed using a simple algorithm based on progres-
sion (e.g., see Section 4.3.2.3). We start with a valuation v0 with v0[s] = 0 and v0[s

′] = ∞
for all other states s′, compute v1 = Oa1(v0), ..., vn = Oan(vn−1), and then look up the final
bound vn(s∗) (see Figure 5.1). The number of progression steps is linear in the length of
a, and in the worst case the intermediate valuations may become large (depending on the
representations and simplifications employed). These costs can be mitigated somewhat by
caching the valuations for steps, prefixes, and/or plan suffixes.1

Second, in AH-A* (unlike in H-UCS) it may be desirable to refine an action sequence
at an HLA other than the first. Recall that in an A*-style algorithm, the basic goal is
to increase the cost bounds of plans as quickly as possible (while maintaining correctness).
Since refining an HLA may increase the bound for a plan by increasing the accuracy of its
optimistic bounds (in addition to generating primitive prefixes as in H-UCS), one might
suppose that the best strategy for AH-A* would be balanced expansion, i.e., always refining
the highest-level action remaining. However, in general there will be a tension between
refining the first HLA in order to generate applicable primitive prefixes and thus get better
state-space pruning (from elimination of repeated subproblems), and refining in a balanced
manner to more quickly increase the bounds on plans. We discuss this issue further after
introducing the full version of AH-A* in the next section.

Finally, we prove the correctness of this “Optimistic AH-A*” algorithm. Because we are
no longer restricted to “forward” algorithms that always refine the first HLA in a sequence,

1Prefix caching was the primary motivation behind abstract lookahead trees (Marthi et al., 2009), which
also supported an improvement called “upward propagation” that is subsumed by our later discussion of
decomposed algorithms.
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Figure 5.1: The fringe of Optimistic AH-A* for the first two search steps on the discrete
manipulation instance of Figure 1.1. Clouds represent implicit optimistic reachable sets, and
each action and plan is labeled with an optimistic cost bound. The algorithm begins with
the plan [H0] (top), and refines H0 to generate the two possible task orderings (middle).
The optimistic cost bound of the first plan is smaller, and so the algorithm refines the first
HLA in this plan, generating two new plans (bottom). Refinement of these plans continues
until an optimal solution is found. In fact, the bottom plan will never be refined, because
its optimistic cost bound of 65 is greater than the hierarchically optimal solution cost of 60.
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we require a new cycle-free criteria for this setting:

Definition 5.1. A hierarchy is Optimistic Zero-cost Cycle-Free (OZCF) iff, for each finite
cost c, there are only a finite number of hierarchical plans with optimistic cost bound less
than or equal to c:

(∀c) |{a : a ∈ I+(H0) and Oa(s0)(s∗) ≤ c}| <∞

This class of OZCF hierarchies includes all FCZF hierarchies, so long as the optimistic
descriptions do not assign zero bounds to HLAs with necessarily nonzero cost (from a given
state), as well as other hierarchies that do not meet the FCZF restriction.

Theorem 5.1. Optimistic AH-A* is hierarchically optimal in OZCF hierarchies with con-
sistent optimistic descriptions.

Proof. Optimistic AH-A* is simply A*, applied to hierarchical plan space. Corollary 4.9
guarantees that the bounds assigned by the optimistic descriptions are admissible, con-
sistency of the optimistic descriptions entails consistency of the heuristic, and the OZCF
restriction ensures that the algorithm must terminate so long as a finite-cost solution ex-
ists.

Because of the approximation introduced by projecting into simple valuations, our opti-
mistic descriptions are not actually consistent in the discrete manipulation domain. How-
ever, our descriptions exhibit a weaker property that we will call weak consistency, which is
sufficient to ensure the correctness of Optimistic AH-A*.2

Definition 5.2. Consider a sequence of refinements of (s0,H0) leading to subproblem p =
(s, a). Define the derived heuristic value for a from s as the maximum cost bound of any
subproblem in this sequence, minus the cost of the primitive actions taken to reach s. If, for
every subproblem p, the derived heuristic value is the same for all paths reaching p from P0,
then the optimistic descriptions are weakly consistent.

Corollary 5.2. Optimistic AH-A* is hierarchically optimal in OZCF hierarchies with weakly
consistent optimistic descriptions.

Proof. Weak consistency ensures that when a subproblem p = (s, a) is popped from the
fringe, p must consist of a hierarchically optimal path to reach s among all possibilities that
can be followed by a. Suppose that p was popped from the fringe with cost c to reach s and
derived heuristic value h. Furthermore, suppose that another potential subproblem p ′ was
on the fringe, which could reach p with strictly lower cost c′ < c to s. By weak consistency,

2Specifically, our descriptions are weakly consistent when the first HLA in a sequence is always refined,
which is the strategy used by Optimistic AH-A* in our experiments.
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the total cost bound for p ′ (and all other subproblems on its path from (s0,H0) to p) must
be ≤ c′+ h < c+ h. Also by weak consistency, some ancestor of p on the popped path must
have cost bound = c+ h. This is a contradiction, because all nodes on the path through p ′

would have been expanded before this ancestor due to cost ordering of the fringe.

5.1.2 AH-A* with Pessimistic Descriptions

As the theorems of the previous chapter might suggest, there are several ways to incorporate
pessimistic descriptions into AH-A*. We first describe simple applications of pessimistic de-
scriptions for tie-breaking, commitment, and solution decomposition, and explain why these
cannot usually be of much help for hierarchically optimal search. Then, we describe a more
powerful application of pessimistic descriptions that lies outside the usual A* framework,
using domination to prune high-level plans with provably suboptimal prefixes.

5.1.2.1 Tie-breaking, Commitment, and Solution Decomposition

A first, simple idea is to use pessimistic bounds for tie-breaking. When choosing which HLA
to refine in a given plan, a reasonable heuristic might be to refine the most uncertain HLA —
that is, the HLA with the greatest gap between the cost bounds computed by its optimistic
and pessimistic descriptions — in an attempt to raise the optimistic bound on the plan as
much as possible. Moreover, breaking ties on the priority queue by pessimistic cost can help
reduce the number of refinements considered for plans with optimistic bound equal to the
hierarchically optimal solution cost, by (hopefully) ordering the optimal plans first.

Pessimistic descriptions could also be used for commitment and solution decomposition,
via Corollary 4.9 and Theorem 4.10. Specifically, the first time a subproblem (s, a) is popped
from the queue with Oa(s)(s∗) = Pa(s)(s∗), it must be hierarchically optimal, and we could
commit to and decompose it as in Section 4.1.3.

However, these techniques cannot actually be of much help in this setting. For one,
commitment only becomes possible when the optimistic and pessimistic descriptions for a
become exact, which is unlikely to occur much before a is fully primitive (and the problem
is solved already). Moreover, if the pessimistic descriptions are consistent and ties on the
priority queue are broken by Pa(s)(s∗) and then recency, then commitment actually has
no effect in which plans are refined by AH-A* (since no non-descendants can subsequently
rise to the front of the priority queue under this tie-breaking rule). Similarly, solution
decomposition can only help with the constant factors involved in computing bounds on
valuations, but will not actually decrease the total number of refinement operations needed
to reach a hierarchically optimal solution.

Thus, we henceforth assume the above tiebreaking rule, but do not consider commitment
or decomposition in AH-A*. However, we note that such techniques can still be useful when
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interleaving planning and execution, or searching for a near-optimal solution.

5.1.2.2 Aside: Pruning and Domination in State-Space Search

We briefly set aside AH-A* and angelic descriptions, returning to the simple state-space
search setting of Section 2.1. In this setting, our objective is to find a solution with cost
c∗ = c∗(s0), by searching over nodes consisting of pairs (c, s) where s is a state and c is the
cost incurred to reach s. In addition to the assumptions made in Section 2.1, we also assume
access to a partial domination relation on nodes, and prove some general results about
pruning and correctness under this relation (which we apply to AH-A* in what follows).

Definition 5.3. Node n1 = (c1, s1) weakly dominates node n2 = (c2, s2), written n1 ≤ n2, if
c1 + c∗(s1) ≤ c2 + c∗(s2)

Definition 5.4. Node n1 = (c1, s1) strictly dominates node n2 = (c2, s2), written n1 < n2,
if c1 + c∗(s1) < c2 + c∗(s2)

Remark. Strict domination entails weak domination: n1 < n2 ⇒ n1 ≤ n2.

Suppose we get to observe only portions of these relations (if we had full access to them,
optimal planning would be trivial). This section proves general results for how these obser-
vations can be used to prune nodes from a state-space search, without sacrificing optimality.

For strict domination, this is simple.

Theorem 5.3. If n1 < n2, then n2 can be safely pruned.

Proof. Strict domination entails that no successor of n2 can be optimal.

Exploiting weak domination requires greater subtlety, however, because we must avoid
pruning cycles that could eliminate all of the optimal nodes from the search space (see
Figure 5.2). To enable correct pruning in this case, we first define a structure called the
delegation graph.

Definition 5.5. A delegation graph is a graph on the constructed nodes of a search problem.
The initial graph contains the initial node (0, s0) and a sink node (∞, s⊥). A leaf node is
a node other than the sink with no outgoing edges. Three graph modification operations are
available, which can be applied to any leaf node n:

1. n can be expanded, adding each successor node n′ of n to the graph along with an edge
from n to n′.
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Figure 5.2: Examples of pruning and domination. Black circles and lines represent generated
states and successor relations with step costs, respectively. Grey lines represent as-yet un-
generated paths to the goal state s∗. Dashed and dotted red, curved lines represent known
strict and weak domination relationships (respectively). In the left graph, the top node can
be safely pruned based on strict domination by the middle node, and the middle node can
be safely pruned based on weak domination by the bottom-left node. The bottom-right leaf
node cannot be pruned, however, because it is only weakly dominated by an ancestor. In
the middle graph, either one of (but not both) nodes can be safely pruned based on mutual
weak domination. Similarly, only one leaf node can be safely pruned from the right graph.

2. n can be strictly pruned when n′ < n is observed for some other node n′ in the graph,
by adding an edge from n to the sink node.

3. n can be weakly pruned when n′ ≤ n is observed for some other node n′ in the graph,
by adding an edge from n to n′, provided that this does not create a cycle in the graph.

Remark. Note that this graph is on the nodes, not the states, of the search problem. Re-
peated state elimination can be accounted for by observing (c, s) ≤ (c′, s) when c ≤ c′ and
(c, s) < (c′, s) when c < c′. We assume there are no zero-cost cycles in the state space.

This graph allows us to safely carry out all strict pruning and some weak pruning, while
preserving optimality (see Figure 5.3).

Theorem 5.4. After any sequence of legal operations leading to delegation graph G, at least
one leaf node n exists that can be expanded to an optimal solution.

Proof. Call a node n = (c, s) of G optimal iff c + c∗(s) = c∗(s0). We prove the following
invariant on the graph: for each optimal node n in G, there exists a path in G from n to
some optimal leaf node n′. If n is a leaf node this is trivially true (n = n′), so the invariant
holds for the initial graph. Expansion preserves the invariant by definition. Strict pruning
preserves it because strictly pruned nodes cannot be optimal. Weakly pruning a node n on
another node n′ preserves it because either n is not optimal, or both n and n′ are optimal by
definition of weak domination. In the latter case, the invariant ensures that there must exist
a path from n′ to some optimal leaf node n′′. The added edge from n to n′ creates a path



CHAPTER 5. ANGELIC HIERARCHICAL PLANNING 115

s0

⊥

s*

1 10
52

3 31

s0 s*

2 5

2 5
s0 s*

1 5

1 5
1

1

Figure 5.3: Safe pruning inferences for the examples in Figure 5.2 are correctly captured by
the delegation graph. Solid red lines indicate pruning edges added to the delegation graph.
The remaining unsafe weak pruning opportunities are prevented because they would create
cycles in the delegation graph.

from n to n′′. Moreover, because adding this edge does not create a cycle, n 6= n′′ and n′′

remains a leaf node, so the invariant is preserved. Finally, applying the invariant to (0, s0)
establishes the theorem.

5.1.2.3 AH-A* with Pruning

This pruning machinery can be applied to AH-A*, by observing that plan a (strictly) dom-
inates plan b iff there exists a pair of prefixes for the plans where the pessimistic valuation
of the prefix of a (strictly) dominates the optimistic valuation of the prefix of b, and the
remaining action suffixes of the plans are the same. Intuitively, this condition ensures that
any state reached by a primitive refinement of b can also be reached by a (strictly) better
primitive refinement of a (see Figure 5.4).

Theorem 5.5. Consider any two action sequences a and b and indices i and j such that
ai+1:|a| = bj+1:|b|. Then, a strictly dominates b from s if Pa1:i

(s) ≺ Ob1:j
(s), and a weakly

dominates b from s if Pa1:i
(s) � Ob1:j

(s).

Proof. Consider any primitive refinement b∗ ∈ I∗(b). This primitive refinement can be split
into parts b∗1 and b∗2, where b∗1 ∈ I∗(b1:j) and b∗2 ∈ I∗(bj+1:|b|). Because ai+1:|a| = bj+1:|b|,
it must be the case that b∗2 ∈ I∗(ai+1:|a|). Let s′ = T (s,b∗1).

Now, suppose that Pa1:i
(s) ≺ Ob1:j

(s). Then, there must exist an a∗1 ∈ I∗(a1:i) s.t.
T (s, a∗1) = s′ and C(s, a∗1) ≤ Pa1:i

(s)(s′) < Ob1:j
(s)(s′) ≤ C(s,b∗1). Thus, a∗ := a∗1 ++ b∗2 is a

primitive refinement of a that reaches the same state with strictly lower cost than b∗, and
so a strictly dominates b. The same argument holds for weak domination, replacing ≺ by
�, < by ≤, and “strictly lower” by “no greater”.

To put these definitions into practice, we require two further details: how such domination
relationships should be identified, and how they should be used for pruning while avoiding
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Figure 5.4: A concrete example of AH-A* pruning in the discrete manipulation domain.
Refining the center plan generates the two plans at top and bottom, where the bottom
plan represents the sole optimal refinement of Nav(2, 7) in this context, and the top plan
is a suboptimal refinement (i.e., a step in the wrong direction). Each HLA is labeled with
an [optimistic, pessimistic] cost interval, and the outcome of each prefix is labeled with
optimistic (top) and pessimistic (bottom) simple valuations. The top plan can be strictly
pruned, because its optimistic valuation after [BaseU(·),Nav(2, 7)] is strictly dominated by
the pessimistic valuation after Nav(2, 7) for the original plan. The bottom plan cannot be
pruned, because while its optimistic valuation after Nav(2, 7) is equal to (and thus weakly
dominated by) the pessimistic valuation of the center plan, it is a child of that plan and so
weakly pruning it would create a cycle in the delegation graph.
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weak pruning cycles.

For the former problem, our general strategy will be to keep a database of pairs (v, a2), one
for each prefix a1 of each plan a constructed by AH-A*, where v is the pessimistic valuation
reached by a1 and a2 is the remaining suffix (i.e., v = Pa1(s0) and a1 ++ a2 ∈ I+(H0)).
Then, each time a plan b is selected for expansion, we can iterate through each prefix b1

and compute its optimistic valuation v′ = Ob1(s0). If the database contains an entry (v,b2)
where v ≺ v′ (resp. v � v′), then this node is eligible for strict (resp. weak) pruning.

For this scheme to be practical, it should be possible to efficiently perform these database
lookups, ideally in constant time. Since we are using simple valuations (which consist of a
reachable set along with a single numeric cost bound), this would entail a way to efficiently
find all entries in the database with the same plan suffix, and a subset of the reachable set
of the query. Unfortunately, this is not possible in constant or near-constant time (Wolfe
and Russell, 2007). Thus, we further simplify the problem by only looking for domination
for equal reachable state sets, which can be implemented in constant time by hashing tuples
(S, a2) where S is a reachable set.

Strictly dominated action sequences identified by this procedure can be pruned imme-
diately via Theorem 5.4. For weakly dominated sequences, we also need to avoid creating
cycles in the delegation graph of Definition 5.5. One obvious way to accomplish this is to ex-
plicitly represent the delegation graph, and use efficient incremental cycle-checking methods
to avoid creating cycles when weakly pruning. However, the best-known such methods have
cost O(n

3
2 ) to build a graph with n nodes (Haeupler et al., 2008). Thus, we choose to forego

some pruning opportunities for a simpler, easily checkable criterion: n can only be weakly
pruned on n′ when n′ is still on the open list (i.e., a leaf node), which guarantees acyclicity
and thus correctness.3

A final detail is that duplicate subproblem elimination (i.e., A* graph search) can not be
applied together with this pruning without extra care. Elimination of duplicate subproblems
is technically a special case of pruning, and may create cycles in the delegation graph if
applied indiscriminately along with weak pruning. Since pruning should already (safely)
capture most of the benefit gained by duplicate plan elimination, we simply turn off duplicate
plan elimination when using weak pruning.

Pruning can be a powerful addition to AH-A*. In fact, pruning (including the special
case of duplicate plan elimination) is the only mechanism combatting the exponential growth
of potential plans at each level of AH-A*. For instance, consider a high-level plan consisting
of N HLAs, each of which has two potential refinements. Refining this plan at each HLA
generates 2N descendants, one for each possible combination of refinements. Fortunately,
many domination relationships will typically exist between these plans, cutting the set that

3More details on these ideas, including alternative strategies for correct pessimistic pruning, can be found
in our previous work (Marthi et al., 2009).
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Figure 5.5: A situation similar to the top two plans of Figure 5.4, where one might expect
strict pruning to apply. The circled navigation action in the top plan was refined, yielding
the bottom plan (and presumably others). While the bottom plan introduces a suboptimal
navigation step, and would be prunable if the actions before Nav were not present, it cannot
be pruned in this case because the bounds on the earlier part of the plan are too loose.

must actually be considered down to a much more manageable size.

However, pruning on prefixes as discussed here still falls short in a number of ways. For
one, as in ordinary A*, without a perfect heuristic (in this setting, both perfect optimistic
and pessimistic descriptions) the algorithm can still be doomed to explore exponentially
many plans with the optimal cost (e.g., if there are exponentially many optimal solutions).
Moreover, because pruning is carried out on entire prefixes, the presence of an action early
in the plan with loose descriptions can prevent any useful pruning on the remainder of the
plan, even if the descriptions of the remaining actions are exact (see Figure 5.5). Thus,
it typically remains best to refine the first HLA in a plan to maximize the opportunities
for pruning, despite our desire described above to balance refinements evenly throughout a
plan. These and other issues will be addressed by the fully decomposed angelic planning
algorithms discussed in the next sections.

5.2 Singleton DASH-A*

This section shows how the angelic techniques of the previous section can be combined
with decomposition and state abstraction, in restricted hierarchies where each HLA can
optimistically reach at most one state (from each initial state).

The restriction to singleton reachable sets (which we remove in the next section) simplifies
planning, because given the intermediate states {si} := Ōai(si−1) for a plan a, planning for
each action ai can proceed completely independently of the other actions in a. In particular,
as we saw in Chapter 3 and Theorem 4.10, any concatenation of optimal primitive refinements
for each ai reaching si from si−1 yields an optimal primitive refinement of a.
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Figure 5.6: A portion of the AND/OR graph generated by singleton DASH-A* on the
example nav-switch instance (see Section 2.1.2.1).

Moreover, search is even simpler than in Chapter 3, because the intermediate states for a
sequence can be computed in advance using the optimistic descriptions (along with bounds
on their optimal costs), rather than being discovered as each action is solved in turn. This
leads to a search space that can be directly captured as an AND/OR graph in the formalism
of Section 2.2.1.1. Each OR-node corresponds to selecting some immediate refinement for
an HLA from some state, and each AND-node corresponds to finding optimal solutions for
all action subproblems in a given immediate refinement. For example, Figure 5.6 shows
a portion of the AND/OR graph corresponding to the nav-switch example presented in
Section 2.1.2.1.

Formally, the AND/OR graph is defined in the formalism of Section 2.2.1.1 as follows.
Subproblems are as described in Chapter 3: p = (s, a) represents the task of doing the best
refinement of a from s, and the initial subproblem P0 = (s0,H0). Iff a is primitive then p is
terminal, and has optimal solution Z(p) = z with cost c(z ) = C(s, a). Otherwise, a is high-
level, Z(p) = NT , and each immediate refinement [b1, b2] ∈ I(a) generates a refinement
(s, a) →+ (s, b1) (s′, b2) where s′ is the optimistic reachable state of b1 from s. Finally,
as in Chapter 3, state abstraction can be incorporated by simply caching OR-nodes under
(EnterContext(s, a), a) rather than (s, a) directly.

Given this graph definition, any search algorithm from Section 2.2 can be applied to
search for a hierarchically optimal solution, yielding a family of algorithms we call singleton
DASH-A* (Decomposed, Angelic, State-abstracted Hierarchical A*). However, the bottom-
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up algorithms are not particularly well-suited, both because the set of terminal subproblems
is very large (one per (s, a) pair where a ∈ As, modulo state abstraction), and because
angelic descriptions naturally provide heuristics for top-down search. In particular, the top-
down summary ẑ = h(p) has lower bound ẑ.lb = Oa(s)(s

′) (where s′ is the sole reachable
state). In acyclic domains any top-down algorithm can be used, but in cyclic domains an
algorithm that can handle cycles (e.g., LDFS, or better, AO∗KLD) is required.

Theorem 5.6. In OZCF hierarchies with singleton reachable sets, singleton DASH-A* with
LDFS or AO∗KLD is hierarchically optimal.

Proof. This is a special case of Theorem 5.17, for the more general algorithm presented in
the next section.

Moreover, it is easy to see how this graph-based approach solves many of the problems
inherent in the sequence-based approach of AH-A*. Consider a plan [a1, ..., an] where each
HLA ai has a single reachable state. If each ai has k refinements, there are kn possible plans
generated by refining each HLA once, each of which could be considered separately by AH-
A*. In contrast, DASH-A* represents this full space of plans implicitly in an AND/OR graph
with just O(kn) space and time, without the need for accurate pessimistic descriptions to
enable pruning. We discuss potential uses for pessimistic descriptions in decomposed angelic
search in the next section, after introducing the general DASH-A* algorithm.

Before moving to the more sophisticated techniques required for general (non-singleton)
implicit angelic valuations in the next section, we briefly note that the simple approach of
this section can easily be generalized to explicit valuations with more than one state in the
reachable set, so long as reasoning about each reachable state is carried out independently of
the others (see Figure 5.7). The basic idea is to use subproblems (s, a, s′) that also specify
a specific reachable state s′, in addition to an action a and initial state s. Node (s, a, s′) is
an OR-node with one child for each refinement [b1, b2] of a: (s, b1, b2, s

′), which is itself an
OR-node with one child for each state s′′ reachable by b1 from s: (s, b1, s

′′, b2, s
′). Finally, this

node is an AND-node with children (s, b1, s
′′) and (s′′, b2, s

′), since the sequence subproblem
decomposes given concrete intermediate state s′′.

Thus, the algorithm described in this section successfully augments the decomposed
search strategy of Chapter 3 with the angelic heuristic bounds of Chapter 4, yielding poten-
tially large reductions in the search space. The only price paid for these heuristic bounds,
and the ability to balance refinements evenly across refinements (i.e., not just refining the
first HLA in a sequence), is that a “flattened” algorithm like DSH-UCS is no longer pos-
sible and thus the top-down overhead discussed in Section 3.3.1 cannot be avoided in the
same manner. The end of the next section discusses “hybrid” techniques that give up some
efficiency in other places (e.g., caching) to help overcome this overhead when necessary.
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Figure 5.7: Singleton DASH-A* can easily be extended to solve problems with non-singleton
reachable sets that are represented explicitly, by adding OR-nodes that choose a specific
intermediate state for each pair subproblem.

5.3 DASH-A*

5.3.1 Introduction

While powerful, the approach taken in the previous section can fall short when HLAs have
large reachable sets. For instance, consider the discrete manipulation instance of Figure 1.1.
A human reasoner might approach this problem by first considering the two possible orderings
for the object manipulations, corresponding to the plans a1 := [GoGrasp(m),GoDrop(m),
GoGrasp(c), GoDrop(c)] and a2 := [GoGrasp(c), GoDrop(c), GoGrasp(m),
GoDrop(m)]. Since the robot is close to m, and the destination of m is close to c, it
might be obvious even at this high level that a1 is superior to a2, and the latter plan need
not be refined further.

This sort of abstract reasoning is unavailable to a planner based on explicit reachable sets.
In particular, the prefix GoGrasp(c), GoDrop(c) has a very large number of reachable
states, consisting of all combinations of drop locations for c along with corresponding robot
configurations (i.e., base and gripper positions). To conclude that a2 is expensive, the
planner would have to reason about following with GoGrasp(m), GoDrop(m) from each
such reachable state, independently of the others. In contrast, the algorithm presented in this
section reasons with implicit angelic sets, and could quickly compute that this continuation
is expensive from any such state regardless of its precise configuration (see Figure 5.8).

Our basic starting point is the singleton DASH-A* algorithm of the previous section.
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...

Figure 5.8: Left: an explicit listing of (a small subset of) the reachable states of GoDrop(c).
Right: an implicit, factored representation of an optimistic approximation to this set.
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However, we now consider subproblems of the form (S, a), where S is a reachable set of
states described implicitly, e.g. by a logical formula or factored state set (assuming simple
valuations, as described in Section 4.3). As we will see, this extension requires substantial
extensions to the algorithm in the previous section to ensure a systematic, efficient search.

A first observation is that, while a subproblem p = (S, [a1, a2]) can still be broken down
into problems p1 = (S, a1), p2 = (S ′, a2) where S ′ = Ōa1(S), when |S ′| > 1 these subproblems
are no longer independent and thus the same concept of decomposition does not directly
apply (recall the example of Figure 3.3). In particular, if c1 and c2 are optimal solution
costs for p1 and p2, then c1 + c2 is only a lower bound on the optimal solution cost of p
(because the output state corresponding to c1 may not correspond to the input state for c2).
Nevertheless, if S ′ is large, refining p1 and p2 to increase this lower bound (while ignoring
their correlations) may be an efficient way to prove that p is expensive and other plans
should be considered instead.

For example, Figure 5.9 shows the first few steps of DASH-A* on (a slightly modified
version of) our earlier example. While the initial bounds on the Tidy actions seem to
indicate that the right plan is better, by considering the refinements of Tidy(m) from the
implicit output set of Tidy(c), the algorithm is able to prove that the right plan is in fact
much more expensive than it first seemed. Crucially, it is able to do so without explicitly
enumerating the large number of concrete states contained in this implicit set.

Then, Figure 5.10 shows the next few steps of DASH-A* on this same instance, where
the algorithm now refines both of the actions in the left plan. This increases the cost bound
of this plan slightly, but it still remains much lower than the bound on the right plan (41 vs.
61). In fact, the algorithm will continue refining nodes in the left subtree until an optimal
solution is found (with cost less than 61), without ever examining the right plan again.

To reach a fully primitive refinement of the left plan, however, DASH-A* will eventually
have to specialize the work done on Tidy(c) from the abstract output set of Tidy(m), to
find the best overall solution (consisting of an optimal primitive refinement of Tidy(m) that
reaches some particular intermediate state s′ in this set, followed by an optimal primitive
refinement of Tidy(c) from concrete state s′). This propagation and specialization proceeds
incrementally (i.e., for more and more refined versions of the intermediate set), at each point
reusing as much of the work already done on Tidy(c) as possible. Figure 5.11 provides a
rough sketch of how this propagation might work, for a simpler abstract example.

The full DASH-A* algorithm incorporates these ideas to efficiently carry out a systematic
search across subproblems with varying levels of action and state abstraction (here referring
both to implicit sets, and the state abstraction of Chapter 3). Perhaps surprisingly, the
basic search strategy used by DASH-A* is the same as the simpler singleton variant in the
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Figure 5.9: A rough sketch of the kinds of inferences DASH-A* is able to make. Top:
initially, the agent’s graph consists of just a root subproblem for (s0, [H0]). Middle: after
expanding the root, the agent has two plans: one for tidying the magazine and then the
cup, and one for the opposite order (we modify the example hierarchy and cost bounds
slightly for pedagogical purposes). Each plan is decomposed into two subproblems, one for
doing the first action from the initial state, and one for doing the second action from the
implicit optimistic reachable set of the first action. After propagating summary information
from the new leaves to the root, the right plan looks cheaper than the left one (35 vs. 39).
Bottom: upon expanding Tidy(m) in the right plan, the agent finds that this action is in
fact much more expensive than its initial optimistic bound suggested, and the left plan now
looks cheaper. (Continued in Figure 5.10.)
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Figure 5.10: (A continuation of Figure 5.9.) Top: after expanding Tidy(c) in the left plan,
its cost bounds increase slightly, but it still has much lower bounds than the right plan.
Bottom: the algorithm continues by expanding Tidy(m) in the left plan. The left plan is
in fact optimal with cost less than 61, so the agent will do no further expansions of the
right plan. However, to reach a primitive solution, the algorithm will eventually have to
propagate refined reachability information about the concrete output state of a particular
way of doing Tidy(m) into Tidy(c), and from there down into its refinements (red arrows).
This is the main complication that makes DASH-A* (significantly) more complex than the
singleton/explicit variants considered in the previous section.
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Figure 5.11: A rough sketch of how DASH-A* propagates refined reachability information
from earlier subproblems into subsequent ones. Top: after several steps of graph expansion
as in Singleton DASH-A*, the root becomes unrefinable. In particular, its left child has a
smaller bound than its other children (not shown), but there are no refinable leaves left in
its subtree (all of the leaves represent primitive actions). The node corresponding to action
h1 has been optimally solved by a1 from the initial state, but the precise status and cost
of the node corresponding to h2 cannot be determined from implicit set S (the optimistic
reachable set of h1). Bottom: to make progress, refined information about the output set
of h1 (e.g., the specific output state s1 ∈ S of a1) must be propagated into h2. This is
accomplished by constructing a new node for [h1, h2] for intermediate state s1, whose right
child is a specialization of the previous h2 that inherits its cost bound via subsumption.
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previous section (i.e., DASH-A* can use standard AND/OR search algorithms such as AO*).
Unlike in a typical AND/OR search, however, the AND/OR graph will be grown in a novel
non-local way, as reachability information propagates forward through the search space.

Because the final DASH-A* algorithm is quite complex, we develop it in stages. We begin
with a more detailed high-level overview of the algorithm and its data structures.

5.3.2 Overview

The previous section described the types of computations carried out by DASH-A* — ex-
pansion of nodes, propagation of summary and reachability information, and specialization
of abstract plans — and the sorts of high-level inferences that can result from these com-
putations. In order to make these high-level points clear, however, the examples simplified
away many features of the algorithm that are crucial to its correct and efficient operation.
This section provides an overview at a finer level of granularity, focusing on the core data
structures and procedures used by the actual algorithm, as well as explaining the reasoning
behind its major design decisions. In what follows, we assume that the reader is famil-
iar with the AO* algorithm introduced in Section 2.2.3, including our definitions of nodes,
summaries, and summary propagation.

The most significant simplification made in the previous section is that each subproblem
was depicted as a single AND- or OR-node, as has been the case throughout this thesis. As
we will see, in DASH-A* each subproblem will actually correspond to a connected group of
several graph nodes, as well as other auxiliary data structures. The basic reason is that, to
maintain a systematic search, the algorithm must keep track of what refinement information
has been propagated into each parent context. Beginning with the abstract picture of the
previous section, we introduce these components incrementally while explaining the issues
that each component is meant to address.

Specifically, we pick up where the previous section left off, at the problem of propagating
reachability information forward in the graph from refinements of earlier subproblems into
subsequent subproblems with non-singleton input sets. As in Section 3.3.1, we will use a
channel data structure to convey this reachability information, ensuring that each parent
context receives all of the relevant information about each child. However, whereas in that
section the channel was used to publish concrete solutions of a subproblem that reached
a particular state, in DASH-A* a subproblem’s channel conveys other subproblems corre-
sponding to its (potentially non-primitive) refinements. Each published refinement p ′ of a
subproblem p will reach a subset of the states reachable by p, allowing the algorithm to
incrementally specialize subsequent subproblems (and hopefully, increase their cost bounds)
before the fully primitive level is reached. For example, consider the bottom-left corner of Fig-
ure 5.10, corresponding to plan [GoGrasp(m),GoDrop(m)]. Upon refining GoGrasp(m),
the agent generates more specific plans corresponding to particular base positions for the
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grasp. By propagating reachability information about these plans into GoDrop(m) (which
still leave other details such as the grasp position abstract), it can quickly prove that picking
up the magazine from the top of the table is an expensive option that probably need not be
considered further.

Concretely, our first step is to associate each subproblem node with a channel for publish-
ing its refinements. We call this grouping of a node and a refinement channel a subproblem
description.4 Each description d corresponding to subproblem (S, a) will include its node,
input set d.input = S, output set d.output = Ōa(S), refinement channel d.channel , and
other components to be introduced in what follows. We call subproblem descriptions for
OR-nodes atomic, because they correspond to a single action (|a| = 1). Descriptions for
AND-nodes are called pairs, since they will always correspond to the sequential composition
of two other subproblems (where the output set of the left child is equal to the input set of
the right child).

Given this extension, when a leaf node corresponding to an atomic subproblem is re-
fined, rather than adding its refinements (each a pair of two new atomic leaves) as children
as depicted previously, the atomic subproblem can instead publish them on its refinement
channel. Having passed responsibility for its refinements to its parent context(s) via these
publications, the cost bound of its summary is increased to ∞.

Then, each pair subproblem p is a subscriber to the refinement channels of its left and
right children l and r. When it receives a refinement r′ published by its right child r, p
publishes a new pair subproblem on its own channel with left child l and right child r′.
Similarly, when it receives a refinement l′ published by l, p publishes a new pair with left
child l′. However, the output set of l′ may be a subset of the output set of l (and thus the
input set of r), and in this case the right child of its publication r′ is a specialization of r for
this refined input set.

The specialization of a subproblem description d for input set S proceeds as follows.

• If S = d.input , then the result is just d.

• Otherwise, if d is atomic corresponding to subproblem (S ′, a), the result is a new atomic
subproblem for (S, a).

• Otherwise, d is a pair with left and right subproblem descriptions l and r. First, l is
specialized for S, yielding l′. Then, r is specialized for l′.output , yielding r′. The result
is a new pair subproblem for [l′, r′].

The algorithm described thus far generates a forest of nodes, where each root node
represents a (pairwise factored) transitive refinement of ({s0}, [H0]). If we maintain a queue

4Note that the use of the word “description” here is distinct from in the previous chapter, where it was
used to refer to angelic transition models.
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of these root nodes, ordered by their lower cost bounds (i.e., at each step we choose the
cheapest root, expand a leaf in its subgraph, and add all refinements published at this root
back to the queue), we recover an implementation of Optimistic AH-A*.

Before proceeding to enhancements that improve upon this algorithm, we first present
an alternative method for searching in this framework that will be more amenable to later
improvements. In particular, rather than maintaining a separate queue over a forest of
nodes, we would like to generate a single AND/OR graph that we can search directly with
an existing algorithm like AO*.

A simple way to accomplish this is to add an additional OR-node to each subproblem
description d, which we call its outer node d.outer . The outer node initially has the original
node of d as a child, and it also subscribes to d.channel , adding each published refinement
of d as a child as well. Thus, the summary of the outer node always captures all of the
primitive refinements of a subproblem, initially through the original node, and later through
its published refinements. With this extension, the forest is connected into a single AND/OR
graph rooted at the outer node of the initial atomic subproblem ({s0}, [H0]), and we can
apply AO* to this graph to recover yet another implementation of Optimistic AH-A*.

So far, so good. But, of course, we have not yet actually gained anything for our troubles.
For instance, consider a plan with n high-level actions, each of which has a single reachable
state and k immediate refinements. As in the simpler version of Optimistic AH-A* presented
earlier in the chapter, generating the set of plans corresponding to refining each HLA a single
time still generates O(nk) nodes, rather than O(nk) as we might hope.

The issue is that this algorithm publishes every refinement generated at a leaf node,
and each such publication generates a further refinement publication at each parent, and so
on until we reach nodes representing entire transitive refinements of the initial subproblem.
However, recall that the purpose of publishing refinements is to propagate information about
refined (smaller) reachable sets to other nodes in the graph. Thus, it makes sense to only
publish those refinements d′ of d where d′.output ⊂ d.output , and do something else with the
remaining ones (with d′.output = d.output). In particular, when an atomic leaf d is refined,
refinement subproblems d′ with the same output set as d can be grouped as children of the
original OR-node at d rather than being published (as in an ordinary AND/OR search).
This output grouping prevents the exponential blowup just described, and is the first step
towards an algorithm that can be exponentially faster than AH-A*.

The grouping just described does not fully solve this problem, however: the same issue
can also arise at pair subproblems that are ancestors of the refined leaf. For example, when
atomic subproblem GoGrasp(m) is expanded, each of its immediate refinements has a
more specific output set (corresponding to particular base locations for the grasp), and is
published. The parent pair subproblem for [GoGrasp(m),GoDrop(m)] receives each such
refinement, and specializes GoDrop(m) for the refined output set of each grasp. However,
these specializations of GoDrop(m) have the same output set as the unspecialized version
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(because GoDrop also moves the base), and thus the new pair generated for each refinement
also has the same output set as the original pair.

We would thus like to apply output grouping at pair subproblems as well. As described
thus far, however, pairs have no appropriate OR-node at which the refinements can be
stored. We thus augment our pair subproblem descriptions with new inner OR-nodes for
this purpose. The inner node d.inner for pair d initially has just its AND-node as a child,
and supplants its AND-node as the attachment point for parent subproblems (and d.outer).
For consistency, we also call the original OR-node of an atomic subproblem an inner node.
Figures 5.13 and 5.14 show graphical depictions of these subproblem descriptions (including
a few additional details to be described shortly).

After this change, the graph still intuitively captures the right structure, since each
outer node still represents each refinement of a subproblem, either through the inner node
(for generated refinements that do not provide new reachability information) or through
published refinements directly attached to the outer node. However, this change breaks
several other aspects of the algorithm, which we must repair before we can run AO* to enjoy
its benefits.

A first problem is that calling UpdateAncestors on a refined leaf may no longer be
sufficient to restore consistency to the summaries in the graph. For instance, consider a pair
d whose left child l is an atomic subproblem for a primitive action, and whose right child
r is an atomic subproblem for an HLA with a non-singleton output set S. Suppose that
refining r generates two refinements: r1, which is refinable with output set S and the same
cost bound as r, and r2, which is primitive and reaches a single state s ∈ S with the same
cost as r. Then, r1 is added as a child of r.inner , whereas r2 is published on r.channel ,
creating a new fully primitive, unrefinable pair for [l, r2] that is published at d and attached
as a child of d.outer . When UpdateAncestors(r.inner) is called to update summaries in
the graph, it halts immediately because the summary of r.inner has not changed (due to
the attachment of r1). This leaves the graph in an inconsistent state, because d.outer (and
perhaps its ancestors as well) should be marked unrefinable due to the attachment of r2.

To address this issue, throughout each expansion operation we maintain a list of nodes
maybeUnrefinable that have had new children attached, and at the end of the expansion
operation we run a limited version of UpdateAncestors that only propagates changes in
refinable status upwards in the graph, starting at each such node.

The other problem that arises from output grouping is related to specialization. Before,
recall that (ignoring outer nodes) the graph was a forest of plans, each of which had pairs
for interior nodes and unrefined, atomic subproblems at the leaves. (Plans including refined
atomic subproblems had cost bound∞, and were not part of the active graph for all intents
and purposes.) Now, however, we can have live plans containing refined atomic nodes, which
have their own subplans attached at inner nodes.
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This is good, because it means that we can compactly represent combinations of refine-
ments of different actions in a plan in a factored manner. However, with this change we must
take extra care to ensure a systematic search. In particular, consider a pair d = [h1, h2], and
suppose that h2 has been refined, yielding three refinement plans (pairs) r1, r2, and r3. r1
and r2 had the same output set as h2, and were attached as children of h2.inner , but r3
had a refined output set, and generated a publication at d corresponding to [h1, r3]. Now,
suppose that we refine h1, and one of its refinements r0 has a smaller output set than h1. In
this case, we need to specialize h2 for this refined output set. To ensure a systematic search,
this specialization should capture the combination of r0 with refinements r1 and r2, but not
r3 (otherwise, we would have two separate subproblems capturing plan [r0, r3]).

One potential path forward would be to create a new subproblem for just this subset
of h2’s refinements from the output set of r0. For instance, one could specialize the entire
subgraph under h2’s inner node for this new input set. This could be wasteful, however, be-
cause h2 might obviously be bad from this input set (e.g., perhaps it corresponds to grasping
the magazine from the top of the table, so that the dropoff corresponding to h2 becomes
significantly more expensive). Moreover, it would significantly decrease the potential for
caching (to be introduced momentarily), because it could result in many distinct copies of
each subproblem description (for the same input set and action sequence) capturing different
subsets of its refinements (those represented at its inner node at the time of specialization).
These issues may be surmountable by a combination of laziness and a clever representation
for such subset subproblems, but we have not yet found a way to tame the overwhelming
bookkeeping complexity that seems to result.

While other solutions may be possible, we choose to sidestep this problem by modifying
the way in which refinements are generated at pair subproblems. In particular, we only
allow a given pair to generate refinements based on publications at either its left or right
child, not both. We call a pair left-expanding if it responds to refinements at its left child,
and right-expanding if it responds to refinements at its right child. This requires a further
small change: a pair subproblem’s AND-node must now connect to the outer node of the
child whose publications it ignores (and the inner node of the other child, as before). This
ensures that the ignored refinements are not lost, since the outer node always captures a
bound on all refinements of a subproblem. In our implementation, we choose to make pairs
right-expanding iff their left child has a singleton output set (and thus would not publish
any refinements anyway), and otherwise left-expanding.

With these two changes (maybeUnrefinable updates and directional pair subproblems),
we reach an state where we can again apply AO* for a systematic, hierarchically optimal
search. Moreover, this algorithm avoids the exponential proliferation of plans in our earlier
example, representing the set of all combinations of k refinements of n HLAs in O(nk) space
and time.

At this point, we have almost reached the full DASH-A* algorithm; just a few small
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extensions remain. First, to yield a full graph-based algorithm, we can simply cache atomic
subproblem descriptions so that at most a single description exists for each (S, a) subproblem
encountered during search; then, state-abstracted caching requires just a bit more bookkeep-
ing. However, in certain domains the cycles introduced by this caching can lead to infinite
chains of publications and thus non-termination. We thus introduce another improvement
called hierarchical output grouping to avoid this issue, and ensure termination and hierar-
chical optimality in all cases. Finally, when specializing the right child of a left-expanding
pair at which some refinements have already been carried out, the algorithm described thus
far is not able to reuse the information gathered by the previous refinements. Thus, we
introduce a subsumption technique that rectifies this omission. We defer a full discussion of
these techniques until Sections 5.3.6, 5.3.5, and 5.3.4 (respectively).

This subsection has introduced the key data structures and design decisions behind
DASH-A*. The remainder of the section describes the algorithm in full detail. First, Sec-
tion 5.3.3 introduces pseudocode for a first version of the algorithm that includes all of the
techniques introduced here except for output grouping and the three extensions just men-
tioned.5 Then, subsequent sections add the remaining techniques to yield the final DASH-A*
algorithm, prove it correct, and present a family of examples in which DASH-A* can find
hierarchically optimal solutions exponentially faster than other algorithms (including both
DSH-UCS and AH-A*).

Figure 5.12 provides a summary view of the data structures used by DASH-A*, which
may serve as a useful reference throughout the remainder of the chapter.

5.3.3 Initial Algorithm

This section describes pseudocode for the Simple Decomposed AH-A* algorithm, a simplified
version of DASH-A* that has the same basic structure but omits a variety of improvements
that make it efficient.

As mentioned above, the actual searching in Simple Decomposed AH-A* will be carried
out by a standard AND/OR search algorithm such as AO∗KLD, and all of the complexities of
the setting are encapsulated in the manner in which the AND/OR graph itself is constructed
and extended over time. As such, we start by defining the top-level MakeRootNode and
Expand operations that define the interface to this search algorithm. Algorithm 5.1 shows
pseudocode for these operations, in terms of other operations and data structures to be
defined in what follows.

To expand a leaf node n, which will correspond to an inner node of some atomic subprob-

5While not necessary in this simpler setting, the algorithm includes inner nodes and directional pair
subproblems to serve as a foundation for the later improvements.
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section data structure field explanation

5.3.3 maybeUnrefinable n/a a global list of nodes that may have been rendered
unrefinable via new child connections, within a single
Expand operation

5.3.3 node n n.parents parents of n (which depend on n’s summary)

n.children children of n (upon which n’s summary depends)

n.summary a current summary of n

n.spdesc the subproblem description containing n

5.3.3 subproblem d.input the input reachable set of this subproblem

description d d.output the output reachable set of this subproblem

d.outer the outer OR-node of this subproblem, which repre-
sents its full set of refinements

d.inner the inner OR-node of this subproblem, which repre-
sents only refinements not yet published at d.channel

d.channel a channel, upon which refinements of this subprob-
lem are published (to communicate refined reacha-
bility information to subsequent subproblems)

5.3.5 d.refmap a mapping from refined output sets for d to union
subproblems, used for hierarchical output grouping

5.3.3 atomic subproblem d.hsp the subproblem d.hsp = (d.input , [a]) represented

5.3.4 description d d.irefs descriptions of immediate refinements (if expanded)

d.subsumers a list of subsuming subproblem descriptions

5.3.3 pair subproblem d.left the left subproblem description of this pair

description d d.right the right subproblem description of this pair

d.and the AND-node of this pair

5.3.5 union subproblem d.irefs the constituent descriptions of this union

description d d.specmap a mapping from refined input sets to existing spe-
cializations of this union

5.3.6 cache n/a a global cache of atomic subproblems descriptions,
used to ensure that all instances of a given subprob-
lem share the same description

Figure 5.12: A quick reference to the data structures used by the full version of DASH-A*.
For each data structure and field (when applicable), we specify the section in which it will
be introduced, and provide a brief explanation of its meaning.
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Algorithm 5.1 DASH-A*: Top-level Operations
function Expand(leaf )

d← leaf .spdesc /* the subproblem description for this leaf */

maybeUnrefinable ← ∅ /* a global variable */

for [al, ar] ∈ ImmediateRefinements(d.hsp.actions[0], d.input) do
l← GetAtomicSubproblemDesc((d.input , al))
r ← GetAtomicSubproblemDesc((l.output , ar))
DoPublish(d,MakePairSubproblemDesc(l, r))

for n ∈ maybeUnrefinable do MarkUnrefinable(n)

function MakeRootNode()
return GetAtomicSubproblemDesc(({s0}, [H0])).outer

lem p = n.spdesc.hsp, each refinement of p generates a pair subproblem containing atomic
subproblems for each action in the refinement, and these pairs are published at subproblem
description n.spdesc. The root node of the search is the outer node of the description of
subproblem ({s0}, [H0]).

Before elaborating on these operations, we first make concrete the more familiar enti-
ties of nodes and summaries in this setting. Algorithm 5.2 show pseudocode for operations
on nodes, which simply record the graph structure (in terms of child and parent lists),
a current summary, and a containing subproblem description. MakeNode(OR, d) cre-
ates an OR-node, and MakeNode(AND, d) creates an AND-node; this type is used by
CurrentSummary(·) (see Algorithm 2.5) to compute the summary of a node from its
children. The graph structure is maintained by Connect(p, c), which makes p a parent of
c. In addition, Connect(p, c) adds p to global list maybeUnrefinable, in case p becomes
unrefinable (e.g., solved) by virtue of the newly connected child. Just before each Expand
operation, each node correctly represents a subset of primitive refinements of its correspond-
ing subproblem, which may change over time as the graph evolves.

Summaries are just as defined in Section 2.2.3.1, consisting of a lower cost bound ẑ.lb,
refinable flag ẑ.refinable?, and active child set ẑ.children. The interpretation of the flag
ẑ.refinable? for summary ẑ of node n is slightly different than in Chapter 2, however. While
it is still the case that ẑ.refinable? = true iff there exists a refinable leaf node descendant in the
active subgraph of n, ẑ.refinable? = false does not necessarily imply that an optimal solution
is yet known for n. In particular, an optimal solution is known for n iff ẑ.refinable? = false
and the input set of n is a singleton set; otherwise, no progress can be made on n (or its
descendants) via expansion without more specific information about its input set, but an
optimal solution may not yet be known (see Section 4.3.3).

Finally, in addition to the summary propagation operations carried out by the search
algorithm itself (e.g., UpdateAncestors(n) for AO∗KLD), we include an additional func-
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Algorithm 5.2 DASH-A*: Nodes
function MakeNode(type, d)

return a node of type type (AND/OR) with
n.parents = []
n.children = []
n.summary = undefined
n.spdesc = d

function Connect(parent, child)
child.parents.Insert(parent)
parent.children.Insert(child)
maybeUnrefinable.Insert(parent)

function MarkUnrefinable(n)
if n.summary .refinable? then

ẑ ← CurrentSummary(n, n.summary .lb)
if ¬ẑ.refinable? and ẑ.lb = n.summary .lb then

n.summary ← ẑ
for p ∈ n.parents do

MarkUnrefinable(p)

tion MarkUnrefinable(n) that is called to propagate changes to summaries that occur
at nodes other than the one expanded. This function propagates changes of summaries
from refinable to unrefinable upwards in the graph from node n, without modifying any cost
bounds. The potential loci for such changes are batched into a global list maybeUnrefinable,
and MarkUnrefinable is called on each node in this list just before Expand returns.6

Next, Algorithm 5.3 shows pseudocode for constructing subproblems descriptions, as used
by MakeRootNode and Expand. There are two basic types of subproblem descriptions,
each of which corresponds to the subproblem (S, a) of doing some primitive refinement of
a from some element of reachable set S. First, an atomic subproblem (S, a) corresponds to
doing a single action a. Second, a pair subproblem (S, a ++ a′) consists of the sequential
composition of child subproblems (S, a) and (S ′, a′), where the input set of the latter is
always the optimistic reachable set of the former: S ′ = Ōa(S). Each child may be an atomic
subproblem or another pair (thus representing longer sequences).

MakeSubproblemDesc(i, o) constructs the basic structure shared by all subproblem
descriptions. This includes the input reachable set d.input = S, the output reachable set

6The changes are batched rather than being applied directly after each Connect operation to ensure
that the graph is in a consistent state (with all structural changes made, and all nodes assigned an initial
summary) when MarkUnrefinable is called.
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Algorithm 5.3 DASH-A*: Subproblem Construction
function MakeSubproblemDesc(i, o)

d← a subproblem description with
d.input = i
d.output = o
d.outer = MakeNode(OR, d)
d.inner = MakeNode(OR, d)
d.channel = MakeChannel()

Connect(d.outer , d.inner)
Subscribe(d.channel , λ.x Connect(d.outer , x))
return d

function MakeAtomicSubproblemDesc((S, a))
d←MakeSubproblemDesc(S, ŌS(a))
d.hsp ← (S, a)
d.outer .summary ← d.inner .summary ← h((S, a))
return d

function MakePairSubproblemDesc(l, r)
d←MakeSubproblemDesc(l.input , r.output)
d.left ← l
d.right ← r
d.and ←MakeNode(AND, d)
Connect(d.inner , d.and)
if l.output is a singleton then /* right-expanding */

Connect(d.and , l.outer)
Connect(d.and , r.inner)
Subscribe(r.channel , λ.x DoPublish(d,MakePairSubproblemDesc(l, x)))

else /* left-expanding */

Connect(d.and , l.inner)
Connect(d.and , r.outer)
Subscribe(l.channel , λ.x DoPublish(d,MakePairSubproblemDesc(x,

Specialize(r, x.output))))

d.inner .summary ← d.and .summary ← CurrentSummary(d.and , 0)
d.outer .summary ← CurrentSummary(d.outer , 0)
return d
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Figure 5.13: A “detail view” of two of the subproblems depicted as nodes in Figure 5.11.
Each subproblem contains outer and inner OR-nodes, and a refinement channel. Top: a
“left-expanding” pair subproblem. The circle is an AND-node, which is connected to the
inner node of the left child subproblem (with a light arrow) and the outer node of the right
child subproblem (with a double arrow). Lines with interior arrows represent subscriptions;
for example, each publication by the left child subproblem will result in a publication at this
node’s channel, which will also be added as child of its outer node. Bottom: an atomic leaf
(unexpanded) subproblem.
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d.output = Ōa(S), two OR-nodes d.inner and d.outer , and a channel d.channel (see Fig-
ure 5.13). The outer node d.outer represents the full set of all primitive refinements of a from
S, and its summary d.outer .summary always provides a valid lower bound on the minimum
cost of any such primitive refinement c∗((S, a)) (over all reachable states). The refinement
channel d.channel is used to publish information about refinements of d, corresponding to
subproblems (S, a′) where a′ ∈ I+(a). While for now all refinements are directly published
on this channel, later it will be used exclusively for subproblem descriptions d′ with reachable
sets d′.output ⊂ d.output that are strict subsets of the reachable set of d. As in DSH-LDFS
(see Section 3.3.1), channels are the conduit for propagating refined information about reach-
ability forward to subsequent subproblems. Finally, the inner node d.inner represents all
primitive refinements of a subproblem that have not (yet) been published on d.channel .7

Thus, the children d.outer .children of the outer node always consist of the inner node
d.inner , plus the outer nodes of all descriptions that have been published on d.channel .
The last lines of MakeSubproblemDesc(i, o) maintain this invariant, directly connecting
d.outer and d.inner , and then adding a subscription to d.channel that connects d.outer to
d′.outer for each published d′.

On top of this initialization, MakeAtomicSubproblemDesc((S, a)) adds a few more
operations. First, it stores its corresponding subproblem (S, a) into d.hsp. Second, it ini-
tializes the summaries of its inner and outer nodes to h((S, a)), which returns a heuristic
leaf summary with cost and status computed from OptimisticOutcomeAndStatus(a, S)
(see Section 4.3.3).

MakePairSubproblemDesc(l, r) is a bit more complex, since it must also construct
an AND-node and manage the transport of refined reachability information from its left
subproblem l to its right subproblem r. It begins by storing l, r, and the AND-node in
d.left , d.right , and d.and , and makes d.and the sole child of d.inner . Then, it connects the
AND-node to l and r in one of two ways, and finally initializes each node’s current summary.

Each pair subproblem is either left-expanding or right-expanding (but not both), which
determines how it is connected to l and r, and how it publishes refinements. If right-
expanding, each refinement r′ published by r generates a refinement corresponding to sub-
problem MakePairSubproblemDesc(l, r′), and refinements published by l are ignored.
In this case, a systematic search is ensured by connecting d.and to the outer node of l and
the inner node of r. If left-expanding, each refinement l′ published by l generates a refine-
ment MakePairSubproblemDesc(l′, r′), where r′ is a specialization of r for the refined
reachable set of l′, defined shortly (see Figure 5.14). In this case, d.and is connected to the
inner node of l and the outer node of r (and refinements published by r are ignored). In

7For the time being, d.inner will always have zero or one children (for atomic or pair subproblems,
respectively) and is thus superfluous. Enhancements presented in subsequent sections will generate other
children for d.inner .
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Figure 5.14: The state of the subproblems in Figure 5.13 after the leaf subproblem for h1 has
been expanded. Bottom: the two refinements of h1 have been published in its channel, and
their outer nodes are now children of its outer node. Top: these publications triggered addi-
tional publications at its parent pair subproblem, which are pairs consisting of a publication
from h1 and a specialization of the h2 subproblem for the corresponding output set.
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our implementation, all pairs are left-expanding unless l has a singleton output set, in which
case there is no more information to be gained about the output set of l.8

Finally, Algorithm 5.4 introduces the three missing subproblem operations. For now,
functions DoPublish and GetAtomicSubproblemDesc simply defer to Publish and
MakeAtomicSubproblemDesc (respectively); improvements in subsequent sections will
add additional logic. The interesting operation is Specialize(d, S ′), which specializes de-
scription d representing subproblem (S, a) to a new input set S ′ ⊆ S, returning a description
corresponding to subproblem (S ′, a). If S ′ = S, then no specialization is required and d
is returned directly. Otherwise, if d is atomic, a fresh atomic subproblem for (S ′, a) is re-
turned. Finally, if d is a pair of subproblems l and r, first l is specialized for S ′ to l′, then r
is specialized for l′.output to r′, and l′ and r′ are wrapped in a new pair description.

Thus, Specialize(d, S ′) copies the graph of d down to the first level of atomic subprob-
lems (which are created anew), sharing plan suffixes with d whose reachable sets have not
changed as a result of specialization. Subsequent sections introduce additional improvements
that can more heavily reuse the work embodied in d in this specialized context.

Before proceeding to discuss enhancements of this algorithm, we first prove its correctness.

Definition 5.6. The subgraph rooted at a node n represents a primitive refinement b iff:

• n is an inner node of an unexpanded atomic subproblem (S, a), and b ∈ I∗(a), or

• n is an OR-node, and some child in n.children represents b, or

• n is an AND-node, and there exist refinements b1 and b2 represented by the left and
right children of n such that b = b1 ++ b2.

Lemma 5.7. After any number of Expand operations, for each description d corresponding
to subproblem (S, a), each primitive refinement of a applicable from S is represented exactly
once by the subgraph under d.outer.

Proof. This is trivially true for the initial root subproblem, which represents all of its prim-
itive refinements directly. When a subproblem is expanded, responsibility for its primitive
refinements is transferred from d.inner to the outer nodes of its newly constructed refinement
pairs. These pairs initially capture the primitive refinements of each immediate refinement
correctly, and so d and ancestors of d.outer remain correct. The only difficulty involves pairs
that depend directly on d.inner (i.e., not through d.outer). Here, correctness is ensured
since every parent of an inner node of d also subscribes to d, and re-publishes new pairs that
capture the “missing” refinements.

8More sophisticated policies are possible, including those where explicit decisions are made about when
to publish refinements rather than doing so automatically.
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Algorithm 5.4 DASH-A*: Subproblem Operations
function DoPublish(d, c)

Publish(d.channel , c)

function Specialize(d, S)
if d.input = S then return d
if d is atomic then

return GetAtomicSubproblemDesc((S, d.hsp.actions))
else /* d is a pair */

l′ ← Specialize(d.left , S)
r′ ← Specialize(d.right , l′.output)
return MakePairSubproblemDesc(l′, r′)

function GetAtomicSubproblemDesc(p)
return MakeAtomicSubproblemDesc(p)

Lemma 5.8. After each Expand(n) and UpdateAncestors(n) operation when apply-
ing AO∗KLD to Simple Decomposed AH-A*, the summaries of all nodes are consistent (see
Section 2.2) and provide correct bounds on the represented primitive refinements.

Proof. All potential inconsistencies introduced by Expand(n) begin at node n. First, the
lower bound on n itself increases to ∞. Second, subproblems in publication chains starting
with the immediate refinements of n.spdesc can be “caught” by outer nodes throughout the
graph. Ignoring the first effect for now, the connection of these new subproblems to outer
OR-nodes cannot change their cost bounds (assuming that they were correct before the
Expand). However, if the new subproblems are unrefinable, the status of these OR-nodes
and their ancestors can change, and in this case MarkUnrefinable restores consistency.
Then, the only remaining inconsistency can be at n, and this is repaired by the call to
UpdateAncestors(n).

Lemma 5.9. Consider any subgraph rooted at root.outer, where one child is selected at
each non-leaf OR-node, both children are selected at each AND-node, and all leaf nodes have
finite lower cost bound. Let p1, ..., pn be the sequence of leaf subproblems corresponding to
this subgraph, and a1, ..., an be the corresponding actions. Then for i ∈ [1, n], pi.input ⊇
Ō[a1,...,ai−1]({s0}). Moreover, if a1, ..., ak are all primitive, then for i ∈ [1, k + 1], pi.input =
{T (s0, [a1, ..., ai−1])}.

Proof. We first note the following properties. (1) For any pair subproblem d, we have
d.input = d.left .input , d.left .output = d.right .input , and d.output = d.right .output . (2) For
any OR-node corresponding to subproblem d, and any child of this OR-node corresponding
to subproblem d′, d.input = d′.input .
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Next, we define the notion of an effective prefix for a subproblem p in the active subgraph.
The effective prefix is the sequence p ′1, ..., p

′
l of atomic (not necessarily leaf) subproblems in

this subgraph that generates the input set of p. In other words, p ′1.input = {s0}, p ′j.output =
p ′j+1.input , and p ′l .output = p.input , or equivalently, p.input = Ō[a′1,...,a′l]

{s0} where a′j is the

action corresponding to p ′j.

Given a subproblem p, the effective prefix can be extracted as follows. First, walk up-
wards in the subgraph from p. Starting with the empty sequence, for each edge traversed
corresponding to a right child of a pair subproblem, prepend the left child to the sequence.
This yields a sequence of subproblems that satisfy the above conditions on input and output
sets, but which may include pairs as well as atomic subproblems. Then, repeatedly expand
each pair subproblem in this sequence into its left and right children, until no pair subprob-
lems remain. (1) and (2) above guarantee that the sequence generated by this process is an
effective prefix.

Now, consider any leaf subproblem pi, and extract its effective prefix p ′1, ..., p
′
l . Note

that the actions in the leaf sequence p1, ..., pi−1 must represent a refinement of the sequence
p ′1, ..., p

′
l . Then, reachability consistency of the optimistic descriptions establishes the first

part of the lemma.

To establish the other part, we first prove an auxiliary result by structural induction:
for any pair subproblem d with singleton input set d.input , if all leaves in the left subgraph
of d correspond to finite-cost primitive actions, then d.left has a singleton output set and
d is right-expanding. Moreover, if all leaves in the right subgraph of d are also finite-cost
primitives, then d.right and d itself have singleton output sets.

Suppose that d was left-expanding. Then its AND-node would be connected to the inner
node of d.left , which must have a singleton input set and non-singleton output set. By
the inductive hypothesis, d.left cannot be a pair subproblem. However, d.left also cannot
be an expanded atomic subproblem because its inner node would have infinite cost bound,
nor an unexpanded atomic subproblem because primitive actions have singleton outputs on
singleton inputs. Thus, d is right-expanding, and d.left has a singleton output set. Applying
the same line of reasoning to d.right establishes the full result.

Finally, suppose that leaves p1, ..., pi−1 are primitive. Then applying the auxiliary result to
the pairs encountered when generating the effective prefix of pi establishes that |pi.input | = 1.
Correctness of the optimistic descriptions together with the first part of the lemma guarantee
that the single reachable state must be T (s0, [a1, ..., ai−1])}.

Lemma 5.10. Consider any subproblem description d with singleton input and output sets
(|d.input | = |d.output | = 1). d.outer is only assigned an unrefinable summary ẑ (ẑ.refinable?
= false) if ẑ.lb =∞ and d is unsolvable, or ẑ.lb <∞ and ẑ is an optimal solution for d.

Proof. Suppose that d.outer is assigned an unrefinable summary ẑ with finite cost. Consider
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the sequence of leaf subproblems p1, ..., pN corresponding to the active subgraph of d.outer ,
and let p1, ..., pk be a maximal primitive prefix of this sequence. If k = N then this sequence
corresponds to an optimal solution. Otherwise, Lemma 5.9 ensures that |pk+1.input | = 1.
Then, by definition of OptimisticOutcomeAndStatus, pk+1 must be refinable. This is
a contradiction, since ẑ is refinable if any pi is refinable.

Theorem 5.11. Simple Decomposed AH-A* with AO∗KLD is hierarchically optimal in OZCF
hierarchies.

Proof. Together, Lemmata 5.7, 5.8, and 5.9 ensure that Simple Decomposed AH-A* can only
return hierarchically optimal solutions, because every primitive refinement is represented in
the structure of the graph, the leaves have valid cost bounds, and the summaries of the
interior nodes are consistent.

Next, the algorithm cannot get “stuck”, i.e., the root is unrefinable iff an optimal solution
is known, or the problem has been proved unsolvable. This follows directly from Lemma 5.10,
since the root always has singleton input and output sets {s0} and {s∗}.

Finally, the algorithm must terminate. First, we note that the graphs produced by
Simple Decomposed AH-A* are always acyclic. Thus, calls to UpdateAncestors and
MarkUnrefinable must terminate. Moreover, because publication chains can only travel
upward (towards the root), each call to Expand must terminate as well. Finally, the OZCF
restriction ensures that after a finite number of calls to Expand, the lower cost bound of
the root must reach the optimal solution cost, and so the algorithm terminates.

5.3.4 Subsumption

The first improvement to Simple Decomposed AH-A* takes advantage of subsumption rela-
tionships between subproblems.

Definition 5.7. Subproblem (S, a) is subsumed by subproblem (S ′, a) if S ⊆ S ′.

Subsumption of this form has previously been exploited for search in partially observ-
able domains with demonic nondeterminism (Genesereth and Nourbakhsh, 1993; Wolfe and
Russell, 2007), where a solution for a set of states S can be reused on any subset of S. The
consequences in the angelic setting are analogous.

Theorem 5.12. Every primitive refinement of sequence a applicable from some state in set
S is applicable from some state in S ′ ⊇ S. Thus, for any action sequence a, c∗((S, a)) ≥
c∗((S ′, a))

Proof. Trivial.
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Subsumption allows information gathered while refining a subproblem (S ′, a) to guide
search at all subproblems (S, a) on subsets S ⊆ S ′. While explicitly looking for such re-
lationships could be prohibitively expensive (as discussed in Section 5.1.2.3), we naturally
discover them during search: by definition, Specialize(d, S) is always subsumed by d. Thus,
when specializing an atomic subproblem d, the constructed specialization can borrow infor-
mation about its immediate refinements and cost bounds from d. In the best case, d may
essentially already encode the optimal solution, with just a few remaining details that need
to be fleshed out given the new input information in S. For instance, suppose we refine
GoGrasp(c) in detail from the abstract output set of GoDrop(m), discovering that one
particular grasp position seems much cheaper than the others. If we later refine GoDrop(m)
and specialize GoGrasp(c) for its more specific outputs, subsumption enables the use of
bounds discovered at the high level to avoid considering expensive (or infeasible) refinements
of GoGrasp(c) from each such specific input set.

Algorithm 5.5 shows changes to Simple Decomposed AH-A* to incorporate these intu-
itions. First, two new fields are added to each atomic subproblem description d: d.irefs
records the set of immediate refinement subproblems of d (or unexp if d has not yet been
Expanded), and d.subsumers records the list of subproblems known to subsume d. Next,
the case for atomic subproblems in Specialize(d, S) is modified in two ways: d is added
as a subsumer of the specialized subproblem d′, and the lower bounds of d′ are updated to
the maximum of their current values and the outer bound of d (which may encode knowl-
edge propagated upwards from refinements taken at d). Finally, Expand(n) is extended to
record immediate refinements in d.irefs and take advantage of subsuming subproblems. If
any expanded subproblem d′ subsuming d is known, rather than generating the immediate
refinements of d from scratch, the immediate refinements of d′ are specialized instead. In
addition to saving effort generating the refinements, this ensures that the subsumption and
bound reuse are applied recursively throughout the existing subtree of d.

5.3.5 Same-Output Grouping

As described thus far, after expanding a subproblem, each published refinement can generate
a cascade of refinement publications at its parent pair, and so on up the graph. Often,
this is unnecessary. In particular, the purpose of publishing refinements is to communicate
information about refined (strictly smaller) output sets to subsequent subproblems in the
graph. Thus, if a refinement d′ of d has d′.output = d.output , we need not publish it. Instead,
we can store d′.inner internally as a child of d.inner , and re-publish the refinements of d′

directly at d. This “local” output grouping significantly compresses the subproblem graph
when refinements of an HLA tend to have the same output set, which is often the case given
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Algorithm 5.5 DASH-A*: Subsumption
function MakeAtomicSubproblemDesc((S, a))

... /* previous code from Algorithm 5.3 */

d.irefs ← unexp
d.subsumers ← []
return d

function Specialize(d, S)
if d.input = S then return d
if d is atomic then

d′ ← GetAtomicSubproblemDesc((S, d.hsp.actions))
d′.subsumers.Insert(d)
d′.outer .summary .lb ← max(d′.outer .summary .lb, d.outer .summary .lb)
d′.inner .summary .lb ← max(d′.inner .summary .lb, d.outer .summary .lb)
return d′

else ... /* code from Algorithm 5.4 for pairs */

function Expand(leaf )
d← leaf .spdesc
maybeUnrefinable ← ∅
d.irefs ← []
if exists d′ ∈ d.subsumers with d′.irefs 6= unexp then

for i ∈ d′.irefs do
d.irefs.Insert(Specialize(i, d.input))

else
for [al, ar] ∈ ImmediateRefinements(d.hsp.actions[0], d.input) do

l← GetAtomicSubproblemDesc((d.input , al))
r ← GetAtomicSubproblemDesc((l.output , ar))
d.irefs.Insert(MakePairSubproblemDesc(l, r))

for i ∈ d.irefs do DoPublish(d, i)

for n ∈ maybeUnrefinable do MarkUnrefinable(n)

Algorithm 5.6 DASH-A*: Local Output Grouping
function DoPublish(d, c)

if d.output 6= c.output then
Publish(d.channel , c)

else
Connect(d.inner , c.inner)
Subscribe(c.channel , λ.x DoPublish(d, x))
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Figure 5.15: An example of local output grouping. Bottom: subproblem h1 has two refine-
ments, a1 and h7. Because h7 has the same output set from s0 as its parent h1, its subproblem
is captured as an inner child rather than being published. The subproblem corresponding to
a1 is published as usual, since its output set {s1} is a strict subset of S. Top: the publication
of a1 creates a new subproblem at the parent pair for sequence [h1, h2], which is captured as
an inner child (stopping the publication chain) because it has the same output set ({s∗}) as
its parent.
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the funneling nature of many useful HLAs (e.g., the output set of H0 is always ∅ or {s∗}).
Algorithm 5.6 shows a modified DoPublish(d, c) that directly implements this change.

While this simple local approach can avoid many unnecessary refinement publications and
thus lead to significant compression of the graph (see Figure 5.15), it has several drawbacks.
First, it may still unnecessarily publish multiple refined subproblems with the same output
set. Second, and more importantly, it is not sufficient to avoid issues that can arise in cyclic
graphs, which we introduce in the next section. Figure 5.16 illustrates an example where
two subproblems subscribe to each-other’s refinement channels, leading to an infinite regress
of solution publications with the same output set under local output grouping.

One approach to forestall the infinite regress would be to use an incremental or lazy
publication strategy. In addition to adding more complexity to the overall search strategy,
however, this would also be less than ideal because information about the cycle is effectively
lost (and is just lazily unrolled in the publication stream). Thus, a more sophisticated method
for output grouping is needed that is able to produce refinements that preserve cycles in the
original graph.

Algorithm 5.7 shows pseudocode for such a method. The basic idea is to, in addition
to grouping refinements of d with the same reachable set d.output under d.inner , also hier-
archically group refinements of d with the same reachable subset of d.output into a single
publication at d. In other words, (with some minor caveats) only a single refinement should
be published at d for each reachable subset ⊂ d.output , which groups together all refine-
ments c passed to DoPublish(d, c) with that set. This leads to additional compression of
the graph, and moreover, guarantees termination even in the presence of cycles.

To implement this idea, we define a new subproblem type: a union subproblem, which
corresponds to a set of subproblems with the same input and output sets. This subproblem
stores a constituent set of subproblems d.irefs , which may grow over time, and a mapping
d.specmap of existing specializations of d as a function of input set.

Then, each subproblem d is augmented with a mapping d.refmap, which records the
union subproblems published under d indexed under their output sets. In DoPublish(d, c),
rather than directly publishing child c when it cannot be locally grouped into d, we add it
to an union subproblem with its output set, creating and publishing one if necessary.

Finally, we must extend Specialize(d, S) to handle union subproblems d. This requires
some care, since a union subproblem may grow to include itself recursively (e.g., as one side
of a pair in d.irefs), and thus directly specializing its constituents could lead to an infinite
loop. It turns out that this can be done easily and efficiently, however, by exploiting an
analogy between atomic subproblems and union subproblems (both represent collections of
immediate refinements of a sort). In particular, we simply make a new leaf union subproblem
d′ that looks like an atomic subproblem backed by d via subsumption. Then, our existing
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Figure 5.16: An examples of hierarchical output grouping, in a case where local (or no)
output grouping would result in an infinite publication chain. The top box corresponds to a
subproblem (I, h1), and the second to a refinement of this subproblem (I, [a1, h2]), where the
optimistic reachable set of a1 from I is also I. h1 also has a second refinement [h2, h3], which
leads to optimistic set O′ from I. Without hierarchical output grouping, the publication
of this refinement at the parent subproblem would generate a refinement publication at the
child, which would be republished at the parent, and so on ad infinitum (corresponding to
all plans of the form

[
a+1 , h2, h3

]
). With hierarchical output grouping, the publication is

wrapped in a union subproblem labeled HOG1. This resulting publication at the child is
wrapped in another union HOG2. Finally, the infinite regress is avoided when HOG2 is
added as a constituent of HOG1 at the parent, rather than being republished as a separate
subproblem.
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Algorithm 5.7 DASH-A*: Hierarchical Output Grouping
function MakeSubproblemDesc(i, o)

... /* previous code from Algorithm 5.3 */

d.refmap ←an empty mapping from output set to union subproblem
return d

function MakeUnionSubproblemDesc(i, o)
d′ ←MakeSubproblemDesc(i, o)
d′.irefs ← []
d.specmap ←an empty mapping from input set to union subproblem specialization
return d

function DoPublish(d, c)
if d.output = c.output then

u← d
else

u ← d.refmap[c.output ]
if u = undefined or u.specmap 6= [] or c.inner .summary .lb < u.inner .summary .lb

or c.outer .summary .lb < u.outer .summary .lb then
u ← d.refmap[c.output ]←MakeUnionSubproblemDesc(c.input , c.output)
u.outer .summary ← c.outer .summary
u.inner .summary ← c.inner .summary
Publish(d.channel , u)

u.irefs.Insert(c)

Connect(u.inner , c.inner)
Subscribe(c.channel , λ.x DoPublish(u, x))

function Specialize(d, S)
if d.input = S then return d
if d is union then

if d.specmap[S] 6= undefined then return d.specmap[S]
d′ ← d.specmap[S]←MakeUnionSubproblemDesc(S, d.output)
d′.subsumers ← [d]
s← a refinable leaf summary with no children and bound d.outer .summary .lb
d′.outer .summary ← d′.inner .summary ← s
return d′

else ... /* code from Algorithm 5.5 for atomics and Algorithm 5.4 for pairs */
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machinery automatically populates d′ with the specializations of the constituents of d if and
when d′ is subsequently selected for expansion. In addition to simplifying the code, deferring
the hard work in this way automatically results in proper handling of cycles.

The caveat mentioned above is that because union subproblems are open (admitting
the addition of new constituent subproblems), they do not have a single fixed semantics in
terms of the primitive refinements they represent. This can cause problems in several ways.
First, adding a new constituent to union d can actually decrease the cost of the best optimal
solution represented by d, whereas our search machinery assumes that lower bounds should
only increase. Second, if a new subproblem is added to d after it has been specialized, its
specializations would have to be added to the specialization of d, and so on. To avoid both of
these complexities, we simply create a fresh union subproblem in DoPublish when the old
one has already been specialized or when adding this child would decrease its lower bound.
Because these events can only occur a bounded number of times (there are only a limited
number of subsets to specialize to, or costs to decrease to) and should be relatively infrequent
in practice, this seems like a reasonable tradeoff of algorithmic efficiency for simplicity.

We conclude by noting that while this hierarchical output grouping machinery is some-
what heavyweight, it need not be applied at every subproblem. In particular, it suffices to
apply it only at atomic and union subproblems, and only those that may be involved in
certain kinds of cycles (although it may prove helpful elsewhere).

5.3.6 Caching and State Abstraction

With these improvements in place, we can introduce caching and state abstraction to yield
the final DASH-A* algorithm.

Algorithm 5.8 shows the trivial change required for caching: we simply cache atomic
subproblem descriptions, so that at most one description d exists for each atomic subproblem
(S, a) encountered during search. This can introduce cycles in both the AND/OR graph and
the “subscription graph.” However, the OZCF restriction ensures that Assumption 2.13 is
satisfied, and thus the AND/OR graph cycles are not problematic (for an appropriate search
algorithm, such as LDFS or AO∗KLD). Similarly, the hierarchical output grouping of the
previous section ensures that cycles in the subscription graph cannot lead to infinite loops
(or gross inefficiencies).

Finally, Algorithm 5.9 shows the changes for state-abstracted caching. The basic change
is just as in Section 3.1.2: atomic subproblems are cached under the state-abstracted pair
(EnterContext(s, a), a) rather than (s, a) directly. However, in this setting additional
changes are required to properly contextualize reachable sets of a state-abstracted sub-
problem in different contexts. (In Section 3.1.2 we were able to hide these details in the
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Algorithm 5.8 DASH-A*: Caching
function GetAtomicSubproblemDesc(p)

if cache[p] = undefined then
cache[p]←MakeAtomicSubproblemDesc(p)

return cache[p]

Algorithm 5.9 DASH-A*: State-Abstracted Caching
function GetAtomicSubproblemDesc((S, a))

S ← EnterContext(S, a)
if cache[(S, a)] = undefined then

cache[(S, a)]←MakeAtomicSubproblemDesc((S, a))

return cache[(S, a)]

function MakePairSubproblemDesc(S, l, r)
d←MakeSubproblemDesc(S,Contextualize(Contextualize(S, l.output), r.output))
... /* previous code from Algorithm 5.3 */

if l.output is a singleton (in context) then
... /* previous code from Algorithm 5.3 */

Subscribe(r.channel , λ.x DoPublish(d,MakePairSubproblemDesc(S, l, x)))
else

... /* previous code from Algorithm 5.3 */

Subscribe(l.channel , λ.x DoPublish(d,MakePairSubproblemDesc(S, x,
Specialize(r,Contextualize(S, x.output)))))

... /* previous code from Algorithm 5.3 */

return d

function Specialize(d, S)
S ← EnterContextOf(S, d.input)
if S = d.input then return d
... /* code from Algorithm 5.5 for atomic and Algorithm 5.7 for union cases */

if d is pair then
l′ ← Specialize(d.left , S)
r′ ← Specialize(d.right ,Contextualize(S, l′.output))
return MakePairSubproblemDesc(S, l′, r′)

function Expand(leaf )
... /* previous code from Algorithm 5.5 */

for [al, ar] ∈ ImmediateRefinements(d.hsp.actions[0], d.input) do
l← GetAtomicSubproblemDesc((d.input , al))
r ← GetAtomicSubproblemDesc((Contextualize(d.input , l.output), ar))
d.irefs.Insert(MakePairSubproblemDesc(d.input , l, r))

... /* previous code from Algorithm 5.5 */
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solution concatenation operator.) First, MakePairSubproblem(S, l, r) is extended to
take an additional argument S representing the true input set of the subproblem (since
l.input may represent a further abstracted version of S). Then, in every place the out-
put set of a child d of a pair was used previously, it is now lifted into the context of
S using Contextualize(S, d.output). Contextualize(S, S ′) returns a set S ′′ that in-
cludes all of the variable values from S ′, as well as values from S for any additional vari-
ables not contained in S ′. Similarly, when entering Specialize(d, S), we abstract S using
EnterContextOf(S, d.input), which retains the same variables of S that are present in
d.input .

5.3.7 Correctness of DASH-A*

By augmenting Simple Decomposed AH-A* with subsumption, output grouping, decom-
position, and state-abstracted caching, we arrive at the full DASH-A* algorithm. These
extensions can dramatically compress the AND/OR graph, and thus lead to much faster
planning, while preserving hierarchical optimality. This section proves correctness of this
final algorithm, which includes the latest version of each function defined in the previous
sections:

• From Algorithm 5.1: Expand, MakeRootNode

• From Algorithm 5.2: MakeNode, Connect, MarkUnrefinable

• From Algorithm 5.5: MakeAtomicSubproblemDesc

• From Algorithm 5.7: MakeSubproblemDesc, MakeUnionSubproblemDesc,
DoPublish

• From Algorithm 5.9: Specialize, Expand, GetAtomicSubproblemDesc, Make-
PairSubproblemDesc

Lemma 5.13. With hierarchical output grouping, all chains of the form x is a publication
of ... is a publication of z are finite.

Proof. Hierarchical output grouping ensures that the output set of each refinement publica-
tion of x is a strict subset of the output set of x. Thus, the length of any chain starting with
x is at most |x.output |, which is finite.

Lemma 5.14. Each call to Specialize must terminate.

Proof. In the worst case, Specialize(d, S) copies the entire “pair subgraph” below d, where
atomic and union subproblems are leaves and pairs have children d.left and d.right . While
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the underlying AND/OR graph may have cycles, this pair subgraph cannot. This is easy
to see, because the left and right subproblems of a pair d are passed as arguments to its
constructor, and thus cannot contain the as-yet-unconstructed d.

This is not the entire story, however, because when specializing a pair subproblem, the
resulting pair may immediately generate publications (before the call to Specialize returns).
This can happen when the left or right child passes the equivalent-input test (and thus is
not specialized, and may already have publications), or is a leaf corresponding to a cached
atomic or union subproblem, or is a newly-specialized pair recursively containing one of these
cases. We do not have to worry about these publications generating additional calls, since
the newly created pair subproblem cannot yet have any subscribers. However, each published
refinement itself is a newly created pair, and may generate its own publications, and so on.
By Lemma 5.13, these chains must be finite, and thus Specialize terminates.

Lemma 5.15. Each call to Publish must terminate.

Proof. The issue is that a publication might be caught by a subscriber, leading to another
publication, and so off to infinity. As in Lemma 5.13, however, hierarchical output grouping
prevents this from occurring.

Consider a hypothetical infinite recursive sequence of calls to Publish. First, note
that under hierarchical output grouping each subproblem can be published at most once.
Thus, this sequence must embody the publication of an infinite number of new subproblems.
Moreover, because pair subgraphs cannot have cycles, it must include an infinite number of
subproblems that are published by atomic nodes, or by unions published by atomic nodes,
and so on — call these atomic transitive refinements.

Now, publications cannot create new non-leaf atomic subproblems, and thus the total
set of all atomic subproblems that can publish refinements is fixed throughout a given call
to DoPublish. Moreover, each atomic transitive refinement d can publish at most a finite
number of types of nodes (one per ⊆ d.output), and the publication chain from each such
chain must be finite (by Lemma 5.13). Thus, the above infinite sequence must include some
subproblem type of some parent node infinitely many times.

This almost establishes a contradiction. The last remaining subtlety is that while each
atomic or union subproblem d can store at most one union refinement of each type in
d.refmap, each such refinement type may be re-generated due the “caveats” described in
Section 5.3.5 (specifically, specialization of the existing union, or the addition of a lower-
cost publication), and in principle this could allow for a recursive sequence containing an
infinite number of union subproblem tokens of the same type. To rule out this possibility, we
argue that a given union cannot be specialized while on the publication call stack. Then, the
remaining case (cost decrease) can happen at most a finite number of times, and Publish
must terminate.
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Consider a new union subproblem u, just created and Published within DoPublish.
For this union to be specialized before the call to Publish returns, it would have to be
embedded (somewhere within) in the right half of a left-expanding pair subproblem. Now,
new pair subproblems can be generated by publications in only two ways. First, if caught
by a right-expanding pair, the generated pair will always also be right-expanding. Second,
if caught by a left-expanding pair, the publication is always embedded on the left of the
generated pair. In this case, specialization of the right side of the pair may ensue. However,
the right side of a left-expanding subproblem is always an atomic subproblem, and so this
can not generate new pairs or specialize u.

Finally, Lemma 5.9 needs to be updated to account for the enhancements to DASH-A*.

Lemma 5.16. (Extension of Lemma 5.9). Consider any subgraph rooted at root.outer,
where one child is selected at each non-leaf OR-node, both children are selected at each
AND-node, and all leaf nodes have finite lower cost bound. Let p1, ..., pn be the sequence of
leaf subproblems corresponding to this subgraph, and a1, ..., an be the corresponding actions.
Then for i ∈ [1, n], pi.input ⊇ EnterContext(Ō[a1,...,ai−1]({s0}), ai). Moreover, if p1, ...
pk is a prefix of this sequence containing only primitive actions, then for i ∈ [1, k + 1],
pi.input = {EnterContext(T (s0, [a1, ..., ai−1]), ai)}.

Proof. The basic proof strategy of Lemma 5.9 still applies, but must be updated to account
for state abstraction and output grouping.

An effective prefix can be extracted in the same way, except that union subproblems must
be expanded into a set of their constituents, yielding a factored prefix. Then, any prefix of
leaves in the subgraph is guaranteed to be a refinement of some sequence consistent with
this factored prefix.

Due to state abstraction, however, the output set of a subproblem in the effective prefix
is not necessarily equal to the input of the next subproblem. Instead, we prove by in-
duction that for any effective prefix p ′1, ..., p

′
l corresponding to actions a′1, ..., a

′
l, p ′l .input =

EnterContext(Ō[a′1,...,a′l−1]
({s0}), a′l). By the definition of state abstraction, if p ′l−1.input =

EnterContext(Ō[a′1,...,a′l−2]
({s0}), a′l−1) then it must also be the case that p ′l−1.output =

EnterContext(Ō[a′1,...,a′l−1]
({s0}), a′l−1).

However, to get from p ′l−1.output to p ′l .input we must consider more context, because
some variables irrelevant to p ′l−1 may be relevant to p ′l . For each variable v relevant to p ′l ,
let j < l be the last action in the effective prefix for which v was relevant (or 0 if v was
not relevant to any previous actions). Then, consider the path from p ′j to p ′l in the active
subgraph, which travels up from p ′j to some least common ancestor pair plca, and then back
down to p ′l . At each hop along this path where the parent is not a pair, the output set must
remain identical. At pairs, the value of v is preserved by the calls to Contextualize, and
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the assumption that no intermediary actions can affect v. Thus, p ′l receives the correct value
for each relevant variable, or p ′l .input = EnterContext(Ō[a′1,...,a′l−1]

({s0}), a′l). Applying

this result to the effective prefix of pi yields the first part of the lemma.

For the second part, we must update the proof of the auxiliary result. First, the context-
relative definition of singleton does not change the result because of the nesting property of
contexts, and because if a singleton output is lifted into a singleton context, the result must
also be a singleton. Second, due to output grouping, now the left child of a left-expanding
pair can be the inner node of a union or atomic subproblem. However, in either case the
children of this inner node must be pairs with an identical output set, which again violates
the inductive hypothesis. Given this updated result, the second part of the lemma follows
as before.

Theorem 5.17. DASH-A* with AO∗KLD is hierarchically optimal in OZCF hierarchies.

Proof. Lemmata 5.7 and 5.10 are preserved by all of the above improvements (when the
definition of representation is extended in the obvious way for union subproblems). Together
with Lemma 5.16, this ensures the full DASH-A* can only return hierarchically optimal
solutions. Lemma 5.10 (substituting Lemma 5.16 for Lemma 5.9 in the proof) guarantees
that DASH-A* cannot get stuck, and so it only remains to prove termination.

As mentioned above, the OCZF restriction ensures that both UpdateAncestors and
MarkUnrefinable must terminate. Lemmata 5.14 and 5.15 establish that each Expand
must terminate, despite the presence of cycles. Finally, because the total number of unique
atomic subproblems constructed by GetAtomicSubproblemDesc is finite (at most |(A∪
Â)|2|S|), only a finite number of Expand operations can be carried out before termination.

5.3.8 Analysis of DASH-A*

This section first demonstrates a class of problems for which DASH-A* is exponentially faster
than previous algorithms, including DSH-UCS, AH-A*, and Simple Decomposed AH-A*. It
then concludes with a discussion of future directions for improving DASH-A*.

Consider a planning problem consisting of n subproblems p1, . . . , pn in sequence. For
example, perhaps we are building a large software system, where each pi corresponds to
writing a module with a fixed API, which pi+1 builds upon to perform its function. Each
subproblem pi may have exponentially many goal states (e.g., source code), but the variables
relevant to later subproblems (e.g., the API) are the same in every goal state. Now, consider
a hierarchy where H0 expands to [Solve(p1), . . . ,Solve(pn)]. In the optimistic outcomes
Si+1 = ŌSolve(pi)(Si), the conditions established by pj for j ≤ i are known, but exponentially
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many combinations of irrelevant variables from the previous subproblems are also allowed
(represented implicitly). To solve this problem, DASH-A* can choose to first solve subprob-
lem pn from optimistic set Sn, finding the optimal plan to reach s∗ (the goal of the combined
problem). Then, it can choose to solve pn−1 next. Crucially, while refinements in pn−1 will
generate specializations of the output set Sn, the variables relevant to pn remain the same,
and so DASH-A* automatically shares the same atomic subproblem corresponding to pn
between all refinements in pn−1. It continues working backwards until an optimal solution to
the entire problem is found, in time polynomial in n. In contrast, previous angelic algorithms
(e.g., AH-A*) will be forced to consider the exponential number of combinations of solutions
to the various subproblems, and those that just exploit state abstraction without angelic
descriptions (e.g., DSH-UCS) will be forced to evaluate the exponentially many solutions to
each individual subproblem.

In reality, things usually do not decompose so cleanly. Suppose that we tweak our example
slightly, so that one of the state variables vi connecting pi with pi+1 has different values in
different goal states of pi. In this case, DASH-A* again begins with pn, and may get most of
the way to a concrete solution – until it gets stuck, needing to know the value of vn−1. At this
point it moves backwards to pn−1, eventually producing sets with known values (and costs)
for each value of vn−1, and pn will be specialized on these inputs. However, the initial effort
spent on the general version of pn is not wasted; subsumption bounds ensure that, rather
than solving pn from scratch for each such value, we quickly “patch up” our original partial
solution, in the best case taking time logarithmic in the optimal solution length of pn. This
interleaving of refinements to earlier subproblems and specialization of later subproblems
continues until the entire problem is solved. In the worst case, each subproblem pi is solved
once for each possible value of the connecting variable vi−1, which is the best that we could
hope for.

Thus, by combining features of previous algorithms such as AH-A* and DSH-UCS,
DASH-A* can be exponentially more efficient than either on a given problem. In the worst
case, the number of description evaluations performed by DASH-A* can be no greater than
AH-A*, and typically only a constant worse than DSH-UCS (due to HLA evaluations, in
addition to the primitive evaluations done by both algorithms).

The version of DASH-A* presented is the simplest angelic algorithm we could devise that
could effectively exploit state abstraction and decomposition while efficiently handling cycles
and reusing work spent refining subproblems with abstract input sets. A number of further
improvements are possible, the details of which we leave for future work.

A first observation is that the algorithm presented above only takes opportunistic advan-
tage of subsumption. Considerably greater sophistication is possible. For instance, one could
attempt to use subset-lookup data structures to efficiently discover subsumption relationships
not created by specialization. One could also actively propagate bounds along subsumption
links, e.g., as a part of UpdateAncestors, to ensure that each node is assigned the best-
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possible bound derivable from information in the current graph (the algorithm above only
does this at the time the link is first discovered).

Another set of improvements involve laziness, and the granularity of search operations.
With some complications, it is possible to construct a version of DASH-A* wherein the opti-
mistic description evaluation for each atomic subproblem is an explicit search step (alongside
Expand), rather than an automatic part of creating the subproblem. Along the same lines,
each publication receipt could be made a search step as well, avoiding the potentially many
operations performed by DASH-A* handling publications at nodes that are not currently
thought to be part of an optimal solution.

Next, versions of the algorithm that can handle more expressive types of angelic de-
scriptions could lead to faster convergence and fewer overall subproblem expansions.9 For
one, non-simple valuations (where the costs assigned to states in the reachable set can vary)
could much more accurately capture reachability information in some cases. Another open
problem is how pessimistic descriptions can be used for pruning in this framework, as we
saw for AH-A*. The next section describes one way to extend DASH-A* to use pessimistic
descriptions for bounded suboptimal search, but more powerful applications of pessimistic
descriptions are likely possible.

Finally, the overhead of top-down search may be quite high in some cases, for example
with very deep and narrow hierarchies (e.g., for navigation subproblems). In such cases, one
might consider hybrid algorithms that use alternative search strategies at different nodes in
the tree; for example, one could embed a version of DSH-UCS to more efficiently handle
navigation subproblems.

5.4 Suboptimal Search

While our focus thus far has been on hierarchically optimal algorithms, in practice it may
be desirable to trade off a bit of solution quality for (often, a lot of) computation time.
Given an optimal search algorithm, it is quite easy to construct bounded suboptimal variants
that do just this, searching for a solution whose cost is at most a given multiple of the true
hierarchically optimal cost. This section outlines preliminary work in this area, including a
recipe for constructing bounded suboptimal versions of the above algorithms, and a theoret-
ical analysis demonstrating that bounded suboptimal search may be especially effective for
angelic hierarchical planning.

Weighted A* (see Section 2.1.3.3) is a simple variant of A* in which the heuristic value is
multiplied by a weight w ≥ 1, and the cost of the discovered solution is guaranteed to be at
most w times the optimal solution cost. A simple way to make a bounded suboptimal variant

9The opposite tack may also be of interest, i.e., projecting to a particularly constrained normal form to
increase the potential for sharing.
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of AH-A* or DASH-A* is to just directly apply this idea. The only stumbling block is that
there is no longer a single “heuristic”; instead, there are optimistic cost bounds computed
by HLAs at various levels, which are added together (along with the primitive action costs)
to produce the overall bound for the plan.

A first attempt to apply weighted A* would be to leave primitive costs as they are, and
multiply all HLA cost bounds by w. While correct, this would be ineffective. For one, it
may take many refinements of H0 before primitive actions are generated, and during this
time the weighting has no effect on search (because all plan costs are simply scaled by w).
Moreover, one intuition behind weighted A* is that the weight w helps correct for the bias
in the heuristic, which tends to underestimate costs in order to preserve admissibility. In
an angelic search, however, we expect each HLA descriptions to have a different bias –
in particular, higher-level HLAs may tend to have greater bias, because they operate at a
greater level of abstraction. We can exploit this intuition by using a different weight wa > 1
for each HLA, so that there is a smoother continuum from primitives (wa = 1) to the top-
level H0. It is easy to see that the resulting algorithm has a sub-optimality bound equal to
the greatest weight wa, and may be significantly more effective than ordinary weighted A*.

Even more promising is the idea of using pessimistic descriptions to aid in bounded
suboptimal search. These bounds can serve at least two distinct purposes in this setting.
First, if action a has optimistic cost bound o and pessimistic bound p, it can be assigned
heuristic cost min(p, o ·wa), or perhaps even min(p, o ·wa, p+o2 ), while preserving the weighted
A* guarantee. This ensures that we do not overestimate costs too much when we have
pessimistic information indicating that the optimistic bound is fairly accurate.10 Second,
if the current optimistic bound on the best plan is o, we can use pessimistic bounds to
immediately commit to any plan with pessimistic bound p < o ∗w. Unlike in optimal search
where bounds must become exact for commitment, here we may be able to commit to a
candidate plan at a high level given very few refinements.

AH-A* and DASH-A* can very easily be extended to compute pessimistic bounds as well
as optimistic ones, by simply replacing optimistic input and output sets with pairs (SO, SP )
of optimistic and pessimistic reachable sets.11 The corresponding bounds (and perhaps
weighted combinations as well) can then be summed along a plan in AH-A*, or incorporated
into summaries in DASH-A*.

We conclude with a rough theoretical analysis indicating that bounded suboptimal search
and angelic hierarchical planning may prove to be an especially effective combination in

10Along these lines, an even more promising approach would be to use Explicit Estimation Search (EES)
(Thayer and Ruml, 2010), which can explicitly make use of non-admissible bounds, and also takes the amount
of work left to refine a plan into a solution into account.

11An even better solution in DASH-A* would be to use separate AND/OR graphs for optimistic and
pessimistic bounds, along with a third graph for their combinations. This would allow sharing of information
about a given optimistic set Os among all (So, Sp) pairs in which it is encountered.
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Figure 5.17: A graphical depiction of the potential power of bounded suboptimal hierar-
chical search. Suppose that resolving half the uncertainty in our heuristic bounds requires
expanding half of the length (left) or hierarchical depth (right) of an optimal solution. The
total number of node expansions required can be much lower in the hierarchical case.

practice. Consider a very simple primitive planning problem with two unit-cost primitive
actions, in which any sequence of 1024 primitives is an optimal solution (with cost 1024).
Suppose that there are no repeated states (i.e., the state is just a bit string recording which
actions have been done thus far). Finding a provably optimal solution in this planning
problem with anything less than a perfect heuristic has cost > 21024.

Now, suppose that we are willing to settle for a bounded suboptimal solution with w = 4
3
,

and moreover, an oracle has already supplied us with a solution a with cost 1024 (not so
great a feat, in this case). To prove that a is acceptable given our sub-optimality bound, we
must prove that the optimal solution has cost ≥ 768.

Now, our heuristic matters (a lot): with no heuristic, we would have to run A* for > 2768

steps, whereas a perfect heuristic could prove the bound with no search whatsoever. In the
more interesting middle ground, suppose that h(s) = c∗(s)

2
, i.e., the heuristic underestimates

the true cost by a factor of 2. In this case, we can prove the bound with only 2512 steps
of A* — an impressive reduction from 2768, but still far from tractable (see the left side of
Figure 5.17).

Suppose that, instead, we used AH-A* to prove the bound. Again keeping things simple,
suppose that each HLA h at level i has two refinements, each containing two HLAs at level
i+1 (and the primitives lie at level 10). Moreover, suppose that the accuracy of the optimistic
descriptions increases linearly with depth, so that an HLA at level i underestimates the true
cost by a factor of 0.5 + 0.05i. Thus, the error at the top-level matches our state-space
heuristic, and at the bottom level the primitive descriptions are exact. Now, suppose that
we run AH-A* with this hierarchy, always refining the highest-level action remaining until
the bound is established. It is easy to see that we hit the bound when all plans are at level
5, at which there are 231 possible plans, which is within the realm of tractability (see the
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right side of Figure 5.17).

Thus, angelic bounded suboptimal algorithms have the potential to be astronomically
faster than non-hierarchical versions. By tweaking the numbers slightly, it is easy to generate
even more impressive results; for instance, achieving a sub-optimality bound of 1.4 requires
considering about 2440 primitive plans, versus 13 hierarchical plans. Of course, these precise
results depend on the highly idealized problem structure and heuristic accuracies considered,
which may not be representative of many real-world problems. Nevertheless, the ability of
angelic bounded suboptimal algorithms to divide uncertainty across a plan and reduce it
uniformly via balanced refinement is unique, and may prove to be a very effective tool for
real-world decision-making.
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Chapter 6

Experimental Results

This chapter provides empirical evidence for the claims made in this thesis. The em-
pirical performance of (hierarchically) optimal algorithms introduced in previous chapters is
compared on several planning domains: the nav-switch domain introduced in Section 2.1.2.1,
the discrete manipulation domain introduced in Section 2.1.2.3, and a third “bit-stash” do-
main based on the example discussed in Section 5.3.8. After summarizing the implemented
algorithms and experimental set-up, we provide empirical results and discussion for each
planning domain in turn.

6.1 Implemented Algorithms

All of the search algorithms discussed in this thesis have been implemented in the Clojure
programming language, along with the aforementioned planning domains. We first briefly
review the algorithms tested, including a brief discussion of relevant implementation details
and variants. The algorithms are divided into four broad classes.

• “Flat” search algorithms, which operate directly on a planning domain without using
a hierarchy (see Section 2.1):

– UCS: Uniform-Cost Search, i.e., A* with heuristic h(s) = 0 (see Section 2.1.3.2).

– A*: A* search with a domain-specific, consistent heuristic function (see Sec-
tion 2.1.3.2).

• Simple hierarchical search algorithms, which use a planning domain and a hierarchy
(see Section 2.3.2) but no angelic descriptions:

– DFBB: Depth-First Branch-and-Bound, the algorithm used for optimal search
by previous hierarchical planning systems such as SHOP2. This is a depth-first
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graph search over the space described in Section 2.3.2.3, with pruning of plans
whose cost is greater than that of the current best-known solution. We initialize
this bound with the most accurate estimate available, and randomize the order
of successors.

– H-UCS: Hierarchical Uniform-Cost Search, a simple OR-search over “hstates”
consisting of a state and remaining plan to do from this state, with repeated
hstate elimination (see Section 2.3.2.3).

– SAHTN: State-Abstracted Hierarchical Task Network planner, which exhaus-
tively enumerates all hierarchically optimal solutions, using decomposition and
state-abstracted caching to gain efficiency (see Section 3.2). The implemented
version includes a “Dijkstra” modification that enables its application to cyclic
hierarchies (Wolfe et al., 2010).

– DSH-LDFS: Decomposed, State-abstracted, Hierarchical Learning Depth-First
Search, which searches over the decomposed graph explored by SAHTN in cost
order, and thus avoids examining parts of the search space that cannot be reached
in less than the hierarchically optimal solution cost (see Section 3.3.1).

– DSH-UCS: Decomposed, State-abstracted, Hierarchical Uniform-Cost Search,
which performs the same basic operations as DSH-LDFS in a “flattened” manner
(using a single priority queue) to reduce overhead.

• Variants of Angelic Hierarchical A* (see Section 5.1), which use angelic descriptions
(see Chapter 4) but not decomposition or state abstraction:

– AH-A*-opt: Optimistic Angelic Hierarchical A*, which extends H-UCS to in-
corporate heuristic cost bounds provided by optimistic descriptions (see Sec-
tion 5.1.1). The implemented algorithm eliminates duplicate “hstates,” caches
the optimistic description evaluations for plan suffixes, and always refines the
first HLA in a candidate plan.

– AH-A*: Full Angelic Hierarchical A*, which includes pruning using upper cost
bounds provided by pessimistic descriptions (see Section 5.1.2). Specifically, strict
pruning is computed over the set of all generated plans, and weak pruning (includ-
ing duplicate plan elimination) is computed only over generated but unexpanded
plans to guarantee the acyclic pruning requirement. Optimistic and pessimistic
descriptions on suffixes are cached, and the first HLA in a plan is always refined.

– AH-A*-strict: A variant of the previous algorithm that only carries out strict
pruning (and also eliminates duplicate plans).

• Variants of DASH-A* (see Section 5.3), which use angelic descriptions in a decomposed
hierarchical search:
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– DASH-A*: Decomposed, Angelic, State-abstracted, Hierarchical A*, which com-
bines the decomposed, state-abstracted AND/OR graph used by DSH-LDFS with
angelic descriptions and additional techniques (see Section 5.3). The implemented
version of the algorithm uses optimistic, but not pessimistic angelic descriptions.
This version uses default settings: state-abstracted caching, local output grouping
(see Section 5.3.5), expands the rightmost refinable HLA in a plan, and searches
using AO∗KLD (see Section 2.2.4). All variants of DASH-A* discussed below use
these same settings except where otherwise noted.

– DAcH-A*: A variant of DASH-A* with subproblem caching, but no state ab-
straction (see Section 5.3.6).

– DAxH-A*: A variant of DASH-A* with no subproblem caching whatsoever (i.e.,
without the improvements of Section 5.3.6).

– DASH-A*-ldfs: A variant of DASH-A* with the AO∗KLD search strategy re-
placed by LDFS (see Section 2.2.3.3).

– DASH-A*-hog: A variant of DASH-A* with hierarchical output grouping (see
Section 5.3.5).

– DASH-A*-first: A variant of DASH-A* that always expands the first HLA in
a plan.

– DASH-A*-sh: A variant of DASH-A* that always expands a shallowest HLA in
a plan. Each HLA type is manually assigned a depth, with H0 being shallowest,
and lowest-level HLAs (such as Nav and Reach) being deepest. We also consider
combinations of this refinement strategy with the other variants discussed above.

Next, we describe implementation details shared between the above algorithms.

• States are represented as persistent (immutable) maps from state variable names to
variable values. Primitive actions are tuples consisting of a name, precondition map,
effect map, and cost. For the flat search algorithms (UCS and A*), applicable primitive
actions are generated using a successor generator data structure (see Section 2.1.3.4).

• Closed lists and caches are (mutable) hash tables, keyed on states (or state sets) and
action sequence names (where applicable).

• Factored state sets are represented like ordinary states, except that each state variable
name maps to a set of possible values. High-level actions and their refinements and
angelic descriptions are represented with hand-coded procedures that operate on these
state sets (see Section 4.3.3).

Finally, the configuration used for running experiments is as follows. For each domain, a
subset of algorithms and problem configurations of increasing size was selected. Then, five
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random instances of each problem size were generated, and each algorithm was tested once
on each instance (except in the bit-stash domain, in which each algorithm was run three
times on the single instance for each configuration). Each test was conducted on a single
Intel Xeon 3.00 GHz CPU with 1.5 GB of RAM running Ubuntu Linux, inside a fresh 64-bit
Java 6 Server VM that was warmed up for 10 seconds to ensure all algorithms were fully
(JIT) compiled before measurements were taken. Algorithms were run until they returned
a (hierarchically) optimal solution, or they exceeded 1 hour of run-time or 512 MB of heap
space. A number of statistics were collected on each run, including CPU run-time and a
count of the total number of primitive and angelic descriptions evaluated. For each algorithm
and problem configuration, we report medians of these statistics over the instances tested.

6.2 Nav-Switch

The first results we report are on instances of the nav-switch domain (see Section 2.1.2.1).
Each problem instance includes 20 randomly generated switch locations on an n × n grid,
where n is increased from 5 to 500. For (flat) A* search, the heuristic assumes that only
low-cost navigation actions will be taken (i.e., h(s) = 2(|sx − gx| + |sy − gy|)). For the
hierarchical algorithms, the optimality-preserving hierarchy described in Section 2.3.2.2 is
used. Angelic hierarchical algorithms are given exact optimistic and pessimistic descriptions
for Nav, an optimistic bound for Go equal to the A* heuristic, and a pessimistic bound for
Go corresponding to the exact cost of directly navigating to the goal without further Flips.

While the nav-switch domain is fairly uninteresting from a combinatorial planning per-
spective (the state space contains only 2n2 states), it can still provide considerable insight
into the performance of hierarchical planning algorithms.

First, while the state space is small, the number of potential hierarchical plans is astro-
nomically large: with 20 switch locations, there are on the order of 20! possible acyclic plans
at the Nav level. In particular, along the way to the goal the agent can Navigate to and
Flip at any sequence of zero to all 20 switch locations. Hierarchical planning algorithms
that cannot exploit the redundancy in these plans can quickly get lost in this space, and
thus perform much worse than a simple state-space search algorithm like A*.

On the other hand, there is also something to be gained from hierarchy in this domain.
Flat algorithms such as uniform-cost search or A* (with anything but a perfect heuristic)
will typically have to explore at least half of the state space to find an optimal solution, and
thus have O(n2) runtime. In contrast, angelic search algorithms are given exact cost bounds
for Nav; if they can quickly zero in on an optimal high-level plan (consisting of Nav HLAs
and primitive actions), they can in principle refine this to an optimal primitive plan in linear
time, leading to an overall O(n) runtime.
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Figure 6.1: Median run-times for each implemented search algorithm, over five n × n nav-
switch instances with 20 randomly generated switch locations. Algorithms are sorted in
order of decreasing run-time. Top: results for all implemented search algorithms. Bottom:
detail view including only the faster algorithms.
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Figure 6.1 shows median runtimes for the algorithms discussed in the previous section
on these nav-switch instances. As expected, baseline non-hierarchical algorithms UCS and
A* exhibit runtime roughly quadratic in n, with A* being roughly twice as fast (depending
on the accuracy of the heuristic in a particular selection of random instances).

At the far left, the non-angelic hierarchical algorithms DFBB, SAHTN, DSH-LDFS,
DSH-UCS, and H-UCS all perform very poorly for essentially the reason discussed above.
Specifically, the hierarchical search space contains roughly 20 × 2n2 “hstates” of the form
(s, [Nav,Flip,Go]), which is much larger than the reachable state space. For SAHTN the
situation is even worse; it exhaustively solves for all 212 possible Navigation plans between
key locations, nearly all of which will not appear in any high-quality plans. DFBB performs
the worst of the bunch, since it may explore each “hstate” many times along different paths
from the root.

Next, AH-A*-opt and AH-A*-strict variants of Angelic Hierarchical A* perform roughly
a constant factor worse than flat A*. The heuristic bounds provided by optimistic descrip-
tions effectively rule out almost all of the possible high-level plans, avoiding the pathologies
exhibited by the non-angelic hierarchical algorithms. However, without weak pruning they
are doomed to explore all O(n2) optimal solutions for each Navigation action, and may do
so for several promising high-level plans. In contrast, full AH-A* with weak pruning exhibits
roughly linear run-time, since weak pruning ensures that each navigation action is solved
with only O(n) evaluations. Its performance can vary greatly, however, depending on the
number of promising high-level plans that it must explore.

Finally, most of the DASH-A* variants exhibit the best performance, with fairly consis-
tent, roughly linear runtime in problem size. Interestingly, they manage to do so without
pessimistic descriptions or pruning. The reason is that they refine the final HLA in each
plan first, generating sequences containing only Nav and primitive actions before refining
any Navigation actions. Because the optimistic descriptions of Nav are exact, an optimal
high-level solution is discovered at this level, and only Navigation actions in this solution
are ever refined. Moreover, each Navigation action can be extended to an optimal primitive
solution with only linearly many HLA expansions, so long as ties are broken consistently at
OR-nodes.

Among the DASH-A* variants, only DAxH-A* and DASH-A*-first seem to perform
super-linearly. The reason is that the former cannot share identical Navigation subproblems
that arise in different plans, and the latter is not able to zero-in on an optimal high-level
solution before beginning navigation planning. Variants DASH-A*, DAcH-A*, and DASH-
A*-hog perform almost identically, as would be expected: state abstraction and hierarchical
output grouping do not have any effect in this domain. Finally, DASH-A*-ldfs performs the
best, due to lower overhead updating the summaries of ancestors than AO∗KLD.
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6.3 Discrete Manipulation

Next, we report results on instances of the discrete manipulation domain (see Section 2.1.2.3).
Each problem instance is a 20× 20 grid with a 2× 3 table in each corner and a 3× 3 table
in the center, and a gripper radius of 1. Difficulty is controlled by increasing the number of
object tasks that must be completed by the robot: each object begins at a random location
on one of the tables, and must be delivered to one of 4 randomly chosen locations on a
different table. For each possible pickup and putdown location, two possible base positions
are sampled. Because each object can be put down at multiple locations, the reachable state
space is exponential in the number of objects.

On this domain, we consider a subset of the algorithms tested in the nav-switch domain.
In particular, we did not implement a general heuristic or pessimistic descriptions in this
domain, so we omit A* and the AH-A* algorithms with pruning. Hierarchical algorithms
use the hierarchy described in Section 2.3.2.2, and the angelic descriptions described in
Section 4.3.3

In addition to the features captured by the nav-switch instances, discrete manipulation
instances include an exponential state space, deep hierarchies with many choice points,
large reachable sets, and ample opportunities for exploiting state abstraction. Moreover, as
discussed in the next chapter, the domain is an accurate representation of the structure of
real mobile manipulation problems, and previous work has applied a version of this hierarchy
for mobile manipulation planning on a physical robot (Wolfe et al., 2010).

Figure 6.2 shows run-times and counts of (primitive and optimistic) description evalua-
tions for the algorithms tested, on discrete manipulation instances of increasing difficulty.

UCS and H-UCS scale poorly, due to the exponentially large state space (and even larger
“hstate” space). AH-A* performs better, because its optimistic descriptions effectively rule
out many courses of action at the high-level, but without pruning it too quickly falls short.

Interestingly, despite its exhaustive nature, SAHTN scales significantly better; it seems
that state abstraction is especially powerful in this domain. Manipulations involving only a
single object on a given table do not depend on the positions of other objects, and exploiting
this observation can dramatically cut down on the combinatorial nature of the domain. As
expected, DSH-LDFS and DSH-UCS improve on this further, by avoiding expanding HLAs
corresponding to tasks that cannot be reached with less than the hierarchically optimal
solution cost.

Finally, the DASH-A* variants perform the best over the range of problem sizes tested;
while their runtime is still exponential in the number of objects, it is an order of magnitude
faster than SAHTN and many orders of magnitude faster than UCS or H-UCS. However,
it is not clear whether this trend would continue for larger problem sizes, as the runtime of
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Figure 6.2: Median run-times (top) and number of description evaluations (bottom) for
search algorithms, over five discrete manipulation instances with randomly generated object
positions and goals. Algorithms are sorted in order of decreasing run-time or evaluations.
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DSH-UCS is also growing slower over the tested range of problem sizes than the DASH-A*
algorithms. This is perhaps surprising, since the heuristics of DASH-A* should result in
it examining fewer primitive subproblems than non-heuristic algorithm DSH-UCS (under
the same refinement strategy). There are several complementary explanations for this scal-
ing behavior. First, DASH-A* incurs significant overhead due to its optimistic description
evaluations on state sets (which have not been optimized, and could likely be sped up sub-
stantially), top-down search strategy, and additional data structures and bookkeeping, all
of which can grow with the complexity of the problem instance and size of the resulting
AND/OR graph. Second, while in a problem with few objects the optimal task ordering
may be obvious at the high level, as the problems grow larger the number of near-optimal
task orderings grows quickly. Moreover, the number of state-abstracted contexts each sub-
problem appears in also increases, and every such context must prove heuristically expensive
for DASH-A* to avoid expanding it.

All variants of DASH-A* perform similarly, except for DAxH-A*, which begins to fall
behind on larger instances due to the lack of caching. The best variant is DASH-A*-sh,
which always expands the shallowest HLA in a candidate plan, effectively focusing on the
regions of greatest uncertainty first. The other options are examined in combination with this
feature, except for LDFS (which is incompatible with the shallowest choice, which does not
satisfy the consistency property that LDFS requires). Again, hierarchical output grouping
has little effect, because multiple refinements with the same output subset do not arise in
this domain. Perhaps most interestingly, despite the competitive performance of DSH-UCS
in this domain, ablating state abstraction has little effect on the performance of DASH-
A*. It seems that the angelic heuristics already effectively rule out most of the repeated
subproblems that would otherwise arise, and so state abstraction has little more to add.

The bottom chart plots median description evaluations for the same experiments. The
results are qualitatively similar, with a few interesting deviations. Most noticeably, the
description counts for the non-angelic decomposed algorithms are roughly constant across
problem size. The reason is that each primitive action is evaluated only once in each state-
abstracted context, and the number of such possibilities is dominated by the large number
of potential base navigation actions. The angelic algorithms manage to avoid many of these
primitive evaluations, but they also evaluate more and more optimistic descriptions with
increasing problem size. Their relative ordering is roughly the same as for run-time, with
differences somewhat more pronounced. It seems that expanding the shallowest HLA does
have a significant effect on the number of description evaluations, but much of this difference
is offset by the greater overhead incurred by a balanced refinement strategy.
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6.4 Bit-Stash

Finally, we report results on a synthetic “bit-stash” domain roughly corresponding to the
example in Section 5.3.8, which was constructed to illustrate that the combination of angelic
descriptions and state abstraction in DASH-A* can exponentially outperform either feature
alone. This domain consists of a sequence of N identical subproblems. The task in each
subproblem is to “stash” k ones in a bit-stream of length 2m. Each subproblem solution
consists of 2m primitive actions, each of which sets the ith bit in turn. Setting the ith bit to
0 has cost 1, and setting it to 1 has cost 1 + i; thus, the optimal solution is always to stash
the one bits in the first k positions.

The domain captures the features described in Section 5.3.8. First, each subproblem
has a very large number of solutions, which is problematic for algorithms such as DSH-UCS
that lack high-level heuristics. Second, there are an exponential number of combinations of
solutions to different subproblems, which is problematic for algorithms such as AH-A* that
lack state abstraction.

We consider a simple hierarchy for this domain. The top-level actionH0 is right-recursive,
generating a SetK(s, 0, 2m, k) HLA followed by a recursive H0 (or Goal if all subproblems
are solved). SetK(s, l, u, k) generates a primitive action sequence that sets bits l through
u in subproblem s, including exactly k one bits. Its refinements [SetK(s, l, l + u−l

2
, x),

SetK(s, l + u−l
2
, u, k − x)] partition the sequence, ranging over x ∈ [0, k] (or corresponding

primitives, if u− l = 1). Its optimistic description possibly sets each bit in its region to 0 or
1, with cost bound u− l + w(l + (l + 1) + . . . (l + k − 1)), where w ≤ 1 is a discount factor
modeling heuristic inaccuracy.

We compare UCS, DSH-UCS, AH-A*-opt, and DASH-A* on instances of this domain
of increasing size, with k = 3 and w = 0.9. We consider three scenarios: increasing the
subproblem size for a fixed number of subproblems, increasing the number of subproblems
of a fixed size, and increasing both subproblem size and count simultaneously.

Figure 6.3 shows median runtimes for these four algorithms as we increase either sub-
problem size or count.

As we increase subproblem size for a single subproblem, all algorithms except DASH-
A* quickly fail to scale. As expected, the best competitor is AH-A*, whose heuristics can
rule out many of the suboptimal plans at the high-level. However, AH-A* is still at a
disadvantage to DASH-A*, because the larger number of potential plans are represented
much more compactly in the latter algorithm’s decomposed data structures.

As we increase the number of subproblems for fixed m = 3, we also see the expected
result: UCS and AH-A* quickly fall victim to the exponential number of combinations of
solutions to different subproblems. In contrast, state abstraction in DSH-UCS and DASH-A*
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Figure 6.3: Median run-times for three runs each of four algorithms, over bit-stash instances
of increasing subproblem size (top) or count (bottom).
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prevents them from considering these combinations, allowing them to scale gracefully with
subproblem count.

Finally, Figure 6.4 shows results for simultaneously scaling N and m. As suggested by
the previous results, neither DSH-UCS or AH-A* can cope with both types of complexity,
and all algorithms except DASH-A* scale very poorly. The bottom chart depicts the same
results on a linear scale, where it is clear that the other algorithms are scaling exponentially
with problem size, whereas DASH-A* seems to scale roughly quadratically (as would be
expected, as discussed in Section 2.2).
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Chapter 7

Related Work

This chapter draws connections between the research reported above and related work
not discussed in Chapter 2. Each section attempts to cover a different area of work, although
some topics cut across these boundaries and are discussed in multiple sections.

7.1 Planning

We begin by discussing related work in three areas of planning: explanation-based learning,
nondeterministic planning, and hierarchical task network planning.

7.1.1 Explanation-Based Learning

Explanation-Based Learning (EBL, (Mitchell et al., 1986)) is a powerful form of state ab-
straction, wherein deductive inferences (e.g., about discovered dead ends in the search space)
are generalized, stored, and reused throughout the search space. Specifically, given an exam-
ple of a target concept (e.g., a dead end), the method first constructs an explanation (e.g.,
proof) of why the example satisfies it, and then generalizes it to its weakest preconditions,
generating a control rule that may be applicable in many future situations.

Perhaps most notably, cognitive architectures PRODIGY (Minton, 1988) and SOAR
(Laird et al., 1987) have successfully used variants of EBL to learn control knowledge at
various levels of abstraction. Work since has applied EBL to planning (Kambhampati, 1996)
and reinforcement learning (Dietterich and Flann, 1997; Tadepalli and Dietterich, 1997).
None of these systems do optimal planning, or use explicit hierarchies of the sort we consider.

A primary issue with EBL is that a very large number of rules can be gathered throughout
search, and matching which are applicable in a given state can thus become very expensive,
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to the point of actually slowing down search. This is known as the utility problem (Minton,
1988), and various solutions have been proposed to help eliminate less useful rules and thus
reduce the overhead associated with the approach. While our use of state abstraction can
be seen as a very limited form of EBL, it comes with a significant advantage: because all
learned knowledge is hashed under a fixed key (EnterContext(s, a), a), matching occurs
in constant time and the utility problem is largely avoided.

7.1.2 Nondeterministic Planning

Like our angelic planners, algorithms for (partially observable) nondeterministic planning are
also concerned with nondeterminism and reachable sets of states. Such planning algorithms
are also typically based on AND/OR graph search, and exploit techniques such as symbolic
reachable sets (Bertoli et al., 2001) and subsumption (Wolfe and Russell, 2007). However,
unlike in the angelic setting, the nondeterminism is adversarial, and the actions do not
admit refinements. Thus, the use of AND/OR graphs is actually quite different: the growth
direction represents time rather than abstraction level, and AND-nodes represent adversarial
choice rather than sequencing. As a consequence, most of the issues discussed in Chapter 5
do not arise in partially observable planning.

Somewhat closer to this research, a few recent works have explored the application of hi-
erarchical task networks to nondeterministic planning problems (Kuter and Nau, 2004; Kuter
et al., 2005). However, the search strategies have not considered angelic nondeterminism,
instead resembling nondeterminized versions of the H-UCS algorithm of Chapter 2.

7.1.3 HTN Planning Semantics

Section 2.3.1.3 and Chapter 4 summarized previous work on hierarchical task network (HTN)
planning, and its relation to our angelic approach. This section reviews a number of alter-
native approaches for capturing the semantics of high-level actions in HTN planning and
related settings.

Erol et al. (1994a) published the first formal semantics of HTN planning, defining the
meaning of a high-level plan in terms of its set of primitive refinements. This was a significant
result for establishing the soundness and completeness of HTN planning algorithms, but did
not provide an operational semantics that could be applied to improve planning efficiency.

Biundo and Schattenberg (2001) describe a system that combines HTN planning, state
abstraction, and a form of pessimistic descriptions, but they do not connect them directly
to solution algorithms. In addition, they begin by assuming the descriptions rather than
viewing them as logical consequences of the primitive actions and refinement hierarchy.



CHAPTER 7. RELATED WORK 176

McIlraith and Fadel (2002) describe a method for synthesizing descriptions of high-level
actions that are specified using the Golog language. Their method produces successor state
axioms that can, in certain cases, be converted to effect axioms of the sort that we consider.
The descriptions will, however, be exact and therefore possibly grow very large for complex
actions. More recently, Goldman (2009) described a semantics for HTN methods based on
Golog, which can capture both angelic and adversarial nondeterminism.

Several groups of researchers have considered applications of adversarial semantics to
HLAs. Clement and Durfee (1999) consider coordinating multiple agents, each with its own
hierarchical plan; in this case an adversarial semantics is justified as each agent’s plan must
work regardless of the refinements chosen by the other agents. Kaelbling and Lozano-Perez
(2011) consider a single hierarchical planning agent that interleaves planning and execution,
justifying adversarial semantics as a computational shortcut (e.g., see Section 4.4.2).

Work by Doan and Haddawy (1995) is perhaps most closely related to the approach taken
in this thesis. Their decision-theoretic refinement planning system (DRIPS) uses action
abstraction along with automatically constructed analogues of our optimistic descriptions
to find optimal probabilistic plans. However, they do not consider analogues of pessimistic
descriptions, or sophisticated search algorithms of the sort considered here.

7.2 Hierarchies of State Abstractions

A variety of works have considered hierarchies based on state abstraction, wherein each
level of the hierarchy is defined by a subset or partitioning (i.e., homomorphism) of the
states at the next-lower level. Unlike ABSTRIPS and related algorithms in planning (see
Section 2.3.1.1) which are based on very similar ideas, the focus here is on finding optimal
or hierarchically optimal solutions. One can view state abstraction hierarchies as a special
case of the angelic HTN-style action hierarchies considered in this thesis, wherein each HLA
generates an arbitrary sequence of lower-level actions that terminates at a particular abstract
state.

Botea et al. (2004) introduced hierarchical pathfinding A* (HPA*) to speed up search for
high-quality paths in two-dimensional maps (e.g., for autonomous agents in computer games).
Each level of the hierarchy is defined by a subset of states corresponding to entrances and exits
to regions of states at the next-lower level. HPA* performs a hierarchically optimal search
within this hierarchy, using exact descriptions at each level pre-computed by exhaustive
search. Efficiency is gained by amortizing the cost of this pre-computation across the solution
of many problem instances within the same map.

The observation that an optimal solution to an abstracted problem results in an admis-
sible heuristic for the original problem (Lawler and Wood, 1966) has a long history in AI
(Gaschnig, 1979; Pearl, 1984; Culberson and Schaeffer, 1996). Recently, researchers have pro-
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posed a variety of (primitive-)optimal search algorithms that apply this idea hierarchically
to speed up A* search without the need for a domain-specific heuristic.

Raphael (2001) introduced coarse-to-fine dynamic programming (CFDP), which applies
this idea “top-down”, starting with a maximally abstract space and progressively expanding
abstract states until a fully primitive solution is reached. Chatterjee and Russell (2011)
recently extended this idea to incorporate temporal abstraction, for hidden Markov models
where some parts of the state tend to change much more frequently than others. This
approach is analogous to the top-down angelic algorithms considered in this thesis, where
the bounds between abstract states are essentially simplified forms of optimistic descriptions.
However, the target applications are considerably simpler than planning, typically including
a state space that can be completely enumerated and a fixed time horizon.

Holte et al. (1996, 2005) describe Hierarchical A* and IDA*, which apply the idea
“bottom-up”: when the heuristic value for a state is needed by A* at level l, it is com-
puted recursively via search at level l− 1. This is essentially a lazy, hierarchical application
of pattern databases (Culberson and Schaeffer, 1996). Bulitko et al. (2007) apply related
ideas in the online setting to speed up real-time pathfinding.

Finally, Felzenszwalb and McAllester (2007) describe the Hierarchical A* Lightest Deriva-
tion (HA*LD) algorithm, which generalizes and improves upon previous work in several ways.
After deriving A*LD (see Section 2.2.2.2), they show how to generalize the above observation
to compute admissible heuristics for contexts in AND/OR search problems. The resulting
HA*LD algorithm uses a single priority queue in a novel way, which both reduces the over-
head associated with multiple queues and allows for lazy partial computations of heuristics
at higher levels. Thus, the special case of this algorithm for state-space search algorithms is
also novel, and can improve substantially on previous algorithms such as HIDA*.

Despite the apparent similarities to our framework (hierarchy is analogous to AND/OR
refinements, and implicit reachable sets are analogous to state abstraction), it does not seem
that our hierarchical planning problems can be usefully encoded and solved by HA*LD. For
one, as discussed in Section 2.2, bottom-up approaches are typically better-suited to inference
problems where an easily enumerable set of evidence lies at the bottom of the refinement
hierarchy, not planning problems where the bottom-up branching factor is typically vast.
For another, the basic assumptions about the underlying structures are different. HA*LD
assumes a given, fixed state abstraction, whereas in our framework the state abstraction is
generated by the reachable sets of the actions. Moreover, HA*LD computes heuristics top-
down, whereas our algorithms assume bounds produced by optimistic descriptions, which
both guide and are informed by search at lower levels of the hierarchy.
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7.3 Hierarchical Reinforcement Learning

There has also been extensive work on hierarchical decision-making in the probabilistic plan-
ning and learning fields, situated in the framework of Markov Decision Processes (MDPs,
(Bellman, 1957)). For our purposes, it is sufficient to consider MDPs as probabilistic planning
problems, where the outcome of each primitive action from a state is sampled independently
from a given probability distribution over next states. Thus, solutions are (partial) policies
that specify which action to take from any state (reachable under this policy). Beginning
with Forestier and Varaiya (1978), a wide variety of hierarchical methods have been proposed
to improve performance in this setting.

Reinforcement learning adds to this problem, assuming that the agent is deposited in an
unknown MDP and must simultaneously learn about the environment and exploit knowl-
edge from past experiences to minimize the total cost incurred (e.g., over many repeated
trials). Many reinforcement learning approaches are based at least in part on Q-learning
(Watkins, 1989), a non-hierarchical method wherein the mapping from (state, action) pairs
to expected future rewards is learned directly from experience, without any explicit model
of the transition dynamics of the MDP.

Perhaps the simplest hierarchical reinforcement learning (HRL) method is MAXQ (Di-
etterich, 2000), which assumes a hierarchy much like those in this thesis, except that the
HLAs are defined by sets of lower-level actions that can be applied in any combination, plus
a termination condition (thus, sequencing information captured by our refinements cannot
be encoded). MAXQ learns a recursively optimal policy from experience, which specifies
which lower-level task to invoke from each state within a higher-level task (without regard
for which reachable state might actually be best in a given circumstance). Efficiency is gained
by using state abstraction, and sharing the learned policies between states that differ only
in variables irrelevant to the task at hand (much as in this thesis — our method was largely
inspired by MAXQ). Diuk et al. (2006) combined MAXQ with transition model learning in
deterministic domains, producing a recursively optimal hierarchical planning algorithm for
unknown environments.

Options (Sutton et al., 1999) are perhaps the best-studied approach to hierarchical rein-
forcement learning. Each option is an HLA defined by a policy that can be executed until a
state in some target set is reached (e.g., LeaveTheRoom). Because an option corresponds
to a fixed policy, like the macros of Section 2.3.1.2, it is easy to construct a transition model
for an option that looks almost exactly like a primitive action model. This enables reinforce-
ment learning agents designed for ordinary MDPs to transparently learn and plan in MDPs
with options added. However, unlike MAXQ (in which all HLA policies are learned simul-
taneously), options must be learned in a bottom-up fashion, where the policies at all lower
levels are fixed before the next-higher-level is learned. Another disadvantage of options is
that they are fixed policies (like macros), so it may be difficult to find a small set of options
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that are useful across a wide range of situations.

The final HRL method, developed by Parr and Russell (1998) and Andre and Russell
(2002), allows for general partial policies with nondeterministic choice points built in, which
can be expressed in a programming language called ALISP. Novel reinforcement learning
strategies (including MAXQ-style state abstraction) are used to learn to a hierarchically op-
timal policy that fills in these choice points in the best possible ways. Marthi (2006) extended
ALISP to efficiently handle domains with multiple concurrent actors, using multithreaded
programs and a novel Q-function decomposition. A main omission compared to options is
that it is not obvious how to plan in ALISP-style hierarchies (to help find better policies
before learning has converged). The issue is that ALISP HLAs admit multiple refinements,
and thus are effectively a probabilistic generalization of the HLAs considered here. In fact,
this connection was the initial motivation behind this thesis work. We hope that future prob-
abilistic generalizations of the angelic approach will successfully be combined with ALISP,
yielding a powerful system that uses planning to bridge the gaps in its current knowledge,
while simultaneously learning to fill these gaps and thus free up future planning cycles for
other tasks.

7.4 Hierarchies in Robotics

Hierarchy has long been a staple of robotics, to help bridge the gap between high-level task
descriptions (e.g., clean a room) and the thousands or millions of low-level primitive actions
required to implement them (e.g, “move left arm to joint configuration X”, or even “apply
voltage Y to motor Z”). Traditionally, such problems have been attacked top-down, strictly
separating high-level task planning (e.g., sequencing pick-and-place operations) from lower-
level planning (e.g., finding feasible paths for the arm). For instance, an agent might first
search for a task-level STRIPS solution, and then attempt to execute a lower-level controller
corresponding to each STRIPS action in turn (see Section 4.4.2). Task planning is simplified
by ignoring low-level details, but the resulting plans may be inefficient or even infeasible due
to missed lower-level synergies and conflicts.

In recent work (Wolfe et al., 2010), we demonstrated an encoding for robotic manipulation
problems as vertically integrated hierarchical task networks (HTNs). In this application, we
directly extended the domain and hierarchy of Sections 2.1.2.3 and 2.3.2.2 to include state
variables corresponding to real-valued locations of the objects to be manipulated and joint
angles for the robot, as well as discrete predicates such as On and Holding. Continuous choices
(e.g,. arm trajectory refinements of Reach) were made finite via sampling, sometimes
incorporating external solvers such as rapidly-exploring random trees (RRTs) and inverse
kinematics. Given a known initial world state, the algorithms of Chapter 3 can be applied to
generate guaranteed-feasible, high-quality solutions for manipulating several objects, at the
level of paths through configuration space for the robot base and arms, in tens of seconds.
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Preliminary work has added angelic descriptions (Chapter 4) for the HLAs and applied the
algorithms of Chapter 5 to these problems, yielding significant further speedups.

We briefly summarize alternative proposals for hierarchical robot planning and control.
A variety of recent robotic planning algorithms integrate information from the task level into
a sampling-based motion planning framework. The configuration space can then be viewed
as consisting of regions (one per instantiation of the discrete variables), connected by lower-
dimensional submanifolds. aSyMov (Gravot et al., 2003) decomposes the configuration space
for manipulation into transit and transfer manifolds, taking advantage of stability constraints
for free objects. Hauser and Latombe (2009) use a geometrically motivated heuristic function
to focus sampling on those subtasks that are likely to be feasible. HYDICE (Plaku et al.,
2009), a hybrid system verification tool, also uses a heuristic estimate of the likely feasibility
of each subproblem to focus sampling. Şucan and Kavraki (2011) propose a task motion
multigraph, which extends the above approaches by explicitly reasoning about which set of
joints to use for each motion. Choi and Amir (2009) propose a factored planning approach,
which automatically partitions and decomposes the search space to speed up planning. An
advantage of the above methods is that they interleave sampling between motion planning
subproblems. However, they do not deal with general action hierarchies, and do not attempt
to find optimal plans.

7.5 Interleaving Planning and Execution

Hierarchical reasoning about actions can also be incorporated into systems that interleave
planning and execution steps. Advantages include faster decision-making, the ability to start
acting before a complete plan is fleshed out, and the ability to defer decisions about what to
do in uncertain future states until more information is gathered. Of course, the generated
behaviors may be end up being highly suboptimal or even unsuccessful, if future difficulties
are not properly anticipated.

The Procedural Reasoning System (PRS) is one well-known example of such a system
(Georgeff and Lansky, 1987). PRS represents high-level actions using “knowledge areas”
(KAs), which are finite-state machines that encode procedural knowledge about how to do
a task. KAs can be given descriptions of the form (c,P,g), which means that “in any state
satisfying c, a successful execution of P will result in a state satisfying g.” This is similar
to our notion of optimistic descriptions, with an additional caveat about success of the
execution, which must also be defined by the KA. Thus, the descriptions cannot be used to
guarantee at the high level that a plan will achieve a particular goal. Another difference is
that PRS does not explicitly do lookahead planning, though such planning may be effected
by meta-level KAs.

Another proposal by Barrett (2010) combines structured representations of concurrent be-
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haviors using hierarchies of Petri nets with the probabilistic inference machinery of Bayesian
networks. This combination provides a rich language for programming robust agent behav-
iors, which has been successfully applied to control players in RoboCup soccer. The system
does not include explicit planning; however, in some cases its programs can be proved to cor-
rectly accomplish their desired behaviors across a class of environments, as discussed further
in the next section.

Finally, we have proposed an approach for interleaving planning and execution based on
angelic hierarchical lookahead (Marthi et al., 2008). This system conducts a hierarchical
search much like the algorithms in Chapter 5, but can be applied in very large environments
in which (even bounded suboptimal) planning might take far too long to be useful. Instead,
the search space is only partially expanded, focusing on actions in the more immediate
future, and this partial search is used to select a promising first primitive action. This action
is executed in the world, updated bounds discovered through planning are stored, and then
the process is repeated until the goal is eventually reached. Helwig and Haddawy (1996)
proposed a similar approach for probabilistic environments, by extending the DRIPS system
(Doan and Haddawy, 1995) to the online setting.

7.6 Formal Verification

Researchers in a variety of areas analyze reachable sets to reason about and prove properties
about formal systems. Examples include program synthesis, automatic program verification,
model checking, and hybrid systems. Because the state spaces involved are often vast or
infinite, a combination of state abstraction and symbolic reasoning techniques is commonly
used to make reasoning tractable.

Angelic nondeterminism can be a useful tool for writing and reasoning about programs.
For instance, while in the process of writing a program, one is on the right track iff there
exist implementations for the remaining functions that make the final program correct. Bodik
et al. (2010) implemented a system that directly captures this idea, alerting the programmer
if it can prove that no such implementation exists, using a combination of abstraction and
symbolic model checking techniques. Angelic nondeterminism is also frequently used to
succinctly describe search algorithms, and exists as an explicit language primitive in ALISP
(Andre and Russell, 2002) for writing programs corresponding to partial MDP policies.

More frequently, however, formal verification is concerned with ordinary (demonic) non-
determinism. For instance, we would like to be able to prove that a given program does not
deadlock or perform unsafe operations, over all possible executions. Again, a successful ap-
proach is to use model checking, along with state abstractions of different granularity (Jhala,
2004). Because programs are typically structured as hierarchies of functions, each subroutine
behaves like a high-level action of sorts. Such methods may prove useful for inducing and
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proving correctness of HLA descriptions of the sort we consider.

Researchers in hybrid systems attempt to prove properties (and discover effective con-
trollers) for systems with both discrete and continuous state components, where each discrete
state may have different continuous dynamics. Hybrid systems embody a two-level hierarchy:
each execution of the system corresponds to a sequence of discrete states at the high level,
with continuous trajectories within each state at the low level. Unlike the planning problems
considered here, the discrete structure is typically simple (not combinatorially large), and the
principal difficulty involves the continuous dynamics. Moreover, the focus is on controllers,
which are typically reactive policies that specify how to act in any state, rather than on
online planning to discover an (optimal) action sequence from a particular initial state.1

Given a deterministic controller, proving that it always satisfies a given safety prop-
erty (for some set of initial conditions) is equivalent to proving that its reachable set does
not intersect an unsafe set of states. Because computing exact reachable sets is typically
intractable for realistic dynamic models, numeric methods are often used to soundly approx-
imate reachability while maintaining correctness (Tomlin et al., 2003). The task of finding
a counterexample (i.e., unsafe execution) is thus related to the angelic planning tasks con-
sidered here. Given a particular hybrid system, it may also be desirable to automatically
find a stable (or optimal) controller that satisfies some properties. Because of numerical dif-
ficulties, optimal control is typically only studied for subclasses of systems (e.g., with linear
dynamics) (Henzinger et al., 1997; Gokbayrak and Cassandras, 2000; Cho et al., 2001).

1Work in hybrid model-predictive control does invoke some online planning, but this planning is typically
over a fixed receding horizon (like the algorithms discussed in the previous section).
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Chapter 8

Conclusion

8.1 Summary

The primary contributions of this thesis are as follows.

First, Chapter 4 proposed an angelic semantics, which attempts to answer a decades-old
problem in hierarchical planning. This semantics describes correct transition models for high-
level actions, enabling the identification of high-level solutions that can provably be extended
to at least one concrete solution. We also proposed practical methods for implementing this
semantics within a hierarchical planner, including compact representations for principled
approximations to the exact angelic semantics, and efficient algorithms for operating on these
representations. These methods can be used to efficiently derive bounds on the outcomes
and costs of high-level plans, in domains ranging from discrete “toy” problems to encodings
of real-world robotic mobile manipulation problems.

Second, Chapters 3 and 5 introduced several novel families of algorithms for hierarchi-
cally optimal search. The algorithms of Chapter 3 require only the ability to simulate the
primitive actions in a domain, plus an action hierarchy expressing the ways in which each
high-level task can be broken down into lower-level subtasks. These algorithms apply decom-
position and state abstraction techniques to expose the existence of isomorphic subproblems
in the search space. By sharing bounds and solutions between these isomorphic subproblems,
the effective size of the search space and thus planning time can be reduced exponentially
compared to previous hierarchically optimal planning algorithms. Then, Chapter 5 described
hierarchically optimal search algorithms that also make use of angelic bounds for high-level
plans produced by the machinery of Chapter 4. This chapter concluded with the Decom-
posed, Angelic, State-abstracted Hierarchical A* (DASH-A*) algorithm, which incorporates
angelic bounds, decomposition, state abstraction, and a number of additional techniques in
a novel AND/OR search framework, enabling agents that can effectively reason about the
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outcomes and costs of high-level plans from abstract sets of states. These inferences can
quickly eliminate large swaths of provably suboptimal plans from the search space, leading
to exponential speedups in more cases than the algorithms of Chapter 3.

8.2 Future Work

This thesis focused on sequential hierarchical planning for STRIPS-style classical planning
domains. There is still much to be done in this simple setting, including more general and
expressive angelic representations, improved meta-level search control, and automatic hier-
archy and angelic description induction. Beyond classical planning, applying the results and
algorithms in this thesis to many real-world problems will require extensions to incorporate
reasoning about continuous state and action spaces, uncertainty, partial knowledge, multiple
agents, and concurrency.

8.2.1 Classical Planning

The empirical results reported in Chapter 6 seem to indicate that the simple factored rep-
resentations of Section 4.3 and state abstraction of Section 3.1.2 can perform quite well in
practice. Nevertheless, there is probably much to be gained by considering more expressive
representations, which could more compactly and accurately capture descriptions, reachable
sets, and costs. The simple variable-dropping state abstraction could no doubt be improved
significantly as well; for example, the descriptions and valuations for higher-level actions
could be described in terms of derived predicates that compactly capture complex combina-
tions of lower-level variables. Finally, relational state abstraction could allow information
sharing between HLAs applied to identical objects.

Next, as our search algorithms become more complex and structured, the use of simple
heuristics for selecting what computation to do next (e.g., always Expand the highest-level
eligible node) becomes a more and more glaring omission. For example, when executing a
bounded-suboptimal variant of DASH-A*, we have a vast array of knowledge at our disposal
that could be useful for this purpose, including the structure of the graph (better to expand
nodes appearing in many near-optimal contexts), upper and lower bounds on the costs of
each action (better to expand more uncertain things), a global lower cost bound (are we close
to finding a w-optimal solution?), and so on. This situation is ripe for meta-level control
(Russell and Wefald, 1991), wherein the selection of a next computation is treated as an
search and/or learning problem in its own right.

Finally, in this thesis we have assumed that the structure of the hierarchy (and angelic
descriptions, where applicable) were provided by a human. If our only desire is to effectively
solve a real-world problem, this may be satisfactory (assuming that the burden of doing so
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is not much greater than writing down the primitive domain in the first place). Neverthe-
less, methods for automatically learning hierarchical structures and descriptions would be
a significant advance, allowing for the fully autonomous application of angelic hierarchical
planning techniques given only a primitive domain description. A number of promising ap-
proaches for learning the structure of a hierarchy have been proposed in the hierarchical
reinforcement learning literature (e.g., (McGovern and Barto, 2001; Hengst, 2002; Simsek
and Barto, 2004; Grounds and Kudenko, 2005; Marthi et al., 2007a)), but none have yet
approached the abilities of a human designer.

It may also be of interest to apply the algorithms in this thesis to problems beyond
standard HTN planning.

In recent work, we proposed a novel method for solving classical planning instances hi-
erarchically, which exploits the causal structure of a domain (Wolfe and Russell, 2011). The
original goal of that work was to apply angelic planning on top of the hierarchy; surpris-
ingly, it turned out that simple search algorithms (akin to H-UCS) were sufficient to achieve
exponential speedups, and our investigation thus far focused on exploring this simple idea
further. In light of the results reported here, the application of angelic and decomposed
search techniques to this problem may merit further exploration.

Even farther afield, some structured probabilistic inference tasks are isomorphic to clas-
sical planning tasks, and thus it may be possible to apply the algorithms reported here to
solve them faster.

8.2.2 Beyond Classical Planning

Natural hierarchies for some (even purely sequential) planning domains seem to require
concurrency. For instance, if the robot in our discrete manipulation domain had two grippers,
it would be natural to consider interleaving actions from simultaneous Reach HLAs for each
gripper. This complicates the problem of writing correct descriptions substantially, however,
as the description of each HLA must account for potential interactions caused by primitives
interspersed from other HLAs.

It should also be possible to extend the results and algorithms of this thesis to cover more
realistic planning domains that include probabilistic uncertainty and partial observability
(i.e., MDPs and POMDPs, respectively). Hierarchical planning has even more promise
in such domains, because of the potential to abstract over future uncertain outcomes and
information-gathering behaviors. Effective angelic planning agents in these settings will
be based on hierarchical lookahead, planning in detail for only for the immediate future
(and perhaps key future junctures), leaving the remainder of their plans abstract until more
information is gathered. Especially exciting is the potential for combination with hierarchical
reinforcement learning algorithms such as ALISP, enabling agents that gain task-specific
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expertise as they act and compute, and use planning to fill in the gaps in their experience
when faced with novel tasks or circumstances.

8.3 Outlook

Generating effective behaviors in real-world environments often requires planning over long
time scales, in vast spaces of possibilities. Given limited computational resources, coping
with this complexity seems to require interleaving reasoning at various levels of abstraction.
Doing so effectively requires a detailed understanding of the meaning of and relationships
between abstraction levels, and methods for efficiently searching through them to locate
high-quality solutions. The tools provided in this thesis represent small but important steps
towards these goals.
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