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Abstract

Geometry of Generalized Permutohedra

by

Jeffrey Samuel Doker

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Federico Ardila and Professor Lior Pachter, Co-chairs

We study generalized permutohedra and some of the geometric properties they exhibit.
We decompose matroid polytopes (and several related polytopes) into signed Minkowski
sums of simplices and compute their volumes. We define the associahedron and multiplihe-
dron in terms of trees and show them to be generalized permutohedra. We also generalize
the multiplihedron to a broader class of generalized permutohedra, and describe their face
lattices, vertices, and volumes. A family of interesting polynomials that we call composition
polynomials arises from the study of multiplihedra, and we analyze several of their surprising
properties. Finally, we look at generalized permutohedra of different root systems and study
the Minkowski sums of faces of the crosspolytope.
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Chapter 1

Introduction

The permutohedron Pn is a polytope whose vertices consist of all permutations of the
entries of the vector (1, 2, . . . , n). Many of the rich geometric properties of Pn are inherited
and extended by the larger class of polytopes formed as deformations of Pn, better known as
generalized permutohedra. These objects have been studied at length in [23] and [25]. This
dissertation extends several notions from these works and presents a survey of the geometry
of generalized permutohedra, including matroid polytopes, associahedra, multiplihedra, and
generalized permutohedra of other root systems.

Chapter 2 is based on joint work [2] with Federico Ardila and Carolina Benedetti. We
review the concept of a matroid M and its associated matroid polytope PM . We explore the
notion of Minkowski sums and differences, and show that any generalized permutohedron
can be represented as a signed Minkowski sum of simplices. We describe PM as a generalized
permutohedron and derive a formula for its volume. We then extend these techniques to the
independent set polytope IM and the associated flag matroid polytope.

Chapter 3 focuses on two particular classes of polytopes: the associahedron [19] [11] and
the multiplihedron [12]. We show these polytopes to be realizations of posets of trees, and
prove that they are generalized permutohedra. We construct the multiplihedron from the
associahedron by developing a technique called q-lifting, and we analyze the face structure
and volumes of the larger class of q-lifted generalized permutohedra.

Chapter 4 introduces a family of polynomials defined in terms of compositions c of n:
the composition polynomial gc(q) and the associated reduced composition polynomial fc(q).
Composition polynomials compute the volumes the pieces of a subdivision of the q-lifted
polytopes introduced in Chapter 3. We produce a recursive definition of reduced compo-
sition polynomials and prove their coefficients are strictly positive, as well as several other
properties.

Chapter 5 explores the notion of generalized permutohedra defined in terms of the other
classical root systems. In particular we describe the parameter spaces of type-B and type-D
generalized permutohedra. (The type-C arrangement Cn is equivalent to Bn, and therefore
so are their respective sets of generalized permutohedra.) We also fully describe the space
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of polytopes that can be generated by signed Minkowski sums of faces of the crosspolytope.
In particular we show that in even dimension the crosspolytope itself is decomposable into
a Minkowski sum of simplices.
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Chapter 2

Matroid polytopes and their volumes

2.1 Introduction

The theory of matroids can be approached from many different points of view; a matroid can
be defined as a simplicial complex of independent sets, a lattice of flats, a closure relation,
etc. A relatively new point of view is the study of matroid polytopes, which in some sense are
the natural combinatorial incarnations of matroids in algebraic geometry and optimization.
Our paper is a contribution in this direction.

We begin with the observation that matroid polytopes are members of the family of
generalized permutohedra [23]. With some modifications of Postnikov’s beautiful theory, we
express the matroid polytope PM as a signed Minkowski sum of simplices, and use that to
give a formula for its volume Vol (PM). This is done in Theorems 2.2.6 and 2.3.3. Our
answers are expressed in terms of the beta invariants of the contractions of M .

Formulas for Vol (PM) were given in very special cases by Stanley [29] and Lam and
Postnikov [18], and a polynomial-time algorithm for finding Vol (PM) was constructed by de
Loera et. al. [9]. One motivation for this computation is the following. The closure of the
torus orbit of a point p in the Grassmannian Grk,n is a toric variety Xp, whose degree is the
volume of the matroid polytope PMp associated to p. Our formula allows us to compute the
degree of Xp combinatorially.

One can naturally associate two other polytopes to a matroid M : its independent set
polytope and its associated flag matroid polytope. By a further extension of Postnikov’s
theory, we also write these polytopes as signed Minkowski sums of simplices and give formulas
for their volumes. This is the content of Sections 2.4 and 2.5.

Throughout the chapter we assume familiarity with the basic concepts of matroid theory;
for further information we refer the reader to [22].
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2.2 Matroid polytopes are generalized permutohedra

The permutohedron Pn is a polytope in Rn whose vertices consist of all permutations of
the entries of the vector (1, 2, . . . , n). A generalized permutohedron is a deformation of the
permutohedron, obtained by moving the vertices of Pn in such a way that all edge directions
and orientations are preserved (and some may possibly be shrunken down to a single point)
[25]. In Section 3.5 we give a more precise treatment to the concept of a deformation.

Every generalized permutohedron can be written in the following form:

Pn({zI}) =

{
(t1, . . . , tn) ∈ Rn :

n∑
i=1

ti = z[n],
∑
i∈I

ti ≥ zI for all I ⊆ [n]

}

where zI is a real number for each I ⊆ [n] := {1, . . . , n}, and z∅ = 0. Different choices of
zI can give the same generalized permutohedron: if one of the inequalities does not define
a face of Pn({zI}), then we can increase the value of the corresponding zI without altering
the polytope. When we write Pn({zI}), we will always assume that the zIs are all chosen
minimally; i.e., that all the defining inequalities are tight.

Though every generalized permutohedron has a zI parameterization, not every list of zI
parameters corresponds to a generalized permutohedron. Morton et. al. proved the forward
direction of following criterion for the zI :

Theorem 2.2.1. [21, Theorem 17] A set of parameters {zI} defines a generalized permu-
tohedron Pn({zI}) if and only if the zI satisfy the submodular inequalities

zI + zJ ≤ zI∪J + zI∩J

for all I, J ⊆ [n].

Postnikov indicated the backward direction of this via personal communication [24], and
Aguiar and Ardila wrote down the details in [1].

The Minkowski sum of two polytopes P and Q in Rn is defined to be P+Q = {p+q : p ∈
P, q ∈ Q}. We say that the Minkowski difference of P and Q is P −Q = R if P = Q+ R.1

The following lemma shows that generalized permutohedra behave nicely with respect to
Minkowski sums.

Lemma 2.2.2. If Pn({zI}) and Pn({z′I}) are generalized permutohedra then their Minkowski
sum is a generalized permutohedron and Pn({zI}) + Pn({z′I}) = Pn({zI + z′I}).

1We will only consider Minkowski differences P − Q such that Q is a Minkowski summand of P . More
generally, the Minkowski difference of two arbitrary polytopes P and Q in Rn is defined to be P −Q = {r ∈
Rn | r + Q ⊆ P} [23]. It is easy to check that (Q + R) − Q = R, so the two definitions agree in the cases
that interest us. In this paper, a signed Minkowski sum equality such as P − Q + R − S = T should be
interpreted as P + R = Q + S + T .
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Proof. The polytopes Pn({zI}) and Pn({z′I}) are deformations of Pn, and therefore by [21,
Theorem 17] they are each a Minkowski summand of a dilate of Pn. Thus Pn({zI})+Pn({z′I})
must also be a summand of a dilate of Pn, which implies, again by [21, Theorem 17], that
this polytope too is a deformation of Pn and can thus be defined by hyperplane parameters
zI . That the values of these parameters are zI + z′I follows from the observation that, if a
linear functional w takes maximum values a and b on (faces A and B of) polytopes P and
Q respectively, then it takes maximum value a + b on (the face A + B of) their Minkowski
sum.

Let ∆ be the standard unit (n− 1)-simplex

∆ = {(t1, . . . , tn) ∈ Rn :
n∑
i=1

ti = 1, ti ≥ 0 for all 1 ≤ i ≤ n}

= conv{e1, . . . , en},

where ei = (0, , . . . , 0, 1, 0, . . . , 0) with a 1 in its ith coordinate. As J ranges over the subsets
of [n], let ∆J be the face of the simplex ∆ defined by

∆J = conv{ei : i ∈ J} = Pn({z(J)I})

where z(J)I = 1 if I ⊇ J and z(J)I = 0 otherwise. Lemma 2.2.2 gives the following
proposition.

Proposition 2.2.3. [23, Proposition 6.3] For any yI ≥ 0, the Minkowski sum
∑
yI∆I of

dilations of faces of the standard (n − 1)-simplex is a generalized permutohedron. We can
write ∑

A⊆E

yI∆I = Pn({zI}),

where zI =
∑

J⊆I yJ for each I ⊆ [n].

We can extend this to encompass signed Minkowski sums as well.

Proposition 2.2.4. Every generalized permutohedron Pn({zI}) can be written uniquely as
a signed Minkowski sum of simplices, as

Pn({zI}) =
∑
I⊆[n]

yI∆I

where yI =
∑

J⊆I(−1)|I|−|J |zJ for each I ⊆ [n].

Proof. First we need to separate the righthand side into its positive and negative parts. By
Proposition 2.2.3,∑

I⊆[n] :yI<0

(−yI)∆I = Pn({z−I }) and
∑

I⊆[n] :yI≥0

yI∆I = Pn({z+
I })
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where z−I =
∑

J⊆I :yJ<0(−yJ) and z+
I =

∑
J⊆I :yJ≥0 yJ . Now zI + z−I = z+

I gives

Pn({zI}) +
∑

I⊆[n] :yI<0

(−yI)∆I =
∑

I⊆[n] :yI≥0

yI∆I ,

as desired. Uniqueness is clear.

Let M be a matroid of rank r on the set E. The matroid polytope of M is the polytope
PM in RE whose vertices are the indicator vectors of the bases of M . The known description
of the polytope PM by inequalities makes it apparent that it is a generalized permutohedron:

Proposition 2.2.5. [34] The matroid polytope of a matroid M on E with rank function r
is PM = PE({r − r(E − I)}I⊆E).

Proof. The inequality description for PM is:

PM = {x ∈ RE :
∑
i∈E

xi = r,
∑
i∈A

xi ≤ r(A) for all A ⊆ E}.

It remains to remark that the inequality
∑

i∈A xi ≤ r(A) is tight, and may be rewritten as∑
i∈E−A xi ≥ r−r(A), and to invoke the submodularity of the rank function of a matroid.

The beta invariant [8] of M is a non-negative integer given by

β(M) = (−1)r(M)
∑
X⊆E

(−1)|X|r(X)

which stores significant information about M ; for example, β(M) = 0 if and only if M is
disconnected and β(M) = 1 if and only if M is series-parallel. If

TM(x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A) =
∑
i,j

bijx
iyj

is the Tutte polynomial [35] of M , then β(M) = b10 = b01 for |E| ≥ 2.
Our next results are more elegantly stated in terms of the signed beta invariant of M ,

which we define to be
β̃(M) = (−1)r(M)+1β(M).

Theorem 2.2.6. Let M be a matroid of rank r on E and let PM be its matroid polytope.
Then

PM =
∑
A⊆E

β̃(M/A) ∆E−A. (2.1)
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Proof. By Propositions 2.2.4 and 2.2.5, PM =
∑

I⊆E yI∆I where

yI =
∑
J⊆I

(−1)|I|−|J |(r − r(E − J)) = −
∑
J⊆I

(−1)|I|−|J |r(E − J)

= −
∑

E−J⊇E−I

(−1)|E−J |−|E−I|(r(E − J)− r(E − I))

= −
∑
X⊆I

(−1)|X|(r(E − I ∪X)− r(E − I))

= −
∑
X⊆I

(−1)|X|rM/(E−I)(X) = β̃(M/(E − I))

as desired.

Example 2.2.7. Let M be the matroid on E = [4] with bases {12, 13, 14, 23, 24}; its matroid
polytope is a square pyramid. Theorem 2.2.6 gives PM = ∆234 + ∆134 + ∆12 − ∆1234, as
illustrated in Figure 2.1. The dotted lines in the polytope ∆234 + ∆134 + ∆12 are an aid to
visualize the Minkowski difference.

2

234+134+12-1234234+134

234

234+134+12

3     :

4

1

Figure 2.1: A matroid polytope as a signed Minkowski sum of simplices.

One way of visualizing the Minkowski sum of two polytopes P and Q is by grabbing a
vertex v of Q and then using it to “slide” Q around in space, making sure that v never leaves
P . The region that Q sweeps along the way is P + Q. Similarly, the Minkowski difference
P − R can be visualized by picking a vertex v of R and then “sliding” R around in space,
this time making sure that no point in R ever leaves P . The region that v sweeps along the
way is P −R. This may be helpful in understanding Figure 2.1.

Some remarks about Theorem 2.2.6 are in order.

• Generally most terms in the sum of Theorem 2.2.6 are zero. The nonzero terms corre-
spond to the coconnected flats A, which we define to be the sets A such that M/A is
connected. These are indeed flats, since contracting by them must produce a loopless
matroid.
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• A matroid and its dual have congruent matroid polytopes, and Theorem 2.2.6 gives
different formulas for them. For example PU1,3 = ∆123 while PU2,3 = ∆12 + ∆23 + ∆13−
∆123.

• The study of the subdivisions of a matroid polytope into smaller matroid polytopes,
originally considered by Lafforgue [17], has recently received significant attention [3,
5, 10, 27]. Speyer conjectured [27] that the subdivisions consisting of series-parallel
matroids have the largest number of faces in each dimension and proved this [26] for
a large and important family of subdivisions: those that arise from a tropical linear
space. The important role played by series-parallel matroids is still somewhat mys-
terious. Theorem 2.2.6 characterizes series-parallel matroids as those whose matroid
polytope has no repeated Minkowski summands. It would be interesting to connect
this characterization to matroid subdivisions; this may require extending the theory of
mixed subdivisions to signed Minkowski sums.

• Theorem 2.2.6 provides a geometric interpretation for the beta invariant of a matroid
M in terms of the matroid polytope PM . In Section 2.5 we see how to extend this to
certain families of Coxeter matroids. This is a promising point of view towards the
notable open problem [7, Problem 6.16.6] of defining useful enumerative invariants of
a Coxeter matroid.

2.3 The volume of a matroid polytope

Our next goal is to present an explicit combinatorial formula for the volume of an arbitrary
matroid polytope. Formulas have been given for very special families of matroids by Stanley
[29] and Lam and Postnikov [18]. Additionally, a polynomial time algorithm for computing
the volume of an arbitrary matroid polytope was recently discovered by de Loera et. al. [9].
Let us say some words about the motivation for this question.

Consider the Grassmannian manifold Grk,n of k-dimensional subspaces in Cn. Such a
subspace can be represented as the rowspace of a k × n matrix A of rank k, modulo the
left action of GLk which does not change the row space. The

(
n
k

)
maximal minors of this

matrix are the Plücker coordinates of the subspace, and they give an embedding of Grk,n as

a projective algebraic variety in CP(n
k)−1.

Each point p in Grk,n gives rise to a matroid Mp whose bases are the k-subsets of n where
the Plücker coordinate of p is not zero. Gelfand, Goresky, MacPherson, and Serganova [14]
first considered the stratification of Grk,n into matroid strata, which consist of the points
corresponding to a fixed matroid.

The torus T = (C∗)n acts on Cn by (t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn) for ti 6= 0;
this action extends to an action of T on Grk,n. For a point p ∈ Grk,n, the closure of the
torus orbit Xp = T · p is a toric variety which only depends on the matroid Mp of p, and the
polytope corresponding to Xp under the moment map is the matroid polytope of Mp [14].
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Under these circumstances it is known [13] that the volume of the matroid polytope Mp

equals the degree of the toric variety Xp as a projective subvariety of CP(n
k)−1:

VolPMp = degXp.

Therefore, by finding the volume of an arbitrary matroid polytope, one obtains a formula
for the degree of the toric varieties arising from arbitrary torus orbits in the Grassmannian.

To prove our formula for the volume of a matroid polytope, we first recall the notion
of the mixed volume Vol (P1, . . . , Pn) of n (possibly repeated) polytopes P1, . . . , Pn in Rn.
All volumes in this section are normalized with respect to the lattice generated by e1 −
e2, . . . , en−1− en where our polytopes live; so the standard simplex ∆ has volume 1/(n− 1)!.

Proposition 2.3.1. [20] Let n be a fixed positive integer. There exists a unique function
Vol (P1, . . . , Pn) defined on n-tuples of polytopes in Rn, called the mixed volume of P1, . . . , Pn,
such that, for any collection of polytopes Q1, . . . , Qm in Rn and any nonnegative real numbers
y1, . . . , ym, the volume of the Minkowski sum y1Q1+· · ·+ymQm is the polynomial in y1, . . . , ym
given by

Vol (y1Q1 + · · ·+ ymQm) =
∑
i1,...,in

Vol (Qi1 , . . . , Qin)yi1 · · · yin

where the sum is over all ordered n-tuples (i1, . . . , in) with 1 ≤ ir ≤ m.

We now show that the formula of Proposition 2.3.1 still holds if some of the yis are
negative as long as the expression y1Q1 + · · ·+ ymQm still makes sense.

Proposition 2.3.2. If P = y1Q1 + · · · + ymQm is a signed Minkowski sum of polytopes in
Rn, then

Vol (y1Q1 + · · ·+ ymQm) =
∑
i1,...,in

Vol (Qi1 , . . . , Qin)yi1 · · · yin

where the sum is over all ordered n-tuples (i1, . . . , in) with 1 ≤ ir ≤ m.

Proof. We first show that

Vol (A−B) =
n∑
k=0

(−1)k
(
n

k

)
Vol (A, . . . , A,B, . . . , B) (2.2)

when B is a Minkowski summand of A in Rn. Let A − B = C. By Proposition 2.3.1, for
t ≥ 0 we have that

Vol (C + tB) =
n∑
k=0

(
n

k

)
Vol (C, . . . , C,B . . . , B)tk =: f(t)
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and we are interested in computing Vol (C) = f(0). Invoking Proposition 2.3.1 again, for
t ≥ 0 we have that

Vol (A+ tB) =
n∑
k=0

(
n

k

)
Vol (A, . . . , A,B, . . . , B)tk =: g(t). (2.3)

But A+tB = C+(t+1)B and therefore g(t) = f(t+1) for all t ≥ 0. Therefore g(t) = f(t+1)
as polynomials, and VolC = f(0) = g(−1). Plugging into (2.3) gives the desired result.

Having established (2.2), separate the given Minkowski sum for P into its positive and
negative parts as P = Q−R, where Q = x1Q1 + · · ·+ xrQr and R = y1R1 + · · ·+ ysRs with
xi, yi ≥ 0. For positive t we can write Q+ tR =

∑
xiQi+

∑
tyjRj, which gives two formulas

for Vol (Q+ tR).

Vol (Q+ tR) =
n∑
k=0

(
n

k

)
Vol (Q, . . . , Q,R, . . . , R)tk

=
∑

1≤ia≤r
1≤jb≤s

Vol (Qi1 , . . . , Qin−k
, Rj1 , . . . , Rjk)xi1 · · ·xin−k

yj1 · · · yjktk

The last two expressions must be equal as polynomials. A priori, we cannot plug t = −1
into this equation; but instead, we can use the formula for Vol (Q−R) from (2.2), and then
plug in coefficient by coefficient. That gives the desired result.

Theorem 2.3.3. If a connected matroid M has n elements, then the volume of the matroid
polytope PM is

VolPM =
1

(n− 1)!

∑
(J1,...,Jn−1)

β̃(M/J1)β̃(M/J2) · · · β̃(M/Jn−1),

summing over the ordered collections of sets J1, . . . , Jn−1 ⊆ [n] such that, for any distinct
i1, . . . , ik, |Ji1 ∩ · · · ∩ Jik | < n− k.

Proof. Postnikov [23, Corollary 9.4] gave a formula for the volume of a (positive) Minkowski
sum of simplices. We would like to apply his formula to the signed Minkowski sum in
Theorem 2.2.6, and Proposition 2.3.2 makes this possible.

There is an alternative characterization of the tuples (J1, . . . , Jn−1) considered in the
sum above. They are the tuples such that, for each 1 ≤ k ≤ n, the collection ([n] −
J1, . . . , [n] − Jn−1) has a system of distinct representatives avoiding k; that is, there exist
a1 ∈ [n]−J1, . . . , an−1 ∈ [n]−Jn−1 with ai 6= aj for i 6= j and ai 6= k for all i. Postnikov refers
to this as the dragon marriage condition; see [23] for an explanation of the terminology.

As in Theorem 2.2.6, most of the terms in the sum of Theorem 2.3.3 vanish. The nonzero
terms are those such that each Ji is a coconnected flat. Furthermore, since PM and PM∗ are
congruent, we are free to apply Theorem 2.3.3 to the one giving a simpler expression.
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Example 2.3.4. Suppose we wish to compute the volume of PU2,3 using Theorem 2.3.3. The
expression PU1,3 = ∆123 is simpler than the one for PU2,3 . So we can obtain VolP(U1,3)∗ =

VolPU1,3 = 1
2
β̃(M)2 = 1

2
.

In Theorem 2.3.3, the hypothesis that M is connected is needed to guarantee that the
matroid polytope PM has dimension n − 1. More generally, if we have M = M1 ⊕ · · · ⊕
Mk then PM = PM1 × · · · × PMk

so the ((n − k)-dimensional) volume of PM is VolPM =
VolPM1 · · ·VolPMk

.

2.4 Independent set polytopes

In this section we show that our analysis of matroid polytopes can be carried out similarly
for the independent set polytope IM of a matroid M , which is the convex hull of the indicator
vectors of the independent sets of M . The inequality description of IM is known to be:

IM = {(x1, . . . , xn) ∈ Rn : xi ≥ 0 for i ∈ [n],
∑
i∈A

xi ≤ r(A) for all A ⊆ E}. (2.4)

This realization of the independent set polytope of a matroid is not a generalized per-
mutohedron. Instead, it is a Q-polytope. The class of Q-polytopes are the deformations of
the simple polytope Qn whose vertices are formed by all distinct permutations of entries of
the vectors (1, . . . , n), (0, 2, . . . , n), . . . , (0, . . . , 0, n), and (0, . . . , 0). After translation, every
Q-polytope can be expressed in the form

Qn({zJ}) =

{
(t1, . . . , tn) ∈ Rn : ti ≥ 0 for all i ∈ [n],

∑
i∈J

ti ≤ zJ for all J ⊆ [n]

}
(2.5)

where zJ is a non-negative real number for each J ⊆ [n]. Analogously to generalized permu-
tohedra, the parameters zJ which describe a Q-polytope Qn({zJ}) are those which satisfy
a submodular inequality, however since our inequalities are reversed in the hyperplane de-
scription of Qn we reverse the inequality on our defining submodular criterion to make the
supermodular criterion.

Proposition 2.4.1. Qn({zJ}) is a Q-polytope if and only if

zI + zJ ≥ zI∪J + zI∩J

for all I, J ⊆ [n].

Proof. This follows directly from Theorem 2.2.1. We will describe a deformation-preserving
bijection from generalized permutohedra to Q-polytopes where submodularity of zI param-
eters of Pn({zI}) corresponds to supermodularity of zJ parameters of Qn({zJ}). Given a
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generalized permutohedron Pn({zI}) ⊂ Rn, define Pn+1({z′I}) to be the generalized permu-
tohedron in Rn+1 defined by z′I = 0 and z′I∪{n+1} = zI for all I ⊆ [n]. Now define Qn({z′′I })
to be the projection of Pn+1({z′I}) into Rn, by removal of the last coordinate. This invert-
ible process sends Pn({zI}) to Qn({z′′I }) where z′′I = z[n] − z[n]\I . Moreover, it sends the
permutohedron Pn to Qn and deformations of Pn to deformations of Qn. A polytope P has
inequality description Pn({zI}) satisfying the submodular inequalities if and only if P is a
deformation of the permutohedron Pn. By the map described above this occurs if and only
if the corresponding polytope Q = Qn({z′′I }) is a deformation of Qn. By the construction of
the z′′I , submodularity of the zI is equivalent to supermodularity of the z′′I . Thus we have a
deformation of Qn if and only if the corresponding z′′I parameters are supermodular.

We can also express these polytopes as signed Minkowski sums of simplices, though the
simplices we use are not the ∆Js, but those of the form

DJ = conv{0, ei : i ∈ J}
= Qn({d(J)I})

where d(J)I = 0 if I ∩ J = ∅ and d(J)I = 1 otherwise.
The following lemmas on Q-polytopes are proved in a way analogous to the corresponding

lemmas for generalized permutahedra, as was done in Section 2.2.

Lemma 2.4.2. If Qn({zJ}) and Qn({z′J}) are Q-polytopes, then so is their Minkowski sum,
and Qn({zJ}) +Qn({z′J}) = Qn({zJ + z′J})

Proposition 2.4.3. For any yI ≥ 0 we have∑
I⊆[n]

yIDI = Qn({zJ})

where zJ =
∑

I:I∩J 6=∅ yI .

Proposition 2.4.4. Every Q-polytope Qn({zJ}) can be written uniquely2 as a signed Minkowski
sum of DIs as

Qn({zJ}) =
∑
I⊆[n]

yIDI ,

where
yJ = −

∑
I⊆J

(−1)|J |−|I|z[n]−I .

2assuming y∅ = 0
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Proof. We need to invert the relation between the yIs and the zJs given by zJ =
∑

I:I∩J 6=∅ yI .
We rewrite this relation as

z[n] − zJ =
∑

I⊆[n]−J

yI

and apply inclusion-exclusion. As in Section 2.2, we first do this in the case yI ≥ 0 and then
extend it to arbitrary Q-polytopes.

Theorem 2.4.5. Let M be a matroid of rank r on E and let IM be its independent set
polytope. Then

IM =
∑
A⊆E

β̃(M/A)DE−A

where β̃ denotes the signed beta invariant.

Proof. This follows from Proposition 2.4.4 and a computation almost identical to the one in
the proof of Theorem 2.2.6.

The great similarity between Theorems 2.2.6 and 2.4.5 is not surprising, since PM is
the facet of IM which maximizes the linear function

∑
i∈E xi, and ∆I is the facet of DI in

that direction as well. In fact we could have first proved Theorem 2.4.5 and then obtained
Theorem 2.2.6 as a corollary.

Theorem 2.4.6. If a connected matroid M has n elements, then the volume of the indepen-
dent set polytope IM is

Vol IM =
1

n!

∑
(J1,...,Jn)

β̃(M/J1)β̃(M/J2) · · · β̃(M/Jn)

where the sum is over all n−tuples (J1, . . . , Jn) of subsets of [n] such that, for any distinct
i1, . . . , ik, we have |Ji1 ∩ · · · ∩ Jik | ≤ n− k.

Notice that by Hall’s marriage theorem, the condition on the Jis is equivalent to requiring
that (E − J1, . . . , E − Jn) has a system of distinct representatives (SDR); that is, there are
a1 ∈ E − J1, . . . , an ∈ E − Jn with ai 6= aj for i 6= j.

Proof. By Theorem 2.4.5 and Proposition 2.3.1 it suffices to compute the mixed volume
Vol (DA1 , . . . , DAn) for each n-tuple (A1, . . . , An) of subsets of [n]. Bernstein’s theorem [32]
tells us that Vol (DA1 , . . . , DAn) is the number of isolated solutions in (C − {0})n of the
system of equations:

β1,0 + β1,1t1 + β1,2t2 + · · ·+ β1,ntn = 0

β2,0 + β2,1t1 + β2,2t2 + · · ·+ β2,ntn = 0

...

βn,0 + βn,1t+ βn,2t2 + · · ·+ βn,ntn = 0
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where βi,0 and βi,j are generic complex numbers when j ∈ Ai, and βi,j = 0 if j /∈ Ai.
This system of linear equations will have one solution if it is non-singular and no solutions

otherwise. Because the βi,0 are generic, such a solution will be non-zero if it exists. The sys-
tem is non-singular when the determinant is non-zero, and by genericity that happens when
(A1, . . . , An) has an SDR. We conclude that Vol (DE−J1 , . . . , DE−Jn) is 1 if (E−J1, . . . , E−Jn)
has an SDR and 0 otherwise, and the result follows.

Let us illustrate Theorem 2.4.6 with an example.

Example 2.4.7. The independent set polytope of the uniform matroid U2,3 is shown in Figure
2.2. We have IM = D12 +D23 +D13 −D123. Theorem 2.4.6 should confirm that its volume
is 5

6
; let us carry out that computation.
The coconnected flats of M are 1, 2, 3 and ∅ and their complements are {23, 13, 12, 123}.

We need to consider the triples of coconnected flats whose complements contain an SDR.
Each one of the 24 triples of the form (a, b, c), where a, b, c ∈ [3] are not all equal, contributes
a summand equal to 1. The 27 permutations of triples of the form (a, b, ∅), contribute a −1
each. The 9 permutations of triples of the form (a, ∅, ∅) contribute a 1 each. The triple
(∅, ∅, ∅) contributes a −1. The volume of IM is then 1

6
(24− 27 + 9− 1) = 5

6
.

Figure 2.2: The independent set polytope of U2,3.

2.5 Truncation flag matroids

We will soon see that any flag matroid polytope can also be written as a signed Minkowski
sum of simplices ∆I . We now focus on the particularly nice family of truncation flag matroids,
introduced by Borovik, Gelfand, Vince, and White [6], where we obtain an explicit formula
for this sum.

The strong order on matroids is defined by saying that two matroids M and N on the
same ground set E, having respective ranks rM < rN , are concordant if their rank functions
satisfy rM(Y )− rM(X) ≤ rN(Y )− rN(X) for all X ⊂ Y ⊆ E. [7].

Flag matroids are an important family of Coxeter matroids [7]. There are several equiv-
alent ways to define them; in particular they also have an algebro-geometric interpretation.
We proceed constructively. Given pairwise concordant matroids M1, . . . ,Mm on E of ranks
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k1 < · · · < km, consider the collection of flags (B1, . . . , Bm), where Bi is a basis of Mi and
B1 ⊂ · · · ⊂ Bm. Such a collection of flags is called a flag matroid, and M1, . . . ,Mm are called
the constituents of F .

For each flag B = (B1, . . . , Bm) in F let vB = vB1 + · · · + vBm , where v{a1,...,ai} =
ea1 + · · ·+ eai

. The flag matroid polytope is PF = conv{vB : B ∈ F}.

Theorem 2.5.1. [7, Cor 1.13.5] If F is a flag matroid with constituents M1, . . . ,Mk, then
PF = PM1 + · · ·+ PMk

.

As mentioned above, this implies that every flag matroid polytope is a signed Minkowski
sum of simplices ∆I ; the situation is particularly nice for truncation flag matroids, which we
now define.

Let M be a matroid over the ground set E with rank r. Define Mi to be the rank i
truncation of M , whose bases are the independent sets of M of rank i. One easily checks
that the truncations of a matroid are concordant, and this motivates the following definition
of Borovik, Gelfand, Vince, and White.

Definition 2.5.2. [6] The flag F(M) with constituents M1, . . . ,Mr is a flag matroid, called
the truncation flag matroid or underlying flag matroid of M .

Our next goal is to present the decomposition of a truncation flag matroid polytope as a
signed Minkowski sum of simplices. For that purpose, we define the gamma invariant of M
to be γ(M) = b20 − b10, where TM(x, y) =

∑
i,j bijx

iyj is the Tutte polynomial of M .

Proposition 2.5.3. The gamma invariant of a matroid is given by

γ(M) =
∑
I⊆E

(−1)r−|I|
(
r − r(I) + 1

2

)
.

Proof. We would like to isolate the coefficient of x2 minus the coefficient of x in the Tutte
polynomial TM(x, y). We will hence ignore all terms containing y by evaluating TM(x, y) at
y = 0, and then combine the desired x terms through the following operations:

γ(M) :=
1

2

[
d2

dx2
(1− x)TM(x, 0)

]
x=0

=
1

2

[
d2

dx2

∑
I⊆E

(−1)|I|−r(I)+1(x− 1)r−r(I)+1

]
x=0

=
∑
I⊆E

(−1)r−|I|
(
r − r(I) + 1

2

)
,

as we wished to show.
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Unlike the beta invariant, the gamma invariant is not necessarily nonnegative. In fact its
sign is not simply a function of |E| and r. For example, γ(Uk,n) = −

(
n−3
k−1

)
, and γ(Uk,n⊕C) =(

n−2
k−1

)
where C denotes a coloop.

As we did with the beta invariant, define the signed gamma invariant of M to be γ̃(M) =
(−1)r(M)γ(M).

Theorem 2.5.4. The truncation flag matroid polytope of M can be expressed as:

PF(M) =
∑
I⊆E

γ̃(M/I)∆E−I .

Proof. By Theorems 2.2.6 and 2.5.1, PF(M) is

r∑
i=1

PMi
=

r∑
i=1

∑
I⊆E

∑
J⊆I

(−1)|I|−|J |(i− ri(E − J))∆I ,

where ri(A) = min{i, r(A)} is the rank function of Mi. Then

PF(M) =
∑
I⊆E

∑
J⊆I

(−1)|I|−|J |
r∑

i=r(E−J)+1

(i− r(E − J))

∆I

=
∑
I⊆E

[∑
J⊆I

(−1)|I|−|J |
(
r − r(E − J) + 1

2

)]
∆I

=
∑
I⊆E

[∑
X⊆I

(−1)|X|
(
rM/(E−I) − rM/(E−I)(X) + 1

2

)]
∆I

=
∑
I⊆E

γ̃(M/(E − I))∆I

as desired.

Corollary 2.5.5. If a connected matroid M has n elements, then

VolPF(M) =
1

(n− 1)!

∑
(J1,...,Jn−1)

γ̃(M/J1)γ̃(M/J2) · · · γ̃(M/Jn−1),

summing over the ordered collections of sets J1, . . . , Jn−1 ⊆ [n] such that, for any distinct
i1, . . . , ik, |Ji1 ∩ · · · ∩ Jik | < n− k.

Proof. This follows from Proposition 2.3.2 and Theorem 2.5.4.
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Example 2.5.6. Let M be the matroid on [3] with bases {1, 2} and {1, 3}. The flags in
F(M) are: {1} ⊆ {1, 2}, {1} ⊆ {1, 3}, {2} ⊆ {1, 2}, {3} ⊆ {1, 3}, so the vertices of PF(M)

are (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), respectively. Theorem 2.5.4 gives PF(M) = ∆123 + ∆23.
Since γ̃(M) = γ̃(M/1) = 1, Corollary 2.5.5 gives

VolPF(M) =
1

2!
[γ̃(M/∅)γ̃(M/∅) + γ̃(M/∅)γ̃(M/1) + γ̃(M/1)γ̃(M/∅)] =

3

2
.
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Chapter 3

Geometry and generalizations of
multiplihedra

3.1 Introduction

We introduce the multiplihedron J (n) as an (n − 1)-dimensional polytope that sits in a
hyperplane in Rn. We define J (n) as a specific Minkowski sum of coordinate simplices and
show that its face lattice is isomorphic to the poset of painted trees as studied by Forcey [12].
Our definition of the multiplihedron is a simple extension of the Minkowski decomposition of
the associahedron defined in [19], and many of the geometric properties of the associahedron
are naturally generalized through this construction. The associahedron is a generalized
permutohedron, and by our definition as a Minkowski sum of simplices the multiplihedron
is as well [23].

The machinery used to lift the associahedron to the multiplihedron is called the q-lifting
operator, and it can be applied to any generalized permutohedron. We explore this machinery
and make precise the geometric properties of q-lifted polytopes, such as their face lattices,
inequality descriptions, vertices, and volumes.

3.2 q-lifted polytopes

In this section we define our main object of study, the q-lifting operator. The q-lifting
operator sends a generalized permutohedron P in Rn to a higher dimensional generalized
permutohedron P (q) in Rn+1 through the use of Minkowski sum decompositions. We show
that the q-lifting operator sends the permutohedron Pn to a polytope Pn(q) that is combina-
torially equivalent to Pn+1, and describe the face lattice of P (q) in terms of the face lattice
of P .

Before defining P (q) we must define the class of Q̃-polytopes, which are combinatorially
equivalent variants of the Q-polytopes introduced in Section 2.4.
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Definition 3.2.1. Given a generalized permutohedron Pn({zI}) ⊂ Rn, define Q̃n({zI}) :=
Pn+1({z′I}) to be the generalized permutohedron in Rn+1 defined by z′J = 0 and z′J∪{n+1} = z′J
for all J ⊆ [n].

Proposition 3.2.2. If we write Pn({zI}) in terms of Minkowski sums as Pn({yI}), then the
induced Q̃-polytope Q̃n({z′I}) may be written

Q̃n({y′I}) =
∑
I⊆[n]

yI∆I∪{n+1}.

Proof. This can be verified directly by the linear relation between the zI and the yI .

We will now combine Pn({yI}) and Q̃n({yI}), therefore let us assume that Pn({yI}) is
embedded in the hyperplane xn+1 = 0 in Rn+1.

Definition 3.2.3. For a generalized permutohedron P = Pn({yI}), along with a constant
q ∈ [0, 1], define the polytope P (q) ⊂ Rn+1 to be the Minkowski sum

P (q) := qPn({yI}) + (1− q)Q̃n({yI}). (3.1)

We say that the generalized permutohedron P (q) is the q-lifting of P .

q + (1-q) =Pn({yI }) Qn({yI }) P(q)
~

Figure 3.1: The q-lifting of a generalized permutohedron Pn({yI}) shown projected onto the
3-dimensional hyperplane x4 = 0.

The face of P (q) maximized in the (1, . . . , 1, 0) direction is a copy of P , and the face
maximized in the opposite direction is a copy of P scaled by q. The vertices of P (q) will
consist of copies of the vertices of P , but with a factor of q applied to certain specific
coordinates. We describe them in Section 3.4.
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Postnikov [23] showed that any generalized permutohedron P ⊂ Rn can be written in
terms of hyperplane parameters {zI}I⊆[n] as

P = Pn({zI}) =

{
x ∈ Rn :

∑
i∈I

xi ≥ zI for I ⊂ [n],
n∑
i=1

xi = z[n]

}
.

Given a Minkowski description of a generalized permutohedron P = Pn({yI}), the associated
inequality description is expressed as P = Pn({zI}) where zI =

∑
J⊆I yJ . Applying this to

P (q) we get the following immediate proposition:

Proposition 3.2.4. Let P = Pn({zI}) be a generalized permutohedron with hyperplane pa-
rameters {zI}I⊆[n]. Then we can express P (q) = Pn+1({z′I}) as a generalized permutohedron
with hyperplane parameters {z′I}I⊆[n+1] given by z′J = qzJ and z′J∪{n+1} = zJ for J ⊆ [n] and

q ∈ [0, 1].

We now look into the face structure of q-lifted polytopes. One property enjoyed by
generalized permutohedra is that their face lattices are always coarsenings of the face lattice
of the permutohedron Pn. Moreover, all facets of a generalized permutohedron are parallel
to facets of Pn. We discuss these properties in more detail in Section 3.5.

Definition 3.2.5. Consider the linear functional f(x1, . . . , xn) = a1x1 + · · · + anxn. We
partition the ai into blocks A1, . . . , Ak such that ai = aj if and only if ai and aj both belong
to the same block As, and ai < aj if and only if ai ∈ As and aj ∈ At for some s < t. If we
let π = A1| · · · |Ak be an ordered partition of [n] then we label f(x) as fπ(x) and we say that
the functional fπ is of type π. We denote the face of a polytope P that maximizes fπ(x) by
Pπ.

We wish to investigate the poset structure of the faces of P (q). First recall that the face
lattice L(Pn) of the permutohedron Pn is isomorphic to the poset (Pn,≺), where Pn is the
set of all ordered partitions of the set [n], and π ≺ π′ if and only if π′ coarsens π [23]. First
we show that the q-lifted permutohedron Pn(q) is combinatorially equivalent to Pn+1.

Proposition 3.2.6. The q-lifting of the permutohedron Pn is combinatorially equivalent to
the permutohedron Pn+1.

Proof. By definition Pn(q) is a generalized permutohedron in Rn+1, and hence its face lattice
is a coarsening of the poset of ordered partitions on a set of size n + 1. We will show that
this coarsening is trivial, i.e. that every strict containment of faces in Pn+1 corresponds to a
strict containment of faces in Pn(q). The permutohedron Pn is a zonotope. In particular it
can be represented as the Minkowski sum of all coordinate 1-simplices ∆ij for 1 ≤ i < j ≤ n.
Using our established notation, we write Pn = Pn({yI}) where yI = 1 if I has size 2, and
0 otherwise. Let π = B1| · · · |Bk be an ordered partition of [n + 1], and let fπ be a linear
functional in Rn+1 of type π. Coarsen π by joining blocks Bi and Bi+1. Call this new ordered
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partition σ. For every pair b1, b2 ∈ [n+ 1] the Minkowski decomposition of Pn(q) contains a
simplex with ∆b1b2 as a face. Take b1 ∈ Bi and b2 ∈ Bi+1. Then the Minkowski decomposition
of the face Pn(q)σ will include a contribution from ∆b1b2 , whereas the decomposition of Pn(q)π
did not. Thus Pn(q)π is properly contained in Pn(q)σ. We conclude that the face lattice is
isomorphic to the poset of ordered partitions.

Now we extend our focus to face lattices of general q-liftings. Let us assume that the
generalized permutohedra P we are analyzing have nonempty intersection with the interior
of the positive orthant of Rn. If not, then simply project out the unused coordinate(s) until
this condition is satisfied. This will make our proofs easier later.

Definition 3.2.7. Let P be a generalized permutohedron in Rn, and let π and µ be ordered
partitions of [n]. Then we say that π ∼ µ if Pπ = Pµ. We can write the face lattice of P as

L(P ) ∼= (Pn,≺) / ∼ .

The order ≺ is generated by cover relations on equivalence classes: the equivalence class [µ]
covers [π] if and only if Pµ is one dimension greater than Pπ and some element of [µ] coarsens
some element of [π]. Equivalently, this last statement states that there exist π ∈ [π] and
µ ∈ [µ] such that (Pn)π ⊂ (Pn)µ.

Definition 3.2.8. Let π = A1| · · · |Ak1 and µ = B1| · · · |Bk2 be ordered partitions of [n].
Augment π and µ to construct π′ and µ′ by adding the element {n + 1} to the (possibly
new, in which case we relabel the blocks) blocks Aj1 and Bj2 , respectively. Let P (q) be the
q-lifting of P . Then we say that π′ ∼′ µ′ if the following conditions hold:

1. π ∼ µ, and

2. Aj1 = Bj2 and
⋃
i>j1

Ai =
⋃
i>j2

Bi.

Proposition 3.2.9. Using the notation established above, the face lattice of P (q) is given
by

L(P (q)) ∼=
(
Pn+1,≺

)
/ ∼′ .

Proof. Write P = Pn({yI}). The assumption that P intersects the positive orthant implies
that for every i ∈ [n] there is some I ⊆ [n] that contains i such that yI 6= 0. Now decompose
P (q)π′ into

P (q)π′ = qPn({yI})π′ + (1− q)Q̃n({yI})π′

= q
∑
I⊆[n]

yI(∆I)π + (1− q)
∑
I⊆[n]

yI(∆I∪{n+1})π′ .

In the last expression we wrote (∆I)π instead of (∆I)π′ because all of the ∆I belong to the
hyperplane xn+1 = 0. The decomposition for P (q)σ′ is analogous. Now if condition 1 is not
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satisfied, then in the above expression the sums
∑

I⊆[n] yI(∆I)π and
∑

I⊆[n] yI(∆I)σ will be

unequal. If 2 is not satisfied, then similarly (∆I∪{n+1})π′ and (∆I∪{n+1})σ′ must differ for
some I with yI 6= 0 by our positive orthant assumption. The reader can verify that both of
these implications are reversible.

There are other applications of the q-lifting operator. For example, if PM is a matroid
polytope, then PM(0) is combinatorially equivalent to the independent set polytope IM
as seen in Section 2.4. The above propositions provide an expression for the Minkowski
decomposition of IM in terms of the Minkowski decomposition PM .

The associahedron can be q-lifted to form the multiplihedron. The next section is devoted
to this.

3.3 The associahedron and the multiplihedron

In this section we define the associahedron K(n) both geometrically and in terms of planar
trees, as in [19]. We then define the multiplihedron J (n) in terms of painted trees as studied
by Forcey [12], and we show that this polytope is the q-lifting of the associahedron.

Definition 3.3.1. The associahedron K(n) ⊂ Rn−1 is an (n−2)-dimensional polytope whose
face lattice is isomorphic to the poset of rooted planar trees with n leaves, ordered by reverse
refinement, or coarsening. It is not trivial that such a polytope exists. A polytopal realization
was first discovered by Haiman in 1984 [15].

We say the tree T ′ coarsens the tree T if T ′ can be formed by shortening branch lengths
of T between some adjacent internal nodes until those nodes coincide. The vertices of K(n)
correspond to the binary rooted planar trees, and the top face of K(n) corresponds to the
rooted tree with only 1 internal node. A planar rooted tree with only one internal node will
be called a sapling. We call the space between two adjacent interior edges growing upward
from the interior node where they meet a crook of the tree. Crooks are in bijection with the
n spaces between leaves, as a raindrop that falls between two adjacent leaves will roll down
to a unique crook. Figure 3.2 (right) shows a tree with its labeled crooks.

It is known [23] that the associahedron is a generalized permutohedron with an elegant
Minkowski decomposition. We will use the following equivalence relation from [33] to help
derive this decomposition.

Definition 3.3.2. [33] Let B1| · · · |Bk be an ordered partition of the set [n]. We say that
blocks Bm−1 and Bm are independent if there exists x ∈

⋃
i>mBi such that maxBm−1 < x <

minBm or maxBm < x < minBm−1. Then define ∼ to be the equivalence relation generated
by

(B1| · · · |Bk) ∼ (B1| · · · |Bm−1 ∪Bm| · · · |Bk)

whenever Bm−1 and Bm are independent. (Here parentheses are added purely for visual
clarity.)
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We will now show that (Pn,≺)/ ∼, the poset of ordered partitions of [n] modulo the
above equivalence relation, is isomorphic to the poset of rooted planar trees on n+ 1 leaves,
as well as to the face lattice of a particular polytope.

Proposition 3.3.3. [23] The associahedron K(n+ 1) can be represented as the generalized
permutohedron Pn({yI}) where yI = 1 if I is an interval of consecutive integers, and yI = 0
otherwise.

For example K(4) = ∆1 + ∆2 + ∆3 + ∆12 + ∆23 + ∆123. Here the only omitted simplex
is ∆13 because 1 and 3 are not consecutive. The bijection between faces of K(n) and rooted
planar trees on n leaves can be visualized through the following example.

Example 3.3.4. Consider the face of K(4) that maximizes a linear functional fπ of type
π = 12|3. We write the decomposition of this face as

(K(4))12|3 =

∆1 + ∆2 + ∆3

+ ∆12 + ∆23

+ ∆123


12|3

=

∆1 + ∆2 + ∆3

+ ∆12 + ∆3

+ ∆3

 .

Now in this last array, for each integer i = 1, . . . , n − 1 find the vertically lowest summand
∆I such that i ∈ I, and draw a binary sapling in its place. If there’s already a sapling in
that spot, then just add an additional leaf to its one internal node. After all of these saplings
are drawn, graft them, root-to-leaf, based on their position to form one large tree.

12|3

1 2 3

12 23

123

+

+

+ +

+

= =
1 2

3

1 2
3

Figure 3.2: An illustration of the correspondence between faces of the associahedron and
rooted planar trees. The Minkowski decomposition of the face K(4)12|3 is pictured in red.
(The summands of K(4) omitted in the decomposition of that face are pictured in green.)
The brown tree at the right is assembled by grafting the two pictured saplings. To construct
the ordered set partition 12|3 from the brown tree use the labeled crooks at each vertex to
construct the blocks of 12|3.

Though Proposition 3.3.3 was proven by Postnikov, we will present another proof here
that will help us to later prove Theorem 3.3.6.
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Proof of Proposition 3.3.3. We will create a bijection between the equivalence classes of
(Pn,≺)/ ∼ and the faces of Pn({yI}), where yI = 1 whenever I is an interval of consecutive
integers and yI = 0 otherwise. We will also create a bijection between those same equivalence
classes and the set of planar rooted trees on n + 1 leaves. Then for each bijection we will
show that cover relations are preserved and conclude that all three posets are isomorphic.
In particular, if [π′] covers [π] in (Pn,≺)/ ∼, then some representative π′ ∈ [π′] is formed
by merging two adjacent dependent blocks of some π ∈ [π]. On the other hand merging two
adjacent independent blocks of π will yield another member of [π]. For each bijection we
will show that merging two dependent blocks yields a cover relation on faces (resp. trees),
and merging two independent blocks yields the same face (resp. tree).

Define a map from Pn to L(Pn({yI})) by π 7→ Pn({yI})π, where π = B1| · · · |Bk is an
ordered partition of [n]. Let π′ = B1| · · · |Bm−1∪Bm| · · · |Bk be the ordered partition formed
by combining adjacent blocks Bm−1 and Bm. If these blocks are independent, then any
simplex ∆I , where I is an interval that contains elements from both Bm−1 and Bm, will
maximize functionals fπ and fπ′ of type π and π′, respectively, on a the same face ∆J ⊂ ∆I ,
where all elements of J belong to blocks of π (and π′) situated to the right of Bm. Therefore
Pn({yI})π = Pn({yI})π′ . On the other hand, if Bm−1 and Bm are not independent then
such a simplex ∆I will maximize fπ and fπ′ on faces ∆J and ∆J ′ , respectively, such that
∆J ( ∆J ′ . Therefore Pn({yI})π ( Pn({yI})π′ , and we have our isomorphism of posets.

Now we show that (Pn,≺)/ ∼ is isomorphic to the poset of planar rooted trees on n+ 1
leaves. Proceed by induction on n. In the case of n = 1 the polytope P1{yI} is a point, and
there is only one ordered partition of {1}. Now assume the two posets are isomorphic up to
dimension n − 1, and let π = B1| · · · |Bk be an ordered partition of [n] as before. We will
construct a tree T from π as follows. Let S be a sapling with |Bk| + 1 leaves. Label the
crooks of S with the integers of Bk from left to right in increasing order. Partition the block
Bk into maximal intervals Bk = B1

k ∪ · · · ∪ B
j
k where each Bi

k is an interval of consecutive
integers and i1 < i2 iff b1 < b2 for every b1 ∈ Bi1

k and b2 ∈ Bi2
k . Let Ai be the set of integers

that fall between the integers in the sets Bi
k and Bi+1

k . Each Ai induces an ordered set
partition π|Ai , which by inductive hypothesis maps to some rooted planar tree T i on |Ai|+ 1
leaves. For each Ai, graft the root of the corresponding tree T i onto the unique leaf of S that
separates crooks labeled with integers from Bi

k and Bi+1
k . Let π′ be defined as before, and

let it correspond to the tree T ′. Suppose Bm−1 and Bm are independent. We may assume
these blocks are separated by some integer x ∈ Bk. Then the elements in Bm−1 belong to Ai

sets which are disjoint from the Ai sets that contain the elements of Bm. Hence the blocks
Bm−1 and Bm contribute to disjoint subtrees, and thus T = T ′. Suppose instead that Bm−1

and Bm are not independent. We may assume that m = k. In this case, to get T ′ from T
all of the secondary nodes of T created by Bm−1 will be identified with the base node Bm,
thus coarsening T .

In the other direction, start with a rooted planar tree T on n + 1 leaves and k internal
nodes. Label the n crooks of T from left to right with the integers from 1 to n in increasing
order. This labeling is unique. The labels of the crooks adjacent to each internal node will
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form a block of an ordered partition π = B1| · · · |Bk, with the bottom node corresponding
to the rightmost block Bk. As we move up the tree, each new node we encounter will form
a block to be appended onto the left of the existing list of blocks of π. If two nodes are
incomparable then their corresponding blocks may be appended in any order, or combined.
These different configurations correspond to partitions that are equivalent according to ∼.
The face Pn({yI})π corresponds to T .

We have shown that L(Pn({yI})) and the poset of rooted planar trees are both isomorphic
to (Pn,≺)/ ∼, thus Pn({yI}) is a realization of the associahedron. �

Definition 3.3.5. Define the polytope J (n) as the q-lifting of K(n),

J (n) = K(n)(q).

Just as the faces of K(n) correspond to rooted planar trees, we will show that the faces
of J (n) correspond to painted rooted planar trees, as defined in [12].

A painted tree is formed by taking a rooted planar tree and applying a connected region
of paint, starting at the root, and branching upward subject to the constraint that the local
region around each internal node must either

(1) be totally unpainted,

(2) be totally painted, or

(3) be painted below the node, but unpainted on all branches above the node.

We say nodes are painted of type (1), (2), or (3).

(1)

(2)

(3)

Figure 3.3: A painted tree with nodes of type (1), (2), and (3) constructed by grafting
together three saplings.

Another way to think of painted trees is by constructing them out of painted saplings.
Start with an unpainted sapling. Then either leave the sapling entirely unpainted, paint the
entire sapling, or paint just the root below the node. These painting options correspond
respectively to node types (1), (2), and (3) above. Any painted tree on multiple internal
nodes can be assembled from these painted saplings by attaching roots to leaves, provided
that no painted roots are attached to unpainted leaves (see Figure 3.3).
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The space of painted rooted planar trees on n leaves has a poset structure that extends
that of the poset of unpainted trees. If T and T ′ are painted trees that are topologically
equivalent, then we say that the painting of T ′ coarsens the painting of T if T can be formed
by taking some nodes in T ′ of type (3) and converting them to types (1) or (2) through
local painting or unpainting of branches immediately adjacent to those nodes. Suppose the
painted trees T and T ′ are not topologically equivalent, but that T ′ coarsens T topologically.
Let the map ψ represent this coarsening, i.e. ψ(T ) = T ′. Extend ψ to act on painted trees by
following the rule that if ψ identifies two nodes of differing painted type, then the resulting
node should be painted to be type (3). Now for any painted rooted planar trees on n leaves
T and T ′, we say that T ′ coarsens T if

1. T ′ coarsens T topologically, and

2. the painting of ψ(T ′) coarsens the painting of T .

Forcey [12] proved that this is the face lattice of a polytope, the “multiplihedron.” We
will show that this multiplihedron can be realized as the q-lifting of the associahedron.

Theorem 3.3.6. The face lattice of the polytope J (n) is isomorphic to the poset of painted
trees. Moreover, J (n) is the (n− 1)-dimensional multiplihedron.

The correspondence between faces of the multiplihedron J (n) and painted trees is a
simple extension of the correspondence between faces of the associahedron and unpainted
trees. We illustrate it in the following example.

Example 3.3.7. Let us now consider the face of J (4) that maximizes a linear functional fπ
of type π = 124|3. This process is illustrated in Figure 3.4. Write this face as

J (4)124|3 =qPn({yI})12|3 + (1− q)Q̃n({yI})124|3

=q

∆1 + ∆2 + ∆3

+ ∆12 + ∆23

+ ∆123


124|3

+ (1− q)

∆14 + ∆24 + ∆34

+ ∆124 + ∆234

+ ∆1234


124|3

=q

∆1 + ∆2 + ∆3

+ ∆12 + ∆3

+ ∆3

+ (1− q)

∆14 + ∆24 + ∆3

+ ∆124 + ∆3

+ ∆3

 .

Now we will construct a tree using a slight modification of the associahedron technique from
Example 3.3.4. First draw into the array corresponding to Pn({yI})124|3 the saplings based
on the associahedron method. Now for each sapling we’ve drawn, look at the corresponding
entry (∆I∪{n+1})124|3 in the array for Q̃n({yI})124|3. If the subscript on that simplex contains
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only the singleton n+ 1, then leave that sapling unpainted. If the subscript does not contain
n + 1, then paint that sapling entirely. Finally if the subscript contains n + 1 along with
some other integers, then paint only the root of that sapling. Then connect up the saplings
to form the painted tree corresponding to the face J (4)124|3.

Figure 3.4: An illustration of the construction of a painted tree from a Minkowski decom-
position of a face of the multiplihedron. The decomposition of the face J (4)124|3 is pictured
in red. (The omitted indices of the decomposition of the full multiplihedron are written in
gray.) The first grouped term of the decomposition is the same as that of Example 3.3.4,
and determines the topology of the tree. The second grouped term decomposes the associ-
ated Q̃-polytope, and determines the painting of the tree. Labels on crooks are provided to
reverse the process.

We are now ready to prove Theorem 3.3.6.

Proof of Theorem 3.3.6. Consider the equivalence ∼′ from Definition 3.2.8 as it applies
to J (n) = K(n)(q). We will construct a bijection between the equivalence classes of
(Pn+1,≺)/ ∼′ and the set of painted rooted planar trees on n + 1 leaves. Like in the
proof of Proposition 3.3.3 we will show this bijection preserves order by examining cover
relations, taking care to distinguish between actions that produce actual covers and those
which produce other elements in an equivalence class.
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x1x3

x2

π = 2|4|1|3

2
1

3

π = 24|1|3

2
1

3

π = 124|3

2

3

1

π = 34|1|2

1 3

2

π = 134|2

1 3

2

π = 4|13|2

1 3

2

~ 4|1|3|2 ~ 4|3|1|2

Figure 3.5: Two chains in the poset of painted trees, with labeled crooks, and the corre-
sponding faces of the multiplihedron, projected onto the hyperplane x4 = 0 for visualization.
Blocks of π corresponding to painted nodes are shown in blue, blocks corresponding to un-
painted nodes are in brown, and blocks corresponding to nodes of type (3) are written in
both colors.

Let π = B1| · · · |Bk be an ordered partition of [n], and let π′ be its augmentation by the
element {n + 1} via insertion into the (possibly new, in which case we relabel the blocks)
block Bj. Using the construction from Proposition 3.3.3 build the unpainted tree T (π) that
corresponds to the partition π . Each block Bi of π corresponds to some internal node(s)
of T (π). If i > j then then paint the nodes of Bi according to type (2). For the nodes of
Bj apply paint of type (3). Leave all remaining nodes unpainted, type (1). Consider the
equivalence ∼′ from Definition 3.2.8 as it applies to J (n) = K(n)(q). Suppose π′ ∼′ µ′.
The first condition of ∼′ states that the unpainted trees T (π) and T (µ) are topologically
congruent. The second condition ensures that there are no differences in the paintings of
nodes of T (π′) and T (µ′) corresponding to differing blocks of π′ and µ′. Hence T (π′) = T (µ′).

To reverse this map, start with a painted tree T . Ignoring the paint of T build the
corresponding ordered partition π(T ). By the definition of painted trees all nodes of T
painted of type (3) are incomparable. Hence according to the equivalence ∼ on unpainted
trees we may combine all blocks of π(T ) corresponding to such nodes into a single block.
Call this block Bj, and augment it with the element {n + 1} to form π′(T ). The definition
of painted trees ensures that all nodes painted of type (1) will correspond to blocks to the
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left of Bj and all nodes painted of type (2) will correspond to blocks to the right of Bj. If
two incomparable nodes of T are either both painted of type (1) or both of type (2), then
their corresponding blocks in π′(T ) may be reordered or combined, as in Proposition 3.3.3.

Now we show that this correspondence preserves order. Suppose µ′ coarsens π′ by com-
bining blocks Bm−1 and Bm of π′, and let Bj be the block containing {n+ 1}. We’ve already
addressed the situation where π′ ∼′ µ′, so assume that this isn’t the case. Let T (π′) and
T (µ′) be the corresponding painted trees. First, if j 6= m,m−1 then the combining of blocks
affects only the topology of the tree and not its painting. By Proposition 3.3.3 the unpainted
tree T (µ) coarsens T (π), and therefore T (µ′) coarsens T (π′). Suppose now that j = m. If
Bm−1 and Bm \ {n+ 1} are independent blocks in π, then the corresponding nodes in T (π′)
are incomparable. Combining blocks to make µ′ corresponds to repainting nodes of Bm in
T (π′) to be type (3) instead of their existing type (1), which coarsens the painting of the tree
T (π′). If Bm−1 and Bm \{n+ 1} are not independent, then combining blocks corresponds to
collapsing the internal edge of T (π′) that connects the nodes of Bm with the nodes of Bm−1,
and then repainting the identified node to be type (3). This is also a coarsening action on
T (π′). An analogous argument covers the case where j = m− 1. �

3.4 Face q-liftings and volumes

We will now modify the q-lifting operator P (q) and define the face q-lifting operator P π(q),
which acts on a specific face Pπ of a generalized permutohedron instead of on P as a whole.
This operator is useful in that it subdivides the polytope P (q) into pieces whose volumes
are easy to compute, i.e.

P (q) =
⋃
π∈Pn

P π(q),

and
Vol n(P (q)) =

∑
π∈Pn

Vol n(P π(q)),

where Vol n(P π(q)) is a degree-n polynomial in q. The family of polynomials described in this
volume formula are defined in terms of compositions of n, and we explore them in greater
depth in Section 4.2.

For the sake of visualizations and the cleanliness of formulas, for this section let us treat
P (q) as a full-dimensional polytope in Rn via projection onto the hyperplane xn+1 = 0,
rather than as a codimension-1 polytope in Rn+1. Thus if P = Pn({zI}) then it follows from
Proposition 3.2.4 that P (q) will have hyperplane description

P (q) =

{
x ∈ Rn : qzI ≤

∑
i∈I

xi ≤ z[n] − z[n]\I for all I ⊆ [n]

}
.
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Definition 3.4.1. Define the face q-lifting of P as follows. Let π = B1| · · · |Bk be an ordered
partition of [n] and let Pπ be the face of P that maximizes a linear functional of type π. Now
for i = 0, . . . , k construct a modified copy of Pπ by applying a factor of q to the coordinates
of the vertices of Pπ whose indices belong to the first i blocks of π, B1∪· · ·∪Bi. The convex
hull of all of these modified copies of Pπ is the face q-lifting of Pπ, and we denote it as P π(q).

Example 3.4.2. Consider the associahedron K(4). The face q-lifting

K(4)1|3|2(q) = conv{(1, 4, 1), (q, 4, 1), (q, 4, q), (q, 4q, q)}.

This and other face q-liftings are pictured in Figure 3.6.

x1x3

x2

1,4,1

q,4,1

q,4,q

q,4q,q

x1x3

x2

q,2,3

1,4,1

q,4,1

q,4q,q

1,2,3 q,2q,3q

x1x3

x2

K(4)

qK(4)

Figure 3.6: Three face q-liftings of the associahedron K(4): K(4)1|3|2(q), K(4)1|23(q), and
K(4)123(q). The red regions represent the faces K(4)π.

For the notation P π(q) we use the superscript on π instead of the subscript to avoid
ambiguity. Take for example P = K(4). Then P123 = P , and thus P123(q) is interpreted as
the regular q-lifting P (q). However P 123(q), pictured in Figure 3.6, is properly contained in
P (q).

Next we will prove that the face q-liftings of P subdivide the polytope P (q) into simpler
pieces. In particular, we will calculate the volume of a face q-lifting P π(q) directly using
integrals, and thus obtain a formula for the volume of P (q).

Definition 3.4.3. For a subset I ⊆ [n] define xI :=
∑

i∈I xi. For a generalized permutohe-
dron P = Pn({zI}) and an ordered partition π = B1| · · · |Bk define

zBi := zB1∪···∪Bi
− zB1∪···∪Bi−1

.

If Bi can be written as a disjoint union B′i ∪B′′i then define

zB
′
i := zB1∪···∪Bi−1∪B′i − zB1∪···∪Bi−1

and

zB
′′
i := zB1∪···∪Bi

− zB1∪···∪Bi−1∪B′i .
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Proposition 3.4.4. For a generalized permutohedron P = Pn({zI}) and an ordered partition
π = B1| · · · |Bk the face q-lifting P π(q) has the following hyperplane description:

xB′i
zB
′
i
≥
xB′′i
zB
′′
i

for all Bi expressible as a disjoint union B′i ∪B′′i , and

q ≤ xB1

zB1
≤ · · · ≤ xBk

zBk
≤ 1.

Let these first types of inequalities be called facial inequalities, and let the second types
be called simplicial inequalities.

Proof. The face Pπ consists of the points x in P that satisfy xBi
= zBi for i = 1, . . . , k. The

face q-lifting P π(q) is combinatorially the product of a k-dimensional simplex ∆ and the face
Pπ. First we define the facets of P π(q) of the form ∆′ × Pπ, where ∆′ is a facet of ∆. The
inequality q ≤ xB1

zB1
defines the facet of ∆× Pπ that contains all copies of Pπ that have been

scaled by q in the xB1 coordinates. The inequality
xBk

zBk
≤ 1 defines the facet of ∆× Pπ that

contains all copies of Pπ that have not been scaled by q in the xBk
coordinates. Finally, the

inequality
xBi

zBi
≤ xBi+1

zBi+1
defines the facet that contains all copies of Pπ for which the Bi and

Bi+1 coordinates have either both been scaled by q or have both not been scaled by q.
Next we define the facets of P π(q) of the form ∆ × Pµ where Pµ is a facet of Pπ. We

may assume that π covers µ in the poset of ordered partitions, and particularly that µ is
formed by splitting a block Bi of π into blocks B′i and B′′i so that µ = B1| · · · |B′i|B′′i | · · · |Bk.
Then all points x in Pµ will satisfy xBj

= zBj for j = 1, . . . , k as above, as well as the

additional equations xB′i = zB
′
i and xB′′i = zB

′′
i . Moreover, all other points on Pπ will satisfy

the inequality
xB′

i

zB′
i
≥

xB′′
i

zB′′
i

, and one can check that this inequality defines the hyperplane that

contains the facet ∆× Pµ.

Proposition 3.4.5. The set of face q-liftings {P π(q) : π an ordered partition of [n]} forms
a subdivision of the q-lifted polytope P (q).

Proof. Let π = B1| · · · |Bk be an ordered partition and let Ai = B1 ∪ · · · ∪Bi. Let us assume
that P has been translated to sit in the interior of the positive orthant of Rn. This means
that every x ∈ P will have all strictly positive coordinates, and moreover that zI < zJ for
I ( J . We will now reinterpret the inequality description parameters of P π(q) in terms
of slopes. For a point x ∈ Rn let vI = (zI , xI) ∈ R2, where xI =

∑
i∈I xi as above. For

x ∈ P π(q) the term
xBi

zBi
=

xAi
−xAi−1

zAi
−zAi−1

is the slope of the segment joining vAi−1
and vAi

. Thus

the simplicial inequalities in Proposition 3.4.4 can be interpreted as stating that, starting at
the origin vA0 = v∅, the points vA0 , vA1 , vA2 , . . . , vAk

form a broken line of ascending slopes.
Similarly, the facial inequalities state that all points vC with Ai−1 ⊂ C ⊂ Ai lie above the
segment connecting vAi−1

and vAi
.
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Now given a point x ∈ P (q) construct a partition π as follows. Draw the 2n points vI , take
the convex hull to create a polygon Q, and look at the “lower hull” of Q. By lower hull we
mean all faces of Q that maximize a linear functional whose second component is nonpositive.
This will form a broken line of ascending slopes connecting vertices vA0 , vA1 , . . . , vAk

. Because
the xi are strictly positive we know vA0 will be the origin, and because of the increasing
condition on the zI we know Ak = [n]. Now we claim that Ai−1 ⊂ Ai for all i. Suppose
by way of contradiction that, ordered from left to right, vA and vB are consecutive vertices
in the lower hull of Q, but that A 6⊂ B. By the increasing condition on the zI we have
zA∩B < zA < zB < zA∪B. Moreover, because vA and vB are vertices of the lower hull of Q
we know that the slope of the line segment connecting vA∩B and vA is strictly less than the
slope of the segment between vA and vB, which is in turn strictly less than the slope of the
segment between vB and vA∪B. Thus

xA − xA∩B
zA − zA∩B

<
xA∪B − xB
zA∪B − zB

.

Notice that the numerators on both sides of this inequality are equal, hence we may rearrange
terms to get

zA + zB > zA∪B + zA∩B,

which violates the submodularity condition on the zI . This is a contradiction. Now we may
let π = B1| · · · |Bk where Bi = Ai\Ai−1. By construction x satisfies the simplicial inequalities
of P π(q), and by the increasing property of the zI , x satisfies the facial inequalities as well.

Note that each ordered partition π corresponds to a unique face q-lifting P π(q). Even if
Pπ = Pµ, the face q-liftings P π(q) and P µ(q) will be distinct for π 6= µ.

Theorem 3.4.6. Let P be a generalized permutohedron in Rn. Let π = B1| · · · |Bk be an
ordered partition of [n]. Then the volume of the face q-lifting P π(q) is a polynomial in q
given by

Vol n(P π(q)) = zπVol n−k(Pπ)

∫ 1

q

∫ tk

q

· · ·
∫ t2

q

t
|B1|−1
1 · · · t|Bk|−1

k dt1 · · · dtk,

where zπ = zB1 · · · zBk .

Proof. The face q-lifting P π(q) is combinatorially the product of Pπ and a (k+1)-dimensional
simplex ∆. From Proposition 3.4.4 the inequality description of ∆ is given by the simplicial
inequalities

q ≤ xB1

zB1
≤ · · · ≤ xBk

zBk
≤ 1.

Furthermore, there exists a projection map f onto ∆ where the fiber f−1(x) is congruent
to S(x)Pπ, where S(x) is some scaling factor. For any point x ∈ ∆, the value of

xBi

zBi
varies

linearly between q and 1, thus the scaling factor S(xBi
) restricted to those coordinates is
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simply the linear term
xBi

zBi
. Because this linear variation occurs in |Bi| coordinates, this scales

the relative volume Vol n−k(Pπ) by a monomial factor of degree |Bi|−1: Vol n−k (S(xBi
)Pπ) =(xBi

zBi

)|Bi|−1
Vol n−k(Pπ). Since all coordinate blocks xBi

are orthogonal, we may combine the

restricted scaling factors independently and write S(x) =
xB1

zB1
· · · xBk

zBk
. Moreover, the relative

volume of the fibre f−1(x) is equal to

Vol n−k (S(x)Pπ) =
(xB1

zB1

)|B1|−1

· · ·
(xBk

zBk

)|Bk|−1

Vol n−k(Pπ).

Thus the volume of P π(q) can be computed by

Vol n(P π(q)) =

∫
∆

Vol n−k(S(x)Pπ)dx.

The bounds of integration are defined by the simplicial inequalities, and Vol n−k(S(x)Pπ)
is given above. Then using the substitution ti :=

xBi

zBi
we attain the integral formula as

desired.

x1x3

x2

2,1,3
2q,q,3

2q,q,3q

1,2,3

q,2q,3

q,2q,3q

x1x3

x2

Figure 3.7: The face q-lifting U
12|3
q (K(4)) (left) along with its simplicial cross section (right)

shown in blue.

Observe that the above integral itself evaluates to a polynomial in q and depends only
on the sizes of the blocks of π. The sequence of these block sizes can be thought of as a
composition c(π) of the integer n. Let us call this polynomial gc(π)(q). Then because the
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P π(q) form a subdivision of P (q), summing over all ordered partitions π in Pn we can express
the volume of the q-lifted polytope P (q) in terms of these polynomials:

Corollary 3.4.7. The volume of the q-lifted polytope P (q) is given by

Vol n(P (q)) =
∑
π∈Pn

zπVol n−k(Pπ)gc(π)(q).

We investigate the properties of the polynomials gc(π)(q) in Chapter 4. We can also
decompose a q-lifted face P π(q) into a Minkowski sum.

Proposition 3.4.8. The face q-lift P π(q) can be decomposed into the Minkowski sum

P π(q) = qPπ + (1− q)P π(0).

Proof. The normal fans of both Pπ = P π(1) and P π(0) coarsen the normal fan of P π(q), and
hence so does the normal fan of the right hand side. Thus the hyperplane directions used
to define P π(q) can also be used to adequately define the other two polytopes. Moreover,
the respective hyperplane parameters on the right hand side will be additive over Minkowski
addition. Substituting in q = 1 and q = 0 into the inequalities given in Proposition 3.4.4
gives the parameters for these respective polytopes, and summing them with respective
coefficients q and 1− q yields the hyperplane parameters for P π(q).

This decomposition preserves the flavor of our definition of the regular q-lifting P (q), and
may provide geometric insight for future work with these polytopes.

3.5 Vertex q-liftings and deformation maps

Here we define q-lifted polytopes in terms of their vertices and we show that this definition
agrees with Definition 3.2.3 through the analysis of vertex deformation maps. This approach
is used in the definition of the multiplihedron in [12].

Generalized permutohedra can be defined and presented in many ways. In Section 3.2
we defined the q-lifting P (q) in terms of Minkowski sums. An alternate approach is to define
P (q) in terms of vertex deformation maps, as described in [25].

Definition 3.5.1. [25] Let Q ⊂ Rn be a simple polytope with vertex set V (Q) and edge
set E(Q) ⊂

(
V (Q)

2

)
. We say that a polytope P is a deformation of Q if there exists a vertex

deformation map b : V (Q)→ V (P ) that preserves edge directions and orientations. By this
we mean that

b(v1)− b(v2) ∈ R≥0(v1 − v2), for every edge v1v2 ∈ E(Q).

We say P is deformation equivalent to Q if there is a deformation map between Q and P
that preserves combinatorial type.
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An important application of deformation maps is that generalized permutohedra are
deformations of permutohedra.

Theorem 3.5.2. [23] A polytope P ⊂ Rn is a generalized permutohedron if and only if it
is a deformation of the permutohedron Pn .

To approach q-liftings in terms of deformation maps, let us define the vertex q-lifting
operator. This operator takes a vertex v of a polytope in Rn, applies a factor of q to certain
coordinates of v, and embeds the result in a hyperplane in Rn+1. This is similar to the face
q-lifting operator, but it is designed specifically to work well with vertex deformation maps.

Definition 3.5.3. Let v be a vertex of a generalized permutohedron P ⊂ Rn, where P sits
on the hyperplane x1 + · · ·+xn = z for some constant z. Then for a permutation σ ∈ Sn, an
integer i ∈ {0, . . . , n}, and a constant q ∈ [0, 1], define the vertex q-lifting of v, written vσ,i(q),
to be the point obtained by applying a factor of q to the coordinates of v indexed by the first
i entries in σ, and then embedding that result in the hyperplane x1 + · · ·+xn+1 = z in Rn+1.
This embedding is performed via the affine linear map that leaves the first n coordinates
fixed and then adjusts xn+1 appropriately. See Figure 3.8 for a depiction of this.

When combined with a vertex deformation map b, the vertex q-lifting operator defines
the vertices of the q-lifted polytope P (q).

Theorem 3.5.4. Let P ⊂ Rn+1 be a generalized permutohedron defined by the vertex defor-
mation map b : V (Pn) → V (P ), and let P (q) be the q-lifting of P , as defined in Definition
3.2.3. Then

P (q) = conv
{
b(σ)σ,i : σ ∈ Sn, i ∈ {0, . . . , n}

}
.

One way to prove Theorem 3.5.4 is to simply show that the vertices of P (q) are the
same as the vertices produced by the vertex q-liftings of P . We will instead take a more
circuitous route so as to demonstrate the utility of vertex deformation maps. First we show
that applying the vertex q-lifting operator to the permutohedron Pn yields a polytope that is
deformation equivalent to Pn+1. Then we show that applying the vertex q-lifting operator to
any generalized permutohedron P ⊂ Rn produces a deformation of Pn+1, i.e. a generalized
permutohedron in Rn+1. Finally with this fact established we can then express our poly-
tope in terms of supporting hyperplanes using Postnikov’s P ({zI}) notation of generalized
permutohedra, which we will show to match the hyperplane description of P (q).

Proposition 3.5.5. Let A be the polytope defined by q-lifting the vertices of Pn:

A := conv
{
σσ,i : σ ∈ Sn, i ∈ {0, . . . , n}

}
. (3.2)

Then A is deformation equivalent to the permutohedron Pn+1 when q ∈ (0, 1).
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x1x3

x2

(q,4q,q,6-6q)

(q,4,q,2-2q)
(q,4,1,1-q)

(1,4,1,0)

Figure 3.8: Pictured in red, the vertex q-liftings v132,i(q) for v = (1, 4, 1) and i = 0, 1, 2, 3,
projected onto the first 3 coordinates for visualization. Here (1, 4, 1) is the vertex of the
associahedron K(4), which is the image of the vertex (1, 3, 2) of the permutohedron P3 under
the deformation map that defines K(4).

Proof. We will define an explicit vertex map from the vertices of Pn+1 to the vertices of
A, and then show that the map is bijective and preserves edge directions and orientations.
Consider the projection map of permutations p : Sn+1 → Sn defined by

p(σ)i =

{
σi : σi < σn+1

σi − 1 : σi > σn+1
,

where p(σ) = (p(σ)1, . . . , p(σ)n). Now define the vertex map a : V (Pn+1)→ V (A) by

a(σ) := p(σ)p(σ),σn+1−1.

Now we show that a is a deformation equivalence map. For convenience, the coordinates of
a(σ) can be written explicitly as

a(σ)i =

{
qσi : σi < σn+1

σi − 1 : σi > σn+1
for i ∈ [n]

a(σ)n+1 = (1− q)
(
σn+1

2

)
.



CHAPTER 3. GEOMETRY AND GENERALIZATIONS OF MULTIPLIHEDRA 37

First we observe that a is a bijection between the vertex sets of the two polytopes. Indeed,
the map σ 7→ (p(σ), σn+1 − 1) is a bijection between V (Pn+1) = Sn+1 and Sn × {0, . . . , n},
and furthermore a is injective onto its image V (A).

Now we show that a preserves edge directions. Suppose σ, τ ∈ Sn are vertices of Pn+1 that
form an edge. Then σ and τ differ by an adjacent transposition (s, s+1), and σ−τ = eh−ek
where σk = τh = s and σh = τk = s+ 1.

Suppose k < h < n+ 1. Then σn+1 = τn+1 and p(σ) and p(τ) differ by the transposition
(s, s+ 1). If s > σn+1 then by the definition of a we have a(σ)− a(τ) = eh− ek. Similarly, if
s+ 1 < σn+1 then a(σ)− a(τ) = q(eh− ek). Because we have taken q > 0, the edge direction
and orientation are preserved.

Suppose instead that k < h = n+ 1. Then p(σ) = p(τ), τn+1 = s, and σn+1 = s+ 1. We
then have

a(σ)− a(τ) = ek(qs− s) + en+1

(
(1− q)

(
s+ 1

2

)
− (1− q)

(
s

2

))
= s(1− q)(en+1 − ek).

Because we have taken q < 1, we see that a also preserves edge direction and orientation in
this case, thus completing the proof.

Now we can show that the vertex q-lifting operator sends generalized permutohedra in
Rn to generalized permutohedra in Rn+1.

Proposition 3.5.6. Let P be a generalized permutohedron that sits in the positive orthant
{xi ≥ 0 : i = 1, . . . n} of Rn. Let b : V (Pn) → V (P ) be the vertex deformation map that
defines P as a deformation of Pn. Let B ⊂ Rn+1 be the polytope formed by applying the
vertex q-lifting operator to P , given by

B := conv
{
b(σ)σ,i : σ ∈ Sn, i ∈ {0, . . . , n}

}
.

Then B is a deformation of Pn+1, i.e. B is itself a generalized permutohedron.

Proof. Let A be the vertex q-lifting of Pn, as defined in (3.2). We will lift the vertex
deformation map b to an induced map b′ : V (A) → V (B) and show that b′ preserves edge
directions and orientations. Proposition 3.5.5 furnished us with a vertex deformation map a
from Pn+1 to A. We will show that the composition b′ ◦ a : V (Pn+1) → B is itself a vertex
deformation map and hence B is a generalized permutohedron.
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Pn P

Pn+1 A B

b

a b′

σσ,i(q) b(σ)σ,i(q)

Define the vertex map b′ : V (A)→ V (B) by

b′(σσ,i)(q) := b(σ)σ,i(q).

Surjectivity of b′ is inherited from surjectivity of b. Now we show that b′ preserves edge
directions and orientations. Let v = σσ,i and w = τ τ,j be vertices of A. By the proof of
Proposition 3.5.6 v and w share an edge in A exactly when either σ = τ and |i− j| = 1, or
when σ and τ differ by a transposition (s, s+ 1) and i = j 6= s+ 1.

First suppose that vw is an edge of A with σ = τ and j = i+1. In this case, as in the proof
of Proposition 3.5.6, we have that v−w is a nonnegative multiple of en+1−ek. Suppose that
σk = i. In coordinate k the vectors b′(σσ,i) and b′(σσ,i−1) will differ by (q− 1)b(σ)kek. Recall
that the vertex q-lifting operator embeds points into the hyperplane x1+· · ·+xn+1 = z. From
this we see that in the last coordinate b′(v)n+1 − b′(w)n+1 = b′(w)k − b′(v)k = (1 − q)b(σ)k.
So b′(v) − b′(w) = (1 − q)b(σ)k(en+1 − ek). By our assumption that P sits in the positive
orthant of Rn, we have b(σ)k ≥ 0 and hence edge direction is preserved.

In the second case, suppose vw is an edge of A with σ = τ · (s, s+ 1) and i = j 6= s+ 1.
We may write σ − τ = eh − ek for some h, k, and because b is a deformation we have
b(σ) − b(τ) = c(eh − ek) for some constant c ≥ 0. Now suppose i > s + 1 = σh = τk.
Then the vertex q-lifting operator will apply a factor of q to the hth and kth coordinates
of both b(σ) and b(τ). Thence b′(v)h − b′(w)h = q(b(σ)h − b(τ)h) = qc, and similarly
b′(v)k − b′(w)k = (b(σ)k − b(τ)k) = −qc. Applying the affine embedding into Rn+1 we see
that b′(v)n+1 − b′(w)n+1 = b′(w)h − b′(v)h + b′(w)k − b′(v)k = 0. It is clear that b′(v) and
b′(w) agree on all other coordinates. Therefore b′(v)− b′(w) = qc(eh−ek). If instead we took
i < s+ 1, then a completely analogous argument produces b′(v)− b′(w) = c(eh − ek). From
the proof of Proposition 3.5.6 we know v − w is a nonnegative multiple of eh − ek, so edge
directions are preserved.

We have shown that b′ : V (A)→ V (B) is a vertex deformation map, and it follows from
the definition that vertex deformation maps are closed under composition. Hence b′ ◦ a :
V (Pn+1)→ V (B) is a vertex deformation map, and B is a generalized permutohedron.

Now that we have shown that the vertex q-lifting operator sends P to the generalized
permutohedron B ∈ Rn+1 we can write down the hyperplane description of B and show that
it agrees with the hyperplane description of the regular q-lifting P (q). This proves that the
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vertex q-lifting operator, when applied to all vertices of a generalized permutohedron P , is
actually the same as the regular q-lifting of P .

Proof of Theorem 3.5.4. Recall from Section 3.2 that we can write any generalized per-
mutohedron P ∈ Rn as P ({zI}) using Postnikov’s inequality description

P ({zI}) =

{
x ∈ Rn :

∑
i∈I

xi ≥ zI for I ⊂ [n],
n∑
i=1

xi = z[n]

}
.

Let P = P ({zI}) have hyperplane parameters {zI}I⊆[n]. Recall from Proposition 3.2.4 that
the q-lifting P (q) has hyperplane parameters {z′I}I⊆[n+1] given by z′J = qzJ and z′J∪{n+1} = zJ
for J ⊆ [n] and q ∈ [0, 1]. We will show that this agrees with the hyperplane parameters of
B.

First notice that, by the definition of the vertex q-lifting operator, B will contain as a
face a copy of P as well as a copy of qP (P scaled by the constant q). That z′J = qzJ for
J ⊆ [n] follows from the fact that any functional f(x) =

∑
xij that does not involve xn+1

will be minimized somewhere on the face of B equal to qP . To see that z′J∪{n+1} = zJ it

suffices to observe that any functional f(x) =
∑
xij that involves xn+1 is weakly increasing

over application of factors of q to coordinates of vertices of P , as in the construction of
B. Indeed, let fI(x) = xi1 + · · · + xik + xn+1 for ij ∈ I ⊆ [n], and let v be a vertex of
B. Let w be the vertex obtained by applying a factor of q to some coordinate vk of v for
k ≤ n. If k ∈ I we have fI(w) − fI(v) = (q − 1)vk + (1 − q)vk = 0, and if k 6∈ I then
fI(w) − fI(v) = (1 − q)vk ≥ 0. Thus any such functional is minimized somewhere on the
face of B equal to P and we can take z′I∪{n+1} = zI . �
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Chapter 4

Composition polynomials

4.1 Introduction

Here we define the composition polynomial gc(q), and the related reduced composition poly-
nomial fc(q) = (1− q)−kgc(q), both of which depend only on a composition c = (c1, . . . , ck)
of n. In Section 3.4 we defined gc(π)(q). This turned out to be a constant multiple of the
volume of the face q-lifting P π(q). In Theorem 4.2.3 we detail several other properties of
(reduced) composition polynomials, some of which are illustrated in the following examples:

• f(1,1,1,1)(q) = 1
24

.

• f(2,2,2,2)(q) = 1
384

(1 + q)4.

• f(1,2,2)(q) = 1
120

(8 + 9q + 3q2).

• f(2,2,1)(q) = 1
120

(3 + 9q + 8q2).

• f(5,3)(q) = 1
120

(5 + 10q + 15q2 + 12q3 + 9q4 + 6q5 + 3q6).

• f(a,b)(q) = 1
ab(a+b)

(b+2bq+· · ·+(a−1)bqa−2+abqa−1+a(b−1)qa+· · ·+2aqa+b−3+aqa+b−2)
for a and b relatively prime.

4.2 Composition polynomials

Let us begin by reviewing the notion of a composition of an integer.

Definition 4.2.1. A composition c is a finite ordered tuple of positive integers, denoted
c = (c1, . . . , ck). We call the ci the parts of c, and the sum c1 + · · · + ck the size of c. If
c = (c1, . . . , ck) has size n, we say that c is a composition of n into k parts. The reverse
of the composition c is defined as c̄ = (ck, . . . , c1). Define the truncated compositions cL :=
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(c2, . . . , ck) and cR := (c1, . . . , ck−1). For m ∈ {1, . . . , k−1} we define the merged composition
cm as the composition formed by combining the parts cm and cm+1 into a single part:

cm := (c1, . . . , cm−1, cm + cm+1, cm+2, . . . , ck).

For an ordered set partition π = B1| · · · |Bk, we define the induced composition c(π) :=
(|B1|, . . . , |Bk|).
Definition 4.2.2. For a composition c = (c1, . . . , ck) we define its associated composition
monomial to be tc−1 := tc1−1

1 · · · tck−1
k , where t = (t1, . . . , tk). This monomial has degree

n− k and belongs to Q[t1, . . . , tk]. Then define the composition polynomial gc(q) by

gc(q) :=

∫ 1

q

∫ tk

q

· · ·
∫ t2

q

tc−1dt1 · · · dtk.

This polynomial has degree n and belongs to Q[q].

The main goal for this section is to prove the following theorem about composition
polynomials.

Theorem 4.2.3. Let c = (c1, . . . , ck) be a composition of n. Then the following are true:

1. gc(q) factors into gc(q) = (1− q)kfc(q), where deg(fc(q)) = n− k and fc(1) 6= 0.

2. the coefficients of fc(q) are strictly positive,

3. fc(1) = 1/k!,

4. fc̄(q) = qn−kfc(1/q), and

5. gαc(q) = 1
αk gc(q

α) and fαc(q) = 1
αk (1 + q+ · · ·+ qα−1)kfc(q

α) for any positive integer α.

The polynomials gc(q) and fc(q) also arise as solutions to particular polynomial interpo-
lation problems. We present this in Theorem 4.3.1.

Definition 4.2.4. We will refer to the polynomial fc(q) as the reduced composition polyno-
mial for the composition c.

Our proof of Theorem 4.2.3 relies on a recursive construction of the polynomial gc(q).
The integral definition of gc(q) hints at this recursion.

gc(q) =

∫ 1

q

∫ tk

q

· · ·
∫ t2

q

tc1−1
1 · · · tck−1

k dt1 · · · dtk

=
1

c1

∫ 1

q

∫ tk

q

· · ·
∫ t3

q

tc2−1
2 · · · tck−1

k (tc12 − qc1)dt2 · · · dtk

=
1

c1

g(c1+c2,c3,...,ck)(q)−
qc1

c1

g(c2,c3,...,ck)(q)

=
1

c1

gc1(q)−
qc1

c1

gcL(q).
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This observation does not give us enough to prove Theorem 4.2.3, however it is useful in
deriving an explicit formula for gc(q), which in turn will help to produce the stronger recursive
formula that does prove Theorem 4.2.3.

First let us introduce notation related to partial sums of the ci. Let c = (c1, . . . , ck) be a
composition of size n. Now define the sequence of partial sums 0 = β0 < · · · < βk = n by
βi = c1 + · · ·+ ci for i = 1, . . . , k.

Let (β) denote the Vandermonde matrix

(β) =

1 β0 · · · βk0
...

... · · · ...
1 βk · · · βkk

 .

We will index the rows and columns of this matrix from 0 to k. It is well known that

det(β) :=
∏

0≤i<j≤k

(βj − βi)

Let [βi] be a factor of det(β) defined by

[βi] := (−1)i
∏
j 6=i

(βj − βi).

Lastly define [β̂i] := det(β)/[βi]. Notice that [β̂i] is the unsigned minor of (β) obtained by
removing row i and column k. Moreover, [β̂i] is itself a Vandermonde determinant of degree
k − 1.

Proposition 4.2.5. The composition polynomial gc(q) has closed form

gc(q) =
k∑
i=0

(−1)i
qβi

[βi]
.

Proof. Let 0 = β0 < · · · < βk be the sequence of partial sums of the parts of the compo-
sition c = (c1, . . . , ck). Define [βi] as above, and define [βki ] analogously for the truncated
composition cR = (c1, . . . , ck−1). Proceed by induction on k. If k = 1 then∫ 1

q

tc1−1
1 dt1 =

1

c1

− qc1

c1

=
qβ0

[β0]
− qβ1

[β1]
.

Now assume that the formula holds up to k − 1. Then

gcR(q) =

∫ 1

q

· · ·
∫ t2

q

tcR−1dt1 · · · dtk−1 =
k−1∑
i=0

(−1)i
qβi

[βki ]
.
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Changing the upper bound of the outer integral produces∫ tk

q

· · ·
∫ t2

q

tcR−1dt1 · · · dtk−1 =
k−1∑
i=0

(−1)i
qβit

βk−1−βi

k

[βki ]
.

This follows from the observation that this integral must evaluate to a homogeneous poly-
nomial in tk and q of total degree c1 + · · ·+ ck−1 = βk−1. Now the original integral we wish
to compute becomes

gc(q) =

∫ 1

q

tck−1
k

k−1∑
i=0

(−1)i
qβit

βk−1−βi

k

[βki ]
dtk

=

∫ 1

q

k−1∑
i=0

(−1)i
qβitβk−βi−1

k

[βki ]
dtk

=
k−1∑
i=0

(−1)i
qβi

[βi]
− qβk

k−1∑
i=0

(−1)i

[βi]
.

Here we changed the denominators by using the fact that (βk − βi)[βki ] = [βi]. Observe that
the sum (β)

∑k
i=0 (−1)i/[βi] =

∑k
i=0 (−1)i[β̂i] computes, up to sign, the determinant of the

matrix formed by replacing the last column in the Vandermonde matrix (β) with a column
of 1s. This determinant is clearly zero, hence

∑k−1
i=0 (−1)i/[βi] = (−1)k+1/[βk]. This gives us

the desired result.

We can prove a similar formula corresponding to each of the merged compositions cm

and the truncated compositions cL and cR.

Corollary 4.2.6. Given a composition c = (c1, . . . , ck), the closed formulas for the compo-
sition polynomials of the associated merged and truncated compositions are given by

gcm(q) =
k∑
i=0

(−1)i
qβi(βm − βi)

[βi]
,

gcR(q) =
k∑
i=0

(−1)i
qβi(n− βi)

[βi]
, and

qc1gcL(q) = −
k∑
i=0

(−1)i
qβiβi
[βi]

.

Proof. For the merged composition cm, the partial sums βmi are given by βmi = βi for i < m,
and βmi = βi+1 for i ≥ m. From this observe that [βmi ] = [βi]/(βm − βi) for i < m and
[βmi ] = [βi+1]/(βi+1 − βm) for i ≥ m. Notice that the coefficient of qβm is zero, as it should
be.
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For the truncated composition cR the partial sums βRi follow this same pattern. Finally,
for the truncation cL we have βLi = βi+1 − β1 for i ≥ 1, and βL0 = 0. From this we observe
that [βLi ] = [βi+1]/βi+1 for all i. Substituting each of these partial sum lists into Proposition
4.2.5 yields the desired formulas.

Now we can write down a recursive formula for gcm(q) that will be the key to proving
Theorem 4.2.3.

Corollary 4.2.7. Let c = (c1, . . . , ck) be a composition of n into k parts. Let cm be the merged
composition (c1, . . . , cm + cm+1, . . . , ck), and let cL = (c1, . . . , ck) and cR = (c0, . . . , ck−1) be
the truncated compositions. Then the composition polynomial gcm(q) follows the recursion

gcm(q) =
βm
n
gcR(q) +

(
1− βm

n

)
qc1gcL(q). (4.1)

Proof. This follows immediately from the formulas of Corollary 4.2.6.

This result is significant because every composition c except for the trivial composition
(1, . . . , 1) can be thought of as a merged composition. Also notice that the sizes of cL and cR

are each strictly less than the size of cm, though the number of parts remains constant. This
means we have actually produced a recursive expression for an arbitrary nontrivial compo-
sition polynomial in terms of composition polynomials of strictly smaller degree. With this
tool in hand we can prove Theorem 4.2.3.

Proof of Theorem 4.2.3. Proceed by induction on the size of c for a fixed k. Let c = (1, . . . , 1)
be the trivial composition of k into k parts. From Proposition 4.2.5 observe that

g(1,...,1)(q) =
k∑
i=0

(−1)i
qi

i!(k − i)!
=

1

k!
(1− q)k.

Hence f(1,...,1)(q) = 1/k! and all of the properties of the theorem are trivially satisfied. Now
suppose c has size n > k. Then some part of c is nontrivial, and we can write c as some
merged composition c′m, and by the recursive formula in (4.1) we can express gc(q) as

gc(q) = gc′m(q) =
β′m
n
gc′R(q) +

(
1− β′m

n

)
qc
′
1gc′L(q).

Notice that c′R and c′L are compositions both of strictly smaller size than c. Therefore by
induction we may write

gc(q) =
β′m
n

(1− q)kfc′R(q) +

(
1− β′m

n

)
qc
′
1(1− q)kfc′L(q)

= (1− q)k
(
β′m
n
fc′R(q) +

(
1− β′m

n

)
qc
′
1fc′L(q)

)
:= (1− q)kfc(q).
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Notice that this function we’ve defined as fc(q) is indeed of degree n− k. Also both βm

n
and(

1− βm

n

)
are positive and they sum to 1. This, combined with the fact that f(1,...,1)(q) = 1/k!

gives us the properties that for arbitrary c with k parts the coefficients of fc(q) will be strictly
positive and sum to 1/k!.

To show the reversal property, first observe that it holds trivially for the trivial composi-
tion. Then assume by induction that the property holds for all compositions of size less than
n. Let c = (c1, . . . , ck) be a composition of size n and let cm = (c1, . . . , cm + cm+1, . . . , ck) be
a merging of c. The reverse cm = (ck, . . . , cm+1 + cm, . . . , c1) can also be written as

cm = c̄k−m = (c̄1, . . . , c̄k−m + c̄k−m+1, . . . , c̄k)

with partial sums β̄i = c̄1 + · · · + c̄i. Similarly cL = c̄R and cR = c̄L. Using the recursive
formula in (4.2) we then write

fcm(q) = fc̄k−m(q) =
β̄k−m
n

fc̄R(q) +

(
1− β̄k−m

n

)
qc̄1fc̄L(q)

=
n− βm
n

f
cL

(q) +
βm
n
qckf

cR
(q)

=

(
1− βm

n

)
qn−c1−k+1fcL(1/q) +

βm
n
qn−k+1fcR(q)

= qn−k+1fcm(1/q),

as desired. In the penultimate step we used the inductive hypothesis to write f
cL

(q) and
f
cR

(q) in terms of fcL(q) and fcL(q), respectively.
To prove the scaling formula, let α be a positive integer. Observe that [αβi] = αk[βi]

for i = 0, . . . , k. Applying the closed formula for gc(q) gives us the desired formula gαc(q) =
1
αk gc(q

α) = 1
αk (1 − qα)kfc(q

α), and the formula for fαc(q) follows by removing the factor
(1− q)k from (1− qα)k. �

Let us look further at the recurrence relation for fc(q):

fcm(q) =
βm
n
fcR(q) +

(
1− βm

n

)
qc1fcL(q). (4.2)

This relation provides a combinatorial interpretation of fc(q) as the sum of monomials over
a choice of paths in a tree. This can be best seen by translating compositions into the
language of sets of positive integers. Observe that the set of compositions c = (c1, . . . , ck)
with k parts is in bijection with the set of k-element sets {β1, . . . , βk} of positive integers,
as seen by taking partial sums βi of the parts of c.

Let S be a set of k positive integers, with greatest element sk. Select an integer a ∈
{1, . . . , sk} \ S, and define the set γL(S) by

γL(S) = S ∪ {a} \ {sk}.
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Now take s0 to be the smallest element of S ∪ {a}, and define γR(S) to be

γR(S) = {s− s0 : s ∈ S ∪ {a} \ {s0}}.

The functions γL and γR both take sets of k distinct positive integers and “compress” them
by reducing gaps between nonconsecutive elements. We will call γL the left compression
function and γR the right compression function. Repeated application of γL and γR will
always eventually yield the set {1, . . . , k}. Moreover, these functions induce a binary rooted
tree T (S), defined recursively by letting S be the root, letting γL(S) and γR(S) be the left
and right leaves of S, and populating the rest of the tree by recursively applying γL and γR
to all existing leaves until each remaining leaf of T (S) is the set {1, . . . , k}. We call this tree
a compression tree of S. Example 4.2.9 shows a compression tree for S = {1, 3, 5}.

If N is a node of T (S) with smallest element n0 and biggest element nk, then define the
monomial N(q) by

N(q) =

{
n0

nk
if N is a left child, and(

1− n0

nk

)
qn0 if N is a right child.

Take by convention S(q) := 1. Define the weight of a leaf L to be the product of the
monomials N(q) for all nodes N between L and the root S, inclusive. Denote this by wt(L).

Corollary 4.2.8. Let c = (c1, . . . , ck) be a composition, and let S = {β1, . . . , βk} be the set
of partial sums βi = c1 + · · · + ci of the parts of c. Let T (S) be a compression tree of S.
Then the reduced composition polynomial fc(q) can be expressed as

fc(q) =
1

k!

∑
L leaf of T (S)

wt(L).

Proof. This is an exact rephrasing of the recursive equation (4.2) using the T (S) notation
established above, and the reader is invited to verify the correspondence.

Example 4.2.9. Let S = {1, 3, 5} be the set corresponding to the composition c = (1, 2, 2).
Then a compression tree T (S) is shown below:

{1, 3, 5}
S(q)=1

{1, 2, 3}
N(q)=2/5

{1, 2, 4}
N(q)=3q/5

{1, 2, 3}
N(q)=3/4

{1, 2, 3}
N(q)=q/4

γL γR

γL γR
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A monomial N(q) is written below each node of the tree. The weight of each leaf is calculated
by taking the product of the chain of the N(q) from leaf to root, and the sum of these weights
yields fc(q) = 1

120
(8 + 9q + 3q2).

Further examples suggest that the sequence of coefficients of fc(q) may be log-concave,
meaning a2

i ≥ ai−1ai+1 for all coefficients ai of fc(q) =
∑n−k

i=0 aiq
i. We have computed fc(q)

for all compositions of at most 7 parts and sizes of parts at most 6, and in all cases the
sequence of coefficients is log-concave. We state this as a conjecture.

Conjecture 4.2.10. The sequence of coefficients of fc(q) is log-concave.

Since gc(q) measures the volume of a Minkowski sum of two polytopes (Proposition 3.4.8),
it looks like log-concavity might follow from the Aleksandrov-Fenchel inequalities [30] [31],
however this relationship does not work trivially and the question remains open.

4.3 Vandermonde matrices and polynomial interpola-

tion

Here we interpret the composition polynomial gc(q) as the determinant of a slightly altered
Vandermonde matrix, and through this perspective obtain alternate proofs of some results
of the previous section, as well as two explicit formulas for the coefficients of fc(q). This
Vandermonde interpretation of gc(q) also can be thought of as a polynomial interpolation
problem, which provides an alternate meaning to some of the properties of gc(q) and fc(q).

Recall from Section 4.2 that (β) denotes the Vandermonde matrix

(β) =

1 β0 · · · βk0
...

... · · · ...
1 βk · · · βkk


with rows and columns indexed from 0 to k, and that [β̂i] = det(β)/[βi] is the unsigned minor
of (β) obtained by removing row i and column k. Moreover, [β̂i] is itself a Vandermonde
determinant of degree k − 1.

Applying this to the closed formula for gc(q) from Proposition 4.2.5 we obtain det(β)gc(q) =∑k
i=0(−1)iqβi [β̂i], and can write

[β]gc(q) = (−1)kdet

1 β0 · · · βk−1
0 qβ0

...
... · · · ...

...
1 βk · · · βk−1

k qβk

 . (4.3)

We will use this expression to provide an alternate proof that 1 is a root of multiplicity k in
gc(q).

Composition polynomials can also be viewed in the language of polynomial interpolation.
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Theorem 4.3.1. Given a composition c = (c1, . . . , ck) with partial sums βi = c1 + · · · + ci,
consider the degree-k polynomial h(t) = x0 + · · ·+ tkxk that passes through the k + 1 points
(βi, q

βi) for i = 0, . . . , k. Here the coefficients xi are functions of q. Then, up to sign, the
the lead coefficient xk of h(t) is the composition polynomial gc(q).

Proof. In equation (4.3) we observed that gc(q) can be expressed as the determinant of a
matrix:

gc(q) = (−1)kdet

1 β0 · · · βk−1
0 qβ0

...
... · · · ...

...
1 βk · · · βk−1

k qβk

 /[β].

This can be viewed as an execution of Cramer’s rule, where we are solving for xk in the
linear system 1 β0 · · · βk0

...
... · · · ...

1 βk · · · βkk


x0

...
xk

 =

q
β0

...
qβk

 .

This system is equivalent to the polynomial interpolation problem of finding the coefficients
of the degree-k polynomial h(t) = x0 + · · ·+tkxk that passes through the k+1 points (βi, q

βi)
for i = 0, . . . , k. The polynomial gc(q) is simply the lead coefficient xk of h(t), up to sign.

That 1 is a root of gc(q) with multiplicity k can be loosely related to the fact that all of
the coefficients xi of h(t) will be zero if q = 1 in the interpolation problem. Indeed, in that
situation the points (βi, 1) all fall on the horizontal line t = 1. The coefficients of fc(q) can
be interpreted using interpolation as well.

Proposition 4.3.2. Let fc(q) =
∑n−k

i=0 aiq
i. Then (−1)kai is the lead coefficient of the degree-

k polynomial pi(t) that passes through the points (βj, 0) for βj > i and
(
βj,
(
k−1+i−βj

k−1

))
for

βj ≤ i. The fact that the ai are positive implies that (−1)kpi(t) has positive lead coefficient.

Proof. This follows from an analogous construction of the proof of Theorem 4.3.1.

Let us note a useful property of Vandermonde determinants.

Lemma 4.3.3. Let (β)p be the matrix formed from the Vandermonde matrix (β) by replacing
the entries βki of the last column of (β) with a polynomial p(βi) of degree d ≤ k. If d = k
and the lead coefficient of this polynomial is c, then det((β)p) = c · det(β). If d < k then
det((β)p) = 0.

Proof. For d = k we simply observe that (β)p can be obtained from (β) via elementary
column operations. The only such operation that affects the determinant is multiplying the
last column of (β) by c. If d < k then then the last column of (β)p is a linear combination
of the previous columns, and thus the matrix is singular.
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Proposition 4.3.4 (Alternate approach to part (1) of Theorem 4.2.3). If c is a composition
of n into k parts, then 1 is a root of multiplicity exactly k of the composition polynomial
gc(q).

Proof. Consider the matrix expression for gc(q) in (4.3). Since all entries involving q reside
in the same column, the operation of differentiation by q factors through the determinant.
Thus we can write the ith derivative of [β]gc(q) at q = 1 as

[β]g(i)
c (1) = (−1)kdet

1 β0 · · · βk−1
0 β0(β0 − 1) · · · (β0 − i+ 1)

...
... · · · ...

...
1 βk · · · βk−1

k βk(βk − 1) · · · (βk − i+ 1)

 .

Note that 1 is a root of gc(q) of multiplicity at least k if and only if g
(i)
c (1) = 0 for i =

0, . . . , k − 1. Here we see that for i = 0, . . . , k − 1 the final column of the above matrix is
a polynomial in βi of degree strictly less than k, so by Lemma 4.3.3 the determinant will
be zero. For i = k this final column is a degree-k polynomial in βi, so here by the lemma
the determinant is nonzero. In particular g

(k)
c (1) = (−1)k. We conclude that 1 is a root of

multiplicity exactly k in gc(q).

We will now discuss some properties of the coefficients of fc(q). First let us derive an
explicit formula for these coefficients.

Proposition 4.3.5. Let fc(q) =
∑n−k

i=0 aiq
i be a reduced composition polynomial correspond-

ing to the composition c = (c1, . . . , ck). Then the coefficients of fc(q) are given by

ai =
∑
j:βj≤i

(−1)j
(
k − 1 + i− βj

k − 1

)
/[βj].

Proof. We can write fc(q) = gc(q)/(1− q)k and then expand the power series:

f(q) = g(q)(1 + q + q2 + · · · )k

=

(
k∑
j=0

(−1)j
qβj

[βj]

)(
∞∑
i=0

qi
(
k − 1 + i

k − 1

))

=
n−k∑
i=0

qi
∑
j:βj≤i

(−1)j
(
k − 1 + i− βj

k − 1

)
/[βj].

Corollary 4.3.6. An alternate expression for ai is given by

ai =
∑
j:βj>i

(−1)j
(
βj − i− 1

k − 1

)
/[βj].
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Proof. Extend the expression for ai in the previous proposition to sum over all of the βj,
and multiply by the Vandermonde determinant (β):

(β)
k∑
j=0

(−1)j
(
k − 1 + i− βj

k − 1

)
/[βj] =

k∑
j=0

(−1)j
(
k − 1 + i− βj

k − 1

)
[β̂j]

This is an expression for the determinant of the matrix obtained from (β) by replacing the
entries βkj in the last column with the degree-(k − 1) polynomial

(
k−1+i−βj

k−1

)
. By Lemma

4.3.3 the determinant is zero. After rewriting the binomial coefficient using the identity(−n
r

)
= (−1)r

(
n+r−1

r

)
so that the top argument will always be positive, we obtain the desired

alternate expression for ai.

Now we present an alternate proof that fc(1) = 1/k!.

Proposition 4.3.7 (Alternate approach to part (3) of Theorem 4.2.3). The sum of the
coefficients ai of fc(q) is 1/k!.

Proof. It will be easier to work with the polynomial [β]fc(q). Using the explicit formula for
ai we obtain

[β]fc(1) = [β]
n−k∑
i=0

ai =
n−k∑
i=0

∑
j:βj≤i

(−1)j[β̂j]

(
k − 1 + i− βj

k − 1

)

=
k∑
j=0

(−1)i[β̂j]

n−βj−1∑
i=k−1

(
i

k − 1

)

= (−1)k
k∑
j=0

(−1)j+k[β̂j]

(
n− βj
k

)
.

Notice that
(
n−βj

k

)
is a polynomial in βj of degree k with lead coefficient (−1)k/k!. Us-

ing Lemma 4.3.3 we observe that this last expression is equal to the signed determinant

(−1)k(β)(
n−x

k ) = [β]/k!. Therefore fc(1) = 1/k! as desired.
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Chapter 5

Generalized permutohedra for
classical reflection groups

5.1 Introduction

Up to this point we’ve been only discussing generalized permutohedra corresponding to
type-A hyperplane arrangements An. However we can similarly define generalized permu-
tohedra for the other classical reflection groups of types B, C, and D. We will discuss the
constructions of the respective hyperplane arrangements and analyze their respective orbit
polytopes [7].

We lend particular focus to the crosspolytope and fully describe the space of signed
Minkowski sums of its faces. Through this we prove a general indecomposability theorem
about pyramids, produce a class of geometric identities on Minkowski sums of simplices, and
show that the crosspolytope is decomposable into a signed Minkowski sum of its faces if and
only if its dimension is even.

5.2 Basic constructions

Definition 5.2.1. For a reflection arrangement Σ define the orbit polytope Σ(v) at a point
v to be the convex hull of all points generated by reflections of v across the hyperplanes of
Σ. Since Σ is a reflection arrangement there will be finitely many such points. Let Σ̃ be the
hyperplane arrangement formed by modding out by any lineality space of Σ, if one exists. If
we take v to be on a ray of Σ̃, then we say Σ(v) is an extremal orbit polytope of Σ.

The type-A arrangement An ⊂ Rn is the set of hyperplanes xi = xj for i 6= j. The orbit
polytope A(1, . . . , n) is the traditional permutohedron Pn, and for any other choice of v,
An(v) will be a generalized permutohedron. If v does not belong to any of the hyperplanes
in An then An(v) will be combinatorially equivalent to Pn. An has 1-dimensional lineality
space generated by (1, . . . , 1).
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In characteristic 0 the type-B and type-C hyperplane arrangements are equal. We will
thus consider them together, and call the arrangement BCn.

Definition 5.2.2. The type-BC hyperplane arrangement BCn in Rn is the set of all hyper-
planes of the form xi = 0, xi = xj, or xi = −xj (for i 6= j). The orbit polytope BCn(1, . . . , n)
is the convex hull of all signed permutation vectors, and we call this the type-BC permuto-
hedron.

Figure 5.1: The type-BC permutohedron is formed by reflecting the point (1,. . . ,n) (shown
in red) about all the hyperplanes in the arrangement. This is equivalent to taking the convex
hull of all signed permutation vectors, or 2n copies of the type-A permutohedron Pn.

Definition 5.2.3. The type-D hyperplane arrangement in Rn is the set of all hyperplanes
of the form xi = xj or xi = −xj (for i 6= j). The orbit polytope Dn(1, . . . , n) is the convex
hull of all signed permutation vectors with an even number of negative entries, and we call
this the type-D permutohedron.

It should be noted that the orbit polytopes are generalized permutohedra. Generalized
permutohedra of type A are defined to be all polytopes formed by deformations of the
permutohedron Pn. The concept of a deformation has several equivalent definitions (see the
Appendix in [25]). We may think of a deformation as a parallel shifting of facet hyperplanes,
with care taken that no hyperplanes move “beyond” any vertices, as described in Section
2.2. We extend this definition to types BC and D.
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Figure 5.2: The type-D permutohedron is formed by taking the convex hull of all signed
permutation vectors with an even number of negative entries, or 2n−1 copies of the type-A
permutohedron Pn.

Definition 5.2.4. We say a polytope P is a type-A (resp. type-BC, type-D) generalized
permutohedron if it is a deformation of the type-A (resp. type-BC, type-D) permutohedron.
The set of generalized permutohedra in Rn is denoted An (resp. BCn, Dn).

Because polytope deformation is a linear operation, the sets An, BCn, and Dn will be
identified with linear cones whose dimensions are equal to the number of free deformation
parameters of each respective permutohedron, i.e. the number of facets of each permuto-
hedron or equivalently the number of rays (modulo lineality) of each respective hyperplane
arrangement. It is easy to check that

dim(An) = 2n − 2, and

dim(BCn) = 3n − 1.

The type-D case is less obvious:

dim(Dn) = 3n − n2n−1 − 1.

The rays of Dn are generated by the {−1, 0, 1}-vectors apart from the origin for whom the
number of nonzero coordinates (support) is not equal to n−1. We show this in the following
lemma.
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Lemma 5.2.5. The number of rays of Dn is

3n − n2n−1 − 1.

Proof. Let RD be the subset of vectors in {−1, 0, 1}n with support of size not equal to 0 or
n−1. Let us represent each ray of the type-D hyperplane arrangement by its intersection with
the boundary of the cube [−1, 1]d. This defines a subset of {−1, 0, 1}n. Let v ∈ {−1, 0, 1}n
be a vector whose zero coordinates are indexed by I ⊂ [n], i.e, vi = 0 if and only if i ∈ I.
We do not want to consider the origin as a ray, so assume I 6= [n].

First suppose |I| > 1. Then v lies on the intersection of the |I| hyperplanes defined by

xi1 = xi2 , xi2 = xi3 , . . . , xi|I|−1
= xi|I| , xi|I| = −xi1 .

Each of these |I| hyperplanes belongs to the type-D arrangement. The normal vectors to
these hyperplanes are linearly independent, and thus this intersection is (n−|I|)-dimensional.
If |I| = n− 1 then we have already constructed the line in the arrangement containing v, so
let’s assume |I| < n− 1. Now vj = ±1 for all j ∈ Ic, so v also lies on the intersection of the
hyperplanes given by

vj1xj1 = vj2xj2 , . . . , vj|Ic|−1
xj|Ic|−1

= vj|Ic|xj|Ic| ,

where {j1, ..., j|Ic|} = Ic. These |Ic| − 1 hyperplanes intersect properly and all belong to the
type-D arrangement as well. Together this and the above set of hyperplanes form a set of
n−1 hyperplanes with proper intersection, i.e. they intersect in a line, which by construction
contains v as desired.

Now conversely suppose that |I| = 1. Without loss of generality, let us assume vn = 0
and vi 6= 0 for i < n. Then, as above, we know that v lies on the (n − 2)-dimensional
intersection of hyperplanes expressed by

v1x1 = v2x2 = · · · = vn−1xn−1.

In order to construct a line we need to intersect this space with one more hyperplane from the
type-D arrangement. If this hyperplane relates xi and xj with i, j < n, then the intersection
will either be improper or it will force all the coordinates of the intersection to be zero (and
thence it will no longer contain v). If, however, this hyperplane relates xn and xi with i 6= n,
then this will force xn to be nonzero which contradicts the assumption that vn = 0, so the
ray we desire does not exist.

We conclude that the nonzero vector v lies on a ray of the type-D arrangement if and
only if |I| 6= 1, i.e. if v ∈ RD. There are n · 2n−1 nonzero integer vectors in [−1, 1]n with
exactly one zero coordinate. Excluding the origin from our total count yields 3n−n ·2n−1−1
total rays, as desired.

Let us now recall the definitions of some common polytopes that appear as extremal
orbit polytopes of the above arrangements.
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Definition 5.2.6. The demihypercube (resp. odd demihypercube) is the convex hull of all
{−1, 1}-vectors with an even (resp. odd) number of negative coordinates. The crosspolytope
♦n ∈ Rn is the convex hull of all standard basis vectors ei and their negatives −ei. The k-th
rectification of a polytope P is the convex hull of the barycenters of the dimension-k faces
of P .

We now describe the extremal orbit polytopes of of each classical reflection group Σ.
There is one such polytope for each ray of the fundamental chamber of Σ. Since that
chamber is simplicial there are rk(Σ) extremal orbit polytopes.

Figure 5.3: Orbit polytopes of the type-D arrangement: the extremal orbit polytopes of the
demihypercube (left) and the crosspolytope (center), as well a dilation of the first rectification
of the crosspolytope (right), which is not extremal in Dn.

Proposition 5.2.7. The n − 1 extremal orbit polytopes of An are the n − 1 hypersimplices
∆k,n, for k = 1, . . . , n− 1.

Proof. The fundamental chamber x1 ≤ · · · ≤ xn has n− 1 rays generated by

(1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 0).

The orbits of these points generate the hypersimplices ∆k,n, where k corresponds to the
number of 1s in the generating ray.

Proposition 5.2.8. The n extremal orbit polytopes of BCn are the hypercube, the crosspoly-
tope, and the first n− 2 rectifications of the crosspolytope.

Proof. The fundamental chamber 0 ≤ x1 ≤ · · · ≤ xn has n rays generated by

(1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1).
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If v is such a point that has k nonzero coordinates, then the orbit of v will be the set
of all points in {−1, 0, 1}n with k nonzero coordinates. If k = 1 then this describes the
crosspolytope, if 2 ≤ k ≤ n − 1 then this is a dilation of the k-th rectification of the
crosspolytope, and if k = n then we have the hypercube.

Proposition 5.2.9. The n extremal orbit polytopes of Dn are the even and odd demihyper-
cubes, the crosspolytope, and the first n− 3 rectifications of the crosspolytope.

Proof. The fundamental chamber −x2 ≤ x1 ≤ · · · ≤ xn has n rays generated by

(1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 0, 0), (1, . . . , 1), (−1, 1, . . . , 1).

If v is such a point with k ≤ n − 2 nonzero coordinates, then the orbit of v will be the set
of all points in RD with k nonzero coordinates. The convex hull of this orbit is by definition
the crosspolytope for k = 1 and a dilation of the k-th rectification of the crosspolytope for
2 ≤ k ≤ n − 2. If all coordinates of v are nonzero, then the orbit of v will preserve parity
of sign of the coordinates of v, as reflection across any hyperplane in the Dn always either
switches two coordinates or does so while negating both. If the parity is even, this defines
the even demihypercube. If the parity is odd, we have the odd demihypercube.

5.3 Geometry of the crosspolytope

In An the faces of the simplest extremal orbit polytope—the simplex ∆n—generate the
space An through signed Minkowski sums, and when taken together all of the extremal
orbit polytopes of An can generate An via non-negative Minkowski sums. One could hope
the same to be true in types BC and D, but it is not so. Computer testing has shown
that above dimension 3 there is no extremal polytope of BCn (respectively Dn) whose faces
generate BCn (respectively Dn) via signed Minkowski sums. Moreover even when all faces of
all extremal polytopes of the arrangement and its subarrangements are included, the space
is not generated. This investigation does however lead to an interesting subclass of type BC
and D generalized permutohedra, which we now study.

The crosspolytope ♦n is an extremal orbit polytope of both BCn and Dn, and as such
it is both a type-D and a type-BC generalized permutohedron. We show that through
signed Minkowski sums the faces of the crosspolytope generate a subspace of BCn and Dn of
dimension 1

2
(3n − (−1)n). In a sense, this can be thought of as meaning that about half of

all type-BC generalized permutohedra can be expressed as a signed Minkowski sum of faces
of the crosspolytope. In proving this result we also uncover some properties of Minkowski
arithmetic of simplices and of faces of pyramids.

First we must establish the fact that Minkowski summation of generalized permutohedra
characterizes a vector space. Recall that any type-A generalized permutohedron P can be
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parameterized by parameters {zI}I⊆[n] which describe how the facet hyperplanes of Pn are
deformed to create P :

P = Pn({zI}) =

{
x ∈ Rn :

∑
i∈I

xi ≥ zI for I ⊂ [n],
n∑
i=1

xi = z[n]

}
.

Definition 5.3.1. If we define RA to be the set of vectors in {0, 1}n minus the origin, then
we may rewrite this parameterization as

P = An{zv} :=
{
x ∈ Rn : x · v ≥ zv for v ∈ RA, x · (1, . . . , 1) = z(1,...,1)

}
.

We can write similar parameterizations for generalized permutohedra of types BC and D as
well. Recall that RBC is the set of vectors in {−1, 0, 1}n minus the origin, and RD is the set
of vectors in {−1, 0, 1}n whose support size is not equal to 0 or n− 1. If P ′ is a deformation
of the type-BC permutohedron BCn(1, . . . , n) then P ′ can be parameterized by parameters
{zv}v∈RBC , and we write

P ′ = BCn{zv} :=
{
x ∈ Rn : x · v ≤ zv for v ∈ RBC

}
.

Finally if P ′′ is a deformation of the type-D permutohedron Dn(1, . . . , n) then we can write
P ′′ as

P ′′ = Dn{zv} :=
{
x ∈ Rn : x · v ≤ zv for v ∈ RD

}
.

As in Chapter 1, we assume that the parameters zv are chosen minimally.

Recall from Chapter 1 that if An{zv} and An{z′v} are both deformations of Pn, then their
hyperplane deformation parameters zv are additive across Minkowski sums, meaning

An{zv}+ An{z′v} = An{zv + z′v}.

This means that the set of deformations of Pn forms a cone via Minkowski addition. A
Minkowski sum equation comprised of polytopes that are deformations of Pn is equivalent to
a linear dependence relation amongst those summands’ corresponding zv parameter vectors.
Conversely, if a set of zv parameter vectors, all of whom correspond to deformations of Pn,
are linearly independent, then there is no nontrivial Minkowski sum equation relating those
polytopes. This follows from Theorem 15.3 in [25], and holds analogously for types BC and
D as well.

The faces of a generalized permutohedron are themselves generalized permutohedra.
Therefore based on the preceding discussion, in order to determine the dimension of the
subcone of BCn (or Dn) generated by the faces of ♦n it suffices to determine the dimension
of the subspace of R3n−1 (or R3n−n2n−1−1) generated by the zv parameter vectors of these
faces. We will calculate this dimension to be 1

2
(3n− (−1)n) by producing a basis for the span

of faces of ♦n comprised of 1
2
(3n − (−1)n) specific faces of ♦n.
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For the rest of this section we will work in BCn because RBC is an easier indexing set to
work with than RD, though either treatment will produce the same results. The 3n faces of
♦n are in bijection with the vectors w in {−1, 0, 1}n, with w corresponding to the face (♦n)w
that maximizes the functional of taking the inner product (x,w). We will now describe the
zv parameter vectors of each such face. First we introduce some notation.

Definition 5.3.2. For v ∈ {−1, 0, 1}n let vs ⊂ [−n] ∪ [n] be the signed support of v, as
defined by

vs = {ivi : vi 6= 0}.

For example, if v = (1, 0,−1,−1) then vs = {1,−3,−4}.

Proposition 5.3.3. If BCn{zv} is the face (♦n)w of ♦n, then

zv =


1 if ws ∩ vs 6= ∅,
−1 if ws ⊆ (−v)s,

0 otherwise

for every v ∈ RBC.

Proof. First note that if BCn{zv} is a face of the crosspolytope ♦n, then zv ∈ {0, 1,−1} for
every v ∈ RBC . This follows from the fact that v is a {−1, 0, 1}-vector, zv is the maximum
value of the functional defined by the inner product (x, v) applied to all vertices of a face of
♦n, and each such vertex is a signed standard basis vector ±ei.

Next observe that the vector sum of the vertices of the face (♦n)w equals the vector
w. The functional (x, v) will have maximum value 1 if and only if some vertex u of (♦n)w
satisfies us ∩ vs 6= ∅. The functional (x, v) taken over (♦n)w will therefore have maximum
value 1 if and only if ws ∩ vs 6= ∅. The functional (x, v) will have maximum value −1 if
and only if for every vertex u of (♦n)w we have us ⊆ (−v)s. Thus taken over the entire face
(♦n)w this condition translates to ws ⊆ (−v)s.

Apart from the crosspolytope itself, the set of faces of ♦n come in antipodal pairs, i.e.
−(♦n)w = (♦n)−w.

Definition 5.3.4. Let H(♦n) be the set of proper faces of the n-crosspolytope indexed by
vectors w whose last nonzero coordinate is positive. Note that the set H(♦n) contains exactly
one member of each antipodal face pair, and H(♦n) has cardinality 1

2
(3n − 1).

Note that we must be careful with our notation here. The negation −(♦n)w of a face
(♦n)w is not the same as its additive inverse in the vector space of Minkowski addition.
In particular, negating (♦n)w does not negate its corresponding zv parameter vector. Also
geometrically one can see that the Minkowski sum of a polytope P with its negation −P will
be the zero polytope (the point at the origin) if and only if P is a point. See Proposition
2.2.4 on Minkowski differences for more information.
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Proposition 5.3.5. Any proper face of ♦n that does not belong to H(♦n) can be written as
a signed Minkowski sum of faces in H(♦n).

Proof. One easily checks that if the proper face (♦n)w /∈ H(♦n) is not a facet, then it lies
on the hyperplane xi = 0 for some i. Moreover, it is a proper face of the crosspolytope
♦n−1 formed by projecting ♦n onto the hyperplane xi = 0. Hence by induction (♦n)w is in
the Minkowski span of faces in H(♦n) that live on the hyperplane xi = 0. Now suppose
(♦n)w /∈ H(♦n) is a facet. We need now only show that (♦n)w is in the Minkowski span
of the facets in H(♦n) along with all other faces of ♦n that lie on the hyperplane xn = 0.
This describes the set of all faces of ♦n that lie in the half space xn ≥ 0. By symmetry then
we may assume that w = (−1, . . . ,−1). We present an explicit formula for the Minkowski
decomposition and check that it holds in each coordinate. The formula is as follows:

(♦n)(−1,...,−1) =
∑

wi≥0 for all i

(−1)dim((♦n)w)+1(♦n)w.

Let zw be the parameter vector corresponding to the face (♦n)w. By Proposition 5.3.3 the
entries of the parameter vector z(−1,...,−1) for the facet (♦n)(−1,...,−1) is given by

z(−1,...,−1)
v =


1 if v contains a −1 in some coordinate,
−1 if v = (1, . . . , 1),

0 otherwise.

In the first case, suppose v contains a −1 in some coordinate. We may assume that v =
e1 + · · · + ek − ek+1 − · · · − ek+m. Suppose w is such that wi ≥ 0 for all i. Then zwv will be
1 whenever w contains a 1 somewhere in its first k coordinates. Counting all such w, signed
according to dimension, we get

k∑
i=1

(
k

i

) n−k∑
j=0

(−1)i+j
(
n− k
j

)
= 0.

Note that we are using the fact that when (♦n)w is a proper face, dim((♦n)w) + 1 equals
the support of w. We also note that zwv will be −1 whenever all nonzero entries of w are in
coordinates xk+1, . . . , xk+m. Counting this with signed dimension yields

−
m∑
i=1

(−1)i
(
m

i

)
= 1.

Hence the zv parameter of the right hand side is 1 as expected.
Now suppose the coordinates of v are nonnegative. If v = (1, . . . , 1) then zwv = 1 for all

w such that wi ≥ 0 for all i. Summing with signed dimension yields

n∑
i=1

(−1)i
(
n

i

)
= −1.
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If on the other hand v has some 0 entry, then our signed sum becomes

|vs|∑
i=0

(−1)i
(
|vs|
i

) n−|vs|∑
j=0

(−1)j
(
n− |vs|

j

)
= 0

because n − |vs| ≥ 1. This corresponds to our formula for z
(−1,...,−1)
v , thus completing the

proof.

= -+ +

=+ + +=

Figure 5.4: Depiction of Proposition 5.3.5 as as signed Minkowski sum for n = 3 (top), and
a rearrangement of terms (bottom) to illustrate a familiar geometric identity in terms of
positive Minkowski sums (zero-faces omitted).

Every proper face of ♦n is a simplex, so Proposition 5.3.5 provides an infinite class of
geometric identities that express an n-simplex as a signed Minkowski sum of an oppositely-
oriented n-simplex and its faces. Figure 5.4 depicts this for n = 3.

We have shown that those faces outside of H(♦n) are linearly dependent in the cone
of Minkowski addition on the faces of H(♦n). We also need to show that H(♦n) is itself
a linearly independent set. The crosspolytope ♦n may be thought of as a union of two
pyramids that share a common base. The faces of H(♦n) are contained in one such pyramid.
The following theorem on pyramids will provide us with this linear independence of H(♦n).

Definition 5.3.6. Let P be a pyramid with apex p. A lateral face of P is a face that
contains p. A basal face of P is a face that does not contain p.

Theorem 5.3.7. No lateral face of a pyramid P , including P itself, can be decomposed into
a signed Minkowski sum of other faces of P .

Proof. If f is a linear functional let Pf be the face of P that maximizes f .
Claim 1: It suffices to only look at decompositions of lateral faces into Minkowski sums

of other lateral faces. Indeed, suppose some set of linear functionals {fi} maximizes lateral
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faces of P and some other set of functionals {gj} maximizes basal faces of P . Say a lateral
face Pf is decomposable as Pf =

∑
yiPfi

+
∑
yjPgj

. Let fp be the linear functional that is
normal to the base of P and that maxmizes on the apex p of P . Applying fp to both sides
of the decomposition induces the decomposition among faces given by p =

∑
yip+

∑
yjPgj

.
Thus the signed Minkowski sum

∑
yjPgj

is trivial, and we may ignore it.
Claim 2: The pyramid P is indecomposable into a signed Minkowski sum of its lateral

faces. Proceed by induction. The claim is true in dimension 2 because a triangle is not a
zonotope, and any signed Minkowski sum of two 1-faces is a zonotope. Now assume the
claim is true for dimension n− 1, and let P be a pyramid of dimension n. Let f be a linear
functional that is maximized on a lateral facet Pf of P . Suppose by way of contradiction that
P is decomposable into the Minkowski sum P =

∑
yiPfi

, where the fi are some collection of
linear functionals that maximize on lateral faces of P and the yi are constants. Apply f to
both sides to get Pf =

∑
yi(Pfi

)f . The maximum value of f over the pyramid P is attained
on Pf , which contains the pyramid’s apex. Therefore if we apply f to any subset of P and
attain this same maximum value, then that subset must also be contained in Pf . Since each
face Pfi

also contains the apex we know the functional f attains its global maximum on
each Pfi

. Thus (Pfi
)f must be a lateral subface of Pf for each fi. Hence we’ve presented the

(n−1)-dimensional pyramid Pf as a signed Minkowski sum of its lateral faces. Contradiction.
Claim 3: The lateral face Pf of the pyramid P is indecomposable into a signed Minkowski

sum of other lateral faces. Suppose not. Then we can write Pf =
∑
yiPfi

. Apply f to both
sides and we get Pf =

∑
yi(Pfi

)f , which violates Claim 2.

Corollary 5.3.8. The faces of H(♦n) are linearly independent in the vector space of Minkowski
addition.

Proof. Notice H(♦n) belongs to a pyramid P with apex en. The faces (♦n)w of H(♦n) for
whom wn = 1 are the lateral faces of P , and by Theorem 5.3.7 they are all indecomposable.
The base of P is a copy of the crosspolytope ♦n−1 sitting on the hyperplane xn = 0, and all
members of H(♦n) belonging to this base are themselves contained in a pyramid with apex
en−1. Recursively we conclude that all remaining faces of H(♦n) are indecomposable.

Our final step in describing the signed Minkowski span of faces of ♦n is to address the
decomposability of the crosspolytope itself.

Theorem 5.3.9. The n-dimensional crosspolytope ♦n is decomposable into a Minkowski sum
of its faces if and only if n is even. For even n the unique decomposition is given by

♦n =
∑
wn=1

(−1)dim((♦n)w)+1(♦n)w.

Proof. Each face (♦n)w of the crosspolytope can be represented by its z-vector of hyperplane
parameters zw. Since all faces of ♦n are BCn-generalized permutohedra Minkowski decom-
posability is equivalent to linear dependency of z-vectors. We will exhibit a linear equation
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that vanishes on all faces of ♦n except for ♦n itself when n is odd. Thus the polytope ♦n is
only in the Minkowski span of its faces when n is even. We will then verify the decomposition
formula for even n.

Each z-vector belongs to R3n−1, with coordinates indexed by the vectors v in RBC . Let
zwv denote the coordinate of zw indexed by v. Consider then the linear function

l(zw) :=
∑

v∈RBC

(−1)|v
s|zwv .

Let w ∈ RBC represent a proper face of ♦n. Without loss of generality let us assume that
w = e1 + · · · + ek for some nonzero k ≤ n. Now we evaluate l(zw). The coordinate zv will
be 1 whenever v and w have nonzero entries in common. Let us compute the contribution
of those v to the right hand side. Build up such a vector v as follows. Choose i of the first
k coordinates to be nonzero, but subtract all such configurations that contain no 1s. Then
choose j of the remaining n − k coordinates to be nonzero. Counting with parity of the
support of v, the signed sum of these zwv is(

k∑
i=0

(−1)i2i
(
k

i

)
−

k∑
i=0

(−1)i
(
k

i

)) n−k∑
j=0

(−1)j2j
(
n− k
j

)
=
(
(−1)k − 0

)
(−1)n−k

=(−1)n.

The coordinate zv will be −1 whenever ws ⊆ (−v)s; consider their contribution to the
right hand side. Let w be as before. Build up such a vector v as follows. Let the first k
coordinates of v be −1. Then select j of the remaining coordinates to be 0, and let the
rest be any combination of 1s and −1s. Counting these unique vectors with value zv = −1,
signed according to parity of support, we get

−
n−k∑
j=0

(−1)n−j
(
n− k
j

)
2n−k−j

=(−1)n+1.

Thus for all proper faces (♦n)w we have l(zw) = 0. The zv-vector z0 for ♦n is the vector of
all 1s. So l(z0) =

∑n
j=1(−2)j

(
n
j

)
= (−1)n − 1. This will be zero if and only if n is even.

Hence if n is odd ♦n is indecomposable.
Now we prove the decomposition formula for n even. We must show that for any choice

of v ∈ RBC with n even we have
∑

wn=1(−1)|w
s|(zv)w = 1. We can break this into three

cases, based upon the last coordinate vn of v.
First suppose vn = 1. Since we are only working with vectors w such that wn = 1, all

such vectors will satisfy ws ∩ vs 6= ∅, and so zwv = 1 for all w in question. Summing with
signed parity of support we get

∑
wn=1(−1)|w

s| = 1.
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Next suppose vn = 0. Note that no w with wn = 1 will satisfy ws ⊆ (−v)s. To count
vectors w that satisfy ws ∩ vs 6= ∅, we employ the same technique as above and our signed
sum adds up to (−1)n, which equals 1 by assumption that n is even.

Finally suppose vn = −1. The vectors w that satisfy ws ⊆ (−v)s correspond to subsets
of (−v)s. Counting these with signed parity of support will always sum to zero. To count
vectors w that satisfy ws ∩ vs 6= ∅ we again use the inclusion-exclusion technique and arrive
at a signed sum of (−1)n = 1, as in the previous case.

Corollary 5.3.10. The space of Minkowski sums of faces of the n-crosspolytope has dimen-
sion 1

2
(3n− (−1)n). A basis for this parameter space is H(♦n) for n even, and H(♦n)∪{♦n}

for n odd.

Proof. The preceding results indicate this directly.
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