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Article

Common dysregulation network in the human
prefrontal cortex underlies two
neurodegenerative diseases
Manikandan Narayanan1,*, Jimmy L Huynh2,3, Kai Wang4, Xia Yang5, Seungyeul Yoo3,

Joshua McElwee4, Bin Zhang3, Chunsheng Zhang4, John R Lamb4, Tao Xie4, Christine Suver6,

Cliona Molony4, Stacey Melquist4, Andrew D Johnson7, Guoping Fan8, David J Stone4, Eric E Schadt3,

Patrizia Casaccia2,3, Valur Emilsson9,10 & Jun Zhu3,**

Abstract

Using expression profiles from postmortem prefrontal cortex
samples of 624 dementia patients and non-demented controls, we
investigated global disruptions in the co-regulation of genes in
two neurodegenerative diseases, late-onset Alzheimer’s disease
(AD) and Huntington’s disease (HD). We identified networks of
differentially co-expressed (DC) gene pairs that either gained or lost
correlation in disease cases relative to the control group, with the
former dominant for both AD and HD and both patterns replicating
in independent human cohorts of AD and aging. When aligning
networks of DC patterns and physical interactions, we identified a
242-gene subnetwork enriched for independent AD/HD signatures.
This subnetwork revealed a surprising dichotomy of gained/lost
correlations among two inter-connected processes, chromatin
organization and neural differentiation, and included DNA methyl-
transferases, DNMT1 and DNMT3A, of which we predicted the former
but not latter as a key regulator. To validate the inter-connection
of these two processes and our key regulator prediction, we
generated two brain-specific knockout (KO) mice and show that
Dnmt1 KO signature significantly overlaps with the subnetwork
(P = 3.1 × 10�12), while Dnmt3a KO signature does not (P = 0.017).
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Introduction

Different neurodegenerative diseases share similar dysfunctional

phenotypes, such as misfolded protein aggregates, neuronal cell

death, inflammation, and cognitive decline. Yet, the complexity of

these diseases has hindered efforts to obtain a comprehensive view

of common molecular mechanisms underlying their initiation or

propagation, and thereby hampered development of drugs that

could broadly halt neuronal loss in humans (Avila, 2010; Haass,

2010). This study focuses on two such complex diseases in humans,

Alzheimer’s and Huntington’s, for which there is currently no effec-

tive intervention to halt or reverse the associated progressive cogni-

tive decline. Late-onset Alzheimer’s disease (AD) is the most

common form of dementia, accounting for up to 70% of all cases,

and is characterized by an initial impact on memory with a subse-

quent progressive decline in cognitive functioning. The hippocam-

pus and the surrounding cortical regions are the major sites of

AD-related pathology, characterized by increasing accumulation of

amyloid-beta (Ab) plaques and tau-related neurofibrillary tangles,

both of which are major contributors to the hallmark lesions associ-

ated with this disease (Armstrong, 2009). Compared to AD,

Huntington’s disease (HD) is a rare (~ 5/100,000) neurodegenera-

tive disorder exhibiting cognitive dysfunction and severe motor
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impairments that arises as a result of dominant mutations within

the Huntingtin gene (HTT), causing expansion of a polyglutamine

region within the HTT protein (Roze et al, 2010). However, studies

show that other genes and environmental factors can modify the

expressivity of the HTT polymorphisms in HD (van Dellen &

Hannan, 2004). HD pathology features astrogliosis and neurodegen-

eration of medium spiny neurons, initially affecting the striatum and

progressively the cortices and other regions including hippocampus

(Roze et al, 2010).

Complex diseases and healthy biological systems are increasingly

modeled using a network of pairwise interactions among genes,

gene products, or biomolecules (Przytycka et al, 2010; Barabasi

et al, 2011), since analyzing the properties of the entire network or

subnetworks has the potential to rapidly generate new biological

hypotheses, such as uncovering functionally coherent gene modules

from co-expression networks (Zhang & Horvath, 2005; Oldham

et al, 2006) or novel disease genes/pathways (Horvath et al, 2006;

Chen et al, 2008; Emilsson et al, 2008; Ferrara et al, 2008). We

extend this line of research by systematically constructing and

analyzing gene dysregulatory networks and underlying molecular

interactions that are affected in common between two neurodegen-

erative diseases, and investigating whether this common network

has distinctive features not apparent in the individual disease

networks. Co-regulation of genes involved in biological pathways is

needed for the proper functioning of a cell, and disruption of these

co-regulation patterns has been observed in human diseases such as

AD (Rhinn et al, 2013; Zhang et al, 2013). Detecting such disrup-

tions through a “differential co-expression” (DC) analysis can help

us better understand the initiation and propagation of the disease-

induced disruptions among interacting genes, compared to

commonly used differential expression analysis that simply detects

genes whose expression levels change between cases and controls

(de la Fuente, 2010; Leonardson et al, 2010; Rhinn et al, 2013;

Zhang et al, 2013). We extend this advantage of DC analysis even

further by systematically searching for a molecular network of phys-

ical (protein–protein and protein–DNA) interactions that connect

the identified dysregulation patterns. This is achieved by extending

our previous DC analysis (Wang et al, 2009) and network alignment

(Narayanan & Karp, 2007) methods to identify both the shared

dysregulation patterns and the supporting molecular networks

affected in two neurodegenerative diseases.

Specifically, we assembled networks of dysregulated gene pairs

by analyzing genome-wide gene expression data collected from over

600 postmortem brain dorsolateral prefrontal cortex (DLPFC) tissues

of AD and HD patients, as well as non-dementia controls. We

focused on the DLPFC brain region as it is commonly affected in

both AD and HD (Armstrong, 2009; Roze et al, 2010), and our main

interest was to understand the common gene regulatory relation-

ships disrupted in degenerative dementia. Gene co-regulation

patterns were systematically compared between different groups,

and gene pairs whose co-regulation in DLPFC is gained (gain of co-

expression, GOC) or lost (loss of co-expression, LOC) in disease

cases relative to controls were identified and assembled into the

disease-specific differential co-expression (DC) network. Overall, we

found GOC gene pairs to be more prevalent than LOC pairs in the

DC networks of both neurodegenerative diseases; however, LOC

pairs were more consistent across both diseases. Clustering the DC

network yielded modules of genes enriched for clinical endpoints

related to brain pathology and dementia, and revealed new disease

genes like FAM59B (GAREML) that participated in LOC pairs at the

interface between modules. The AD DC network was replicated in

an independent human cohort, before or after exclusion of age-

related dysregulation, supporting the validity and robustness of the

DC network.

A systematic search for physical (protein–protein and protein–

DNA) interactions connecting the DC relations common to AD and

HD revealed a 242-gene subnetwork, which was enriched for inde-

pendent AD, HD and depression related signatures, and revealed an

interesting split of LOC/GOC dysregulations among two physically

interacting biological processes, neural differentiation and chroma-

tin organization. To test the interconnection of these processes, we

constructed two brain-specific knockout mice targeting two genes of

similar function in the subnetwork, DNMT1 and DNMT3A. We

predicted DNMT1, but not DNMT3A, as a key regulator for the

subnetwork based on the number of their interaction partners, and

consistent with our predictions, only the knockout signature of

DNMT1 in the cortex significantly overlapped with the subnetwork

genes. This result validates not only the interconnection of two

biological processes in the subnetwork but also the difference

between our key versus non-key regulator predictions in the subnet-

work. In conclusion, our results from inference and analyses of DC

networks revealed new insights into the common pathological

mechanisms in two neurodegenerative diseases.

Results

We focused on systematic changes at the molecular level in the

dorsolateral prefrontal cortex (DLPFC) from AD patients, HD

patients, and non-demented subjects, since this brain region is

commonly affected in both AD and HD (Armstrong, 2009; Roze

et al, 2010). The characteristics of the disease and control samples

obtained from HBTRC (Harvard Brain Tissue Resource Center)

are summarized in Supplementary Table S1. Briefly, 624 DLPFC

(Brodmann area 9) postmortem brain tissues were profiled on a

custom-made Agilent 44K array containing 40,638 reporters

uniquely targeting 39,909 mRNA transcripts of known and predicted

genes. We note that DLPFC tissue samples from 157 HD patients

(Supplementary Table S1) represent a significant fraction (~ 1%) of

the incidence of HD in the US. All brains were extensively pheno-

typed for neurohistopathology traits related to AD (Braak stage,

specific regional atrophy on a gross and microscopic scale, and

ventricular enlargement) or HD (Vonsattel scale severity). The signs

of neuropathology were used to confirm diagnoses of AD and HD,

as well as the lack of neuropathology in the control group. Finally,

all gene expression traits of disease and control samples were

adjusted for age, gender, and other covariates (see Materials and

methods).

Identification of dysregulated gene pairs in
neurodegenerative diseases

To compare the brain transcriptional networks in AD, HD and non-

dementia control brains, we tested for differences in the correlations

(co-expression) of all gene pairs computed in each of the groups.

Since co-expression of functionally related genes is necessary for the
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proper regulation of biological processes within a cell and coordina-

tion of several cell types that compose a tissue, mapping changes in

overall co-expression patterns in disease tissues versus controls

could provide indications on which tissue regulatory programs are

disrupted by disease. Of particular interest in identifying differen-

tially co-expressed gene pairs is the overall pattern of increasing and

decreasing correlations between the brain groups, with gain (or

loss) of co-expression, termed GOC (or LOC), indicating increasing

(or decreasing) correlation strength in the disease group compared

to the control group. For this comparison, we restricted the analysis

to DC pairs detected at a 1% false discovery rate (FDR) and that

were significantly co-expressed (either negatively or positively) in

only one of the two comparison groups (i.e., either cases or controls

for GOC or LOC pairs, respectively; see Materials and methods, and

Supplementary Dataset D1). We identified 28,223 DC gene pairs

(covering 8,897 unique reporters), whose co-expression relationship

differed significantly between the AD and non-dementia control

groups and was significant in only one of these two groups. Of these

identified DC pairs, 65.8% showed gain of co-expression (GOC) in

AD, while the rest showed a loss of co-expression (LOC) in AD

(Fig 1A and B, Table 1). As cortices are affected in HD as well (Roze

et al, 2010), we compared HD samples against non-dementia controls

to uncover 106,134 DC gene pairs, almost fourfold more pairs than in

AD (Fig 1A and B, Table 1). Figure 1C highlights an example of the

pairwise correlation between GPS2 and STARD7 showing similarly

disrupted co-expression patterns in both AD and HD.

Similar to what we observed for AD, HD was predominantly

characterized by GOC changes compared to LOC changes (Fig 1A

and Table 1), suggesting a common pattern of change in the brain

network associated with these two neurodegenerative diseases. In

fact, 8,776 gene pairs were identified as DC in both AD and HD

comparisons to controls, a highly significant overlap comprising

31% of all DC gene pairs and 74% of all DC reporters identified in

AD (P < 2.2 × 10�16; Table 1). The overlapping DC pairs always

had the same type of disruption (either GOC or LOC) as the control

group is same in both comparisons. Furthermore, despite GOC being

a more common feature than LOC of the disease networks, the two

diseases shared a larger fraction of LOC than GOC gene pairs

(Fig 1B and Table 1), which suggests that the LOC changes better

reflect the neuropathology common to these diseases.

In both AD and HD comparisons to controls, DC analysis comple-

mented conventional t-statistics-based differential expression (DE)

analysis by uncovering additional disease-associated genes. For

instance, only 9.9% of the 8,897 DC reporters identified in the AD

versus controls comparison (Table 1) overlap with the 2,206 DE

reporters, even when the DE is defined using a lenient (uncorrected)

P-value cutoff of 0.05 (if we require a DC reporter to participate in

at least five DC pairs instead of the one used above, then 12.7% of

the 2,667 DC reporters are also DE; see also Supplementary Figs S1,

S2, S3, and Supplementary Text A.1). This is in line with the negligi-

ble overlap between DE and DC gene sets in peripheral blood from

experiments exploring response to feeding in humans (Leonardson

et al, 2010), and suggests that mRNA levels of several genes could

be buffered against changes in co-regulation patterns and co-regulation

patterns could be preserved at different levels of expression of the

participating genes.

Several common variants have been shown to associate with AD

based on genome-wide association studies (GWAS) catalog

(Hindorff et al, 2009), and rare variants in certain genes have also

been identified through Mendelian inheritance based on OMIM data-

base (Supplementary Table S2 and Supplementary Text A.2).

Among these 23 curated AD-related genes, the allelic effects for

APOE, GAB2, SASH1, and FAM113B related genotypes on AD risk

were replicated in the HBTRC samples, with the most likely reason

for lack of replication of other reported risk variants being lack of

power in our relatively small study group (Supplementary Table

S2). We find that nine of these 23 AD-related genes show at least

one pair of DC in AD (Table 2), and a striking majority (69%) of the

DC pairs involving these AD-causing genes showed LOC changes

(Table 2), despite the fact that 66% of all DC gene pairs in AD

exhibited GOC (Table 1 and Supplementary Text A.2). For example,

APOE was involved in 85 DC pairs, all of which were LOC (Table 2).

Polymorphism in HTT is the predominant genetic cause of HD (Roze

et al, 2010), and we find that HTT gained two co-expression rela-

tionships in HD, such as to INSR and NPY1R, which are genes with

known links to HD disturbances or progression (Supplementary

Text A.2).

As the number of partners of a gene in a transcriptional network

can provide clues on the essentiality of the gene and effect on

disease (Horvath et al, 2006), we also inspected the hub genes in a

network assembled from the DC pairs (Supplementary Fig S4A).

The top 10 hub genes (participating in the largest number of DC

pairs) in AD had each gained or lost between 144 and 244 co-expression

relations in AD compared to controls, whereas these numbers

ranged from 339 to 550 for HD versus controls (see Supplementary

Text A.3). When considering only disrupted pairs common to both

AD and HD, the top 10 hub genes in this shared DC network were

RNASE1, GSN, SLC39A11, GPS2, CSRP1, FAM59B, TIMELESS, EZR,

AMPD2, and SASH1, six of which were also in the top 10 hub genes

for AD (Supplementary Fig S5A–C). Of interest, TIMELESS gained 91

co-expression relations in common in both diseases, and circadian

rhythm disruption has been observed in both AD and HD patients

(Weldemichael & Grossberg, 2010; Kudo et al, 2011); GPS2, a

subunit of the NCOR1–HDAC3 complex involved in anti-inflammation

and lipid metabolism (Jakobsson et al, 2009; Venteclef et al, 2010),

shared 107 GOC partners between the diseases; and SASH1, which

has a known AD association (Heinzen et al, 2009), replicated in the

HBTRC samples as already noted (Supplementary Table S2) and

shared several LOC partners (more than 80% of its 149 AD, 384 HD,

and 136 shared DC pairs were LOC).

DC patterns are replicated in an independent human dataset

To examine the robustness of the identified dysregulation patterns,

we checked whether the DC patterns identified in the AD versus

controls comparison showed similar dysregulation in an indepen-

dent human cohort of late-onset AD and control individuals

(Webster et al, 2009). Frontal cortex expression data were available

for 31 AD and 40 control individuals in that study. First, the increased

number of GOC pairs compared to LOC pairs seen in the HBTRC

samples was also observed in the independent dataset at various

Q-statistics cutoff values (Fig 2A and B). Next, we checked whether

the correlations of the LOC pairs in the control group were robust

and could be replicated in the control samples of the independent

study. Of the 3,569 LOC pairs that we identified in AD and had both

transcripts in a pair represented in the independent dataset, 49.5
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and 12.2% were also correlated in the independent control samples

using Pearson’s correlation P < 0.05 before and after Bonferroni

correction, respectively (these fractions were 12.5 and 0.4%, respec-

tively, with random pairs of the same size and network connectiv-

ity, as obtained by shuffling gene labels; note that proportional test

P = 0 for both cases).

Finally, we tested whether the magnitude as well as direction of

the DC pairs identified in the HBTRC AD set replicated in the inde-

pendent data. There were 11,561 genes in common between these

datasets and an aging dataset discussed below, among which the

HBTRC AD set revealed 13,924 DC pairs at Q > 25.6 (corresponding

to FDR 1% and hereafter called the ‘HBTRC-identified’ DC pairs)

and the independent AD data yielded 5,913,175 DC pairs at

Q > 3.84 (analytical P = 0.05; we use a lenient Q cutoff for the inde-

pendent data as it has fewer samples than HBTRC data and is used

for replication and not discovery). Of the HBTRC-identified DC

pairs, 5.54% got replicated in the independent AD set in the same

GOC/LOC direction at Q > 3.84 (analytical P = 0.05). The much

smaller sample size of the independent AD set compared to the

HBTRC dataset may explain the low absolute value of this

replication rate; however, there is a clear positive trend between

signal strength in the HBTRC data and the replication rate

A

B

C

Figure 1. Categories of genome-wide, gene–gene dysregulation patterns in neurodegeneration.
Two categories of changes, gain of co-expression (GOC) and loss of co-expression (LOC), were detected in a genome-wide comparison of gene–gene co-expression relations
between neurodegenerative (AD or HD) and normal (non-demented control) brains.

A There is a greater number (y-axis) of GOC than LOC gene pairs in both AD and HD.
B Overlapping DC pairs between AD and HD show that LOC is significantly higher in the overlap compared with either disease alone.
C An example of a gene pair (GPS2 versus STARD7) whose expression variation across individuals (x- and y- axis) reveals a GOC change in both AD and HD.

Table 1. Differentially co-expressed (DC) pairs of genes identified via comparison of Alzheimer’s disease (AD) or Huntington disease (HD) samples
to control samples.

Comparison
Q-statistic cutoff
(FDR estimate)

Number of DC pairs
(number of reporters)

Number of GOC pairs
(% of all DC)

Number of LOC pairs
(% of all DC)

AD versus controls 25.6 (0.01) 28,223 (8,897) 18,560 (65.8%) 9,663 (34.2%)

HD versus controls 21.7 (0.01) 106,134 (14,428) 84,541 (79.7%) 21,593 (20.3%)

Overlap 8,776 (6,624) 4,117 (46.9%) 4,659 (53.1%)
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(i.e., DC pairs with higher Q-values in the HBTRC data are more

likely to be replicated in the independent data as shown in Fig 2C),

and this replication rate is significantly higher than that of random

pairs of the same size as the HBTRC-identified DC pairs (hypergeometric

P = 1.1 × 10�6). To further test the impact of network connectivity

(inter-relationship) of DC pairs on the replication rate, we randomly

selected gene pairs of the same size and network connectivity as the

HBTRC-identified DC pairs by shuffling gene labels in the indepen-

dent data and computed what fraction of them got replicated

(Fig 2C, and Supplementary Fig S6C). Repeating this procedure

1,000 times demonstrated that the replication fraction is significant

not only for the HBTRC-identified DC pairs (GOC + LOC at

P < 1/1,000), but also separately for the GOC (P < 1/1,000) and

LOC (P < 1/1,000) pairs. Replication results were similar at other Q

cutoffs (2.71 or 6.63 corresponding to analytical P = 0.1 or 0.01,

respectively) in the independent data (Supplementary Fig S6A). In

summary, our set of discoveries as a whole shows significant

replication in a cohort of AD and control samples obtained in an

external study from different brain banks and profiled using differ-

ent technologies.

Most DC patterns are not associated with age

It is worth noting that AD patients in our study are older on average

than non-dementia controls (Supplementary Table S1), raising the

question of how much age contributes to the dysregulation of

HBTRC-identified DC pairs. A neurodegenerative disease state in

general, and DC pairs in particular, could result from the normal

aging process, accelerated or premature aging induced by AD, or

age-independent pathological mechanisms, and disentangling the

effect of these factors remains open (Sperling et al, 2011) despite

some recent advances (Cao et al, 2010; Podtelezhnikov et al, 2011). To

dissect aging effects in our study, we first determined age-associated

DC pairs by comparing the expression data of neuropathology-free

postmortem samples (Colantuoni et al, 2011) of 56 elder (age

between 50 and 90 at time of death) to 53 adult (age between 20

and 40 at time of death) group of individuals. Of the HBTRC-

identified DC pairs, 32.3% were age-associated—i.e., differentially

co-expressed between the elder versus adult groups even at a lenient

cutoff of Q > 2.71 (analytical P = 0.1). Next, we repeated the repli-

cation test using the independent AD dataset as outlined above, but

after excluding any age-associated DC pair (20,333,247 DC pairs at

Q > 2.71 (analytical P = 0.1) among genes represented in all three

AD/aging datasets) from the HBTRC-identified DC pairs. The results

before or after exclusion of age-associated DC pairs were similar

both in terms of replication fraction (Fig 2C) and its significance

(P ≤ 1/1,000, 14/1,000, and 1/1,000 for DC, GOC, and LOC pairs,

respectively, using the same gene label shuffling test used above;

Supplementary Fig S6B and D). These results suggest that most

dysregulated pairs we identified in AD were not due to aging but

related to the disease itself.

Modular organization of the DC network elucidates shared
pathologies of AD and HD

With confidence that the identified DC pairs are robust, we next aim

to understand the biological processes affected by DC pairs in AD

and/or HD. Towards this, we attempted to decompose the DC

network (Supplementary Dataset D1) defined over thousands of

genes into smaller modules of genes, such that genes within each

module participated in a larger number of DC relations among them-

selves than with genes in other modules. By applying a previously

published clustering approach (Wang et al, 2009) based on spectral

techniques and a modularity score function (see Materials and meth-

ods), we detected 149 DC modules for AD (Supplementary Fig S4B)

and 220 for HD (Supplementary Dataset D2), respectively containing

more than 77% of the genes in the DC network for AD and HD.

To understand shared pathologies between AD and HD at the

module level, we examined how shared DC pairs were distributed

within or between AD modules. We first constructed a network of

AD modules by aggregating intra-module DC pairs (both genes in a

DC pair within the same module) or inter-module DC pairs (a DC

pair interfacing two modules) into weighted links between

modules (Fig 3A), and annotated each module as GOC or LOC

based on which category was dominant within the module. Among

the modules that contained a significant number of shared DC

pairs, all but three were LOC modules and they were also grouped

together with other LOC modules (Fig 3A) by Cytoscape’s ‘yFiles

Organic’ layout algorithm (www.cytoscape.org). This observation

is consistent with the shared network being mostly LOC despite

the dominance of GOC in the individual disease networks (similar

trend was also observed for the HD module network shown in

Fig 3B). In enrichment tests done systematically for each module,

shared LOC modules M1, M32 in AD, and M24 in HD were signifi-

cantly enriched for pathways related to metabolism of basic amino

acids (Fig 3 and Supplementary Tables S3 and S4), and shared

GOC module M6 in AD (along with three other modules) was

significantly enriched for genes correlated to an AD clinical

endpoint termed Braak stage, which captures the severity of the

load of neurofibrillary tangles in the HBTRC samples (Supplemen-

tary Table S5).

The overall topology of the DC module network in Fig 3 also

revealed widespread loss of co-regulation in the crosstalk (inter-

module) relationship between shared DC modules and facilitates

hypothesis on regulator genes whose disruption lies at the interface

of different modules. For instance, nine genes in the shared LOC AD

Table 2. Highlighting well-confirmed genetic causes of AD in the DC
network pertaining to AD. We tested replication of published genetic
associations to AD in the HBTRC samples and reported the odds ratio
(OR), effect allele, and association P-values adjusted for age and
gender in Supplementary Table S2.

Gene
Number of
DC gene pairs %GOC, % LOC

An example of
DC gene pair

APOE 85 0, 100 APOE–SASH1

PSEN1 23 0, 100 PSEN1–GSN

PICALM 1 100, 0 PICALM–CA394907

GAB2 3 100, 0 GAB2–MRAP

RELN 5 20, 80 RELN–NCKX3

SASH1 149 13, 87 SASH1–CST3

TTLL7 9 78, 22 TTLL7–FAM134B

BIN1 43 42, 58 BIN1–GSN

ABCA7 70 100, 0 ABCA7–NFKBIA
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module M26 exhibited loss of co-regulation with a single gene

FAM59B in the GOC AD module M39 in both diseases (Fig 4A).

FAM59B (also known as GAREML or GRB2 association, regulator of

MAPK1-like) is a gene whose function is poorly characterized;

however, its DC relationship with genes in M26 such as SLC1A2 and

GRIN2C in the glutamatergic system (whose dysfunction is involved

A

C

B

Figure 2. Replication in an independent human cohort.

A, B The prevalence of GOC over LOC pairs in AD versus controls comparison in an independent human cohort replicates a similar observation in the HBTRC samples.
Due to small sample size of the independent cohort, we classified a gene pair as GOC if its’ Spearman correlation P-value was lower in the AD group compared to
the controls and LOC otherwise (thereby relaxing the stringent GOC/LOC definition used in the HBTRC samples).

C The replication fraction of DC pairs identified in the AD versus controls HBTRC samples (denoted AD DC pairs, and shown as ‘Observed’ solid lines with dots), and
the same replication fraction after excluding any age-associated DC pair from the HBTRC DC pairs (denoted AD-Aging DC pairs, and shown as ‘Observed’ dashed
lines); only DC pairs among genes represented in all three AD/aging datasets were considered. Various cutoffs on Q were used in the HBTRC data to derive the DC
pairs (with black line indicating the chosen 1% FDR cutoff) and a cutoff of 3.84 (analytical P = 0.05) was used in the independent AD data to call when a
HBTRC-derived DC pair got replicated in the independent data (note that replication also requires the same GOC/LOC direction in both datasets, with direction
in both datasets determined as above using the Spearman correlation P-values). The replication fractions of both AD and AD-Aging DC pairs were significant
based on 1,000 gene label shufflings (see text and Supplementary Fig S6), random ten of which for the AD DC pairs are shown here as lightly shaded
‘Randomized’ lines.
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in neurodegeneration (Sanacora et al, 2008)), its hub status and DC

partners including APOE and TIMELESS in the shared DC network

(as noted above and in Supplementary Fig S5C), and its correlation

with Braak stage in our data (Fig 4B) all taken together support

FAM59B’s association with neurodegeneration.

Physical interactions mediating common disruption patterns

Transcriptional dysregulation in AD and HD could propagate along

a network of physical interactions among genes, proteins, and other

molecules. To infer such molecular interactions mediating common

disruption patterns in AD and HD, we aligned the network of 8,776

DC pairs shared between both diseases (Table 1) with a network of

physical interactions compiled from various literature-curated data-

bases such as BioGRID, BIND, MINT, HPRD (Mathivanan et al,

2006) totaling 116,220 non-redundant protein–protein, protein–

DNA, or other types of pairwise interactions among 12,951 genes.

We applied a variant of a rigorous alignment method (Narayanan &

Karp, 2007) to find connected regions of the common DC network

that were also connected in the physical network, so that disrupted

co-expression of these gene pairs was more likely to generate func-

tional consequences (see Materials and methods). The largest

aligned subnetwork found by the method comprised 242 genes

participating in 401 common DC pairs and 370 supporting physical

interactions (Fig 5A and Supplementary Dataset D3; other aligned

subnetworks were small with at most two genes). Note that these

242 genes were selected by the algorithm (see Materials and meth-

ods) from the background of 1,739 overlapping genes in the physi-

cal and common DC network, by virtue of their connectivity in the

two networks (i.e., any two of these genes could be connected by a

path involving only common AD/HD DC pairs and another involv-

ing only physical interactions). The subnetwork was significantly

enriched for GO biological processes such as neuron differentiation

(P = 8.8 × 10�7) and neurogenesis (P = 3.1 × 10�6), regulation of

cellular metabolic process (P = 1.3 × 10�7), gap junction trafficking

(P = 1.1 × 10�6), and regulation of apoptosis (P = 5.6 × 10�6). It

was also enriched for actin cytoskeleton complex (P = 6.3 × 10�7),

and cytoskeletal alterations have been implicated in the disease

progression of both AD and HD (Bonilla, 2000; Benitez-King et al,

2004).

By providing a scaffold of supporting physical interactions, the

242-gene aligned subnetwork enabled us to hypothesize how

disease-induced dysregulation among specific genes could be medi-

ated and propagated. Consider the gene GSN, which exhibits the

largest number of DC relations in this aligned network and the

second largest number of overall common DC relations (117 LOC

pairs) shared between both diseases (its immediate neighbors in the

aligned subnetwork are shown in Fig 5B). GSN encodes the cyto-

skeletal regulatory protein gelsolin, which is highly enriched in the

oligodendrocyte lineage cells (Dugas et al, 2006; Cahoy et al, 2008;

Swiss et al, 2011), is increased during the late phase of differentia-

tion of progenitors into premyelinating oligodendrocytes (Swiss

et al, 2011), and is highly expressed in myelinating cells wrapping

the axons (Cahoy et al, 2008). Interaction partners of GSN include

MAG (myelin-associated glycoprotein), a molecule synthesized in

myelinated oligodendrocytes and localized at the axonal interface

(Trapp et al, 1989; Arroyo & Scherer, 2000); GJB1 encoding the

protein Connexin 32 that localizes in the myelinated fibers of the

central nervous system (Scherer et al, 1995); and SOX10, a key tran-

scriptional regulator of myelination in both central and peripheral

nervous systems (Stolt et al, 2002). The relation of these interaction

partners of GSN and GSN to oligodendrocytes suggests that altera-

tions in the transcriptional programs or composition of oligodendro-

cytes in the prefrontal cortex could be a common feature of AD

and HD.

The aligned subnetwork, consisting of gene pairs commonly

dysregulated in AD and HD in the HBTRC data, overlaps with inde-

pendent AD, HD, and other brain diseases signatures. For instance,

the subnetwork contains 3 AD GWAS or OMIM genes (APOE,

PSEN1, and BIN1, P = 0.0029) and significantly overlaps with genes

known to be upregulated in brain samples from AD patients

(Blalock et al, 2004) (P = 9.5 × 10�12). When comparing siRNA

candidates that suppress HTT toxicity in a HD model (Miller et al,

2012), seven of the 147 siRNA candidates represented on our

expression microarray (ASGR1, CAPN2, DAXX, FABP5, RAP1A,

RNF130, and TRPV6) mapped to the subnetwork (P = 0.0027).

Finally, the 242-gene aligned network overlapped with genes

downregulated in postmortem brains of major depressive disorder

patients (P = 5.1 × 10�15), which also comprises myelination and

signal transduction-related genes (Aston et al, 2005). These results

together suggest that the aligned subnetwork could underlie

transcriptional disruptions that occur in multiple neural diseases.

Dichotomous dysregulation of two biological processes in the
aligned subnetwork

To glean insights into how the 242-gene aligned subnetwork found

above could underlie multiple brain diseases, we inspected the topo-

logical distribution of the GOC, LOC, and physical interactions

across the network. We observed a surprising LOC/GOC dichotomy

that shed light on the epigenetic dysregulation of oligodendrocyte

differentiation and myelination in AD and HD. We specifically found

that the 151 LOC genes and the 103 GOC genes in this subnetwork

were largely distinct with an overlap of only 12 genes (a LOC gene

is loosely defined as any gene with at least one LOC/green edge and

a GOC gene as any gene with at least one GOC/red edge in Fig 5A),

and these two largely distinct gene groups were connected by

numerous physical interactions (165 of total 370 shown as black

edges in Fig 5A). The inferred dysregulated processes in these

groups revealed an interesting picture: within the whole 242-gene

subnetwork, 33 genes were linked to neuronal differentiation

(P = 8.8 × 10�7 as seen above), and almost all of them (29) were

LOC genes. When considering only the LOC genes in the subnet-

work, there was even more significant enrichment for neuronal

differentiation genes (P = 1.8 × 10�9), and for genes regulated

during oligodendrocyte differentiation (Swiss et al, 2011)

(P = 1.02 × 10�20). The LOC genes overlapped specifically with

gene clusters that were upregulated in a non-transient fashion

during late stages of oligodendrocyte differentiation

(P = 8.5 × 10�4, 1.6 × 10�4, 0.0014, 3.04 × 10�10, 2.4 × 10�4 and

1.2 × 10�11, respectively, for clusters 7–12 in (Swiss et al, 2011)).

On the other hand, the GOC genes in the subnetwork, including

GPS2, DNMT1, DNMT3A, YY1, HDAC5, HIST2H3A, and more, were

enriched for GO biological processes negative regulation of gene

expression (P = 1.2 × 10�7) and chromatin organization

(P = 6.6 × 10�7) (Fig 5A).
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A

B

Figure 3. Overall topology of shared dysregulation in AD and HD.

A, B Topology of the DC network among the AD modules (A) and HD modules (B) reveals a significant enrichment of shared DC pairs in more LOC than GOC modules,
and functional/clinical annotations of several modules. A self-loop edge indicates intra-module DC pairs. The thickness and redness of an edge scales with the
number of aggregated DC pairs and the fraction of these pairs shared between the two diseases, respectively. A module with dark border is significantly
overrepresented for shared intra-module DC pairs (hypergeometric P < 0.05 after Benjamini–Hochberg adjustment for multiple testing), and a module’s color
indicates whether it comprises predominantly GOC (blue) or LOC (red) pairs. Only modules with connections to other modules and edges aggregating at least 20
DC pairs are shown. Any module enriched for a pathway at hypergeometric P < 0.05 (after Bonferroni correction for the pathways tested) is labeled by the most
enriched pathway, and modules enriched for genes correlated to AD Braak stage severity are also labeled.
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Disordered chromatin organization and related epigenetic

mechanisms of histone modifications and DNA methylation are

increasingly appreciated as key pathogenic factors for AD and

HD, but there is still much research to be done for instance in

terms of human studies of DNA methylation changes in AD, as

they are scarce and based only on small cohorts of individuals

(see reviews (Balazs et al, 2011; Coppedè, 2013; Jakovcevski &

Akbarian, 2012)). Our study based on hundreds of human post-

mortem brains provided a unique view, as noted above, of tran-

scriptional dysregulation of chromatin modifier genes (including

methylation-related genes like DNMT1 and DNMT3A) in neurode-

generation and their interconnections in the aligned subnetwork

to oligodendrocyte differentiation genes such as SOX10 and GSN.

Hyper-methylation of the key oligodendrocyte-specific transcrip-

tion factor (TF) SOX10 has been linked to oligodendrocyte

dysfunction (Iwamoto et al, 2005), and we have shown before

that histone modifications of GSN—with a large number of LOC

connections in the subnetwork as noted above—contribute to

oligodendrocyte differentiation in vitro (Liu et al, 2003). We have

also shown that age-dependent histone deacetylation controls

oligodendrocyte differentiation (Shen et al, 2008). All these results

suggest that the 242-gene subnetwork involving two interacting

biological processes, loss of co-regulation in oligodendrocyte

differentiation or myelination and gain of co-regulation in chroma-

tin organization, could underlie multiple neurodegenerative

diseases.

Validating epigenetic regulation of neural differentiation and
DNMT1 as a key regulator in the aligned subnetwork

Among genes involved in chromatin organization in the 242-gene

aligned subnetwork, GPS2 and DNMT1 are top hub genes with 18

and 16 connections within the subnetwork, respectively. GPS2 is a

subunit of the NCOR1–HDAC3 complex, and we have shown that

histone deacetylation controls oligodendrocyte differentiation

(Marin-Husstege et al, 2002; Shen et al, 2008). DNA methylation by

DNMT1 or DNMT3A enzymes has been broadly implicated in neural

development and differentiation (Takizawa et al, 2001; Wu et al,

2010, 2012) as well, but here we aim to validate whether DNA

methylation regulates oligodendrocyte differentiation genes in the

A B

Figure 4. Shared crosstalk between two DC modules reveals a new neurodegenerative association.

A The crosstalk (inter-module) DC relations between AD GOC module M39 and AD LOC module M26 are dominated by the loss of co-regulation of a single gene FAM59B
in M39 with several genes in M26. Note that genes represented by multiple reporters appear more than once in the heatmap.

B Expression of a FAM59B reporter correlates with Braak severity score (P = 0.00095) across all AD and control DLPFC samples (shown as jittered red and blue dots,
respectively).
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242-gene subnetwork disrupted in AD and HD. There are two DNA

methyltransferases, DNMT1 and DNMT3A, in this disease subnet-

work with 16 and 6 interactions, respectively. DNMT1 being one of

the top hub genes with many interaction partners is likely to play a

key regulatory role in the subnetwork, whereas DNMT3A with few

interaction partners is likely to play a smaller role. To test these

predictions, we generated two oligodendrocyte-specific conditional

knockout (CKO) mice, Dnmt1 CKO and Dnmt3a CKO, and dissected

cortices from these brain-specific knockout and respective littermate

control mice for profiling using RNA-seq technology (see Materials
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Figure 5. Physical network links regions of GOC disruption in chromatin organization and LOC disruption in neuronal/oligodendrocyte differentiation.

A, B We systematically aligned the network of common DC pairs detected in both AD and HD with the network of literature-curated physical (protein–protein and
protein–DNA) interactions to obtain a subset of genes that is maximally connected in both networks. This aligned subnetwork is shown in (A), and the immediate
neighborhood of gene GSN in this aligned subnetwork is shown in (B). Red and green edges are, respectively, the GOC and LOC pairs among the common DC pairs,
and black edges mark the physical interactions. Genes with LOC (green) edges were significantly enriched for genes involved in neuronal differentiation (nodes in
orange), and genes with GOC (red) edges were significantly enriched for genes involved in chromatin organization (nodes in red). The node size is proportional to
the number of node’s links in the subnetwork. Dnmt1 brain-specific knockout signature significantly overlaps with the 242-gene subnetwork (A) (P = 3.1 × 10�12)
and the immediate neighborhood of gene GSN in this aligned subnetwork (B) (P = 8.4 × 10�10). Triangle-shaped nodes with blue borders are genes differentially
expressed in the Dnmt1 brain-specific knockout compared with wild-type littermates.
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and methods). Analysis of this data yielded 388 genes that were

significantly differentially expressed in Dnmt1 CKO mice compared

to their littermate controls at 10% FDR (the Dnmt1 CKO signature),

and 42 genes in the Dnmt3a CKO signature (see Materials and meth-

ods, and Supplementary Datasets D4 and D5). Consistent with our

predictions, the Dnmt1 CKO signature included key oligodendrocyte

differentiation or myelination genes (including the top hub gene

GSN, the TF SOX10, MAG, GJB1, and others discussed above), and

significantly overlapped with the entire disease subnetwork as well

as the GSN local subnetwork (P = 3.1 × 10�12 and 8.4 × 10�10,

respectively, as shown in Fig 5). Broadly, the Dnmt1 CKO signature

was enriched for genes involved in GO biological processes, nerve

ensheathment, glial cell differentiation, nerve maturation, and lipid

biosynthesis (P-values 1.37 × 10�11, 3.4 × 10�10, 3.2 × 10�9, and

7.2 × 10�9, respectively), again consistent with the biological func-

tions of the subnetwork. Moreover, the Dnmt1 CKO mice showed

increased predilection to seizures, an incidence also increased in

patients with AD (Amatniek et al, 2006) as well as juvenile form of

HD (Cloud et al, 2012). In contrast, the Dnmt3a CKO signature was

much smaller, only marginally overlapped with the subnetwork

(P = 0.017), and was not enriched for any GO biological process.

These results not only validate the interconnection between the two

dysregulated biological processes in the disease subnetwork, but

also validate our key regulator predictions.

Discussion

We show for the first time that the global pattern of gene–gene co-

regulation in the human brain cortex is drastically altered in a

shared fashion in neurodegenerative diseases like AD and HD, by

employing a systematic differential co-expression (DC) analysis that

complements conventional differential expression analysis for find-

ing disease-associated changes. The disrupted DC patterns we found

either can echo reactive responses to the neuronal pathology associ-

ated with neurodegenerative disease or may indicate a direct causal

relationship with the disease. We found that GOC between pairs of

genes was a more dominant feature than LOC in AD and HD. In

contrast, the DC shared between AD and HD showed a larger

proportion of gene pairs that have lost co-expression. This could

suggest a greater role for the LOC-related disruptive changes in the

pathological mechanisms common to both diseases. Moreover,

genes harboring common genetic variants unequivocally found to

be associated with AD were more likely to show LOC, despite GOC

being a more dominant feature among DC genes in AD. This may

indicate that LOC signatures are more likely than GOC genes to be

in causal relationship with the onset and/or progression of the

disease. LOC interactions of genes at the interface between different

DC modules also revealed new candidate disease genes like

FAM59B. Finally, our systematic search for physical interactions

mediating the common DC pairs between AD and HD, besides

revealing extensive molecular alterations involving genes such as

GSN and SOX10 related to oligodendrocyte differentiation, revealed

an interesting split of GOC and LOC dysregulation, respectively, of

two physically inter-connected cellular processes, chromatin organi-

zation and neural differentiation. Results of our two brain-specific

conditional knockout mice validate the interconnection of the two

processes as well as key regulator predictions in the subnetwork.

Aging is linked with multiple neurodegenerative diseases includ-

ing AD and HD. Though most DC patterns identified in the HBTRC

data are distinct from age-associated DC pairs derived from the

aging study (Colantuoni et al, 2011) as seen above, the 242-gene

subnetwork dysregulated in both AD and HD overlaps with DE

signature sets derived from aging brains. For instance, the 242-gene

subnetwork is enriched for genes upregulated in the frontal cortex

of old adults (age 73 or more) when compared with younger cortices

(age 42 or less) (Lu et al, 2004) (P = 2.38 × 10�39), but not for age

downregulated genes from the same study (P = 0.27). The enrich-

ments are similar with filtered subsets of these signatures reported

in the aging study using reversed changes in fetal development as a

filter (Supplementary Table S5 of (Colantuoni et al, 2011); enrich-

ment P = 9.6 × 10�9 versus P = 0.39 for filtered age upregulated

versus downregulated set, respectively). Interestingly, most of the

age upregulated genes in the 242-gene subnetwork participated in

only LOC interactions. Together, these results suggest that aging

may contribute to AD and HD risks by increasing the expression of

certain genes in the aligned subnetwork whose co-regulation

patterns are disrupted in disease.

Comparing molecular and macro-scale networks is not straight-

forward; however, there are studies of both cell function and macro-

scale networks in the human brain which suggest that gain of

co-expression (GOC), a dominant feature in our DC networks, may

indicate increased functional activity. For instance, (1) Buckner et al

2009 used functional neuroimaging (fMRI) to demonstrate that the

human cortex contains hubs of high functional connectivity correlat-

ing with incidence of Ab deposition in AD patients, (2) Ab produc-

tion is strongly stimulated as a function of increasing neuronal

activity (Cirrito et al, 2005), and (3) neuronal activity is highly

increased (50% of the neuronal population) in the vicinity of Ab
plaques in an early-stage AD mouse model (Busche et al, 2008;

Kuchibhotla et al, 2009), with neuronal hyperactive firing in the

cortex combined with an increased astrocyte activity and Ab
plaques. While gain of transcriptional co-regulation in the brain

cortex network may be associated with increased activity surround-

ing misfolded Ab deposits, it is possible that lack of transcriptional

co-regulation (LOC), which is proportionally high in the overlap

between AD and HD and high among genes found to be causally

related to AD, is associated with upstream events that produce or

maintain the misfolded protein aggregates.

Spurious correlations due to systematic noise in the control

samples could result in false positive LOC pairs, especially for genes

with low expression variation between AD/HD and controls (see

also Supplementary Text A.1). However, we showed that the corre-

lation of LOC pairs in our control samples got replicated in an inde-

pendent cohort’s control brain samples. We also showed that genes

implicated in AD in independent GWAS studies predominantly

participated in LOC pairs and modules of genes comprising several

LOC pairs enriched for meaningful biological processes. Further-

more, we verified the robustness of the AD DC network against false

positive errors through replication of both GOC/LOC direction and

magnitude of Q statistics in the independent human cohort. It is

worth noting that exclusion of age-associated DC pairs does not

affect the significance of replication of LOC pairs (P < 1/1,000 using

a permutation test shuffling gene labels), but it increases the replica-

tion P-value of GOC pairs to P < 14/1,000. This result further

supports the importance of LOC pairs in disease pathogenesis.
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Previous studies on differential co-expresssion analysis in AD

have used either module-based (Zhang et al, 2013) or hub-based

(Rhinn et al, 2013) analysis. The module-based analysis defines the

co-expression modules in case and control groups separately before

comparing their correlation structures between the groups, whereas

the hub-based analysis aggregates the differential co-expression of

each gene with all other relevant genes in the transcriptome to prior-

itize disease genes. We take a more direct “edge/pair-based”

approach based on meta-analysis of correlation coefficients to iden-

tify all pairs of genes exhibiting differential co-expression at 1%

FDR. There are several advantages to our edge-based analysis. First,

it enables a direct overlap of the DC networks of multiple diseases

and alignment of the resulting DC network with other types of

networks such as a physical network of protein–protein and

protein–DNA interactions. The 242-gene subnetwork resulting from

this network alignment revealed common molecular mechanisms

underlying AD and HD. Second, our pair-based approach offers a

finer resolution of transcriptional dysregulation that allows us to

inspect DC patterns not only within modules or hubs, but also at the

level of the overall network or at interfaces between two modules.

Indeed, we showed that LOC pairs, which are functionally important

and robustly replicated in the independent dataset, were overall

enriched in the common DC network and arrived at a novel candi-

date disease association FAM59B by inspecting inter-module LOC

pairs.

In summary, this study provides a global view of dysregulatory

networks in AD and HD through integrative analysis of data from

large cohorts of individuals in varying stages of neurodegeneration

and aging. While our study falls short of providing a detailed model

of disease progression due to the non-longitudinal nature of these

datasets, the dysfunctional DC patterns we found in common

between AD and HD, and the supporting physical interactions

connecting dysregulated molecular pathways (available as Supple-

mentary Datasets D1, D2 and D3) significantly advance current

efforts in identifying candidate genes for functional follow-up in

independent clinical sampling and drug discovery efforts, which are

aimed at influencing and/or modifying susceptibility to both neuro-

degenerative diseases.

Materials and Methods

The human brain samples

The HBTRC (Harvard Brain Tissue Resource Center) samples were

primarily of Caucasian ancestry, as only eight non-Caucasian

outliers were identified, and therefore excluded for further analysis.

Postmortem interval (PMI) was 17.8 � 8.3 h (mean � standard

deviation), sample pH was 6.4 � 0.3, and RNA integrity number

(RIN) was 6.8 � 0.8 for the average sample in the overall cohort.

The tissue samples were profiled on a custom-made Agilent 44K

array of 40,638 DNA probes uniquely targeting 39,909 mRNA tran-

scripts of 19,198 known and predicted genes (Supplementary Data-

set D6). Therefore in some cases, transcripts are targeted by more

than one reporter probe, but for ease of notation we refer to these as

genes as any duplicate measures are routinely removed during

subsequent analyses. After extensive quality control of the samples,

624 DLPFC (BA9) brain tissues from AD patients, HD patients, and

non-demented controls (N = 310, 157, and 157, respectively) were

used for further analysis.

Adjustment of the gene expression data

As described earlier (Greenawalt et al, 2011), we used principal

components (PCs) derived from the expression data of the control

probes in the Human 44k v1.1 array to adjust the expression data

of the other probes, in order to mitigate the effect of unknown

confounding factors (Gagnon-Bartsch & Speed, 2012). This adjust-

ment was done in a linear regression setting using the selected PCs

as covariates. Following the earlier method (Greenawalt et al,

2011), we selected as covariates the 1st PC from r60 control

probes, the 1st PC from Pro25G control probes, and the PCs of all

remaining control probes that had variance explained at P < 1e–04

when compared to a randomized version (obtained from 10,000

permutations of the original data, with each control probe

permuted independently). The resulting control-probes-adjusted

expression data were further adjusted for several factors that could

potentially confound the differences between normal and AD/HD

datasets. These adjusted covariates include age, gender, RIN, pH,

PMI, batch, and preservation of the samples. Specifically, a robust

linear regression model of each gene’s expression data was fitted

separately for the AD, HD, and control group using these covari-

ates, and residues from the fitted models were taken as the

adjusted data for further analyses (rlm in R library MASS with

Huber bisquare proposal was used to fit the model). The missing

expression values in all expression datasets used in this

study, including external datasets, were imputed using the

k-nearest neighbors algorithm in the space of genes with k = 10

(Troyanskaya et al, 2001).

Genotyping and association testing of disease SNPs

Each subject was genotyped on two different platforms, the Illumina

HumanHap650Y array (IL650) and a custom Perlegen 300K array (a

focused panel for detection of singleton SNPs; PL300). Counting

only the union of markers from both genotyping platforms (114,925

SNPs were in the intersection), a total of 838,958 unique SNPs were

used for analysis. Restriction Fragment Length Polymorphism

(RFLP) was used to genotype the APOE polymorphisms in the

HBTRC samples as described earlier (Gioia et al, 1998). Briefly, the

initial PCR yields an amplicon of 485 bp of APOE exon 4 containing

both polymorphisms, following a nested PCR product of 300 bp.

HhaI digestion of the nested amplicon generated unique patterns of

restriction fragments depending on the original genotype of the indi-

vidual (Gioia et al, 1998). The GAB2 SNP rs2373115 (Reiman et al,

2007) was not present on the arrays and was therefore genotyped

using a TaqMan assay. The single point association testing of APOE

genotypes and other SNPs (reported in Supplementary Table S2) was

carried out in the R statistical environment using a logistic regression

model encoded by the R formula: disease_status ~ logistic

(b0 + b1 × (count of minor allele) + b2 × age + b3 × gender). The

disease SNP P-value indicates how significantly different b1 is from

0. The OR estimate was calculated from exp(b1). We applied

the following quality control filters to retain only SNPs that have

MAF (Minor Allele Frequency) > 0.05, HWE (Hardy–Weinberg

Equilibrium) test P-value > 10e–06, and SNP call rate > 0.90.
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Meta-analysis of gene–gene correlation

We used a parametric meta-analysis method to test for changes in

gene–gene correlation between two groups (e.g., disease versus

controls), under the assumption that gene pairs are bivariate

normally distributed in each group. This method yielded similar

results as (and somewhat more conservative P-values than) a

bootstrap method with no parametric assumptions, on a random

subset of gene pairs in our data (see Supplementary Fig S7 for

these results and a description of the bootstrap method, which is

computationally intensive even on a subset of all gene pairs). We

now describe the parametric method: for each gene pair (i,j) and

their Spearman correlation coefficients rtij (with t = 1 and 2

computed in disease and control samples, respectively), we first

transformed the correlation coefficients into Fisher’s Z-statistics

ztij ¼ 1
2 log

1þrtij
1�rtij

� �
, which follows a normal distribution with zero

mean and standard deviation of 1ffiffiffiffiffiffiffiffi
nt�3

p (nt is the sample size) under

our parametric assumption of bivariate normality. A heterogeneity

statistic Q is then computed for each gene pair as shown next

(without the i,j subscripts for clarity): Q ¼ P
t wtðzt � �zÞ2 with the

weights wt = nt � 3 being used to also compute �z as the weighted

average of the z in the disease and the control group. The Q

statistic follows a v2 distribution with one degree of freedom

under homogeneity and parametric assumptions (Hedges & Olkin,

1985), and the larger it is, the less similar the gene–gene correla-

tion is between the two groups. To make differential co-expression

calls from the Q statistics of all gene pairs taken together, we used

a global permutation-based approach that both accounts for

multiple testing and is robust to any violations of parametric

assumptions (Storey & Tibshirani, 2003). We specifically permuted

the original data once (by randomly assigning sample labels to

shuffle the two groups together) and repeated the meta-analysis

procedure. Then for any global cutoff value Q0, we take the ratio

of the number of gene pairs that had Q > Q0 in the permuted to

the original data as the estimated global FDR (false discovery rate)

at this cutoff. The final cutoff we chose corresponding to FDR 1%

translates to: Q0 = 25.6 for AD versus controls comparison, and

Q0 = 21.7 for HD versus controls comparison. Unless specified

otherwise, in addition to requiring a gene pair to have Q > Q0, the

pair has to be significantly co-expressed in either the disease or

the control group of samples (but not both) to be called as a

differentially co-expressed or DC pair. The GOC and LOC category

of DC pairs is defined based on which group the gene pair is

significantly co-expressed. We call a pair as significantly co-

expressed in a group of samples if their Spearman’s correlation

test P-value is at most 0.01 after correction for the all reporter–

reporter tests among the 40,638 reporters, and not significantly co-

expressed otherwise.

Independent human cohorts used in replication testing

We tested replication of the DC pairs identified using the HBTRC

samples in an independent human cohort of late-onset AD and

control individuals (Webster et al, 2009). We obtained the expres-

sion data of that study from GEO (GSE15222), extracted the data of

postmortem frontal cortex samples alone of 31 AD and 40 control

individuals (over 24,354 transcripts, which became 23,613 unique

transcripts after replacing transcripts represented by multiple

probes with a randomly pre-selected probe), and adjusted through

a linear regression model the AD and control group data separately

for the same set of covariates used in the study. To dissect the

contribution of aging to differential co-expression, we used another

independent human dataset comprising expression data of neuropa-

thology-free postmortem prefrontal cortex samples (Colantuoni

et al, 2011) of 56 elder (age between 50 and 90 at time of death)

and 53 adult (age between 20 and 40 at time of death) individuals.

We obtained the preprocessed expression data of that study from

GEO (GSE30272) before SVA (Surrogate Variable Analysis) adjust-

ment, extracted the data of the elder and adult group of individuals

alone, and adjusted through a linear regression model each group’s

data separately for all non-SVA covariates reported in the study

(with the exception of ‘smoking history’ as this covariate was

highly correlated to and had more missing data than the ‘smoke at

death’ covariate).

Identification of modules in the DC transcriptional network

We used our previously published clustering method described in

detail in Wang et al (2009). Briefly, the method uses spectral tech-

niques to derive a clustering tree from the DC network obtained

from AD versus controls or HD versus controls comparison, and

modularity score as an objective function to parse the clustering tree

into modules or clusters (of size at least 10 and at most 100) that

contain more DC interactions than expected from a random model.

The modules were numbered based on their modularity scores, with

M1 being the module with the highest modularity score in the

network, M2 being the next highest, and so forth. The enrichment

P-values used for pathway enrichment were calculated using a

hypergeometric distribution. All DC modules were tested for enrich-

ment of functional annotations and all significant enrichments

(P ≤ 0.05 after Bonferroni correction for the number of Ingenuity

Pathways tested) are reported (but for a module showing multiple

significant enrichments, only the best one is reported).

Alignment of physical interaction network and common
DC network

Since large-scale collections of published physical (protein–protein

and protein–DNA) interactions are not yet sufficiently comprehen-

sive (Mathivanan et al, 2006), we aligned the physical network

(viewed as undirected network after dropping edge orientations)

with the network of common DC pairs identified in both diseases

using a method that is more robust than simply overlapping the

edges in the two networks. This alignment method specifically sets

out to find all maximal subsets of genes that are connected in both

the physical network and the common DC network. Maximal

subsets of genes that are connected in two given networks can be

found recursively using a simplified variant of a provably efficient

algorithm, Match-and-Split, which we have developed previously

(Narayanan & Karp, 2007). This variant would find all connected

components in the first network, and for each such component,

output them if they are also connected in the second network or

split them into further connected components in the second network

otherwise. This process is repeated recursively until all components

of a certain minimum size (10 genes) that are connected in both

networks are found.
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Dnmt1 and Dnmt3a brain-specific conditional
knockout experiments

All of the mice used in this study were handled in accordance with

IACUC-approved protocols. Dnmt1flox/flox (Fan et al, 2001; Jackson-

Grusby et al, 2001) and Dnmt3aflox/flox (Nguyen et al, 2007) mice

were backcrossed onto a C57BL/6 background and crossed with

Olig1-cre mice to generate Dnmt1 conditional knockout (Olig1cre/+;

Dnmt1flox/flox) and littermate control (Olig1+/+;Dnmt1flox/flox) mice,

and Dnmt3a conditional knockout (Olig1cre/+;Dnmt3aflox/flox) and

littermate control (Olig1+/+;Dnmt3aflox/flox) mice. Cortices were

dissected from Dnmt1 conditional knockout (CKO), Dnmt3a CKO,

and respective littermate control mice at postnatal day 16. Dnmt1 and

Dnmt3a were knocked out in oligodendrocytes specifically (Supple-

mentary Fig S8) with recombination rate over 70% (Zhang et al,

2009). RNA was isolated from three biological replicates for each

genotype using TRIzol (Invitrogen) extraction and isopropanol

precipitation. RNA samples were resuspended in water and further

purified with RNeasy columns with on-column DNase treatment

(Qiagen). RNA purity was assessed by measuring the A260/A280

ratio using a NanoDrop and RNA quality checked using an Agilent

2100 Bioanalyzer (Agilent Technologies). Approximately 250 ng of

total RNA per sample were used for library construction by the

TruSeq RNA Sample Prep Kit (Illumina) and sequenced using the Illu-

mina HiSeq 2500 instrument according to the manufacturer’s instruc-

tions. Sequence reads were aligned to the mouse genome (assembly

mm10) and gene expression quantified using Tophat/Cufflinks meth-

ods, and differentially expressed genes at FDR 10% (Q-value < 0.1)

were identified using Cuffdiff (Trapnell et al, 2013). To compare gene

signatures of mouse experiments with human networks, we used

human–mouse gene orthologs provided by The Jackson Laboratory

(http://www.informatics.jax.org/homology.shtml).

Data availability

Gene expression data of the human brain samples used in this study

are available at the GEO public database under the accession

number GSE33000.

Gene expression data from the mouse conditional knockout

experiments are also publicly available under the GEO accession

number GSE58261.

Supplementary information for this article is available online:

http://msb.embopress.org
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