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Abstract Initially found in Hubei, Wuhan, and iden-
tified as a novel virus of the coronavirus family by
the WHO, COVID-19 has spread worldwide at expo-
nential speed, causing millions of deaths and public
fear. Currently, the USA, India, Brazil, and other parts
of the world are experiencing a secondary wave of
COVID-19. However, the medical, mathematical, and
pharmaceutical aspects of its transmission, incubation,
and recovery processes are still unclear. The classi-
cal susceptible–infected–recovered model has limita-
tions in describing the dynamic behavior ofCOVID-19.
Hence, it is necessary to introduce a recursive, latent
model to predict the number of futureCOVID-19 infec-
tion cases in the USA. In this article, a dynamic recur-
sive and latent infection model (RLIM) based on the
classical SEIR model is proposed to predict the num-
ber of COVID-19 infections. Given COVID-19 infec-
tion and recovery data for a certain period, the RLIM
is able to fit current values and produce an optimal set
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of parameters with a minimum error rate according to
actual reported numbers. With these optimal parame-
ters assigned, the RLIM model then becomes able to
produce predictions of infection numbers within a cer-
tain period. To locate the turning point of COVID-19
transmission, an initial value for the secondary infec-
tion rate is given to the RLIM algorithm for calcula-
tion. RLIM will then calculate the secondary infec-
tion rates of a continuous time series with an iterative
search strategy to speed up the convergence of the pre-
diction outcomes and minimize the maximum square
errors.Comparedwith other forecast algorithms,RLIM
is able to adapt the COVID-19 infection curve faster
and more accurately and, more importantly, provides
a way to identify the turning point in virus transmis-
sion by searching for the equilibrium between recover-
ies and new infections. Simulations of four US states
show that with the secondary infection rate ω initially
set to 0.5 within the selected latent period of 14 days,
RLIM is able to minimize this value at 0.07 and reach
an equilibrium condition. A successful forecast is gen-
erated usingNewYork state’s COVID-19 transmission,
in which a turning point is predicted to emerge on Jan-
uary 31, 2021.

Keywords COVID-19 · SEIR · Secondary infections ·
Recursive time series · Turning point
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1 Introduction

Since its first appearance in Hubei, Wuhan, China,
in December 2019, a novel virus named COVID-19
has affected millions of people worldwide, causing
unpredicted economic losses and public fear. To date,
the origin, incubation time, and transmission speed of
COVID-19 have not been clarified. Numerous attempts
from medical, clinical, and mathematical perspectives
have been made to analyze the dramatic increase in
infections brought by COVID-19 and predict its trans-
mission trends.

A number of COVID-19-related studies developed
their mathematical modeling based on the susceptible–
infected–removed (SIR) model, which was originally
proposed by Kermack andMcKendrick [13] to analyze
black death virus transmission occurring in London,
the UK, and pestilence in Mumbai, India, in 1666 and
1906, respectively. Theoretically, this model divides
the progress of virus transmission into three phases–
susceptible, infected, and removed–and relates math-
ematical parameters with the characteristics of each
stage. For example, a mathematical parameter, β, was
assumed between susceptible and infected to identify
the percentage of the healthy and vulnerable popula-
tion that transform into a positively infected patient.
β has been associated with R0, the basic reproductive
number, which is widely used by clinical experts to
express the average speed of transmission for a specific
virus. Another important indicator, γ , has been widely
applied to record the percentage that move from infec-
tion to recovery or death. The reciprocal of γ indicates
the median incubation period of COVID-19 transmis-
sion, which has attracted much interest from the scien-
tific community.

Regarding the incubation period of COVID-19, a
number of research findings have also been published:
Yu et al. [21] investigated COVID-19-infection cases
reported in China and other countries and recorded
incubation periods ranging from 7 to 14 days; Lai [14]
collected exposure periods for 125 Chinese patients,
and the estimation indicated that themedian incubation
periodwas 4.75.Zhu [22] assumed that the latent period
and the infectious period are approximately equal to
the incubation period and the length of stay in the
hospital and preliminarily concluded that the value of
the latent period and the infectious period is 5 and 10
days, respectively. Adhikari [1] asserted that the aver-
age incubation duration ofCOVID-19was 4.8+/−2.6,

ranging from 2 to 11 days (with 95% confidence inter-
val, 4.1 to 7).

Althoughnumerousmathematicalmodels have been
developed to address the dynamics of COVID-19, very
few focus on the secondary infections caused by recov-
ery. Many of these models treat COVID-19 as a respi-
ratory disease that requires immediate medical atten-
tion but does not last for long or cause secondary
effects. However, long-lasting illnesses and secondary
outbreaks in the USA, UK, Brazil, and India all indi-
cate that COVID-19 symptoms cannot be treated as
terminating in a manner similar to flu. For example,
Sabino et al. [18] observed the resurgence of COVID-
19 in January 2021 in Brazil and asserted that one
of the main reasons behind this resurgence was that
immunity against COVID-19 infection had already
begun to wane by December 2020. Thus, the recovered
group could still be infected or become a virus car-
rier. According to the COVID tracking project [8], the
definition of “COVID-19 recovery” varies among dif-
ferent US regions, ranging from, for example, “symp-
tom improvement” to “hospital discharges” or even
“days since diagnosis”. In addition, there is no clear
evidence that “recovered” patients are subsequently
immune to COVID-19. Thus, it is reasonable and nec-
essary to assume that a portion of them, after a certain
period of time, will move from the immune group to
the susceptible group. A recent scientific report from
Christian Gaebler et al. [9] proves that the humeral
memory response to COVID-19 will last between 1.3
and 6.3months after infection without vaccine support.
Okhuese [16] attempted to estimate the probability of
COVID-19 reinfection by searching the equilibrium
state of the SEIRUS model. In his simulation report,
after 12 days, the rate of recovery and rate of infec-
tion will meet and reach an equilibrium state. However,
his model merely considered incorrectly executed PCR
tests, which is not sufficiently accurate to describe cur-
rent COVID-19 transmission in the USA. According
to Altan and Karasu [2], X-ray images are able to pro-
vide better results than RT-PCR tests in the diagnosis
of COVID-19 disease.

One of the essential questions to be answered by a
forecasting algorithm is when and how a turning point
will appear. A turning point within COVID-19 trans-
mission contains valuable information to help govern-
ments, clinical services, and scientists model the trans-
mission and prepare. Yang et al. [20] successfully pre-
dicted the peak of COVID-19’s first wave in China in
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late February under public health interventions. Many
studies, such as [7] and [21], relate COVID-19 trans-
mission’s turning point with political or public affairs,
such as city lockdowns and school closure. Recently,
some researchers claimed that the turning point and end
of an expanding epidemic cannot be precisely fore-
casted [3] because COVID-19 transmission is highly
dynamic and unstable, and the forecasting results are
sensitive to small variations in parameters. The recur-
sive and latent infection model (RLIM) algorithm pro-
posed in this paper can provide a reliable estimation of
the COVID-19 transmission turning point due to three
factors. First, the authors chose a period of 14 days for
prediction, which is not long enough for new effects
to emerge and affect the results. Second, the turning
point in our system was predicted with validated data
records, and the trend in these data records was care-
fully observed to guarantee their smoothness. Finally,
a detailed investigation of state-level regulations was
made for the target states and dates to ensure that no
political events occurred (such as a state lockdown or
hospital emergencies).

In this article, we develop and present the RLIM, a
novel COVID-19 transmission model. The main con-
tributions of this paper are as follows:

(1)Developed a novelmethod to forecast the number
of infections in the upcoming 14 days based on histor-
ical infection and recovery data. This method is able
to efficiently locate the relationship between historical
data and infection data and optimize the parameters of
the RLIM model in a short period. Evidence from our
experiment proves that the key parameters converge
within a certain period in the optimized RLIM model,
thereby locating the optimal parameters.

(2) Given an infection-recovery dataset for COVID-
19, this method is able to promptly locate the turning
point with an iterative search strategy. Our experiment
shows that within a period of 60 days, an RLIM model
with an optimized set of parameters based on histori-
cal data (see contribution point 1) is able to predict the
secondary infection rates for the coming week with an
optimization strategy that minimizes the MSE (max-
imum square error) between the reported number of
infections and RLIM predictions.

The remainder of this manuscript is organized as
follows. Section 2 discusses the implemented mathe-
matical modeling, equations and algorithms. Section 3
describes the simulation settings, software and scien-
tific packages utilized by the RLIM program. Sec-

tion 4 discusses the data and simulation results for
four US states’ COVID-19 and provides predictions
on their infections between mid-January and mid-
February. Section 5 summarizes the work and offers
further discussion.

2 Method

This section discusses the algorithm in three steps. The
first step introduces the mathematics behind RLIM in
detail, explaining how it evolves from the classical SIR
model and describesCOVID-19’s infection process in a
series of equations. The next step assigns mathematical
symbols to parameters in RLIM and implements these
equations into sequential procedures in our algorithm.
Finally, a performancemeasure onRLIM is proposed to
evaluate how the algorithm runs on COVID-19 dataset.

2.1 RLIM: mathematics

In this paper, a modified COVID-19 transmission
model is proposed based on the original SIR model
by Kermack and McKendrick [13]. They proposed
the susceptible–infected–removed model and used it
to successfully explain the 1665–1666 plague in Lon-
don and the 1906 pestilence atMumbai, India. The SIR
model diagram is shown in Fig. 1.

The transmission process is described by Eqs. (1),
(2), and (3).

dSt
dt

= −β × St × It (1)

dIt
dt

= (β × St − γ ) × It (2)

dRt

dt
= γ × It (3)

Their SIRmodel is only feasible in an ideal epidemic
transmission environment because it does not consider
the time variance in the infection rate β or recovery
rate γ . Additionally, it requires no disease control—
any political or clinical intervention is forbidden, and
such transmission behavior rarely appears. However,
based on these theoretical assumptions, many revised

Fig. 1 The SIR model
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models, such as SEIR [19], SEIRUS [16], mechanic-
statistic SEIR [17], and deep learning SEIR [12], have
been proposed and developed by researchers adopt-
ing different epidemic transmission characteristics and
human interventions. A description of thesemodels can
be found in Hethcote’s review [10].

RLIM is inspired by research from JianpingHuang’s
team at Lanzhou university [11]. Their model, named
as Global Prediction system for COVID-19 Pan-
demic (GPCP), adds 4 states of disease from SIR
model: insusceptible state (P), potentially infected
state (E), quarantined state (Q), andmortality state (D).
The GPCP disease transmission model is described by
Eqs. (4)–(10).

dSt
dt

= −βt × It × St
N

− α × St (4)

dPt
dt

= α × St (5)

dEt

dt
= −βt × It × St

N
− γt × Et (6)

dIt
dt

= γt × Et − δt × It (7)

dQt

dt
= δt × It − λt × Qt − Kt × Qt (8)

dRt

dt
= λt × Qt (9)

dDt

dt
= Kt × Qt (10)

RLIM, based on our observations and given facts
from news reports analysis, adds a symbol ω in the
transmission loop. ω represents the probability that a
patient who had recovered from COVID-19 for a cer-
tain period is again identified by respiratory tests or
antibody tests as a virus carrier. Following this defini-
tion, ω is used between statuses R and SI , represent-
ing the transmission possibility between the recovered
group and the secondary infected group (Fig. 2).

Following the assumptions above, for the RLIM, the
equation series is modified as Eqs. (11)–(15).

dSt
dt

= −βt × It × St
N

(11)

dEt

dt
= βt × It × St

N
− γ × Et (12)

dIt
dt

= γt × Et + ωt × Rt−τ − λIt − K It (13)

dRt

dt
= λt × It − ω × Rt−τ (14)

Fig. 2 RLIM model diagram

dDt

dt
= Kt × Rt (15)

Compared with GPCPmodel, the RLIM has the fol-
lowing advantages:

(1) The RLIM simplifies the classical susceptible–
infected–quarantined–immune process into a
susceptible–infection process due to the maturity of
the COVID-19 detection system through PCR tests
or other nucleic acid amplification tests approved by
CDSE [4]. Given an accurate number of confirmed
infections, RLIM focuses on differentiating first-time
and secondary infections brought by different groups
to achieve more accurate prediction results.

(2) TheRLIM improves theGPCPmodelwith recur-
sive state SI and parameter ω to avoid the problem of
forward transmission only. Without a recursive state
and the existence of parameters, the number of new
infections will decrease regardless of the actions taken,
and this process would be contradictory to the current
US COVID-19 transmission records.

(3) Introduce the latency parameter τ to indicate the
median reinfection period. In RLIM, τ is initialized
with a value of 14 according to WHO’s instructions
and scientific reports. This parameter correlates with
the recovery policy in many US states: patients in the
hospital will be automatically treated as recovered after
a certain period.

To apply Eqs. (11) and (12) in our algorithm, a trans-
form into discrete data series shall be implemented as
Eqs. (16) and (17). Replace I (t) and R(t) with fourth
stage Eqs. (16) and (17) into Eq. (14) and we have
Eq. (18).

I (t) = at3 + bt2 + ct + d (16)

R(t) = et3 + f t2 + gt + h (17)
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d(et3 + f t2 + gt + h)

dt
= λ × (at3 + bt2 + ct + d)

−ω × (e(t − τ)3

+ f (t − τ)2 + g(t − τ) + h) (18)

In Eq. (16), a relationship between coefficients
[a, b, c, d] and [e, f, g, h] is established; thus, RLIM
is able to predict the infected number of cases given
historical number of recovery, previous infections, and
assumptions of infection rate, recovery rate, and sec-
ondary infection period. A detailed description of the
corresponding algorithm flow and diagram will be dis-
cussed in is given in Fig. 3 and Sect. 2.2.

2.2 RLIM: algorithm

The RLIM algorithm calculates predicted infection
numbers according to Eqs. (16)–(18) and optimizes the
difference between actual data recorded by the COVID
tracking project and the predicted numbers returned
from our model. Initially, the predicted recovery num-
bers R1, R2, . . . , Rn are calculated by the fourth-order
method based on the real data series of a selected state
from the USA between November 2020 and January
2021.

2.2.1 Notations

The notations used throughout this article are described
in Table 1. The coefficients (e, f, g, h) associated with
this recovery function will then be transformed into
other coefficients (a, b, c, d), with the preassigned
recovery rate λ.

2.2.2 RLIM algorithm

The RLIM algorithm calculates predicted infection
numbers according to Eqs. (16)–(18) and optimizes the
difference between actual data recorded by the COVID
tracking project and the predicted numbers returned
from our model. Initially, the predicted recovery num-
bers R1, R2, . . . , Rn are calculated by the fourth-order
method based on the real data series of a selected state
from the USA between November 2020 and January
2021. The coefficients (e, f, g, h) associated with this
recovery function will then be transformed into other

coefficients (a, b, c, d), with the preassigned recov-
ery rate λ (default value 0.01) and secondary infec-
tion rate ω (default value 0.01). With coefficients
(a, b, c, d) assigned, the number of newly infected
cases I1, I2, . . . , In within this state can be calculated.
Comparing these predicted numbers with actual data,
one can evaluate and justify whether this round of pre-
diction is accurate or not. Our RLIMmodel will contin-
uously search for the optimal infection series and then
determine the optimal ω associated with this state.

Fig. 3 The RLIM model diagram
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Table 1 Notations in RLIM algorithm

Ik Number of newly infected cases on kth

date.

Rk Number of newly recovered cases on kth

date.

Ip,k Number of predicted infected cases on kth

date.

Rp,k Number of predicted recovered cases on
kth date.

ω Probability of secondary infections after δ

days.

λ Probability of recovery from infected
cases.

τ Time interval between recovery and
secondary infection in days.

e, f, g, h Coefficients returned by fourth method on
recovered cases.

a, b, c, d Coefficients calculated by Eq. (16) on
infected cases.

Algorithm 1 RLIM
Input:
initial parameters ω, λ, maximum iteration step Nmax ,
maximum optimization step Omax , error tolerance T e for
convergence criterion.

1: Load the data set Ik , Rk from target U.S. state,
2: for k = 1 → Nmax do
3: Calculate coefficients [e, f, g, h] for loaded dataset Rk

with equation (17),
4: for n = 1 → Omax do
5: Calculate the secondary infection rate ωn ,
6: Transform coefficient series [e, f, g, h] into [a, b, c, d]

according to equation (18),
7: Calculate the fitted infections Ip,k with coefficient

[a, b, c, d] with equation (16),
8: Calculate the MSE according to equation (19) between

loaded data Ik and fitted data Ip,k ,
9: if MSEk,n <= T e then
10: return current value ωn ,
11: break,
12: if ωn == λ then
13: set turning point indicator == TRUE,
14: break,
15: return Result

2.3 Performance measure

RLIM’s performance measure is calculated as the dif-
ference between its predictive output Ip and actual
value Ik . Three performance indicators are given: the

mean square error (MSE), standard deviation, and aver-
age forecasting error rate (AFER). Because different
US states have quite different numbers of infections,
ranging from hundreds to thousands, these indicators
will be uniform between 0 and 1 to justify the perfor-
mance.

– Mean square error (MSE)
The average of squared difference betweenRLIM’s
predictive output Ip and actual value Ik can be cal-
culated in (19).

MSE = 1

n

n∑

i=1

(Ip,i − Ik,i )
2 (19)

– Root mean square error (RMSE)
The root mean square error is also used to evalu-
ate RLIM’s prediction quality. Its formulation is in
Eq. (20).

RMSE =
√∑n

i=1(Ip,i − Ik,i )2

n
(20)

– Average forecasting error rate (AFER) The aver-
age forecasting error rate is the percentage of error,
which represents the relative difference between the
predicted output Ip and the actual value It . It is
a cumulative statistic capturing deviation between
two time series. The AFER is calculated in (21).

AFER(%) = 1

n

n∑

i=1

∣∣∣∣
Ip,i − Ik,i

Ik,i

∣∣∣∣ × 100; (21)

3 Experimental setup

In this section, the data set, the source code, and the
software packages which have been used in RLIM are
explicitly listed for researchers who are interested in
our research and have the intention to re-produce our
simulations.

3.1 Data source

The data source directly applied in our simulation is
from [6]. This data set contains US state-level data on
COVID-19, starting from April 2020 until December
2020. In this article, New Jersey (NJ), New York (NY),
South Dakota (SD), and Virginia (VG) are selected
because they all have daily tracking recovery reports.
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Table 2 RILM simulation report on infections, New York, November 2020–January 2021

No. Mid-Nov. 2020 Mid-Dec. 2020 Mid-Jan. 2021
Ik Ip,k Ik Ip,k Ik Ip,k

1 3649 2569 10353 9345 N/A 17324

2 3490 2693 9998 9632 N/A 17480

3 5088 2827 10914 9919 N/A 17626

4 5294 2970 12697 10207 N/A 17762

5 5310 3123 9919 10495 N/A 17889

6 5468 3285 9957 10783 N/A 18005

7 5972 3455 9007 11070 N/A 18112

8 5392 3634 9716 11356 N/A 18207

9 5906 3821 11937 11641 N/A 18291

10 4881 4016 12568 11925 N/A 18365

11 6265 4218 12446 12206 N/A 18426

12 6933 4427 10806 12486 N/A 18475

13 8176 4643 7623 12763 N/A 18512

14 6063 4866 10407 13038 N/A 18537

15 6723 5094 11438 13309 N/A 18549

16 6819 5329 13422 13577 N/A 18547

17 7285 5569 16802 13842 N/A 18532

18 8973 5814 16497 14102 N/A 18503

19 9855 6065 15074 14358 N/A 18460

20 11271 6320 11368 14610 N/A 18403

21 10761 6579 11209 14857 N/A 18331

22 9702 6843 12666 15098 N/A 18244

23 7302 7110 16648 15334 N/A 18141

24 9335 7380 17636 15564 N/A 18023

25 10600 7654 18832 15789 N/A 17889

26 10178 7931 16943 16006 N/A 17738

27 10595 8210 15355 16217 N/A 17571

28 11129 8491 13714 16421 N/A 17388

29 10194 8774 15214 16618 N/A 17186

30 9044 9059 14577 16807 – –

31 – – 13661 16988 – –

MSE 5845242.567 4630069.903

RMSE 2417.693646 2151.759722

AFER(%) 29.02461097 14.96828112

RLIM relies heavily on accurate and reliable recov-
ery case reports, and these states have highly credible
recovery data sources.

Parameter initializations for RLIM are the same for
all the states:

(1)Data fitting period:November 15, 2020–January;
15, 2021;

(2) Prediction: January 16, 2021–February; 15,
2021;

(3) Recovery rate: λ = 0.07;
(4) Secondary infection rate: ω = 0.5;
(5) Latency period: τ = 14;
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3.2 Software implementation

The programming language inside RILM is PYTHON
version 3.7, and the essential software package used is
SCIPY version 1.5.4. Two software modules are inher-
ited from SCIPY: integrate and optimize. RILM uti-
lizes the integrate function to calculate the MSE and
the optimize function to fit the real recovery data into
fourth-order parameters.

3.3 Code availability

RLIM software is publicly available on GitHub [5],
with all codes and implementations available for
research. The simulation results are also available upon
request.

4 Results and discussion

In this section, the authors present our simulation
results in figures and tables and discuss how RLIM
located the turning points for four US states. Our dis-
cussion starts from New York state, where RLIM suc-
cessfully located the turning point through COVID-
19’s epidemic data records. Then, we present a detailed
discussion of NewYork’s turning point to show its rela-
tionship of the re-infection rate, whichwe believe is the
key. Finally, we describe RLIM’s performance on the
other US states with predictions of their COVID-19
transmission trends.

4.1 Prediction with MSE/RMSE/AFER

Observations from Fig. 4 indicate that RLIM success-
fully fits the reported data records frommid-November
until mid-January and provides predictions for the
upcoming weeks. Delving into the 2 columns of Fig. 4,
a conclusion can be drawn that different assignments
to the secondary infection rate will result in different
outcomes and prediction series. For example, aω equal
to 0.2 will produce a curve of infection numbers with a
peak number of 18549,while in the case of 0.3, the peak
value is forecast to be 24866. The simulation results
suggest that adoption of an iterative search strategy
enables RLIM to match real numbers from COVID-19
infection reports. Thus, the relative error between pre-
dictions and observations should be minimized. The

other advantage of RLIM is its ability to foretell the
turning point within a certain period. Forecasts of the
turning point on November 31, 2021, are also marked
in the left-column figures. (A discussion of the turning
point calculation is presented in Sect. 4.2.)

In Table 2, the number of new infections in New
York State caused by COVID-19 is predicted starting
on November 15, 2020. The data records of infections
were collected from theCOVID tracking project during
November 2020.

The ranges of infection numbers between Novem-
ber, December, and January are [2600, 9000], [9300,
17,000], and [17,300, 18,500]. Observations from
Fig. 4 indicate that the value ω = 0.22 fits infected
cases well. Regarding the MSE, RMSE, and AFER
indicators, the RLIM reaches 5.8 million absolute
errors over 60 days with an AFER of 29.02%. In
December 2020, it obtained a betterMSE of 4.6million
and a lowerAFERof 14.97%.Considering thatRLIM’s
objective is to fit the actual infection numbers and pre-
dict the trend, it can be concluded that RLIM achieves
a satisfactory result in fitting the actual data and con-
verging the MSE. RLIM’s prediction results suggest
that COVID-19 transmission in New York state will
reach an equilibrium after January 31, 2021, with new
infections remaining at a level of 1.8 k per day. New
infections will not bring an abrupt change in numbers,
so clinical services such as hospitals will not require
extra measures.

In Table 3, the number of new recoveries in New
York state is also predicted for the months of Novem-
ber, December, and January, with MSE/RMSE/AFER
calculated against authentic data records. In Novem-
ber 2020, the MSE of recovery case prediction reached
27893.26, with an AFER of 38.8%. For predictions in
December 2020, the MSE increased to 43394.77, but
AFER improves to 25.6%. Predictions of recovery data
indicate that new recoveries will remain at the level of
eight hundred per day, with a flattened tail after mid-
January 2021.

4.2 The turning point

From the RLIM’s output on New York state’s infec-
tion and recovery numbers, one can observe that the
turning point of this state’s COVID-19 transmission
occurs around January 30, 2021. Predictions indicate
that from mid-January, New York’s infections will
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Fig. 4 RILM simulation
outputs, New York, USA
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Table 3 RILM simulation report on recoveries, New York, November 2020–January 2021

No. Mid-Nov 2020 Mid-Dec. 2020 Mid-Jan. 2021
Rk Rp,k Rk Rp,k Rk Rp,k

1 120 101 599 363 N/A 737

2 114 104 683 375 N/A 746

3 200 108 639 388 N/A 754

4 285 112 522 400 N/A 762

5 259 117 600 413 N/A 769

6 265 122 600 426 N/A 776

7 276 128 406 438 N/A 783

8 200 134 672 451 N/A 789

9 194 141 743 464 N/A 794

10 300 148 750 477 N/A 800

11 338 155 706 490 N/A 805

12 384 163 527 502 N/A 809

13 215 171 425 515 N/A 813

14 349 179 434 527 N/A 816

15 269 188 853 540 N/A 819

16 252 197 834 552 N/A 821

17 393 206 839 565 N/A 823

18 300 216 860 577 N/A 825

19 337 226 574 589 N/A 825

20 635 236 537 601 N/A 825

21 376 247 640 613 N/A 825

22 400 257 800 624 N/A 824

23 335 268 864 636 N/A 822

24 505 280 901 647 N/A 819

25 511 291 891 658 N/A 816

26 552 303 947 669 N/A 813

27 595 314 618 680 N/A 808

28 619 326 541 690 N/A 803

29 300 338 882 700 N/A 797

30 470 351 956 710 – –

31 – – 940 719 – –

MSE 27893.26667 43394.77419

RMSE 167.012774 208.3141238

AFER(%) 38.80627859 25.62371705

slowly increase from 17,324 to 18,549 and then fall
back to 17,816 in mid-February. This turning point
appears because the secondary infection rate ω, whose
range is [0.1, 0.55], experiences high fluctuations in
early November 2020 and then drops below 0.4 dur-
ing December, while after Christmas 2020, it becomes
stable around a value of 0.25.

The process of how theRLIMalgorithmbegins from
an initial value and quickly evolves within one month
to reach a turning point is clearly illustrated in Fig. 5.
The secondary infection rate ω is given a value of 0.5
on November 15, 2020, and the goal is to reach an
equilibrium state where ω decreases to 0.07, the same
as the value of λ. The optimistic case is that it will
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follow a straight pathway to reach 0.07 on a certain
date. However, its path needs to be justified according
to the actual secondary infection data reported from
New York state, recorded as the series of blue points
in Fig. 5. Our model produces a series of fitted mea-
surements, which are marked in black in Fig. 5. These
measurements represent optimal secondary infection
values, chosen by an iterative search algorithm, with a
near-optimal error based on the real values. The model
forecast starts on January 14, 2021, and successfully
reaches an equilibrium state after 2 weeks. It is rea-
sonable to assert that the RLIM model is able to find
an optimal curve for the secondary infection rate with
an acceptable MSE and follows the curve to predict the
forthcoming secondary infection rate. According to the
simulation reports inTable 2,RLIM’s prediction results
reduce the absolute error of new infections from 5.8 to
4.6 million, with an AFER from 29 to 15%.

4.3 New Jersey, South Dakota and Virginia

The simulation results shown in Fig. 6 indicate three
scenarios: moderate increase (New Jersey) at the top,
moderate decrease (South Dakota) in the middle, and
exponential increase (Virginia) at the bottom. The opti-
mal secondary infection rate ω for these states is
marked above (0.13 for New Jersey, 0.056 for South
Dakota and 0.19 for Virginia). Observations from these
states’ infection and recovery data indicate no strong
correlations between ω and COVID-19 transmission
trends. Revisiting Eqs. (11) and (15) from Sect. 2.1

Fig. 5 New York predictions with turning points

explains that in RLIM, ω affects the incremental steps
of infection cases positively and recovery cases nega-
tively. However, it is still valuable to predict the turn-
ing point when it approaches the value of the recovery
rate. Thus, one can conclude that if the recovery rate
λ remains stable during the periods of τ (in RLIM, τ

equals 14), then RLIM will approach it during a period
of time and lock down the turning point. This will
greatly reduce the time needed for scientists to elab-
orate on COVID-19’s behavior.

5 Conclusion and future work

This research proposes a recursive, latent, dynamic
virus transmission model based on the classical SEIR
model. This model, named RLIM, is able to fit the
COVID-19 transmission data of the USA and effi-
ciently locate the transmission turning point. Introduc-
ing a new parameter ω into the classical SEIR model,
RLIM is able to predict newly infected cases based
on recovered data and historical COVID-19 records.
Experimental results for New York, New Jersey, South
Dakota, and Virginia prove that given a reasonable ini-
tial value of ω, RLIM is able to predict 30-day infec-
tions and recoveries with a reasonable error rate. RLIM
also provides an estimation of ω in the time domain,
suggesting that it is valuable to explore its approxima-
tion and locate the future turning point in COVID-19
transmission. Simulations on New York, dated from
mid-November 2020until the end of January 2021, pro-
vide valuable information forω’s curve and predict that
it reaches an equilibrium state on the 31st of January.
Our conclusion, based on the RLIM results, indicates
that starting in February, New York state’s COVID-19
transmission will enter an equilibrium state.

One of RLIM’s advantages is that it does not include
environmental factors, such as weather changes, hos-
pital capacity, or city lockdowns. Thus, it is suitable
for the prediction of COVID-19 transmission with-
out additional information. Our model is effective for
virus modeling including a second wave of COVID-
19 epidemic transmission, with key factors such as
incubation period and infection rate statistically deter-
mined in advance. Compared with other predictive
algorithms, RLIM predicts infection numbers based on
optimal parameter set from 14-day historical records.
The authors believe that this time span would be ben-
eficial to avoid data overfit issue as mentioned in [3].
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Fig. 6 RLIM simulation outputs, New Jersey (above), South Dakota (middle), and Virginia
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In a word, RLIM is believed to propose a novel yet
effective solution in COVID-19 prediction and turning
point estimation.

Apromisingfield of application is to integrateRLIM
with machine learning techniques. RLIM’s recursive,
latent status is suitable for descriptionwith a back prop-
agation process inside a neural network, so it can be
easily equipped with self-learning abilities. Another
interesting yet unexplored subject is to use RLIM in
prediction ofCOVID-19’s vaccine impact. Researchers
may use RLIM to evaluate different kinds of vaccines’
impact on COVID-19 transmission. RLIM is able to
generate optimal set for pre and post vaccine inocu-
lation group, and with these parameters’ visualized,
researchers and governments are able to justify the
certain kind of vaccine’s effectiveness on COVID-19
transmission.
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