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Abstract

The development of the control of breathing begins in utero and continues postnatally. Fetal 

breathing movements are needed for establishing connectivity between the lungs and central 

mechanisms controlling breathing. Maturation of the control of breathing, including the increase 

of hypoxia chemosensitivity, continues postnatally. Insufficient oxygenation, or hypoxia, is a 

major stressor that can manifest for different reasons in the fetus and neonate. Though the fetus 

and neonate have different hypoxia sensing mechanisms and respond differently to acute hypoxia, 

both responses prevent deviations to respiratory and other developmental processes. Intermittent 

and chronic hypoxia pose much greater threats to the normal developmental respiratory processes. 

Gestational intermittent hypoxia, due to maternal sleep-disordered breathing and sleep apnea, 

increases eupneic breathing and decreases the hypoxic ventilatory response associated with 

impaired gasping and autoresuscitation postnatally. Chronic fetal hypoxia, due to biologic or 

environmental (i.e. high-altitude) factors, is implicated in fetal growth restriction and preterm birth 

causing a decrease in the postnatal hypoxic ventilatory responses with increases in irregular 

eupneic breathing. Mechanisms driving these changes include delayed chemoreceptor 

development, catecholaminergic activity, abnormal myelination, increased astrocyte proliferation 

in the dorsal respiratory group, among others. Long-term high-altitude residents demonstrate 

favorable adaptations to chronic hypoxia as do their offspring. Neonatal intermittent hypoxia is 

common among preterm infants due to immature respiratory systems and thus, display a reduced 

drive to breathe and apneas due to insufficient hypoxic sensitivity. However, ongoing intermittent 

hypoxia can enhance hypoxic sensitivity causing ventilatory overshoots followed by apnea; the 

number of apneas is positively correlated with degree of hypoxic sensitivity in preterm infants. 

Chronic neonatal hypoxia may arise from fetal complications like maternal smoking or from 

postnatal cardiovascular problems, causing blunting of the hypoxic ventilatory responses 

throughout at least adolescence due to attenuation of carotid body fibers responses to hypoxia with 

potential roles of brainstem serotonin, microglia, and inflammation, though these effects depend 

on the age in which chronic hypoxia initiates. Fetal and neonatal intermittent and chronic hypoxia 

are implicated in preterm birth and complicate the respiratory system through their direct effects 

on hypoxia sensing mechanisms and interruptions to the normal developmental processes. Thus, 
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precise regulation of oxygen homeostasis is crucial for normal development of the respiratory 

control network.

Introduction

Survival and proper development of the fetus and neonate depend on the maintenance of 

oxygen homeostasis, including the development of the respiratory system (51). Exposure to 

hypoxia poses a major threat to its development. The fetus relies on maternal blood through 

the placenta compared to independent breathing that occurs in the neonate. As such there are 

differing homeostatic regulatory mechanisms for responding to hypoxia between the fetus 

and neonate. This implies that the causes of, and ventilatory response to acute, intermittent, 

and/or chronic hypoxia are also different between the fetus and neonate. Given the nature of 

ongoing respiratory system development beginning in utero and extending throughout 

postnatal life, exposure to different degrees of hypoxia, whether during fetal or neonatal 

periods, can cause lasting changes to respiratory control.

The definitions of terms relating to oxygen homeostasis in this article are hypoxemia, which 

refers to abnormally, and relatively, low levels of dissolved oxygen in blood. Physiologically 

and clinically, hypoxemia is determined by measuring the pressure (mmHg) of oxygen 

(PaO2). Hypoxia refers to insufficient oxygen supply to the entire body or a body region 

(tissue hypoxia) to meet metabolic needs. Hypoxia can also refer to low levels of oxygen in 

the air, which is the case for alveolar hypoxia prevalent at high-altitude or in regions of 

atelectatic lungs in lung diseases. Alveolar hypoxia can cause hypoxemia and generally, 

hypoxemia suggests hypoxia. However, increasing oxygen delivery or reducing oxygen 

consumption can compensate for hypoxemia. Oxygenation is the process of passive oxygen 

diffusion across the alveolarcapillary barrier where it enters the blood, and either dissolves 

or binds to hemoglobin (oxyhemoglobin). Dissolved oxygen plus the amount of 

oxyhemoglobin (defined as the percentage of oxygen saturating hemoglobin, or SaO2) 

defines oxygen content (CaO2; often measured as mL O2/dL of blood). Poor oxygenation 

and/or hypoxemia and anemia can cause reductions in oxygen content (hypoxemia and/or 

decrease in SaO2).

Herein, we will provide an overview of the fetal and neonatal control of breathing with 

regards to the ventilatory responses to different frequencies of hypoxia exposures and the 

long-term implications of such exposures. In doing so, we will discuss the underlying 

hypoxia sensing mechanisms present in the fetus and neonate. Additionally, we will 

highlight areas of potential future research throughout this article.

Basics of Fetal Respiratory Physiology

The neural respiratory control network is composed of specialized populations of cells 

throughout the pons and medulla that contribute to the regulation of respiratory pattern and 

rhythm generation, peripheral chemo- and mechano-sensory integration, central pH/CO2 

chemosensitivity, and neuromodulation. Although fetal oxygenation is independent of 

alveolar ventilation, fetal breathing movements (FBMs) generated by the developing 

respiratory control network are critical to the developmental process of the respiratory 
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system indicated from preclinical (3, 92, 117, 127, 128, 173, 308) and clinical studies (37, 

83, 104).

Fetal oxygenation

Fetal oxygenation is dependent on gas exchange within the placenta between maternal and 

fetal blood until birth. Studies in near-term gestation human fetuses (257) using phase-

contrast magnetic resonance imaging (MRI) and fetal lambs (268) have demonstrated low 

PaO2 (20 ± 1 mmHg compared to postnatal standards (168)). However, fetuses are not 

hypoxic as they deliver adequate oxygen to their tissues because of: (i) high hemoglobin 

concentrations (19.3±2g/dL) (198); (ii) the presence of fetal hemoglobin (~72% HbF) (197); 

and (iii), the double Bohr effect within the placenta where high levels of fetal CO2 diffuse 

into the maternal blood increasing the release of maternal O2 to the fetal blood (i.e. 

rightward shift of maternal oxygen dissociation curve) and the concomitant increase in fetal 

O2 binding affinity (i.e. leftward shift of fetal oxygen dissociation curve); and (iV) high 

cardiac output, relative to the postnatal period (Figure 1). The steep portion of the fetal 

oxygen dissociation curve enables significant unloading of oxygen at relatively hypoxemic 

levels. The umbilical venous (oxygenated) PO2 levels in human neonates at birth is 28 

mmHg (median PO2 is 3.7 kPa in umbilical venous blood where 2.3–5.5kPa is the 2.5th–

97.5th percentile) with SO2 of 61% (24.2%–86.5% SO2 is the 2.5th–97.5th percentile, 

respectively) (Figure 1). Umbilical (deoxygenated) arterial samples at birth have a PO2 of 21 

mmHg (2.3 kPa -median; 1.2—4–2.5th–97.5th percentile) with SO2 of 28.3% (8%–64.9%—

2.5th–97.5th percentile). With a small difference in PO2 (7 mmHg) between oxygenated and 

deoxygenated blood, the term fetus achieves a SO2 difference of 33% with a median oxygen 

content difference of 3.1 mM/liter (5.9 in venous vs. 2.8 mM/liter on arterial samples) or 

6.1mL/dL (203). This difference compares to the fluctuation in PO2 between arterial and 

venous circulation in adult humans which is approximately 57 mmHg to achieve a similar 

difference in oxygen content. With advancing gestation, hemoglobin concentration increases 

and PaO2 levels decrease in human fetuses to maintain a relatively constant CaO2 (283). The 

precise mechanism by which a fetus regulates CaO2 is not known.

Fetal breathing movements

The fetus generates breathing-like behaviors called FBMs which are regulated by developing 

areas of the respiratory control network within the pons and medulla of the brainstem (66, 

236, 281, 293, 295). Even though fetal oxygenation does not depend on pulmonary gas 

exchange, FBMs are critical because they promote lung development, retention of fluid 

within the lung to assure adequate intraluminal pressures, and establish connectivity among 

neural control mechanisms and respiratory pump muscles, such as the diaphragm and 

intercostal muscles (2, 9, 157).

Human FBMs are detectable as early as 10 weeks of gestation and change their frequency 

throughout gestation (227, 242). FBMs occur only during low voltage electrocortical 

activity, which is associated with rapid eye movement (REM) sleep, and accounts for 

approximately 40% of a fetal sheep’s life (similar in the human fetus) in the last trimester 

(66) and reviewed in Ref. 293. How and why FBMs occur only during low voltage 

electrocortical activity in the fetus is not known. FBMs occur infrequently early in gestation 
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(112) and become more regular and episodic closer to term where periods of FBMs (55, 

300) and the intervening apneic periods are longer (13, 266). In the developing fetal rat, 

single FBMs are first observed at E16 at low frequencies (~8FBMs/h) and increase in 

frequency at E18 (~40 FBMs/h), reaching a maximum frequency of approximately 80 

FBMs/h by E20 (150). Episodic (not single) FBMs are first observed in the fetal rat at E18 

(40 episodes/h) (150). The age of onset and maturation of FBMs in mice (E16) is similar to 

the rat (228). These in vivo measurements coincide with in vitro rat pup electrophysiology 

data that indicate commencement of inspiratory drive at E17 with continual increases in 

motor output throughout the remaining gestational development (72, 113). During the last 

days of gestation (E19-21), the respiratory neurons functionally mature to the level of the 

neonate’s (235), with the spatio-temporal patterning of respiratory neuronal activity from 

E20 to 21 reflecting that of the postnatal rat (237). The transition to more mature-like 

respiratory activity is associated with age-dependent changes in chloride conductance 

through respiratory neurons that cause respiratory neuron excitation preceding E19 but 

thereafter inhibiting respiratory neurons (261).

The maturation of FBM rhythmicity is reflected in the development of the preBötzinger 

complex (preBötC) (66, 281, 293) and parafacial respiratory group/retrotrapezoid nucleus 

(pFRG/RTN) (236), two important regions controlling breathing rhythmicity in the fetus and 

neonate. Because transcriptional regulation contributes to development of these neuron 

populations, measuring expression levels and experimental manipulations of specific genes 

are used to understand their functional roles. For example, the subpopulations of 

glutamatergic and NK1R (Substance P receptor) expressing neurons that contribute to 

breathing rhythmicity of the preBötC (238) are transcriptionally regulated by developing 

brain homeobox protein 1 (Dbx1) and roundabout homolog 3 (Robo3). Dbx1facilitates 

glutamatergic preBötC neuron development whereas Robo3 connects the bilateral preBötC 

nuclei necessary for synchronization of breathing rhythmicity (40, 110). PreBötC neurons 

become terminally differentiated in the second half of gestation (E12-13 of the rat) and then 

migrate to their final location in the ventrolateral medulla (E16.5-E18; E15.5 in the mouse 

(295)) at which point FBMs demonstrate episodic rhythmic activity (238).

pFRG/RTN neurons also demonstrate breathing rhythmicity (237, 295), where the most 

rostral portion of these neurons contribute specifically to pre-inspiratory activity (234). 

Rhythmicity of pFRG neurons begins at E14.5, and within 24 h, pFRG respiratory 

rhythmogenesis is coupled with the preBötC neurons in mice (295). The development of 

pFRG neurons is dependent on the Egr2 (also known as Krox20) and Phox2b transcription 

factors (295). Disruption to Egr2 expression during embryogenesis causes significant loss of 

rhombomere 3 and 5 differentiation, portions of the hindbrain that give rise to these 

rhythmogenic nuclei (275). Disrupting Egr2 expression causes slowing of rhythmogenic 

activity mediated by a subpopulation of Phox2b expressing pFRG/RTN neurons and impairs 

the subsequent coupling of respiratory rhythmogenesis with the preBötC (295). Thus, the 

pFRG and preBötC neurons have critical roles in establishing neural respiratory network 

connectivity during fetal development in addition to establishing the onset of FBM 

rhythmicity.
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FBM rhythmicity occurs through activation of AMPA (2-amino-3-(5-methyl-3-oxo-1,2-

oxazol-4-yl) propanoic acid) receptors expressed on these rhythmic neurons. These receptors 

can be modulated by a variety of other neurochemicals including serotonin (5-HT), 

substance P, thryotropin releasing hormone (TRH), adenosine triphosphate (ATP), 

noradrenaline, adenosine, γ-aminobutyric acid, and glycine, and a variety of different 

transmembrane proteins (transporters and receptors) as reviewed previously (112). FBMs are 

also modulated by chemosensory input, such as acute hypoxia as discussed below (136, 155, 

161, 162).

Thus, while FBMs are not needed for fetal gas exchange, they play a vital role in mediating 

the development of the respiratory system. Their onset occurs early in gestation where they 

present as single “breaths” and while maturation progresses, they take on more mature-like/

neonatal-like breathing patterns. Such maturation corresponds with the development of two 

key regions in the brainstem important for breathing rhythmogenesis, the preBötC and 

pFRG/RTN. These processes, and other related developmental aspects of the respiratory 

system, can be acutely or chronically altered by fetal hypoxia, as will be discussed below.

Types and Impact of Fetal Hypoxia on the Control of Breathing

Fetal hypoxia, also known as intrauterine hypoxia, occurs from a variety of complications of 

maternal, placental, or fetal origin. Kingdom and Kaufmann categorized fetal hypoxia into 

three subtypes based on the physiologic origins contributing to hypoxia (146). They are (i) 

preplacental hypoxia (mother and fetus are hypoxic), (ii) uteroplacental hypoxia, and (iii) 

postplacental hypoxia (fetus is hypoxic) (146). Fetal hypoxia can be acute, intermittent, or 

chronic in nature due to a variety of causes (101, 152). Common causes for preplacental 

hypoxia include chronic hypoxic environments, such as high-altitude residence and 

preexisting maternal cardiovascular diseases including pulmonary hypertension, cyanotic 

heart disease, and heart failure (146). Pregnant women suffering from obstructive sleep 

apnea and sleep-disordered breathing often exhibit intermittent hypoxia, which contributes 

to gestational intermittent hypoxia (GIH) (135). Abnormal placental development and 

placental vascular disease contribute to uteroplacental hypoxia (146). Causes for 

postplacental hypoxia include impaired uterine blood flow, fetal anemia, fetal cardiac 

failure, and genetic anomalies (146). The normal, healthy fetus maintains sufficient oxygen 

consumption in response to acute reductions in blood flow to the fetus and/or oxygen-

carrying capacity by increasing oxygen extraction from the placenta (67, 78, 129, 263) (and 

as reviewed previously (51)). However, longer reductions in blood flow or oxygen-carrying 

capacity cause reduction in fetal growth (219). Further, while acute hypoxia does not cause 

major changes to the fetus, gestational intermittent, and chronic hypoxia can be pathologic 

(263).

Acute hypoxia

The carotid bodies are the main peripheral oxygen sensing organ in the fetus and neonate 

located bilaterally at the bifurcation of the common carotid artery composed of type 1 and 

type 2 glomus cells of the carotid body that are stimulated by low arterial PO2 levels (159, 

165, 167, 254). Hypoxic activation of fetal carotid bodies occurs at a drastically lower set-
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point relative to the neonate and adult due to the naturally lower PaO2 in the fetus 

(~25mmHg PaO2) and is mediated by A2a receptor activation by adenosine (153, 155, 161). 

The innervating carotid sinus nerve sends afferent input to the respiratory control network 

through the nucleus of the solitary tract (NTS) and increases firing rate when PaO2 drops 

below approximately 15 mmHg in the fetus (64). In fetal lambs, carotid chemoreceptor 

firing rate increases from approximately 13 Hz at 25 mmHg PaO2 to 42 Hz at 10 mmHg 

PaO2 at 108 days gestation whereas it increases even more at 140 days (term birth for sheep 

is ~145days (103)) gestation (from 21 Hz at 25 mmHg PaO2 to 50 Hz at 10 mmHg PaO2 

(35)). Throughout this period, the carotid bodies are tonically active and are responsive to 

hypercapnia induced by 1 to 2 mL bolus injection of CO2-saturated saline into the lingual 

artery in the fetus (35).

In the fetus, acute hypoxia depresses FBMs (38, 159). However, the carotid bodies do not 

contribute to the FBM depression in response to acute hypoxia as carotid sinus nerve 

transection has no effect on FBM depression (208). Rather, acute hypoxemic stimulation of 

carotid bodies in the fetus (induced by ewe FIO2 of 95% N2 with 5% O2 or occlusion of 

ewe’s hypogastric artery (15)) causes a cardiovascular response represented by a decrease in 

heart rate and increase in peripheral vascular resistance which are abolished with carotid 

body denervation (15). These cardiovascular effects occur through increased vagal activity 

and vasoconstriction of peripheral blood vessels through increased sympathetic tone without 

an increase in FBMs (15, 35, 102, 130). The combination of FBM depression and 

vasoconstriction is likely a protective response referred to as fetal brain sparing which 

decreases oxygen consumption in, and redirects blood flow away from nonvital organs (e.g. 

lungs, gut, kidneys, and liver) and to the brain (101).

The depression of FBMs is mediated by central mechanisms as decerebration eliminates the 

hypoxic ventilatory depression (195). Similarly, decerebration in neonatal rabbits abolished 

the depressive component of the biphasic neonatal hypoxic ventilatory response (HVR) 

indicating the neonatal hypoxic ventilatory decline may be mediated by similar mechanisms 

as hypoxic FBM depression (195). Thus, investigating the mechanism of neonatal hypoxic 

ventilatory decline may help elucidate mechanism of hypoxic FBM depression. Such studies 

have led to the identification of multiple brain regions implicated in hypoxia sensing. For 

example, the midbrain red nucleus appears to be involved in central hypoxia sensing since 

electrolytic lesions of this region attenuate hypoxia-induced ventilatory depression 

(measured with FIO2: 0.1–0.12) in 26 day old rabbits (305). Alternatively, lesioning the 

parafascicular nuclear complex within the thalamus of lambs (164) (Figure 2; lambs < 8 

days old) and fetal sheep (161) also eliminates hypoxia-induced ventilatory depression, as 

does lesioning the lateral pons (136, 137). Moreover, the subcoeruleus nucleus of the pons is 

selectively activated in response to hypoxia (induced by ewe FIO2: 0.08–0.09 for 2 h) during 

fetal development but not postnatally (43).

Like the carotid bodies, adenosine and A2a receptors appear to be key factors involved in 

central hypoxia sensing. The hypoxic depression of FBMs is likely mediated by adenosine 

release in this area, since lesioning this area in fetal sheep removes the hypoxic or 

adenosine-mediated depression of FBMs (Figures 3A and 3B; (155, 161, 162)). This acute 

response lasts for 12 to 16 h of hypoxia (Figure 4). Thereafter, FBM activity resumes as 
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FBMs are necessary for respiratory development. In summary, because FBMs require 

oxygen consumption and are not vital for fetal oxygenation, depression of FBMs is a 

defense mechanism against acute hypoxia.

Adenosine and adenosine receptors—Adenosine and adenosine A2A receptors are 

involved in carotid body and central hypoxia sensing. Fetal carotid bodies express A2A 

receptor messenger ribonucleic acid or messenger RNA (mRNA) (307). The carotid bodies 

are excited by oligomycin, an ATPase inhibitor, adenosine, or by activating the A2A 

receptor, resulting in marked increases in tidal volume and breathing frequency (153, 161). 

Additionally, the cardiovascular responses caused by fetal (117–120 days gestation) hypoxia 

(9.3–15 mmHg PaO2 for 5–60 min) are blocked by both a nonselective adenosine receptor 

antagonist (103, 154) and a selective A2A receptor antagonist (155).

Adenosine and adenosine receptors are also important in central hypoxia sensing (258). A2A 

receptor mRNA is expressed throughout fetal rat brains in regions implicated in hypoxia-

induced FBM depression (152, 314). Like the carotid body, reduction in ATP produced by 

mitochondria within the brain is involved in central hypoxic inhibition of FBMs (158). 

Furthermore, hypoxia increases adenosine levels in the brain (160), and administration of 

exogenous adenosine inhibits FBMs like hypoxia (156). Blocking central A2A receptors 

prevents the inhibition of FBMs (163). Prematurely born infants may retain the inhibitory 

effects caused by A2A receptors unlike term infants since methylxanthines (i.e. caffeine), 

which are A2A receptor antagonists that effectively stimulate breathing and thereby 

ameliorate apnea of prematurity.

Pulmonary neuroendocrine cells and neuroepithelial bodies—Alternative 

peripheral mechanisms that may control fetal breathing are pulmonary neuroepithelial cells 

(PNECs) which can exist as cell clusters called neuroepithelial bodies (NEBs). NEBs are 

sensitive to hypoxia (fetal rabbit cultures exposed to 25–30 mmHg PO2), hypercapnia 

(neonatal hamster slice, 20% CO2 and pH 6.8), and inflammation (42, 61, 179, 287, 317) 

and are selectively innervated by P2RY1 expressing vagal afferents that project directly to 

the central respiratory network through the nucleus of the solitary tract (54, 239). Selective 

and continuous activation of P2YR1-expressing vagal neurons in anesthetized mice induces 

complete cessation of breathing, or apnea (54). Whether NEBs play a role in regulating 

FBM in response to hypoxia remains unknown. However, neuroendocrine cell hyperplasia is 

associated with chronic fetal hypoxia in humans leading to death in Hemoglobin Bart-

induced Hydrops Fetalis (290). Additionally, NEB hyperplasia and hypertrophy are found in 

conditions commonly associated with impaired hypoxic sensitivity such as 

bronchopulmonary dysplasia (BPD), which occurs when infants are born prematurely during 

the saccular stage of lung development, and sudden infant death syndrome (SIDS) (62, 63). 

Additional research is needed to determine if NEBs have any role in mediating hypoxia-

induced FBM depression.

Gestational intermittent hypoxia

Maternal sleep-disordered breathing and sleep apnea cause repetitive and intermittent bouts 

of hypoxemia causing GIH. During fetal development, GIH reduces the hourly incidence of 
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FBMs and increases the FBM amplitude and inspiratory efforts (306) (Figure 4). Though 

understanding the effects of GIH on the control of breathing is an emerging area of research, 

early studies are indicating impact of GIH to the control of breathing postnatally (135). Rat 

pups exposed to GIH (dams exposed to 90 s iterations of 21% and 10% O2) demonstrate 

increased eupneic ventilation and decreased HVRs from postnatal day 5 to 30 (109). Also, 

rat pups exposed to GIH have impaired gasping and autoresuscitation (108), though, motor 

output measured from C4 is less irregular (135) (Figure 4). Preliminary transcriptomic 

profiles from GIH (dams exposed to 2 min iteration of 21% and 10.5% O2 for 8h/day from 

10 to 21 days gestation) exposed adult rats (8–12 weeks old) indicate major transcriptomic 

differences in microglia compared to adult rats not exposed to GIH, suggesting potential 

long-term effects of GIH to the resident inflammatory cells within the respiratory control 

system (86). Furthermore, the preliminary data indicate more differentially expressed genes 

in GIH females than GIH males within the spinal cord microglia. The potential sex-

differences of GIH is further supported by full-data sets published by Johnson et al. in 2018 

(135) showing that GIH (dams exposed to 2 min iteration of 21% and 10.5% O2 for 8 h/day 

from 10 to 21 days gestation) in male, but not female, rat spinal cord tissue is associated 

with upregulated expression of cyclooxygenase 2 (COX-2). Also, subsequent postnatal 

immune challenges (P2.5–3.5) are differentially affected where IL-1β and Tnfα mRNA in 

the brainstem, and COX-2 in the spinal cord, are significantly reduced in female GIH 

relative to female non-GIH rats (135). Though IL-1β, Tnfα, and COX-2 gene expression 

was not apparently changed in males, male rats exposed to GIH (and unlike female GIH 

rats) had decreased C4 neuron burst frequency in response to postnatal LPS treatment (135). 

Together, these data highlight the postnatal impact GIH has on cells within respiratory 

control centers and indicate these effects occur in a sex-specific manner. They also implicate 

neuroinflammatory processes in mediating these changes. Whether these changes have a 

functional impact remain unknown; future studies are needed to further understand the 

effects GIH has on fetal, neonatal, and adult control of breathing and the roles inflammation 

and microglia have in mediating/modulating these potential effects.

Chronic hypoxia and high altitude

Barometric pressure decreases with increasing altitudes, thereby decreasing oxygen pressure 

and atmospheric oxygen content causing hypobaric hypoxia in residents living at high-

altitudes. Noticeable physiologic changes occur at altitudes greater than 2500 m where 

arterial PO2 is between 60 and 70 mmHg and the SpO2 is close to the steep portion of the 

oxygen dissociation curve (138). People living at altitudes above 2500 m, including pregnant 

women, are thus exposed to chronic hypoxia. Although pregnancy-associated ventilatory 

changes partially benefit the mother and fetus at high-altitude (138), the fetus is still at 

greater risk for chronic hypoxia, increasing the risk for growth restriction and premature 

birth associated with impairments to fetal control of breathing (204).

IUGR and prematurity—Pregnancy itself is associated with changes to the control of 

breathing due to changes in hormonal patterns that act on the carotid bodies and central 

respiratory network, including hyperventilation and increased hypoxic and hypercapnic 

sensitivities (102, 114, 182, 186). Because oxygen saturation is on the flat part of the 

oxyhemoglobin curve at sea-level, hyperventilation elevates PaO2 without much change in 
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oxygen saturation. At high-altitude, where PaO2 and SpO2 are lower, a comparable 

hyperventilation is able to increase PaO2 and SpO2 (206, 303). This increase in ventilation is 

beneficial in some high-altitude pregnancies (Coloradan) causing an increase in maternal 

arterial O2 content and thus maintaining oxygen delivery to the uterus (207). Other high-

altitude populations, like Tibetans, rely on redistribution of blood flow in the uterine and 

common iliac arteries without increases in maternal arterial O2 content to maintain oxygen 

delivery to the uterus (204). Failure of minute ventilation to increase over the course of 

gestation is associated with smaller sized babies (206). In response, the fetus decreases 

metabolic activity to reduce oxygen consumption, consequently contributing to reduced fetal 

growth (see Ref. 263). For these reasons, high-altitude pregnancies are, in general, 

associated with higher rates of intrauterine growth restriction [IUGR, also known as fetal 

growth restriction (FGR)]. IUGR refers to a fetus that has failed to reach its growth potential 

and is defined as a newborn weighing less than the 10th percentile (17). Statistically, for 

every 1000 m of elevation over 2500 m, infant birthweight is lowered by an average of 120 g 

(134) and is associated with three times the occurrence of IUGR compared to sea level 

births, contributing to low birth weight (140, 302).

IUGR and low birth weight affect the development of the control of breathing as indicated 

from animals exposed to prenatal hypoxia (by uterine artery ligation or exposure of pregnant 

animals to atmospheric hypoxia). In lambs, prenatal hypoxia-induced growth restriction 

(50% uterine blood flow restricted) decreases the postnatal HVRs but not the hypercapnic 

ventilatory response (218), which are similar findings in rats (118, 176, 218). Also, the 

hypoxic but not the hypercapnic ventilatory response is reduced in premature birth (not 

caused by prenatal hypoxia) (65), likely due to a delay in the maturation of the carotid 

bodies (65). In a similar study, prenatal hypoxia (10% O2 exposure of dams starting 

embryonic day 5–20) eliminated the ventilatory decline of the HVR which is normally 

present within the first week of life in rats (250). Furthermore, prenatal hypoxia increases 

postnatal eupneic breathing (251, 299) and its irregularity (250) (Figure 4). These ventilatory 

control changes are driven by the effects of prenatal hypoxia on the carotid bodies and 

central respiratory network; it alters the developmental pattern of catecholaminergic activity 

with the carotid bodies, the petrosal ganglion, and brainstem catecholaminergic cell groups 

(251). The increases in respiratory rhythm measured by whole-body plethysmography, C4 

activity from en bloc preparations, and in acute brainstem slices following FGR (10% O2 

exposure of dams starting embryonic day 5–20) is likely mediated by changes in 

catecholaminergic (indicated by increased levels of levodopa or L-3,4-

dihydroxyphenylalanine (L-DOPA)) activity within the brainstem (299). This is likely at the 

level of the pons as blockade of A2 adrenergic receptors within the pons and not medulla 

reversed the increases in C4 firing frequency relative to controls (299).

Prenatal hypoxia and growth restriction are also associated with abnormal myelination 

(297), decreased Substance P in the spinal trigeminal nucleus but increased Substance P+ 

neuronal density in the NTS, increased met-enkephalin in the hypoglossal and ventral 

medulla, increased astrocyte proliferations in the dorsal motor nucleus of the vagus (DMV), 

NTS, and around blood vessels throughout the brainstem (296). Increased density of mu-

opioid receptor binding sites is also found throughout the brainstem in IUGR rats (177). 

These functional and histological changes to the control of breathing may in part be 
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secondary to impairments in lung development associated with IUGR (118) as infants with 

IUGR are at greater risk for premature birth and BPD (7, 39, 98, 105, 169, 252). High-

altitude (>400 m) is also associated with significantly higher BPD rats compared to infants 

born <33 weeks gestation at altitudes lower than 400 m (171). Both premature birth and 

BPD are associated with respiratory control abnormalities (274, 286) and for every 100 m of 

altitude increase over 400 m, infants born <33 weeks gestation in high-altitude theirs odds of 

BPD increase by 8% and their odds for BPD/death increase by 9% (171).

In the case of premature infants with BPD, the lungs and the respiratory control system are 

underdeveloped, indicated by periodic breathing, apneas, and reduced HVRs (16, 46, 56). 

The impact BPD has on the control of breathing is likely multifactorial, owing to immature 

respiratory and antioxidant systems coupled with environmental exposure to high 

supplemental oxygen levels and/or other therapeutic interventions (16, 69, 111, 223, 226). 

These infants are also subject to intermittent hypoxia due to lung and respiratory center 

immaturity (56). BPD in humans is associated with reduced oxygen sensitivity (46, 143) 

which is attributed to time spent on mechanical ventilators (143). However, infants with 

BPD are also exposed to therapeutic hyperoxia which may also contribute to reduced 

oxygen sensitivity given that HVRs are blunted following perinatal hyperoxia exposure in 

animal studies (19, 23, 115, 175). Evidence suggests that there are long-term respiratory 

control abnormalities in infants with BPD following hospitalization: the breathing pattern in 

BPD infants between 36 and 42 weeks postmenstrual age show significantly decreased 

inspiratory and expiratory times with no changes in tidal volumes, and elevated peak 

inspiratory and expiratory flow rates, respiratory rate, minute ventilation, and ventilatory 

drive (tidal volume/inspiratory time) compared to age-matched, non-BPD infants (274). 

Children (8–12 years old) with moderate/severe BPD have expiratory airflow limitations and 

decreased oxygen uptake with increased ventilatory responses (189). BPD adults have 

significantly greater expiratory flow limitation compared to non-BPD preterm and full-term 

adults (possibly due to lung or lung and breathing control abnormalities) (185). Long-term 

changes to the control of breathing in BPD remains incompletely understood. However, 

eupneic ventilation does not appear altered in BPD adults, which may be due to 

compensatory changes within the neural control of breathing in response to BPD. For 

example, in a set of recent animal studies, BPD induced by neonatal hyperoxia exposure (0–

10 days of life) in rats caused sustained lung disease through day 60 of life (223). By day 12 

and through day 60 BPD rats were hyperventilating to sustain normal levels of oxygenation. 

This was sustained through day 60 and was associated with increased glial marker 

expression and altered protein expression levels (224, 225). These observations indicate 

potential compensatory responses within the central respiratory network to lung disease. 

Although breathing may not be apparently different in adult BPD patients, the mechanisms 

generating their breathing might be different.

IUGR in native and nonnative high-altitude residents—IUGR disproportionally 

affects more nonnative than native high-altitude residents. Nonnative high-altitude residents 

(i.e. Europeans) have fivefold greater incidence of IUGR compared to indigenous high-

altitude residents (i.e. Andeans) (138) (Figure 5). Andean birthweights at 3600 m are 

reduced by 236 g whereas the reduction is 418 g for European newborns (318). These effects 
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on birthweight are independent of any potential socioeconomic factors (134). This 

dichotomy may be driven by different pregnancy adaptations in high-altitude native 

populations (138). Specifically, uteroplacental blood flow is greater in high-altitude natives 

(e.g. Andeans) compared to nonnatives (e.g. European) (138). This limits the potential for 

fetal hypoxia and associated changes to the development of the control of breathing (Figure 

5B) (138). Furthermore, while Andean newborns have lower cerebral and regional oxygen 

saturation, their transcutaneous vessel density is 14% higher compared to nonnative 

newborns; microvascular vessel density is higher in newborns born to high-altitude dwelling 

mothers compared to sea level counterparts suggesting such increases in 

microvascularization occur during fetal development as an additional adaptive mechanism to 

the lower oxygen environment at high-altitude relative to sea-level (99).

While clear differences in IUGR are present between native and nonnative high-altitude 

residents, there is also evidence of different adaptations during pregnancy among high-

altitude populations, such as those from Tibet, Peru, and Colorado (Leadville). For example, 

pregnancy adaptations in Tibetan women do not reflect the increased levels of arterial O2 

content measured in pregnant women from Peru or Colorado yet birthweight is highest in 

Tibetan neonates, perhaps due to redistribution of blood flow to the uterine circulation (204). 

Furthermore, Tibetans have lower hemoglobin concentrations than Andeans (27) while 

Andeans have lower HVRs but higher resting ventilation compared to Tibetans (28). Despite 

the differences among Andeans and Tibetans, both demonstrate increases in uteroplacental 

blood flow and protection from IUGR compared to nonnative high-altitude residents (see 

above).

The physiologic differences among high-altitude natives likely arise from genetic 

adaptations. For example, gene expression adaptations have been found in Tibetan and 

Andean high-altitude natives, such as the downregulation of endothelial PAS domain-

containing protein 1 (EPAS1) [gene encoding hypoxia-inducible factor 2α (Hif-2α)] and 

EGLN1 [gene encoding prolyl hydroxylase 2, prolyl hydroxylase domain 2 (PHD2), which 

degrades hypoxia inducible factors (Hifs)] (31, 184, 244). While both populations show 

evidence for these two genes to be involved in adaptations to chronic hypoxia, only Tibetans 

had EGLN1 and EPAS1 gene variants that associate with low hemoglobin concentrations 

(29, 31, 244). Indeed, EPAS1 knockdown mice have blunted physiological responses to 

chronic hypoxia, similar to high-altitude Tibetan natives, including lower hemoglobin levels 

that protect against polycythemia and lower pulmonary vasoconstriction (244). Also, unlike 

wild-type erythroid progenitors, hypoxia does not stimulate proliferation in erythroid 

progenitors expressing EGLN1 with a Tibetan-based mutation (184). Together, these data 

highlight divergent evolutionary physiologic adaptations to chronic hypoxia apparent in 

high-altitude natives that give rise to protective adaptations during pregnancy. These data 

also begin to demonstrate the gene expression adaptations that underlie such physiologic 

adaptations. Future research will unravel the link between genetic (or epigenetic (139)) 

variations that give rise to other phenotypic differences among the populations discussed 

above.
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Basics of Neonatal Respiratory Physiology

Upon birth of term infants, the respiratory system immediately transitions to independent 

alveolar ventilation. Ventilatory responses to acute hypoxia are different between the fetus 

and neonate, where breathing movements decrease in the fetus but breathing increases in the 

neonate. Also, exposure to prolonged durations of hypoxia has different effects on the 

development of the neonate’s neural respiratory control network, causing both short and 

long-term effects on the regulation of breathing.

Neonatal oxygenation

The transition to alveolar ventilation causes a gradual increase in SpO2 over the first 10 to 

15 min after birth (192). Due to elevated pulmonary vascular resistance and right-to-left 

shunting at the ductus arteriosus, there may be a difference between preductal and postductal 

SpO2 (192) in the first few minutes after birth. However, by 15 min after birth, most term 

infants have SpO2 values in the high 80 s to 90 s and no differences between pre- and 

postductal saturations (192). This increase in oxygenation occurs due to rapid decrease in 

pulmonary vascular resistance in the neonate.

With increased use of delayed umbilical cord clamping, the effect of placental transfusion on 

neonatal oxygenation can be studied. For example, Ashish et al. have reported that with 

delayed cord clamping, preductal SpO2 is 18% higher at 1 min, 13% higher at 5 min, and 

10% higher at 10 min when compared to infants whose cords were clamped within 60 s of 

birth (144). Following umbilical cord clamping, lungs are the sole site of gas exchange. With 

the onset of rapid pulmonary vasodilation, there is an eightfold increase in pulmonary blood 

flow and a switch in ductal shunt to left-right. Neonates continue to possess high 

concentrations of fetal hemoglobin resulting in increased oxygen content and delivery (273). 

With advancing postnatal age, pulmonary vascular resistance continues to decrease, and fetal 

hemoglobin is gradually replaced by adult hemoglobin, leading to gas exchange physiology 

and oxygen-hemoglobin dissociation curve similar to that of adults (271, 291).

Neonatal control of breathing

The neural respiratory network, comprised of cell populations throughout the pons and 

medulla, are sufficiently “ready” in the neonate to work in concert as a network to maintain 

blood gas homeostasis through the regulation of alveolar ventilation (49, 286). Unlike the 

breathing activity during fetal development, postnatal breathing is constant and required for 

survival. Across states of vigilance and activity, respiratory rhythm is characterized by 

inspiration, postinspiration, and expiration (282). Chemosensory information and 

mechanical stretch receptors of the lungs provide continual sensory input to the central 

respiratory network necessary to generate proper motor output to the respiratory muscles to 

meet metabolic demands. Although “ready,” the neural respiratory network in neonates is 

still physiologically immature, indicated by increased apneas, insufficient chemoreflexes, 

ventilatory instability/irregularity, and other control of breathing abnormalities (1, 48). 

Within a few weeks to months, these irregularities in term infants are diminished 

highlighting that the control of breathing undergoes further development postnatally. For 
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example, as early as 1 week after birth the second phase of the HVR transitions from 

respiratory depression to a sustained increase in ventilation (41).

Any infant born before 37 weeks of gestation is considered preterm. Infants born 

prematurely have not fully completed fetal respiratory development. Therefore, they are less 

prepared for independent breathing than term infants. Extremely preterm infants (<28 weeks 

gestation at birth) in particular have highly irregular breathing, characterized by increased 

apneas which are mainly central in origin (Figure 6; (170)), increased breath-to-breath 

variability, hypoxemia, and altered chemoreflexes, especially during sleep as recently 

reviewed (5). Additionally, many very preterm infants (28–32 weeks) and extremely preterm 

infants have underdeveloped lungs which complicate oxygenation (217). Thus, the entire 

respiratory system is insufficiently prepared for independent breathing often necessitating 

respiratory interventions in premature infants.

Types and Impact of Neonatal Hypoxia on the Control of Breathing

Various conditions, environments, and multiple factors impact the development of hypoxia 

sensing in the neonate. Such factors include exposure to intermittent or chronic hypoxia, 

hyperoxia, inflammation or infection, and premature birth. These factors may arise during 

fetal development, contribute to premature birth, and last throughout neonatal or adult life. 

Exposure to certain factors, like hypoxia, within a specific developmental window (and not 

at any other time), can cause lasting changes to respiratory control, a concept referred to as 

developmental respiratory plasticity (see review (18)).

Acute hypoxia

The carotid body chemoreceptors initiate the HVR in the neonate (see review (165)). The 

HVR in the neonate is different than in utero and undergoes postnatal development lasting 

between 3 and 4 weeks (variable across species) (50). The HVR is biphasic for up to 1 

month of age characterized by a short initial increase in ventilation followed by a decrease in 

breathing to levels at or below control values (264). Postnatal development of the HVR is 

generally the same across mammals including lambs, cats, piglets, and rats, where the 

developmental age dictates the magnitude of the two phases of the HVR (reviewed in Ref. 

293). Generally, the initial increase in breathing is low immediately after birth and 

progressively increases, while the ventilatory roll-off (the second phase) progressively 

diminishes until full maturation of the HVR, characterized by an initial and sustained 

increase in breathing (264, 293).

A decrease in metabolic rate is a major contributing factor to the neonatal HVR (210, 213), 

where neonates decrease O2 consumption to a greater extent than during a mature HVR 

(293). The decrease in metabolism occurs because brown fat mobilization for thermogenesis 

is reduced in the neonate (209–211, 213). Because the decrease in metabolic rate is greater 

than the decrease in breathing, the neonatal HVR effectively causes hyperventilation 

regardless of the magnitude of the HVR (210, 211,213). As the acute hypoxic response 

approaches maturation (see review for details (293)), the degree to which metabolism 

decreases, and the increase in ventilation align more closely, proportionate to the metabolic 

needs. In other words, hyperpnea becomes the predominant feature of the mature HVR.
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Intermittent hypoxia

Intermittent hypoxia is the repeated episodic drop in blood oxygen saturation typically under 

80% with greater prevalence in premature infants due to multiple factors including 

immaturity of the respiratory system, lung disease, and anemia (133). In preterm infants 

born between 24 and 27 weeks gestation, episodes of intermittent hypoxia are relatively low 

in the first 1 to 2 weeks of life but progressively increase by weeks 3 to 4 where it plateaus 

through 10 weeks of life (Figure 7; (71, 133)). Approximately 50% of preterm (<37 weeks 

gestation) infants have intermittent hypoxic episodes (253).

Immature hypoxia sensing in the preterm infant, indicated by the persistence of the fetal 

biphasic respiratory response to hypoxia, effectively causes episodes of hypoxia (193). 

However, elevated hypoxic sensitivity may also contribute to the generation of apneas in 

preterm infants (4,47), consistent with the role of carotid bodies in causing apneas, 

particularly during sleep (68, 280). Though seemingly paradoxical, an enhanced hypoxic 

sensitivity causes ventilatory overshoot whereby sufficient oxygen is inhaled, but excessive 

carbon dioxide is exhaled to, or below, the apneic threshold increasing the apneic index 

(number of apneas per hour) (141). Aside from hypoxic sensing, preterm infants suffer from 

apnea of prematurity, a consequence of immature respiratory drive to breathe characterized 

by the repeated cessation of breathing for more than 20 s or a shorter pause in breathing but 

with bradycardia and/or oxygen desaturations (80). Lastly, though apneas are mainly central 

rather than obstructive in origin (95), reduced upper airway muscle tone may contribute to 

apneas (310). The effects of intermittent hypoxia in preterm infants are summarized 

schematically in Figure 7.

Intermittent hypoxic episodes alter the HVR, but also eupneic breathing and capacity for 

respiratory plasticity. While apneas typically precede decreases in oxygen saturation (133), 

exposure to intermittent hypoxia during the neonatal period can enhance hypoxic sensitivity 

and thus contribute to more apneas (141). For example, in 2 day old rat pups, intermittent 

hypoxia (15 s of 5% O2 with 5 min recovery at 21% O2, 9 times/h for 8 h/day) increased the 

hypoxic ventilatory chemoreflex, mediated by faster and stronger firing discharge measured 

from ex vivo carotid bodies (245). A similar finding of augmented carotid body hypoxic 

sensitivity occurs after 10 days of a similar intermittent hypoxic regimen (9 episodes/h; 8 h/

day) in P10 rat pups (243). Furthermore, in a similar study, intermittent hypoxia (21%–5% 

O2 within 100 s then back to 21% in 140 s, repeated 6times/day) for the first 10 postnatal 

days in rats augments the HVR and it increases the apneic index and duration (141). This 

finding is consistent with the positive correlation between the number of apneas (i.e. periods 

of intermittent hypoxia) and the degree of hypoxic sensitivity in preterm infants born less 

than 30 weeks gestation (231). The carotid bodies participate in mediating the increase in 

hypoxia sensitivity reflected by increased firing rate in response to hypoxia and hyperplasia 

of the chemosensitive glomus cells (243). These functional and morphological changes to 

the carotid bodies may also explain the increased eupneic ventilation following intermittent 

hypoxia (21% then 10% O2 every 90 s for first 30 days of life in rat) (259) given that carotid 

bodies are vital for sustaining breathing in neonates, indicated by enhanced mortality of 

neonates (276) but not adults after carotid sinus nerve transection (96, 124, 220) However, 

the increased eupneic breathing may also be mediated by central mechanisms in the neonate 
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as indicated by a sustained increase in fictive respiratory frequency after repetitive anoxia 

(95% O2/5% CO2–95% N2/5% CO2 for 3 min) exposures measured in acute neonatal (P0-7) 

mouse brain sections (36). Thus, the augmentation of eupneic breathing is likely mediated 

by multiple mechanisms. The interplay between these mechanisms remains to be tested, 

especially in awake, unrestrained states.

The sensitivity to intermittent hypoxia of the neonatal carotid bodies is greater than adult 

carotid bodies. The hypoxic response in neonates is augmented after 72 intermittent hypoxic 

episodes (1day of 15 s of 5% O2 with 5 min recovery at 21% O2, 9 times/h for 8h/day), 

while 720 episodes (10 days of intermittent hypoxic episodes) are needed to enhance the 

hypoxic response in the adult rat (Figures 8A and 8B; (243)). The enhanced adult rat HVR 

following intermittent hypoxia is reversed after re-exposure to just 10 days of normoxia, 

whereas, the neonate sustains an increased hypoxic response for up to 2 months after the last 

intermittent hypoxic episode (Figures 8C and 8D; (243)), together indicating that the 

neonatal carotid bodies are more sensitive than adult carotid bodies to chronic intermittent 

hypoxia. This is further supported by selective hyperplasia of chemosensitive glomus cells in 

the neonate but not the adult after chronic intermittent hypoxia, a finding that may underlie 

the greater sensitization of the carotid body hypoxic response in neonatal compared to adult 

rats (243).

While the HVR and eupneic breathing are augmented following multiple days (i.e. 

“chronic”) of intermittent hypoxia in neonates, presumably via morphological changes to the 

carotid bodies and/or other central mechanisms, the capacity for respiratory plasticity is 

impaired (145, 243, 260). For example, sensory long-term facilitation (LTF), a form of 

respiratory plasticity (294) that describes a sustained increase in baseline neuronal activity 

following episodes of “acute” (within a single day) intermittent hypoxia, can be induced in 

adult (246) but not neonatal rats previously exposed to chronic intermittent hypoxia (243). 

Indeed, unlike the LTF observed in the adult ex vivo carotid bodies previously exposed to 

chronic intermittent hypoxia, acute intermittent hypoxia [10 episodes of 30 s hypoxia 

(35mmHg PO2) then 5 min of baseline (390mmHg PO2)] has no effect (243), or may even 

cause a reduction in LTF in the neonate previously exposed to chronic intermittent hypoxia 

(Figures 8E and 8F; (260)). Though the carotid body may be mediating the LTF it may not 

be the only site and mechanism as carotid sinus denervated adult rats also demonstrate LTF, 

albeit to a lesser degree than intact rats, in response to acute intermittent hypoxia (3, 5 min 

episodes of isocapnic hypoxia (PaO2 = 40 mmHg) (21). These data suggest central 

mechanisms may also be mediating LTF in adults. The propensity for LTF to be present in 

the adult but not the neonatal carotid bodies after chronic intermittent hypoxia may be 

reflected in the lack of serotonin (5-HT) and/or 5-HT receptors, known mechanisms 

implicated in adult carotid body sensory LTF (247) and in LTF observed elsewhere in the 

respiratory system (8, 36, 289) Thus, 5-HT and 5-HT receptors may be reduced or not 

expressed in neonatal carotid bodies which may not permit LTF to occur, although this needs 

to be tested.

In summary, neonatal chronic intermittent hypoxia causes significant changes to the 

development of the control of breathing, causing increased hypoxic sensitivity and baseline 

ventilation, though impairs LTF. These effects of chronic intermittent hypoxia are longer-
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lasting than and distinct from the adult compared to the neonate. These distinct changes 

between the neonate and adult suggest, intermittent hypoxia is a stimulus for developmental 

plasticity, a concept that refers to a stimulus presented during a period of development, but 

not later in life, that causes sustained phenotypic changes as reviewed elsewhere (20).

Chronic hypoxia

Chronic neonatal hypoxia (<15% FIO2) in rats, cats, and lambs blunts the HVR (79,116, 

214, 279, 313). Rats exposed to chronic neonatal hypoxia (FIO2: 0.13–0.15 from birth) for 

the first 14 days of life have blunted hypoxic responses compared to age-matched normoxic 

rats (79) as do lambs exposed to chronic hypoxia (FIO2: 0.10 from birth) for the first 12 days 

of life, through the subsequent 47 days of life (279). A later study reported that male but not 

female adult rats exposed to neonatal hypoxia (FIO2: 0.10 from birth) have blunted HVRs, 

indicating potential sexual dimorphic responses (22) (Figure 7). In 2013, Mayer and 

colleagues (200) exposed neonatal rats first to chronic hypoxia (FIO2: 0.11 from P1 to 5) 

followed by intermittent hypoxia (FIO2: 0.05 for 5 min, 8 h/day from P6 to 15) to model the 

oxygenation of the premature infant (288). This led to a blunted HVR, augmented excitatory 

postsynaptic potentials of neurons within the nucleus of the solitary tract, and attenuated 

single carotid body fiber responses to hypoxia (199, 200). Thus, chronic neonatal hypoxia 

impairs peripheral carotid bodies and areas of central sensory integration.

The effects of chronic neonatal hypoxia on eupneic ventilation are less resolved. Rats 

exposed to chronic hypoxia (FIO2: 0.10) for the first week of life hyperventilate 43 days 

after being returned to normoxic conditions (212, 232, 233). However, in a later study, Bavis 

et al. found rats did not hyperventilate following chronic neonatal hypoxia (22), a finding 

more consistent with sheep (279). Although there are disparities in the effects of chronic 

neonatal hypoxia on eupneic ventilation, both studies in rats report blunting of the HVR. The 

effects of chronic neonatal hypoxia on eupneic breathing remain to be determined (Figure 

7).

The age in which neonates are exposed to chronic hypoxia influences whether changes in 

ventilatory control occur acutely, chronically, or are not altered. Exposure to chronic 

neonatal hypoxia (FIO2: 0.11) from 11 to 15 days of postnatal age (P11-P15) attenuated both 

the hypoxic and hypercapnic ventilatory responses which were associated with significant 

increases in mortality, affects not observed in neonatal rats exposed to sustained hypoxia 

from 1 to 5 or 21 to 25 days of postnatal age (201). These findings are consistent with day 

P12 to 13 being a “critical window” of respiratory development in the rat (178, 311, 312), 

which is a specific developmental age in which the respiratory control network has greater 

vulnerability to environmental stressors (178, 201). Similarly, neonatal but not 7 weeks old 

rats exposed to the same level and duration of chronic hypoxia hyperventilate (233), an 

example of developmental respiratory plasticity (20). The specific sensitivity of the P12 to 

13 age range appears to be system wide as the increase in mortality and reduced rat HVRs 

following chronic hypoxia exposure between 11 and 15 days of life are associated with 

reduced serotonin immunoreactivity and increased microglia in two key respiratory nuclei, 

which is prevented with minocycline, an inhibitor of microglia (188). Serotonin is a key 

respiratory neuromodulator with functional importance in providing an excitatory drive to 
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breathing, chemoreception, sleep arousal, auto resuscitation, and trophic effects (45, 53, 74, 

122, 316). Irregularities in this system are often identified in the brainstem tissue of infants 

that succumbed to SIDS, which is also associated with peak incidence at 2 to 4 months of 

age, perhaps the human correlate of a “critical window” (44, 76, 147).

Together, these data demonstrate that chronic neonatal hypoxia exposure blunts the 

development of the HVR unlike intermittent neonatal hypoxia. Furthermore, chronic 

neonatal hypoxia has age-specific effects on the control of breathing peripherally and 

centrally, where P12 to 13 appears to be a uniquely specific age range for hypoxic stressors 

to alter the course of respiratory development.

High-altitude—High-altitude is a natural chronic hypoxic environment and high-altitude 

residents provide an opportunity to study the effects it has on the development of the control 

of breathing. Infants born at high-altitude have increased periodic breathing after birth, 

coinciding with lowering of arterial oxygen saturation levels (230). Term infants born at 

3100 m in Leadville, Colorado demonstrate four distinct phases to the acute HVR unlike the 

characteristic bi-phasic neonatal response (57). Peruvian neonates born at 3850 m do not 

have the hypoxic ventilatory depression as observed in sea-level newborns, although eupneic 

and hypercapnic ventilation are equivalent (166) (Figure 7). In adults, eupneic ventilation 

and metabolic rate are similar between natives of the Bolivian cities, Santa Cruz (400 m), or 

La Paz (3800 m). However, high-altitude natives have deeper and slower breathing patterns 

(215). It remains to be determined if similar changes in tidal volume and breathing 

frequency occur during eupneic ventilation in newborns at high-altitude.

High-altitude neonates appear to have greater vagal input to respiratory centers related to the 

Herring-Breuer inspiratory reflex and lower vagal output during expiration compared to low-

land neonates (216). However, these changes may not be ubiquitous across high-altitude 

populations as different high-altitude populations at similar altitudes (and presumably 

similar neonatal conditions), have significantly different levels of alveolar ventilation, as 

indicated between Andean (4216 m) and Tibetan (4203 m) adult natives (205) (Figure 7). 

Differences in genetics have been identified to contribute to some differences between these 

populations as discussed in earlier sections (29, 31, 184, 244). The ventilatory adaptations 

across specific high-altitude populations are reviewed elsewhere in more detail (229).

Inflammation—Inflammation is a common occurrence, especially in premature infants 

which can be induced by hypoxemia (82) and exacerbate underlying respiratory 

abnormalities (119). Infants born prematurely have more apneas, periods of hypoxemia, and 

are at greater risk for infection and sudden death (87, 119, 126, 256). Infection is highly 

correlated with central apneas in premature infants (120) suggesting infection may be a 

causative factor for apneas. Indeed, neonatal inflammation can impact the developing 

respiratory system as recently reviewed (309). It also impairs respiratory control later in life 

indicated by the reduced capacity for respiratory motor plasticity in adult rats that were 

exposed to a single bout of intraperitoneal (IP) and lipopolysaccharide (LPS) on day 4 of life 

(121). Furthermore, to P10 but not P5- or P20-day old rats have reduced HVRs when treated 

with intr LPS (262). This reduction may be mediated by Il-1β as pretreatment with an IL-1β 
receptor antagonist delivered intracerebroventricularly but not by intraperitoneal injection 
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prevents intratracheal LPS mediated reduction of the HVR (262,267). These observations 

implicate a central mechanism of the HVR as the susceptible mechanism to inflammation 

and suggest the presence of a potential lung-neural axis in mediating the effects of 

intratracheal LPS. Similarly, I.P. treatment with IL-1β in P9 mice impairs the hypoxic and 

hypercapnic ventilatory responses and autoresuscitation after anoxia exposure in neonates 

(123, 278).

Although IL-1β induced by systemic or intratracheal LPS administration alters the control of 

breathing, IL-1β does not readily cross the blood-brain barrier and requires binding to the 

IL-1β receptor on the intraluminal membrane of cerebral blood vessels, activating a series of 

arachidonic acid and prostaglandin E2 generating enzymes (81, 123). prostaglandin E2 

(PGE2) is released into the nucleus of the solitary tract, rostroventrolateral medulla, and 

preBötC microenvironment where it binds to the prostaglandin EP3 (EP3) receptor, causing 

reduced breathing, impaired autoresuscitation (123) or modulation of eupneic breathing, 

sighs, and gasping (151). Mice lacking the EP3 receptor do not have reduced breathing or 

impaired autoresuscitation (278), indicating a potential therapeutic target for neonatal 

respiratory disorders and a key mediator of respiratory effects originating from LPS or other 

pro-inflammatory stimuli. Furthermore, levels of cerebral spinal fluid PGE2 are significantly 

correlated with the neonatal apneic index and with the systemic infection marker, C-reactive 

protein (CRP), in human neonates (123), indicating a potential biomarker to screen for 

neonates at risk for respiratory control disorders.

Alternatively, IL-1β may not require binding to receptors to transmit its effect into the brain. 

Rather, strong evidence suggests potential induction of brainstem IL-1β expression via 
pulmonary vagal fibers. For example, vagotomy reduces IL-1β mRNA expression in the 

brain induced by intratracheal LPS in the neonate (12) and blunts the HVR to similar 

degrees in carotid sinus nerve intact or denervated 10 to 12 day old rats (11). Furthermore, 

intratracheal administration of bleomycin is another model of airway inflammation and 

acute lung injury that also causes increases in brainstem cytokine expression without any 

evidence of systemic inflammation in the blood and associated changes in breathing 

patterns, though in adult rats (132). Inflammation may also impair the control of breathing 

during development through its effects on hindering carotid body development, a topic 

reviewed elsewhere (100). Thus, airway and/or more wide-spread peripheral inflammation 

can alter the neural control of breathing at multiple levels or sites of the neonatal respiratory 

system and alter the neural control of breathing—at the blood-brain barrier, pulmonary vagal 

nerves, or carotid body afferents (100).

Microglia—Chronic neonatal hypoxia exposure around the critical developmental periods 

(P11–15) in rats also increases microglia cell numbers which reduces serotonin levels within 

the nucleus of the solitary tract and dorsal motor nucleus, thereby impairing acute HVRs and 

increasing mortality, effects that are ameliorated with minocycline (188). These data indicate 

that microglia play a role in modulating the activity of other cell types within respiratory 

nuclei. The role of microglia in respiratory control is a major area of ongoing investigation.
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Neonatal mechanisms of hypoxia sensing and ventilatory responses

The neonatal HVR is biphasic. The change from biphasic to sustained increases in 

ventilation indicates maturation of the hypoxic sensing mechanisms. While peripheral 

carotid bodies are the major drivers of the HVR (221, 222, 276), recent data have unveiled 

hypoxia sensing cells within central respiratory control nuclei (6, 106, 107, 258, 277).

Carotid bodies—Development of carotid body chemoreceptors occurs following birth 

where oxygen sensitivity is low and increases within 1 to 2 weeks of life. This “resetting” 

may represent the adaptation of oxygen sensing of the carotid bodies from in utero to ex 
utero life where there is four times higher oxygen tension (50). The maturation of oxygen 

sensitivity may occur due to increases in anatomical maturation of chemosensitive type 1 

glomus cells of the carotid bodies, maturation of the secretory responses of the glomus cells 

(increase in intracellular calcium and catecholamine secretion), or along the transduction 

pathway of oxygen sensing within glomus cells, as reviewed previously (10, 50, 73). Despite 

the low oxygen sensitivity during neonatal life, the carotid bodies appear more critical 

during neonatal development than adulthood as denervation of the carotid sinus nerve in 

neonatal rats causes significant mortality unlike carotid sinus nerve denervation in adult rats 

(221, 222, 276). This mortality is likely a function of loss of tonic excitatory input from the 

carotid bodies to the central respiratory centers in the brainstem rather than a relationship 

with hypoxia sensing, given that carotid body denervation occurred during low carotid body 

oxygen sensitivity.

Upon maturation, carotid bodies sense hypoxia primarily by the Type 1 versus the Type 2 

glomus cells as supported by a large body of literature (reviewed in Ref. 165). The specific 

sensing mechanisms are extensively reviewed by Prabakar and Semenza (255). In brief, 

cellular sensing of hypoxia occurs through an interaction with carbon monoxide (CO) and 

hydrogen sulfide (H2S). O2 sensitive heme oxygenase 2, with O2 as a substrate, generates 

CO which under normoxic conditions, inhibits carotid bodies but under hypoxic conditions 

activates the carotid bodies. Type 1 cell expression of cystathionine-γ-lyase (CSE) generates 

H2S. CO leads to the inhibition of CSE, reducing H2S generation and thereby inhibiting 

mitochondria and potassium channels, leading to increases in intracellular calcium and 

depolarization. This causes release of excitatory neurotransmitters onto the innervating 

carotid sinus nerve, increasing its firing rate and ultimately leading to an increase in 

ventilation.

Central hypoxia sensing—Recent studies indicate that there are central mechanisms 

contributing to HVRs which contrast a longstanding belief that the central nervous system in 

animals lacks hypoxic sensory mechanisms capable of driving HVRs (106). Although 

evidence for central hypoxia sensing in the intact neonate is lacking, evidence from in vitro 
cell culture or brain slices (acute or organotypic) from the neonate, with or without 

corresponding in vivo adult animal studies, indicate that astrocytes play a key role in central 

hypoxia sensing and contribute to respiratory rhythm generation and the HVR (6, 106, 107, 

258, 277). For example, from these studies, it was shown that hypoxia induces ATP release, 

a signaling mechanism of astrocytes, on the ventral medullary surface produced from the 

ventral respiratory column of the brainstem (107). The ATP production and release occurs 
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independent of peripheral sensory input from the vagal, aortic, and carotid sinus nerves 

(107). Functionally, this ATP release maintains respiratory activity during hypoxia (10% O2 

for 5 min) as blockade of ATP receptors in the ventral lateral medulla reduced respiratory 

activity (107). It was later shown that ATP released from astrocytes, specifically within the 

preBötC, contribute to attenuating the hypoxic ventilatory depression (258). A contribution 

of elevated intracellular calcium levels, reactive oxygen species (ROS), and PLC-IP3 

signaling pathways are proposed leading mechanisms in central hypoxia sensing (Figure 9; 

(6, 106, 258)). Hypoxia inhibits mitochondrial respiration, causing depolarization of the 

mitochondrial plasma membrane leading to changes in redox state. This in turn activates 

signaling mechanisms triggering intracellular calcium release of ATP onto P2Y1 receptor on 

preBötC neurons (6, 258). Blocking vesicular release from astrocytes within the preBötC 

increases breathing even without carotid body input during hypoxia (6). Furthermore, HVRs 

are blunted when ATP release is inhibited and hypoxic ventilatory depression is enhanced 

after blocking P2Y1 receptors (258). Together, these data indicate a central hypoxic sensing 

mechanism capable of eliciting a centrally mediated HVR via astrocytic release of ATP onto 

P2Y1 receptors on preBötC neurons. Further, this response appears to be independent of the 

carotid bodies (6). However, there is contention that the HVR is dependent on a central 

hypoxia sensing component as discussed in a recent view-point exchange, which also points 

out the extent of carotid body denervation from Angelova et al. (6) was not verified and that 

neuroplastic changes may underly the hypoxic responses measured (97, 292). While there is 

strong evidence of a role for central hypoxia sensing mechanisms in respiratory control, 

whether such mechanisms are present and to what extent in the intact neonate remains to be 

determined.

Hypoxia-inducible factor (HIF)—Hypoxia-inducible factor (HIF) is a transcription 

factor implicated in various cellular and systemic responses to hypoxia (77, 181). Various 

isoforms exist but HIF-1α and HIF-2α are the most commonly studied in mammals, each 

with distinct actions (77, 125, 149, 181). PHD containing enzymes of which there are three 

isoforms, PHD 1 to 3, regulate HIF isoform protein levels (77, 142, 190). PHD2 primarily 

regulates HIF-1α (30) whereas PHD1 and 3 regulate HIF-2α (270). Homozygous deletion 

of either HIF isoform causes embryonic lethality or extremely impaired developmental 

phenotypes (77, 131). Thus, heterozygote animal models are used to study the role of these 

isoforms in the control of breathing (248, 249). Heterozygote HIF-1α (149, 248) or HIF-2α 
mice (249) have different effects on the control of breathing. HIF-1α +/− mice have normal 

baseline breathing but impaired acute carotid body hypoxic responses and reduced 

acclimatization to chronic hypoxia (149). HIF-2α heterozygotes have abnormal baseline 

breathing patterns and greater acute hypoxic sensitivity (249). Heterozygote PHD2, but not 

homozygote PHD1 or 3, deficient mice causes carotid body hyperplasia and greater HVRs 

(34). Homozygote PHD1 and PHD3 mice causes NEB hyperplasia (240). The NEBs of 

PHD1 null mice appear more sensitive to hypoxia based on the increase in neurotransmitters 

released in response to hypoxia (180). Whether PHD3 null mice have augmented NEB 

hypoxia sensitivity remains unknown. These studies indicate an important role of HIF and 

PHD oxygen-sensitive proteins in mediating hypoxic responses within the main peripheral 

carotid body chemoreceptors and in secondary hypoxia sensitive cells of the NEBs. 

Furthermore, HIF and PHD proteins are expressed at the early embryonic period and play 
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important roles during fetal development (33, 58, 265, 269). Their expression may be 

epigenetically regulated (75), but their contributions to the control of breathing are not fully 

understood.

Arousal and autoresuscitation

Arousal is a first-line defense mechanism preventing severe hypoxemia or hypercapnia 

during sleep which may occur in neonates with diseases associated with sleep-disordered 

breathing like BPD or airway obstruction (196, 202, 304). Arousal is a stepwise process of 

activating subcortical to cortical brain regions beginning with a sigh, then behavioral 

thrashing movements, to awakening (174). Progression to awakening is not always necessary 

to correct blood gas levels back to homeostasis, permitting the preservation of the sleep state 

(174). Experimental data from 3-day old lambs indicate that rapidly developing hypoxemia 

significantly alters the arousal response (88, 90). Sleep state sensitivities to hypoxia and 

hypercapnia are significantly altered following repetitive epochs of hypoxemia during sleep 

(90). Arousal times from quiet and active sleep are prolonged and oxygen saturation levels at 

the time of arousal are lower in response to hypoxia after recurrent hypoxemia, indicating a 

shift to higher apneic thresholds (90). However, the influence of hypercapnia on arousal 

from sleep is much greater following repetitive epochs of hypoxemia (90). Nonetheless, the 

arousal response from quiet and active sleep is significantly influenced by carotid bodies, as 

indicated by carotid body denervation studies (91, 93, 94). Impairment to carotid body 

development due to hyperoxia exposure in very premature infants is thus a contributing 

factor to impaired arousal responses in these preterm infants. However, central mechanisms 

also contribute, as indicated by hyperoxia-hypercapnia exposure (transient hyperoxia 

exposure functionally inhibits peripheral carotid bodies) (89). Furthermore, premature 

infants, born to mothers who smoked during pregnancy, have increased apneic thresholds 

and higher arousal thresholds contributing to a greater risk for SIDS (272) and implicating 

prenatal nicotine exposure to impacting apneic thresholds and the control of breathing. 

Indeed, the exposure to pre and postnatal nicotine was confirmed to exacerbate 

autoresuscitation failure in neonatal rats with inherent serotonin deficiencies (172). Thus, 

neonatal hypoxemia impairs arousal from sleep and this arousal is exacerbated with 

exposure to prenatal stressors like nicotine.

Autoresuscitation is the last resort mechanism when arousal fails to correct for positional 

asphyxia or apnea (84). It ensures survival during extreme hypoxemia by driving the 

spontaneous recovery from hypoxia-induced apnea and bradycardia. This process occurs 

through gasping initiated by neurons in the preBötC and modulated by microglia (183). 

Sustained gasping leads to increases in sympathetic activity and recovery from apnea and 

bradycardia mediated by non-preBötC neurons within the respiratory control network and 

influenced by microglia. Other neurons critical for autoresuscitation are the brainstem 

serotonin neurons (14, 59, 60, 74, 85, 316). Intermittent hypoxia is commonly observed in 

premature infants due to immature respiratory control systems (70, 71, 194) and intermittent 

hypoxia likely impairs gasping and autoresuscitation (108). Indeed, preterm infants are at a 

greater risk for SIDS (191) and infants succumbing to SIDS have more occurrences of 

complex gasps and reduced occurrences of autoresuscitation compared to non-SIDS related 

infant deaths (174).
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Serotonin and nicotine—Near-complete loss of brainstem serotonin (5-HT) does not 

remove the initiation of gasping, but autoresuscitation is impaired (284, 285, 298, 301). 

Moreover, perinatal nicotine exposure exacerbates this impairment, perhaps by blunting the 

activity of any remaining serotonin neurons (52, 172). Indeed, the risk for SIDS is greater if 

exposed to perinatal nicotine and SIDS is associated with impaired brainstem serotonin 

systems indicated by postmortem histological analyzes as reviewed by Kinney et al. (76, 

148, 241). Similar, and more recent findings in an Australian cohort of SIDS and non-SIDS 

infant brainstem histologic analyzes corroborate these findings (44).

Advances in genetic technologies have allowed more precise modeling of SIDS brainstem 

serotonin abnormalities allowing for only partial loss, postnatal loss, or temporary loss of 

brainstem serotonin in mice or allowing for in vivo inhibition of serotonin neurons (14, 59, 

74, 315). Results from these studies indicate that even partial dysfunction (~33%–75%) of 

serotonin neurons impairs autoresuscitation (14). Moreover, in vivo inhibition of serotonin 

neurons using a chemo-genetic technique uncouples the recovery of breathing and heart rate 

recovery after repeated bouts of anoxia (30 min, 97%N2/3%CO2) within a few days after 

birth in mice (74). Notably, denervation of carotid body chemoreceptors does not impact 

gasping duration, the number of gasps, or autoresuscitation in neonatal rat pups (5–6 day 

old), indicating that carotid bodies, even though important for the acute HVR, are not 

integral to generation of gasping, leading to autoresuscitation in response to hypoxia-

induced apnea (187).

Concluding Remarks and Future Directions

Breathing is a vital physiologic process coordinated by the neural respiratory network 

throughout the medulla and pons. Development of this system begins early in fetal life and 

continues postnatally. During fetal development, the neural respiratory network establishes 

connectivity and lung growth facilitated by critical FBMs. After birth, the neural respiratory 

network independently regulates alveolar ventilation to sustain blood gas homeostasis. 

Physiologic transition at birth from low to high oxygen environment modulates the transition 

of the regulatory mechanisms in early postnatal life. Maturation of the system continues 

during early postnatal life, indicated by a progressive reduction in the number of apneas and 

periodic breathing and the augmentation of ventilatory chemoreflexes within weeks after 

birth.

Exposure to hypoxia during fetal and neonatal life poses a major threat for proper 

development of the neural respiratory control system. Acute fetal hypoxia inhibits rather 

than excites breathing activity. Chronic fetal hypoxia causes a reduction in metabolism, 

thereby contributing to IUGR and associated morbidities, such as impaired respiratory 

control, though some high-altitude natives have evolved genetic adaptations rendering them 

less susceptible to IUGR. Premature infants are most susceptible to neonatal hypoxia, which 

can impair the normal development of the carotid body chemoreceptors and central 

mechanisms controlling breathing. Exposure to repeated bouts or chronic hypoxia at any 

point during fetal and neonatal development causes lasting changes to the control of 

breathing. Although not reviewed here, hyperoxia can also impair the development of the 

control of breathing (19, 20, 23–26, 32). Thus, precise regulation of oxygen homeostasis 
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throughout fetal and neonatal development is critical for proper development of the control 

of breathing.

Future studies are needed to elucidate the short and long-term impact of fetal and neonatal 

hypoxia on central nuclei controlling breathing. Specifically, future research is needed to 

understand the impact hypoxia has on neurons, astrocytes, and microglia within respiratory 

control nuclei. Understanding possible contributions of airway lung cells may reveal 

contributing sensory input to the control of breathing, especially under conditions of 

sustained intermittent or chronic hypoxia. Delineation of this lung-brain axis will enhance 

our understanding of altered regulatory mechanisms that may contribute to immature/

unstable breathing in neonates, especially those born prematurely. Lastly, identification of 

genetic and epigenetic factors altered in response to various fetal and hypoxic conditions 

will aid in understanding mechanisms underlying the various physiologic responses to such 

hypoxic conditions.
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Didactic Synopsis

Major Teaching Points

• The development of the control of breathing commences early in fetal life and 

continues postnatally.

• Maintenance of oxygenation of the fetus and neonate is different.

• Hypoxia is a major stressor during development, especially of the respiratory 

control system.

• Fetal and neonatal hypoxia is commonly associated with in utero stress, 

premature birth, respiratory instabilities, and underdeveloped respiratory 

control systems.

• Hypoxia can be acute, intermittent, and chronic, each with differing effects on 

fetal and neonatal control of breathing.

• The acute hypoxic ventilatory response of the fetus is a reduction in fetal 

breathing movements whereas in the neonates, the ventilatory response is an 

increase in alveolar ventilation.

• Intermittent and chronic hypoxia cause longer-lasting changes to the control 

of breathing than acute hypoxia exposures in the fetus and neonate.

• There remains a large gap in understanding the breadth of impact fetal and 

neonatal hypoxia have at the cellular and molecular levels within central 

respiratory nuclei.
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Figure 1. 
Adaptation of the fetus to low oxygen environment present in utero. Fetal oxygen supply is 

provided by maternal blood bathing the chorionic villi in the placenta. The umbilical vein 

carries the oxygenated blood to inferior vena cava (IVC) and eventually across the foramen 

ovale to left atrium and left ventricle to be pumped into coronary and cerebral circulations. 

The oxygen saturation of fetal blood in different sites are indicated by dark shaded boxes. 

The percent of cardiac output distributed to each organ is indicated in plain text. The mean 

values for fetal biventricular output, range of normal Hb concentrations and fetal PaO2 are 

indicated in the text box to the right, along with the HbP50 for fetal Hb (197, 257, 268). 

Reused, with permission, from Richard A. Polin and William W Fox, 2016, Fetal and 

Neonatal Physiology, Ed: Polin, Abman, Rowitch, Benitz and Fox, 5th edition, 

Lakshminrusimha and Steinhorn “Pathophysiology of PPHN,” pp 1576-1587. Copyright 

Satyan Lakshminrusimha.
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Figure 2. 
Effects of ibotenic acid lesioning within or sparing the thalamic parafascicular (Pf) nuclear 

complex in neonatal lambs on the depression phase of the hypoxic ventilatory response. 

Lesioning the Pf removes the ventilatory depression at 10 and 15 min (decline 10 and 15, 

respectively) expressed as a change in ventilation from prelesion values (upper left) or as a 

percent of the augmentation phase (lower left) (A). Lesions sparing the Pf have no effect on 

the hypoxic ventilatory decline (B). *P < 0.005, **P < 0.03 compared with augmentation 

phase. †P < 0.005 versus prelesion at same time, ‡ P < 0.05 versus thalamic lesions sparing 

Pf at same time. Adapted, with permission, from Koos BJ, et al., 2016 (164).
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Figure 3. 
The thalamic parafascicular nuclear region mediates hypoxic depression of fetal breathing 

movements in fetal sheep. Hypoxia-induced suppression of breathing and associated eye 

movements is completely removed following lesioning of the thalamic parafascicular 

nuclear region by ibotenic (IBO) acid (A). Adapted, with permission, from Koos BJ, 2002 

(163). In a similar experiment using exogenous adenosine, the known neurochemical 

mediating hypoxia-induced suppression of fetal breathing suppresses breathing and 

associated eye movements before IBO injection but is significantly impaired following IBO 

lesioning of the thalamic parafascicular nuclear region (B). Adapted, with permission, from 

Koos BJ, et al., 2000 (162).
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Figure 4. 
Schematic summary of in-text descriptions of the effects fetal normoxia and fetal acute, 

intermittent, and chronic hypoxia have on breathing. During normal development, the 

periodicity and regularity of FBM activity steadily rises and approaches postnatal breathing 

regularity at birth. Upon birth, few apneas are present and quickly diminishes with age. The 

hypoxic ventilatory response (HVR) begins with a significant secondary role-off pertaining 

to a decrease in metabolic rate following an initial increase in ventilation (VE). This 

biphasic HVR quickly matures (within weeks of birth) to a sustained increase in ventilation 

as the metabolic roll-off diminishes in effect. Fetal acute hypoxia causes a decrease in FBM 

incidence. Fetal intermittent hypoxia, also called gestational intermittent hypoxia, decreases 

FBM hourly incidence but increases FBM amplitude and inspiratory efforts during the 

hypoxic episodes. Postnatally, fetal intermittent hypoxia reduces the HVR and capacity for 

gasping and autoresuscitation and an increase in eupneic breathing. Fetal chronic hypoxia is 

typically observed in high-altitude births where infants are born with lower weight. Infants 

also have increased apneas at birth associated with diminished and delayed development of 

the HVR. Eupneic breathing is fairly normal aside from the apneas. See text for references.
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Figure 5. 
Rate of IUGR at altitude and differences in uterine blood flow during pregnancy between 

nonnative (European) and native (Andean) high-altitude populations. The rate of IUGR 

increases with altitude and at high-altitude Europeans have a fivefold greater occurrence of 

IUGR compared to Andeans after adjusting for other fetal growth factors (shown in the 

graph are unadjusted values; A). A potential explanation for the IUGR rate disparity at 

altitude between Andeans and Europeans is the compensatory twofold greater increase in 

uteroplacental oxygen delivery in Andean compared to European women at 36 weeks’ 

gestation indicating potential genetic adaptions across generations (B). NP, nonpregnant. *P 
< 0.05, **P < 0.01. Reused, with permission, from Julian CG, 2011 (138).

Mouradian et al. Page 45

Compr Physiol. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Distribution of apnea types lasting 3 to 15 s in eight term (gestational age: 39.5±0.3 weeks) 

and eight preterm (gestational age: 34.3±0.4 weeks) infants measured between birth and 56 

weeks old. A total of 783 and 4086 apneas were recorded in term and preterm infant groups, 

respectively. Reused, with permission, from Lee D, et al., 1987 (170). © 1987, Springer 

Nature.
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Figure 7. 
Schematic summary of in-text descriptions of the effects neonatal intermittent and chronic 

hypoxia have on breathing. Infants born premature (24-32 weeks) retain a biphasic fetal 

hypoxic ventilatory response (HVR) which is associated with decreased hypoxic arousal and 

autorescuscitation but increased number of apneas (which plateaus around 10 weeks after 

birth). The increased apneas are a reflection of apnea of prematurity but also enhanced 

hypoxic sensitivity which can cause ventilatory overshoots and trigger the CO2 apneic 

threshold. Term infants exposed to neonatal intermittent hypoxia have increased eupneic 

breathing, HVR, and more apneas though arousal from hypoxia is reduced. Exposure to 

chronic neonatal hypoxia commencing after birth is associated with reduced HVR [in lambs 

and male (M) rats]. The effects on eupneic breathing are equivocal and thus remain to be 

fully elucidated. Infants that continue to be exposed to chronic hypoxia after birth (i.e. high-

altitude births) demonstrate increased periodic breathing but the effects on the HVR and 

eupneic breathing are variable across high altitude populations. See text for references.
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Figure 8. 
Effects of intermittent hypoxic episodes on carotid body hypoxic sensitivity and long-term 

facilitation in neonatal versus adult rats. Progressive increases in intermittent hypoxic 

episodes (36, 72, 216, and 720) cause progressive hypoxic sensitization of the carotid bodies 

in neonates (A) whereas hypoxic sensitization requires 720 episodes in adults and is not as 

robust as in neonates (B). The hypoxic sensitization in the neonatal (C) but not the adult (D) 

rats is sustained after their return to normoxia for 10 days. Intermittent hypoxia causes long-

term facilitation in adult rats (E) but not in neonatal rats (F) despite having enhanced carotid 

body hypoxic sensitivity. Reused, with permission, from Pawar A, et al., 2008 (243).
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Figure 9. 
Schematic of the hypothesized cellular and molecular mechanisms of central oxygen sensing 

by the astrocyte. Hypoxia sensed from perfusing blood by the astrocyte inhibits the 

mitochondria and thus stimulating mitochondrial reactive oxygen species (ROS) production, 

leading to an increase in lipid peroxidation. PLC-IP3 signaling releases intracellular calcium 

stores and releases ATP onto nearby pre-BötC neurons that express two ATP receptors, 

P2YR and P2XR. In parallel, hypoxia may cause opening of the connexin (Cx) hemichannel 

leading to release of ATP and lactate, the latter with unknown stimulatory effects on the 

preBötC neurons. Release of ATP causes further release of ATP in autocrine and paracrine 

manners, increasing respiratory rate and sympathetic activity through preBötC neurons. 

Reused, with permission, from Gourine AV and Funk GD, 2017 (106). © 1985, The 

American Physiological Society.
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