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Abstract

Order Imbalance and Individual Stock Returns

This paper studies the relation between order imbalances and daily returns of individual

stocks. Our tests are motivated by a model which explicitly considers how market mak-

ers dynamically accommodate autocorrelated imbalances emanating from large traders

who optimally choose to split their orders. Price pressures caused by autocorrelated im-

balances cause a positive relation between lagged imbalances and returns, which reverses

sign after controlling for the current imbalance. We find empirical evidence consistent

with these implications. We also find that imbalance-based trading strategies yield sta-

tistically significant returns. Our results shed light on the role of inventory effects in

daily stock price movements.



1. Introduction

Why financial market prices move is a central issue which has preoccupied financial

economists for decades. With a view to gaining a better understanding of this issue,

much research has been devoted to exploring the relation between stock price movements

and trading activity, where the latter is usually represented by trading volume. Thus,

a large literature has studied volume and its association with stock market returns

(Hiemstra and Jones, 1994; Gallant, Rossi, and Tauchen, 1992; Lo and Wang, 2000; see

also the studies summarized in Karpoff, 1987). Trading volume, however, can be high

either due to a preponderance of buyer-initiated or seller-initiated trades, or because

there is generally a large amount of trading interest on a given day, which is about evenly

distributed across buyers as well as sellers. Intuition suggests that the implications of a

reported volume of 1 million shares generated by 500,000 shares of seller initiated trades

and 500,000 shares of buyer initiated trades are very different from that generated by 1

million shares of seller (or buyer) initiated trades. In particular, there are at least two

reasons why order imbalances can provide additional power beyond trading activity

measures such as volume in explaining stock returns. First, a high absolute order

imbalance can alter returns as market makers struggle to re-adjust their inventory. In

addition, order imbalances can signal excessive investor interest in a stock, and if this

interest is autocorrelated, then order imbalances could be related to future returns.

Obviously, the concept of order imbalance over an interval makes sense only in a

paradigm of an intermediated market, where market makers accommodate buying and

selling pressures from the general public (otherwise one could use the time-honored

adage “for every buyer, there’s a seller” to argue that order imbalances are irrelevant).
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However, much of modern finance theory is based on this intermediation paradigm

and suggests that price changes are strongly associated with order imbalance. For

example, the well-known Kyle (1985) model of price formation relates price changes

to net (pooled) order flow. It can be argued that the Kyle setting is more naturally

applicable in the context of signed order imbalances over a time interval, as opposed

to trade-by-trade data, since the theory is not one of sequential trades by individual

traders. Similarly, the dynamic inventory models of Ho and Stoll (1981) and Spiegel

and Subrahmanyam (1995) also deal with how market makers accommodate buying

and selling pressures from outside investors.

The natural appeal of order imbalances as a determinant of returns notwithstand-

ing, most existing studies analyze imbalances only for specific agents, or over short pe-

riods of time.1 Thus, for example, Lakonishok, Shleifer, and Vishny (1992), Kraus and

Stoll (1972), Wermers (1999), and Sias (1997) analyze institutional order imbalances,

Lauterbach and Ben-Zion (1993) and Blume, MacKinlay, and Terker (1989) analyze or-

der imbalances around the October 1987 crash, Lee (1992) examines order imbalances

around earnings announcements, while Stoll (2000) considers the return-order imbal-

ance relation for individual stocks over a two-month sample period. Ours is the first

study to analyze long-term order imbalances on a comprehensive cross-sectional sample

of New York Stock Exchange (NYSE) stocks.

Specifically, we estimate daily order imbalances for each of a comprehensive sample

of NYSE stocks for the period 1988-1998. Using data from the Institute for the Study

of Security Markets (1988-1992) and the TAQ database provided by the NYSE, we sign

1Recent work by Chordia, Roll, and Subrahmanyam (2002) examines a long series of market-wide
order imbalances; the focus in this paper is on order imbalances at the individual stock level.
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trades in each stock in our sample using the Lee and Ready (1991) algorithm. We then

calculate measures of the daily order imbalance in each stock using both the number

of buys and sells, as well the quantity bought or sold. In the end, we have measures of

the daily order imbalance for each company in our sample.

Our study focuses on the daily time-series relation between order imbalances and

individual stock returns. The issue of short-horizon return movements has been the

focus of several well-known papers, e.g., Lo and MacKinlay (1990), Lehmann (1990),

and Conrad, Hameed, and Niden (1994). A large part of this debate has focused on the

importance of microstructure effects on short horizon returns. By examining the relation

between returns and a very intuitive microstructure variable, namely, imbalance, we

shed new light on this debate.

We motivate our empirical study by an intertemporal model of how prices react to

imbalances when market makers have inventory and adverse selection concerns. The

distinguishing feature of our framework is that it explicitly examines how risk averse

market markers with inventory concerns accommodate autocorrelated trader demands.

In our model, traders find it optimal to split their orders over time to minimize the price

impact of trades,2 thus causing positive autocorrelation in equilibrium imbalances. In

turn, this autocorrelation causes intertemporal correlation in price pressures which give

rise to a positive predictive relation between imbalances and future returns. Intuitively,

this relation captures the idea that the current price pressure is correlated with lagged

imbalances because contemporaneous and lagged imbalances are correlated. Of course,

as the continuing price pressure is eventually reversed, prices exhibit reversals over

2Chan and Lakonishok (1995)and Keim and Madhavan (1995) document that institutional traders
often fill an order over a number of days.
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longer horizons.

Our model also implies that after controlling for the current imbalance, lagged im-

balances are negatively related to current price movements. The intuition is as follows.

The expected price move conditional on the net current imbalance alone assigns equal

weight to the price pressure created by history-dependent trades as well as current

trades that are independent of past trades. However, the price pressure induced by the

history-dependent trades is smaller than that created by the innovation in trades, since

earlier rounds of trade partially incorporate the price pressure induced by trades that

are autocorrelated with past ones. The negative coefficient on lagged imbalances arises

because of this “over-weighting” of history-dependent trades in the current imbalance.

In our empirical work, we find that daily imbalances are positively autocorrelated,

which is consistent with our theoretical model. Thus, buy (sell) imbalances are likely

to be followed by further days of buy (sell) imbalances. Lagged imbalances bear a

positive predictive relation to current day returns, which is consistent with continu-

ing price pressures caused by positively autocorrelated imbalances. Contemporaneous

imbalances are also positively related to returns, and, as predicted by the model, the

positive relation between lagged imbalance and returns disappears after controlling for

the current imbalance.

We directly analyze the profitability of an imbalance-based trading strategy that

buys (at the ask) if the previous day’s imbalance is positive, and sells (at the bid) if the

previous day’s imbalance is negative. The position is held from open to close of trade

within a day and reversed at the bid (ask) if the morning trade was at the ask (bid).

Thus, the trading strategy accounts for the bid-ask spread. The evidence indicates
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that while such strategies yield statistically significant profits, individual investors may

not be able to profit from them after accounting for brokerage commissions. However,

institutional traders with low trading costs may be able to earn an extra return. Such

activity is not necessarily inconsistent with market efficiency, because the inventory

paradigm suggests that buyers may face favorable terms of trade following days of

heavy selling or buying as market makers struggle to offload their inventory. Overall,

therefore, our empirical findings are consistent with a model of market equilibrium

where market makers with inventory concerns accommodate positively autocorrelated

imbalances.

While analyzing the imbalance-return relation, we are aware that bid-ask bounce in

daily returns (Blume and Stambaugh, 1983) is particularly relevant to our study. This

is because a high buy order imbalance, for example, would imply a preponderance of

trades on the ask side of the market, which would naturally contaminate any attempt to

relate the next day’s return to a given day’s order imbalance. We address this issue by

relating imbalances to a set of returns calculated from open-to-close bid-ask mid-points.

In particular, we pass through the entire transactions database to calculate, for each

stock, the mid-point of the quoted bid and ask prices corresponding to the first and last

transaction of each day. We then calculate returns for each stock using the mid-point

of the bid and ask prices. Throughout our empirical work, we focus these open-to-close

return series.

This paper is organized as follows. Section 2 presents a theoretical model which

derives empirical implications for the relation between price movements and imbalance.

Section 3 describes the data and documents the degree of autocorrelation in imbalances.
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Section 4 documents the time-series relation between daily returns and current as well

as past order imbalances. Section 5 documents the predictive ability of imbalances, and

Section 6 concludes.

2. A Theoretical Framework

In order to motivate our tests of the relation between imbalance and returns, we provide

an intertemporal setting with both inventory and asymmetric information effects. Mo-

tivated by the studies of Chan and Lakonishok (1995), and Keim and Madhavan (1995),

who document that institutional traders often fill an order over a number of days, we

model traders (e.g., financial institutions) who can split their orders over time, together

with informed traders and market makers. For simplicity, we model two trading dates,

with a final liquidation date, but the intuition generalizes to many periods.

In our model, a security trades at dates 1 and 2, and then has a liquidation payoff

of

F = F̄ + θ + 6 (1)

where F̄ > 0 is the ex ante mean of the asset, and θ as well as 6 are independent and

normally distributed random variables with zero mean and variances given by vθ and

v6, respectively. F can be viewed as the long-term liquidation value of the asset, so that

v6 can be viewed as the long-term risk from holding the asset.

We assume that there are two types of utility-maximizing traders: informed traders

who learn precisely the realization of θ just prior to trade at date 2, and uninformed

“market makers” who have no knowledge of θ. No agent receives information about 6 at

any of the trading dates. In order to keep the model tractable, and to obtain a closed-
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form solution, we only allow for informed trading at date 2. The model can be viewed

as the limit of a framework where some informed traders receive information later than

others; in our limit, no informed trader receives information early. However, numerical

analysis (available from the authors) suggests that similar results obtain when there is

informed trading in both rounds.

We assume informed traders and market makers behave competitively. In addition,

we model a discretionary liquidity trader with a demand 2z1, who can either split his

demands equally among the two periods, or concentrate his trading in period 1 or period

2.3 For now, we work with the assumption that he allocates his trading equally across

the two periods. Then, we will show that this is indeed his optimal strategy, in that the

expected trading costs of the agent are minimized by splitting the order across periods.

We also assume that an exogenous (non-discretionary) liquidity trade of z2 arrives

at the market at date 2.4 The variables z1 and z2 are normally distributed with zero

mean and common variance vz, and are mutually independent and independent of θ

and 6. The mass of informed traders is M , and the mass of market makers is 1−M , so
that the total mass of all informed traders and market makers is normalized to unity.

Both informed traders and market makers have negative exponential utility over final

wealth with a common risk aversion coefficient R.

Let P1 and P2 denote the date 1 and date 2 equilibrium prices for the security. We

will consider linear equilibria implied by the model. Thus, let us postulate that P1 and

3See Subrahmanyam (1994) for similar modeling of discretionary liquidity trading.
4Allowing for non-discretionary liquidity trades at both dates complicates the algebra, but does not

change the conclusions in a substantive sense.
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P2 are linearly related to the observables at each date such that

P2 = F̄ + aθ + bz1 + cz2, (2)

P1 = F̄ + fz1, (3)

In the ensuing analysis we verify that these conjectures are consistent with the equilib-

rium we derive.

Let xIi and xMi respectively denote the holdings of each informed trader and each

market maker, respectively, at date i. Standard mean-variance arguments yield

xI2 =
F̄ + θ − P2

Rv6

and

xM2 =
E(θ|P1, P2)− P2
R var(θ + 6|P1, P2)

The date 1 demands of the agents, xI1 and xM1, are more complicated and their deriva-

tion is confined to Appendix A. At each date, the market makers take the negative of

the positions of the other traders to clear the markets, so that in equilibrium, the prices

satisfy the conditions:

(1−M)xM1 = −(MxI1 + z1)

(1−M)(xM2 − xM1) = −[M(xI2 − xI1) + z1 + z2]

The complete solution for the prices is given in the following Lemma (which is proved

in Appendix A).

Lemma 1 Given that the discretionary liquidity trader splits his order across periods,

the unique linear equilibrium of the model is given by

a =
M [Mvθ +R

2v6vz(v6 + vθ)]

D
(4)
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b =
2Rv6[M

2vθ +R
2v6vz(v6 + vθ)]

D
(5)

c =
Rv6a

M
(6)

f =
R[M2vθ(2v6 + vθ) + (2MR

2v6vθvz +R
2v26 vz)(v6 + vθ) + 2]

D +MR2v6vθvz +R4v26 v
2
z(v6 + vθ)

, (7)

with D ≡M2vθ +MR
2v6vθvz +R

2v26 vz.

The coefficients b and f in the above equation represent the effect of the discretionary

liquidity trader z1. In particular, when b > f , the price at date 2 continues to move in

the direction of z1, as opposed to reversing out the effect of the date 1 liquidity trade.

This happens because there is autocorrelated liquidity trading which causes temporal

dependence in price pressures. Generally, b can be greater or less than f . This is

because while the arrival of correlated liquidity orders causes continuing price pressure,

the arrival of traders with information about θ reduces price pressure by decreasing the

risk borne by the market maker. If the long-term risk v6 is large relative to the variance

of information vθ, however, the former effect dominates.

We define imbalances to be the negative of the market makers’ trades in each period.

Thus, the period 1 imbalance is given by Q1 = MxI1 + z1 and the period 2 imbalance

is given by Q2 =M(xI2−xI1)+ z1+ z2. Even in this relatively simple setting, deriving
unambiguous relations between price changes and imbalances is quite difficult. Hence we

impose reasonable parameter restrictions. In particular, we assume that equal masses of

the utility-maximizing agents are informed traders and market makers, so thatM = 0.5.

Furthermore, since 6 represents the risk associated with holding the asset long-term, we

derive results under the plausible condition that v6 is sufficiently high relative to the

other model parameters.
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In the above analysis, we have assumed that the discretionary trader splits his

order across periods. Of course, if the discretionary trader changes his strategy, the

price coefficients in Lemma 1 will change because prices will be set to clear markets in

accordance with the new strategy. Consideration of the expected trading costs under

the pricing coefficients associated with the various strategies allows us to obtain the

optimal strategy of the discretionary trader. The following proposition is derived in

Appendix A.

Proposition 1 As long as the long-term risk from holding the asset, v6, is sufficiently

high, the following results hold:

1. In equilibrium, the discretionary liquidity trader splits his order across the two

periods, so that equilibrium order imbalances are positively autocorrelated.

2. Lagged imbalances are positively related to price changes, i.e., the regression co-

efficient cov(P2 − P1, Q1)/var(Q1) > 0. This coefficient is increasing in the risk
aversion coefficient, R.

3. The expectation of the price change P2 − P1 conditional on the contemporaneous
and lagged imbalances Q2 and Q1 is linear in these variables. The coefficient of

Q2 is positive while that on Q1 is negative.

Part 1 of the proposition obtains because the liquidity trader finds that splitting orders

across periods minimizes his overall expected price impact, which creates autocorrelated

imbalances in equilibrium. Part 2 indicates that price movements are positively related

to lagged imbalance. This finding can be explained as follows. Since market makers are

risk averse, an imbalance at date 1 creates price pressure at this date in the direction
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of the imbalance. However, since liquidity demands are autocorrelated in this dynamic

setting, there is further price pressure at date 2 that is correlated with the date 1 price

pressure. This leads to a positive predictive relation between lagged imbalance and

future price movements, the strength of which increases in the degree of price pressure,

and which, in turn, is related to the risk aversion coefficient R.5

The predictability of price movements from imbalances will not obtain if there are

no inventory effects (i.e., if market makers are risk-neutral), because agents will not

demand premia for bearing inventory risk, so that there will be no price pressures.6

Thus, our tests of whether order imbalances predict future price movements are direct

tests of whether there are price pressures due to inventory effects in the stock market.

Part 3 of Proposition 1 shows that in the presence of the contemporaneous im-

balance, the coefficient of the lagged imbalance reverses sign. Intuition for this is as

follows. Suppose for the moment that there is no informed trading. Then the price

change incorporates two effects: the premium for the independent liquidity shock that

arrives at date 2 (i.e., the shock z2), and an incremental premium for the liquidity shock

at date 2 that is correlated with past shocks. The incremental premium arises because

the premiums charged by the market for absorbing the period 1 and 2 discretionary

liquidity trades differ. Specifically, the market charges the initial autocorrelated liquid-

ity trade more than if there were no trades following in the same direction because the

5There is a countervailing effect to this phenomenon (described in Holden and Subrahmanyam,
2002), which is that the information conveyed by the trades of informed agents at date 2 reduces the
risk of holding the asset, and consequently also reduces the price pressure at date 2. Nevertheless, if,
as assumed, the long-term risk associated with holding the asset is sufficiently large relatively to the
variance of information, and if the proportion of informed agents is sufficiently small (we have assumed
it is 50%), the result in part 2 will hold.

6A formal proof of this assertion is available from the authors. However, the result obtains simply
because under risk-neutrality, prices are martingales, and increments to such a martingale cannot be
predicted from public information already impounded in the current price.
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market maker incorporates the fact that trading in a certain direction is more likely to

be followed by more trading, and hence, more inventory pressure, in the same direction.

At the same time, the premium for the initial trade is not equal to what it would be

were the entire discretionary liquidity trade to happen in that period, because the risk

averse market maker has an opportunity to rebalance next period when more trade

follows in the same direction. This future opportunity to rebalance is reflected in the

premium precisely because the market maker can partially anticipate the next period’s

imbalance due to the correlated liquidity trading.

Thus, the price response to the contemporaneous imbalance, is composed of two

parts, (i) a large independent premium which we term the innovation part, and (ii) a

smaller autocorrelated portion which is termed the history-dependent part. Condition-

ing only on the total contemporaneous imbalance assigns the same weight to both the

history-dependent part and the innovation part of the current imbalance. The negative

coefficient on the lagged imbalance (after controlling for the current imbalance) com-

pensates for this “over-weighting” of the autocorrelated portion of the contemporaneous

imbalance. Of course, the arrival of traders with private information attenuates price

pressures overall by reducing the conditional risk borne by the market maker. Never-

theless, if the long-term risk of the asset is large enough, and if the position taken by

the informed traders is sufficiently small, then the negative coefficient on the lagged

imbalance still obtains in the presence of the contemporaneous imbalance.

Note that the coefficient on the lagged imbalance can reverse sign in the presence

of the contemporaneous imbalance only when imbalances are autocorrelated. If imbal-

ances were serially uncorrelated, the sign and magnitude of the multivariate regression
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coefficient of lagged imbalance would be the same as that of the univariate coefficient.

Thus, the manner in which the coefficient of lagged imbalance changes in the presence of

the current imbalance critically depends on the degree of autocorrelation in imbalance.

In sum, it is worth reiterating that the positive bivariate relation between current

price moves and lagged imbalances simply accounts for the continuing price pressure

caused by autocorrelated imbalances. At the same time, the negative relation between

price moves and lagged imbalances, after controlling for the current imbalance, accounts

for the fact that price pressure caused by the history-dependent portion of the current

imbalance has partially been incorporated into prices in previous trading rounds. That

portion, therefore, must be reversed out when one conditions the current price move on

the current imbalance as well as the lagged imbalance.

Of course, it is worth noting that the continuing price pressures caused by auto-

correlated imbalances should eventually be reversed, giving rise to reversals in longer

horizon price movements. Indeed, it can easily be shown that under the condition of

Proposition 1, the “long-term” covariance cov(F−P2, P2−P1) is negative (see Appendix
A). Thus, over longer horizons, lagged price movements should be negatively related

to future price movements. This implication is consistent with the results of Lehmann

(1990) and Jegadeesh (1990) who find reversals in weekly and monthly individual stock

returns respectively.

We test the implications for the relation between imbalances and price movements in

Proposition 1 using a comprehensive data set on daily order imbalances which encom-

passes more than 1100 stocks over more than 2700 trading days. To preserve normality

and hence tractability, we analyze price changes in the model, which is standard prac-
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tice in the microstructure literature on informed trading. However, as per empirical

convention, and to preserve comparability in the cross-section, we analyze returns in

our tests to follow. This distinction, of course, is of no material consequence in that

the economic forces in the model apply equally to price changes and returns.7

3. Data

The transactions data sources are the Institute for the Study of Securities Markets

(ISSM) and the NYSE Trades and Automated Quotations (TAQ) databases. The ISSM

data cover 1988-1992 inclusive while the TAQ data are for 1993-1998.8 We use only

NYSE stocks to avoid any possibility of the results being influenced by differences in

trading protocols.

3.1. Inclusion Requirements

Stocks are included or excluded depending on the following criteria:

1. To be included in any given year, a stock had to be present at the beginning and

at the end of the year in both the Center for Research in Security Prices (CRSP)

and the intraday databases.

2. If the firm changed exchanges from Nasdaq to NYSE during the year (no firms

switched from the NYSE to the Nasdaq during our sample period), it was dropped

from the sample for that year.

7See for instance, Hong and Stein (1999) who also model price changes but draw implications for
returns that are tested in Hong, Lim, and Stein (2000).

8To assess the robustness of our results over time, and to address the issue that the ISSM portion
of our sample from 1988 through 1992 is more prone to data errors, we ran the regressions separately
for the TAQ portion of the data and confirmed all our results for the TAQ sample.
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3. Since their trading characteristics might differ from ordinary equities, assets in

the following categories were also expunged: certificates, ADRs, shares of ben-

eficial interest, units, companies incorporated outside the U.S., Americus Trust

components, closed-end funds, preferred stocks and REITs.

4. To avoid the influence of unduly high-priced stocks, if the price at any month-end

during the year was greater than $999, the stock was deleted from the sample for

the year.

5. Stock-days on which there are stock splits, reverse splits, stock dividends, repur-

chases or a secondary offering are eliminated from the sample.

Next, intraday data were purged for one of the following reasons: trades out of

sequence, trades recorded before the open or after the closing time, and trades with

special settlement conditions (because they might be subject to distinct liquidity con-

siderations). Our preliminary investigation revealed that auto-quotes (passive quotes by

secondary market dealers) were eliminated in the ISSM database but not in TAQ. This

caused the quoted spread to be artificially inflated in TAQ. Since there is no reliable way

to filter out auto-quotes in TAQ, only BBO (best bid or offer)-eligible primary market

(NYSE) quotes are used. Quotes established before the opening of the market or after

the close were discarded. Negative bid-ask spread quotations, transaction prices, and

quoted depths were discarded. Following Lee and Ready (1991), any quote less than

five seconds prior to the trade is ignored and the first one at least five seconds prior to

the trade is retained.

We then sign trades using the Lee and Ready (1991) procedure: if a transaction

occurs above the prevailing quote mid-point, it is regarded as a purchase and vice
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versa. If a transaction occurs exactly at the quote mid-point, it is signed using the

previous transaction price according to the tick test (i.e., buys if the sign of the last

non-zero price change is positive and vice versa). For each stock we then define the

following variables:

OIBNUM: the estimated daily number of buyer-initiated minus seller-initiated trades

scaled by the total number of trades.

OIBVOL: defined as above for estimated daily buyer-initiated minus seller-initiated

dollar volume of transactions scaled by total dollar volume.

Order imbalance is scaled by the total number of trades or by the total dollar trading

volume so as to eliminate the impact of total trading activity. Actively traded stocks

with higher total number of trades per day or a larger daily dollar trading volume are

likely to have higher imbalances. The scaling standardizes the imbalance measures.

We use order imbalance measured in the natural unit of dollars as well as in number of

transactions. Jones, Kaul, and Lipson (1994) show that the total number of transactions

is more influential in determining stock price movements than trading volume.

3.2. Summary Statistics

In Table 1, we present some descriptive statistics of the daily data. Panel A presents the

cross-sectional averages of the time-series means of scaled and unscaled imbalances in

number of transactions and in dollars, the number of transactions, and trading volume,

for the entire sample of stocks. The mean value of imbalance in number of transactions

across the stocks is about 5 transactions per day. This is in relation to the mean value of

the total number of transactions, which is about 113 transactions per day. The average

order imbalance in dollars is about $432,000. The respective grand averages of the
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absolute order imbalance are 20 transactions and $1.7 million, respectively. The order

imbalance measures have positive means and medians. This finding relates to the fact

that we sign only market orders in our analysis, so that the excess of buy market orders

over sell market orders is accommodated by the limit order book.9 At the same time,

we see that scaled imbalances have small but negative means, indicating that there are

more days with large selling pressure than with large buying pressure.

Panel B of Table 1 presents the cross-sectional averages of daily time-series correla-

tions between the unscaled order imbalance measures, the number of transactions, and

the daily return. The correlation between the unscaled number and volume measures

of order imbalance is low (about 0.29), but is much higher for the corresponding scaled

imbalance measures. In addition, the correlation between the total number of daily

transactions and imbalance in number of transactions is only about 0.26; this correla-

tion is even lower for the scaled imbalance measure. Finally, the correlation between

returns and order imbalance is positive, suggesting that order imbalance and returns

are strongly related. However, the correlation between return and order imbalance in

number of transactions is much higher than that between return and order imbalance

measured in dollar terms, which is consistent with the analysis of Jones, Kaul, and

Lipson (1994).

In Panel C of Table 1, we present the cross-sectional average autocorrelations of order

imbalance measures in each stock, for both scaled and unscaled versions of imbalance.10

9This assumes that specialists maintain a more or less constant inventory.
10Since the analysis of Chordia, Roll, and Subrahmanyam (2002) indicates that aggregate market

autocorrelations are substantially positive for up to five lags, we depart from our two-period model
and use multiple lags in the computation of the autocorrelations and in our regressions, while noting
that the intuition behind our theoretical results generalizes to many periods. Our basic conclusions
are not substantively altered when we use only one lag.
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As can be seen, order imbalance as measured by the excess number of buyer-initiated

transactions is highly positively autocorrelated; the first-lag autocorrelation is about

33%. The autocorrelations for the scaled versions of imbalance in transactions are

smaller, but the first lag autocorrelation is still substantial: about 23%. Thus, there

is strong evidence that a significant number of trades in one direction is followed by

further trading activity in the same direction. The correlation also decays fairly slowly.

This evidence is consistent with our theoretical analysis, wherein traders split their

orders over time to minimize their price impact.

The autocorrelation in dollar imbalance is significantly smaller in magnitude for both

scaled and unscaled measures. The difference between the autocorrelations for the two

types of imbalances likely reflects the notion that imbalance in number of transactions

more effectively captures the small orders of institutions who split up their demands

across trading days (see also Keim and Madhavan, 1995; and Chan and Lakonishok,

1995).

4. Daily Time-Series Regressions

4.1. Regression Specification and Results

In this section, we use the hypotheses developed in Section II to explore the relation be-

tween realized daily returns and current as well as past daily levels of order imbalance.

Of course, short-horizon return computations are subject to the well-known bid-ask

bounce bias. We use a return series which calculates the one-day-ahead daily returns

using quote midpoints associated with the first and last transactions on that day (ex-
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cluding the opening batch auction).11 Using open-to-close returns allows for a trading

strategy wherein the previous day’s order imbalance is estimated overnight and used to

forecast returns the following day.12

In our time-series return regressions, we include the contemporaneous imbalance and

four lags of order imbalance. We do not include lagged returns, because imbalance and

returns could be collinear and thereby affect our inferences. Further, we use market-

adjusted returns as our dependent variable in order to reduce cross-correlations in error

terms across stocks. Specifically, we run the following regression for each stock i,

Rit − Rmt = ai +
53
k=0

bikOIBi,t−k + ei, (8)

where Rit denotes the open-to-close returns for stock i on date t, Rmt the equally

weighted open-to-close return across all stocks, and OIBi,t denotes the scaled order

imbalance for stock i on day t (either OIBNUM or OIBVOL). While we present results

for the individual stock regressions in equation (8)), we have checked for robustness

using a number of different variations of the above equation. For instance, the results

are not significantly affected by the inclusion or exclusion of market returns. Further,

controlling for lags of unsigned trading activity (either in number of transactions or in

dollar volume) and lagged returns makes no substantive difference to the results. In

addition, results for unscaled imbalance measures are substantively similar to the scaled

measures. These results are available upon request.

11We exclude the opening batch auction because the differing protocol at the open could unduly
influence our results. For example, all orders submitted to the auction will generally impact the
opening price, whereas during regular trading, orders that are smaller than the posted depth may not
have a material impact on the price.
12We find that the results are robust to different return choices including the CRSP returns and the

close-to-close, bid-ask mid-point returns. In fact, the predictability results were stronger when using
the close-to-close mid-point returns.
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In aggregating the estimates for this regression, we note that the residuals could

continue to exhibit cross-correlation after adjusting for the market return because of

various omitted factors. To address this issue, we first estimate the cross-correlation in

residuals from the regression. Ideally, we would like to estimate the cross-correlation be-

tween each pair of residuals but our large sample precludes this. Instead, we estimate

the true correlation by computing the correlation between adjacent residuals across

stocks sorted alphabetically. Since there is no bias inherent in alphabetical sorting, this

should provide with us with a reasonable estimate of the residual cross-correlation.13

Our examination of these cross-correlations indicate that their magnitudes are rela-

tively small, reaching a maximum of 0.03 across all of the regressions reported in this

paper. Nevertheless, we adjust the standard errors of our coefficients for cross-correlated

residuals using the procedure that is described in Appendix B. We report the average

values together with the corresponding correlation-adjusted t-statistics for the coeffi-

cients a and b in Table 2, together with our estimate of the cross-correlation. Panel

A presents results using number of transactions, whereas Panel B presents results for

dollar imbalances.

The results in Panel A indicate in the current imbalance is positive and significant

for virtually all the firms. Further, whereas the average coefficients on the lagged imbal-

ances are negative and significant, and about 80% of the coefficients on these imbalances

are negative, with about 30% being negative and significant. The contemporaneous re-

lation between imbalance and returns is consistent with both inventory and asymmetric

information effects of price formation, and with our model that encompasses both of

13See Chordia, Roll, and Subrahmanyam (2001) for a similar procedure to obtain an estimate of the
residual cross-correlation across regressions with correlated errors.
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these phenomena. The negative coefficients on lagged imbalances are consistent with

our model in the previous section, wherein autocorrelated imbalances cause the effect

of the lagged imbalance to be reversed out in the current day’s return.

Note that lagged imbalances affect returns for up to five days, implying that the

effect of autocorrelated imbalances on returns is quite long-lived. This can be explained

as follows. Recall that the negative coefficient of lagged imbalances arises because

conditioning on total current imbalance overweights the impact of current trades that

are autocorrelated with past trades. Since the smaller the current price pressure induced

by these trades, the greater the overweighting and the stronger the reversal, and since

current price pressure induced by long lags of imbalance is small, we see negative and

significant coefficients on these longer lags as well.

It also is worth noting that the cross-correlation in adjacent residuals for the alpha-

betically-sorted sample is quite small in both cases (0.008 and 0.006), suggesting that

cross-equation correlation, while relevant, is not a major factor influencing the statistical

significance.14 The effects of lagged imbalance, while significant in many cases, are

stronger for OIBNUM than those for OIBVOL (in Panel B), which is consistent with our

finding that autocorrelation in imbalances is larger for the former measure of imbalance.

4.2. Size-stratified Results

It is plausible that inventory pressures induced by daily order imbalances could dif-

ferentially affect the returns for large, frequently-traded stocks and those of small,

infrequently-traded stocks. Alternatively, differential patterns of imbalance autocor-

14We also estimated a panel data regression allowing for cross-correlation in the residuals, using the
Parks (1967) procedure. Since the procedure requires a balanced panel, wherein every stock has to
have an equal number of time-series observations, we applied it to the 177 stocks that were present
every day in our sample. The results were qualitatively identical to the ones reported here.
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relations could induce different degrees of dependence between returns and lagged im-

balances. To investigate these possibilities, we sorted firms into four size groups based

on market capitalization as follows. For each firm, we calculated market capitalization

at the beginning of each year. Then, we sorted all size-days into four groups based on

market capitalization. The results from regression (8) are presented in Table 3.

Summary statistics of coefficients using OIBNUM are presented in Panels A through

D of Table 3 (the results for OIBVOL are qualitatively similar to those for OIBNUM

and are omitted for brevity). Overall, the earlier results of positive contemporaneous

coefficient and negative lagged coefficients of returns on order imbalance are not driven

by only the smallest or the largest firms. The results are generally robust and obtain

for all size groups. This is consistent with the third result in Proposition 1. The

size-stratified results demonstrate, however, that the average positive coefficient on the

contemporaneous OIBNUM increases with firm size. Also, the average coefficient on

the first lag is the most negative for the largest firms. In particular, for the largest

firm group, about 87% of the coefficient of the first lag are negative, and about 43%

are negative and significant, while the corresponding numbers for the smallest firm

group are 64% and 15%, respectively. Thus, the price impact of the contemporaneous

imbalance is highest in the largest firms as is the reversal in the lagged imbalances,

suggesting that the stock price of the largest firms reacts quickest to order imbalances.

Note from the discussion of Proposition 1 that the relation between returns and

lagged imbalances arises due to autocorrelation in imbalances. To obtain more insight,

we calculate the magnitudes of imbalance autocorrelations for the different size groups.

We find that the first-lag autocorrelation of scaled (unscaled) imbalance in transactions
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shows a monotonic progression from 0.309 (0.404) for the largest firm group to 0.177

(0.267) for the smallest firm group. The somewhat counter-intuitive finding of higher

imbalance autocorrelation in large stocks obtains likely because institutions are more

likely to trade the large firms, so that imbalance persistence caused by splitting of

institutional orders is likely to be a stronger phenomenon for such firms. The differential

effects of lagged imbalance on returns across small and large firms are thus consistent

with differential autocorrelation in imbalances across these firms.

5. Predictability

5.1. Regression Evidence

Proposition 1 also indicates a predictive relation between returns and lagged imbal-

ances when contemporaneous imbalances are not included in the regression. To test

this implication, we run the same regressions as in equation (8), but omit the contem-

poraneous imbalance, and include five lags of imbalances. In separate regressions (not

reported for brevity) we also included the first lag of the market return to account for

non-synchronous adjustment of prices to market information, and found that the re-

sults are not sensitive to whether the lagged market return is included. The regression

estimates, together with the correlation-corrected t-statistics, are reported in Table 4.

We find evidence to support Part 2 of Proposition 1, namely, that lagged imbalance

is positively related to daily open-to-close returns. In particular, about 77% of the

coefficients on the first lag OIBNUM are positive, and more than a quarter are positive

and significant. The results for OIBVOL are very similar to those for OIBNUM in

that the first lag of imbalance has significant predictive power for daily open-to-close
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returns.15

In Table 5, we present the regressions by size grouping. About 70-75% of the coeffi-

cients on the first lag are positive across the size groups, while the percentage of positive

and significant coefficients is in the vicinity of 20%. However, the average coefficient

on the first lag of imbalance is statistically significant only for the three smallest size

groups. This indicates that persistent inventory price pressures induced by autocor-

related imbalances are most relevant for smaller firms, because as we saw in Table 3,

markets for large firms accommodate persistent imbalances more expeditiously.16

Our results in this section are related to those of Huang and Stoll (1994) who analyze

whether intraday returns can be predicted from transactions within day. They also find

some evidence that returns within a trading day are predictable using past signed orders.

We show that there is evidence of predictability at longer (i.e., daily) horizons. Our

findings lend support to the notion that inventory effects last for time intervals greater

than a trading day.

As a final point, the analysis in Section I indicates that the positive predictability

of returns using imbalances arises because of continuing price pressure caused by au-

tocorrelated trader demands. This suggests that even without controlling for current

imbalance, very long lags of imbalances should be negatively related to current returns,

as this persistent price pressure should eventually reverse. To examine this possibility,

in Table 6 we present the results of pure forecasting regressions that include up to ten

lags of imbalances. As can be seen, while the first lag, as before, is positive and sig-

15We checked the robustness of this result by including lagged returns in addition to lagged imbal-
ances, and found that the coefficient of lagged imbalance continued to be positive and significant.
16See Chordia and Swaminathan (2000) who document different speeds of adjustment to information

across stock portfolios.
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nificant, four of the sixth through tenth lags are negative and significant, though the

magnitude of the latter coefficients is much smaller than that of the first lag. This

implies that price pressure caused by autocorrelated imbalances reverses itself rather

slowly through time. In this sense, our study can be interpreted as providing evidence

to support the view (see Hasbrouck and Sofianos, 1993 and Madhavan and Smidt, 1993)

that inventory effects persist for horizons of several trading days.

5.2. Profitability of Imbalance-Based Trading Strategies

Given the evidence of return predictability using imbalances, a natural question is

whether one can form a profitable trading strategy based on the previously-presented

regression results. Also, this exercise provides an estimate of the economic significance

of our findings. We now discuss different imbalance-based trading strategies.

We first calculate the average return to a strategy that buys a share at the opening

ask (the ask quote matched to the first transaction of the day) and sells at the closing

bid (the bid quote matched to the last transaction of the day) if the previous day’s

imbalance was positive. The trades are reversed if the previous day’s imbalance was

negative. The results in the first row of Table 7 indicate that such a strategy would have

yielded a statistically significant daily average return of 0.09% for the entire sample.

For a trade of one round lot on an $40 stock, this translates to a profit of $3.60 per

round-trip trade.17 The average returns decline monotonically from about 0.23% for

the smallest firm quartile to about 0.03% for the largest firm quartile.

We also form strategies based on extreme values of imbalances (one or two standard

17The profits will be higher if quoted depths at the open and close are larger than one lot. We
restrict ourselves to a one-lot trade to account for the fact that quoted depth at the close cannot be
known in advance.
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deviations away from zero), and calculate returns to both types of imbalances. The

variability in imbalances is estimated in the prior three-month period and held constant

in each three-month period (the first three-month period in the sample is therefore

omitted from the profit calculation). The strategy based on extreme imbalances (more

than two standard deviations away from zero) for small firms yields the highest average

return of 0.55%. This translates to a profit of $22 for a one lot round-trip trade for a

$40 stock. The profitability of strategies is similar for both types of imbalances.

While the size and significance of the profits indicates that the predictability of

returns using imbalance is not illusory, it also suggests that brokerage commissions

could nullify the profitability of such strategies to individual investors (online trades

usually cost $10-$20, enough to virtually nullify the profit on a one-lot round-trip trade

in each case). Nevertheless, professional investors with low trading costs do appear

to have some room for designing profitable trading strategies. However, these strate-

gies are not inconsistent with market efficiency because inventory paradigms of market

microstructure do indeed predict that following days of heavy selling, for example, it

can be profitable to buy because market makers offer favorable terms to buyers for a

period of time in order to facilitate inventory offloading. Overall, our results are consis-

tent with a model of market equilibrium where market makers with inventory concerns

dynamically accommodate positively autocorrelated imbalances.

6. Conclusion

With a view to better understand why financial market prices move, the literature has

extensively explored the relation between trading activity and stock market returns.
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But trading activity has usually been proxied by volume, whereas order imbalance

could bear a more meaningful relation to direction and magnitude of price changes.

This study undertakes an analysis of the relation between estimated order imbalances

and individual stock returns for a comprehensive sample of NYSE stocks over a relatively

long sample period of eleven years (1988-1998). We mitigate bid-ask bias in returns by

passing through the entire transactions database and recording the mid-points of bid

and ask prices corresponding to the first and last transactions during each trading day.

We then construct an open-to-close return series using these midpoints.

We derive implications for the relation between imbalances and price movements

by developing an intertemporal model of how prices react to imbalances. Our model

contributes to the microstructure literature by allowing an explicit analysis of how mar-

ket makers accommodate autocorrelated imbalances. In our analysis, liquidity traders

split their orders across periods to minimize price impact. This causes persistence in

equilibrium order imbalances and positively autocorrelated price pressures. In turn, this

phenomenon results in a positive predictive relation between imbalance and equilibrium

price changes.

Consistent with theory, our empirical study finds that individual stock order im-

balances are strongly positively autocorrelated. Further, the relation between lagged

imbalances and returns is significantly positive at a one-day horizon. In addition, con-

temporaneous imbalances are strongly related to contemporaneous returns, but the

positive relation between lagged imbalance and returns disappears after controlling for

the contemporaneous imbalance.

We also find that strategies based on taking a position in the direction of the pre-
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vious day’s imbalance yield positive and statistically significant profits. However, the

magnitude of the profits are small and are unlikely to be much larger than brokerage

commissions for individual investors. In general, our study supports our model as well

as the inventory paradigm of Stoll (1978) and O’Hara and Oldfield (1986), wherein risk

averse market makers with inventory concerns charge premia to accommodate order

imbalances. Our results are consistent with equilibrium in a securities market where

persistent imbalances induce autocorrelated price pressures.

Our analysis also underscores the importance of imbalance as a measure of trading

activity, and emphasizes the impact of microstructure effects on short-horizon returns.

From a practical standpoint, our results suggest that access to information about im-

balance can be valuable for designing trading strategies. For example, professional floor

traders’ interests would be best served by keeping track of daily buy/sell imbalances,

as opposed to monitoring volume. This can be done by noting the proportion of orders

executing above and below posted quote-midpoints.

In addition, our study suggests a few directions for further empirical work. For

example, specific events that drive extreme order imbalance days still need to be deter-

mined. A large order imbalance prior to an informational event (e.g., a merger) could

denote informed trading. However, large order imbalances following information events

signal portfolio rebalancing trades owing to a change in investor expectations. The

differential impact of these sources of imbalance on returns would form an interesting

study. Analyzing imbalances caused by different categories of agents (institutions vs.

individual investors) would help identify informed traders and liquidity traders in a

more precise manner. Exploration of such issues is left for future research.
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Appendix A

Proof of Lemma 1: We begin by conjecturing that all trader demands and both date

1 and date 2 prices are normally distributed. In the linear equilibrium we derive, this

conjecture is confirmed to be correct.

Using mean variance analysis, it can be shown that

xI2 =
F̄ + θ − P2

Rv6
, (9)

xU2 =
F̄ + E(θ|P1, P2)− P2
R var(θ + 6|P1, P2) . (10)

We next show that the date 1 demands of the informed and uninformed agents are

given by

xI1 =
E(P2|P1)− P1

RSI
+ kIE(xI2|P1) (11)

xU1 =
E(P2|P1)− P1

RSU
+ kUE(xU2|P1), (12)

where S and the k coefficients are exogenous constants. We begin by stating the fol-

lowing lemma, which is a standard result on multivariate normal random variables (see,

for example, Brown and Jennings [1989]).

Lemma 2 Let Q(χ) be a quadratic function of the random vector χ: Q(χ) = C +

BIχ−χIAχ, where χ ∼ N(µ,Σ), and A is a square, symmetric matrix whose dimension
corresponds to that of χ. We then have

E[exp(Q(χ))] = |Σ|− 1
2 |2A+ Σ−1|− 1

2×

exp
w
C +BIµ+ µIAµ+

1

2
(BI − 2µIAI)(2A+ Σ−1)−1(B − 2Aµ)

W
.
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Let φij and xij denote the information set and demand, respectively, of an agent

i (i = I, U), at date i. The date 2 demand of the agent (from maximization of the

mean-variance objective) is given by

xi2 =
E(F |φi2)− P2
R var(F |φi2) . (13)

Let µ2 ≡ E(F |φi2). Note that in period 1, the trader maximizes the derived expected
utility of his time 2 wealth which is given by

E[[−exp{−R[B0 − xi1P1 + xi1P2 + [µ2 − P2]2/(2Rvar(F |φi2))]}]|φi1]. (14)

Let P̄2 and µ denote the expectations of P2 and µ2, and Π the variance-covariance

matrix of P2 and µ2, conditional on φi1. Then, the expression within the exponential

above (including terms from the normal density) can be written as

−
}
1

2
yIGy + hIy + w

]
,

where

yI = [µ2 − µ, P2 − P̄2],

hI = [−Rxi1 + (P̄2 − µ)
var(F |φi2) ,

(µ− P̄2)
var(F |φi2) ],

G =

^
Π−1 +

^
s−1 −s−1
−s−1 s−1

� �
,

w = Rxi1(P1 − P̄2) + g,

where s ≡ var(F |φi1), and where g is an expression which does not involve xi1. From
Lemma 2 and Bray (1981, Appendix), (14) is given by

− 1

(Det(Π))
1
2 |Det(A)| 12 exp

w
1

2
hIG−1h− w

W
. (15)
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Thus, the optimal xi1 solves ^
dh

dxi1

�I
G−1h− dw

dxi1
= 0.

Substituting for h and w, we have

xi1 =
P̄2 − P1
RG1

+
µ− P̄2

Rvar(F |φi2)
G1 −G2
G1

, (16)

where G1 and G2 are the elements in the first row of the matrix G
−1. It follows that the

demands xI1 and xU1 are given by (11) and (12), respectively, with the S coefficients

being the G1 coefficient above and the k coefficients being the term (G1−G2)/G1. We
thus obtain (11) and (12).

Market clearing implies

MxI1 + (1−M)xM1 + z1 = 0, (17)

MxI2 + (1−M)xM2 + 2z1 + z2 = 0. (18)

We can rewrite (18) as:

M
F̄ + θ − P2

Rv6
+ (1−M) F̄ + E(θ|φ2)− P2

R var(θ + 6|φ2) + 2z1 + z2 = 0, (19)

where φ2 is the date 2 information set of the uninformed. Now, the uninformed observe

P2 at date 2, which is equivalent to observing

τ ≡ θ +
Rv6
M
(2z1 + z2).

In addition, since there is no private information at date 1, the uninformed also observe

the date 1 demand shock z1. Thus, we have

E(θ|φ2) = E(θ|τ, z1) = vθ
vθ + k2vz

(θ + kz2) (20)
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and

var(θ + 6|φ2) = v6 + var(θ|τ, z1) ≡ v = v6 + k2vθvz
vθ + k2vz

, (21)

where k ≡ Rv6
M
. Substituting for the above moments into the market clearing condition

(19), for the price P2 from (2), and equating coefficients of the variables θ, z1, and z2,

we obtain a closed-form expression for the date 2 price.

Now, from the market clearing condition at date 1, (17), we can solve for f in terms

of the k and S coefficients in (11) and (12). This exercise yields

f =
b
�
M
RSI

+ 1−M
RSU
−
+
MkI
Rv6

+ (1−M)kU
Rv

+ 1
�=

M
RSI

+ 1−M
RSU

. (22)

The G coefficients for the informed agents are given by the first row of the matrixX a2vθ + c2vz avθ
avθ vθ

~−1
+

X
v−16 −v−16
−v−16 v−16

~−1 . (23)

and those for the uninformed agents given by the first row of the matrix
 a2vθ + c2vz vθ(avθ+kcvz)

vθ+k2vz
vθ(avθ+kcvz)
vθ+k2vz

v2θ
vθ+k2vz

−1 + X v−1 −v−1
−v−1 v−1

~
−1

. (24)

where v ≡ var(F |P1, P2). Substituting for a, b, and c, we find that

SI = SU =
[Mvθ +R

2v26 vz(v6 + vθ)]
2

M2vθ + 2MR2v6vθvz +R2v26 vz[R
2(v6 + vθ) + 1]

kI =
R2v26 vz

Mvθ +R2v6vz(vθ + v6)
,

and

kU = kI
M2vθ +R

2v6vz(v6 + vθ)

M2vθ +R2v26 vz
.

Note that kU > kI . Using (21), it is easy to show that kI/v6 = kU/v. This implies

that each informed agent and each market maker trades an equal amount at date 1. In
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turn, from the market clearing condition, this implies that the aggregate informed order

at date 1 is −Mz1, while the aggregate market maker order at date 1 is −(1 −M)z1.
Substituting for SI , SU , kI , and kU into (22) and performing some tedious algebra yields

(7). 2

Proof of Proposition 1: First, let us show that it is optimal for the discretionary

trader to split his order across periods so long as v6 is sufficiently high. In calculating

expected trading costs associated with switching to a particular strategy, the discre-

tionary trader uses the pricing coefficients associated with that strategy.18 Now, if the

trader splits his order, the price impact is given by E[(P1 + P2 − F )z1] = (f + b)vz. If
he concentrates his order in period 2, the price impact is E(P I2 − F )2z1 = 2bIvz, where
P I2 is the period 2 price and b

I is the period 2 coefficient of z1 when the discretionary

trader concentrates his trades in period 2. It is easy to show that

bI =
2Rv6[Mvθ + 3R

2v6vz(v6 + vθ)]

M2vθ + 3MR2v6vθvz + 3R2v26 vz
(25)

Therefore, the liquidity trader will prefer splitting orders to concentrating in period 2

so long as 2bI > f + b. From (25) and Lemma 1, the difference 2bI − (b + f) can be
written as A/B, where

B = D[D +MR2v6vθvz +R
4v26 v

2
z(v6 + vθ)][M

2vθ + 3MR
2v6vθvz + 3R

2v26 vz]

and where A is a complicated polynomial whose highest exponent in v6 is to the eighth

power, and this term is given by 3R9v4zv
8
6 . Hence there exists a critical value of v6 such

that above this value 2bI > b+ f .

If the discretionary trader concentrates his trades in period 1, his price impact is

E(P I1−F )2z1 = 2f Ivz, where P I1 and f I are the price and the pricing coefficient when the
18See Admati and Pfleiderer (1988) or Subrahmanyam (1994) for a similar equilibrium concept.
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discretionary trader concentrates his trading in period 1. Straightforward calculations

show that f I = 2(v6 + vθ). The discretionary trader prefers splitting to concentrating

in period 1 if 4(v6 + vθ) > b+ f . From Lemma 1, this is true when

R [8R6v36 v
3
z(v6 + vθ)(2v6 + vθ)(26v

2
6 + 41v6vθ + 15v

2
θ)

+ 12R4v26 v
2
z(32v

4
6 + 110v

3
6 vθ139v

2
6 v
2
z + 76v6v

3
θ + 15v

4
θ)

+ 2R2v6vθvz(96v
3
θ + 236v

2
6 vθ + 184v6v

2
θ + 45v

3
θ)

+ 3v2θ(18v
2
6 + 14v6vθ + 5v

2
θ)]

divided by

[4R4v26 v
2
z(v6 + vθ) + 4R

2v6vz(v6 + vθ) + vθ][2R
2v6vz(2v6 + vθ) + vθ][2v6 + vθ]

is positive, which is true. Hence, if v6 is sufficiently large, the lowest cost strategy (and

hence, the equilibrium strategy) for the discretionary trader is to split orders across

periods.

Given that the liquidity trader follows his optimal strategy, from Lemma 1, and,

recalling that the period 1 imbalance is given by Q1 = (1 −M)z1, while the period 2
imbalance is given by Q2 =MxI1+[2+(1−M)]z1+z2, the covariance in the imbalances
Q1 and Q2 becomes

vz[2R
2v6vz(2v6 − vθ) + vθ]

4[2R2v6vz(2v6 + vθ) + vθ]

which is positive. This completes the proof of Part 1.

For Part 2, note that cov(P2 − P1, Q1)/var(Q1) = (b− f)/2. From Lemma 1, b > f

so long as

R[8R6v36 v
3
z(v6 + vθ)

2(2v6 − vθ) + 4R4v26 vθv2z(v6 − 3vθ)− 2R2v2θv6vz(2v6 + 3vθ)− v3θ ]
[4R2v26 v

2
z(v6 + vθ) + 4R

2v6vz(v6 + vθ)][2R2v6vz(2v6 + vθ)]
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is positive. Since the highest exponent of v6 is to the sixth power and the coefficient on

this exponent is positive, there exists a critical value of v6 such that above this value

b > f . In this case, the past period’s imbalance is positively related to the current price

change. Differentiating the coefficient with respect to R yields an expression AI/BI,

where

BI = [4R2v26 v
2
z(v6 + vθ) + 4R

2v6vz(v6 + vθ)]
2[2R2v6vz(2v6 + vθ)]

2

and where A is a complicated polynomial expression. The highest exponent of v6 in

this expression is to the eleventh power and the term involving this exponent is given

by 256R12v6zv
11
6 . Hence there exists a cutoff level of v6 such that above this cutoff, the

derivative is positive. This completes the proof of Part 2.

Finally, to prove Part 3, we use the well-known result that if there exist random

vectors υ1 and υ2 such that

(υ1, υ2) ∼ N
^
(µ1, µ2),

X
Σ11 Σ12
Σ21 Σ22

~�

then the conditional distribution of υ1 given υ2 = X2 is normal with a mean given by

the vector

E(υ1|υ2 = X2) = µ1 +Σ12Σ
−1
22 (X2 − µ2) (26)

In our case, υ1 = P2 − P1 and υ2 = [Q1, Q2], and the relevant unconditional means are
all zero. A straightforward application of (26) yields that the coefficient on Q2 in the

quantity E(P2 − P1|Q1, Q2) is given by
[4Rv6vz + vθ][2R

2(v6 + vθ) + vθ)]

vz(4R2v26 vz + vθ)

which is positive. Further, the coefficient on Q1 is given by C/D, where

D = [4R4v26 v
2
z(v6 + vθ) + 4R

2v6vz(v6 + vθ) + vθ][2R
2v6vz(2v6 + vθ) + vθ][2v6 + vθ]
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and where C is a complicated polynomial expression. The highest exponent of v6 in

this expression is to the seventh power and the term involving this exponent is given by

−32R7v76 v4z(Rvθ +4). Hence there exists a cutoff level of v6 such that above this cutoff,
the coefficient of Q1 is negative. This completes the proof of the proposition. 2

Proof that cov(F−P2, P2−P1) < 0 if v6 is sufficiently high: The relevant covariance
can be written as

a(1− a)vθ − [b(b− f + c2]vz.

Substituting for a, b, and c from Lemma 1, we find that the covariance can be written

as G/H, where

H ≡ 4R4v26 v2z(v6 + vθ) + 4R2v6vz(v6 + vθ) + vθ][2R2v6vz(2v6 + vθ) + vθ]2

where G is a complicated polynomial whose highest exponent in v6 is to the ninth power,

and this term is given by −192R10vzv96 . Hence there exists a cutoff level of v6 such that
above this cutoff, the covariance is negative.
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Appendix B

In this appendix we describe the procedure we use to adjust the standard errors of the

average coefficients from our individual firm, time-series regressions. Let there be N

firms, and K regressors for each firm. Further, let T denote the number of time-series

observations per firm. Also, suppose that the residual variance for firm i is given by σ2i

and the cross-covariance in residuals for two firms i and j is σij. Standard regression

theory implies that the variance-covariance matrix of the vector of coefficients βi for

firm i is given by the K × K matrix var(βi) = σ2i (X
I
iXi)

−1, where Xi is the T × K
matrix of regressors for firm i. It also follows that the covariance between the regression

coefficients across two stocks i and j is represented by the K ×K matrix

cov(βi,βj) = σij(X
I
iXi)

−1X IiXj(X
I
jXj)

−1

Thus, the variance-covariance matrix of the NK regressors is given by a matrix of

dimensions NK ×NK, which can be written as var(β1) cov(β1,β2) cov(β1,β3) . . .
cov(β2, β1) var(β2) cov(β2,β3) . . .

. . . . . . . . . . . .


Thus, the variance of the mean coefficient of, say regressor 1, is given by adding the

element [1, 1], to twice the sum of the elements [K+1, 1], [2K+1, 1], . . ., [(N−1)K+1, 1],
and then dividing the overall sum by N2. Similarly, the variance of the mean coefficient

of regressor 2 is given by adding the element [2, 2] to twice the sum of the elements

[K+1, 2], [3K+1, 2], . . ., [(N −1)K+1, 2], and dividing by N2, and so on. The square

roots of these numbers provide an estimate of the corrected standard errors.

There are two issues we face in adapting the above procedure to our case. The first

problem is that we have a large number of time-series and cross-sectional observations;
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thus the matrices involved are of large dimension, and invertibility is hampered. In

addition, we do not require the number of time-series observations to be equal across

stocks, and lack of significant time-series overlap across stocks could create noise in the

estimate of cross-correlations in our coefficient estimates. Taking into account these

limitations, we obtain an estimate of the corrected standard errors as follows. We first

estimate the standard errors for the 177 firms that traded every day in our sample using

the above procedure. We then calculate the ratio of these standard errors to the stan-

dard errors for these stocks calculated assuming independence of the coefficients. This

ratio provides us an estimate of the factor by which the standard errors are inflated. We

apply this inflation factor to each of the standard errors in the full-sample regressions.

The inflation factors are fairly small, suggesting that the influence of cross-correlated

residuals on the standard errors of our estimates is quite small.
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Table 1: Descriptive Statistics  
The summary statistics represent the time-series averages of the cross-sectional statistics for an average of 1322 
NYSE -AMEX  stocks over 132 months from Jan. 1988 through Dec. 1998. The included stocks were required to 
have daily data available on both CRSP and the transactions databases (ISSM and TAQ).  The sample was 
reconstructed at the beginning of each year.  The total number of unique stocks in the sample is 2378.   In Panels B 
and C, the correlations and autocorrelations are the cross-sectional averages of the time-series correlations.  
 
 
Panel A: Descriptive Statistics  

 
Variable 

 
Mean 

 
Std. 
Dev. 

Order imbalance in number of transactions 4.67 7.89 

Order imbalance in number of transactions scaled by 
total transactions (%) -1.72 7.25 

Order imbalance in millions of dollars 0.432 0.626 

Order imbalance in dollars scaled by total dollar 
volume (%) -0.539 7.36 

Number of transactions 112.7 48.1 

Dollar volume (millions) 7.322 3.769 

Absolute value of order imbalance in number of 
transactions 19.61 6.15 

Absolute order imbalance in number of transactions 
scaled by total transactions (%) 25.83 3.33 

Absolute value of order imbalance (millions of 
dollars) 1.704 0.682 

Absolute order imbalance in dollars scaled by total 
dollar volume (%) 36.62 3.93 

 
 
 
 
 
 
 
 



 
Table 1, continued 
 
Panel B: Correlations 
 Order 

imbalance in 
number of 
transactions 
scaled by 
total 
transactions 

 
Order 
imbalance in 
dollars 
 

Order 
imbalance in 
dollars 
scaled by 
total dollar 
volume 

Number of 
transactions 

$volume 
 

Return 

Order imbalance in number 
of transactions 0.742 

 
0.288 

 

 
0.443 0.260 0.141 0.369 

Order imbalance in number 
of transactions scaled by 
total transactions 

 
 

0.220 
 

0.637 0.131 0.069 0.343 

 
Order imbalance in dollars 
 

 
  

0.461 0.061 -0.001 0.221 

Order imbalance in dollars 
scaled by total dollar 
volume 

 
  

0.061 0.022 0.373 

Number of transactions 
 

  
 0.558 0.080 

$volume  
  

  
  0.048 

 
 
 
Panel C: Daily Autocorrelations 

Lag Order imbalance (number of 
transactions) 

Order imbalance (dollar 
volume) 

  
Unscaled 

Scaled by total 
transactions 

 
Unscaled 

Scaled by 
total dollar 

volume 
1 0.331 0.229 0.062 0.091 
2 0.237 0.179 0.037 0.054 
3 0.202 0.163 0.027 0.043 
4 0.184 0.153 0.022 0.035 
5 0.172 0.144 0.027 0.031 



Table 2:  Daily regressions of open-to-close excess returns on contemporaneous and lagged order imbalances   
This table presents the cross-sectional average coefficients from the following time-series regression for each stock, 
 Rit –Rmt = a + b1 OIBit + b2 OIBit-1 + b3 OIBit-2 + b4 OIBit-3 + b5 OIBit-4 , 
where  Rit is the open-to-close return of stock i on day t calculated using the mid-point of the bid-ask spreads at the 
open and the close of trading, Rmt is the equally weighted open-to-close return on day t, and 
OIB={OIBNUM,OIBVOL}.  OIBNUMit (OIBVOLit) is the order imbalance in number of transactions (dollar 
shares) divided by the total number of transactions (total dollar shares) for stock i on day t.  The average coefficients 
are multiplied by 100, and the t-statistics (in parentheses) are obtained from standard errors that are corrected for 
cross-correlation across the individual stock regression residuals.  An estimate of the average cross-correlation (ρ) in 
the residuals from the time-series regressions is also presented. "Significant" denotes significant at the 5% level 
(two-tailed test). 
 
 
 Panel A: Open-to-close excess returns on contemporaneous and lagged OIBNUM (ρ = 0.0076) 

Variable Average 
Coefficient 

(t-value) 

% 
positive 

 

%positive 
significant 

%negative 
significant 

OIBNUMit 2.326 
(19.35) 

99.92 99.58 0.00 

OIBNUMit-1 -0.233 
(-5.11) 

 

23.89 2.52 30.95 

OIBNUMit-2 -0.239 
(-6.38) 

 

19.05 1.05 34.86 

OIBNUMit-3 -0.207 
(-5.85) 

21.62 1.05 28.93 

OIBNUMit-4 -0.191 
(-5.74) 

20.98 1.43 28.97 

 
 
 

Panel B: Open-to-close excess returns on contemporaneous and lagged OIBVOL (ρ = 0.0057) 
Variable Average 

Coefficient 
(t-value) 

% 
positive 

 

%positive 
significant 

%negative 
significant 

OIBVOLit 1.754 
(21.70) 

100.00 99.87 0.00 

OIBVOLit-1 -0.025 
(-1.20) 

 

44.58 5.55 11.52 

OIBVOLit-2 -0.070 
(-4.14) 

 

30.70 2.23 16.15 

OIBVOLit-3 -0.062 
(-3.54) 

34.15 2.40 13.79 

OIBVOLit-4 -0.047 
(-2.69) 

35.37 2.35 10.39 

 



Table 3:  Daily regressions of open-to-close excess returns on order imbalances, sorted by firm size  
This table presents the cross-sectional average size sorted coefficients from the following time-series regression for 
each stock, 
 Rit –Rmt = a + b1 OIBNUMit + b2 OIBNUMit-1 + b3 OIBNUMit-2 + b4 OIBNUMit-3 + b5 OIBNUMit-4 , 
where  Rit is the open-to-close return of stock i on day t calculated using the mid-point of the bid-ask spreads at the 
open and the close of trading, Rmt is the equally weighted open-to-close return on day t, and OIBNUMit is the order 
imbalance in number of transactions divided by the total number of transactions for stock i on day t.  Stocks are 
sorted into groups based on market capitalization at the start of each year. Panels A through D present the results for 
the smallest through largest firm size quartiles.  The average coefficients are multiplied by 100, and the t-statistics 
(in parentheses) are obtained from standard errors that are corrected for cross-correlation across the individual stock 
regression residuals.  An estimate of the average cross-correlation (ρ) in the residuals from the time-series 
regressions is also presented. "Significant" denotes significant at the 5% level (two-tailed test). 
 
 Panel A: Smallest size group (ρ = 0.0101) 

Variable Average 
Coefficient 

(t-value) 

% 
positive 

 

%positive 
significant 

%negative 
significant 

OIBNUMit 2.081 
(16.35) 

99.79 99.06 0.11 

OIBNUMit-1 -0.084 
(-1.68) 

 

36.35 3.99 14.50 

OIBNUMit-2 -0.134 
(-3.29) 

 

28.78 2.10 17.75 

OIBNUMit-3 -0.168 
(-3.82) 

28.78 1.79 15.65 

OIBNUMit-4 -0.144 
(-3.33) 

28.57 3.36 17.02 

 
Panel B: Size group 2 (ρ = 0.01443) 

Variable Average 
Coefficient 

(t-value) 

% 
positive 

 

%positive 
significant 

%negative 
significant 

OIBNUMit 2.250 
(12.99) 

100.00 99.39 0.00 

OIBNUMit-1 -0.170 
(-2.77) 

 

32.99 3.73 18.84 

OIBNUMit-2 -0.193 
(-3.32) 

 

29.25 1.22 17.97 

OIBNUMit-3 -0.156 
(-2.87) 

30.82 1.74 15.45 

OIBNUMit-4 -0.141 
(-2.73) 

30.90 1.39 15.63 

 



Table 3, continued 
 
Panel C: Size group 3 (ρ = 0.00875) 

Variable Average 
Coefficient 

(t-value) 

% 
positive 

 

%positive 
significant 

%negative 
significant 

OIBNUMit 2.697 
(16.52) 

99.90 99.31 0.00 

OIBNUMit-1 -0.319 
(-5.18) 

 

24.61 2.06 26.47 

OIBNUMit-2 -0.294 
(-5.77) 

 

21.96 0.69 25.78 

OIBNUMit-3 -0.197 
(-3.98) 

26.37 2.25 21.37 

OIBNUMit-4 -0.196 
(-4.10) 

27.55 2.06 20.88 

 
 
Panel D: Largest size group (ρ = 0.0275) 

Variable Average 
Coefficient 

(t-value) 

% 
positive 

 

%positive 
significant 

%negative 
significant 

OIBNUMit 3.282 
(9.49) 

99.85 99.69 0.00 

OIBNUMit-1 -0.620 
(-3.89) 

 

13.43 0.15 43.36 

OIBNUMit-2 -0.520 
(-4.24) 

 

10.49 0.31 47.22 

OIBNUMit-3 -0.370 
(-3.75) 

16.67 0.31 38.58 

OIBNUMit-4 -0.326 
(-3.60) 

15.74 0.46 35.34 

 



 Table 4:  Daily regressions of open-to-close excess returns on lagged order imbalances   
This table presents the cross-sectional average coefficients from the following time-series regression for each stock, 
 Rit –Rmt = a + b1 OIBit-1 + b2 OIBit-2 + b3 OIBit-3 + b4 OIBit-4 + b5 OIBit-5 , 
where  Rit is the open-to-close return of stock i on day t calculated using the mid-point of the bid-ask spreads at the 
open and the close of trading, Rmt is the equally weighted open-to-close return on day t, and 
OIB={OIBNUM,OIBVOL}.  OIBNUMit (OIBVOLit) is the order imbalance in number of transactions (dollar 
shares) divided by the total number of transactions (total dollar trading volume) for stock i on day t.  The average 
coefficients are multiplied by 100, and the t-statistics (in parentheses) are obtained from standard errors that are 
corrected for cross-correlation across the individual stock regression residuals.  An estimate of the average cross-
correlation (ρ) in the residuals from the time-series regressions is also presented.  "Significant" denotes significant at 
the 5% level (two-tailed test). 
 
 
 Panel A: Open-to-close excess returns on lagged OIBNUM (ρ = 0.0002) 

Variable Average 
Coefficient 

(t-value) 

% 
positive 

 

%positive 
significant 

%negative 
significant 

OIBNUMit-1 0.214 
(26.43) 

77.38 25.95 1.35 

OIBNUMit-2 -0.019 
(-2.48) 

 

46.55 5.00 6.22 

OIBNUMit-3 -0.021 
(-2.83) 

 

46.13 3.78 5.97 

OIBNUMit-4 -0.007 
(-1.01) 

47.88 3.99 6.06 

OIBNUMit-5 -0.033 
(-4.38) 

45.42 4.00 6.69 

 
 
 

Panel B: Open-to-close excess returns on lagged OIBVOL (ρ = 0.0004) 
Variable Average 

Coefficient 
(t-value) 

% 
positive 

 

%positive 
significant 

%negative 
significant 

OIBVOLit-1 0.131 
(18.57) 

75.57 23.80 1.68 

OIBVOLit-2 0.003 
(0.59) 

 

48.82 4.67 5.34 

OIBVOLit-3 -0.006 
(-0.99) 

 

49.29 4.50 5.93 

OIBVOLit-4 -0.003 
(-0.50) 

48.02 4.21 4.92 

OIBVOLit-5 -0.000 
(-0.07) 

50.76 4.88 4.25 

 



Table 5:  Daily regressions of open-to-close excess returns on lagged order imbalances, sorted by firm size  
This table presents the cross-sectional average size sorted coefficients from the following time-series regression for 
each stock, 
 Rit –Rmt = a + b1 OIBNUMit-1 + b2 OIBNUMit-2 + b3 OIBNUMit-3 + b4 OIBNUMit-4 + b5 OIBNUMit-5 , 
where  Rit is the open-to-close return of stock i on day t calculated using the mid-point of the bid-ask spreads at the 
open and the close of trading, Rmt is the equally weighted open-to-close return on day t, and OIBNUMit is the order 
imbalance in number of transactions divided by the total number of transactions for stock i on day t. Stocks are 
sorted into groups based on market capitalization at the start of each year. Panels A through D present the results for 
the smallest through largest firm size quartiles.  The average coefficients are multiplied by 100, and the t-statistics 
(in parentheses) are obtained from standard errors that are corrected for cross-correlation across the individual stock 
regression residuals.  An estimate of the average cross-correlation (ρ) in the residuals from the time-series 
regressions is also presented.  "Significant" denotes significant at the 5% level (two-tailed test). 
 
 Panel A: Smallest size group (ρ = 0.0034) 

Variable Average 
Coefficient 

(t-value) 

% 
positive 

 

%positive 
significant 

%negative 
significant 

OIBNUMit-1 0.257 
(7.62) 

75.32 21.01 1.68 

OIBNUMit-2 0.041 
(1.53) 

 

53.89 6.62 4.62 

OIBNUMit-3 -0.029 
(-1.30) 

 

49.16 4.73 3.99 

OIBNUMit-4 -0.011 
(-0.46) 

48.00 4.52 5.78 

OIBNUMit-5 -0.021 
(-0.78) 

48.63 5.15 4.73 

 
Panel B: Size group 2 (ρ = 0.0056) 

Variable Average 
Coefficient 

(t-value) 

% 
positive 

 

%positive 
significant 

%negative 
significant 

OIBNUMit-1 0.234 
(6.50) 

74.22 20.40 1.22 

OIBNUMit-2 -0.013 
(-0.35) 

 

48.35 5.82 5.21 

OIBNUMit-3 -0.013 
(-0.39) 

 

49.48 3.73 4.34 

OIBNUMit-4 0.004 
(0.11) 

50.87 3.91 5.73 

OIBNUMit-5 -0.025 
(-0.78) 

48.79 4.17 6.42 

 
  



Table 5, continued 
 
Panel C: Size group 3 (ρ = 0.00103) 

Variable Average 
Coefficient 

(t-value) 

% 
positive 

 

%positive 
significant 

%negative 
significant 

OIBNUMit-1 0.201 
(10.50) 

70.20 19.80 1.76 

OIBNUMit-2 -0.063 
(-3.30) 

 

45.69 3.43 5.88 

OIBNUMit-3 0.000 
(0.04) 

 

49.02 4.90 6.08 

OIBNUMit-4 -0.020 
(-1.04) 

49.51 4.61 6.37 

OIBNUMit-5 0.010 
(0.57) 

50.69 3.53 5.49 

 
 
Panel D: Largest size group (ρ = 0.0322) 

Variable Average 
Coefficient 

(t-value) 

% 
positive 

 

%positive 
significant 

%negative 
significant 

OIBNUMit-1 0.136 
(1.27) 

71.76 23.61 2.78 

OIBNUMit-2 -0.160 
(-1.36) 

 

35.96 2.78 9.41 

OIBNUMit-3 -0.053 
(-0.50) 

 

41.67 2.62 8.33 

OIBNUMit-4 -0.009 
(-0.08) 

49.38 3.55 5.56 

OIBNUMit-5 -0.019 
(-0.18) 

43.06 3.54 8.18 

 
 
 



Table 6:  Daily regressions of open-to-close excess returns on ten lags of  order imbalances   
This table presents the cross-sectional average coefficients from the following time-series regression for each stock, 
 Rit –Rmt = a +∑k bk OIBNUMit-k  , 
where  k=1,…,10, Rit is the open-to-close return of stock i on day t calculated using the mid-point of the bid-ask 
spreads at the open and the close of trading, Rmt is the equally weighted open-to-close return on day t, and 
OIBNUMit is the order imbalance in number of transactions divided by the total number of transactions for stock i on 
day t.  The average coefficients are multiplied by 100, and the t-statistics (in parentheses) are obtained from standard 
errors that are corrected for cross-correlation across the individual stock regression residuals.  An estimate of the 
average cross-correlation ρ in the residuals (which is the average residual correlation across adjacent, alphabetically-
sorted stocks from the time-series regressions) is -0.0004.  
    

Variable Average 
Coefficient 

(t-value) 

Variable Average 
Coefficient 

(t-value) 
OIBNUMit-1 0.201 

(21.88) 
OIBNUMit-6 -0.017 

(-2.14) 

OIBNUMit-2 -0.007 
(-0.86) 

OIBNUMit-7 -0.025 
(-3.27) 

OIBNUMit-3 -0.011 
(-1.36) 

OIBNUMit-8 -0.024 
(-2.92) 

OIBNUMit-4 0.005 
(0.63) 

OIBNUMit-9 -0.000 
(-0.03) 

OIBNUMit-5 -0.009 
(-1.11) 

OIBNUMit-10 -0.026 
(-3.31) 
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