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Draft Genome Assemblies of Five Robust Yarrowia lipolytica
Strains Exhibiting High Lipid Production, Pentose Sugar
Utilization, and Sugar Alcohol Secretion from Undetoxified
Lignocellulosic Biomass Hydrolysates

Caleb Walker,a Seunghyun Ryu,a Hyunsoo Na,b Matthew Zane,b Kurt LaButti,b Anna Lipzen,b Sajeet Haridas,b Kerrie Barry,b

Igor V. Grigoriev,b Joshua Quarterman,c Patricia Slininger,c Bruce Dien,c Cong T. Trinha

aDepartment of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee,
USA

bU.S. Department of Energy, The Joint Genome Institute, Walnut Creek, California, USA
cThe National Center for Agricultural Utilization Research, Peoria, Illinois, USA

ABSTRACT Screening the genetic diversity of 45 Yarrowia lipolytica strains identi-
fied five candidates with unique metabolic capability and robustness in undetoxified
switchgrass hydrolysates, including superior lipid production and efficient pentose
sugar utilization. Here, we report the genome sequences of these strains to study
their robustness and potential to produce fuels and chemicals.

Yarrowia lipolytica is a dimorphic, generally regarded as safe (GRAS) oleaginous
budding yeast (subphylum Saccharomycotina). It possesses unique phenotypes,

including hydrocarbon assimilation (1–5), specialty lipid and organic acid production
(6–11), and resistance to harsh environments, including high salinity (12), broad-range
pH (13), and ionic liquid (14). By screening a comprehensive set of 45 Y. lipolytica strains
with genetic diversity from the Agricultural Research Service Culture Collection (https://
nrrl.ncaur.usda.gov/), we identified five promising candidate strains, YB-392, YB-419,
YB-420, YB-566, and YB-567, exhibiting beneficial phenotypes for industrial biocatalysis,
including biomass hydrolysate consumption, inhibitor tolerance, and lipid and fatty
acid production (15). In this study, we sequenced the genomes of these robust Y.
lipolytica strains to aid further research into their physiology, metabolism, and genetics
as well as metabolic engineering and synthetic biology for industrial biocatalysis.

The genomes of five Y. lipolytica isolates were extracted with the Zymo Research
fungal/bacterial DNA miniprep kit (catalog number D6005; Zymo Research, Irvine, CA).
Sequencing was carried out by The Department of Energy Joint Genome Institute (DOE
JGI) using Illumina 500-bp insert size fragments, for which 100 ng of DNA was sheared
to 500 bp using the LE220 focused ultrasonicator (Covaris, Woburn, MA) and size
selected using solid phase reversible immobilization (SPRI) beads (Beckman Coulter,
Brea, CA). The fragments were treated with end repair, A tailing, and ligation of
Illumina-compatible adapters (IDT, Inc., Skokie, IL) using the KAPA-Illumina library
creation kit (Kapa Biosystems, Boston, MA). All prepared libraries were quantified using
the Kapa Biosystems next-generation sequencing library quantitative PCR (qPCR) kit
and run on a Roche LightCycler 480 real-time PCR instrument. The quantified libraries
were then multiplexed with other libraries, and the pool of libraries was then prepared
for sequencing on the Illumina HiSeq sequencing platform utilizing a TruSeq paired-
end cluster kit v4 and Illumina’s cBot instrument to generate a clustered flow cell for
sequencing. Sequencing of the flow cell was performed on the Illumina HiSeq 2500
sequencer using the HiSeq TruSeq sequencing by synthesis (SBS) kits v4 following a
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2 � 100-bp indexed run recipe. All raw Illumina sequence data were filtered for
artifact/process contamination using the JGI quality control (QC) pipeline. Briefly,
BBDuk v36.94 (http://bbtools.jgi.doe.gov) was used to remove contaminants, reads that
contained adapter sequences, and right quality trim reads where quality dropped to 0.
BBDuk was also applied to eliminate reads containing 1 or more “N” bases, having an
average quality score across the read of less than 13 or containing a minimum length
of � 41 bp or 33% of the full read length. Using BBMap, reads that were mapped to
masked human, cat, dog, and mouse references at 95% identity and aligned to
common microbial contaminants were separated. Filtered genomic reads were assem-
bled with SPAdes v3.11.1 (16) using the parameters –phred-offset 33 – cov-cutoff auto
-t 16 -m 115 –careful –12 to produce the target nuclear assembly. All genomes were
annotated with the reference genome FKP355 (https://genome.jgi.doe.gov/Yarlip1) using
the JGI annotation pipeline (17), which integrates an array of tools for gene prediction,
annotation, and analysis (18).

Data availability. The whole-genome assemblies and annotation were deposited at
DDBJ/EMBL/GenBank under the accession numbers listed in Table 1. The versions
provided in this paper are the first versions.
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