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Computational and Experimental Evaluation of the Attentional Blink:  Testing The 
Simultaneous Type Serial Token Model 
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Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF  UK 

 
 

Abstract 

A reduced version of the Simultaneous Type Serial Token 
Model is presented. This model embraces two theories of 
temporal attention: Chun and Potter’s two-stage theory and 
Kanwisher’s types-tokens theory. We explain the proposed 
model and show how it reproduces key data from the 
Attentional Blink phenomenon. In addition, we verify 
experimentally predictions arising from the model. 

Introduction 
Rapid Serial Visual Presentation (RSVP) has been used 

extensively to explore how humans deploy attention over 
time (Chun & Potter, 1995; Kanwisher, 1987; Raymond, 
Shapiro, & Arnell, 1992; Weighelsgartner & Sperling 1987) 
Prominent amongst RSVP tasks is the Attentional Blink 
(AB), in which a decline in performance on a 2nd target 
(hereafter the T2) is observed when it is presented within 
between 100 and 500ms of the offset of a 1st target 
(hereafter the T1) (Chun & Potter, 1995; Raymond et al., 
1992). Until recently, theoretical debates centred on 
informal explanations of the blink, which included the 2-
stage model (Chun & Potter, 1995) and the Interference 
theory (Shapiro et al., 1997). These informal explanations 
have proved valuable in focusing formulation of 
experimental questions. However, the maturity of the field 
now makes it ripe for computational modelling. 
Accordingly, a number of models have recently been 
proposed (review: Bowman & Wyble, submitted). 

The current paper focuses on the STST (Simultaneous 
Type Serial Token) model (Bowman & Wyble, submitted; 
Bowman, Wyble, & Barnard, 2004), for which we also use 
the shorthand ST2. This paper reports the development of a 
reduced version of the approach (called the reduced ST2 
model), which abstracts from some of the implementation 
details of the full model.  Importantly though, the new 
model remains consistent with the theoretical principles that 
underlie the earlier ST2 incarnation.  

The focus of both ST2 models is the letters-in-digits 
paradigm (Chun & Potter, 1995), in which the subject’s task 
is to report the two letter targets placed in a stream of digit 
distractors. This experiment can be viewed as a canonical 
AB methodology since no task switch is involved between 
T1 and T2. The task originally used in (Raymond et al., 
1992) involved a task switch, and is therefore more 
complex.   

This paper serves to describe the reduced ST2 model, its 
predictions, and, finally experimental verification of these 
predictions.  Before introducing the new model, we briefly 
review necessary elements of the full ST2 model. 

The Full ST2 model: Basic Principles 
The full ST2 model began as a rate-coded neural 

network elaboration of the theoretical two-stage model 
(Chun, 1997; Chun & Potter, 1995). The central idea 
behind their conception of RSVP processing is that the 1st 
stage can represent multiple items in parallel, but only for 
a short time (several hundred milliseconds). The 2nd stage 
is required for consolidation into a memory store that can 
persist until the end of the trial. However the 2nd stage is 
limited in its ability to process multiple items 
concurrently. Therefore, in order to limit interference in 
the 2nd stage, a gate is shut that denies entry to subsequent 
items. While waiting to be processed, these items are 
vulnerable to decay if they have been masked. 

We agree with Chun (1997) that this model can be 
well implemented using the types and tokens framework 
described by Kanwisher (1987).  In her theory, types 
represent possible kinds of items, devoid of context.   In 
contrast, tokens represent memories that a given item was 
encountered, i.e. episodic (instance specific) information 
about the occurrence of an item. A token can be bound to 
any combination of types within its domain.   

In the case of the letters-in-digits task, types would 
include all of the letters and digits, and one or more 
tokens would be assigned to represent the occurrence of 
the targets within an RSVP stream. The other key 
difference between types and tokens is that the latter are 
strictly sequential in nature, in that only one token may be 
in the process of binding at any one time.  Hence, the 
name of our approach: Simultaneous Type, Serial Token. 
Types can be considered analogous to stage 1 of the two 
stage theoretical model, while our token implementation 
is the analogue of stage 2.  
Stage 1. The full ST2 model represented each potential 
item (i.e. each type) in an RSVP stream with a unique 
node that would be re-activated if the item occurred twice. 
We implemented a series of layers that represented steps 
of visual processing. At the 1st layer, distractors backward 
masked targets via inhibitory connections.  Remaining 
activation from these masked traces reached the task-
selective layer, at which the task demand system 
emphasized targets. 
Stage 2. Target(s) in stage-1 could activate a token gate in 
stage-2, while strong lateral inhibition ensured only one 
token could be active at any time. The remainder of the 
token layer implemented dynamics, which insured, that 
after being active for a sufficient amount of time 
(approximately 200-300 msec), a token gate would be 
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heavily suppressed to allow a 2nd token to be activated. 
While a token gate was active, it incrementally created 
binding links to any active items in stage 1. The binding 
links remained until the end of the trial, at which time they 
could be used to reconstruct the items in stage-1 that had 
been successfully encoded during that trial. In most cases, at 
lag 1 (i.e. when T2 immediately follows T1), one token 
would be bound to both T1 and T2. At lags 2-4 (i.e. when 1 
to 3 distractors intervene between T1 and T2), one token 
would be bound to T1 with T2 insufficiently bound for 
retrieval. Beyond lag 4, after blink recovery, one token 
would be bound to T1 and another to T2.   
The Blaster. Data from Chua, Goh, & Hon (2001), suggest 
that distractors immediately following the T1 are privileged 
in their ability to prime a subsequent T2. This suggests that 
attentional resources directed towards the T1 are not 
specific to it, but rather to a time window encompassing T1 
and other information presented within 100ms of its offset, 
which includes the distractor immediately following T1. 

Our model achieves this effect with a mechanism 
designed to provide a brief burst of excitation to all type 
representations, targets and distractors alike.  Critically, this 
mechanism is suppressed while a target is being processed.  
This suppression protects a given target from interference 
by subsequent information.  This implementation sacrifices 
T2 to protect T1.   

In implementing an attentional resource within a neural 
network model, it immediately becomes clear why a 
mechanism of this sort might exist. Attentional resources 
directed specifically at the T1 would require some form of 
neural gating or phase-locking mechanism to restrict the 
resource to the T1 itself. An alternative implementation 
would involve many separate attentional mechanisms, one 
allocated to every possible target. 

The blaster, on the other hand, can be implemented with 
a single node that spans the entire set of types. It is rarely 
the case that humans encounter items presented for as brief 
periods of time as are involved in the RSVP, therefore, the 
fact that this attentional resource can inadvertently spill over 
into subsequent distractors in this paradigm, would tend not 
to occur in real world situations. In fact, as suggested by 
experimental data we will later present, most of the benefit 
of this resource seems to arrive on the T1+1 slot, resulting 
in strong lag-1 sparing, and specific deficits in T1 when T2 
is presented at lag-1. 

The simplicity of this implementation allows us to 
consider neural biological candidates, chief among which is 
the Locus Coreleus (LC), a tiny structure that distributes 
noradrenaline to the entire cortex in short bursts. An 
alternative model of the LC’s putative role in causing the 
attentional blink is described in Nieuwenhuis et al (in press). 

An additional benefit of this mechanism is that it 
provides a single nodal point for closing the “attentional 
gate”, required to limit access to the 2nd stage. While a token 
is in the process of being bound, a strong inhibitory 
projection disables the blaster, forbidding it from assisting a 
T2 that falls within the blink window (generally lags 2-4). 

Thus, a principle of the ST2 model is that there is only one 
pulse of attentional enhancement per tokenization. 

The Reduced ST2 Model 
We now move to discussion of the Reduced ST2 

model (Figure 1a), which is essentially the task selective 
layer, token gates, shutoff layer (which has not yet been 
discussed) and blaster of the full model. It is primarily the 
interaction of these parts that drive the temporal dynamics 
of the blink data that we will model. The extra layers in 
the full model provided functionality that is replaced in 
the reduced model by procedural code. Additionally, 
nodes representing the processing of distractors have been 
removed. These nodes were primarily involved in 
masking targets in the full model. Their functional role is 
now represented by a reduction in the strength of targets 
presented to the model.  

In eliminating these nodes and reducing the time 
resolution of the simulation, we have vastly reduced the 
parameter space, and can run simulations at several 
hundredfold the speed of the more complex model.  
Unfortunately space does not permit us to elaborate the 
function of our model to the extent required to replicate it 
in detail. Instead we will focus our discussion on the 
theoretically salient points of its operation.   
Operation. In testing this model, targets are presented to 
the T1 and T2 nodes at lags varying from 100 to 800 msec 
in 100 msec intervals, with time steps of 20 msec. Both 
T1 and T2 vary systematically in strength, reflecting 
natural variation in the featural distinctiveness of the 
different letters from the digit distractors, i.e. some letters 
appear to be more or less effectively masked by digits. 
Each lag in the modelled blink curve is a compilation of 
model accuracy across every possible combination of T1 
and T2 strength at that lag. It is this variance in strength 
that explains why some T2’s are able to survive the blink, 
and some T1’s are missed entirely.   

Later in the paper we will talk in terms of strong and 
weak targets, referring to putative differences in their 
inherent featural strength. For purposes of the model we 
designate weak targets as being the lower half of the 
variance applied to an item, and strong targets as being 
the upper half of this variance. Normally, targets vary 
between 2.5 and 5.1, so weak targets range from 2.5 to 
3.8. Targets in the T1+1 and T2+1 blank condition 
(discussed below) vary from 7.5 to 10.1. 

A critical distinction exists between the temporal 
relationship of types and tokens. Namely, types (for T1 
and T2) are allowed to be coactive (barring the weak 
lateral inhibition that reduces, but does not generally 
eliminate coactivation), while tokens are restricted to 
being sequentially active. Token 2 is only permitted to be 
active if token 1 has reached its threshold and been shut 
down. This behaviour was implemented by the token 
trace layer in the full ST2 model, but is dictated explicitly 
within the procedural code in this version. 
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Figure 1:  (a) Depiction of the reduced ST2 model.  Black lines represent excitation, while gray indicates inhibition. (b) 
Activation traces from the model illustrating three key behaviour patterns, demonstrated by lags 1, 3 and 8.  Note that the 
blaster effects manifest 80 msec after it is triggered. 

 

Shutoff nodes. We have not yet discussed the shutoff 
nodes, but they are essential in preventing a strong type 
from being tokenised multiple times. Gradually accruing 
activation in the shutoff nodes can cross a threshold, 
releasing a strong inhibitory projection onto their associated 
type nodes. Nodes of this sort can cause repetition 
blindness, see (Bowman & Wyble, submitted). 
Blaster. The Blaster adds a small amount of activation to 
both T1 and T2 for 100 msec, which is enough to ensure an 
extended and amplified activation of a target that has 
recently been presented, but is insufficient to cause an item 
that has not been presented to be tokenized. This input of 
the Blaster to the type layer nodes is delayed by 80 msec. 
The Blaster has a refractory period of 250 milliseconds, and 
is suppressed by tokenization, see Figure 1a,b. 
Binding. When at least one type node is coactive with a 
token, binding links are incrementally formed from that 
token to the type node. If two types are active, they will 
both receive binding links. The rate at which each link 
builds is proportional to the strength of the type node to 
which it projects. These links have no functional role in the 
encoding dynamics of the model and so are not present in 
Figure 1a.  They are only considered at retrieval. 
Performance evaluation. Performance is evaluated 
following 1500 msec of simulated time by testing the 
strength of binding links. Furthermore, binding links are 
only considered at retrieval if their associated token 
managed to be “completed”  (i.e. crossed a threshold) during 
the presentation of targets. When two targets are retrieved, 
their temporal order is reconstructed probabilistically by 
considering the relative strength of binding links to T1 and 
T2 type nodes from tokens 1 and 2, even if those links are 
below threshold. Consequently, at lag-1, even though T2 is 
bound strongly to token 1 along with the T1, a slight degree 
of binding to token 2 will improve the chance of correctly 
recalling order.  Weak, subthreshold bindings to Token 2 

can occur even at lag-1 when T1 and T2 are particularly 
strong. 

Functional dynamics 
The functional characteristics of the reduced ST2 

model can be divided into three segments based on T2 
lag: pre blink (lag 1), blink (lags2-4), and post blink (lags 
5-8), see figure 1b. 
Preblink. T2’s presented immediately after T1 receive 
the full benefit of the Blaster, and thus, T1 and T2 are 
active simultaneously. There is some diminution of both 
as a result of the lateral inhibition, but they both remain 
active enough to be bound to a single token.  
Blink. At lags 2-4, the blaster provides attentional 
enhancement in response to T1, which spills over to T2. 
However, this T2 activity has decayed by the time the T2 
itself is presented. Furthermore, because the T2 arrives 
during or just after the tokenization of T1, the Blaster is 
unavailable to be fired a 2nd time. Thus, the T2 decays 
away without being tokenised and is thereby missed.  
Post Blink. Presentation of the T2 at lags 5-8 is 
sufficiently late that tokenization of the T1 type is 
complete before T2 has decayed, and therefore the T2 is 
processed in like manner as are T1s, see Figure 1b. 
Swaps. One of the strengths of this model is that it is 
capable of exhibiting ancillary effects of the AB, which 
are shown in Figure 2a,b. When T2s are presented at lag-
1, both targets are bound to the same token. Thus, one of 
the main functions of the token system, i.e. recording the 
order of the presentation of items, is impaired. Hence, at 
lag-1, the model exhibits swaps: an inability to correctly 
recall the order of T1 and T2. This tendency in human 
subjects can be seen in (Chun & Potter, 1995).  
T1 and T2 strength manipulations. If a blank is placed 
in the distractor stream at position T1+1, the blink is 
attenuated (Chun & Potter, 1995). Our model exhibits the 

a. b. 

T1 T2 

Token
1 

Shutoff  
Nodes 

Types 

Token
2 

Blaster 

Lag 8 

Lag 1 

Lag 3 

 T1 type 
T2 type 
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Token 2 
Blaster 

Time in msec 0 1500 
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same dynamic, see Figure 2a. A T1 that is unmasked by a 
missing distractor is presumed to cause a stronger activation 
strength, in accord with the full ST2 model. This stronger 
trace drives the token system to a more rapid completion, 
allowing T2’s to more easily outlive the blink. T2+1 blanks 
also allow T2’s to outlive the blink, by evoking a very 
strong T2 trace that can be tokenised despite arriving during 
the blink. The Blaster is not necessary for tokenization of 
these stronger traces. 
T1 Performance. The model correctly demonstrates a drop 
in T1 performance at lag-1, as a result of the interference of 
T2, see Figure 2b. The inhibition between T1 and T2 
reduces the strength of the T1 node, and thus, its binding 
strength. 

Predictions 
Having explained the relevant dynamics of the model 

and fit several sets of data, it is incumbent on us to make 
predictions that we may be able to verify empirically. In 
discussing performance, T2|T1 will refer to T2 accuracy for 
those trials in which T1 was recalled. T2|NOT_T1 will refer 
to T2 accuracy for trials in which T1 was missed. 
Prediction 1: The blink is temporal. Implicit within the 
design of our model is the assumption that the function of 
distractors is primarily to cause masking effects, weakening 
the target representations (Giesbrecht & Di Lollo, 1998). 
Accordingly, our model predicts that the blink is a function 
of the temporal relationship of targets in the stream, and not 
the number of intervening distractors. Consequently, if one 
doubles the rate of presentation of items, the AB effect will 
reflect the temporal relationship between the targets, not the 
sequential relationship. For RSVP streams presented at 50 
msec per item, at lag-2 the T2 is following the T1 by 100 
msec, and therefore, should exhibit complete sparing.  
Furthermore, at this faster rate the blink curve will recover 
by lag 12, instead of lag 6. We model this by using only 
weak T1 and T2 items, assuming that the 50 msec SOA will 
reduce bottom-up trace strength through enhanced masking. 
Model results are shown in Figure 2c. 
Prediction 2: Increased T2 lag 1 performance with 
missed T1. The second prediction concerns the fate of T2s 
on trials in which the T1 was missed. In our model, this can 
occur because the T1 was too weak to be encoded, 
especially at lag 1 when T1 and T2 overlap most strongly. 
Despite being too weak to be encoded, the T1 still activates 
the Blaster, with resultant amplification of both the T1 and 
T2 traces. Recall that the arrival of the Blaster response is 
delayed, and amplifies the item in the following slot more 
fully than the item that triggered it.  Therefore, a T2 at lag-1 
for which the T1 was very weak, is going to receive a 
stronger amplification than it would have in isolation (i.e. 
analogous to the lag-8 case in which the T1 and T2 are 
temporally isolated). Consequently, when examining T2 
trials for which T1 was missed, we find performance at lag-
1 to be superior to baseline performance (as measured at 
lag-8, which is commonly equivalent for both T1 and T2). 

T2|NOT_T1 is equal to 92% at lag 1, compared to a 
normal lag-1 score of 81% for T2|T1. Baseline 
performance for T1 as well as T2|T1 at lag-8 is 85%.  
Prediction 3: Labile Attention. In accord with Potter 
Staub & O’Conner (2002), our model predicts a changing 
relationship between T1 and T2 at different lags.  When 
targets are separated by less than 200 msec, there is direct 
inhibition between the two simultaneously active type 
representations, hence strong T1’s reduce T2 performance 
relative to weak T1’s.  At later lags, the attentional gate 
has closed, it is too late for T2 to be joined to Token 1.  If 
T2 is encoded from lag3 onward, it will be bound to 
Token 2.  Stronger T1’s mean that Token 2 will be 
available more rapidly, thereby attenuating the blink. 
Figure 2e illustrates this pattern from the model.  Weak 
T1s allow better T2 performance at early lags (1-2) due to 
reduced interference.  Conversely, strong T1s evoke a 
much sharper and more rapid blink, that recovers more 
quickly.  

Experimental Verification 

Methods 
To test these predictions we performed a letters-in-

digits AB study. MATLAB v6.5 and the psychophysics 
toolbox (psychophysicstoolbox.org) were used to present 
trials to subjects on a Windows 2000 computer. Display 
timing rates were confirmed with photodiodes. 24 
subjects were positioned in front of a 17” computer 
screen, displaying a white background, upon which black 
letters in 180 point Arial font were used as targets. Black 
digits in 220 point Arial were used as distractors. Two 
experiments were designed with different stimulus onset 
asynchronies. The 2nd was designed primarily to address 
prediction 1, but will also be cited to address 2 and 3. 

After each trial, subjects were asked by a screen 
prompt to report the identity of the letters and the order in 
which they had seen them. Subjects were also advised to 
guess if they were not sure, but not to guess blindly.   
Despite this instruction, reversals of T1 and T2 by the 
subjects were not considered incorrect in the analyses.  
Temporal order of the response was only considered for 
the analysis of swaps. 
Experiment 1: For 14 subjects, items were presented for 
95 msec, followed immediately by the next item. RSVP 
streams were 18 items in length. T1 could appear in slots 
5 to 8, while T2 could appear from lags 1-8 afterwards. At 
least 4 distractors followed T2. 

With equal probability, items could have a blank in the 
T1 +1 slot, the T2 +1 slot, or no blank at all. Trial types 
were crossed in an 8x3 paradigm, with lag and blanks as 
primary factors. There were 144 trials per block, with 
three blocks per subject and 14 catch trials with no T2. 
Experiment 2: For 10 subjects, items were presented for 
45 msec, followed immediately by the next item. RSVP 
streams were 40 items long. T1 could appear in slots 9 to
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Figure 2:   Simulation results and experimental data for 3 different conditions.  In all figures, horizontal axis depicts lag in 
msec between T1 and T2.  The vertical axis depicts accuracy of T2|T1 except for (b), which depicts T1 accuracy and swap 
data.  (a,b) Basic Results. Performance of the model in the basic blink suite as described in the text.  (c,d) Prediction 1. 
Simulation of the blink at fast and slow presentation rates (top), and data from experimental subjects (bottom).  Note that the 
model was tuned to match data from Chun and Potter (1995), which had a deeper blink than obtained in our experiments. 
(e,f) Prediction 3. Depiction of simulated blinks for weak and strong T1’s (top), and experimental data (bottom). Error bars 
represent standard error. 
17, while T2 could appear at even lags 2-16 afterwards. At 
least 8 distractors followed T2. Subjects saw 96 two-target 
trials and 10 catch trials per block, for 3 blocks 

Basic Results 
We were able to record normal blink curves from our 

subjects as can be seen in Figure 2d. While we do not have 
space in this format for our replication figures, this 
experiment also confirmed the following effects from (Chun 
& Potter, 1995): T1 accuracy was reduced at lag 1, swaps 
were selectively found at lags 1 and 2, a T1+1 blank 
attenuated the blink. We also demonstrated that a T2+1 
blank attenuated the blink, which is a novel result, but not 
surprising in the light of results which show that completely 
unmasking T2 attentuates the blink (Giesbrecht & Di Lollo, 
1998). The remainder of this section will be devoted to 
novel results that we have predicted and now tested. 

Strong and weak targets were separated by virtue of their 
performance in the catch trials. In experiment 1, strong 
targets were A H N T V Y, with an average recognition rate 
of 95%. Weak targets were B C D E P R with an average 
recognition rate of 84%. Medium targets were F G J K L U 
with an average recognition rate of 92%, these were not 
used in analysis of performance by target strength. In 
Experiment 2, sets strong and weak targets were largely 
similar. Strong targets were A K T Y V U and weak targets 
were B C D E F P with performance levels of 82% and 50% 

respectively. Performance was worse for all letters in 
experiment 2, presumably because of the stronger 
masking of the 50 msec SOA. 
Prediction 1: The blink is temporal. The first prediction 
of the model is directly addressed by the contrast of the 
two experiments. What we have found is exactly what a 
temporal account of the AB would predict, namely, a 
blink curve that is dependent on the temporal separation 
of the targets, not the presence or absence of intervening 
distractors (assuming there are no blanks in the stream).  
Figure 2d demonstrates blink curves from experiments 1 
and 2. Note, the nearly identical time course of the effect, 
bearing in mind that lag-2 in the 2nd experiment happens 
at the same time as lag-1 in experiment 1. The offset in 
performance level is presumably due to differences in T2 
trace strength as a result of the stronger masking effects of 
the faster presentation rate. The only point of departure 
from the model is that the blink is of an exactly similar 
width in experiment 1 and 2. In the model, the weaker 
T1’s used to simulate the faster presentation rate cause a 
longer blink as described by Prediction 3.  
Prediction 2: Increased T2 lag 1 performance with 
missed T1. In experiment 1, T2|NOT_T1 performance at 
lag 1 was 94%, while T2|T1 performance was 87%. This 
confirms the prediction of the model, although 
unfortunately the results only approach significance (T 
test p < .13, two tailed). This is to be expected though, as 
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the number of trials for the NOT_T1 conditions is fairly 
small and the values are approaching ceiling. 

In experiment 2 the effect is more pronounced. At 100 
msec (which is lag-2 in this experiment) performance for 
T2|NOT_T1 was 83%, well above both the baseline 
performance (60%) and sparing (68%) for the T2|T1 
condition. The difference between the T2|NOT_T1 and 
T2|T1 conditions was significant (T-Test p< .05, 2 tailed). 
Prediction 3: Labile attention. When trials were 
segregated by T1 strength in experiment 1, the two blink 
curves resemble those of prediction 2 qualitatively (not 
shown due to space restrictions), but are too close to be 
significantly different 

For experiment 2, the difference between strong and 
weak items was inherently greater (82% and 50% baseline 
rates). Consequently, the strong/weak T1 manipulation 
caused blink curves that matched the prediction well.  Weak 
T1’s shifted the deepest point of the blink from 300 msec to 
400 msec, allowing more sparing at 100 and 200 msec. 
Conversely strong T1’s caused a blink with a deepest point 
at 200 msec, see Figure 2f.  T2|T1 performance at 200 msec 
lag was significantly better in the weak T1 condition (T-Test 
p < .007 2 tailed)  

Discussion 
We have presented a reduced ST2 model that we believe 

captures the most salient aspects of the AB. This model can 
produce the following effects: changes in T1 performance, 
T1/T2 order inversions, and attenuation of the blink curve 
by blanks after T1 and T2.  Our model also generated a 
series of predictions, which we were able to verify 
empirically. 

We predict that the blink is temporal in nature. The 
influence of distractors is primarily in causing low-level 
masking of targets. Accordingly, it is the SOA between 
targets that is of primary importance in determining the 
characteristics of the blink. In our experiment, subjects 
exhibit lag-2 sparing at a rate of 20 items/sec that is nearly 
identical (relative to baseline levels of performance) to the 
time course of the 10 item/sec blink curve. 

Our model describes a method of attentional 
enhancement that creates a temporal window surrounding a 
target, but is not specific to its identity. The verification of 
prediction 2 strongly supports this hypothesis, as it is 
difficult to imagine how T2 performance at 100 msec lag in 
the T2|NOT_T1 could be elevated well above the 
performance baseline for a T2 alone if it did not receive 
some kind of enhancement from T1.   

Our model goes on to make a prediction concerning the 
changing nature of the relationship between T1 and T2 at 
different lags, and the predominantly temporal nature of the 
blink. Specifically, up to about 200ms post T1, the two 
targets directly compete with one another such that stronger 
T1s impair T2 more than weak T1’s. At lags of 300-500ms, 
this relationship changes. T1 and T2 no longer directly 
compete. In fact a weak T1 causes a greater impairment of 

T2 at these lags, due to a longer binding duration. We feel 
that these results add a new temporal dimension to 
theoretical considerations of the AB. Our work suggests 
that there are two different means by which T1 and T2 
interfere with one another. At early lags, there is direct 
interference between the targets, in line with the early 
hypothesis of (Raymond et al., 1992). At later lags, the 
system behaves as the two-stage model of (Chun & 
Potter, 1995).   

Acknowledgements 
This research is funded by EPSRC grant GR/S15075/01. 

References 
Bowman, H., & Wyble, B. (under submission). 

Computational modelling of the Attentional Blink: a 
review of the field and introduction to the Simultaneous 
Type Serial Token Model. (under submission). 

Bowman, H., Wyble, B., & Barnard, P. J. (2004). 
Towards a Neural Network Model of the Attentional 
Blink. Proc 8th Neural Comp & Psych, Progress in 
Neural Proc (Vol. 15, pp. 178-187). World Scientific. 

Chua, F. K., Goh, J., & Hon, N. (2001). Nature of codes 
extracted during the attentional blink. J Exp Psychol 
Hum Percept Perform, 27(5), 1229-1242. 

Chun, M. (1997). Types and tokens in visual processing: a 
double dissociation between the attentional blink and 
repetition blindness. J Exp Psychol Hum Percept 
Perform, 23(3), 738-755. 

Chun, M., & Potter, M. (1995). A two-stage model for 
multiple target detection in rapid serial visual 
presentation. J Ex Psyc, Hum Perc Perf, 21(1), 109-127. 

Giesbrecht, B., & Di Lollo, V. (1998). Beyond the 
attentional blink: visual masking by object substitution. 
J Exp Psychol, Hum Perc Perform, 24(5), 1454-1466. 

Kanwisher, N. G. (1987). Repetition blindness: type 
recognition without token individuation. Cognition, 
27(2), 117-143. 

Nieuwenhuis, Gilzenrat, Holmes and Cohen (In Press).  
The role of the locus coeruleus in mediating the 
attentional blink: a neurocomputational theory. J Exp 
Psychol, General 

Potter,  Staub  and O'Conner(2002).  The  Time Course of 
ACompetition for Attention:  Attention is Initially 
Labile. J Exp Psychol Hum Percept Perform, 28(5), 
1149-1162 

Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). 
Temporary suppression of visual processing in an 
RSVP task: an attentional blink? J Exp Psychol Hum 
Percept Perform, 18(3), 849-860. 

Shapiro, K. L., Arnell, K. M., & Raymond, J. E. (1997). 
The Attentional Blink. Trends Cogn Sci, 1(8), 291-297. 

Weichelsgartner E and Sperling, G. (1987).  Dynamics of 
automatic and controlled visual attention.  Science 
238(4828): 778-80 

 

2376




