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Research papers 

Forecasting groundwater levels using machine learning methods: The case 
of California’s Central Valley 

Gabriela May-Lagunes a,b,*, Valerie Chau a, Eric Ellestad a, Leyla Greengard a,*, 
Paolo D’Odorico b, Puya Vahabi a, Alberto Todeschini a, Manuela Girotto b 

a University of California, School of Information, Berkeley, CA 94720, USA 
b University of California, Department of Environmental Science, Policy and Management, Berkeley, CA 94720, USA   
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A B S T R A C T   

Groundwater, the second largest stock of freshwater on the planet, is an important water source used for 
municipal water supply, irrigation, or industrial needs. For instance, California’s arid Central Valley relies on 
groundwater resources to produce a quarter of the United States’ food demand as farmers rely on this precious 
resource when surface water is scarce. Despite its importance, the nexus between groundwater dynamics and 
climate drivers remains difficult to quantify, model, and predict because of the lack of a comprehensive obser
vation network. In this study, machine learning techniques were used to predict groundwater levels with a 3- 
month forecasting horizon for the Sacramento River Basin. For this, publicly available meteorological and hy
drological datasets and in-situ well-level measurements were used. Time series, ensemble-based, and deep- 
learning models including transformers were all tested, with an ensemble-based, XGBoost model, producing 
the best mean standard deviation percent error (MSPE) of 32.23% and a root mean squared error (RMSE) of 1.05 
m (m) when using a 3- month forecasting horizon and when tested using a monthly rolling window over the years 
2017–2020. The model proved to be better at predicting into wet months than the dry summer months and was 
found to be better at extracting seasonality than explaining well-level residuals, with well-specific features, as 
opposed to exogenous meteorological features specific to the hydrological unit of the well, ranking as the most 
important features to the model. Though other forecasting horizons were tested, a 3-month look-ahead window 
resulted in the best balance of precision and accuracy, where smaller forecasting horizons resulted in smaller 
RMSE but larger MSPE scores and vice-versa for larger forecasting horizons.   

1. Introduction 

Aquifers account for a major freshwater stock on Earth and provide a 
natural reservoir to modulate the effect of seasonal and interannual 
fluctuations of precipitation on water re- source availability. Ground
water is used by human societies for a variety of needs, including 
municipal water supply, irrigation, and industrial operations. In many 
regions of the world irrigation strongly relies on groundwater, often 
leading to unsustainable water withdrawals (or’overpumping’) and 
groundwater depletion (Wada et al., 2016; Taylor et al., 2016; Rosa 
et al., 2018). Thus, the management of groundwater resources is of great 
strategic, economic, and environmental importance. Improved ground
water management hinges, among other factors, on adequate 

observation, understanding, and prediction of groundwater dynamics, 
which often remain difficult tasks because of the dearth ofmeasurements 
and the lack of knowledge of the geological properties of aquifers. 
Therefore, there is often a very limited ability to develop process-based 
hydrological models of groundwater recharge and water table dynamics. 
This study utilizes machine learning techniques to create a model that 
can predict groundwater levels three months in advance to aid in water 
management. 

Previous successful attempts to develop machine learning models of 
groundwater levels in different target regions haveused time series, 
ensemble, and deep learning models (Tao et al., 2022). The majority of 
the input parameters in these models are based on the history of the 
groundwater levels. In other words, previous models mostly used auto- 
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correlated inputvariables (Tao et al., 2022) with only a few (or none) 
exogenous meteorological and hydrological training data (or ’features’) 
(Barzegar et al., 2017). Nevertheless, there have also been some well- 
performing models (Tao et al., 2022; Barzegar et al., 2017) that use 
input variables such as temperature, surface runoff, evaporation, pre
cipitation, surface water level and pumping rates (Tao et al., 2022; 
Barzegar et al., 2017). 

Here a readily-applicable groundwater model was developed open- 
source data to predict groundwater levels in the Central Valley’s Sac
ramento River watershed. This study limited to the Sacramento River 
basin due to the lack of data from other basins in the Central Valley. The 
Sacramento basin region is an ideal case study as it accounts for one- 
third of the Central Valley, which is a major food-producing region 
that is prone to droughts. Here in-situ measurements of well water levels 
in this region were modeled and predicted. To that end, different ma
chine learning algorithms were used and classified into three different 
categories: time series models, ensemble-based models, and deep 
learning models. There was improvement upon previous studies by 
using a larger range of meteorological and hydrological variables (or 
‘features’) that are known to affect groundwater levels, including snow 
water equivalent (SWE) (Li and Rodell, 2021) and evapotranspiration 
(ET) (Condon et al., 2020). The full list of the final features can be seen 
in appendix A.1. 

Even though different machine learning algorithms were evaluated, 
all experiments in this work followed the same principal assumptions. 
First, it was assumed that the introduction of SWE as an input variable 
would increase the learning and forecasting capability of the models, 
thus allowing them to perform better than previous models where this 

feature was not introduced. This was assumed because of the effect of 
SWE within the water cycle. Second, it was assumed that evapotrans
piration would be a good proxy for agricultural activity such as irriga
tion. Third, the effects of other human activities on groundwater levels 
in the wells were assumed to be sufficiently small to allow for a good 
forecasting capability using only meteorological features. 

Prior to this work, other studies have modeled and forecasted 
groundwater levels in different regions of the world, using a wide variety 
of machine learning algorithms (Tao et al., 2022). In this project ad
vances research in this field by making three major methodological 
changes. First, the input variables here used were chosen to try to model 
the hydrologic response as closely as possible. Previous methodologies 
have focused their efforts in modeling the groundwater level evolution 
based on historical groundwater levels and their autocorrelation. In 
other words, they focused on univariate time series analyses (Goodarzi, 
2020; de Moraes Takafuji et al., 2019). Other works have used exoge
nous input variables (i.e., other hydroclimatic variables different from 
groundwater levels), but they limited their input variables to precipi
tation, temperature, humidity, and evapotranspiration, which do not 
provide a complete representation of the water balance (Ebrahimi et al., 
2022; Zhang et al., 2023). This study uses a more complete set of input 
variables that play an important role in groundwater dynamics in this 
region, including snow water equivalent (SWE). For a complete list of 
variables used see A1. 

It is hypothesized that models such as tree-based algorithms and 
neural networks will be able to learn from the complex between 
groundwater levels and these hydrological variables, allowing the model 
to learn the underlying patterns and improve its forecasting capabilities. 

Fig. 1. Sample of wells used in this study and their hydrological region codes (HUC8 (USGC, 2023). Each well is marked with a unique identification (id) number 
that was arbitrarily assigned for this work. Table A2 (see Appendix) lists the California Natural Resource Agency’s unique station code of each well id. Wells are seen 
in clusters due to nested structure of most wells. 
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It was assumed that the fluctuation of the groundwater levels observed 
in the wells was a combination of seasonal variability and sporadic 
events that meteorological data cannot fully explain, likely due to 
human intervention. To address this point, the seasonality residuals 
were extracted and used as explained later. Finally, the proposed 
methodology has the capability of being transferred to any region of 
interest in the world thanks to the exclusive use of input variables from 
open-access and global datasets, as explained in the experimental set up 
section. 

2. Materials and methods 

2.1. Study region 

This study concentrates on groundwater resources in California’s 

Central Valley. In this region, the rate of groundwater depletion has 
been accelerating since 2003 (Liu et al., 2022) due to climate change and 
an increasing demand for irrigation. In fact, higher temperatures 
enhance evapotranspiration crop water needs, preventing adequate 
groundwater recharge. California’s Central Valley is of particular in
terest as it produces 25 % of the USA’s food supply, with an annual value 
of ≈ 17 billion (Faunt et al., 2009, 1766). The Central Valley uses both 
surface water and groundwater for farming, though multiyear droughts 
have exacerbated the strain on limited groundwater resources. Roughly 
75 % of the irrigated land in California and 17 % of the US’s irrigated 
land is in the Central Valley; approximately 20 % of the US’s ground
water demand is supplied from pumping Central Valley aquifers (Faunt 
et al., 2009). This makes the Central Valley’s aquifer system the second 
most-pumped in the USA. As such, California’s Central Valley has 
become reliant on groundwater resources, requiring unsustainable 

Fig. 2. Examples Water Surface Elevation (or water table height, WSE) time series for a) Well id: 28, b) Well id: 19.  
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Fig. 3. Flowchart showing data sources for features and target variables and data processing applied. Further information on feature definition and feature engi
neering can be found in section 2.3.6 and in Appendix 1–3. N.B. One-hot encoding and MinMax scaling are standard data pre-processing practices. More information 
about these can be found in the references (Hancock, 2020). Note that the model predicts values 3-months into the future, so the month of the test period (January 
2017) is predicting Well Surface Elevation (WSE) values for April 2017. The datasets used as input are open source and can be found here: WSE (California Natural 
Resources Agency, CNRA) (CNRA, 2023), ET (MODIS16A) (Running et al., 2022), SWE(UCLA Daily Snow Reanalysis) (Fang et al., 2022), weather features(ERA-5 
Land) (Store). 

Fig. 4. The training set connects each observation with the water surface elevation (WSE) three 

months ahead. For example, to predict month 8, WSE observations from months 1 to 4 are used for 

training, while month 5 is the test set. Similarly, to predict month 9, observations from months 1 to 5 

are the training set, and observation 6 is the test set. For month 10, observations from months 1 to 6 

are the training set, and observation 7 is the test set (green arrow). The error is the average of the WSE 

prediction errors for months 8, 9, and 10. During training, geographical and meteorological data for 

each month are matched with the WSE value three observations later (grey arrows). (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Table 1 
Most relevant models that are tested in this work and their performance in terms 
of Root Mean Square Error (RMSE, Section 2.3.2), and Mean Standard Deviation 
Percent Error (MSPE, Section 2.3.2).  

Model RMSE MSPE 

XGBoost Regressor  1.05  32.23 % 
Random Forest Regressor  1.22  35.57 % 
Temporal Fusion Transformer*  2.01  75.69 % 
Stochastic Gradient Descent Regressor  1.85  90.99 % 
Linear Regressor  1.92  101.01 %  

Fig. 5. The average Mean Square Percentage Error (AVG MSPE top) and Root 
Mean Square Error (AVG RMSE bottom) were calculated by aggregating the 
results from all wells for each tested month. It is important to note the presence 
of two x-axes in the figure. The top x-axis represents the ’Target Month’ which 
corresponds to the month for which the prediction of Water Surface Elevation 
(WSE) is being made. On the other hand, the bottom x-axis represents the 
’Inference Month’ indicating the month from which the prediction is being 
made. For instance, the first bar in the figure represents April as the target 
(predicted) month, with January as the inference month. This means that the 
prediction for April is made three months in advance, starting from January. 
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groundwater withdrawals to keep up with demands from farming and 
other sectors. In 2014, California adopted the Sustainable Groundwater 
Management Act (SGMA) to halt the depletion of groundwater resources 
in the state. Thus, local agencies are in the process of developing plans to 
limit groundwater withdrawals. Possible options include retiring some 
cultivated land, converting it into a pasture, agrivoltaic uses, or rainfed 
production through systems of rotations, incentives, and compensations. 
In 2021, because drought conditions were so severe, water deliveries to 
farms were drastically cut, shrinking the irrigated farmland by 304,300 
ha across the Central Valley. The loss caused by these cuts is estimated to 
be $1.7 billion and 14,000 jobs (Medellin-Azuara et al., 2022). Focusing 
on the area indicated in Fig. 1; and using the datasets described in 
subsection 2.2.4, it was estimated that the mean annual precipitation to 
be 22 mm, and the mean potential evapotranspiration to be 19 mm in 
the area of interest. 

2.2. Datasets 

The applicability of in-situ measurements for groundwater and its 
related features has historically been limited in its applicability to real- 
world modeling as in-situ measurements often introduce bias by relying 
on easy-to-access locations and are limited in their scope. Thus, a tran
sition to remote sensing data for exogenous meteorological and hydro
logic features can help remove some of the biases existing in previous 
models. For this project, in-situ well measurements throughout the 
Sacramento River basin were used to represent groundwater levels 
(Cunningham and Schalk, 2011; CNRA, 2023); as described in the sec
tion ‘Groundwater Wells’. 

Here the model inputs meteorological variables including snow 
water equivalent (SWE) and evapotranspiration (ET), the wells’ data 
(longitude, latitude, elevation, well depth, well usage, well type), and 
their water surface elevations. In-puts also included one-hot encoding 
for all stations, namely,the basins they were located in, as explained 

Fig. 6. Mean Standard Percentage Error (MSPE) and Root Mean Square Error (RMSE) for all wells shown in Fig. 1 with highlighted results to the right, and actual vs 
predicted values of Water Surface Elevation (WSE) between 2017 and 2020 for a) well ID: 3 and b) well ID: 8. Note that the objective was to minimize RMSE and to 
keep MSPE below 1. For further information on the meaning of the metrics refer to section 2.3.2. 
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below. A full list of the variables, or features, used on this project and 
their sources can be found in appendix A.1. 

2.2.1. Groundwater wells 
Water Surface Elevation (WSE) measurements for wells located in 

the Central Valley are taken from the California Natural Resources 
Agency (CNRA)’s continuous well-level measurement dataset, which 
contains daily measurements. WSE measurements are relative to 
groundwater level above the 1988 North American vertical datum 
(NAVD88) and reported in feet (CNRA, 2023). An initial set of 50 wells 
with at least 60 months of continuous data was first identified and then 
filtered for wells with entries at least up to 2020. The final dataset 
consists of 30 well sites, with data ranging from 2010 to 2020. The final 
sample of wells used in this study is shown in Fig. 1. Of the 30 sites, only 
3 are classified in the CNRA dataset as “irrigation” wells under the field 
called “well use”. Nevertheless, no significant difference in the season
ality of the wells classified as “irrigation” and “observation” wells was 
observed, so it is assumed that both kinds of wells are part of the same 
sample. A full list of the CNRA wells used in this study can be found in 
Appendix A.2. 

Here the seasonality was extracted using a Fourier series decompo
sition. For a further explanation on the seasonality calculation, see ap
pendix A.3. The sample wells are more densely distributed toward the 
southern part of the Sacramento Valley within three Hydrological Unit 
Code 8 (HUC8) regions: Big Chico Creek-Sacramento River, Butte Creek, 
and Sacramento Stone Corral. 

The dataset used for this study expresses longitudes and latitudes 
with 5 decimal points which corresponds to a distance of 1.11 m. There 

are several sets of clustered wells that have the same longitudes, lati
tudes, and elevations in the dataset. Their features, therefore, are also 
the same. Hence in the calculations, they are only differentiated by their 
WSE time series. 

From the CNRA groundwater wells dataset, the WSE feature was 
temporally aggregated to create average monthly values. The WSE 
value, when looking ahead 3-month, was used as this project’s target 
variable. In Fig. 2 we show the monthly time series for two wells 
together with their seasonality components (see A.3), one (well 28) with 
a positive seasonality trend, the second (well 19) with a negative sea
sonality trend. The trend represents the average increase (respectively 
decrease) from one year to the next of the seasonal component of the 
WSE. 

2.2.2. Evapotranspiration 
California’s agricultural sector requires an average of 4.2 × 1013 L of 

water per year, and roughly 80 % of all water used in the Central Valley 
goes to agriculture (Wong et al., 2021). Hence, having a way to repre
sent the impact of agriculture in the model was imperative to represent 
the hydrological processes and human activities affecting water table 
dynamics in the region. For this reason, this project uses evapotranspi
ration as a proxy for agricultural impact on the groundwater balance 
(Dari et al., 2022). The evapotranspiration dataset used in this study was 
taken from the NASA project MODIS16 (Running et al., 2022). The 
evapotranspiration data has a temporal resolution of 8 days and a spatial 
resolution of 500 m × 500 m(m) pixels. The mean evapotranspiration 
over each HUC8 hydrological region was calculated and then averaged 
monthly to create a time series that was used as the evapotranspiration 

Fig. 7. Average Mean Standard Percentage Error (MSPE) and Root Mean Square Error (RMSE) per well and hydrological region (HUC8) for every tested 
month (2017–2020). 
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feature. 

2.2.3. Snow water equivalent 
Snow from the Sierra Nevada serves as one of the main sources of 

groundwater recharge in the Central Valley. Therefore a snow water 
equivalent estimate for the Sierra Nevada snowpack from the Western 
United States UCLA Daily Snow Reanalysis (Fang et al., 2022) was used. 
Note, this project also incorporates the traditional snow pack-related 
features further elaborated in the climate variable section below. 
Snow water equivalent (i.e., the amount of water stored as snow and 
expressed as the volume of the liquid water equivalent) values are 

provided as 1-day averages with a spacial resolution of approximately 
500 m. These values were aggregated for each of the HUC8 hydrological 
regions and then temporally averaged to create monthly means (Fang 
et al., 2022). 

2.2.4. Climate variables 
The primary meteorological dataset used as exogenous features were 

taken from ERA5-Land (Muñoz Sabater et al., 2021), which is a rean
alysis of the ERA5 satellite-sourced observation data combined to create 
model-based estimates. This reanalysis combines physical models with 
observations and offers a globally complete and reliable dataset. The 

Fig. 8. Feature importance. For simplicity, variables related to the same phenomenon are aggregated. Features aggregations are detailed in Tables A1.  
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available information goes back to January 1950, giving a consistent 
description of the temporal evolution of the climate variables. The 
ERA5-Land dataset has over 60 different variables, all of which were 
used at various stages of the modeling process. The dataset’s 
geographical resolution is 9 km × 9 km (or 0.1 × 0.1 degrees) pixels and 
it is available for up to 1h of temporal resolution. The dataset used in the 
project can be downloaded directly from the the ERA5-Land site (Store). 
Similarly to the other supplementary datasets, a monthly average ag
gregation of the used readings was calculated in order to be able to join 
the features to the target variable described above. All ERA5-Land var
iables that were used in the best performing model is presented in 
Table A1. More detailed description of these specific features can be 
found in the ERA5 database documentation (ECMWF). These features 
were selected based on model performance and knowledge of the hy
drological processes underlying the nexus between climate variables 
and water table dynamics. For a more detailed description of the vari
ables see the ERA5-Land documentation (Wiki). 

To extract ERA5-Land data, the available interface takes 4 location 
points and returns the data for a square enclosed by those points. An area 
that includes the Sacramento basin was extracted but the raw data ex
tends beyond the basin’s borders. Thus, for the ERA5-Land meteoro
logical variables, an average value over the watershed was used. The 
watershed area was used as a proxy for the extent of the groundwater 
basin area, which was not readily available. So for all wells within the 
same hydrological unit (HUC8), the monthly values of the meteorolog
ical variables, averaged over that unit were used. The average was 
calculated over all points of the ERA5 data that were in the hydrological 
unit, within a tolerance of approximately 1 m. This decision is justified 
by the observation that the groundwater at a given point is influenced by 
hydrological and meteorological variables such as snow, runoff, solar 
radiation, and soil water content at locations upstream in their 
watershed. 

2.2.5. Data pipeline: from sources to predictions 
So far the datasets and groups of features that seem to have potential 

to support groundwater levels forecasting have been identified. Fig. 3 
illustrates how these diverse group of data sources were processed and 
brought together in order to create a useful input for a machine learning 
model capable of predicting future levels of groundwater in the study 
region. 

3. Problem definition 

Here the problem of groundwater level prediction with a machine- 
learning model using open-source data as input is formulated. Given 
the historical groundwater level data for each location, learning a 
regression function that would be used for groundwater prediction is 
desirable. In particular, let D=(X,y) represent the historical data set, 
where X is a set of features (representing the characteristics of a well) the 
objective is to learn a function f(x) such that the error defined in 
equation 1 is minimized on historical data. 

min
∑|D|

i=1
(f ((Xi) − yi )

2  

Fig. 9. The plot illustrates the relationship between Mean Standard Percentage 
Error (MSPE) and seasonality. On the x-axis, the graph shows the increase in the 
R-squared value of the seasonality regression. As the R-squared value increases, 
indicating a better fit to regular patterns of water surface elevation, the MSPE 
decreases. This suggests that the model performs well in capturing and pre
dicting seasonal patterns. However, it may not perform as well in modeling 
irregular events or variations in water surface elevation. 

Fig. 10. Seasonality.  
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4. Evaluation 

In this section, the aim is to evaluate the effectiveness of the pro
posed model with respect to others. The used dataset have been previ
ously described. Now follows a description of the experimental setup, 
success metrics, model comparison and the tuning process for the best 
performing model. 

4.1. Experimental setup 

To ensure consistency, only wells with at least 60 con secutive 
monthly observations were chosen to be part of the sample. A specific 
test set was created using a rolling window approach, covering the 
months between January 2017 and December 2020. The model was 
trained on all data preceding the current month in consideration. For 
example, if the test month is January 2017, the model is trained on data 
up to December 2016. Since a 3-month forecasting horizon is used, the 
model predicts water surface elevation (WSE) levels for the target var
iable month of April 2017. Similarly, for the next test month of February 
2017, the model is trained on data up to January 2017 and predicts WSE 
levels for the target variable month of May 2017. Fig. 4 depicts how the 
training and test set split was done, and how the rolling windows works. 

Out of the initial set of 50 wells, only the 30 wells that recorded 
water levels during both the training and test pe riods were utilized. This 
was done to avoid penalizing the model for unfamiliar wells that it 
hadn’t been trained on. When training for a 3-months forecast, each 
observation of the target variable was paired with features from 3 
months earlier, considering that the target variable had already been 
shifted 3 months into the future. 

4.2. Metrics 

For evaluation purposes, the following common metrics were 
adopted: root mean square error (RMSE) and mean absolute error 
(MAE). These metrics provide a straightforward measure of the vertical 
distance between the predicted and actual water surface elevation 
(WSE) values. 

Additionally, considering the regular seasonal changes in ground
water level across different wells, and the fact that none of these metrics 
fully account for this important aspect, another metric is introduced: 
mean absolute percentage error (MAPE). The formula for MSPE is as 
follows: 

MSPE =
predicted − actual

σn(actual)

Here, σn represents the historical standard deviation of an n-month 
change in WSE, where n corresponds to the number of months being 
forecasted. MSPE measures the error as a fraction of the magnitude of 
the fluctuations of a given well, and thus allows for a fairer comparison 
of errors among wells. 

The goal is to minimize both RMSE and MSPE, although the emphasis 
may vary depending on whether the focus is on optimizing the actual 
error in water level (RMSE) or the error relative to the typical fluctua
tions in water level (MSPE). 

4.3. Models comparison 

Several models were tested for the forecasting of WSE levels. The 
initial testing stages involved linear regression models, such as Bayesian 
Ridge regressions, and support vector machines (SVM) (Zhou et al., 
2017). In addition, runs of Auto-Regressive Integrated Moving Average 
(ARIMA) (Bagher Shirmohammadi and Vafakhah, 2013) models were 
done, both before and after extracting seasonality, considering various 
scenarios such as weighting the exogenous features and accounting for 
correlations. Although these models effectively captured the time series 
structure in an intuitive manner, they did not yield the best MSPE (Mean 

Squared Prediction Error) scores. 
Random Forest and Gradient Boosting. A variety of en semble 

based decision tree models were also compared with the Random Forest 
Regressor used as the baseline model in this category (Moghaddam and 
Rahmati, 2020). Gradient boosted decision tree architectures were 
evaluated against the Random Forest Regressor including XGBoost, 
Catboost, Gradient Boosting Machine (GBM), and Light Gradient 
Boosting Machine (LGBM). The highest performing model architecture 
in this category was XGboost which follows a gradient boosting frame
work. See Fig. 3 for specific hyperparameters used in final model. 

Deep Learning Models. Deep learning models were the final family 
of models tested, including the Long Short-Term Memory model (LSTM), 
and a Temporal Fusion Transformer (TFT). LSTM has been used in 
forecasting groundwater in prior work, see for example (Zhang et al., 
2018). TFT is a promising recent architecture that marries LSTM with 
transformers (Lim et al., 2019). Both are recursive neural networks that 
assess the importance of past observations in order to determine future 
observations without requiring a fixed look-back window. 

Most of the forecasting models were constructed at the basin level, 
resulting in a single model for all wells in the dataset, but efforts were 
also made to model at the well level using a variety of time series 
models, where a different model was run for each well. For those 
models, errors were calculated as an average of all individual wells’ 
errors, and were found to not outperform other approaches at the 
average level. While the former approach allows us to forecast WSE for 
any new wells in the area, the latter approach can be more closely tuned 
to each individual well. All models were trained in Python, on Google 
Colab using open source libraries including Scikit-Learn and PyTorch. 
The notebooks are available in the project repository (Ellestad et al., 
2022). It is important to note that many more models, algorithms and 
architectures have been studied to tackle inference problems related to 
the forecast of groundwater levels. These went beyond the scope of this 
project for several reasons. For a detailed literature review of these ef
forts, please refer to (Tao et al., 2022). 

4.4. Hyperparameter tuning 

Several feature engineering and data pre-processing steps in 
conjunction with the aforementioned model architectures were evalu
ated. These steps included: (1) incorporating lagged versions of exoge
nous variables (Yanti and Rahardiantoro, 2019), (2) performing feature 
normalization (Han et al., 2012); and (3) applying dimensionality 
reduction through Principal Component Analysis (PCA) (Sun et al., 
2021). Among the listed methods, only feature normalization using a 
Min Max Scalar approach, which bounds each feature within the range 
of [0, 1], demonstrated improved performance. The inclusion of lagged 
variables led to a reduction in the overall size of the training dataset 
since earlier timestamps lacked sufficient prior data for inclusion. Not to 
employing PCA was an intentional choice made to maintain the 
explainability of the results, as transforming the feature set into a 
smaller set of projected dimensions would compromise this aspect. 

5. Results and discussion 

The ensemble based models produced the best MSPE scores 
compared to the other families of models. The XGBoost regressor model 
was the best with an MSPE score of 32.23\%, when using a 3-month 
forecasting horizon. Noticeably, the deep learning models and the TFT 
had the worst performance, most likely due to the fact that it requires 
considerable amounts of training data to be effective, an amount that 
was not available in this case. Table 1 shows the total RMSE and MSPE 
for the test period of 2017 to 2020 obtained for the most relevant 
models. 

This study introduces a novel way to predict future WSE levels and to 
measure forecast error (MSPE) for a set of wells with different ampli
tudes of seasonal fluctuations for the Sacramento River Basin. MSPE is 
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useful when comparing results across wells at a given time. In these 
experiments best inference of future WSE levels in the Sacramento 
Valley was achieved by the XGBoost model for a 3-month look ahead 
period. Overall, it is more difficult to predict water levels for the summer 
months (see average MSPE and RMSE per prediction month in Fig. 5). It 
is speculated that this might be due to the irregularity of withdrawals, 
and overall stronger human intervention associated with crop-specific 
irrigation water use, the proximity of the well to water-depleted areas, 
or the condition of the water pump, in addition to the seasonal fluctu
ation of the WSE. Therefore, a better proxy feature accounting for the 
effect of human activity and water usage is needed to further improve 
the model. Fig. 5 shows the average MSPE and RMSE for each month of 
all wells in the test set over all test years (2017–2020). Since February, 
March and April were the worst performing months, March and April 
were the worst performing months for the model to predict WSE from, 
May, June and July are the hardest months to forecast, given that a 3- 
month forecasting horizon is used. 

Fig. 6 shows RMSE and MSPE values for all 30 stations as well as an 
example time-series of a well located in the Sacramento Stone Corral 
sub-basin (HUC8 18020104), Well 3. Station 3 has both good RMSE and 
MSPE relative to other wells. 

The worst MSPE performance was found for well station 8, which 
also had the sixth best performance in terms of RMSE (Fig. 6). The 
model’s predicted fluctuations of WSE for this well were quite close to 
the actual fluctuations in absolute terms, hence the low RMSE. On the 
other hand, since in this well the WSE varies very little over time, the 
small RMSE was still quite large compared to the fluctuation in WSE 
levels, resulting in a high MSPE. 

A look at the geographical distribution of the wells and their overall 
performance shows that wells in the Big Chico Creek - Sacramento River 
sub-basin (HUC8 18020157) and the Butte Creek sub-basin (HUC8 
18020158) generally had better performance than those located in the 
Sacramento Stone Corral sub-basin (HUC8 18020104), which are to
wards the bottom of the valley (Fig. 7). This may be explained by their 
proximity to the Sierra Nevada. Moreover, WSE and SWE levels were 
noticeably lower in the Sacramento Stone Coral sub-basin HUC8 
18,020,104 than in the other two watersheds, suggesting the occurrence 
of a more intense groundwater withdrawal in this area, a process that is 
only indirectly accounted for (through evapotranspiration) in the pre
sented model. For more detail, feature importance is explored. 

5.1. Feature importance 

Feature importance in the XGBoost model is measured by the per
centage of the total information that is provided by each feature. Feature 
importance was generally stable across all test months and years, so the 
rankings in Fig. 8 a show the mean feature importance values for all 
models trained in the XGBoost experiments. 

In order to get a better idea of the relative importance of various 
feature types, the importance of features that relate to the same phe
nomenon were aggregated. In Fig. 8a and Fig. 8b, all features related to 
snow (snow cover, snow depth, snow water equivalent, snow density, 
snow albedo, snow melt) are aggregated under the feature name ’snow’. 
Similarly all 4 layers of volumetric soil water are aggregated under the 
name ’soil water’, etc. See appendix for definitions of other aggregates. 

Fig. 8a relates to the original model. Note that the y-axis is based in 
log base 10. In this model, features with the highest importance, such as 
location, elevation, and history of values are all well-related. However, 
it is still unclear what specifically about those features is the cause as 
wells in the same basin will have the same meteorological features. 
Exogenous meteorological and hydrological features were expected to 
greatly impact the results (groundwater levels are expected to depend on 
precipitation in the previous months,) but were shown to have very little 
importance in general. 

One may surmise that some geographical features, such as for 
example elevation are correlated with hydrometeorological features (e. 

g., the snow features), however, similar results were observed after 
features were lagged, scaled, and had PCA performed to reduce the 
number of dimensions. 

The same process was repeated after removing the seasonality and 
the linear trend from each well’s time series of WSE. While station and 
basin remained the most important features across all months, other 
features’ importance was not as stable over time. The aggregated fea
tures had a more stable relative importance and exhibited higher 
importance of hydrometeorological features (soil water, snow, surface, 
etc.), Fig. 8b. This is consistent with the fact that well-related features 
are the most important factors governing the seasonal fluctuations of 
WSE, while meteorological features impact deviations from regular 
seasonality patterns. The low importance of precipitation in both ana
lyses (i.e., with and without detrending) suggests that fluctuations in 
WSE may be more strongly controlled by recharge from snowmelt than 
precipitation. 

It is worth noting that the most important features for the model 
were related to the location of each individual well. This could be 
because the model is able to generalise over the entire Sacramento 
Basin, so a potential use for this kind of forecast could be the prediction 
of WSE levels in locations within the basin where there is no monitoring 
at the moment. 

Nevertheless, the current ranking of model’s features does not reflect 
the expected importance of the hydrological processes. For this reason, 
several XGBoost models were trained using only a single well time-series 
at a time. It was observed that the average MSPE decreased by 0–2 % and 
the average RMSE decreased by 0–0.15 m. The feature importance dis
tribution, however, changed significantly, as observed in Fig. 8c. 

5.2. MSPE versus time and seasonality 

While mean MSPE values vary in space (i.e., across wells and are 
lower in the hydrological units that are closer to the Sierra Nevada), the 
MSPE value ranged between 15 % and 70 % over the 4 year period used 
for testing (2017–2020). Even though numerically the range appears to 
be large (55 %), it implies that the model is consistently able to predict 
well within a standard deviation of the expected value of the target 
variable. In other words, even during the hardest periods for a forecast, 
the model was able to outperform naive estimators. 

Another aspect of MSPE is that wells with less seasonal irregularity, 
as measured by the r-squared of the regression against their periodicity 
(see Appendix A.3), display a lower MSPE, which indicates that the 
model captures seasonality, but other random fluctuations are more 
difficult to model. In Fig. 9 each dot represents one well. The outlier is 
well 8 which has the lowest seasonality and therefore also a very high 
MSPE due to its low variability. 

It is important to note that the methodology followed in this work is 
transferable to any other region where the same data is available. Since 
all the data for the input variables were taken from global data products 
such as MODIS and ERA-5 Land, all relevant features are readily avail
able for any region in the world. Nevertheless, since the methodology is 
based on supervised learning, it is imperative to have good quality data 
for the target feature. In other words, in order to transfer this work to 
other places in the world it is necessary to have reliable and robust data 
sets representing historic groundwater levels at the same temporal res
olution. Therefore, the main limitation for the scaling up of this work is 
groundwater levels data availability. 

6. Conclusion 

The goal of this project was to develop and fine-tune a machine 
learning model that could forecast well water levels in order to predict 
groundwater levels for the Sacramento Valley. In addition, this model 
may be used to forecast the changes in a new well in one of the three 
watershed areas, given that well’s geographic position, elevation, depth, 
and type, as long as a proxy for historical WSE, such as that of a nearby 
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well, or an average for the sub-basin, is provided. 
Ultimately, the XGBoost model predicting 3 months ahead provided 

the most accurate and precise results, with an average MSPE of 32.23 %, 
with an average RMSE of 1.05 m. Overall, the XGBoost model was able 
to pick up seasonal patterns with well-specific related features being 
more important than exogenous meteorological and hydrological 
features. 

Using more accurate data sources for those exogenous features and 
including other aspects that affect groundwater levels is something that 
can be improved upon in future iterations of the study. 

Additionally, there are other hydrological factors not yet accounted 
for in the dataset. For instance, because wells differ in the amount of 
energy required for water withdrawal, there are situations where wells 
that are further away but easier to pump (i.e., they require less energy) 
are preferentially used over wells that are closer but water withdrawals 
from them require more energy. This means that well levels are not 
necessarily the most accurate way of depicting local usage and finding a 
way to account for this effect could improve the representation for the 
impact of human action. Collectively, the results presented in this study 
show the potential offered by artificial intelligence methods in the 
modeling of groundwater dynamics and the water table dependence on 
hydrometorological drivers. 

It is important to note that climate change will have relevant impacts 
on the forecasting capabilities of the proposed models, but the definition 
of those effects go beyond the scope of this project. Therefore, the au
thors propose that future work should look into different climate sce
narios by using data sets such as CMIP6 (O’Neill et al., 2016). 

Finally, the authors believe that the methodology proposed here is 
accessible for water management and agriculture organizations aiming 
to improve their water security resilience and preparedness. From the 
creation of data-driven public policy at the regional level, to the 
development of sustainable water management practices for individual 
agricultural practitioners, the forecasting capability of the proposed 
model can harness the potential of data to help people and organisations 
achieve their water security goals. 
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A. Appendix 

A.1. Meteorological and descriptive feature names and definitions 

Table A1 has the list of all meteorological variables used as exogenous features, descriptive variables giving information about the wells location 
and use, and the aggregates they to in the feature importance rankings reported previously in Fig. 8. With the exception of Snow Water Equivalent 
(SWE), which comes from the the Western United States UCLA Daily Snow Reanalysis project Fang et al., 2022, all other features below are from ERA5- 
land Store.  

Table A1 
List of all variables used. Left to right columns indicates the variable as defined by the native product, its definition, the data source for these variables, and the assigned 
aggregate name to explain feature importance, respectively.  

Variable name Definition Data source Aggregate name 
* 

ro runoff ERA-5 Land (Store) runoff 
ssro subsurface runoff ERA-5 Land (Store)  
sro surface runoff ERA-5 Land (Store)  
e evaporation ERA-5 Land (Store) et 
et evapotranspiration MODIS16A (Running et al., 2022)  
slhf surface latent heat flux ERA-5 Land (Store) surface 
ssr surface net solar radiation ERA-5 Land (Store)  
str surface net thermal radiation ERA-5 Land (Store)  
sshf surface sensible heat flux ERA-5 Land (Store)  
ssrd surface solar radiation downwards ERA-5 Land (Store)  
strd surface thermal radiation ERA-5 Land (Store)  
asn snow albedo ERA-5 Land (Store) snow 
snowc snowcover ERA-5 Land (Store)  
rsn snow density ERA-5 Land (Store)  
sde snow depth ERA-5 Land (Store)  
sd snow depth water equivalent ERA-5 Land (Store)  

(continued on next page) 
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Table A1 (continued ) 

Variable name Definition Data source Aggregate name 
* 

sf snowfall ERA-5 Land (Store)  
smlt snowmelt ERA-5 Land (Store)  
swe snow water equivalent UCLA Daily Snow Reanalysis project (Fang et al., 

2022)  
swvl1 volumetric soil water layer 1 ERA-5 Land (Store) soil_water 
swvl2 volumetric soil water layer 2 ERA-5 Land (Store)  
swvl3 volumetric soil water layer 3 ERA-5 Land (Store)  
swvl4 volumetric soil water layer 4 ERA-5 Land (Store)  
tp total precipitation ERA-5 Land (Store) precipitation 
elevation elevation from sea level CNRA (CNRA, 2023) elevation 
longitude longitude CNRA (CNRA, 2023) lon_lat 
latitude latitude CNRA (CNRA, 2023)  
standalone well is not part of a well cluster CNRA (CNRA, 2023) well_type_use 
cluster well is part of a well cluster CNRA (CNRA, 2023)  
irrigation well used for irrigation CNRA (CNRA, 2023)  
observation well is used for observation CNRA (CNRA, 2023)  
station code CNRA well unique 

code 
CNRA (CNRA, 2023) station  

huc8 CNRA hydrologic unit unique code CNRA (CNRA, 2023) huc8 
basin CNRA unique basin code CNRA (CNRA, 2023) basin 
well depth CNRA well max depth with respect to sea level in meters CNRA 

(CNRA, 2023) 
well_depth  

time CNRA timestamp (UTC) of wse measurements CNRA (CNRA, 2023) time 
wse CNRA water elevation level (project target variable) CNRA (CNRA, 2023) wse 
residual seasonality residual calculated as described in A.3 residual  

A.2. Well descriptions 

Table A2 reports the information about the 30 wells in the dataset.  

Table A2 
The information about the 30 wells in the dataset is reported. The columns include Well Id, Station Code, HUC8, Basin, Well Use (irrigation or observation), Well Type 
(nested or single), Latitude, and Longitude. Well Id, as showed in Fig. 1 is the assigned numbering for the 30 wells in the final dataset. Other columns are California 
Natural Resources Agency (CNRA) station code; HUC to which the well belongs; Basin to which the well belongs; Well Use - irrigation or observation; Well Type - 
whether the well is part of a part of a nested/multi-completion well or a single well; Latitude; Longitude.  

Well Id Station Code HUC8 Basin Well Use Well Type Latitude Longitude 

1 13N01E24G003M 18,020,104  5–021.62 Observation Multi  38.9605  − 121.8102 
2 13N01E24G004M 18,020,104  5–021.62 Observation Multi  38.9605  − 121.8102 
3 14N01E35P001M 18,020,104  5–021.52 Observation Multi  39.012435  − 121.829041 
4 14N01E35P002M 18,020,104  5–021.52 Observation Multi  39.012435  − 121.829041 
5 14N01E35P003M 18,020,104  5–021.52 Observation Multi  39.012435  − 121.829041 
6 14N01E35P004M 18,020,104  5–021.52 Observation Multi  39.012435  − 121.829041 
7 16N02W05B001M 18,020,104  5–021.52 Observation Multi  39.275273  − 122.105677 
8 16N03W14H004M 18,020,104  5–021.52 Observation Multi  39.241473  − 122.153517 
9 16N03W14H005M 18,020,104  5–021.52 Observation Multi  39.241473  − 122.153517 
10 17N01E17F002M 18,020,158  5–021.70 Observation Multi  39.32572  − 121.882942 
11 17N01E17F003M 18,020,158  5–021.70 Observation Multi  39.32572  − 121.882942 
12 17N01W10A001M 18,020,158  5–021.70 Observation Multi  39.343775  − 121.951948 
13 17N02W09H003M 18,020,104  5–021.52 Observation Multi  39.341681  − 122.083787 
14 17N02W09H004M 18,020,104  5–021.52 Observation Multi  39.341681  − 122.083787 
15 20N01E18L003M 18,020,158  5–021.70 Observation Multi  39.577063  − 121.908277 
16 20N02E09G001M 18,020,158  5–021.57 Observation Single Well  39.615453  − 121.739123 
17 20N03E31M001M 18,020,158  5–021.57 Observation Single Well  39.54458  − 121.687321 
18 20N03W07E001M 18,020,104  5–021.52 Observation Multi  39.604892  − 122.249484 
19 20N03W07E002M 18,020,104  5–021.52 Observation Multi  39.604892  − 122.249484 
20 20N03W07E003M 18,020,104  5–021.52 Observation Multi  39.604892  − 122.249484 
21 21N02W01F001M 18,020,104  5–021.52 Observation Multi  39.704336  − 122.038614 
22 21N02W01F002M 18,020,104  5–021.52 Observation Multi  39.704336  − 122.038614 
23 21N02W04G005M 18,020,104  5–021.52 Observation Multi  39.703325  − 122.091003 
24 21N02W33M003M 18,020,104  5–021.52 Observation Multi  39.629906  − 122.100662 
25 22N01E35E001M 18,020,158  5–021.57 Irrigation Single Well  39.718223  − 121.843211 
26 22N02W15C002M 18,020,157  5–021.51 Observation Multi  39.763431  − 122.077156 
27 22N02W30H002M 18,020,104  5–021.52 Observation Multi  39.73245  − 122.123331 
28 23N02W28N001M 18,020,157  5–021.51 Observation Multi  39.811489  − 122.102064 
29 23N02W28N002M 18,020,157  5–021.51 Observation Multi  39.811489  − 122.102064 
30 24N02W01L002M 18,020,157  5–021.56 Observation Multi  39.961965  − 122.03913  
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A.3. Calculating seasonality 

Seasonality was extracted using a Fourier series decomposition of WSE. Compared to the method of calculating the average value of WSE for each 
month over the entire period, this approach has the advantage of estimating the trend of the periodic changes. For example not only does this approach 
show that the highest level of WSE for any given year is achieved in April, but also, that over the years the WSE level for April has been decreasing. In 
addition, this method provides a better approximation of seasonality asit results smaller residuals. The Fourier decomposition follows the equation. 

y(t) = at +
∑10

i=1(βisin(t) + γicos(t) )+ ∈t(3)where y(t) represents WSE at time t, αt is the linear component (trend,) 
(∑10

i=1(βisin(t) + γicos(t) )
)

is 

the periodic seasonal component, and ∊t the residual at time t. The coefficients α, βi and γi are estimated by running a linear regression. The below show 
the decompositions for wells 3 and 8 which were discussed in the text and for well 10 which had the highest r-squared. By observing that there is a 
pattern in the residuals for the first two wells, one can surmise that other factors are influencing their WSE’s. The residuals of the third well appear to 
be much closer to a random walk. 

It is important to note that the second well in Fig. 10 shows that in that particular well the hydrologic signal did not have a strong seasonal 
behavior, therefore the groundwater level fluctuations have a different origin, such as hydrological, meteorological or human, than just the seasonal 
water cycle. This case illustrates the strength of our methodology since it takes into account all the exogenous factors described in the text. From a 
mathematical point of view, the seasonality calculation is solely based on the past history of water level fluctuations whereas our methodology in
cludes other factors. In this particular case, a close look at the graph shows large deviations from seasonality during the drought periods of 2016 and 
2021, during which according to the US Drought Monitor large areas had exceptional droughts. 

A.4. XGBoost model full list of hyperparameters used 

Table A4  

Hyperparameter Value 

booster ’gbtree’ (default) 
verbosity 1 (default) 
validate_parameters ’True’ (default) 
maxthreads Not specified (default) 
disable_default_eval_metric ’False’ (default) 
num_feature Not specified (default) 
learning_rate 0.01 
min_split_loss 0 (default) 
max_depth 10 
min_child_weight 1 (default) 
maxthreads Not specified (default) 
max_delta_step 0 (default) 
subsample 1 (default) 
sampling_method ’uniform’ (default) 
colsample_bytree 0.7 
colsample_bylevel 1 (default) 
colsample_bytree 1 (default) 
lambda 1 (default) 
alpha 0 (default) 
tree_method ’auto’ (default) 
scale_pos_weight 1 (default) 
refresh_leaf 1 (default) 
process_type ’default’ (default) 
grow_policy ’depthwise’ (default) 
max_leaves 0 (default) 
max_bin 256 (default) 
predictor ’auto’ (default) 
num_parallel_tree 1 (default) 
objective ’reg:squarederror’ (default)  
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