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PERSPECTIVE
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ABSTRACT

The science and tools of measuring energy intake and output in humans have rapidly advanced in the last decade. Engineered devices such
as wearables and sensors, software applications, and Web-based tools are now ubiquitous in both research and consumer environments. The
assessment of energy expenditure in particular has progressed from reliance on self-report instruments to advanced technologies requiring
collaboration across multiple disciplines, from optics to accelerometry. In contrast, assessing energy intake still heavily relies on self-report
mechanisms. Although these tools have improved, moving from paper-based to online reporting, considerable room for refinement remains in
existing tools, and great opportunities exist for novel, transformational tools, including those using spectroscopy and chemo-sensing. This report
reviews the state of the science, and the opportunities and challenges in existing and emerging technologies, from the perspectives of 3 key
stakeholders: researchers, users, and developers. Each stakeholder approaches these tools with unique requirements: researchers are concerned with
validity, accuracy, data detail and abundance, and ethical use; users with ease of use and privacy; and developers with high adherence and utilization,
intellectual property, licensing rights, and monetization. Cross-cutting concerns include frequent updating and integration of the food and nutrient
databases on which assessments rely, improving accessibility and reducing disparities in use, and maintaining reliable technical assistance. These
contextual challenges are discussed in terms of opportunities and further steps in the direction of personalized health. Adv Nutr 2022;13:1–15.

Statement of Significance: This article is the first to discuss the status and challenges of current and emerging technology tools designed
to measure individual food intake, eating behavior, and physical activity through the perspectives of 3 stakeholders: researchers, users, and
developers. The objective of this work is to bring together experts to address interdisciplinary and cross-cutting issues with the shared mission
of improving the measurement of energy intake and expenditure.

Keywords: dietary assessment, food apps, wearable device, physical activity, mobile health, image recognition, image-based dietary records

Introduction
The collective and cross-disciplinary contributions of sci-
entists, engineers, software developers, and experts from
multiple technical domains are beginning to arrive at what
even a few decades ago was just a dream: personalized health.
The fields of personalized nutrition and physical activity have
broadly kept pace with other health disciplines in this regard,
contributing to deeper understanding of complex, multi-
tiered relations between food, eating behaviors, metabolic

regulation, and energy balance. The future of personalized
health and the next generation of nutrition and physical
activity guidance rely heavily on what we can learn about
individual behavior, which requires accurate assessment of
these behaviors.

This article discusses the status of and ongoing chal-
lenges for current and emerging technology tools designed
to measure individual food intake, eating behavior, and
physical activity through the perspectives of 3 stakeholders:
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researchers, users, and developers. These tools have multiple
applications including monitoring outcomes in interven-
tions that strive to alter dietary intake (1) or physical
activity (2), and have the potential to transform energy
metabolism research and improve health outcomes. With
growing interest in determinants that influence individual
variability in health outcomes, such as genetic, behavioral,
and psychological differences, these tools can enable self-
monitoring, allow for detailed research analysis, and provide
an avenue for personalized professional recommendations.
Previous review articles have summarized the current state
of tools for assessing dietary intake (3–6), eating behavior (7,
8), and physical activity (6, 9, 10).

Broadly, current tools tend to be either active (requiring
user input) or passive (not requiring user input). Examples
include engineered devices such as wearables and sensors,
mobile phone applications (apps), and Web-based tools. One
promising area of emerging tools is sensor technology that
aims to enable more accurate and objective measurement
of dietary intake and eating behavior than self-report.
These sensor-based tools generally fall into 3 categories:
wearable sensors, camera-based devices, and weight scale–
based devices. Wearable sensors include devices with sensors
on the head or neck to detect chewing or swallowing
(11–16), wrist-based inertial sensors to detect hand-to-
mouth gestures as a proxy for bites (12, 17, 18), and
others (19–21). Camera-based methods (21–25) use food
images to recognize consumed food and estimate energy
intake. Weight-scale devices are used in dining locations
to continuously weigh consumed food (26–28), although
eating behaviors can only be captured at the location of the
instrument (29).

Multimodal sensing technology has advanced steadily,
with the development of devices that have improved esti-
mates of physical activity, energy expenditure, and sleep, and
provide important contextual information. For example, for
tracking activity, a multimodal sensing device may include
traditional actigraphy and ≥1 of the following: multiple
accelerometers (30), gyroscopes (31), magnetometers (31),
inclinometers (32, 33), Global Positioning System (GPS)
(34, 35), photovoltaic sensors (36–38), heart-rate sensors
(39), wireless proximity sensors (40), galvanic skin sensors
(41), and user-friendly screen displays (42). However, few
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if any devices on the market contain all these features, due
in part to manufacturing costs, battery demands, and size
limitations. Going forward, advancements will likely involve
improving existing features and combining them into a single
device (43), much like a commercially available smartwatch
(44). Each of these tools, and others discussed in this
article, present challenges and opportunities for stakeholders
(Table 1). Underpinning most new or emerging tools are
questions of user burden, validity, and privacy.

Before proceeding to specific challenges, we submit the
following underlying premise: that stakeholders share the
goal of accurately measuring intake and expenditure by 1)
maximizing the capture of objective data, and/or 2) minimiz-
ing error in the capture of subjective data. For emerging tools,
this generally means moving toward technology that can
capture data as freely as possible from user input. Further, any
new tools should reduce or minimize the burden on users and
researchers (45). For researchers, tools should maximize the
amount and completeness of data collected, include a reliable
system of data storage and retrieval (46), and, when possible,
have automated, standardized, and harmonized data coding
that uses shared terminology and definitions (45). For users,
tools should be simple and intuitive, provide privacy controls
(47, 48), and require minimal instruction (49, 50) and time
to complete assessments (46). For developers, particularly
where monetization opportunities exist, satisfying the de-
mands of researchers and users should ensure use by both
groups remains high and continuous. Finally, sustained user
adherence is a desirable goal for all stakeholders.

Current Status of Knowledge
State of technology tools: assessing energy intake
compared with expenditure
Current physical activity tools are considerably more ad-
vanced than dietary intake tools. Although both intake and
expenditure methodologies previously relied heavily on sub-
jective data, technology for measuring expenditure has suc-
cessfully integrated expertise across wide-ranging fields (e.g.,
optics, electromechanical engineering, inferential statistics)
and has advanced in nearly all necessary technical and
nontechnical domains, from complex algorithms that can
differentiate between psychological or physical stressors (51),
to the aesthetic elegance of wearable devices. Meanwhile,
intake methodologies still overwhelmingly rely on digital
adaptations of paper-based instruments of self-reported in-
take, including diaries, records, and image-based approaches.

Assessing intake may be more complex than assessing
expenditure because intake is a question of measuring not
just behavior, but also endless heterogeneous origins, prepa-
rations, and combinations of foods. Further, even if people
were able to perfectly describe the foods they ate, they would
not be able to report their nutritional qualities. There are
significant opportunities for advancing the development of
intake technologies that, similarly to expenditure-measuring
technologies, make use of a wide range of scientific fields to
better capture both food intake and eating behavior.
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TABLE 1 Summary of opportunities and challenges of emerging technologies in dietary assessment and energy expenditure

Researcher challenges User challenges Developer challenges

Dietary intake and eating
behavior

� Upgrade self-reported dietary
intake assessments

� Enhance portion size
estimation

� Simplify and maximize food
lists

� Validate dietary assessment
tools

� Consider reactivity in
self-monitoring

� Streamline user interface of
dietary assessments

� Increase convenience and
decrease burden of dietary
assessment

� Improve wearability, comfort,
and acceptability

� Capitalize on opportunities to
improve existing tools

� Improve image-based
methods of assessment
(active image capture, passive
image capture and
multimodal sensing,
segmentation, food
recognition, portion size
estimation, food-image
databases, automatic image
analysis)

� Preserve privacy in public
� Create new tools

Energy expenditure and
physical activity

� Improve energy expenditure
assessment

� Standardize validation studies
of activity trackers

� Incorporate novel analysis
techniques for activity tracker
data

� Increase convenience and
decrease burden of dietary
assessment

� Improve wearability, comfort,
and acceptability

� Capitalize on opportunities to
improve existing tools

� Preserve privacy in public

Cross-stakeholder
challenges

� Simplify dashboards and enhance communication with users
� Enhance user and researcher output of dietary intake
� Improve accessibility and reduce disparity
� Build motivation to encourage long-term use
� Technical assistance
� Build collaborations
� Preserve user and bystander privacy while maximizing data collection
� Maintain data integrity

Researcher perspectives
Many challenges and opportunities exist for researchers
to address both input-focused and output-focused needs.
Here, we define input-focused needs as those related to
the quality of incoming data (e.g., accuracy of user food
intake reports, completeness of food and nutrient databases),
whereas output-focused needs include generating research-
ready data that are use-compatible across multiple platforms
and use commonly agreed-upon terminologies, researcher
and/or user dashboards, and other output, such as automated
health messaging.

Input-focused needs.
Upgrade self-reported dietary intake assessments. Con-

ventional methods of dietary assessment are interviewer-
administered 24-h dietary recalls, FFQs, and dietary records,
all of which are self-report (52) and subject to error via
limitations of human memory, social desirability bias (52,
53), and reactivity to self-monitoring [i.e., altered energy
intake on reporting days (54)]. Development of modern
dietary assessment tools has focused on digital adaptations of
these conventional methods [e.g., online 24-h dietary records
(55), online FFQs (56)] and food-logging apps (57), which are
already in widespread use. Although these tools will continue
to experience self-report limitations, there is room for other
improvements, especially with respect to accuracy of portion
size estimation and amount of user burden.

Enhance portion size estimation. A participant’s ability to
estimate and remember portion sizes of consumed foods
has been a large source of error in dietary assessment
(58, 59) and thus is a target for improvement. Some
new, common self-report methods (e.g., food-logging apps)
use reference images of portion sizes to assist users with
estimation (3, 50, 60). Flexibility in entering portion size is
another consideration. Some software allows users to choose
portion sizes from a predefined list, or enter them manually,
and choose between different measurement units, such as
standardized portions or household measures (3, 50, 61).
Additional software improvements would allow for inclusion
of dimensions and packaged food amounts (3, 50, 61) and
automatic conversion of variably reported portion sizes into
standard metric units for research purposes, meeting both
user and researcher needs. Ideally, data will be harmonized
for use across different platforms, necessarily preceded by the
development of common data terminologies, to also allow
for accurate comparisons of data points, such as nutrient
calculations.

Promising emerging approaches use images of consumed
foods, such as image-assisted dietary recall [in which images
are used to assist a research participant (62, 63)], image-based
dietary record [in which images document eating occasions
(63, 64)], and automated image analysis (65). Advantages of
such methods are reduced reliance on participant memory
and direct visual documentation of eating occasions (66).

Opportunities and challenges of technology tools 3



In particular, image-assisted 24-h dietary records have been
shown to reduce underreporting (62).

Food images can be analyzed with manual, semiauto-
matic, and automatic approaches (5). Manual image analysis
has the most potential for immediate application in research;
however, approaches with higher levels of automation require
further development. As with image-assisted methods, accu-
rate analysis requires high-quality images (67).

Simplify and maximize food lists. A great deal of user
burden in self-report software and apps derives from lists
of food items. Presented lists depend on the quality of the
underlying food databases and affect the accuracy of user
entry and output data (68, 69). Determining the optimal
length of the food list has been a challenge (61, 68).
Although extensive and highly detailed lists may benefit
researchers (70–72), for users, scrolling through long lists
can be burdensome (68). Even so, concise food lists also
may be problematic (61), even if they produce only small
differences in total nutrient intake compared with extensive
lists (69, 73), because users may feel frustrated when precise
food items cannot be found. There is limited research on
how users find the “best match” when an exact match is
missing (68). Although barcode entry eases user burden,
manufacturer data on which researchers subsequently rely
may be incomplete. Hence, researchers must compare the
benefits and limitations of different databases, as well as their
effects on user-entry behavior, and the specificity of resulting
data.

Validate dietary assessment tools. Several reviews have
examined the validity [i.e., acceptable levels of accuracy,
precision, and reliability (52)] of technology tools for
measuring dietary intake (3, 45, 60, 61, 66, 74–76). A recent
review (3) of technology-based tools for research, surveil-
lance, or consumer use identified interviewer-administered
24-h dietary records, weighed portions, biomarker data, and
direct observation of eating occasions as common refer-
ence/validation measures. Although most of the reviewed
comparison studies showed acceptable levels of agreement
between the technology tool and the traditional self-report
method (within ∼60 kcal), it was observed that use of
validation biomarkers was lacking (3). Such comparisons
can provide valuable information, but researchers should be
cautious of possible correlated errors and seek validation
studies that use objective measures such as doubly labeled
water (DLW) or direct observation.

Improve energy expenditure assessment. As with dietary
assessment, self-report via diaries or questionnaires was the
most common method for measuring physical activity in
research (77–79). Although such methods are inexpensive
and convenient, they have poor reliability and validity
compared with DLW (10). Like intake data, self-reported
physical activity is affected by question misinterpretation,
recall bias, and social desirability (10, 78, 79). Floor effects
have been observed with unstructured or spontaneous

activities (e.g., housework, gardening), resulting in failure to
capture low-intensity activities (77, 79). Overestimation is
another common issue (77, 78).

As noted, the use of physical activity devices has become
increasingly common by consumers (80, 81), and in epidemi-
ological (82) and intervention (79) studies. Common activity
trackers include pedometers, accelerometers, and heart-rate
monitors. Despite their widespread use, these devices are
still somewhat limited in capturing physical activities that
vary in intensity and displacement (i.e., stationary compared
with mobile). Pedometers can measure only walking activity
in step counts (83). Accelerometers have limited sensitivity
with detecting light-intensity activities and nonambulatory
activities such as cycling and weightlifting (9). The perceived
relation between heart rate and energy expenditure has
been the premise of using heart-rate monitors, but they
have poor correlation at low and high intensities (10, 83).
Beyond physical activity, energy expenditure can already be
measured by direct calorimetry using existing, innovative,
portable tools, such as the Personal Calorie Monitor (84).
However, the ongoing challenge is to develop devices or
analytic methods that can assess all types of physical activities
and energy expenditure, as well as associated physiological
phenomena (e.g., body temperature, perspiration, heart rate)
(85). The field is already moving toward integration. Recent
studies show it is possible to distinguish, using a wristband
device, between simultaneous psychological and physical
stressors (51). Another recent device undergoing validation is
a commercial wristband containing a photoplethysmogram,
accelerometer, thermometer, capacitive touch sensor, and
gyroscope (86, 87).

Additional significant upgrades to existing devices and
tools would also address user- and/or population-based
differences in activity, which can vary by sex, age, ability,
health status, and other characteristics (10). New tools
should include feedback and data output that reflect
user characteristics such as age, sex, body composition,
fitness, and perceived exertion. In addition, given that
most validation studies have been done in laboratory
settings, key environmental characteristics that influence
perceived exertion such as elevation, temperature, and
humidity (88–90) would ideally be captured by newer devices
and software, and integrated into expenditure estimation
algorithms.

Standardize validation studies of activity trackers. Thus
far, validation studies of activity trackers have exhibited
heterogeneity in study design and activity calculations,
posing challenges to comparisons. Variable aspects of
study design include definition of “valid” days that are
suitable for analysis [e.g., 10 h of wear time (91)], de-
vice placement [e.g., hip compared with wrist (9, 92)],
and context [laboratory compared with free-living (9)].
As noted, many validation studies are conducted in the
laboratory. However, pattern recognition models based on
laboratory data have limited validity in free-living settings
(9, 93).
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In addition to study design, the devices themselves
exhibit heterogeneity in sensitivity, sampling frequency,
noise-separating filters, and other aspects of data capture
(91). Algorithms for obtaining desired output such as steps,
energy expenditure, and distance use different underlying
calculations, which are further obscured by their proprietary
nature and restricted sharing (9, 92). In data analysis, there
is little consensus on best practices for data processing,
algorithms (94), and data interpretation [e.g., the “cut-point
conundrum” (95)]. Given these variables of study design
and calculations, standardizing data output and validation
methods is logistically difficult, and will likely require
significant and ongoing collaboration between researchers
and developers.

Consider reactivity in self-monitoring. Reactivity in self-
monitoring—the conscious or unconscious changes in be-
havior as a reaction to the act of self-monitoring (54)—is
a recognized phenomenon in both intake and expenditure
research. For example, wearing an activity monitor may cause
a participant to exercise more than usual (96), or using a food
app may shift participant eating behavior away from complex
dishes to mitigate the burden of logging foods (53, 68, 97).
To date, few studies have examined how technology tools
induce this reactivity (66). From a researcher perspective,
it is beneficial to have control over the feedback or health
messages a user receives from a program. The frequent desire
of researchers to minimize reactivity to self-monitoring is
often in direct contrast to user preferences to access and use
their own health data.

Output-focused needs.
Simplify dashboards and enhance communication with

users. Online 24-h dietary records, online FFQs, and food-
logging apps should have a customizable dashboard for re-
search participant management tasks such as registering new
participants, updating contact information, viewing lists of
usernames, and exporting files (49, 70). Such improvements
need not be limited to dietary data. Integrating both real-
time intake and expenditure data in a live dashboard is
aspirational, and would provide researchers (and users, if ap-
propriate) with opportunities to detect and address missing
data due to technical issues or participant noncompliance
(98).

Immediate communication with participants would be
beneficial as well. In particular, Ecological Momentary As-
sessment (EMA) prompts have been shown to be successful
methods of user engagement (98). EMA involves real-time
measurements of behaviors and experiences of research
participants in their natural settings (99). Advantages of
EMA-based communication with participants include the
ability to provide feedback on image or input quality and
address and edit implausible or incomplete entries (45).

Enhance user and researcher output of dietary intake.
Researchers also must specify the output desired from
technology tools, including transformations of raw intake

data. Some tools, such as the Automated Self-Administered
24-hour (ASA24) Dietary Assessment Tool, already perform
automated calculations of food and nutrient intake, including
food group and supplement data (61). Researchers have an
important role in determining the accuracy of calculations,
decisions that should not rest with developers alone (68).
Updated tools should improve the accuracy of nutrient intake
calculations derived from recipe functions that prompt users
to enter ingredients and preparation methods (100), and
include foods, food groups, food patterns, and supplement
data. Further, these should be equipped to export data in mul-
tiple file formats for both users (if desired) and researchers
(46). Cross-platform compatibility—or the ability to readily
harmonize data across different platforms—to accurately
compare the accuracy and validity of multiple inputs, and
to integrate outputs, would be an ideal outcome in current
and future software/platform iterations. As mentioned, such
harmonization requires the development of common data
terminology as well as essential metrics that can be easily
translated for a variety of end-users (e.g., researchers,
clinicians, users).

Incorporate novel analysis techniques for activity tracker
data. As noted, many activity trackers have built-in propri-
etary algorithms for measuring activity counts and trans-
lating them to minutes of activity or energy expenditure.
Researchers have more recently focused on machine learning
to analyze activity counts, as well as raw acceleration data
(94, 101). Machine-learning algorithms create a predictive
model by associating patterns of raw data based on known
reference activities (102), thereby addressing concerns of
physical activity as a nonlinear action and heterogeneity
of developer-defined activity counts. Identifying the most
relevant method of machine learning for a given application
is a key consideration, and may include random forest (103),
artificial neural network (104), and support vector machine
(105, 106) approaches, among others. Distinctions between
free-living and laboratory-based activities (94, 107) and
consideration of on-body location (12) will be able to further
refine estimates of expenditure.

User perspectives
Streamline the user interface of dietary assessments.
Potential users of digital dietary assessments include con-
sumers, research participants, and patients. Accordingly,
developing new tools should be an iterative process that
involves usability testing and improvements based on user
feedback (108), which has often emphasized the importance
of aesthetics, simplicity, intuitiveness, and practicality (70,
108–110). Notably, users have expressed preferences for a
clean layout with no pop-ups (70) and a flat interface with
a single screen for multiple recall activities such as selecting
food items, recording times of meals, and specifying portion
sizes (108, 111). Some users prefer a predefined list of meals
or template that gives structure to the recall (108). As users
make entries on the main screen, a side navigation panel with
a dynamic list of entered items and options to edit them has
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been shown to be helpful (108). Graphics and images, such as
examples of portion sizes, also could improve aesthetics, ease
of use, and data validity (109).

Increase the convenience and decrease the burden of
dietary assessment.
Any new technology tool should be convenient and mini-
mally disruptive to the user’s lifestyle (112, 113). In research,
investigator preferences for detailed, accurate data often
conflict with user needs for convenient reporting methods
(70). Users have noted difficulties with logging food intake
in various situations such as commuting, at the workplace,
and in social gatherings (113), and perceive the recording
process as time-consuming and burdensome (113, 114).
Hence, tools could have the option to customize the level
of detail for dietary assessment (115), or different tools
could accommodate specific needs of users (and, ostensibly,
researchers).

As mentioned, tools could provide multiple options for
data entry, such as image capture, text, selection from
databases, and barcode scanning (63), and should be adapt-
able to different devices including smartphones and others
(116), thereby catering to user preferences. Moreover, tools
should allow users to either make entries during eating
occasions or make all entries in 1 sitting, similar to a recall,
although this flexibility may be problematic in research
settings (109). Regardless of the data entry method, users
should be able to edit entries at any time and review them
before final submission (108, 109). Ultimately, features that
make tools flexible and convenient help users adhere to long-
term reporting of dietary intake.

Improve wearability, comfort, and acceptability.
Comfort and acceptability are important considerations for
wearable devices. The ideal wearable intake or expenditure
device is portable, lightweight, unobtrusive, and aesthetically
pleasing (117). Examples of current intake wearables include
cameras worn around the neck (62, 118), a microcamera
attached to the ear (119), a badge-like miniature camera
(65), and a head-mounted camera (120). Users reported
discomfort with using an ear-worn microcamera (119) or
neck-worn camera (62, 96) and a preference for small,
inconspicuous designs (96).

Another important consideration is creating a device that
can be easily worn in the correct orientation such that users’
body shapes and postures do not affect data capture and
quality (62, 121). Device placement is critical for activity
trackers as well; the hip is the most widely used target owing
to its proximity to the center of mass and ability to capture
most movements. However, many people remove devices
before sleeping or showering, resulting in poor compliance,
and belts can move and twist throughout the day (92).
Innovative “smart clothing” (122, 123)—although eminently
wearable—suffers from similar limitations. Device placement
on the nondominant wrist has garnered great interest because
of its potential to increase compliance and total wear time
(92), but wrist-worn trackers may fail to accurately capture

energy expenditure of nonambulatory arm movements (44)
and may not function properly in populations that use
assistive devices (124). Hence, developing a device that is
accurate, functional, and acceptable for daily continuous
wear by diverse users is an ongoing challenge.

User comfort with devices in public and social settings
is another important consideration, especially for image-
capture tools. Notably, users have expressed feeling embar-
rassed or self-conscious taking images or videos of their
meals in front of other people (113, 114), and wearable
cameras often attract unwanted attention (125). Hence, when
designing studies, investigators should weigh the benefits
and limitations of attention-drawing tools (e.g., wearable
cameras) compared with more discreet ones (e.g., apps).

Improve accessibility and reduce disparity.
Smartphone ownership is growing rapidly worldwide, but
growth has been largely restricted to younger and better-
educated populations, especially in emerging economies
(126). Similarly, users of health apps and health-related
wearables tend to be younger, more highly educated, and
more affluent than nonusers, indicating possible disparities
in access to these tools (127, 128). Disparities render these
tools inaccessible to older adults, individuals with lower
socioeconomic status, and other populations that may have
low digital or eHealth literacy [defined as “the ability to
seek, find, understand, and appraise health information
from electronic sources and apply the knowledge gained to
addressing or solving a health problem” (129)]. It falls to
developers and entities such as public institutions, nonprofit
organizations, and research bodies to facilitate universal
access to these tools (128, 130). A promising approach is
to develop affordable tools appropriate for a wide range of
reading and eHealth literacy levels (128, 131). In dietary
assessment, this may entail using images of food items and
portion sizes, developing educational material intended to
expand nutrition knowledge, and providing assistance with
interpreting results. Tools should be available in multiple
languages and connected to food databases that are suited
to ethnic dietary patterns. These efforts would promote
equitable access and potentially support public health efforts.

A major area for improvement is accessibility for older
adults. Aging is associated with changes in vision, hearing,
motor function, and cognition, and many older adults have
limited digital literacy (116, 132). Given these challenges,
adoption rates of health apps is low among smartphone
owners age 65 y and older, and downloaded health apps
are shortly abandoned (133). To encourage wider adoption
and long-term use, tool features should include adjustable
text size and color contrast between the background, text,
and images (111, 133). Buttons should be large enough for
easy operation (133), and text and symbols that accompany
each icon should be unambiguous and/or explicitly indicate
their function, eliminating user guesswork (111). Tools
should avoid using symbols that may be unfamiliar to older
users with limited technology experience (111). Further,
navigation structure should be consistent and simple (133),
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and each recording task should minimize the number of steps
toward completion (111). Feedback should be available in
different modes (e.g., audio, vibrotactile, visual) (133), and
the tool should generate messages and warnings to prevent
errors due to unintended actions (133). Overall, where
possible, tool development should follow the principles of
universal design (134).

Build motivation to encourage long-term use.
User burnout, especially for recording dietary intake, is
a challenge commonly observed in research settings (68,
110, 135). Tools should minimize user recording fatigue
and make the experience enjoyable, incentivizing users to
regularly maintain their records. An important motivation is
the opportunity to set personal goals and monitor progress
(115). Whereas researchers may seek to prevent reactivity
to self-monitoring and restrict display metrics for specific
hypotheses, users often prefer to see quantification of their
health data and behaviors, and to identify opportunities
for improvement (127). The process of self-quantifying
behavior can boost an individual’s confidence and self-
efficacy (115, 127), which can be powerful motivation to
continue using the tool long-term. Thus, adaptions of full
quantification approaches to meet researcher needs may
instead include reporting to users abbreviated measures such
as adherence to a chosen dietary pattern (e.g., ketogenic
or paleo diets), intake of certain nutrients (e.g., calcium,
folate), or the balance of recorded dietary intake (e.g., healthy,
neutral, unhealthy) (115). Tools may display health behaviors
as visually appealing graphs or organized metrics, or in
comparison with previous behaviors, personal goals, or peers
(115).

Tools should also be interactive and engage users as much
as possible. For example, when an app detects a lapse in
dietary recording using EMA or similar approaches, it should
remind and encourage users to make regular entries (76, 115,
135). Gamification could augment the entertainment value of
tools (110, 131), and rewards such as coupons and discounts
could be effective incentives (115). Further, a social network
where users can share their results, discuss their concerns,
and exchange advice could promote camaraderie (110, 127,
131) and motivate users to continue recording dietary intake
for sustained periods.

Developer perspectives
Capitalize on opportunities to improve existing tools.
Developers should explore technology-enhanced features
that further streamline the process of recording dietary
intake. Multiple modes of user entry such as text entry,
database browsing, voice recording, speech-to-text, and
image capture (63) can decrease user burden. Allowing the
user to save favorite foods, view lists of recent items, and copy
entries also saves time (46).

Innovative technology including data-driven approaches,
augmented reality, and portable systems can further enhance
tool features. An online 24-h dietary record or food-logging
app with a data-driven algorithm might make suggestions

based on user intake history (46) and prompt forgotten
items (136). Applications of augmented reality, such as a
ruler function embedded in a smartphone camera, would be
helpful for estimating portion size (137).

Integrate food, nutrient, and food-image databases.
Developers should focus efforts on maintaining continuous
access of apps/software to high-quality, regularly updated
food composition databases (138), including public data sets
[e.g., the USDA’s FoodData Central (139) and the European
Food Safety Authority (EFSA) Comprehensive European
Food Consumption Database (140)], licensed databases
produced by research- or consumer-oriented companies,
and nutrition fact labels provided by manufacturers (68).
Any comprehensive database would include the most recent
data on supplements, branded products, restaurant dishes,
nonlabeled food items, culture-specific foods, food groups,
food patterns, and product reformulations (68, 141). With
new products on the market every year, updating databases
remains a challenge (68, 71). The USDA Global Branded
Food Products Database, a component of FoodData Central,
is one such database that currently incorporates industry-
provided nutrient data on labeled food items (139). Any
efforts are necessarily ongoing, and should consolidate
multiple sources of data, maintain a complete and com-
prehensive database, and standardize data coding of food
intake.

Image-based methods of assessment, discussed below,
require large and diverse food-image databases (142, 143).
Currently, most image data sets are tailored for specific
studies or types of food (142), and no publicly available,
general food-image database yet exists. Some initiatives
have compiled food images online (144, 145), but photos
often vary in lighting, angle, and other characteristics, and
may not include food volume or nutritional information
(142). Going forward, an organized food-image database
expanding on existing food and nutrient databases will be
crucial if image-based intake assessment methodologies are
to advance beyond their current nascent state.

Improve image-based methods of assessment.
Active and passive image capture. As an emerging set of

methods, dietary assessment using images requires further
technical refinement.

Both active and passive image capture approaches have
challenges with obtaining analysis-ready, high-quality im-
ages (118, 146). The ideal methods require minimal user
instruction and have high tolerance for user error. However,
with active capture, a primary challenge is user burden. Users
must follow specific and often demanding steps for high-
quality image capture (142), e.g., place food on a brightly
colored dish (147) or a container with a specific shape (24),
separate food items (148), take pictures at a 45–60◦ angle
(63), and place in the frame fiducial markers (63) of known
color and dimension (5, 63, 143). In the realm of cutting-edge
technology, virtual reality could eliminate the need for some
of these steps, including using fiducial markers (137).
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Passive image capture also presents technical and privacy
challenges. This approach involves a wearable device that is in
continuous operation and takes images at an adjustable rate,
such as the badge-like eButton (65) or neck-worn SenseCam
(62, 118). Passive capture devices can result in images of
suboptimal quality especially under poorly lit conditions
(62, 118), tend to require considerable amounts of power
(65, 117), and have limited memory capacity (117, 121).
Improved devices should thus facilitate passive capture of
images under a variety of environmental conditions and
more efficiently use battery power and memory. Fortunately,
single-unit devices with multimodal gating mechanisms
(e.g., including inertial and acoustic sensors to detect
chewing sounds) hold promise for preserving battery life,
maintaining privacy (117), and avoiding unnecessary data
collection (119, 149).

Automatic image analysis. Once captured, images can
be analyzed using manual, semiautomatic, or automatic
approaches (5). In a manual approach, nutritionists calculate
nutritional content from an image using the user descriptions
of ingredients and portion sizes, food analysis software,
and food databases (150–152). However, manual approaches
require extensive user and staff training, time, and resources
(63). Automatic approaches use software and classification
models to segment, recognize, and calculate volumes of
food, thereby reducing user input (153, 154). This strategy
currently faces issues with generality, because food databases
in automatic approaches are often limited in terms of the
number and types of food items (63). Further, the segmen-
tation and recognition phases rely on high-quality images
where all food items are clearly visible (63). As an alternative
to fully automatic approaches, semiautomatic approaches
use classification software that relies on cues provided by
users or researchers, such as manually identifying foods or
segmenting items (98, 155). However, as with fully manual
approaches, the required human input in even semiautomatic
approaches may be too burdensome for practical or long-
term use.

Segmentation, food recognition, and portion size estima-
tion. After retrieval of necessary images, image analysis
consists of 3 main phases: segmentation of food regions
and items, extraction and recognition of food properties,
and estimation of portion size (5, 117, 143). Segmentation
generally uses algorithms that rely on graph-based, color, or
spatial representations of the images; algorithmic techniques
such as region-growing and edge (100) or circle detection
(156) are often used (142, 143). Accuracy decreases as the
number of unique foods increases (142), and further de-
creases if foods are similar in color, contour, or other charac-
teristics (143). The selection of an appropriate segmentation
algorithm depends on the types of foods, characteristics of
the images, automation level, and amount and type of user
input.

Compared with segmentation, food recognition is more
complex. The main strategies for recognition are traditional

classifiers and deep learning techniques (143). Traditional
classifiers extract specific visual features from the images,
such as shapes, texture, and pixel color. This approach
requires the researcher to manually identify the important
features of the image during development (143). This
information is then organized and fed into models such as
support vector machines (24, 157), Bag of Features (157, 158),
and K-Nearest Neighbors (24). However, these machine-
learning techniques are poor at recognizing mixed foods
or foods with similar appearances (143), which may have
different nutritional content (5). As alternatives to traditional
classifiers, deep learning techniques could eliminate the
need for user or researcher input after training/development
(143, 159, 160), and have performed significantly better
than traditional techniques (143, 160). However, this is an
emerging approach and requires further refinement.

The final step in the analysis process is portion size
estimation. In fully automated image analyses, deriving a
3-dimensional quantity from a single 2-dimensional image is
a challenge (142, 143). Attempts to measure volume include
generating 3-dimensional shape models based on the food
type (161, 162), and using multiple pictures or short videos
to reconstruct the food item (25, 162). Although these
techniques appear promising, they require large amounts of
processing power and time (143, 147).

Create new tools.
As noted, there is a dearth of cutting-edge technology
tools to assess intake, especially relative to expenditure
technologies, with most being digital adaptations of paper-
based methodologies. Branches of optics, thermo-sensing,
and other technologies are not exclusive to expenditure
assessment tools and are currently underutilized for assessing
dietary intake. There have been inconsistent advancements
in these tools, but several promising ones include portable,
handheld near-infrared (NIR) analysis sensors (163) and
smart utensils with light spectrophotometers (164) that
analyze the nutrient composition of foods. NIR is a long-
standing technology in food testing and an established
method for quantifying macronutrients in many types of
food and agricultural products, notably for food adulteration
(165, 166). NIR could move toward wide consumer use, but
first it must be miniaturized and a database must be compiled
of nutrient profiles for foods against which calibration
training must occur (160). It is easy to imagine a future
in which handheld food analysis tools integrating chemo-
sensing, spectroscopy, optics, etc., become as common as
wrist-worn activity trackers.

Ensure technical assistance is available.
Although intake and expenditure assessment tools should be
as intuitive as possible and require minimal user training,
technical assistance for users will likely always be necessary.
Developers should consider tutorials and help guides to
accompany apps and devices, tailored to the computer
literacy of the target audience (110, 116). Effective assistance
is crucial for increasing user comfort with technology and
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willingness to continue user engagement as consumers or
research participants (116, 167).

Ethical and Legal Considerations
Scientific interest in recording free-living individual behavior
has led to rapid growth of digital health research (130) and
federally funded studies on pervasive technologies (168). The
ability to collect unprecedented amounts of continuous, real-
time personal data has contributed to growing ethical and le-
gal concerns (169), recently culminating in 2018 policies such
as the European Union’s General Data Protection Regulation
(170) and the California Consumer Privacy Act (171). User
privacy is a concern in research with pervasive technologies
(48, 169) and, hence, technologies should comply with ethical
guidelines. Researchers have found the current regulatory
infrastructure and ethical guidelines to be insufficient (169),
and updating them to reflect ongoing technological progress
will be challenging (48). Further, standards of data security
and privacy largely differ among various stakeholders such
as technology companies, engineers, and scientists working
with human subjects (48). Variable familiarity with novel
technology or privacy risk management could also lead
to variability in institutional review board (IRB) reviews
of research protocols (48) and under- or overprotection
of participants (47). Guidance on app development (e.g.,
on compliance with the Health Insurance Portability and
Accountability Act) from entities such as the US Department
of Health and Human Services may be an important resource
(172) for responsible development of and research with new
digital health tools.

Research ethics of pervasive technologies
Pertinent aspects of research ethics surrounding pervasive
technologies include informed consent, participant privacy,
bystander rights, and data management (48, 169). Re-
searchers have speculated on the existence of the “privacy
paradox,” where users express privacy concerns while con-
senting to broad terms of service and wide sharing of per-
sonal information on hundreds of apps and websites (173).
This purported discrepancy between stated concerns and
actual behavior may suggest users’ insufficient understanding
of how their data are collected and their inability to protect
their own interests (173), suggesting that obtaining meaning-
ful informed consent may be difficult. Hence, the informed
consent process should convey information, especially the
potential risks of data breach and loss of privacy, in a way
that is appropriate for the participant’s technological literacy
and knowledge about data usage (48).

As for participant privacy, sensitive data such as GPS
coordinates and images should be unlinked from personally
identifiable information and protected health information
(174). Other strategies include providing the user with more
control over data collection, such as the option to remove
the recording device, a privacy or on-and-off switch (65,
121), and the opportunity to privately review and delete
sensitive images (174, 175). Whereas the privacy of the
research subject is prioritized, the status of bystander rights

under regulations is ambiguous, especially regarding privacy
in specific circumstances (e.g., home, workplace, public
park) and the participant’s responsibility to disclose use of
a recording device (48). To prevent possible violations of
privacy, past study protocols have instructed participants
to confer with family and cohabitants before the start of a
study and provided them with a procedure for responding
to individuals who did not want to be recorded (174). As
technology enhances the granularity of recorded data on
free-living behavior, violation of participant and bystander
privacy is a growing concern.

Finally, data management has its own set of challenges,
and poor practices could increase the risk of data breach (48).
Researchers should submit detailed protocols for maximizing
data security, and IRBs should consult experts for best
practices on technology, data security, and law (48, 174).

Emerging initiatives for ethical practices
There are recommended practices for obtaining informed
consent, protecting participant privacy, respecting bystander
rights, and maximizing data security. However, there are
risks of harm to participants that remain unknown (176).
Some initiatives have aimed to help researchers and IRB
members navigate this uncertainty. One approach is directly
asking research participants about their experiences with
pervasive technologies, the extent to which the informed
consent process reflected actual experiences, and their per-
ceptions of data confidentiality (125). Another noteworthy
initiative is Connected and Open Research Ethics (CORE),
an interdisciplinary online community that connects re-
searchers, ethicists, IRB affiliates, and other stakeholders
of digital health research (47). CORE features a library
and forum for posting questions and sharing resources
such as examples of IRB protocols and informed consent
forms (47). Such interdisciplinary resource-sharing efforts
will promote awareness of the risks of digital health research
and, ultimately, responsible and ethical practices.

Conclusions and Directions
Consumer preferences continue to drive developer en-
hancements to technologies designed to capture health-
related data. Opportunities and challenges for researchers
and developers abound. Many emerging tools rely on
underlying research into technologies unrelated to consumer
health behavior, such as artificial intelligence and machine
learning, GPS, optics, accelerometry, or image recognition.
Adapting these innovations for assessing dietary intake
and energy expenditure requires ongoing collaboration
between researchers and developers in the context of user
acceptability.

Ever closer to personalized health
Knowledge of accurate dietary intake and energy expenditure
is expected to provide insight into the etiology of illness and
inform tailored preventive and treatment interventions (177,
178). The accelerated adoption of telehealth approaches due
to the COVID-19 pandemic (179, 180) will make ongoing
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adoption of emerging behavior technologies even more likely
in clinical practice. Such tools are already beginning to be
implemented by practitioners to support personalized health
recommendations (181–183).

New dietary and activity assessment tools provide oppor-
tunities for real-time monitoring and guidance. For example,
providers may select nutrients or food groups of clinical
interest; identify and recommend the optimal amount of
exercise based on a patient’s age, fitness, and health status (9,
184); and choose to display specific metrics to their patients
(181). Messaging features allow health care providers to give
immediate feedback or answer patient questions, as well as
serve as a vehicle for brief counseling sessions, which, for
example, have been shown to increase physical activity in
patients (177, 185). In addition, cloud-based systems allow
multiple providers to access data and coordinate care (49,
68, 76, 186). However, for practitioners to meaningfully
use complex and voluminous nutritional and activity data
in clinical practice, they will need efficient, targeted, and
clinically effective algorithms. It is not reasonable to expect
that small or even large clinical practices or hospital systems
will develop their own such algorithms for use with their
patient populations; these will need to be generated by
researchers in conjunction with developers, with the clinical
guidance of expert providers.

Collaboration among stakeholders
Developing a technology tool requires interdisciplinary col-
laboration and effective communication between developers
and other stakeholders, be they researchers or end-users.
Given their different training backgrounds, and involvement
at different stages of a tool’s development and application,
collaborators must work toward achieving at least a baseline
understanding of their respective needs, limitations, and
operations. For example, most developers are trained in
engineering, mathematics, and/or computational sciences,
and thus researchers must gain a basic understanding of a
developer’s vocabulary to ensure an effective cross-discipline
collaboration. Conversely, because researchers work with
human subjects, developers must have some understanding
of research ethics involving human subjects (187). If a
commercial product is used in a study, its terms of service
and privacy policy may conflict with human research
protections (48). Researchers are also required to support
tool development with scientific evidence, such as theories
of behavior change (115) or accurate calculation of nutrient
intake (68).

Researchers are similarly encouraged to understand the
workflow of typical device or software development pro-
cesses and challenges. Researchers, whether involved in
product development or validity studies, should be prepared
to navigate complex legal areas, especially intellectual prop-
erty and proprietary issues (187). In particular, studies on
the validity of consumer activity trackers have encountered
difficulties comparing algorithms and evaluating ongoing
updates to software and hardware (177, 188). This becomes
particularly important in long-term research studies, which

should carefully plan for technology updates, product dis-
continuations, etc. Going forward, with the common goal of
developing valid tools, researchers and developers may have
to find the delicate balance between protecting ownership
rights and establishing a framework for sharing open-source
code.

Finally, among the many opportunities may be some
obvious ones. For example, given the many devices that
can now readily detect various activity types and related
physiological phenomena, it would be a natural next step
to assess whether these devices may be informative with
respect to assessing intake and eating behavior. That is, can
these ostensible “activity trackers” also be used to assess
hunger by heart rate variability, or macronutrient content of
a meal given postprandial body temperature? Collaboration
opportunities not just between stakeholders, but between the
intake and expenditure sides of the energy balance equation,
are evident.

Summary
All emerging technologies require improvements in acces-
sibility, acceptability, and availability. In addition, as tech-
nologies become ever-more pervasive, increasing attention
must be paid to ethics and responsible use. Current tools in
expenditure assessment have successfully integrated diverse
scientific domains to accurately capture activity and other
physiological phenomena with minimal to no user input.
Opportunities for improvement remain, especially with
regard to capturing dietary intake, despite improvements
rendered from digital adaptations of older methodolo-
gies. Although considerable advancements are occurring
in image-based assessment approaches, there remains a
pressing need for transformational technologies—perhaps
still to be discovered—that move the field definitively beyond
self-report (189) and integrate advances across the domains
of chemo-sensing, spectroscopy, and many others. Such
innovations will likely require “out of the box” creativity
and engineering from researchers and developers; this is the
present and future challenge.
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