
UC Berkeley
UC Berkeley Previously Published Works

Title
Learning Topological Operations on Meshes with Application to Block Decomposition of 
Polygons

Permalink
https://escholarship.org/uc/item/34b0h2rp

Authors
Narayanan, A
Pan, Y
Persson, P-O

Publication Date
2024-10-01

DOI
10.1016/j.cad.2024.103744

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/34b0h2rp
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Computer-Aided Design 175 (2024) 103744

A
0

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Research Paper

Learning Topological Operations on Meshes with Application to Block
Decomposition of Polygons
A. Narayanan a,c,1,∗, Y. Pan b,c,2, P.-O. Persson b,c,3

a Department of Mechanical Engineering, University of California, Berkeley, CA 94709, United States
b Department of Mathematics, University of California, Berkeley, CA 94720, United States
c Mathematics Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States

A R T I C L E I N F O

Keywords:
Mesh generation
Reinforcement learning
Block decompositions

A B S T R A C T

We present a learning based framework for mesh quality improvement on unstructured triangular and
quadrilateral meshes. Our model learns to improve mesh quality according to a prescribed objective function
purely via self-play reinforcement learning with no prior heuristics. The actions performed on the mesh are
standard local and global element operations. The goal is to minimize the deviation of the node degrees from
their ideal values, which in the case of interior vertices leads to a minimization of irregular nodes.
1. Introduction

Mesh generation is a crucial part of many applications, including
the numerical simulation of partial differential equations as well as
computer animation and visualization. While it can be discussed exactly
what makes a mesh appropriate for a given situation, it is widely
accepted that fewer number of irregular nodes lead to better quality
meshes. Therefore, many mesh generation and mesh improvement
methods have been proposed that aim to maximize the regularity of
the mesh, in particular in the case of quadrilateral elements.

For triangular meshes, some of the most popular algorithms are the
Delaunay refinement method [1] and the advancing front method [2].
The resulting meshes might be improved by local operations or smooth-
ing, although typically based on element qualities rather than the
regularity of the connectivities. Some quadrilateral mesh generators
are also based on a direct approach, such as the paving method [3],
but most use an indirect approach of creating quadrilateral elements
from a triangular mesh. These methods include the popular Q-Morph
method [4], element matching methods such as the Blossom-Quad
method [5], and so-called regularization or mesh simplification meth-
ods which improve an initial mesh using various mesh modification
techniques [6–9].

Although many of these mesh modification methods produce im-
pressive results, we note that the algorithms for how they apply the
various mesh operations are usually highly heuristic in nature [8,10].
This is expected, since finding an optimal strategy is a complex discrete
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optimization problem. Indeed, Canann et al. [11] highlight the need
to ‘‘recognize and process patterns of irregularities that occur over
larger groups of elements’’ in order to achieve meshes with desirable
connectivity and they demonstrate the efficacy of complex mesh edits
by composing sequences of multiple local operations. Developing such
heuristics is challenging and laborious, and it is difficult to adequately
explore the state space and action space. Identifying optimal sequences
of mesh editing operations that improve mesh quality is not trivial
and is highly dependent on the type of mesh being considered. For
instance, the heuristics that optimize triangular meshes are different
from the heuristics that optimize quadrilateral meshes. Further, tradi-
tional optimization methods such as mixed integer programming are
computationally expensive and the computational cost grows exponen-
tially with problem size making it challenging to adapt these methods
to meshes of different size.

To address the above challenges, we explore deep reinforcement
learning as a solution approach for this optimization problem. A major
advantage of such an approach is that optimal sequences of actions can
be discovered by the reinforcement learning agent purely by interact-
ing with a mesh environment through self-play. This circumvents the
requirement for human crafted heuristics. The agent can adapt to differ-
ent mesh types by training it on an appropriate mesh environment. This
provides a unified approach that can be applied to different mesh types.
We formulate our problem in the language of reinforcement learning
(RL) [12] wherein actions available to the agent are local mesh edit
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operations and the rewards are the improvement of mesh regularity
as measured by a prescribed objective function. By converting our
optimization problem into a sequential decision process consisting of
local mesh editing operations, we avoid the exponential cost of global
solution strategies like mixed integer programming.

In this work, we consider the case of planar straight-sided polyg-
onal geometries. However, since our method is based purely on mesh
connectivity, it may be applied to geometries with curved boundaries
as well so long as the regularity of vertices on these boundaries is
specified. We generate a coarse initial triangular mesh using the De-
launay refinement algorithm. In the case of quadrilateral meshes, we
perform Catmull–Clark splits of the triangles, and we also introduce
global mesh operations. One of these is the clean-up, which aims to
reduce the total number of elements which is suitable for generation of
block decompositions.

A key component of our framework is the employment of the
half-edge data structure, which in particular allows us to define a
convolutional operation on unstructured meshes. A neural network is
trained to produce a probability distribution for the various actions on
local neighborhoods of the mesh, i.e., a policy. The policy is sampled
to determine the next operation to perform. A powerful property of
our method is that it generalizes to both triangular and quadrilateral
meshes with minimal modifications to account for the different actions
available on these meshes. We limit action selection to local mesh
neighborhoods, allowing the learned policy to generalize well to a
variety of mesh types and sizes that were not present in the training
data. We demonstrate our methods on several polygonal shapes, where
we consistently obtain meshes with optimal regularity. Extension of this
method to arbitrary polygonal elements is reserved for future work.

Machine learning has been applied to numerous mesh generation
problems before. Pointer networks [13] have been used to generate
convex hulls and Delaunay triangulations. Deep RL has been used to
learn quadrilateral element extraction rules for mesh generation [14,
15]. RL has also been employed to learn adaptive mesh refinement
strategies [16,17]. In [18], RL was used to perform block decompo-
sition of planar, straight-sided, axis aligned shapes using axis aligned
cuts.

Our work differs from prior work in several key ways. Our objective
function is purely based on the connectivity of the mesh and our
framework aims to minimize the number of irregular vertices. We
consider local topological edit operations as our action space. Our
novel convolution operation on the half-edge data-structure provides
a powerful, parameterized way of constructing state representations
that encode neighborhood connectivity relationships. We employ a
local neighborhood selection technique that allows us to generalize to
different mesh sizes. These key features enable our method to work on
both triangular and quadrilateral meshes of various sizes.

The half-edge data-structure is able to represent arbitrary polygonal
shapes in 2D. Thus our state representation method naturally extends
to all such polygonal shapes. Our reinforcement learning framework
can be applied to these shapes so long as an appropriate action space
is defined. We hypothesize that the technique can be extended to 3-
dimensions by leveraging the equivalent of the half-edge data-structure
in higher dimensions [19,20]. Prior work has explored the action space
in 3D e.g. tetrahedral [21–23] and hexahedral meshes [24,25].

2. Problem statement

In the present work we are interested in optimizing the connectivity
of triangular and quadrilateral meshes. The overall objective is to pro-
duce meshes where all the vertices have a specific number of incident
edges. We refer to this as the desired degree of a vertex. A vertex whose
egree is the same as the desired degree is called regular. A vertex
hose degree is different from the desired degree is called irregular,
ith the difference between the degree and the desired degree being
measure of the irregularity of the vertex. Our framework allows the
2

ser to specify the desired degree on all vertices. The user is allowed
o specify the desired degree of any newly introduced vertex.

While there exist robust algorithms for triangular and quadrilateral
eshing such as Delaunay triangulation and paving, these algorithms

re not designed to produce meshes with a specific connectivity struc-
ure. A common approach is to use these algorithms as a starting point
nd improve the connectivity of the mesh through various topological
esh editing operations [26]. We adopt this approach and frame our
roblem as a Markov Decision Process.

.1. Objective function

Consider a mesh with 𝑁𝑣 vertices. Let vertex 𝑖 have degree 𝑑𝑖 and
esired degree 𝑑∗𝑖 . Then its irregularity is 𝛥𝑖 = 𝑑𝑖 − 𝑑∗𝑖 . We compute
global score 𝑠 as the L1 norm of 𝑠, which is a measure of the total

rregularity in the mesh.

=
𝑁𝑣
∑

𝑖=1
|𝛥𝑖| (1)

learly, a mesh with all regular vertices will have a score 𝑠 = 0.

.1.1. Heuristics to determine desired degree
Our heuristic for triangular (quadrilateral) meshes is based on

chieving an interior angle of 60◦ (90◦) in all elements. The desired
egree of any vertex in the interior is 6 (4). The desired degree of a
oundary vertex is chosen such that the average included angle in all
lements incident on that boundary vertex is approximately 60◦ (90◦) .
he desired degree according to this heuristic can be expressed as,

∗ =

{

360∕𝛼 interior vertex
max (⌊𝜃∕𝛼⌉ + 1, 2) boundary vertex

(2)

here ⌊⋅⌉ is the round to nearest integer operator, 𝜃 is the angle of
he boundary at the vertex in question, and 𝛼 is 60◦ (90◦) for triangles
quadrilaterals). We observed that rounding to the nearest integer
esulted in better performing models than using 𝑑∗ as a continuous
alue on the boundary. According to this heuristic, the desired degree
f a new vertex introduced on the boundary is set to 4 (3) since we
ssume that the edge on which the new vertex is introduced is a straight
dge.

.2. Topological operations on meshes

We define the following local operations on triangular meshes. See
igure Fig. 1 for an illustration.

• Edge Flip: An interior edge in a triangular mesh can be deleted
and the resultant quadrilateral can be re-triangulated across its
other diagonal. This can be seen as ‘‘flipping’’ an edge between
two possible states.

• Edge Split: Any edge in a triangular mesh can be split by inserting
a new vertex on the edge and connecting it to the opposite
vertices in the adjacent triangles.

• Edge Collapse: An interior edge in a triangular mesh can be
collapsed resulting in the deletion of the two triangles associated
with this edge.

Similarly, we define the following local operations on quadrilateral
eshes. See figure Fig. 2 for an illustration.

• Edge Flip: An interior edge in a quadrilateral mesh can be
deleted, and the resultant hexagon can be quad-meshed in two
new ways. This can be seen as ‘‘flipping’’ an edge clockwise or
counter-clockwise.

• Vertex Split: A vertex in a quad mesh can be split along an
interior edge incident at that vertex. This results in the insertion
of a new vertex and a new element into the mesh.
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Fig. 1. Configuration (a) and (b) are related by an edge flip. Configuration (c) can be produced by splitting the interior edge in either (a) or (b). Collapsing the edge between
vertex 3–6 in (d) produces (e).
Fig. 2. Configuration (a) and (c) can be obtained from (b) via an edge flip. Configuration (e) is obtained from (d) via a vertex split, and the operation can be reversed via an
element collapse.
Fig. 3. Performing a global split on the edge between vertices 2 and 5 in the initial mesh (b) produces the mesh in (a). Alternatively, the sequence of edges between vertices
4–5–6 in the initial mesh (b) can be deleted by merging the neighboring elements, resulting in configuration (c).
• Element Collapse: A quadrilateral element can be collapsed
along either diagonal by merging the two opposite vertices. The
collapse operation can be seen as the inverse of the split operation
defined above.

For quadrilateral meshes we also define the following global mesh
editing operations. They are global in the sense that they can affect the
topology of the mesh far away from where they are applied. See figure
Fig. 3 for an illustration.
3

• Global Split: This operation splits an edge by inserting a quadri-
lateral element and introducing vertices on the edges in the
two adjacent quadrilateral elements. The introduced vertices are
hanging vertices — therefore we recover an all-quadrilateral mesh
by propagating edges from the hanging vertices and sequentially
splitting elements until the split terminates on a boundary.

• Global Cleanup: In some situations, global lines – which repre-
sent a sequence of edges – can be deleted by merging adjacent



Computer-Aided Design 175 (2024) 103744A. Narayanan et al.
elements. The global line either terminates on the boundaries of
the mesh or forms a closed loop. We currently handle the situation
where the global line terminates on the boundaries. (For meshes
representing closed surfaces it would be important to consider
the case of closed loops.) This operation results in the deletion
of a sequence of vertices and elements. Vertices are distinguished
into geometric and non-geometric vertices. Geometric vertices
are those vertices which are integral in defining the geometry
— these vertices cannot be deleted. The conditions under which
we can perform this cleanup operation are (a) the end-points are
on the boundary, are non-geometric, and have degree 3, and (b)
all interior vertices are non-geometric and have degree 4. The
cleanup operation is a powerful operation since it simplifies the
problem and brings irregular vertices closer together. This strat-
egy is particularly relevant for block decomposition of polygonal
shapes.

3. Mesh representation and operations

3.1. The half-edge data structure

We employ the doubly-connected edge list (DCEL), also known as
the half-edge data-structure, to represent our meshes. The advantage
of the DCEL is that (a) it enables efficient implementations of the
mesh editing operations described in Section 2.2, and (b) we utilize
fundamental DCEL operations to represent the local topology in a given
mesh region which is important to determine the appropriate action to
be applied. The DCEL can be used to represent any planar, manifold
mesh and as such allows our method to work on all such meshes.
Extensions to the DCEL have been developed for non-manifold meshes
and 3D volumetric meshes [19,20].

Briefly, the DCEL exploits the fact that each mesh edge is shared
by exactly two mesh elements (except on the boundary). The DCEL
represents each mesh edge as a pair of oriented half-edges pointing in
opposite directions. Each half-edge contains a pointer to the counter-
clockwise next half edge in the same element, and a pointer to the twin
half-edge in the adjacent element. Each element contains a pointer to
one of its half-edges (chosen arbitrarily) which induces an ordering
on the half-edges in an element. Elements can be ordered by their
global index in the mesh — this induces a global ordering on half-edges
in the mesh. Each half-edge may be associated with a unique vertex.
For triangles, we associate each half-edge with its opposite vertex. For
quadrilaterals, we associate each half-edge with the vertex at its origin.
The exact choice of the association does not matter as long as it is
consistent. See Fig. 4 for an illustration. Further details about the DCEL
can be found in a standard resource on computational geometry, for
example [27].

3.2. Algorithmic complexity and parametrization of mesh editing operations

All of the local editing operations defined in Section 2.2 for triangles
and quadrilaterals can be executed using the DCEL in constant time
(assuming an upper bound on the maximum degree of a vertex). This
is a powerful advantage offered by the DCEL compared to other mesh
representations. For instance, when flipping a particular half-edge it is
important to know which are the two neighboring elements across that
edge — this is readily available in the DCEL.

The global operations defined for quadrilateral meshes in Sec-
tion 2.2 requires connectivity editing operations that can propagate
through several elements of the mesh before terminating. The algorithm
for these operations scales linearly with the size of the mesh. In
particular we disallow situations where global splits may result in
the formation of loops or that do not terminate in a fixed number of
iterations proportional to the size of the mesh. For the cleanup, we
observe that every half-edge either lies on a cleanup path or does not.
Performing a cleanup on a path does not affect the ability to cleanup
4

Fig. 4. Representing two triangular elements using the DCEL. The half-edges in each
element are shown as red arrows. Each half-edge contains a pointer to the counter-
clockwise next half-edge in the same element e.g. in triangle 𝑇2, half-edge 2’s next
pointer points to half-edge 3. Half-edges in the interior of the mesh have a twin pointer
to the half-edge in the adjacent element e.g. the twin of half-edge 1 in triangle 𝑇2 is
half-edge 2 in triangle 𝑇1. We additionally associate each half-edge with a unique
vertex in the element. For triangles we associate the vertex opposite a given half-edge
e.g. half-edge 1 in triangle 𝑇2 is associated with vertex 4. For quadrilaterals we associate
the vertex at the origin of the half-edge. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

other paths. Therefore all cleanups possible in a mesh can be performed
by visiting every half-edge exactly once.

Our framework optimizes a policy to perform sequences of mesh
editing operations to achieve a given objective. All operations other
than the global-cleanup are valid operations that can be learned by
the policy. Whenever a global-cleanup is valid, it is always performed.
We choose to do this because the cleanup simplifies the problem size
and brings irregular vertices together making it easier to improve
the connectivity of the mesh. A cleanup only deletes regular vertices
according to our heuristic and never introduces any new irregular
vertices in the mesh. Further, the cleanup is very useful in performing
block decompositions of polygons.

We parametrise all the mesh editing operations in terms of half-
edges. In a given mesh, specifying a particular half-edge and a par-
ticular type of edit determines an operation on the mesh. We have
3 operations per half-edge in the case of triangular meshes — flip,
split, and collapse. Further, we have 5 operations per half-edge in
the case of quadrilateral meshes — right-flip, left-flip, split, collapse,
and global-split. There is some redundancy in this representation of
actions on the mesh. For instance, flipping a half-edge and its twin are
equivalent operations. We choose to retain this redundancy because (a)
it fits in well with our half-edge framework, (b) the size of the state
representation is larger only by a constant factor, and (c) it exposes
the symmetries in the half-edge representation and may be seen as
data augmentation in our state representation leading to more robust
learning. Further, some actions – like the quadrilateral split – are not
equivalent when performed on a half-edge and its twin.

4. Formulation as a reinforcement learning problem

4.1. Constructing the reward function

Clearly, a mesh with all regular vertices will have a score 𝑠 = 0.
Under the assumption of the heuristic described in Section 2.1.1, all
the topological edit operations described in Section 2.2 are zero-sum
leaving the quantity 𝑠∗ = |

∑

𝑖 𝛥𝑖| invariant for a given mesh. This does
not hold true if we change the heuristic for the desired degree of newly
introduced vertices from what we described in Section 2.1.1. If a mesh
contains irregular vertices all of the same sign then its global score
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Eq. (1) cannot be improved. 𝑠∗ provides a lower bound on the score
𝑠,

𝑠∗ =
|

|

|

|

|

|

𝑁𝑣
∑

𝑖
𝛥𝑖

|

|

|

|

|

|

≤
𝑁𝑣
∑

𝑖
|𝛥𝑖| = 𝑠 (3)

We call 𝑠∗ the optimum score. It is not clear if a score 𝑠∗ can always
be attained for a given mesh, however it serves as a useful measure
of performance. The goal of our reinforcement learning framework is
to learn sequences of actions that minimize 𝑠 for a given mesh. In
particular, consider a mesh 𝑀𝑡 with score 𝑠𝑡 at some time 𝑡. We now
perform a mesh editing operation 𝑎𝑡 on it to obtain mesh 𝑀𝑡+1 with
score 𝑠𝑡+1. Our agent is trained with reward 𝑟𝑡,

𝑟𝑡 = 𝑠𝑡 − 𝑠𝑡+1 (4)

An agent starting with an initial mesh 𝑀1 transformed through a
sequence of 𝑛 operations 𝑎1, 𝑎2,… , 𝑎𝑛 collects reward 𝑟1, 𝑟2,… , 𝑟𝑛. We
consider the discounted return from state 𝑀𝑡 as,

𝐺𝑡 =
𝑛
∑

𝑘=𝑡
𝛾𝑘−𝑡𝑟𝑘 (5)

with discount factor 𝛾. (We use 𝛾 = 1 in all of our experiments.) Observe
that the maximum possible return from this state is 𝐺∗ = 𝑠𝑡 − 𝑠∗. Thus,
we consider the normalized return 𝐺𝑡 as the advantage function to train
our reinforcement learning agent,

𝐺𝑡 =
𝐺𝑡

𝑠𝑡 − 𝑠∗
(6)

The return Eq. (5) collected on meshes of different sizes will be different
simply because larger meshes tend to have more irregularities. By
normalizing the return in Eq. (6), we ensure that actions are appro-
priately weighted during policy optimization. The mesh environment
terminates when the mesh score 𝑠𝑡 = 𝑠∗ or when a given number of
mesh editing steps have been taken. We choose the maximum number
of steps to be proportional to the number of mesh elements in the initial
mesh.

While our current experiments are based on the objective described
above, one could consider several modifications. Depending on the ap-
plication, irregularities on the boundary may be more or less desirable
than irregularities in the interior of the domain. The objective function
can capture this difference in preference by weighting the contribution
of boundary vertices and interior vertices differently when computing
the score 𝑠. We could also consider improvement in element quality in
the objective function. However, this would require a consideration of
geometry along with topology and is reserved for future work.

4.2. Convolution operation on the DCEL data-structure

All of the actions, apart from the global-cleanup, affect the topol-
ogy of the mesh locally. In order to determine if an action produces
desirable outcomes in a particular neighborhood of the mesh, we
need to understand the topology of this neighborhood. We require a
representation of the local topology around each half-edge in order to
select a suitable operation. In the language of reinforcement learning,
this representation of the local topology is the state of a half-edge. The
onnectivity information in the immediate neighborhood of a half-edge
s most relevant to determine the appropriate action to take in this
eighborhood. We present here a convolution operation on the DCEL
ata-structure that encodes topological information around every half-
dge. Indeed, this operation may be interpreted as a convolution on
he graph induced by the half-edge connectivity. Iterative application
f this convolution encodes topological information in a growing field-
f-view around every half-edge. Further, this convolution operations
an be efficiently implemented on modern GPU hardware.

Determining the appropriate action to take on a given half edge
equires us to inspect the degree and irregularity of vertices in a
eighborhood around the half-edge. Since the meshes we consider are
5

unstructured, it is not immediately obvious which vertices to consider
and in what order to consider them in. Our key observation is that
the fundamental DCEL operations can be leveraged to construct a state
representation for each half-edge that has a specific ordering. Our
convolution operation requires two fundamental pieces of information
both of which are easily available from the DCEL. For each half-edge
we need to know the indices of (a) all the cyclic-next half-edges from
the given element, and (b) the twin half-edges from the neighboring
element. (a) is easily achieved by using the next operation repeatedly
— 3 for triangles and 4 for quadrilaterals. (b) is fundamentally part of
the DCEL data-structure.

As described in Section 3.1, there is a natural global ordering for all
the half-edges in the mesh. Half-edges from the same element appear
sequentially in this global ordering. If the half-edges are stored in this
order, the cycle operation can be implemented efficiently as a sequence
of matrix reshape operations which are provided by most array based
programming languages. Consider a mesh with 𝑁ℎ half-edges with the
state of each half-edge represented by an 𝑁𝑓 dimensional vector. This
data when stored in sequential order can be represented by a matrix
𝑥 ∈ R𝑁𝑓×𝑁ℎ . Algorithm 1 describes the cycle operation applied to
this state matrix for triangular meshes. The extension to quadrilateral
meshes or other polygonal meshes is straightforward. (We assume that
n-dimensional arrays are stored in column-major order. We adopt a
syntax that closely follows the Julia/MATLAB Programming Language.)

Algorithm 1 Cycle operation on triangular meshes
Input x ∈ R𝑁𝑓×𝑁ℎ

Output y ∈ R3𝑁𝑓×𝑁ℎ

x ← reshape(x, Nf, 3, :)
x1 ← reshape(x, 3Nf, 1, :)
x2 ← reshape(x[:, [2, 3, 1], :], 3Nf, 1, :)
x3 ← reshape(x[:, [3, 1, 2], :], 3Nf, 1, :)
y ← concatenate x1, x2, and x3 along the second
dimension (i.e. columns)
y ← reshape(y, 3Nf, :)

Information from twin half-edges is easily obtained by selecting the
appropriate columns from the feature matrix. We use a learnable vector
as the twin feature for edges on the boundary. This vector is part of the
agent’s parameter space and may be used by the agent to represent
a useful signal indicating the boundary of the geometry. The same
vector is used as the twin feature of all half-edges on the boundary. Our
basic convolution operation involves cycling the current feature matrix,
obtaining the features from the twin half-edges, and concatenating all
of the features together. The resultant matrix is processed by a linear
layer, followed by normalization and a non-linear activation function.
We use LeakyReLU as our activation function. We refer to this operation
as a DCEL convolution block. Under the operation of each convolution
block, every half-edge receives information from all the half-edges
within the same element and the twin half-edge from the adjacent
element. After repeated application of such blocks, the final feature
matrix will contain an encoding of the local topology in a field-of-view
around every half-edge. The size of this field of view grows linearly
with the number of convolution blocks. We use five convolution blocks
in all of our experiments.

The initial feature matrix fed to the model is 𝑥0 ∈ R2×𝑁ℎ . Recall
rom Section 3.1 that each half-edge is associated with a vertex. The
nitial feature matrix consists of the degree and irregularity of the
ssociated vertices for every half-edge. This initial feature matrix is
rojected to a high dimensional embedding space using a linear layer
n which the convolution described above is applied. The final layer
rojects the features into an 𝑁𝑎 × 𝑁ℎ matrix where 𝑁𝑎 is the number
of actions per half-edge.
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Fig. 5. Repeated application of the convolution operation produces an increasing field of view around every half-edge. For triangles, we associate every half-edge with the vertex
opposite it in the same triangle (fig. a). A cycle operation gathers information from the remaining vertices in the element (fig. b). Repeated application of twin and cycle
produces the ordered list of vertices in fig. (c) and (d).
Fig. 6. Illustrating the action selection process on meshes. Half-edge features consisting of the degree and irregularity of the associated vertex are first projected to an embedding
space. Convolution on the DCEL data-structure is performed on these embeddings. Local templates are constructed around all half-edges to obtain a local measure of mesh
irregularity. Action selection is restricted to the local template with the highest measure of irregularity. The final feature matrix is flattened and passed through a softmax layer
to obtain action probabilities (i.e. a policy). This distribution is sampled to determine the action to take.
4.2.1. Action selection by the agent
The size of meshes can vary as the agent manipulates the mesh. The

total number of actions available to the agent varies with the size of the
mesh. To ensure that the agent can generalize across different mesh
sizes, we found it important that our policy is represented by a fixed
sized vector representing the probabilities of selecting various actions.

To do this, we generate a list of vertices which we call the template
around each half-edge (see Fig. 5.) The template can be constructed
using operations similar to the convolution described in Section 4.2.
Initially, every half-edge has the index of the vertex it is associated
with. After a cycle operation, every half-edge receives the indices of
the vertices that are cyclic next. After a twin operation, every half-edge
receives vertex indices from neighboring elements. Notice that there is
some repetition in indices which can be avoided by selecting appro-
priate rows of the index matrix after a cycle or twin operation. These
operations are repeatedly applied to grow the size of the template. We
use dummy vertices if the template goes outside the boundary of the
mesh. We then compute the score Eq. (1) restricted to each template.
This is a measure of the local irregularity around every half-edge. The
irregularity of dummy vertices is set to zero ensuring that they do
not contribute to the score of the template. Action selection is then
restricted to the half-edges in the template with the highest local score
with ties broken randomly. Thus we consider an 𝑁𝑎 ×𝑁𝑙 subset of the
output feature matrix from Section 4.2 where 𝑁𝑙 is the number of half-
edges in the template. This matrix is flattened and passed through a
softmax layer to obtain a probability distribution over actions in the
template. We sample from this distribution to take a step into a new
mesh state. Fig. 6 shows an illustration of the action-selection process
for a given mesh.
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In the current implementation, convolution is performed on the
entire mesh. Subsequently, the local irregularity measure is used to
restrict action selection to the local template. While this works fine
for our small examples, it would be computationally wasteful on larger
meshes since convolution is performed on many half-edges that may
not be included in the final template. In future implementations we
will first choose the local template and only perform convolutions on
this subset of half-edges.

The main purpose of constructing the template is to obtain a local
measure of the irregularity score which enables fast selection of candi-
date regions. This ensures that action selection is restricted to regions
with a high potential for reward. Further, we are able to consider a
fixed size action space restricted to this candidate region, enabling
the agent to generalize across mesh sizes. Alternate strategies may be
adopted for candidate selection instead. For example, using breadth-
first-search to find the K-nearest neighbors of a half-edge in the graph
induced by the half-edge connectivity. The score Eq. (1) restricted to
this K-neighborhood can be used as a measure of the local irregularity
in the mesh.

4.2.2. Training the agent in self-play
The initial states for self-play are randomly generated polygonal

shapes. We randomize the degree of polygon (i.e. number of sides of
the polygon) between set bounds. We perform Delaunay refinement
meshing of this shape and use that as the input to the triangular mesh
agent. For the quadrilateral agent, we perform the Catmull–Clark splits
on the triangles to get an all quad initial mesh.
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Fig. 7. (a) Performance of the triangle mesh agent over the training history. Solid line represents the average normalized return over 100 meshes evaluated periodically during
raining. Shaded region represents the 1-standard deviation envelope. (b) Performance of the trained agent over 100 rollouts. The agent incrementally improves mesh quality up
o a certain number of steps. Notice that returns do not increase monotonically, indicating that a greedy strategy may not be effective for this problem.
The agent is allowed to interact with the mesh and perform oper-
tions on it for a finite number of steps or until the agent achieves
he optimum score 𝑠∗ whichever comes first. Because the size of the

mesh environment can be variable, the value or expected reward that an
agent can receive from a given mesh environment is variable and can-
not be inferred purely from the local representation of state that we em-
ploy. This makes it challenging to use value function based algorithms
such as Deep Q-Learning [28] or Soft Actor–Critic [29]. Therefore,
we train our agent using an actor-only version of the Proximal Policy
Optimization (PPO) [30] algorithm without a critic (i.e. value function)
network. PPO is one of the most widely used deep-reinforcement
learning algorithms. It falls within the family of policy-gradient al-
gorithms [31] with additional constraints that prevent large changes
in the policy distribution during training. This ensures training sta-
bility and uniform policy improvement over the course of training.
We use Eq. (6) as the advantage function in the PPO algorithm. We
add an entropy regularization to the loss function to avoid local min-
ima and balance exploration with exploitation. Full details of the
hyperparameters used are provided in Table 1 .

The agents were trained for approximately 24 h on a single Nvidia
GTX 2080TI GPU. As the learning curves in Figs. 7(a) and 10(a) show,
the agent reaches its optimal performance fairly quickly after which
performance plateaus implying that the full 24 h was not necessary
to train the model to a good level of performance. The inference
cost of each step of the agent is on the order of a few milliseconds
and is hardware dependent. Note that we did not optimize for model
throughput.

5. Results

5.1. Triangular meshes

The triangular mesh agent was trained on random shapes consisting
of 10 to 30 sided polygons. The initial mesh was a Delaunay refinement
mesh generated by the Triangle package [1]. Fig. 7 shows the learning
curves of our agent over training history, and the performance of the
trained model over 100 rollouts. The average normalized single-shot
performance over 100 meshes was about 0.81 (𝜎 = 0.11). However,
since the learned policy is stochastic, a simple way to improve the
performance is to run the policy 𝑘 times from the same initial state and
pick the best mesh. Using 𝑘 = 10 samples per mesh and averaging over
100 random meshes, the performance improved to 0.86 (𝜎 = 0.08).

Table 2 demonstrates the generalization capability of the learned
policy. By using a fixed sized local template, the same agent can be
7

Table 1
Hyperparameter settings used to train the agent.

Hyperparameter Value

PPO 𝜖 parameter 0.05
Minibatch size 128
Epochs per PPO iteration 5
Trajectories sampled per PPO iteration 200
Number of PPO iterations 2000

Weight of entropy loss 0.001
Learning rate 10−4

Discount factor 𝛾 1

Number of DCEL convolution blocks 5
DCEL convolution hidden layer size 128

evaluated on meshes of various sizes with good results. We do observe
some reduction in model performance on larger meshes. Irregularities
tend to be separated by greater distances on larger meshes, requiring
longer sequences of operations to effectively remove them. We illustrate
an example of the trained agent’s performance on a 40-sided polygon in
Fig. 9. While the agent is able to eliminate some irregularities that are
near each other, the final mesh still contains quite a few irregularities
that are separated by large distances. We need to bring irregularities
near each other in order to regularize them. This requires a complex
sequence of moves that our agent is unable to learn. Further, since our
state-representation relies on a local template, when irregularities are
separated by large distances, our agent is unable to detect them through
the local state representation.

We note that the normalized performance of the agent in the
quadrilateral mesh environment is significantly better (see sec. Sec-
tion 5.2.) Our experiments indicate that the use of global mesh editing
operations such as the global-split and global-cleanup are instrumental
in achieving this performance. The global cleanup, in particular, is
effective at coarsening the mesh without introducing new irregularities.
The cleanup operation brings irregularities closer to each other making
it easier to combine them and regularize them. Defining such a clean-
up operation for triangles is non-trivial and remains to be addressed
through future work (see Fig. 8).

5.2. Quadrilateral meshes

The quadrilateral mesh agent was trained on random shapes consist-
ing of 10 to 30 sided polygons. Fig. 10(a) shows the average normalized
returns over training for the quadrilateral mesh agent. We observe
that the agent quickly learns operations that significantly improves
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Fig. 8. Example rollout of the triangular mesh agent on a 20-sided polygon. Irregular vertices are marked in color, with the current score and optimum score shown at the top
ight for each figure. (a) is the initial Delaunay refinement mesh (b) is at an intermediate stage and (c) is the final mesh after 27 operations. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Example rollout of the triangular mesh agent on a 40-sided random polygonal shape. (a) is the initial mesh, (b) is an intermediate state, and (c) is the mesh with the
lowest score during policy rollout. Notice that the agent is able to improve the irregularity score of the mesh. However, the final mesh contains irregular nodes that are separated
by several mesh elements. These irregularities require complex sequences of moves to bring them together and regularize them. Further, the agent has a limited field of view
controlled by the size of the local template. Irregularities outside the local template will not be seen by the agent.
Table 2
Evaluating the triangle mesh agent on various sized random polygons. The agent was
trained purely on 10–30 sided polygons but is able to generalize to other polygon sizes
with minor deterioration in performance. The agent was evaluated by picking the best
of 10 rollouts per geometry, with the statistics computed over 100 randomly generated
shapes. The results demonstrate the effectiveness of using a fixed-sized local template
which enables better generalization to different mesh sizes.

Polygon degree Average Standard deviation

3–10 0.83 0.19
10–20 0.87 0.08
20–30 0.83 0.10
30–40 0.78 0.08
40–50 0.75 0.07

the connectivity of the mesh to nearly optimal. Performance was as-
sessed periodically during training by evaluating the model on 100
randomly generated meshes. Fig. 10(b) shows the evaluation of the best
performing model on 100 trajectories. We observe that performance
depends on the maximum number of steps given to the agent up to
a certain point. The average normalized single-shot performance over
100 meshes was about 0.95 (𝜎 = 0.05.). Using 𝑘 = 10 samples per mesh
and averaging over 100 random meshes, the performance improved to
0.992 (𝜎 = 0.02).

Since our state representation is a fixed-sized local template around
half-edge of interest, our model generalizes well to polygons that
ere not part of the training dataset. Table 3 shows the performance
f a model trained on 10–20 sided polygons that is able to gener-
lize to larger sized polygonal shapes. We do observe some drop in
8

the performance of the agent when mesh sizes are increased. This
is consistent with our observations for triangular meshes. Irregulari-
ties are often separated by several mesh elements in larger meshes,
requiring longer range sequences of operations to regularize them.
The complexity of these operations, coupled with the local nature of
our state representation likely causes the deterioration in the agent’s
performance.

Figs. 11 and 12 show some example rollouts on various polygon
sizes. Note that the ‘‘optimal’’ mesh produced by the agent in Fig. 12(c)
contains an irregular vertex with degree 2 on the bottom boundary.
This mesh is considered optimal according to our objective function
Eq. (1) since its score is equal to the optimal score 𝑠∗ for this configu-
ration. However, there are many applications wherein a configuration
such as Fig. 12(d) is preferred, with the irregularity moved to the
interior of the domain. This latter configuration is achieved via a post-
processing step by applying an edit similar to the global split. Observe
that both of these configurations have exactly the same objective score
and are thus considered equivalent by our metric. If irregular vertices
on the boundary are not preferred, they may be fixed by post-processing
steps. Alternatively, the objective function may be modified by using a
higher weight on irregularities on the boundary. This can encourage
the agent to learn to move irregularities away from the boundary into
the interior of the domain.

5.3. Generalization to new geometries

Figs. 13 and 14 show zero-shot transfer to never before seen geome-

tries like L-shape, star-shape, etc. The agent is able to handle geometries
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Fig. 10. (a) Performance of the quadrilateral mesh agent over the training history. Solid line represents the average normalized returns evaluated over 100 meshes. Shaded region
epresents the 1-standard deviation envelope. The curve demonstrates that the agent is able to achieve good performance quite rapidly, and the learning remains stable over many
raining iterations. (b) Evaluating the trained model over multiple rollouts. Solid line represents the average performance of 100 rollouts. The graph demonstrates that increasing
he maximum number of operations available to the agent has a big impact on performance initially, but only up to a certain point. Returns do not increase monotonically,
ighlighting that a greedy strategy may not be effective in this setting.
Fig. 11. Example rollout for a 10-sided polygon. Irregular vertices are marked in color. The mesh score and optimal score are shown at the top right for each figure. (a) is the
initial mesh after Delaunay triangulation and Catmull–Clark splits, (b) is at an intermediate stage, and (c) is the final mesh after 18 operations. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Evaluating the quadrilateral mesh agent on various sized random polygons. The agent
was trained purely on 10–20 sided polygons, but is able to generalize to larger
polygonal shapes with minor deterioration in performance. The agent was evaluated
by picking the best of 10 rollouts per geometry, with the statistics computed over
100 randomly generated polygonal shapes. Using a fixed-sized local template enables
stronger generalization to different sized meshes.

Polygon degree Average Standard deviation

10–20 0.98 0.03
20–30 0.97 0.06
30–40 0.94 0.14
40–50 0.91 0.13

with re-entrant corners and notches which were not explicitly part of
the training space. Further, our model, which was trained exclusively
on genus-0 geometries with no interior holes is able to generalize
zero-shot to genus-1 shape consisting of a square hole in a circular
shape.

We highlight the use of our approach in block decomposition of
complex shapes into coarse quadrilateral elements. The global cleanup
operation is particularly effective for this application as it is effective
at coarsening the geometry without introducing new irregularities, and
bringing existing irregularities closer to each other which makes it
simpler to regularize them.
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6. Conclusions

We presented here a method that learns to improve the connectivity
of triangular and quadrilateral meshes through self-play reinforcement
learning without any human input. A key contribution of this work
is a parameterized method to generate a representation of the local
topology in mesh neighborhoods. This enables appropriate selection
of standard topological mesh editing operations which result in the
reduction of irregular vertices in the mesh. Our method is built on the
DCEL data-structure which allows the same framework to work on any
planar 2D mesh with the discussion in this paper restricted to triangular
and quadrilateral meshes.

When optimizing for connectivity, it is recommended to work with
the coarsest possible mesh that captures the details of the geometry
being considered. Optimal strategies to regularize meshes consist of
sequences of operations that combine irregularities together. It is easier
to regularize coarser meshes because irregularities are relatively closer
to each other on these meshes. Irregularities often become isolated
on finer meshes, and require longer sequences of complex operations
to regularize them. Both triangles and quadrilateral meshes can be
globally refined without introducing irregular vertices. Some applica-
tions, like numerical simulation, demand finer meshes for the sake of
simulation accuracy. Thus, once the connectivity of a coarse mesh has
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Fig. 12. The same agent as before is able to optimize a 20-sided polygonal shape using 40 operations. (a) initial mesh, (b) intermediate mesh, (c) final mesh produced by the
agent, (d) degenerate vertices on the boundary can be post-processed using an operation similar to the global split. Note that meshes (c) and (d) have the same score as measured
by Eq. (1) thus our agent does not prefer one over the other. If the application demands that there be no degenerate vertices, these irregularities can be eliminated through a
final post-processing step.
-
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been optimized, it can be easily refined to the desired resolution while
maintaining its regularity.

A major advantage of artificial intelligence is its ability to discover
heuristics that are too laborious and cumbersome for humans to iden-
tify, formulate, and prescribe. There are several areas in mesh genera-
tion where the automatic discovery of such heuristics can significantly
aid engineers in their work. We hope that this paper demonstrates one
such use-case.

7. Future work

There are several exciting directions of future research that we
highlight here,

• Incorporating value function: Most deep reinforcement learn-
ing methods benefit from having a value function as this can help
speed-up training. Our current formulation makes it challenging
to estimate state value because we employ a local representation
of state that does not provide sufficient information to estimate
global value. Addressing this challenge is the focus of our current
work.

• Policy improvement with tree search: our learned policy is
stochastic and may be combined with e.g. Monte Carlo Tree
Search (MCTS) [32] to efficiently search for optimal meshes
10
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for a specific geometry. The performance improvements that we
observe from our naive best-of-k method in Sections 5.1 and
5.2 indicates that MCTS could be effective at improving the
performance of our trained model. Such an approach would be
similar to the AlphaZero [33] system.

• Optimizing for element quality: to achieve this, our model
would need to additionally receive geometric information (e.g. ver
tex coordinates) as input. This can be easily achieved by including
the coordinates of vertices as part of the input features to our
model (see Section 4.2). We expect that the coordinates need to
be normalized e.g. affine transform half-edges (and all vertices in
its template) to a normalized coordinate system (e.g. [0, 1].)

• Extension to 3D: We expect that our method can leverage the
equivalent of the half-edge data-structure in 3D [19] to learn
topological mesh editing operations on tetrahedral and hexahe-
dral meshes. Determining optimal sequences of operations in 3D
is highly challenging, and a self-learning method would have
significant use.

We anticipate that extension to 3D applications can have significant
tility and will likely attract further research interest. We discuss here
ome challenges that we foresee and possible methods to address these

hallenges.



Computer-Aided Design 175 (2024) 103744

11

A. Narayanan et al.

Fig. 13. The triangular mesh agent demonstrates zero-shot transfer on geometries that were not seen during training, including geometries with re-entrant corners like the star
shape and the single and double-notch domains. First column is the initial mesh, second column is the intermediate mesh as the agent optimizes connectivity, and the third column
is the final mesh after optimization. Since our model is based purely on connectivity, we can directly transfer the model onto geometries with holes even though such geometries
were never seen during training. Notice that in several of the examples including the L-domain, single-notch, and the square hole in the circle, the model achieves the optimal
score and the remaining irregularities cannot be eliminated as they are intrinsic to the geometry.
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Fig. 14. The quadrilateral mesh agent demonstrates zero-shot transfer on geometries that were not seen during training, including geometries with re-entrant corners like the
star shape and the single and double-notch domains. First column is the initial mesh, second column is the intermediate mesh as the agent optimizes connectivity, and the third
column is the final mesh after optimization. Since our model is based purely on connectivity, we can directly transfer the model onto geometries with holes even though such
geometries were never seen during training. We are particularly interested in coarse meshes representing block decompositions of more complex shapes. The cleanup operation is
particularly useful in achieving coarse meshes. This is most evident in the single notch and double notch example in row 3 and 4. Notice that the star-shaped domain and the
circular mesh with a square hole contain intrinsic irregularity that cannot be improved upon with our prescribed operations and heuristic.
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• A suitable action space needs to be clearly defined for 3D mesh
types. It is preferable that these actions are local in nature to
minimize computational cost. Prior work defining actions on
tetrahedral meshes [21–23] and hexahedral meshes [24,25] will
be useful to consider in this regard.

• Our framework parameterizes mesh editing operations in terms
of geometric primitives. For 2D, our geometric primitive was the
half-edge. Selecting a half-edge and an associated edit operation
unambiguously identifies an edit operation on a mesh. A similar
parametrization needs to be developed for 3D meshes to adopt
our framework. We anticipate that both half-edges and half-faces
would be required to parametrise mesh editing operations in 3D.
For example, the popular 2–3 face swap operation in tetrahe-
dral meshing can be parameterized by selecting a half-face and
prescribing the swap operation on it.

• We require an extension of the convolution operation on the 3D
mesh data-structures. In 3D, there is a connectivity structure on
half-faces along with half-edges [19]. The convolution operation
needs to operate on both of these connectivities.

• Selecting a candidate region in which to evaluate the reinforce-
ment learning agent will be equally important in 3D applications
due to the large variations in the number of elements. We antici-
pate that an objective score similar to Eq. (1) can provide a simple
way of evaluating regions with the potential for significant quality
improvement.

• In 2D, the enclosed angle at a boundary vertex provides a simple
method of identifying the desired degree. Specifying the desired
connectivity, particularly on boundaries, is essential to obtaining
a well-defined method in 3D.
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