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ABSTRACT OF THE DISSERTATION 

 

A Renewable and Clean Energy Solution for Microgrid Reliability and Resiliency in Novel 
Operational Scenarios 

by 

Weixi Wang 

Doctor of Philosophy in Electrical and Computer Engineering 

University of California, Irvine, 2024 

Professor Jack Brouwer, Co-chair 

Professor Pramod Khargonekar, Co-chair 

 

Growing negative impacts from climate change have increased the popularity of 

microgrid systems. However, novel and developing microgrid scenarios have brought 

uncertainty to the reliable operation and resiliency of the grid systems. This dissertation is 

concerned with using renewable, clean energy sources to enhance microgrid reliability and 

resiliency in novel grid operational scenarios. 

The dissertation starts with the modeling of an AC Power Flow (ACPF) model for a 

disadvantaged community, the Oak View Community, located in Huntington Beach, CA, 

based on OpenDSS. The model’s computing ability is then enhanced with a MATLAB-

OpenDSS interface before the model is tested with a cross-platform comparison to confirm 

accuracy.  

The community ACPF model is then integrated with renewable and clean energy 

systems through four distinct operational scenarios. The initial scenario involves EV 

adoption within the community by employing a stochastic approach to generate and assign 

discrete EV charging events using the Monte Carlo algorithm. Subsequently, this scenario is 



 

xv 
 

extended to encompass the broader region of Southern California. The second operational 

scenario focuses on islanding strategies during Public Safety Power Shutoff (PSPS) events. 

An optimal algorithm is developed utilizing multilevel graph partitioning techniques. Then, 

the dissertation explores the deployment of Distributed Energy Resources (DERs) with 

NEM 3.0 ratings for cost optimization. A Mixed Integer Linear Programming (MILP) 

algorithm is employed to determine the optimal sizing and dispatch of DERs while 

adhering to infrastructure degradation constraints. Ultimately, the dissertation introduces 

a novel microgrid design framework inspired by and abstracted from the author’s work on 

the project. 

Following the power quality and degradation evaluations of the scenarios under 

consideration, it is shown that the current electric infrastructure in Southern California, 

especially distribution and transmission transformers, lacks the capacity to support the 

increasing electric demand driven by the EV market. Addressing this issue necessitates 

significant investments in transformer upgrades and/or the implementation of additional 

load management measures. The simulation results also find that DER/ESS solution with 

transformer limit constraint emerges as approximately ten times larger on average in TDV 

cost compared to the highest average cost incurred by infrastructure upgrade solutions.  
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1 INTRODUCTION 

 With increasing awareness of global warming and its devastating effect on human 

life by the general public, clean and renewable energy solutions are catching the attention 

of more and more researchers. Distinguished by its by-design adoption of distributed 

generation (DG) and Net Zero Emissions (NZE) compatibility, microgrid systems have been 

widely considered good platforms to deploy sustainable energy resources and thereby 

combating global warming. Due to the traits mentioned above, microgrids have been 

funded for R&D activities, subsidized for development, tested with case studies throughout 

the US with federal and statewide level,  and sometimes even municipal support. As early 

as the 1990s US lawmakers started to consider microgrid applications. In 1992 the US 

congress has passed microgrid related regulation in 1992 US Energy Policy Act [1], and the 

effort was further amended in 2004 with 2004 US Energy Policy Act [2]. Most recently, 

president Joe Biden’s administration have passed a series of laws to fund and boost the use 

of microgrids throughout the nation [3][4]. State level microgrid work has also become 

increasingly common. One well-known effort is California’s incentivized microgrid 

deployment support as stated in CA Senate Bill No. 1339 [5][6], which is administered by  

California Public Utilities Commission (CPUC) [7] [8]. Several municipal level microgrid 

projects have also taken place. The City of Santa Barbara, CA has established its own solar 

power plants through mass use of microgrid systems [9], and the city of Hunting Beach and 

Irvine in California have also spent extensive effort on building their own local microgrids 

[10]. Further local development of microgrid systems throughout US can be found in [11]. 
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While initially powered by fossil fuels, microgrid systems in recent years have been relying 

increasingly on renewable energy. The main driving forces for the transition include the 

significant cost reduction of renewable energy infrastructure technologies, their 

appropriate use in distributed applications, and their preference for sustainability [12]. By 

deploying a high penetration of on-site distributed energy resources (DER) and energy 

storage systems (ESS), most commonly Photovoltaic (PV) systems, electricity demands 

throughout a microgrid system are able to remain to a certain extent and in some cases, 

completely, self-sufficient. Therefore, less energy import is needed from macro-grid and 

thus centralized generators, which mainly operate on fossil fuels [13], resulting in an 

overall reduction of greenhouse gas (GHG) emissions.  

In addition to the ability to bring down GHG emissions, microgrid systems also 

mitigate consequences from existing GHG emissions and enhance the overall grid reliability 

by keeping the power on during macro-grid interruptions such as public safety power 

shutoff (PSPS), wildfire, earthquake, hurricanes, storms and other extreme weather events. 

While remaining able to work with grid-connected operation mode in normal situations, 

during the emergency times when either the centralized macro-grid can no longer provide 

the grid customers the power with acceptable power quality or when power is 

intentionally interrupted (as in PSPS events), a microgrid systems can work in islanded 

mode and isolate itself from the main grid with the help of DER, ESS and appropriate 

switchgear. With enough DER penetration rate and proper control from the energy 

management system (EMS), it is possible for a microgrid systems to power itself 

independently for a considerable amount of time until the macro-grid interruption is fixed. 
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However, development and changes in electrical consumption by utility customers 

are posing challenges on the reliable operation and design of microgrid systems. One of the 

biggest changes in daily domestic electrical use is the growing market of electric vehicles 

(EV) [14]. Incentivized and looking for a less expensive way to commute, more people are 

adopting EV over the increasing cost of gasoline [15]. The way EV changes the energy 

consumption habit and challenges microgrid operational reliability is mainly threefold. 

First, EV charging increases daily electric demand and therefore puts extra pressure on 

macro-grid abilities to produce, transmit and distribute the power. For many existing US 

communities, key electrical infrastructures including distribution transformers and power 

cables were only built to support traditional power demands, and a very high penetration 

of EV in a disadvantaged community may very well make the mentioned infrastructure 

degrade significantly in a short period of time and crash the entire system, as seen in [16]. 

Secondly, the magnitude and diversity of EV charging types is reshaping the power 

consumption map. With more EV deployed, not only will the electric demand in residential 

sectors increase which is a result of Home Level 1 and Home Level 2 charging, the 

commercial and industrial (C&I) sectors will also see an increase as people charge their EVs 

during work or out in public charging stations. The major challenge of EV charging of 

different type is that the synchronicity of them in terms of time and location, which creates 

issues for microgrid control. Thirdly, the growing development of Vehicle-to-Grid (V2G) 

technology complicates microgrid dispatch. Using the EV battery as an additional form of 

DER, V2G technology enables the bidirectional charging of EV and eventually increases the 

challenges for grid and microgrid operators/controllers.  
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Other significant changes in recent years that help forge novel electric scenarios 

include the policymakers’ openness to individual sell-back of excess power from renewable 

DER. As a pioneer in novel power markets, the California Public Utilities Commission 

(CPUC) established the framework for net energy metering (NEM) back in 1995 in 

accordance with the legislation of California senate bill (SB) 656 [17] that encourages and 

allows customers to use their self-installed renewable generators to reduce energy 

dependance on the macro-grid and to even sell back any excess power. These net metering 

policies and tariffs have been updated over time leading up to the most recent program 

changes included in NEM 3.0 of 2023 for CA customers, which comes along with even more 

viable long-term support for renewable DER and ESS and detailed guidance [18].  Many 

other states in US and throughout the world have followed to implement policies in 

support of DER and ESS similar to those of California. The question by the increasing 

openness of energy trading to microgrid operators and designers is that the whole new 

concept is challenging the existing framework on how traditional microgrid works and new 

techniques are much needed for it to work reliably.  

Many technical and policy challenges must be overcome before microgrid systems can 

be widely deployed to reliably integrated with the macro-grid and coupled with renewable 

and clean energy systems. Although the idea of widespread use of 100% renewable 

microgrid systems seems desireable for GHG emission reduction, close to 90% of installed 

US microgrids are currently fossil fuel powered [19]. The novel yet steadily developing 

operations in electrical markets mentioned above are also making it challenging to operate 

and dispatch microgrids. The current work contributes to the development of reliable and 
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resilient microgrid design using renewable and clean energy resources and is accomplished 

by: 

1. Constructing the baseline alternating current (AC) power flow (ACPF) model in 

OpenDSS based on the Oak View Community located in Huntington Beach, California 

for the Oak View Microgrid (OVMG) Project as testbed for microgrid development.  

2. Validating the simulation capabilities of the OpenDSS based OVMG ACPF model. 

3. Extending the computing methods of OVMG ACPF model to support high speed 

computing and operating and to support multi-interface collaboration. 

4. Adopting renewable and clean energy systems into the OVMG system under various 

novel operational scenarios. 

5. Evaluating the electrical and financial impacts of novel operational scenarios as well 

as that of renewable and clean energy resources on the OVMG system as well as the 

entire Southern California area.  
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1.1 Literature Review 

1.1.1 Microgrid and Topology Design Overview 

A successful microgrid system is always the key to quality microgrid design. With the 

promise of microgrids in mind, the popularity of microgrid design has been skyrocketing in 

recent years. Normally, existing microgrid design can be divided into three general categories: 

microgrid control design, microgrid topology design and hybrid of both. 

Microgrid control design or planning focuses on optimization of microgrid operation. 

Several control design strategies have been published. In 2015, a distributed cooperative 

control strategy for ESS in regards of local power balance related to charging/discharging 

efficiency was proposed [20]. A control strategy on various layers of hierarchical control 

architecture of microgrids on par with traditional power system also proved economically 

efficient in 2016 [21]. It is worth mentioning that a model predictive control approach based on 

a mixed integer linear programming (MILP) algorithm was presented to optimize time-variable 

goals such as optimum charge/discharge schedule [22].  

Microgrid topology design, on the other hand, can be categorized into two kinds, one being 

planning and building from scratch to get desired conditions, the other being refurbishment 

and upgrade from existing topology. Some relevant studies are found and listed in accordance 

with the first criteria mentioned for microgrid topology design. Based on survivability schemes, 

one topology design involves a reconnection of a few small microgrid network communities 

which changes over time, aiming at reliability by optimized harness of renewable energy 
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sources [23] . Topology design in [24] and [25] efficiently combines graph partitioning algorithm 

with MILP to reach local energy equilibrium when generating islands and remaking connections 

for mesh circuits. Multi-Objective Substrate Layer Coral Reefs Optimization Algorithm (Mo-SL-

CRO) was applied by Jiménez-Fernández, S et al. to decide distribution of DERs and optimal 

connection of different nodes [26]. A viable restructuring of existing microgrids using phase 

angle measurements of the swing equations was announced by S. Talukdar et al. based on 

multivariate Wiener filtering to reconstruct operating radial power grids [27]. 

Fewer research efforts for  designing the microgrid from existing grid systems have been 

initiated compared to the first one. One interesting probabilistic reliability index based topology 

design has been proposed to partition the grid system into microgrids after optimizing 

reliability or a combination of reliability and supply-security [28]. A novel robust optimization 

approach suggested by F. S. Gazijahani et al. enables researchers to determine allocation and 

parameters of key elements of microgrids such as DG and ESS before island existing grid into 

reconfigurable microgrids with profit and reliability considered [29]. Another option to 

optimally add and configure DG on existing grid circuits without changing original connections 

was proposed by M. V. Kirthiga et al. using sizing algorithm for an autonomous operation [30].  

Normal aspects considered for microgrid design are assorted, usually depending on the 

design task the researchers are given. Reliability is probably the most considered factor. For 

instance,         Erol-Kantarci et al. and Cortes et al. all depict reliability as optimization goal in 

their papers, with one using renewable energy occupation maximization and the other using 

cooperation of loop design and performance index to reach the goal [23] [25]. Local power 

balance within islands is also popular. One topology design in [24] describes how efficient 
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partitioning of grid can influence power supply/demand balance within each island generated. 

In [31] a supervision design to predict DC microgrid power flow with multiple factors considered 

using ILP algorithm was developed. Financial profit is another point commonly seen for 

consideration. Nguyen DT et al, and Gazijahani et al, illustrate the increase of grid profit by risk-

constrained stochastic programming and game theory in [32] and [33], respectively. A novel 

block-chain involved microgrid design proposed by Tsao, Y et al. optimizes the use of renewable 

energy units to gain network profit along with reduced risk by robust type-2 fuzzy programming 

[34]. 

Some papers also take into consideration special requirements along with the normal 

aspects mentioned above. First to mention, some paper specially aims at a certain type of 

circuit type. For instance, as discussed in [35], Qin, M et al. applied extended DistFlow model of 

AC-OPF to the problem and an MILP algorithm involved method was proposed to solve 

operation of ESS specifically in radial networks; the  coordinated control of radial grid system 

with multi-agent system (MAS) was investigated in [36]. On the contrary, Almadhor A discussed 

the availability of using small mesh circuits in the grid as control route for PV monitoring [37], 

while another scenario including small scale mesh connections is discussed in [38] using 

modified L1 Adaptive control method. [24] and [25] are designed for mesh grids as well.  

Also, grid type in terms of special types of electricity is another special feature that is 

sometime considered for research purposes. While most research exploits AC grids, such as [39] 

[40] [41] [42] [43], several papers have set their focus upon DC microgrid topology design. Chen 

YK et al. presents a fuzzy control method for DC microgrids by design an energy management 

system (EMS) in [44].  Kumar M  et al. proposes a control strategy involving two Synchronous 



 

9 
 

Reference Frames for a DC microgrid [45]. Some research even goes as far as AC/DC hybrid 

microgrids, such as that designed and evaluated in [46], [47] and [48]. 

1.1.2 Renewable and Clean Energy Resources and Measures in 

Microgrids 

With a microgrids’ inherent ability to use DERs as the primary energy resources, increasing 

use of sustainable energy sources are seen in recent microgrid development as the awareness 

of climate change and air pollution and their negative effects are becoming more widely 

recognized. While common renewable energy sources are clean energy sources, not all of them 

are necessarily clean. Common renewable and clean energy resources include solar energy, 

wind energy, bioenergy.  

The integration of renewable and clean energy resources and their associated technologies 

can be generally categorized into two overarching approaches [49]. The first approach centers 

on enhancing energy efficiency, exemplified by the increased conversion efficiency of 

photovoltaic (PV) systems, driven by advances in solar cell and layer materials [49]. This 

improvement has significantly boosted the effectiveness of solar energy capture and utilization. 

The second approach encompasses decarbonization [50], which can be further subdivided 

into the use of alternative fuels and electrification. Within the domain of alternative fuels, the 

focus is on replacing traditional fossil fuels with lower-carbon energy sources, such as 

employing clean hydrogen. This shift contributes to a reduction in carbon emissions while 

maintaining energy output. Electrification, on the other hand, involves the transition from 

conventional energy sources to electric-based systems and can be broken down into three 
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principal sectors: industrial electrification, transportation electrification, and domestic 

electrification. In industrial electrification, a key example is the substitution of conventional 

industrial energy sources with electric alternatives. In transportation and domestic 

electrification, efforts are directed toward promoting electric vehicles (EVs) and transitioning 

from fossil-fuel-based systems to electric-based infrastructure, such as building electrification. 

By adopting these two overarching approaches, renewable and clean energy resources can 

be more effectively integrated into the energy landscape, promoting sustainability and reducing 

carbon footprints. The author has selected several key topics in renewable and clear energy 

measures for further literature review.  

1.1.2.1 Electrical Vehicle and V2G Technology in Microgrids 

Electrical vehicles (EV) have gained much popularity these days. One of the biggest 

advantages of the electrical vehicle, be it Plug-in Hybrid Electric Vehicle (PHEV) or fully electric 

Battery Electric Vehicle (BEV), is that exhaust emissions can be reduced. Executive Order B-16-

2012 signed by Governor Brown Jr. has stated that a CA statewide electrification of 

transportation be met by 2025 and 1.5 million Zero Emission Vehicles (ZEVs) be on road. 

Executive Order B-48-18 later reaffirms the former Order and set a new goal of 5 million ZEVs 

on California road [51]. 

The mass adoption of EV into microgrid systems, however, has potential negative impacts.  

Possible negative electrical impact on grid system from large scale EV adoption was discussed in 

[52–55], including load instability and power quality disturbance. Possible charging peaks with 

regional fleet charging where distribution infrastructure may be affected the most were 
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researched and determined in [56–58]. The possibility of overloading of key distribution 

components was discussed by case studies in [59] and [60]. A thorough review of EV integration 

into grid system by Garwa N et al. and Hussain MT et al. not only discussed the adverse power 

quality issued from EV, but also talked about the decrease of transformer lifecycle from it, in 

[52] and [61] respectively.  While existing studies have extensively deliberated on the impact of 

EV charging on the electric grid system, a limited number have quantified these effects, 

especially on electric infrastructure. This underscores the necessity for more in-depth and 

quantitative investigations to comprehensively understand the implications of EV adoption on 

the existing electric grid infrastructure. 

To quantitatively assess the impact of EV charging on power grids, usually EV charging 

models need to be developed first. Such models are generally categorized into two classes: 

static models and dynamic models. The static models typically address the aggregate charging 

characteristics associated with fleet charging, without considering individual charging events. In 

[62], a fuzzy-logic inference system was employed by Shahidinejad S et al. to simulate the 

initiation of bulk charging events. Another approach, detailed in [63], utilized a non-Gaussian 

probabilistic decision-making algorithm and a Monte Carlo algorithm to determine State of 

Charge (SOC) and daily charging schedules, respectively. Additionally, Cao Y et al. proposed a 

generation method that incorporates time-of-use (TOU) pricing to optimize bulk charging 

algorithms. On the other hand, dynamic models are usually spatial-temporal and involve the 

concept of vehicular travel [64]. In a closely related study, traffic topology data was leveraged 

to formulate a vehicle travel model for generating dynamic EV charging demands [65]. 

Employing cooperative game theory in conjunction with National Household Travel Survey 
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(NHTS) travel data, Flores RJ et al. determined EV charging demands for various purposes in 

[66]. Moreover, Bae S et al. explored the prospect of employing fluid dynamic traffic models 

and queuing theory to predict individual EV arrival rates and associated charging demands in 

[67]. 

Another significant derivative technology from EV in the field of the power grid is Vehicle-

to-Grid (V2G) technology. Interacting with the power between the vehicles and the grid, V2G 

technology achieves demand response services for the two platforms [68]. It is argued that a 

special kind of single-phase PEV charger can support the utility grid network by providing 

reactive power, meanwhile still successfully functioning as a battery-charger [69]. It is also 

argued that not only a great percentage decrease on CO2 emission can be achieved, a bigger 

amount of wind power can be incorporated into the grid system because of V2G application 

[70].  

Apart from the friendliness towards various renewable energy adoption in microgrids as 

mentioned above, V2G can also fill in the regulative role in the microgrid systems. Khan SU  et 

al. and Mets K et al. discussed the possibility and potential control strategy of coordinating 

various EVs to charge/discharge to partially achieve the strategy known as “Peak Shaving and 

Valley Filling” for the Demand Response (DR) to relieve grid peak load pressure while reducing 

the cost of energy for utility customers, in [71,72]. More specifically, it is argued that sufficient 

amount of bidirectional charging of EV/PEV can completely achieve the peak-shaving strategy 

alone [73]. Also, It is further demonstrated using experiments that, along with the capability to 

support distribution load, V2G technology can also provide ancillary services, namely 

regulation, which is most expensive [74]. 
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However, several challenges are affecting the practical implementation of V2G technology. 

It has been known that intermittent or even regular charging and discharging behavior can 

reduce battery life onboard the vehicle and incur faster replacement [75]. It is also mentioned 

by researchers about how challenging it is to meet the need of strong interaction between 

vehicles and the grid [76]. Even though the challenges have not been overcome for now, 

researchers are optimistic about the future of V2G technology as intelligent control strategies 

are being developed and experimental results showed a reduction of 17% of peak demand 

compared to business-as-usual (BAU) scenarios if V2G charging is smartly used [72]. Also, 

although the lifespan of onboard battery in PEVs could be lowered for using V2G, it may still be 

considered more economical for both vehicle owners and grid companies to deploy V2G and 

possible battery changes accordingly [76]. 

 

1.1.2.2 Peak Load Shaving 

Scientists have come up with a few peak load shaving strategies. Some of the most popular 

ones include: using of on-site energy storage system, demand side management (DSM), and use 

of EV [77].  

The idea of using on-site energy storage systems (ESS) for peak load shaving involves 

reducing or managing the highest levels of electricity demand during specific periods. The first 

step of this strategy is usually to find out when peak demand occurs in the local facility or grid 

before implementing anything. Typically, there are certain hours of the day when electricity 

usage is at its highest. The second step is to size the ESS, which is to determine the appropriate 
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size of the energy storage system based on peak load requirements. This usually involves 

analyzing historical data of electricity consumption to identify the peak demand level and 

duration. The last step is to implement the charging/discharging algorithm. During off-peak 

hours when electricity demand is lower, the energy storage system can be charged using 

cheaper electricity or renewable energy sources, such as solar panels. This ensures that the ESS 

has sufficient stored energy to supply power during peak demand periods. When peak demand 

occurs, the energy stored in the ESS can be discharged to supplement the power supply from 

the grid. By doing so, the facility can reduce its reliance on expensive electricity from the grid 

during peak hours, thereby lowering electricity costs.  

A coordinated peak shaving strategy using Neural Network on Energy-intensive load (EIL) to 

estimate ESS capacity is shown in [78] to minimize overall system operation costs. Nikolovski S 

et al. discuss the possibility of forecasting BESS and PV capacity based on adaptive neuro-fuzzy 

inference system (ANFIS) for maximum peak load reduction in [79]. An accuracy-enhanced load 

forecast algorithm is proposed in [80] to reduce peak load level and electricity cost at the same 

time considering real-time electricity price. A simple but powerful real‐time scheduling 

algorithm of BESS is described in [81] to optimally shave peak load. In [82], a distribution circuit 

specific model predictive control (MPC) strategy is proposed to forecast the day-ahead energy 

consumption to optimally control the ESS for peak load reduction. A optimal strategy of ESS 

dispatch to adjust the optimal peak shave level is present in [83] so that peak level can be 

reduced the most and no undesired power peak would be generated from ESS discharging 

process. A quick estimate algorithm of optimal ESS capacity is shown in [84] using historical 
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aggregated load profiles.  Hong et al. developed an optimized BESS operation schedule using 

back propagation (BP) neural network to eliminate load peaks as shown in [85].  

Similar in goal of the first strategy, DSM also manages the consumption of electricity by 

influencing when and how much electricity consumers use, which is usually achieved by 

incentives. Nasir T et al. summarizes popular ways of DSM to reduce peak to average ratio 

(PAR) in [86]. A DSM framework that optimizes both ESS and appliance scheduling schemes are 

discussed in [87]. In [88], deferrable loads are scheduled using an autonomous energy 

consumption scheduling algorithm to optimally reduce peak load level and prevent power 

backflow from PV system. An economically optimized DSM scheduling of vanadium redox flow 

battery (VRFB) and PV system is demonstrated in [89]. A novel DSM strategy of coupling 

thermal energy storage (TES) with solar PV system is developed and implemented in [90] to 

reduce peak load power considering electric tariff period. Game theory is considered in [91] 

and [92] to optimally reduce peak load as well. Two rescheduling algorithms of existing 

domestic electric consumption is mentioned in [93] and [94]to reduce peak energy power cost.  

The use of EV to achieve peak load shaving can be further divided into two categories. The 

first category is the coordination of EV charging, without the possibility of bi-directional 

charging from the EV battery. The other category is V2G, which is discussed in the previous 

section as well.  A two-layer non-linear MILP optimization algorithm is proposed in [95] to 

maximally shave peak load while considering charging availability. A few coordinated EV 

charging strategies are discussed in [96–98] for various optimization goals including peak load 

reduction in community and distribution grid circuits. The second category, V2G, has been a 

popular research topic. Two V2G control algorithms by coordinating with real-time electric 
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demand are discussed in [99] and [73]. A few V2G control problem turned ILP-based 

optimizations are discussed in [100,101]. A few others even considered using Predictive Control 

strategies to take into account the uncertainty of vehicle trip and charging events to optimally 

control EV discharging into the grid system [102,103].   

While all three peak shaving has very similar ultimate goal, which is to reduce peak load, the 

scope of each method, however, is different. DSM is usually by on a larger scale, usually by 

system operators or of higher level, while on-site ESS is always on a smaller level due to its 

unique distributed way of deployment. EV integration, on the other hand, can involve both 

small- and large-scale applications.  

1.1.2.3 Net Energy Metering 

Originally offered as an alternative billing method to utility customers, Net Metering or Net 

Energy Metering (NEM) has been increasingly valued for its ability to further promote the 

adoption of renewable energy resources in daily life. One fundamental difference of NEM to 

the DER/ESS is that the former has no storage capacity and extra power gets exported back to 

the main grid while the latter has the option to store up extra generated power.  

While NEM policies differ greatly throughout the world, the basic algorithm is similar—self-

generated power is first harnessed by the ratepayers’ household needs, and the extra power 

will be sent back to the main grid and will show up on electric bills as credit. In USA, NEM 

policies are different in each state or area with metering options and export rates. The original 

way to charge is a 1:1 ratio as average retail rate, which was first introduced in Minnesota in 

early 2000s [104]. One of the most well-known state policy supporting the ratio is California’s 



 

17 
 

NEM 2.0, which was first introduced in 2016 [105]. The most common export rates, however, is 

Time-Of-Use (TOU) rate and the so-called avoided cost rate, as used by California’s NEM 1.0 and 

NEM 3.0 respectively [106].  

1.2 Goal 

The goal of this effort is to develop a methodology, apply techniques and provide solutions 

for optimal design, dispatch and reliable and resilient operation of renewable energy sources 

and clean energy systems in a disadvantaged community microgrid.     

1.3 Objectives 

1. Develop Baseline AC power flow (ACPF) model for Oak View microgrid (OVMG) system to 

analyze novel smart microgrid systems. 

2. Validate and extend the OVMG ACPF Baseline model to evaluate various electric demand 

profiles, energy efficiency practicality and demand response effectiveness in the OVMG.  

3. Model and generalize the abilities of the OVMG system for supporting high renewable 

penetration and clean energy system adoption. 

4. Further the reliability and resiliency of the OVMG system to support the Southern California 

Edison (SCE) macro-grid system by optimizing existing infrastructure and the smart addition of 

clean energy system in novel operational scenarios.  

5. Evaluate the impact of electrification, energy efficiency measures, renewable and clean 

energy techniques, and EV charging on the OVMG and SCE systems. 
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2 Approach 

Task 1: OVMG ACPF Model and Baseline Development 

In this task, an AC power flow (ACPF) Model for Oak View microgrid (OVMG) system is first 

created in OpenDSS platform. Based on SCE’s DERiM Project, a topological model of Oak View 

Community is created using OpenDSS platform. Real-life based coordinate system of each 

generator, transformer and load are determined to generate the map and potential field are 

accomplished. To determine the actual line and transformer parameters, data from American 

Wire Gauge (AWG) are harnessed to image the real impedance condition. For the load from 

different types of customers, which includes both residential and industrial load, URBANopt 

system as well as powerful electrical analytical toolkit E3 (Energy & Environmental Economics) 

platform are potentially used to reflect the real-time data profile.  

Multiple test case scenarios are then developed based on the OVMG ACPF model to reflect 

on socioeconomically motivated needs as well as policy-induced pathway to a renewable 

future.  
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Task 2: Extension of Computing Methods 

In this task the operation platform of OVMG ACPF is extended beyond OpenDSS. An 

OpenDSS-MATLAB interface is first developed to further enhance the operability and flexibility 

of the model and enhance the compute speed using parallel computing.  

 

Task 3: OpenDSS Validation for Baseline Model 

In this task, electrical profiles across platforms including URBANopt and DERopt, are first 

verified theoretically to ensure their feasibility. Profiles are simulated in OVMG ACPF model and 

electrical power quality index is calculated and compared with accepted limit. Theoretical 

verification of profiles is then followed by multi-platform comparison between 

OpenDSS/URBANopt and OpenDSS/DERopt to further confirm the viability of profiles.  

 

Task 4: Renewable and Clean Energy System Integration 

In this task several practical scenarios are paired with renewable and clean energy 

resources to further regional clean energy goal. The siting and sizing of these resources are 

determined using DERopt with MILP constraints. Certain level of PV/ESS, EV are considered and 

deployed.  
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Task 5: Optimal Renewable and Clean Energy System Adaption 

in Novel Operational Scenarios 

In this task the optimal design and application of renewable energy resources and clean 

energy technologies are discussed and analyzed. Relatively novel and developing microgrid 

scenarios, including islanded operation during Public Safety Power Shutoff (PSPS) events, 

Demand Response, Net Energy Metering (NEM) 3.0, are considered and optimized with 

proposed design. The design aims at addressing and enhancing the reliability and resiliency of 

the microgrid systems, and the OVMG system is tested upon. Some optimal designs require 

rearrangement or upgrade of existing infrastructure, such as rewiring of power cable and 

replacement of distribution transformer. 

 

Task 6: Impact Analysis of the Microgrid System 

In this task the electrical and financial impact of novel scenarios as well as renewable and 

clean energy resources on the OVMG model is analyzed and quantified. The analysis is 

comprised of three parts: reliability and resiliency analysis, degradation analysis as well as cost 

and benefits analysis. All considered scenarios generated in previous tasks are analyzed under 

both normal and islanded operation mode.  
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3 OVMG Baseline OpenDSS ACPF Model Development 

3.1 Baseline Buildup 

The real-life example used in this effort is the Oak View Community located in Huntington 

Beach, California. The electric distribution model was developed using the alternating current 

(AC) power flow simulator OpenDSS [107]. The OpenDSS tool can capture the complete 

resolution of three-phase voltage and current through distribution power lines and 

transformers. The western section of the community consists of commercial and industrial 

plants and offices along with Oak View School. The rest of the community is primarily 

residential. The AC power flow steady state analysis calculates the active and reactive power 

flow of each active cable. The process is described in equation (1) and (2). 

𝑃𝑖𝑗 = ∑|𝑉𝑖||𝑉𝑗|(𝐺𝑖𝑗 cos⁡(𝜃𝑖 − 𝜃𝑗) + 𝐵𝑖𝑗 sin⁡(𝜃𝑖 − 𝜃𝑗))

𝑗∈𝑁𝑖

𝑗=1

 

(1) 

𝑄𝑖𝑗 = ∑|𝑉𝑖||𝑉𝑗|(𝐺𝑖𝑗 sin⁡(𝜃𝑖 − 𝜃𝑗) − 𝐵𝑖𝑗 sin⁡(𝜃𝑖 − 𝜃𝑗))

𝑗∈𝑁𝑖

𝑗=1

 

(2) 

Where i,j are actives buses in topology N, 𝐺𝑖𝑗 and 𝐵𝑖𝑗 are line conductance and susceptance 

from bus i to j. 𝑉𝑖 and 𝜃𝑖  are bus vontage and angel between bus i and j, respectively. 𝑃𝑖𝑗 and 

𝑄𝑖𝑗are line active and reactive power flow from bus i to j.  

The distribution system topology of Oak View Community in OpenDSS was developed in 

three steps. The first step is to outline Oak View Community electric grid connection from SCE’s 

DRPEP tool [108][109]. 
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Secondly, on-site inspections were made to record and verify circuit connections, 

transformer types, ratings, locations and belongings, single phase existence and usage, and to 

revise them if necessary. Underground transformers and cables were believed to exist on the 

western commercial and industrial side of the community. In the case of both underground and 

unmarked or unobservable transformers above ground, estimated ratings were given and will 

be discussed later. Wire rating and gauge were unobtainable as well, therefore discuss and 

assumptions will be made on them. 

The last step is to combine the outlined grid topology and information gained from field 

walks and a preliminary OpenDSS topology was made and then refined. This model was 

exercised using the tuned electrical demand results from the Oak View community energy 

simulation developed in URBANopt [110]. In instances where wire ampacity limits were violated 

in the power flow simulation, wire diameter size was increased to avoid over-ampacity issues. 

In instances where transformer power limits were exceeded, building – transformer 

connections were first examined to ensure correct linkages. If overloads continued to occur 

after any changes to the model, transformer ratings were increased to the proper kVA rating. 

Wires were also sized using OpenDSS results. Complete transformer rating and revision have 

been attached in Appendix A. 
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Figure 1. Oak View Community topology (not showing Beach 12 KV Distribution Circuits and 
Oceanview Substation 

Gauge selection occurred on an ampacity basis, ensuring that the baseline model would 

produce no over-ampacity conditions across all circuits. American Wire Gauge (AWG)[111] 

standards were used to select from. Wire conductor material is not known but is assumed to be 

copper. Sizing wires based on copper cable ampacity limits show that all residential circuits can receive 

utility service using 6-gauge wire. The commercial and industrial circuit, however, requires 2-gauge wire 

at the start of the circuit, followed by 6-gauge wire sizes along the remainder of the length of the circuit. 

Only 6% of length of total commercial branched circuit is comprised of 2-gauge wire.  

Existing topology of the Oak View Community is depicted in Figure 1. Branch SR1-SR5 and 

SD1 are all residential branches, whereas SR6 is the only commercial and industrial branch. 

Oceanview Substation (not present in Error! Reference source not found.) is located in the 
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Northeast corner Oak View Community and powers multiple local areas, including the Oak View 

Community. The Oak View Community consists of approximately 1,100 utility customers. 

3.2 Extension of Computing Methods 

Aiming to enhance the efficiency of power flow analysis within OpenDSS and fostering 

enhanced compatibility with prevalent operational platforms, a novel interface has been 

meticulously developed. Presently, one useful interface has been devised: the OpenDSS-

MATLAB interface, primarily geared towards enriching result demonstration functionalities, as 

well as tailored for adept data formatting purposes. The interface represents pivotal 

advancements aimed at fortifying the analytical capabilities and interoperability of the 

OpenDSS framework within diverse operational contexts. 

3.2.1 MATLAB-OpenDSS Interface 

The first interface to be developed is between OpenDSS and MATLAB. Renowned globally 

for its adaptability across diverse disciplines, MATLAB shares a vast user base hailing from 

varied backgrounds [112]. Nonetheless, within the domain of ACPF analysis, MATLAB's general-

purpose framework and support for a range of components inadvertently obstruct streamlined 

usability. Conventionally, Simulink, an adjunct tool within MATLAB, has been the preferred 

avenue for conducting ACPF analysis [113]. While Simulink's graphical interface may ostensibly 

enhance the clarity of the design process, the exigency of constructing or revising ACPF models 

from the scratch within this environment may incur significant workload and effort compared 

to OpenDSS's expedient coding methodology. Conversely, OpenDSS's interface offers a potent 
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combination of robust functionality and user-centric design, notably facilitating swift and 

efficient result examination through its intuitive monitor and summary functions.  

Nevertheless, when it comes to model revision, the comparative advantages of OpenDSS 

and MATLAB diverge. Minor modifications, such as the addition or deactivation of connections, 

or the adjustment of three-phase connection configurations, are markedly more 

straightforward within the OpenDSS framework. Conversely, for substantial alterations 

necessitating integration of external data sources, particularly Excel files, MATLAB's interface 

proves more accommodating. 

It is noteworthy that MATLAB's compatibility engenders the occasional provision of more 

granular operational insights, including detailed harmonic analyses. However, in terms of 

computational efficiency, MATLAB may outpace OpenDSS thanks to its optimized parallelization 

algorithms, a feature yet to be assimilated within the latter. 

Therefore, both platforms have unique traits, and an interface between them would 

combine them to generate a even more powerful ACPF analysis platform.  A complete summary 

of review of OpenDSS and MATLAB in terms of ACPF analysis is listed below in Table 1. 

Table 1. Comparison of OpenDSS and MATLAB in ACPF Analysis  

Functionality Evaluation OpenDSS MATLAB 

Ease of use for New Design Generally true with simple 

coding method 

More complicated, may take 

longer time 
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 Ease of use for Revision Generally true for small 

change, but change of core 

elements is not easy 

More complicated for simple 

change but is easier for major 

revisions 

Results Evaluation  Simply yet powerful Could provide more detail 

but is not easy to operate 

Operation Speed  Quick for simply operation Quicker when paralleling 

algorithm is harnessed 

 

The structure of OpenDSS-MATLAB interface is explained in Figure 2. The simulation 

commences with the execution of a MATLAB script tasked with initializing the Component 

Object Model (COM) interface between OpenDSS and MATLAB. Subsequently, a subset of 

predetermined MATLAB simulation parameters is invoked, followed by the extraction of grid 

equivalent parameters within the MATLAB environment. These parameters, along with the 

temporal instantiation of the simulation initialization code, are conveyed to OpenDSS, where a 

pre-written script undertakes real-time power-flow analysis and conveys the subsequent 

simulation time resolution back to MATLAB. This temporal information is then utilized by 

MATLAB to ascertain the completeness of the ongoing simulation. Should the simulation 

remain incomplete, the iterative process persists. When simulation is completed, the ACPF 

results can be further harnessed by MATLAB for detailed visualization and analytical purposes.  
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Figure 2. Structure and cross-platform implementation of the hybrid ACPF simulation with 
OpenDSS and MATLAB 

3.3 Baseline Model Verification 

To verify the accuracy of OVMG OpenDSS ACPF model, a cross-platform comparison is 

carried out. The baseline load is first run in both OpenDSS and DERopt, and a comparison of 

p.u. phase-to-phase voltage for all active distribution transformers. The baseline model is then 

installed with PV/ESS of different penetration rates to ensure lowest cost at resiliency level for 

each branch. Nine different scenarios aiming at ensuring normal operation of different levels of 

critical load in OVMG are eventually developed and tested in both OpenDSS and DERopt with 
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same parameters for each scenario. Details about each tested scenario is listed in Table 2. 

Details on parameters that was used as same input in OpenDSS and DERopt are shown in  

Table 3. Details about UES scenarios can be found in previous published works by the author 

[110].  

Table 2.  Details about tested scenarios, including involved electrification technology, 
optimization goal and critical level rating. 

Scenario Scenario Feature Critical Load Level 

Baseline N/A N/A 

UES 1A-CL6 No Cooling, Lowest Cost 6 

UES 1A-CL7 No Cooling, Lowest Cost 7 

UES 1B-CL6 No Cooling, Lowest TDV 6 

UES 1B-CL7 No Cooling, Lowest TDV 7 

UES 2A-CL6 With Cooling, Lowest Cost 6 

UES 2A-CL7 With Cooling, Lowest Cost 7 

UES 2B-CL6 With Cooling, Lowest TDV 6 

UES 2B-CL7 With Cooling, Lowest TDV 7 

 

Table 3. Parameters used for comparison by both OpenDSS and DERopt. 

Parameters Used for Comparison Category 

Electric Demand  Individual Profile 

Utility Import  Individual Profile 

Solar Production  Individual Profile 

Storage Charging  Individual Profile 
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Storage Discharging  Individual Profile 

PV Capacity System Capacity 

ESS Capacity System Capacity 

 

Voltage results from the two platforms and a delta voltage percentage result will be shown 

for each scenario. The results are demonstrated using box plots, where the x-axis of those 

figures indicates the start of branch circuits. Active nodes are shown in order of proximity to 

start of branch circuit. The middle red line in each box plot indicates the median annual value. 

The 25th and 75th percentile values are shown as the bottom and top of each box, respectively. 

All regular data falls within the whiskers and extreme data points as red ‘+’ markers.  

To verify the accuracy of the model, all test case scenarios are run in the two platforms to 

generate two separate sets of power flow analysis, and results are then compared. The 

comparison for baseline is first accomplished.  

From top to bottom in Figure 3, Line-Neutral voltage of OVMG and DERopt of Baseline 

Scenario respectively, the delta voltage percentage of results from two platform are shown. It is 

obvious that with a negligible maximum difference around 0.5% between voltage results from 

two platforms for the Baseline Scenario, the way OCMG OpenDSS ACPF model works in a very 

similar way to DERopt.  

From top to bottom in Figure 4 and Figure 5, Line-Neutral voltage of OVMG and DERopt of 

UES 1A-CL6 and 1A-CL7 respectively, the delta voltage percentage of results from two platform 

are shown. It is obvious that with a negligible maximum difference around 4% between voltage 
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results from two platforms for both scenarios and the majority of the differences within 2%, the 

way OCMG OpenDSS ACPF model is considered to work in similar way as DERopt.  

From top to bottom in Figure 6 and Figure 7, Line-Neutral voltage of OVMG and DERopt of 

UES 1B-CL6 and 1B-CL7 respectively, the delta voltage percentage of results from two platform 

are shown. It is obvious that with a negligible maximum difference around 5% of voltage results 

differences between the two platforms for both scenarios and the majority of the differences 

that are within 2%, we can conclude that the OCMG OpenDSS ACPF model is verified to work in 

a similar way as the microgrid simulations of DERopt.  

From top to bottom in Figure 8  and Figure 9, Line-Neutral voltage of OVMG and DERopt of 

UES 2A-CL6 and 2A-CL7 respectively, the delta voltage percentage of results from two platform 

are shown. It is obvious that with a negligible maximum difference around 6% of voltage results 

between two platforms for both scenarios and the majority of the differences within 2%, the 

way OCMG OpenDSS ACPF model is once again considered to work in similar way as DERopt.  

From top to bottom in Figure 10 and Figure 11, Line-Neutral voltage of OVMG and DERopt 

of UES 2B-CL6 and 2B-CL7 respectively, the delta voltage percentage of results from two 

platform are shown. It is obvious that with a negligible maximum difference within 6% between 

voltage results from two platforms for both scenarios and the majority of the differences within 

2.5%, the way OCMG OpenDSS ACPF model is once again considered to work in similar way as 

DERopt.  

In conclusion, for all nine considered scenarios, the cross-platform comparison of the 

Baseline Scenario works best, with an overall maximum 0.2% difference in Line-Neutral voltage. 
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For all UES scenarios, although occasional outliers in delta voltage percentage could go as high 

as 6%, the vast majority of the difference is usually blow 2%, which is well acceptable. 

Therefore it is believed that the OpenDSS-based OVMG ACPF model is reasonably accurate and 

good for future use.  
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Figure 3. Cross-platform voltage comparison of OVMG Baseline Scenario. From top to bottom: 
Line-Neutral voltage of OVMG Baseline Scenario in OpenDSS, Line-Neutral voltage of OVMG 
Baseline Scenario in DERopt, delta voltage percentage of the two models above.  
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Figure 4. Cross-platform voltage comparison of OVMG UES 1A-CL6 Scenario. From top to 
bottom: Line-Neutral voltag of OVMG Baseline Scenario in OpenDSS, Line-Neutral voltage of 
OVMG Baseline Scenario in DERopt, delta voltage percentage of the two models above. 
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Figure 5. Cross-platform voltage comparison of OVMG UES 1A-CL7 Scenario. From top to 
bottom: Line-Neutral voltage of OVMG Baseline Scenario in OpenDSS, Line-Neutral voltage of 
OVMG Baseline Scenario in DERopt, delta voltage percentage of the two models above. 
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Figure 6. Cross-platform voltage comparison of OVMG UES 1B-CL6 Scenario. From top to 
bottom: Line-Neutral voltage of OVMG Baseline Scenario in OpenDSS, Line-Neutral voltage of 
OVMG Baseline Scenario in DERopt, delta voltage percentage of the two models above. 
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Figure 7. Cross-platform voltage comparison of OVMG UES 1B-CL7 Scenario. From top to 
bottom: Line-Neutral voltage of OVMG Baseline Scenario in OpenDSS, Line-Neutral voltage of 
OVMG Baseline Scenario in DERopt, delta voltage percentage of the two models above. 
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Figure 8. Cross-platform voltage comparison of OVMG UES 2A-CL6 Scenario. From top to 
bottom: Line-Neutral voltage of OVMG Baseline Scenario in OpenDSS, Line-Neutral voltage of 
OVMG Baseline Scenario in DERopt, delta voltage percentage of the two models above. 
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Figure 9. Cross-platform voltage comparison of OVMG UES 2A-CL7 Scenario. From top to 
bottom: Line-Neutral voltage of OVMG Baseline Scenario in OpenDSS, Line-Neutral voltage of 
OVMG Baseline Scenario in DERopt, delta voltage percentage of the two models above. 
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Figure 10. Cross-platform voltage comparison of OVMG UES 2B-CL6 Scenario. From top to 
bottom: Line-Neutral voltage of OVMG Baseline Scenario in OpenDSS, Line-Neutral voltage of 
OVMG Baseline Scenario in DERopt, delta voltage percentage of the two models above. 
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Figure 11. Cross-platform voltage comparison of OVMG UES 2B-CL7 Scenario. From top to 
bottom: Line-Neutral voltage of OVMG Baseline Scenario in OpenDSS, Line-Neutral voltage of 
OVMG Baseline Scenario in DERopt, delta voltage percentage of the two models above. 
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4 Renewable and Clean Energy System Integration into 

OVMG 

After the completion of OVMG ACPF baseline model, renewable and clean energy resources 

and measures including EV are then adopted. The widespread adoption of EVs is impeded by 

several challenges. Foremost among these impediments is the populace's reluctance to 

transition from conventional vehicles to EVs. Additionally, inherent constraints associated with 

EVs, such as limited vehicle range and battery degradation, further contribute to the hindrances 

[114][115]. However, some pivotal challenges lie in the realm of infrastructure, encompassing 

both the availability of charging stations and the grid capacity to accommodate the heightened 

electric demand and demand dynamics arising from EV charging. Although numerous states 

have initiated or are in the process of formulating investment plans to establish extensive EV 

charging facilities, exemplified by California's commitment to deploying 250,000 EV charging 

stations by 2025 as mandated by Senate Bill 350 [116], there remains a gap of comprehensive 

research on the impacts and challenges of the increased electric demand, especially on electric 

infrastructure and its subsequent influence on stable and reliable electricity delivery.  

The present section introduces an innovative approach for the generation of discrete EV 

charging profiles, integrating both static and dynamic methods for profile generation. A 

quantitative assessment of the impact of charging activities at various levels on key electric 

infrastructure will be conducted in the following section, utilizing empirical data obtained from 

a real-world community in Southern California, subsequently extended to encompass the entire 

Southern California (SoCal) region. The proposed profile generation methodology leverages 

National Household Travel Survey (NHTS) vehicle travel data specific to California. In contrast to 
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prior works like that of [65], which relies on traffic data that is not consistently available, our 

study first develops a stochastic model for individual EV travel, accounting for factors such as 

vehicle departure time, residence duration, and travel distance. The individual EV charging 

model is then implemented in a disadvantaged community within the SoCal region, employing 

the stochastic Monte Carlo algorithm. This deployment continues until a state of stable power 

quality and degradation is achieved, at which point a comprehensive report is generated. 

Subsequently, the methodology is extended to encompass the entire service territory of 

Southern California Edison (SCE), allowing for the generation of analogous reports for all 

residents within the SCE service territory. 

4.1 Discrete EV Charging Profile Development 

This section presents a methodology for the derivation of discrete electric vehicle (EV) 

profiles, with a particular emphasis on state-specific precision and potential applications. The 

principal objective of this process is to systematically generate a representative array of 

discrete EV charging profiles, tailored specifically to the state of California. These profiles are 

generated at a resolution that aligns with existing load profiles and incorporates associated 

allocation possibilities, which will be further elucidated in subsequent sections. This 

comprehensive methodology forms the foundation for subsequent discussions and applications 

in the forthcoming sections. 

The methodology for generating discrete EV profiles specific to California comprises three 

distinct phases, each designed to ensure the accuracy and applicability of the profiles. The first 

phase in this methodology is data preparation and pre-processing. This stage is fundamental for 
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acquiring and transforming the requisite data sources into a format suitable for subsequent 

analysis. It includes activities such as data acquisition, data eligibility assessment, and data 

integration. It is imperative to ensure the reliability and representativeness of the data used in 

generating the discrete EV profiles. Additionally, the pre-processing step may involve data 

cleansing, normalization, and aggregation to prepare for subsequent phases. In the second 

phase, the EV charging and discharging profiles are estimated. This step involves the 

development of mathematical models to simulate the charging and discharging behavior of 

electric vehicles within the California region. The model accounts for factors including starting 

state of charge (SOC) and charging time.  The final phase of the methodology focuses on the 

generation of discrete EV charging profiles. In this step, every possible EV charging profile is 

systematically created, taking into account the specific characteristics of California's electric 

vehicle market utilization. These profiles are generated at a level of detail that aligns with 

existing load profiles and can be applied to various scenarios. Importantly, the generation of 

these profiles also involves the calculation of associated probabilities to account for the 

likelihood of different charging behaviors, considering real-world uncertainties and variability. 

4.1.1 Preparation and Pre-processing 

When it comes to EV charging, key questions that every charging strategy needs to answer 

are to determine when to start charging and the state of charge of electric vehicles at the onset 

of charging. Acquiring pertinent information to address these pivotal questions necessitates the 

collection and analysis of two distinct sets of data. The first set of data pertains to the 

specifications of the EVs themselves, encompassing critical parameters such as the EV battery 

size and the nominal driving range achievable by the vehicle. The second set of data is EV travel 
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data, detailing the comprehensive driving patterns and behaviors of EV operators concerned 

with the travel patterns and behaviors of the EV drivers, encompassing various factors that 

significantly influence charging strategies. In this effort, we harnessed data from the National 

Household Travel Survey to gain insights into the overarching travel behaviors of EV users [117], 

and derived California-specific vehicle travel data, augmenting our dataset with valuable 

information such as the departure times of vehicle operators, the distances traveled, the time 

expended during travel, and the duration of dwelling time at destinations. The acquired EV data 

is categorized in Figure 12. The percentage of every possible daily vehicle dwelling hours and 

daily vehicle travel distances within 70 miles are included in Appendix B.  

 

Figure 12.  Data necessary for proposed methodology. The preparation process requires both EV 
characteristics and EV travel data. 

Figure 13 shows the most popular EV model in CA based on state registrations in 2023 

[118]. For the purpose of this analysis, the Tesla Model Y has been designated as the standard 

model, chosen based on its predominant share of the EV market in California, with a full 

charging time of 36 hours and maximum traveling distance per charge of 360 miles. The full 

charging time and maximum driving distance is crucial for the calculation in the following 



 

45 
 

sections.   The analysis focuses on a maximum driving distance of 250 miles, restricting the daily 

travel distance of the vehicle to within this threshold as per the selected NHTS data.  

 

Figure 13. Most popular BEV models in the state of California from 2022-2023 Q3. Data source 
is California New Car Dealers Association.  
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4.1.2 Discreet EV Charging and Discharging Profile and 

Estimation and Trip Model Simplification 

 

Figure 14. Charging profile of individual EV. From top to bottom are charging apmacity, 
charging voltage, SOC and charging power, respectively.  

In our model, we used a near ideal individual EV level 1 charging profile based on a standard 

Lithium battery [119]. The charging profile of the characteristic EV is shown in Figure 14. The 

starting SOC of each individual EV is approximated by considering the ratio of trip distance to 

maximum driving mileage. Under the assumption that all EVs depart from home fully charged in 

our model, the computation of SOC and the subsequent derivation of the charging profile 

become straightforward.  

An additional critical aspect of EV charging analysis pertains to the examination of vehicle 

trips. In coherence with the definition of vehicle trips provided by the NHTS, we herein establish 
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a simplified representation of a vehicle. In this representation, the EV's travel time 

encompasses both the duration taken from departure at home to the destination and the 

return journey from the destination to home. Moreover, the travel distance incorporates the 

combined distance of the entire trip. This simplification of EV travel and trips serves to facilitate 

a more straightforward implementation of bulk stochastic charging simulation, as elaborated in 

the subsequent sections. 

4.1.3 Profile Generation and Possibility Calculation 

To exploit the amassed data effectively, an initial methodology has been formulated. The 

process of profile generation is delineated in Figure 15. Primarily, the NHTS data underwent an 

initial screening to accommodate the maximum driving distance of the selected EV model. 

Subsequently, all conceivable combinations of EV departure time (from home), driving distance, 

travel time, and dwelling time (at the destination) were systematically considered, and their 

corresponding probabilities were computed. 
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Figure 15. Preliminary EV charging profile generation and possibility calculation process.  

A notable challenge arose, however, due to the inherent correlation between travel time 

data and travel distance, as shown in Table 4. To address this issue, we amalgamated the travel 

time data with EV departure time data (from home) and introduced what we term EV Arrival 

Time profiles. This integration aims to mitigate the influence of the travel time and travel 

distance correlation. The resultant correlation, calculated as 0.020202, indicates a minimal 

association between arrival time and travel distance. The EV Arrival Time profiles are visually 

represented in Figure 16. The revised generation process is shown in Figure 17. Based on 

information from California New Car Dealers Association in Figure 13, the EV considered in our 

model need 36 hours to get fully charged and can run up to 360 miles. An estimation for EV 

starting SOC is then developed. The calculations of possibilities of EV arrival time options, travel 
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distance options, dwelling time options as well as SOC estimation calculations are shown in 

equation (3)-(6). 

𝑃𝑎𝑟𝑟𝑣_𝑡(𝑖) =
∑ ⁡
𝑁_𝑎𝑟𝑟𝑣_𝑡(𝑖)
1

∑ ⁡𝑁_𝑎𝑟𝑟𝑣_𝑡
1

 
(3) 

𝑃𝑡𝑟𝑣𝑙_𝑑(𝑗) =
∑ ⁡
𝑁_𝑡𝑟𝑣𝑙_𝑡(𝑗)
1

∑ ⁡𝑁_𝑡𝑟𝑣𝑙_𝑑
1

 
(4) 

𝑃𝑑𝑤𝑙_𝑡(𝑖) =
∑ ⁡
𝑁_𝑑𝑤𝑙_𝑡(𝑖)
1

∑ ⁡𝑁_𝑑𝑤𝑙_𝑡
1

 
(5) 

𝑆𝑂𝐶𝑖,𝑗 = (1 −
⬚𝑡𝑟𝑣𝑙𝑑(𝑗)

360
36⁄

) × 100% 
(6) 

where 𝑃𝑎𝑟𝑟𝑣_𝑡(𝑖) is the possibility of EV arriving at the destination at hour i  i=0,1,…,2  , 𝑃𝑡𝑟𝑣𝑙_𝑑(𝑗) 

is the possibility of EV traveling distance being j  j=10,20,…,180 , 𝑃𝑑𝑤𝑙_𝑡(𝑖) is the possibility of EV 

dwelling at the destination for a total hour of i  i=0,1,…,2  ; 𝑁_𝑎𝑟𝑟𝑣_𝑡(𝑖) and 𝑁_𝑎𝑟𝑟𝑣_𝑡 is the 

total number of samples that has an arrival time of i and the sum of total number of  all 

possible arriving time in the sample. 𝑁_𝑡𝑟𝑣𝑙_𝑑(𝑗) and 𝑁_𝑡𝑟𝑣𝑙_𝑑 is the total number of samples 

that has an traveling distance of j and the sum of total number of  all possible traveling 

distances in the sample.  𝑁_𝑑𝑤𝑙_𝑡(𝑖) and 𝑁_𝑑𝑤𝑙_𝑡 is the total number of samples that has a 

dwelling time of i and the sum of total number of all possible dwelling time in the sample.  

The Monte Carlo operation details are listed in Table 5. The estimated quantity in the 

algorithm is the total infrastructure upgrade cost from EV integration, which will be illustrated 
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in the following sections. Note that if the results get below a standard deviation of 5% and 

converge within 500 iterations, then 500 iterations are run to ensure accuracy of the analysis.  

 

Figure 16. EV arrival time of weekdays and weekend. The figure is generated using NHTS data.  
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Figure 17. Final EV charging profile generation and possibility calculation process using EV 
Arrival Time.  

Table 4. Correlations between each EV travel elements 

 
Starting Time Travel Time Travel Distance Dwelling Time 

Starting Time N/A -0.02190 -0.00017 0.052072 

Travel Time -0.02190 N/A 0.723092 0.123725 

Travel Distance -0.00017 0.723092 N/A 0.125907 

Dwelling Time 0.052072 0.123725 0.125907 N/A 
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Table 5. Monte Carlo Algorithm Parameters.  

Number of Iteration Up to 500 

Number of EVs in Each Iteration Depending on EV Penetration Rate 

Estimated Object Total Infrastructure Upgrade Cost from EV 
Integration 

Convergence Criteria σ<5% 

 

4.1.4 EV Charging with Pseudo-Random Allocation in the Oak 

View Community 

In this section, we address the allocation of discreet charging events facilitated by the 

available event generation. As noted earlier, the determination of these events takes into 

account the variables of vehicle arrival time, travel distance, and the duration of vehicle 

dwelling prior to the commencement of home charging. To comprehensively account for the 

inherent randomness in these factors, the Monte Carlo algorithm is employed, executing a 

predetermined number of iterations. 

In accordance with the explicitly defined EV penetration rates stipulated by the California 

EV policy, each iteration follows a three-step process for the allocation of EV charging events. 

Firstly, a set number of residential units is randomly selected, with the ratio of the selected 

units to the total number of units corresponding to the EV percentage specified in the policy. 

This selection is predicated on the assumption that each residential unit is equipped with a 

single vehicle, and adherence to the policy's mandated EV penetration rate is rigorously 

maintained. The second step involves the allocation of vehicle arrival time, travel distance, and 

vehicle dwelling time for each EV or residential unit, guided by probability considerations. This 

step is termed "Pseudo-random allocation," as it prioritizes likelihood over purely random 
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assignment of these parameters. In the third step, the charging load profile is integrated with 

the existing electric demand, and a power flow simulation is executed to assess the impact of 

the added EV charging load on the electrical network. This iterative process encapsulates the 

intricate dynamics of real-world EV charging occurrences, providing a robust framework for 

evaluating the implications of different EV penetration rates as mandated by the CA EV policy. 

In consideration of the established residential unit density within the Oak View Community, 

as previously delineated by the authors, the primary challenge in effectuating varying EV 

penetration rates within the Oak View community lies in the random selection of a specific 

percentage of residential units by Monte-Carlo Algorithm. For each iterative process, residential 

units within the same building are treated as independent entities, and the stochastic nature of 

random selection may lead to disparate EV ownership distributions among units within a given 

building, aligning with real-world scenarios. The residential population density is graphically 

presented in Figure 18. 
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Figure 18. Population density of Oak View Community. Note that most units are multifamily 
housing. 

4.2 Community Scale Vehicle Electrification Scenarios 

4.2.1 Policy-driven EV Adoption Scenarios 

California has emerged as a trailblazer in the domain of vehicle electrification. In accordance 

with Governor Newsom's Executive Order N-79-20, the progression of electric vehicle (EV) 

adoption in California is delineated through a three-step plan. By the year 2025, it is anticipated 

that 35% of the total new vehicle sales will comprise EVs. Subsequently, by the year 2030, this 

proportion of new vehicle sales is expected to escalate to 68%. The ultimate milestone in this 



 

55 
 

trajectory is the realization of 100% EV sales by the year 2035. Of course, many years of new 

vehicle sales are required to turn over the entire vehicle fleet. Nonetheless, inspired by 

California’s ambitious EV goals which will eventually turn over the entire light duty vehicle fleet, 

we have constructed three EV scenarios as shown in Table 6 where the actual EV market share 

corresponds to the three levels of EV new sales percentages. According to California State 

Portal [120], the 35% EV market share will be achieved in 2040, with 68% EV market share 

achieved in 2045 and 100% share realized in 2055.  

Table 6. California EV penetration rates considered as inspired by Executive Order N-79-20 

EV Goal EV Penetration Rate Expected Year 

#1 35% 2040 

#2 68% 2045 

#3 100% 2055 

 

4.2.2 High Penetration EV Adoption with Level 2 and DC Fast 

Charging 

This section will discuss the reasoning behind the development of each EV scenario and the 

detailed configuration as well as penetration rate of all involved charging events.  

With California’s 2025 State ZEV goal [121][122],  a combination of different types and 

levels of charging is planned to take place in the OVMG [16]. The eventual goal of EV adoption 

in CA is 100% replacement of current vehicle market with EVs. In the foreseeable future, with 

more charging infrastructure available to the public, charging will no longer be mainly at home 

[123]. As a matter of fact, California policy should eventually favor workplace charging for 

coincidence of EV charging demand with grid supply of mostly solar primary energy, as 

expected by the California Air Resources Board [50]. To analyze the impact of EV adoption in 
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OVMG with charging other than Level 1 charging, several EV scenarios of high penetration rate 

are developed. A summary of discussed EV scenarios is depicted in Table 7. A summary of 

involved charger type and explanatory information are shown in Table 8.   

Table 7. EV Scenario Summary 

Scenario Name EV Penetration 
Rate 

Charger Type in 
Residential Area 

Charger Type in C&I Area 

1: 100% Residential LV 2 High 100% HL2 PL2, WL2, PDCF (default) 

2: 100% Residential LV1/LV2 High 80% HL1, 20% HL2 PL2, WL2, PDCF (default) 

3: 100% Residential LV1/LV2 
+100% C&I LV2 

High 80% HL1, 20% HL2 50% PL2, 50% WL2 

4: 100% Residential LV2 
+100% PDCF 

High 100% HL2 100% PDCF 

  

Table 8. Abbreviation of EV Charger Level and Power Level 

Charger Type Abbreviation Definition Charger Power Level/KW 

HL1 Home Level 1 EV Charger 1.4 

HL2 Home Level 2 EV Charger 7.5 

PL2 Public Level 2 EV Charger 11.4 

WL2 Work Level 2 EV Charger 11.4 

PDCF Public DC Fast Charger 50 

 

Originally derived from NREL’s EV -Pro program [124], a set of scaled-down OVMG EVSE 

charging load profiles is shown in Figure 19. This figure serves as a reference, and it is assumed 

that in later simulations that the peak power of individual charging of each of the charging 

types strictly follows the limits of Figure 19 whenever used. The charging power of all Level 2 

charging is 10KW while Public DC Fast charging is 50KW. 

Based on previous work done by the author [16], charger count of different types are 

acquired via a clustering method that is represented in Table 9. This scenario is designed based 

on CEC’s projection of EV infrastructure projection to state’s 2025 Zero-Emission-Vehicle 

deployment goals [121].  
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Figure 19. Hourly PEV Charging Profile for EVSE clusters: Home L1, Home L2, Work L2, Public, L2, 
and DC Fast charging. Solid lines represent charging demand on weekdays. Dashed lines 
represent charging demand on weekends. 

Table 9. Details about chargers of different levels deployed in the Oak View Community 
sufficient for the 100% EV penetration scenario. 

Charging Power Level Transformer Count EVSE count Clusters 

Home L1 9 
394 

  

10 clusters of 40 

Home L2 1 

Work L2 5 19 5 clusters 4 

Public L2 3 21 3 clusters of 7 

Public DC Fast 1 5 1 cluster of 5 

 



 

58 
 

4.2.2.1 Scenario 1: 100% Residential EV Penetration with LV2 Charging 

Similar to the previous LV1 discreet scenario, we now develop a LV2 charging scenario for 

residential vehicle electrification and charging. In this scenario, Level 2 chargers supplant their 

Level 1 counterparts, representing a boundary or spanning case wherein advancements in 

charger technology have precipitated the widespread affordability of Level 2 Home chargers 

among the demographic of utility consumers within the OVMG community. This evolution is 

underpinned by a customer preference for expeditious and more controllable charging 

experiences (e.g., to match charging with cheapest electricity rates) at residential premises, 

eclipsing the conventional reliance on Level 1 charging infrastructure. 

A similar Monte Carlo process of LV2 and Public DC Fast charging profiles is extrapolated, 

with all algorithm parameters being the same, which mirrors a prototypical scenario of 100% 

LV2 EV charging deployment within the residential domain. The only difference lays in charging 

rate which results in different charging time and charging profiles.  

The charging infrastructure within the C&I sector encompasses a range of charger types, 

including WL2 PL2, and PDCF chargers. These chargers adhere to the default operational 

configurations as delineated in the seminal work of L. Novoa et al. [125]. An example siting of 

different chargers is depicted in Figure 20.  
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Figure 20.  Position of different types of chargers in Scenario 3.   Note that all chargers 
associated with each particular active distribution transformer shown in all sectors of the graph 
represent the situation where all affiliated utility customers connected to that transformer use 
the same type of charger. 

4.2.2.2 Scenario 2: 100% Residential EV Penetration with LV1/LV2 

Charging 

This scenario delineates a transition from a moderate penetration of EVs within the C&I 

sector of the in OVMG Community compared to Scenario 1 and a more mixed adoption of LV1 

and LV2 chargers in the residential sector. In residential areas, prior to the technological 

advancement of Level 2 charger systems to a degree where significant price reductions on 

individual purchases are feasible, it is pragmatic to posit that a blend of Level 1 and Level 2 

charging infrastructure would likely prevail in the event of a complete 100% EV conversion.  
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Level 2 chargers predominantly find placement in newly developed residential buildings 

that are fully electric, exemplified by the Soltaros Apartment Homes, constituting a 20% share 

of the residential charging landscape. The remaining 80% of residential charging is exclusively 

facilitated by Level 1 chargers. The percentage of LV1 and LV2 charging used here are 

considered by NREL as most probable average shares in 2050 [126].  Concurrently, the same 

number and deployment of Level 2 chargers and Public DC Fast chargers are integrated into the 

C&I sector, with their deployment contingent upon factory/facility dimensions and hosting 

capacity, as delineated by the findings of L. Novoa et al. [125].  

The Monte Carlo algorithm is employed for the stochastic selection and deployment of LV1 

and LV2 chargers within the residential sector. Maintaining a fixed ratio of 80% LV1 chargers 

and 20% LV2 chargers per stochastic iteration, the allocation process initiates by randomly 

selecting residential units for LV1 charger installation until the 80% threshold is achieved. 

Subsequently, the remaining 20% of residential units are automatically designated for LV2 

charger installation. An example siting of different chargers is depicted in Figure 21.  
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Figure 21. Position of different types of chargers in Scenario 2.  Note that all chargers associated 
with each particular active distribution transformer shown in all sectors of the graph represent 
the situation where all affiliated utility customers connected to that transformer use the same 
type of charger. 

4.2.2.3 Scenario 3: 100% Residential EV Penetration and 100% C&I 

Section EV Penetration with LV2 Charging 

This scenario builds upon Scenario 2 by achieving a LV2 100% EV penetration rate within the 

Commercial and Industrial sector, symbolizing a complete conversion of EV adoption 

throughout the OVMG Community. This transition to full vehicle electrification, employing 

cutting-edge charging technologies within each sector, serves as a pivotal step towards fulfilling 

the goal of 100% community electrification. 
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A substantial and equitable deployment of Public Level 2 and Work Level 2 chargers is 

implemented within the C&I zone, informed by recommendations from the EVI-PRO framework 

[126]. The Monte Carlo Algorithm is once again utilized for the allocation of both types of LV2 

chargers within the residential sector, with an 80% and 20% distribution of LV1 and LV2 

chargers, respectively. 

Figure 22  illustrates a sample layout depicting the distribution of various charger types 

across different settings. 

 

Figure 22. Position of different types of chargers in Scenario 3.  Note that all chargers associated 
with each particular active distribution transformer shown in all sectors of the graph represent 
the situation where all affiliated utility customers connected to that transformer use the same 
type of charger. 
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4.2.2.4 Scenario 4: 100% Residential EV Penetration with LV2 charging 

and 100% C&I PDCF Charging 

This scenario represents another spanning set of conditions for achieving 100% EV 

conversion within the OVMG Community, with all customers provided access to fast charging 

(LV2 at home and DC fast charging at work). By ensuring an ample quantity of chargers to 

accomplish the swiftest charging capabilities accessible to all members of the community, this 

scenario delineates a very advanced and successful prospective EV market. Within this scenario, 

all utility customers residing in residential zones are presumed to exclusively utilize Home Level 

2 chargers for EV charging purposes, while those in C&I sectors rely exclusively upon Public DC 

Fast chargers. The placement of each set of chargers is delineated in Figure 23, as associated 

with each distribution transformer in the microgrid model.  
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Figure 23.  Position of different types of chargers in Scenario 3.   Note that all chargers 
associated with each particular active distribution transformer shown in all sectors of the graph 
represent the situation where all affiliated utility customers connected to that transformer use 
the same type of charger. 

 

4.3 Bulk Vehicle Electrification in Southern California 

4.3.1 SCE Service Territory Scenarios 

Given the author’s prior work on  the quantification of empirical transformer degradation 

model [127], it is advantageous to extend the simulation to the county level, specifically for the 

regional substations. This endeavor has been facilitated through the utilization of SCE's 

Distribution Resources Plan External Portal (DRPEP) [109] and Power Site Search Tool (PSST) 

[128]. These tools have enabled the comprehensive recording of load profiles for each 
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operational distribution substation, along with their respective ratings. The geographical 

distribution of these transformers and population served by each set of distribution substation 

transformers is illustrated in Figure 24. 

To incorporate the aggregate electric vehicle charging load profiles into individual 

substations, we employed NREL’s Electric Vehicle Infrastructure Projection Tool (EVI-Pro) [126]. 

This tool offers anticipated EV charging loads based on user-defined population parameters. 

The median commuting distance of each SoCal County has been used here as a reference for 

standard EV travel distance and stays the same for all substations in the same county. The 

individual EV charging profiles derived from EVI-Pro for each county is presented in in Figure 19. 

However, ascertaining the population served by each substation requires a preliminary 

estimation, as illustrated in Figure 25. Although the population serviced by each substation is 

not publicly accessible, the total load, or the comprehensive projected load on DRPEP, can be 

determined. It is posited that the former is directly proportional to the latter. Summing up the 

populations of all substations yields a total population of 15 million individual meters within 

SCE's operational domain. Subsequently, individual substation populations are determined by 

assigning fractions of the total population to each substation in proportion to the respective 

load ratios (i.e., substation load/total SCE load).  The meteorological profile for each substation 

is sourced from the National Weather Service (NWS). Figure 24 also illustrates the population 

density corresponding to each substation. SCE’s capacity expansion plan [109] was used to 

increase each of the substation transformer capacities for the power flow simulations and 

degradation analysis for the entire SCE service territory. That is, we assumed that each specific 
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year’s simulation uses the upgraded planned total capacity as the actual substation transformer 

ratings.  

 

Figure 24. Population served by every set of SCE distribution substation transformers. 

 

Figure 25. The process of estimating each substation’s serving population with the ratio of 
known substation projected load. 
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4.3.2 The Oceanview Substation Special Analysis 

Of all the substations shown in Figure 25, one substation, the Oceanview substation, can be 

further analyzed. The Oceanview substation serves a multitude of local communities, including 

the Oak View Community, and the author was able to check the overall layout in person during 

one of the fields trips for the OVMG project. Due to the fact that the Oak View Community and 

neighboring local communities also powered by the Oceanview Substation are electrically, 

socially, and economically similar, it is reasonable to assume that a scaled-up load level from 

the Oak View Community for different EV scenarios would represent the overall level of 

increased electric demand imposed on the Oceanview Substation. The details of the analysis 

will be expanded upon in later sections.  

The analysis for this very substation will be further expanded to substation bus, protection 

relay and related common electronics and switchgear used for protection purposes. In this case 

the popular analysis platform for substation ETAP (Electrical Transient Analyzer Program) is 

used.  

The Oceanview Substation, a 230kV/13.8kV substation, is modeled in ETAP 16.00 with utility 

system equivalent, overhead transmission line, power transformer, underground cable, 

substations bus, feeder loads, and protective relays. The equivalent feeder load is the direct 

result from the previous scaled-up estimation using the load level from the Oak View 

Community by population. The length of the transmission lines and cables is from the SCE’s 

DRPEP toolkit [109]. The substation bus and protection relays settings are modeled with 

observed facts during one field trip for OVMG project, where one high side and low side 
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transformer respectively were spotted to connect with one circuit breaker each. The protection 

mechanism is believed to be differential protection with multiple current transformers.  

The parameters to build the Oceanview Substation ETAP model are listed in Table 10. Most 

parameters are acquired either through direct observation during OVMG field trips or from 

most common utility practical standardized procedures. A few parameters, such as the load 

power factor, have been configured with OVMG project assumptions.  The ETAP model is 

illustrated in Figure 26. 

Table 10. Oceanview Substation ETAP model parameters 

Category Parameter Type Parameter Value Parameter Source 

Feeder Loads Load Nominal Voltage 13.9KV SCE DRPEP 

Load Power Factor 0.9 OVMG Assumption 

Connection Delta Field Trip Observation 

Utility System 

Equivalents 

Utility Nominal Voltage 220KV SCE DRPEP 

3LG Fault Current 5000A, X/R=10 Practical Industrial 

Standard 

SLG Fault Current 7000A, X/R=12 Practical Industrial 

Standard 

Transmission Line Length  0.21 miles SCE DRPEP 

R/X/C Pelican OVMG Assumption 

Substation 

Transformer 

Primary Nominal Voltage 220KV Field Trip Observation 

Secondary Nominal Voltage 13.8KV Field Trip Observation 

Rated OA Apparent Power 100 Field Trip Observation 
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Impedance  9.5% Practical Industrial 

Standard 

X/R 35 Practical Industrial 

Standard 

Tap Setting Nominal on Both Side OVMG Assumption 

Connection Dyn1 Field Trip Observation 

Underground 

Cable 

Size 1000 kcmil Practical Industrial 

Standard 

Length 500 ft OVMG Assumption 

Conductor per Phase 16 OVMG Assumption 

Rated Voltage 15KV Practical Industrial 

Standard 

Type/material Aluminum Practical Industrial 

Standard 

Relay Transformer Relay Schweizer 487E OVMG Assumption 
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Figure 26. ETAP model of the Oceanview Substation with transformer, protection relay scheme 
and related switchgear. 

 

5 Renewable and Clean Energy Systems Adoption in 

Novel Operational Scenarios 

In recent years natural disasters have severely impacted the reliability of electric grids to 

power communities. From extreme weather conditions such as high winds to abnormal climate 

phenomenon such as hurricanes, super storms and even drought, the weather cuts off power 
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or operators are forced to cut off electricity supply on an increasingly frequent basis, in PSPS 

events. In the meantime, new concepts and technologies have been reshaping the way people 

use electricity, especially with much higher use of electricity for meeting transportation 

demands and increasingly electrifying buildings. To help mitigate the climate consequences 

from global warming, microgrids have been used to power communities with high use of 

distributed resources and also to keep powering the communities through emergencies such as 

PSPS events. In this section several topology designs based upon the original OVMG are first 

proposed, each tested in the ACPF model and will then be analyzed for their impacts on the 

community and on the macro grid.  

It has been quite a while since EV was first introduced to the market, and one new 

technology derived from EV use has been proposed and discussed— vehicle-to-grid, or V2G. 

With bidirectional charging of EV to or from the microgrid, EV can serve in many helpful roles in 

grid and microgrid control. In this section a V2G peak shaving application in the OVMG will also 

be developed and analyzed. 

The openness toward energy trading has also created new challenges for and complicated 

the reliable operation of microgrids. Methods to handle excess clean energy from DER by 

mainly harnessing ESS have now been expanded with individuals selling back their surplus 

power to the grid for credit, mostly through Net Metering or Co-Metering programs. Currently 

in California, with NEM 3.0 replacing the NEM 2.0, different adoption rates of NEM qualifying 

systems will have different impacts on a microgrid and its reliability. Therefore, a case study 

applied with NEM 3.0 users active in the OVMG will be analyzed with multiple scenarios. Details 

about each scenario are shown in Table 11. Two sets of scenarios are developed, one being 
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NEM 3.0 with infrastructure degradation constraints, one without. Details of NEM scenarios will 

be shown in Section 5.3. 

Table 11. NEM Scenario Summary 

Scenario NEM System 

1  NEM 3.0 without constraints  

2 NEM 3.0 with constraints 

 

5.1 Topology Design for Better Islanded Operations During 

Grid Interruptions 

Global climate change has led to numerous challenges across Californian electrical 

distribution systems [132]. Extreme weather events, like heat waves, high winds, wildfires, and 

Public Safety Power Shutoff events, and flooding have reduced electric distribution grid 

resiliency, particularly in rural areas in California. Microgrids with distributed energy resources 

(DERs), can operate in islanded mode, increasing resiliency against these unexpected climate-

inducted power failures [132]. However, reliable microgrid islanding operation has multiple 

challenges, including local power balance, power quality control, equipment protection 

coordination [133]. Therefore, microgrid design, topology, and control topics must be taken 

into consideration to cope with those challenges.  

A balance between load and demand has been required since the creation of the 1st circuit, 

which is a major focus of research on microgrids. In recent years, research has been performed 

on microgrid design to address these challenges.  In [134] a micro-CHP device used as an 

islanding generator was incorporated into household load/demand balancing. A  methodology 

for isolated grid operation power balance is further demonstrated in [135]. Additional types of 



 

73 
 

energy management for microgrid islanding design are studied in [20,77,136–138].  Some 

studies advance the design of microgrid topology based on power quality optimization, such as 

in [139] and [140]. A few other studies evaluate the possibility of microgrid power quality 

control with the use of Vehicle-to-grid (V2G) techniques [20,70,73,76,141]. Many topology 

design methods have been proposed. Based on survivability schemes, one topology design 

reconnects small microgrid network through optimized utilization of renewable energy sources 

[23]. Topology design in [24] and [25] efficiently combines graph partitioning algorithm with 

MILP to reach local energy equilibrium when generating islands and remaking connections for 

mesh circuits. Multi-Objective Substrate Layer Coral Reefs Optimization Algorithm was applied 

to decide distribution of DERs and optimal connection of different nodes in [26] A viable 

restructuring of existing microgrids was used with phase angle measurements of the swing 

equations based on multivariate Wiener filtering to reconstruct operating radial power grids in 

[27]. While most of the above address different goals in grids under islanding operation mode, 

very few bring about such goals based on existing topology, and usually a significant amount of 

effort on or even a complete reconstruction of grid system is needed to implement the 

algorithms proposed.  Also, very few propose designs considering more than one goal such as 

local power balance focus and electric power quality (PQ) control and very few are experienced 

under real-life electrification scenarios.  

This section continues previous works on topological optimization for distribution circuit 

power balance in islanded operation without considering existing powerlines [24] by adapting 

into forms that are appropriate for radially developed community scale circuits with an 
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emphasis on power balance ability as well as power quality control while keeping as much of 

the original distribution system infrastructure as possible as applied in a real-life scenario.  

5.1.1 Development of Graph-partitioning-based Loop 

Planning 

Our work builds upon a graph partitioning algorithm presented in [24] that designed the 

optimal microgrid topology for a given set of nodes with loads and generation. Our main 

contribution to this algorithm are modifications to this algorithm that design microgrid 

topologies across preexisting electric distribution systems. A standard multilevel graph 

partitioning algorithm consisting of three phases-- the Coarsening, Partitioning and 

Uncoarsening. The graph-partitioning-based island distribution circuit topology algorithm 

determines which nodes should form a microgrid during a utility interruption, and indicates 

how these nodes should be connected. Similar to the classic three-phase approach, our 

modified variant of these phases is aimed at achieving a more equitable distribution of power, 

ultimately enhancing the power balance in the generated islands. The primary objective of our 

graph partitioning methodology is twofold: first, to produce islands with a well-balanced power 

distribution, and second, to adhere to the stipulated power quality requirements. 

The topology of the baseline scenario chosen for analysis is shown in Figure 27. The 

community is supplied with power through two 12 kV 3-phase distribution lines. Pad-mounted 

and pole-mounted transformers are indicated with blue squares and yellow circles, 

respectively. The determination of cable connections and transformer placements was 

established through a hybrid approach that combines on-site field observations with maps of 

distribution circuits [109]. Building loads serviced through this infrastructure is based on work 
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in  [142][16] [143]. It should be noted that all ensuing examples will be executed on distinct 

segments of the Oak View Community grid topology or encompass the entire grid network. 

New potential infrastructure is highlighted using dashed cyan blue lines. These new lines were 

selected based on proximity of different distribution branch circuits and the potential to install 

new powerlines located on public or city owned land. 

Difference from original topology design will be pointed out below. 

 

Figure 27. Oak View Community topology. All the marked nodes in yellow and blue are existing 
transformers. 

5.1.1.1 Phases of Topology Design 

5.1.1.1.1 Phase 1--Coarsening 

Phase 1 is coarsening, where the graph is simplified into several node sets that are regarded 

as single nodes in phase 2 partitioning. Heavy edge matching (HEM) is used here. The basic idea 
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of HEM is to have neighbor nodes join the given adjacent node to form a single node that has 

relatively high-weight edges.  HEM is commonly seen in communication network problems. In 

our case, HEM is slightly modified to cluster nodes based on proximity – closer nodes have a 

higher weight.  The following modified HEM steps are followed: 

a)  Initialize the set of matching as M0= ∅; i=0; 

b)  Randomly select a vertex (𝑉𝑚) in Gi that is not yet associated with the matching Mi; 

c)  Among edges adjacent to Vm select the minimal length edge (maximal-weight edge) (Emn); 

d)  Join vertices 𝑉𝑚 and 𝑉𝑛  to form a new vertex in Gi + 1; associate 𝑉𝑚  and 𝑉𝑛 with matching 

Mi; 

e)  If half of the total nodes are included in the coarsened graph, which is the criteria we chose) 

then stop; otherwise, set i=i+1 and go back to Step b.  

5.1.1.1.2 Phase 2--Partitioning 

After coarsening, a greedy graph growing partitioning (GGGP) algorithm is applied to group 

nodes together based on balancing loads and generation at each group of nodes. In contrast to 

initiating the phase with random nodes, our proposed algorithm takes a more targeted 

approach by commencing with nodes exhibiting the most significant power imbalances. This 

strategic initiation is designed to enhance the partitioning process's effectiveness. Similar to 

Phase-1, the Phase-2 partitioning process continues to adhere to a weight-based approach. 

However, in order to align the partitioning strategy more closely with our specific objectives, 

we introduce modifications to the weight and gain considerations, taking local power balance 

into account, as elaborated in step (b). It is noteworthy that our partitioning approach considers 
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not only nodes with pre-existing connections but also nodes with the potential for connection, 

even if such connections do not exist in the original network. In our particular case, we 

recognize all horizontal connections between nodes from nearby branch circuits as potential 

connections, as illustrated in Figure 27. The following steps are followed: 

a) Each loop (V1) starts to grow from one of selected imbalanced nodes  

b)  Vertex (Vm  in V1’s boundary  V2  that has maximal Gain is inserted to V1.  The Gain is 

defined as: 

  𝐺𝑎𝑖𝑛(𝑉1) ⁡= 1 −  | 𝑃𝑀(𝑉𝑚) |         ( 7 ) 

where, ⁡𝑃𝑀(𝑉𝑗) = ∫
𝐷𝐺(𝑉𝑚)−𝐷(𝑉𝑚)

𝐷(𝑉𝑚)

⬚

𝑡
× 100%,       ( 8 ) 

and PM(Vm) is the power mismatch in loop Vm when 𝑉𝑚’s closest first-order outside neighbor 

node Vj  is inserted ; DG and D are the dynamic DER capacity and load at the a given time t 

respectively.  

c)  The first-order neighbors of Vm previously belong to V3 are moved to V2; 

d)  If half or more of all nodes are included in different  V1 then stop; otherwise, go back to 

Step-b. 

5.1.1.1.3 Phase 3--Uncoarsening 

Phase-3 is specially modified. Our criteria for doing swap testing, apart from keeping down 

generation/load unbalance, also focus on inviting nodes from branched circuit that are from 

different distribution circuit. The following steps are followed: 
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a) Swap testing: randomly select a pair of boundary nodes and test if their swap can improve 

the current partition (e.g., successful or failed swap); 

Revised the swap testing (step a) criterion:  

𝜆m,n=∑ {|𝑃𝑀(𝑉𝑖) − 𝑃𝑀(𝑉𝑖) ∗∗ |} ×
⬚
𝑚,𝑛 Distline_weight      (9) 

Distline_weight= 1 if i is from different distribution line of m or n,2 otherwise. The double 

superscript ** denotes the desired value, which is defined manually based on design 

requirement.m and n denote two adjacent loop systems. 

b)  Only perform the successful swaps where 𝜆 is reduced; 

c)  Once a vertex is tested, it will be fixed (excluded from any future swap testing); 

d)  If a given condition is satisfied (e.g., there are n successive cancelled swaps where n is a 

predefined number), then stop; otherwise, go back to Step-a. 

then stop; otherwise, go back to Step-a. 

5.1.2 Real-life Examples Using Proposed Islanding Method 

and Reference Scenarios 

Four configurations of island topology design are used for comparison. The first 

configuration replicates the Oak View Community topology by disconnecting each branch 

circuit from the primary 12-kV distribution line for simplicity of implementation. The second 

one creates two islands based on distribution line origin. The third one applied the microgrid 

formation algorithm to the Oak View community but does not allow for supplementary 

connections. The last configuration involves employing the algorithm when allowing 

supplementary connections.  Quantitative analysis will be conducted to compare the 
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effectiveness of these four topology design algorithms in maintaining local power balance, 

including quantified power balance analysis and power quality comparison after islanding.  

The real-life power flow model for the Oak View Community is used to demonstrate the 

islanding algorithm described above Both islanded operation mode with and without the extra 

connections in the Oak View Community were considered, where the latter serves as a close 

reference. Selection of the starting point for each island for both scenarios under islanded 

operation mode is shown as red dots in Figure 27. 

The details and comparison of four topology designs are depicted in Table 12. 

Table 12. Topology Design Method Summary for OVMG 

Topology Design Design Goal involved Algorithm Addition of extra 
connections 

Branch Islanding Easiness to implement None N/A 

12 KV Distribution Line 
Islanding 

Common Engineering 
Islanding Solution 

None N/A 

Optimal Design w/o 
Extra Connection 

Local Power Demand and 
Supply Balance 

Multilevel Graph 
Partitioning, MILP 

No 

Optimal Design w/ Extra 
Connection 

Potential Better Local Power 
Demand and Supply Balance 
with Extra Energy Routes 

Multilevel Graph 
Partitioning, MILP 

Yes 

 

After conducting a yearly power flow analysis on each island employing distinct methods as 

delineated in in the previous section, the ensuing section embarks on a thorough examination 

of four islanding methodologies. Therein, all islanding outcomes derived from various scenarios 

employing two of the basic islanding algorithms, alongside comparative analyses of scenarios 

with and without supplementary connections using the proposed optimized islanding 

algorithm, shall be expounded upon. 
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5.1.2.1 Topology Design 1:  Branch Islanding 

This scenario exemplifies the implementation of a basic islanding technique, wherein each 

radially developed branch is regarded as an independent island during an islanding event. This 

design scenario functions as a reference, offering the most straightforward method to island 

the OVMG, which is characterized by radial development. Notably, this particular islanding 

technique yields seven distinct islands, as depicted in Figure 28. 

 

Figure 28. Final islanding result by islanding each branch circuit. In this case seven different 
islands are generated. 

5.1.2.2 Topology Design 2: 12 KV Distribution Line Islanding Scenario 

The concept underlying this islanding scenario involves the deliberate segregation of 

primary branch circuits according to their respective 12 KV distribution lines. The islanding 

outcome is visualized in Figure 29. All branch circuits originating from the Standard distribution 
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line were composed into a singular island, depicted in Figure 29 as the ensemble of green 

branch circuits (top island). Conversely, branch circuits originating from the Smeltzer 

distribution line form a distinct island, portrayed in Figure 29 as the collective of yellow branch 

circuits (bottom island).  

 

Figure 29. Final islanding result by islanding based on 12 KV Distribution Line Origin. In this case 
two different islands are generated. 

5.1.2.3 Topology Design 3:  Optimal Design without Extra Connection 

In accordance with the aforementioned topology design methodology, which integrates 

MILP algorithms, the initial configurations of the OVMG Baseline Scenario are depicted in Figure 

30. Pursuing the overarching objective of optimally aligning local DER generation with electric 

demand within each microgrid, this design approach concurrently evolves and refines five 

distinct microgrid configurations from five distinct starting points. 
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The ultimate outcome of the topology design process is illustrated in Figure 31, where 

individual microgrids are delineated by distinct colors. While it is believed that optimal local 

power balance has been achieved within each microgrid, it is possible that this may not 

represent the overall power balance optimum, as physical barriers have hindered inter-

microgrid energy exchange, potentially thwarting a more balanced solution. Consequently, an 

alternative topology design accommodating additional interconnections to better balance local 

power distribution is proposed and elaborated upon below. 

 

Figure 30. Starting points of OVMG ACPF model based on Baseline Scenario. The starting points 
are marked in light blue color.  
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Figure 31. Final islanding result without extra connections. In this case four different islands are 
generated. Different islands are circled in different colors. 

5.1.2.4 Topology Design 4:  Optimal Design with Extra Connection 

The final result of the proposed topology design process, shown in Figure 32, only involves 

two big islands. This islanding method best represents the case where optimal local power 

balance has been achieved within each microgrid throughout the microgrid, and quantified 

results showing the effectiveness of the algorithm will be described in Section 6.  



 

84 
 

 

Figure 32. Final islanding result with extra connection permitted. Note that only two islands are 
generated. 

5.2 DER Alternative Solution 

An alternative strategy to mitigate the adverse impacts associated with increased electricity 

demand from various electrification initiatives is to deploy DERs and ESSs. In this section, we 

propose a mixed-integer linear programming optimization model for determining the optimal 

size and placement of PV panels and battery storage systems throughout the OVMG 

community, which operates within a complex existing distribution grid infrastructure. The goal 

is to minimize overall NPV costs across the system's dynamic, time-sensitive operations over a 

representative year, incorporating established load and solar insolation profiles. This work 

expands upon previous studies by Flores et al. [125][144], namely the DERopt system, 

introducing a novel method to prevent distribution transformer overloads by leveraging prior 
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analyses on transformer degradation thresholds, with the option to consider California’s NEM 

3.0 rates.  

5.2.1 Lowest Cost DER Deployment with Transformer 

Constraint 

The lowest cost DER deployment is achieved by DERopt mentioned above and is achieved 

by MILP algorithm [108] . The platform was used to determine the lowest possible cost of solely 

using PV/ESS systems to meet the electric demand of various EV integration scenarios, which 

include all EV scenarios in Section 4.2. The results of DERopt include the total amount of DER 

and ESS to achieve lowest overall cost and will be shown in Chapter 6.  

The objective function of DERopt is the sum of various individual cost components that the 

algorithm minimizes, including the cost of electricity purchased from the grid, demand charges, 

and the cost to purchase and operate DER, including capital and O&M costs. The objective 

function also captures the revenue generated by exporting excess electricity to the grid under 

both net energy metering (NEM 3.0 only) and wholesale rates. The objective function is shown 

in Figure 33. The detailed realization of each cost is included in Appendix C.  

A novel transformer Electric Demand/Transformer Rating chart table has been developed 

based on previous studies by the author. Given the ambient temperature, transformer rating as 

well as calculated HST (Hot Spot Temperature, details of HST will be explained in Chapter 6), 

any dynamic electric Demand/transformer ratio that goes above the value shown in the table is 

considered dangerous with high risk of overloading and is not allowed in the DERopt MILP 
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calculation. A showcase table showing transformer rating from 25 KVA to 150 KVA from 50 °C to 

100 °C in HST is shown in Table 13.  

 

Figure 33. Objective function of proposed MILP cost function.  

Table 13. Electric Demand/Transformer Rating table for transformer with rating between 25KVA 
to 150 KVA from HST 50 °C to 100 °C.  
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6 Impact Analysis 

After the application of different types of renewable and clean energy systems in various 

scenarios as mentioned above, in this chapter the impacts of those measures are evaluated. 

The analysis consists of three parts: reliability and resiliency evaluation, degradation evaluation, 

cost and benefit evaluation. 

The first evaluation includes the necessary index for reliability and resiliency. For all OVMG 

scenarios without islanding, a thorough electrical quality evaluation is achieved, which includes 

a per unit voltage assessment of distribution transformer and cable maximum ampacity to 

determine the viability, efficacy, capability, and stability of the entire grid system. For the 

islanding scenarios, a unique comparison of local power demand and supply balance is also 

completed.  

The second evaluation quantifies the degradation of key infrastructure including 

distribution transformers and power cables in the community. A degradation model for key 

infrastructure is first developed, and all considered scenarios are implemented with the model 

to examine the degree of deterioration of infrastructure life.  

The third evaluation tests each scenario’s cost effectiveness. With different well-established 

analysis methods performed on each scenario, feasibility and practicality of different 

techniques or novel operational scenarios can be quantified for reference for possible energy 

efficiency, renewable and distributed energy program planning processes.  
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6.1 Key Infrastructure Degradation 

Electrification and renewable distributed energy resources (DER) are key tools for fighting 

climate change [49]. However, both options potentially introduce accelerated electric 

distribution system degradation through increased electric imports or through high levels of 

energy backflow.  

In recent years, efforts have been made to study these influences on grid infrastructure. 

Prior work has primarily focused on the degradation of distribution transformers, utilizing an 

empirical transformer degradation model developed by IEEE [145]. An empirical thermal 

degradation for oil-immersed transformers with various plug-in electric vehicles (PEV) scenarios 

was explored and applied in [146] . Accelerated aging of transformers under various DER 

appliances was studied in [147–149]. A degradation study of distribution transformers with an 

appliance combination of PEV and DER was discussed in [150] and [151].  Discussions of hazards 

and solutions of DER power back-feeding on grid infrastructure are present from  [137,152–

154] . While most studies above research degradation effect on distribution transformers under 

single electrification or high penetration DER scenario, few discuss the degradation of multiple 

electric infrastructure under a wider and more general electrification and DER appliance. 

This section adds to the prior work presented in [146] by adding two features. First, the 

work by Razeghi et.al. is extended to  address cable degradation by coupling material 

degradation results [155] with a simplified cable thermal energy balance [156]. Second, a 

simple, cost-optimal transformer and conductor sizing method is introduced to predict the 

costs of upgrading degraded electric distribution infrastructure. These models are tested using 
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a community scale energy model designed to capture the effects of building and vehicle 

electrification. 

6.1.1 Cable Degradation 

According to previous work by the author [155], the primary for of cable degradation occurs 

due to aging of insulation material on cable. The cable degradation model captures this by first 

predicting cable temperature, followed by determining insulation degradation. The insulation 

degradation model is based on XLPE due to recent work on this material. This model, however, 

could be adjusted to other insulation material provided sufficient experimental data is 

available.  

Using our model, damage of cable life happens when a long-lasting overheating situation 

exists. Given the same environment variables and conductor ampacity, cables with smaller 

AWG decrease the chance of life loss by both increasing the wire diameter which reduces 

conductor joule heating generation and raising the temperature rating. 

Assuming that the electricity carrying cable is operating at steady state, the steady-state 

energy balance for a power cable is [156]: 

qj + qs = qc + qr (9) 

 where 𝑞𝑗 is conductor joule heating, 𝑞𝑠 is solar heat gain across the cable, 𝑞𝑐 is convective heat 

transfer to air, 𝑞𝑟  is radiation loss from the cable to the environment. These components are 

defined using equations  10 ‐ 1  : 
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qj=R ∙ Icond 2 (10) 

q𝑠= δ ∙ D ∙ as  (11) 

qc=  π∙h∙ D ∙ (Tcon –Tenv)  (12) 

qr= π ∙ σ ∙ ε ∙ D ∙ (Tcond
 – Tenv

 ) (13) 

where R represents electrical resistance, D represents cable diameter,  cond stands for cable 

ampacity, Tcond is the temperature of the conductor, Tenv is the ambient temperature, ε and as are 

the radiative emissivity and absorptivity of the conductor material, δ is the incident solar 

radiation, σ is the Stefan‐Boltzmann constant, and h is the convective heat transfer coefficient. 

This coefficient is calculated in 

h = 0.3 +
0.62∙(V∙D/v)1/2∙Pr1/3

(1+(
0.4

Pr
)2/3)1/4

 ∙ (1 +
(V∙

D

v
)

282,000

5

8

)

4

5

∙ k/D 
(14) 

where 𝑉 is wind speed, 𝑣 and 𝑘 is dynamic viscosity and thermal conductivity of air respectively, 

𝑃𝑟⁡is Prandtl number.  

Plugging ()-() equations into (9) yields a 4th order polynomial. This equation can be solved 

when both weather and cable ampacity⁡𝐼𝑐𝑜𝑛𝑑 are known. 

Prior experimental work using XLPE insulated cables operating at less than 69 kV has shown 

that cable lifespan can be measured in days using Equation (15) [155].  
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tfailure = e
19024
Tcond

− 42.3
 

(15) 

Eventually, equivalent life loss per hour under certain cable temperature can be further 

written into the calculated by the ratio of cable full lifespan to cable expected lifespan (given all 

weather profiles are known). Table 14 describes AWG 4, 6 and 8 cable information, which are 

commonly found in community level and will be used in results and examples later.   

Table 14. Specifications for 4,6 and 8 AWG cables 

Wire Gauge 75°C ampacity 

rating/A 

Wire Diameter/mm Resistance per unit 

length/mΩ/m 

4-gauge wire 95 5.2 0.82 

6-gauge wire 55 4.1 1.30 

8-gauge wire 40 3.3 2.1 

 

6.1.2 Optimal Sizing of Distribution 

Both the IEEE distribution transformer and cable degradation model provide estimates for 

when equipment will need to be replaced based on loading patterns and weather. In instances 

where component replacement is necessary due to failure, the new component would ideally 

be sized such that total cost is minimized. This work employs a simple optimization method that 

determines the optimal component size that accounts for system degradation and overall life. 

The optimization method is based on available infrastructure improvement costs associated 

with the interconnection of DER [157], including the cost to upgrade distribution transformers 

ranging from 300 kVa to 2500 kVa, and to reconductor distribution circuits. Since the focus of 

this work is on a residential circuit described in Section 3, additional 75 kVa, 100 kVa, and 150 
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kVa transformers were included in the analysis. The cost for these equipment upgrades were 

estimated using the 6/10ths rule [158] using the 300 kVa transformer as the base cost. 

Using these cost values, the component degradation models were exercised for each 

possible replacement component to determine how often each component would need to be 

replaced over 30 years. The net present value of these costs was taken using a discount rate of 

9%. Using these values, the component with the lowest net present value was selected. 

Although this approach focused on a timeframe far less than desired distribution cable 

lifespans, the step increases in cable ampacity ratings typically resulted in a clear preference for 

cables that experience minimal to no degradation. However, additional care must be taken in 

instances where this optimization method yields cable lifespans between 30 and 50 years. 

6.2 Renewable and Clean Energy System Integration 

6.2.1 Vehicle Electrification 

6.2.1.1 Simulation Results for Policy-driven EV Adoption Scenarios 

6.2.1.1.1 EV Scenario #1 (33%) Result 

This section presents the outcomes derived from the application of the 33% EV penetration 

goal, specifically targeting a 35% penetration rate within the tested scenario subsequent to the 

cessation of the Monte-Carlo algorithm. Average annual degradation for all iterations 

corresponding to each individual transformer, all recorded transformer Line-Neutral voltage as 

well as all recorded cable ampacity are shown in Figure 34. Various transformers exhibit varying 

degrees of degradation, as illustrated in Figure 34 on the left. Our analysis reveals that while 

the majority of transformers experience an approximate 10% reduction in service life, a subset 
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located in the northeastern region suffers a more substantial loss, ranging between 30% and 

40%. Addressing these heavily degraded transformers necessitates a course of action, such as a 

rating upgrade or replacement. The degradation rate and electrical power quality analysis of 

the Oak View Community Baseline is included in Appendix A for reference.  

In Figure 34 on the right shows the yearly simulation result of transformer voltage and cable 

ampacity. Adhering to the stipulated standard, a 5% deviation from the nominal voltage is 

considered acceptable. The lower and upper voltage limits are distinctly marked in the 

graphical representation of the results. All recorded cable ampacity results are also presented 

to show the degree of electric pressure on basic electric infrastructure. Although different 

ampacity ratings of electric conductor are highlighted according to AWG [111], all cables are 

believed to run safely if the maximum ampacity does not exceed the 2-gauge limit. Both voltage 

and ampacity results are demonstrated using box plots, where the x-axis of those figures 

indicates the start of branch circuits. Transformers and cables for each branch are shown in 

order of proximity to the start of branch circuit. The middle red line in each box plot indicates 

the median annual value. The 25th and 75th percentile values are shown at the bottom and top 

of each box, respectively. All regular data falls within the whiskers and extreme data points as 

red ‘+’ markers.  n Figure 34, it is evident that no significant breach of voltage rating limits is 

observed for all active transformers/nodes under the considered scenario. 

While only a slight overall degree of infrastructure degradation and no power quality issues 

were found, failure to undertake the upgrade measures may still result in a disturbance to the 

stability of power usage.  
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Figure 34. Yearly degradation result of cable and transformers, transformer Line-Neutral voltage 
and cable ampacity respectively in Oak View Community in 33%EV integration scenario. No 
cable degradation was found but transformers show different degrees of degradation, indicated 
by different colors on the left. The node voltage and circuit ampacity results are shown in box 
plots on the right. 

6.2.1.1.2 EV Scenario #2 (66%) Result 

This section delineates the results obtained through the implementation of the 66% EV 

penetration , with a particular focus on achieving a 66% penetration rate within the 

investigated scenario following the conclusion of the Monte-Carlo algorithm. Similar to the 

previous section, degradation of infrastructure, Line-Neutral voltage results, cable ampacity 

results are presented in Figure 35. Lower and upper voltage limits were marked in results with 

5% threshold. Both voltage and ampacity results are again demonstrated using box plots. In 

Figure 35 on the left, it is clear that the annual degradation of the overall transformer system is 

escalating. The transformers exhibit an average degradation rate of 33%, with a maximum 

observed degradation rate of 56% within a single year. 

Figure 35 on the right, illustrates that the overall voltage level experiences a marginal 

reduction, albeit remaining within permissible limits. It is noteworthy that nodes along branch 
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SR2 exhibit the most pronounced voltage decline. In Figure 35, it is evident that nearly all 

branches display outliers with an augmented ampacity level. Nevertheless, these increases are 

insufficient to induce significant disturbances. 

The results underscore the imperative for upgrades to the transformer infrastructure to 

ensure the provision of power in a reliable and stable manner. 

 

Figure 35. Yearly degradation result of cable and transformers, transformer Line-Neutral voltage 
and cable ampacity respectively in Oak View Community in 66% EV integration scenario. No 
cable degradation was found but transformers show different degrees of degradation, indicated 
by different colors on the left. The node voltage and circuit ampacity results are shown in box 
plots on the right. 

6.2.1.1.3 EV Scenario #3 (100%) Result 

This section presents the outcomes derived from the application of the 100% Electric 

Vehicle state goal to the test scenario. The results pertaining to degradation of infrastructure, 

Line-Neutral voltage results, cable ampacity results are presented in Figure 36. Both voltage 

and ampacity results are again demonstrated using box plots. Figure 36 on the left elucidates 

the annual degradation status of all active transformers. Evidently, a significant portion of 

transformers within the residential sector is anticipated to cease functioning before the 
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conclusion of the year, necessitating transformer rating upgrades. It is imperative to highlight 

that several cable segments originating from SR6 exhibit a noteworthy degree of degradation, 

warranting the imperative need for cable upgrades. 

It is shown in Figure 36 on the right that serious breaching of voltage rating limit is found for 

branch SR2, with many outliers from several branches drawing close to the lower limit. This will 

cause serious power quality issues. Cable ampacity also have similar problems, with cable 

segments from SR4 and SR6 having the most serious problems. 

It is safe to say that without proper upgrades on both distribute transformers and electric 

cables severe safety hazards will appear, likely within one year of operation. 

 

Figure 36. Yearly degradation result of cable and transformers, transformer Line-Neutral voltage 
and cable ampacity respectively in Oak View Community in 100% EV integration scenario. Slight 
degrees of cable degradation and different degrees of transformers degradation were found, 
indicated by different colors on the left. The node voltage and circuit ampacity results are shown 
in box plots on the right. 
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6.2.1.2 Simulation Results for High Penetration EV Adoption with Level 

2 and DC Charging 

6.2.1.2.1 Scenario 1 Result: 100% Residential EV Penetration with LV2 Charging 

This section shows the outcomes derived from the implementation of 100% residential EV 

adoption exclusively employing Level 2 charging events, utilizing the default charger setup 

outlined in the Commercial and Industrial sector. Similar to the preceding section, findings 

pertaining to infrastructure degradation, Line-Neutral voltage characteristics, and cable 

ampacity are presented in Figure 37. Lower and upper voltage thresholds are delineated in the 

results with a 5% margin. Both voltage and ampacity outcomes are portrayed using box plots. 

In Figure 37 on the left, the transformers within the residential sector demonstrate an 

average annual degradation rate of 76%. Interestingly, in comparison to 100% LV1 adoption, 

the observed degradation is notably less severe. This discrepancy may be attributed to the LV2 

charging paradigm, characterized by higher charging ratings and reduced charging durations, 

thereby accruing an elevated Accumulated Aging Factor (AAF), consequently yielding a lower 

Loss of Life (LOL). Based on Table 13, the reduced overall degradation percentage can also be 

the reason that the high-capacity transformer is less sensitive to short-period overload issues 

with Hot Spot Temperature (HST) going up, which is positively correlated with higher peak level 

from Level 2 charging. While increased HST from increased charging demand peak increase the 

overall degradation rate of lower rated transformers (such as 25KVA, 50KVA, etc.) and thus 

increase the degradation cost of them, the higher rated transformers, especially those with a 

rating of 150 KVA and higher, actually benefit from the higher HST which increases their 

minimal overload percentage that start to cause significant degradation, and would likely not 

increase the degradation of those higher rated transformers and accordingly the upgrade cost 
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from it. If the theory is correct, then in 100% Level 1 EV penetration scenario the degradation 

rate and upgrade cost from higher rated transformers would both be higher compared to this 

scenario. Even though the increase charging level also increase the degradation of lower rated 

transformers, their upgrade cost is a lot smaller than their higher rated counterparts. 

Additionally, the initial segment of SR2 manifests a discernible degree of degradation owing to 

the heightened electric demand stemming from LV2 charging. 

Figure 37 on the upper right describes the overall voltage profile, illustrating a prevalent 

issue similar to that observed in the case of 100% LV1 adoption, specifically, pronounced 

undervoltage scenarios with multiple instances of lower voltage limit violations. In Figure 37 on 

the lower right, a moderate degree of breaches in ampacity levels are identified. Although the 

overall scenario appears marginally improved compared to LV1 100% EV adoption, the 

increased electric demand from EV charging remains sufficient to induce cable over ampacity 

issue on SR2. 
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Figure 37. Yearly degradation result of cable and transformers, transformer Line-Neutral voltage 
and cable ampacity respectively in Oak View Community in 100% LV2 residential EV integration 
scenario. Slight degrees of cable degradation and severe degrees of transformers degradation 
were found, indicated by different colors on the left. The node voltage and circuit ampacity 
results are shown in box plots on the right. 

6.2.1.2.2 Scenario 2 Result: 100% Residential EV Penetration with LV1/LV2 

Charging 

This section shows the outcomes derived from the comprehensive implementation of 100% 

residential EV adoption with both Level 1 and Level 2 charging events, utilizing the default 

charger setup delineated within the Commercial and Industrial sector. A predetermined ratio of 

80% Level 1 chargers and 20% Level 2 chargers per stochastic iteration was employed. Same 

with the previous sections, findings pertaining to infrastructure degradation, Line-Neutral 

voltage characteristics, and cable ampacity are expounded upon, as illustrated in Figure 38. The 

delineation of lower and upper voltage thresholds within the results, accompanied by a 5% 

margin, provides a comprehensive understanding of the voltage-related observations. 

Furthermore, both voltage and ampacity outcomes are aesthetically depicted through the 

utilization of box plots. 
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Within Figure 38, depicted on the left, the transformers situated within the residential 

sector have an average annual degradation rate of 66%. Notably, the incorporation of Level 2 

chargers with Level 1 chargers within the community exhibits a mitigating effect on overall 

degradation when compared with scenarios exclusively featuring 100% Level 1 EV charging 

adoption or Level 2 EV charging adoption alone. Nevertheless, significant degradation is 

observed along the first cable segment of SR2, resulting from the heightened electric demand 

attributed to LV1/LV2 charging. 

Figure 38, situated on the upper right and lower right, depicts the overarching voltage 

profile and cable ampacity scenario. While an undervoltage condition persists, it is discernibly 

less severe compared to scenarios featuring either 100% LV1 or 100% LV2 EV adoption 

scenario. Conversely, the cable ampacity scenario mirrors that of the preceding scenario. 

 

Figure 38. Yearly degradation result of cable and transformers, transformer Line-Neutral voltage 
and cable ampacity respectively in Oak View Community in 100% LV1/ LV2 residential 
integration scenario. A fixed ratio of 80% LV1 chargers and 20% LV2 chargers per stochastic 
iteration was used in the residential sector. The charger arrangement is in C&I section is by 
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default. Cable degradation and transformers degradation are indicated by different colors on 
the left. The node voltage and circuit ampacity results are shown in box plots on the right.  

6.2.1.2.3 Scenario 3 Result: 100% Residential EV Penetration and 100% C&I 

Section EV Penetration with LV2 Charging 

This section shows the outcomes derived from the implementation of 100% residential EV 

adoption with both Level 1 and Level 2 charging events and 100% C&I Level 2 charging events. 

This scenario is a direct development from the previous scenario, with 100% Level 2 charging 

events taking place at the shops and factories. This scenario represents the most possible 

future 100% EV adoption scenario, with people charging their EVs using a combination of Level 

1 and Level 2 chargers in their houses, and in their workplace or publicly using Level 2 chargers. 

The ratio of Public Level 2 charging and Work Level 2 charging is assumed to be the same 

throughout the analysis for this very scenario.  

Similar to the previous analyses, results on infrastructure degradation, including Line-

Neutral voltage characteristics, and cable ampacity are shown in Figure 39. While the 

degradation in the residential sector remains the same as Scenario 2, the degradation in the 

C&I sector deteriorated due to a higher percentage of EV charging demand. On average, the 

transformers situated within the C&I sector have an average annual degradation rate of 35%. 

Significant degradation is observed along the first cable segment of SR2, same as the previous 

scenario. 

The overarching voltage profile (as a function of branch circuit) and cable ampacities that 

result from this scenario are presented in the upper right and lower right of Figure 39. The 

results closely resemble the previous results in the residential sector but differ in that the 

power quality in C&I sector suffers more from the increase in EV charging demand.  
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Figure 39. Yearly degradation result of cable and transformers, transformer Line-Neutral voltage 
and cable ampacity respectively in Oak View Community in 100% LV2 EV integration scenario. 
The charger is in both residential and C&I sectors are solely LV2. Cable degradation and 
transformers degradation are indicated by different colors on the left. The node voltage and 
circuit ampacity results are shown in box plots on the right.  

6.2.1.2.4 Scenario 4 Results: 100% Residential EV Penetration with LV2 charging 

and 100% C&I PDCF Charging 

This section shows the outcomes of implementation of 100% residential EV adoption with 

Level 2 charging events and 100% C&I Public DC Fast charging events. This scenario represents 

the ideal future scenario where people are able to afford and charge in the fastest way 

possible. The fastest charging technique currently available in the residential sector is Home 

Level 2 charging and Public DC Fast charging in the C&I sector. This scenario, with its most 

advanced charging techniques with highest charging voltage possible, will most likely put very 

serious pressure, if not the most, on key electric infrastructure. 

Same with the previous analysis, results on infrastructure degradation, Line-Neutral voltage 

characteristics, and cable ampacity are shown in Figure 40. The degradation in the C&I sector is 

significantly worse than Scenario 2 and Scenario 3, but it is still better than when 100% LV1 



 

103 
 

charging takes place. The possible reason will be similar with why 100% LV2 charging caused 

less degradation on the transformers than 100% LV1 charging shown in Scenario 1, which is 

that the shortened charging time compensates for the impacts on AAF or EAF from higher 

charging voltage. The degradation in the residential remail the same with Scenario 1. On 

average, the transformers situated within the C&I sector have an average degradation rate of 

43%. Significant degradation is observed along the first few cable segments of SR2, same as the 

previous scenario. 

Figure 40 also depicts the overall voltage profile and cable ampacity scenario. While the 

results are the worst in the four High Penetration EV Adoption scenarios considered in this 

section, the power quality is less severe than when 100% LV1 charging dominates the entire 

Oak View Community.   

 

Figure 40. Yearly degradation result of cable and transformers, transformer Line-Neutral voltage 
and cable ampacity respectively in Oak View Community in 100% Residential LV2 and 100% 
Public DC Fast C&I EV integration scenario. Cable degradation and transformers degradation 
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are indicated by different colors on the left. The node voltage and circuit ampacity results are 
shown in box plots on the right.  

6.2.1.3 Simulation Results for County and State Level EV Adoption 

6.2.1.3.1 SCE Service Territory Scenarios 

The annual degradation results of the entire SCE service territory’s substation with required 

33%, 66%, 100% EV penetration goals are shown in Figure 41, Figure 42, Figure 43, respectively. 

The zoomed-up versions of results of Orange County and most parts of Los Angeles County are 

also shown in the upper right corner of the figures. Compared to community level yearly 

degradation results in the previous section, it is obvious that a significant amount of substation 

transformers will not be able to withstand even the state EV goal of 2025 which is merely 33%. 

The percentage of substation transformers in 2025 CA EV scenario that shows more than 50% 

of yearly degradation is 56%, while the percentage increases to 78% in 2023 state goal scenario, 

with the worst being the 2035 EV scenario which reaches 89% in Figure 43.  

While community rated transformers could potentially do well in 33% EV penetration goal 

or even 67% EV goal without serious upgrades, their higher rated substation counterparts likely 

may not. The degradation results of substations are under the assumption that electric load will 

stay the same from 2025-2035, which in reality is not possible given the state and local 

municipal effort to electrify building and industry sector. The smaller non-EV electric demand 

actually mitigates the seriousness of degradation impact from EV integration.  It is also obvious 

that current SCE planned capacity expansion is far from enough, and a bigger overall upgrade is 

dearly needed.  
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Figure 41. Yearly degradation result of transmission and distribution substation transformers in 
33% EV integration scenario. Transformers degradation is indicated by different colors. The 
upper right graph shows a zoomed in detailed view of Orange County and Los Angeles County 
within SCE service territory.  

 

Figure 42. Yearly degradation result of transmission and distribution substation transformers in 
66% EV integration scenario. Transformers degradation is indicated by different colors. The 
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upper right graph shows a zoomed in detailed view of Orange County and Los Angeles County 
within SCE service territory.  

 

 

Figure 43. Yearly degradation result of transmission and distribution substation transformers in 
100% EV integration scenario. Transformers degradation is indicated by different colors. The 
upper right graph shows a zoomed in detailed view of Orange County and Los Angeles County 
within SCE service territory.  

6.2.1.3.2 The Oceanview Substation Special Analysis 

As mentioned previously, the availability of estimated electric demand level of the 

substation and the layout of the substation allows the author to further analysis the electric 

impact from EV integration. The overload situation of the overhead transmission lines, power 

transformers, underground cables, substations bus, as well as the protective relays will be 

discussed in this section.  

The Oak View Community has a population of 1100, while the Oceanview Substation serves 

a population of 3,3000 people based on our estimation. With an aggregated baseline load level 
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of 0.45 MVA in the Oak View Community, the aggregated baseline load level of the substation is 

15MVA. The aggregated load level of each electrified level is calculated and is shown in Table 

15.  

Table 15. Aggregated load level of different EV integration scenarios. 

Scenario Load Level/MVA 

Policy-driven 

Scenarios 

33% EV LV1 

 

27 

66% EV LV1 39 

100% EV LV1 56 

High Penetration 

EV Scenarios 

100% Residential EV LV2 49 

100% Residential EV LV1/LV2 50 

100% Residential w/ 100% 

LV2 C&I 

51 

100% Residential LV2 w/ 

100% PDCF C&I 

55 

 

The ETAP steady state ACPF simulation result is shown in Figure 44 and Figure 45 for all 

considered scenario. Figure 44 represents ACPF steady state simulation result for all policy-

driven EV integration scenarios with discrete LV1 EV charging, while Figure 45 shows ACPF 

steady state simulation result for all high penetration EV integration scenarios with aggregated 

EV charging profiles from EVI-PRO. The warning report which consists of overload, 

overvoltage/undervoltage and over ampacity analysis by ETAP is shown in Figure 46.  
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The increased load level obviously falls short to put enough pressure on all considered 

equipment to cause overload, overvoltage or overcapacity problem, which we assume will 

cause minimal degradation as well.  

 

Figure 44. ETAP ACPF steady state simulation result for all policy-driven EV integration scenarios 
with discrete LV1 EV charging. From left to right: EV Scenario #1 (33%), EV Scenario #2 (66%), EV 
Scenario #3 (100%).  

 

Figure 45. ETAP ACPF steady state simulation result for all high penetration EV integration 
scenarios with aggregated EV charging profiles from EVI-PRO. From left to right: Scenario 1, 
Scenario 2, Scenario 3, Scenario 4.  
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Figure 46.  ETAP critical warning report for all 7 considered scenarios. From top to bottom: 
Policy-driven EV Integration Scenarios: EV Scenario #1 (33%), EV Scenario #2 (66%), EV Scenario 
#3 (100%); High Penetration EV scenarios: Scenario 1, Scenario 2, Scenario 3, Scenario 4. 

6.2.2 Upgrades and Cost Estimation 

Due to the unavailability of pricing data pertaining to transmission transformers and cables 

exceeding 12KV voltage ratings, the analysis of upgrade and replacement costs will be focused 

on scenarios derived from the Oak View Community. 

The predominant portion of upgrade expenditure pertains to transformers and cable/lines. 

Within electric distribution systems serving communities such as Oak View Community, the 

primary components necessitating upgrades comprise distribution transformers, as well as 

underground and overhead distribution circuit cables. On a broader scale encompassing 

county-level and statewide simulations, upgrade initiatives encompass substation transformers 

(both distribution and transmission varieties) and overhead transmission cables. The 

assessment of upgrade costs hinges upon the 30-year net present value (NPV) encompassing 

the comprehensive expenses associated with optimally selected transformers, as previously 

delineated. For all transformers deemed essential for rating upgrades, a systematic iteration 

process is conducted, wherein various options of higher-rated transformers are evaluated until 

the cumulative NPV cost reaches a minimum sum. The financial valuation of transformers is 

sourced from publications by the authors [127]. Concerning cable upgrades, segments 

identified as experiencing accelerated degradation are subjected to enhancements utilizing 

conductors of reduced gauge, thereby mitigating potential issues. The cost estimation for cable 

upgrades is derived from the 2021 SCE Per Unit Cost Guide. 
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The total upgrade cost for the Oak View Community with discrete EV charging profiles is 

depicted in Figure 47. From the figure, we learn that a community with a population of merely 

1100 people can yield a high amount of upgrade charges due to high penetration EV adoption. 

Considering that utility infrastructure costs are typically amortized over expected equipment 

lifetime, this translates to an increased cost of service of $27.0 to $84.8 per year per utility 

customer when 33% to 100% EV adoption rates are implemented. 

 

Figure 47. Cost estimation of EV integration scenarios with discrete EV charging events.  

The upgrade cost status of High Penetration EV Charging Scenarios with LV2 and PDCF is 

shown in Figure 48.  It is evident that exclusive deployment of Level 2 EV charging infrastructure 

within the residential sector results in decreased degradation and upgrade expenses compared 

to relying solely on Level 1 EV charging. This variance can be attributed to the Level 2 charging 

paradigm, distinguished by augmented charging capacities and reduced charging durations, 

consequently leading to an escalated Accumulated Aging Factor and thereby mitigating Loss of 

Life. Additionally, an observation can be made regarding Public DC Fast charging in the 

Commercial and Industrial sector, wherein despite its notably swifter charging pace, 
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degradation levels and associated upgrade costs surpass those of Level 2 charging alone. This 

phenomenon arises potentially due to the exceedingly high charging power ratings inherent in 

the PDCF methodology, whereby the abbreviated charging duration fails to offset the negative 

effects in terms of degradation stemming from such elevated power ratings. 

 

Figure 48. Yearly degradation loss of life status of vehicle electrification Scenario 1.  

7 Optimal Renewable and Clean Energy System Adaption in 

Novel Operational Scenarios 

7.1 Optimal Topology Design for Islanded Operations 

The islanding results are analyzed from two perspectives. Firstly, a comprehensive annual 

analysis of electrical power quality is conducted, encompassing an evaluation of node Line-

Neutral voltage and cable ampacity. Subsequently, an examination of the overall power 

equilibrium within each isolated island is performed, which includes a quantitative assessment 
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of yearlong island imbalance, considering both the cumulative absolute value and the 

frequency of high degree power imbalances. The primary objective of the first analysis is to 

ascertain the absence of any overvoltage or over-ampacity issues that may manifest in the 

isolated islands. The secondary analysis is geared towards testing and comparing the resilience 

of each individual island. This is achieved by assessing the disparities between their overall 

power generation and demand. 

 

7.1.1 Electrical Power Quality Analysis 

This section shows results from applying optimal topology design algorithm mentioned 

above to the test scenario. Line-Neutral voltage results are presented in Figure 49. A ±5% 

deviation from standard voltage is considered acceptable [159] and lower and upper voltage 

limit are marked in results. Cable ampacity results are also presented in Figure 50 to show the 

degree of pressure on the electric infrastructure. Although different ampacity ratings of electric 

conductor are highlighted according to AWG [111], all cables are believed to run safely if the 

maximum ampacity does not exceed the 2-gauge limit [16]. Both voltage and ampacity results 

are demonstrated using box plots, where the x-axis of those figures indicates the start of 

branch circuits. Transformers and cables for each branch are shown in order of proximity to the 

start of branch circuit. The middle red line in each box plot indicates the median annual value. 

The 25th and 75th percentile values are shown as the bottom and top of each box, respectively. 

All regular data falls within the whiskers and extreme data points as red ‘+’ markers.  

In Figure 49 it is shown that although no serious breaching of voltage rating limit is found 

for each islanding method, two reference islanding methods does show different degree of 
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undervoltage issues on several nodes in comparison, especially at the beginning of SR2. It is also 

shown that in Figure 50 our proposed islanding technique that allows extra connections is best 

in mitigating over ampacity problems.  
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Figure 49. Line-Neutral yearly voltage of every active node in box plot. From top to bottom are 
voltage results of: Branch islanding, 12 kV Distribution Line Islanding, proposed islanding 
without extra connections, proposed islanding with extra connections.  
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Figure 50. Yearly ampacity of all existing cables in box plot. From top to bottom are ampacity 
results of: Branch islanding, 12 KV Distribution Line Islanding, proposed islanding without extra 
connections, proposed islanding with extra connections. Lower and upper acceptable ampacity 
limit are marked. 
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7.1.2 Power Balance Analysis 

The power balance is quantified through the computation of the annual sum of the absolute 

differences between the hourly power demand and DER generation for all active nodes within 

each island. As presented in Table 16, it becomes evident that the deployment of the proposed 

optimal topology design results in a notable mitigation of the overall power imbalance severity. 

This mitigation is reflected in the reduced maximum power imbalance observed within the 

existing islands. A further comparison of two optimal islanding designs also indicates that the 

introduction of additional connections facilitates a more effective balancing of power within the 

individual islands. 

Figure 51 shows the magnitude of detailed power imbalance within each scenario, as 

represented by a histogram of the ratio of total hourly power imbalance of real-time DER 

capacity and load relative to transformer rating across all four considered scenarios. While no 

more than 30% of total power imbalance to transformer rating for all nodes for all scenarios is 

found, Figure 51 underscores the observation that the proposed optimal topology islanding 

technique is anticipated to exert the least disruptive influence on the stable operation of each 

island, manifesting 5% of power imbalance to transformer rating at most time. 

Table 16. Average yearly power imbalance within each island for three tested islanding methods 
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Figure 51. Histogram of total hourly absolute power imbalance to transformer rating for all 
considered scenarios.  

7.2 DER Alternative Solution Capacity and Cost Results 

The DER and ESS capacity for the lowest overall cost for all considered scenarios are listed in 

Table 17. From the results, it is shown that for each scenario, while the transformer overload 

constraint did not usually increase the PV capacity much, the necessary ESS capacity was 

usually elevated greatly. The PV and ESS capacity is then translated into a 30-year TDV cost 

[160]. Compared to the infrastructure upgrade cost in Section 6.2.2, the cost for even the 

lowest cost DER/ESS application to mitigate the electric stress from the increased EV charging 

demand for all scenarios is about 10 times on average compared to the highest average 

upgrade cost.  
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Table 17. Capacity of DER and ESS capacity for lowest cost deployment for all considered EV 
integration scenarios. The DER/ESS capacity is translated to TDV cost and is shown as well. The 
results also specify the difference of transformer constraint implementation.  

Scenario DER Capacity/KW ESS Capacity/KWh Cost/2021$ 

w/constraint w/o 
constraint 

w/constraint w/o 
constraint 

w/constraint w/o 
constraint 

35% LV1 
EV  

7,785 7,596 1,122 299 23,504,904 22,827,521 

68% LV1 
EV 

15,831 15,367 2,007 453 47,759,803 46,163,275 

100% LV1 
EV 

33,825 32,008 3,679 720 101,960,654 96,121,519 

100% 
Residential 
LV 2 

33,083 33,000 3,597 666 99,725,083 99,087,991 

100% 
Residential 
LV1/LV2 

34,013 33,780 3,761 714 102,536,704 101,436,127 

100% 
Residential 
LV1/LV2 
+100% C&I 
LV2 

34,893 34,777 3,847 780 105,188,630 104,436,439 

100% 
Residential 
LV2 
+100% 
PDCF 

35,021 34,799 3,796 753 105,565,298 104,497,675 
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8 Method Generalization 

The need to integrate renewable and clean energy sources into our daily lives has 

intensified in recent years, spurred by the adverse impacts of climate change on the stability 

and sustainability of our power and energy supply infrastructure. Consequently, there has been 

a discernible trend towards the transformation of conventional power grid systems into 

microgrids. Therefore, the development of a comprehensive guideline framework for the 

integration of renewable energy into grid systems has become a necessity. 

Researchers and scientists have come up with a few practical microgrid design frameworks 

integrating renewable and clean energy sources. Two categories of microgrid framework has 

been proposed. The first focus on operational optimization for reliable grid operation. [161] 

discusses the possibility of model-based analysis by rapid modeling environment construction. 

[162] focuses on the hierarchical control of grid components in microgrid framework, including 

three-level control algorithm of droop, voltage and power flow. [163] talks about optimization 

of energy management inside the frame using non-linear computational algorithms. A series of 

optimized control algorithms and methods within microgrid design frame have been proposed 

and developed by scientists in Pacific Northwest National Laboratory (PNNL) [164–171].  

On the other hand, the second type of frameworks concentrates or involves mostly on 

socio-economic perspective when designing microgrid frameworks. [172] brings about the 

energy equity and economic feasibility into microgrid design framework. [173] demonstrates 

the possibility of including energy-related economic factors in optimization objectives of 

microgrid frameworks.  



 

121 
 

While the first category has considered a variety of modern and potentially very efficient 

optimization algorithms that help plan or organize grid operation and dispatching of renewable 

energy sources, it usually ignores the financial aspects of the analysis; on the other hand, the 

second category with a focus on socio-economy seldom involves optimization algorithms, 

especially on normal grid operation aspects, not to mention to enhance the reliability of the 

microgrid systems.  In this section, we propose a novel microgrid design framework that 

balances both categories, derived and abstracted from the OVMG project.  

8.1 Novel Analytical Frame for Renewable Energy 

Adoption 

The process of novel microgrid framework design is shown in Figure 52.  

Upon determining the research object/subject within the project's scope parameters, the 

initial endeavor would be the selection of optimal optimization algorithms. Should the project 

delineations specify algorithmic preferences, this procedural phase is skipped. If not, an 

evaluative process ensues, wherein algorithms are compared to ascertain the most effective 

solution. In the context of our OVMG project, aimed at facilitating discrete EV charging sessions 

within the Oak View Community, two algorithms were considered: the Monte Carlo Algorithm 

and the Neural Network Machine Learning (ML) algorithm. Due to lack of bulk charging data 

samples, the Monte Carlo Algorithm emerged as the preferred choice. 

The subsequent phase entails the acquisition of necessary simulation data. In instances 

where data are provided by the project package, this stage may be skipped. Conversely, in their 

absence, the development of simulation data becomes imperative. Within the OVMG 
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framework, without foundational baseline and electrification load data, project participants 

undertook the development and estimation of datasets as shown in [110][143]. After data 

development, a validation process ensues, aimed at affirming data accuracy, where feasible. In 

the OVMG project context, baseline data underwent rigorous scrutiny as expounded upon in 

section 3. 

Following data acquisition, the next step is modeling, which may range in scale from a 

localized community to expansive geographic regions such as counties or entire states. In the 

OVMG context, the modeling focus initially centered on the Oak View Community, a 

socioeconomically disadvantaged community comprising approximately 1,100 residents in 

Huntington Beach, California. Subsequently, the scope expanded to encompass the broader 

Southern California region for enhanced analysis of EV adoption trends, where millions of 

residents live, thereby necessitating commensurate modeling efforts. 

Upon completion of modeling endeavors, a comprehensive, multifaceted analysis is 

undertaken, encompassing both technical and economic dimensions. Within our OVMG 

undertaking, various technical analyses were conducted, encompassing electrical power quality 

and degradation analysis. Concurrently, an economic assessment ensued, incorporating 

infrastructure upgrade cost projections and per capita electricity price escalation estimates. In 

instances where analysis outcomes reveal pronounced infeasibility, a reevaluation of 

optimization algorithm selection may ensue, and following steps are done again until viable 

outcomes are achieved. 
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Figure 52. Novel microgrid design framework process in flowchart. 



 

124 
 

9 Conclusions, Summary and Future Work 

This effort starts with building an AC Power Flow model for the Oak View Community 

microgrid system on OpenDSS for CEC’s OVMG project. The modeling process involves three 

steps. The first step is to outline the general Oak View Community grid connection with SCE’s 

DRPEP tool [109]. The second step is on-site inspections which were made to record and verify 

circuit topology, including connections, transformer types, ratings, locations and to revise them 

if necessary.  The last step is to combine the outlined grid topology and information gained 

from field trips to make OpenDSS ACPF model. The model was supported with tuned electrical 

demand results from the Oak View community energy simulation developed in URBANopt 

[110]. 

The author’s research then moves on to enhance the efficiency of power flow analysis of 

OpenDSS platform by building a MATLAB-OpenDSS interface. The interface greatly enhances 

the already powerful function of OpeenDSS’s ACPF function by making the data input into 

OpenDSS easy and changing simulation parameters for different scenario settings more 

convenient. The OVMG baseline model is then tested with a cross-platform comparison of 

OpenDSS/DERopt platforms with same input to assure model accuracy. The comparison result 

indicates that the OpenDSS model is accurate.  

Based on Oak View Community OpenDSS ACPF model, renewable and clean energy system 

was then integrated into the Oak View Community in several traditional and novel operational 

scenarios. The first operational scenario is EV adoption in the community. Initially, a stochastic 

methodology is introduced for generating discrete, dynamic Level 1 charging profiles for electric 
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vehicles, which are then allocated pseudo-randomly using the Monte Carlo algorithm. 

Subsequently, this methodology is applied to the load flow simulation of grid infrastructure in a 

disadvantaged community in Southern California typical of such communities in the region. A 

few theoretically high EV penetration scenarios with higher EV charging level using similar 

Monte Carlo process for different levels of EV charging load profiles are also developed. The LF 

and transformer degradation analysis is extended to the entire SoCal area with different levels 

of EV penetration in accordance with California policies. Power quality and degradation 

evaluations of crucial distribution infrastructure components are then completed. The 

simulation outcomes reveal that the electric infrastructure in Southern California, particularly 

distribution and transmission transformers, are ill-equipped to support the very high levels of 

EV market penetration stipulated by current California policies, with an estimated 12% to 39% 

increased yearly degradation rate under merely 33% of EV adoption rate. Addressing this 

challenge would require substantial investments in upgrading transformers and/or 

implementing additional measures for load management. 

Following the EV charging load dynamics development mentioned above, the second 

operation scenario is then developed for a novel peak load shaving strategy, which involves 

changing the charging schedule of EVs to shift the load from peak to off-peak hours, thereby 

optimizing electricity costs. This optimization is achieved by prioritizing EV charging sessions to 

off-peak hours when electricity rates are lower. The electrical power quality analysis, 

infrastructure degradation analysis and electricity bill saving analysis are then carried out. It is 

shown that the proposed peak shaving strategy greatly alleviates the electrical pressure from 

added EV charging load demand in each considered scenario, thus easing the infrastructure 
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degradation as well. A comparison of the per customer amortized upgrade cost from EV 

adoption after peak shaving in each scenario and savings from electricity after shaving in each 

scenario indicates that the saving from electricity consumption may be able to cut the per 

customer upgrade cost by about 50% for most scenario, which further illustrates the 

effectiveness of the proposed peak load shaving strategy.  

The next considered operational scenario is islanding during PSPS events. First, an optimal 

algorithm is developed based on multilevel graph partitioning techniques to island existing 

radially developed grid topology with added potential extra connections to consider based on 

known loads and DERs. The algorithm is further demonstrated with a real-life example of the 

Oak View Community consisting of residential, commercial, and industrial sectors. The 

simulation results preliminarily confirm that the algorithm further each island’s resiliency and 

reliability by improving local energy balance while maintaining acceptable electrical power 

quality factors including bus voltage and cable ampacity. The quantified results shows that less 

than 5% of local power imbalance at all times is added for the proposed islanding technique. 

The last considered operational scenario is to deploy DER for lowest cost with or without 

NEM 3.0 ratings. During the process, MILP algorithm is used to optimally size and dispatch the 

DERs while considering infrastructure degradation limits in DERopt.  To mitigate the electric 

stress from the increased EV charging demand for all scenarios, DER/ESS solution with 

transformer limit constraint is about 10 times on average in cost compared to the highest 

average upgrade cost for infrastructure upgrade solution in Section 6.2.   
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Eventually, the author proposes a novel microgrid design framework derived and abstracted 

from the OVMG project that involves both efficient optimization algorithms and financial 

impacts analysis, which is unusual in tradition and popular microgrid framework with 

renewable energy integration.  

Future work has been identified and listed as follows. Firstly, discrete EV charging 

generation technique can be further applied to more sophisticated EV charging scenarios, 

which will not only enable more accurate impact analysis of high penetration EV integration of 

various charging, but it can also further test the proposed peak shaving strategy’s performance 

in various EV adoption scenarios. Also, more DER operation scenarios can be considered other 

than lowest cost and NEM 3.0 scenarios, such as a combination of NEM 2.0 and NEM 3.0. Last 

but not least, future analysis can consider partial or full fuel cell or hydrogen pipeline’s 

influence on alleviating the existing electrical pressure from electrification.  
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Appendix A 

Transformer ratings required for stable and reliable electrical distribution service across the Oak 
View community. 

Transformer 
Name  

Transformer 
Rating (kVa) 

Transformer 
Name  

Transformer 
Rating (kVa) 

Transformer 
Name  

Transformer 
Rating (kVa) 

S1 75 S24 50 T2 50 

S2 25 S25 37.5 T3 150 

S3 25 S26 25 T4 150 

S4 50 S27 25 T5 150 

S5 25 S28 50 T6 75 

S6 75 S29 50 T7 1500 

S7 50 S30 50 T8 25 

S8 50 S31 25 T9 150 

S9 50 S32 25 T10 100 

S10 100 S33 100 T11 300 

S11 100 S34 50 T12 50 

S12 50 S35 50 T13 350 

S13 & S14 150 S36 25 T14 75 

S15 50 S37 100 T15 50 

S16 100 S38 50 T16 150 

S17 25 S39 50 T17 25 

S18 112.5 S40 25 T18 300 

S19 50 S41 25 T19 25 

S20 37.5 S42 50 T20 300 

S21 50 S43 25 T21 150 

S22 50 S44 112.5   

S23 50 T1 50   
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Appendix B 

 

EV traveling distances for weekdays and weekend. The figure is generated with data acquired 
from NHTS.  

 

EV dwelling time at the destination for weekdays and weekend. The figure is generated with 
data acquired from NHTS.  
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Appendix C 

 

DERopt calculations. Source: RJF  

 




