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ABSTRACT 
 

Comparative limnology of high-elevation lakes and reservoirs and their downstream effects 
 

by 
 

Adam P. Cohen 
 

 
Reservoirs are abundant worldwide, and have profound effects on downstream flow, 

water chemistry, and downstream biotic communities. However, studies focused on reservoir 

effects rarely contrast them with lakes, which provide a comparison of natural climatic 

conditions without the influence of reservoir management. I compared five high-elevation 

lakes and five reservoirs in the Sierra Nevada, over three years which encompassed a wide 

range of snowpacks and flow regimes. I sampled lake, reservoir, and outlet stream water 

chemistry year-round across the three years to quantify seasonal effects of reservoir 

management. In addition to outlet water chemistry, I collected benthic macroinvertebrates 

from lake and reservoir outlets during the ice-free season in conjunction with discharge to 

determine the effects of reservoir management on downstream invertebrate communities. In 

2017, I measured aquatic carbon dioxide and diffusive flux from lakes and reservoirs, 

beginning under ice and until the end of the ice free season, to determine potential sources of 

high-elevation aquatic CO2 supersaturation and characterize ice-free season CO2 temporal 

dynamics.   

Lake and reservoir nutrient concentrations did not differ in any season or year across 

the study period. Linear mixed models developed surface and bottom water nutrient 

concentrations showed that the primary controls were related to basin characteristics and 

snowpack, but reservoir management in the form of seasonal drawdown was a significant 

predictor of surface nitrate and both hypolimnetic ammonium and SRP, and indicated that 
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reservoir water deep-release export diminished hypolimnetic nutrient accumulation. 

Reservoir mean annual discharge was elevated relative to lakes, which in summer and fall of 

2016 and 2017 caused significantly higher export of nutrients from reservoirs. However, 

elevated ammonium export did not cause divergence of lake and reservoir invertebrate 

assemblages in those seasons, nor did they differ in any season. Other flow metrics, such as 

peak annual flow and the recession period, were similar between lake and reservoir outlets 

across years despite reservoir management. Instead, non-metric multidimensional scaling 

showed that invertebrate communities were related to elevated flow, but not related to low 

flow metrics such as baseflow and minimum flows, which were greater below reservoirs. 

Reservoir management altered flow regimes and nutrient flux, but interannual climactic 

variability was more important for determining invertebrate community structure.  

Carbon dioxide was supersaturated in lake and reservoir surface waters for most of 

the ice-free season of 2017 despite low rates of ecosystem metabolism. Diffusive flux highest 

for the first 40 days after ice-off, and did not differ significantly between lakes and 

reservoirs, but was low relative to other water bodies. Linear mixed modeling indicated that 

the summer CO2 concentrations were primarily related to the duration of ice cover, allowing 

CO2 to accumulate under ice, which indicates that annual snowpack is a major determinant of 

summer CO2 evasion.  

. 
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Differences in nutrient chemistry between high-elevation lakes and reservoirs  
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Abstract 

Nutrient concentrations in undeveloped high-elevation lakes results from watershed 

characteristics and amount of snow, but how reservoir management mediates nutrient levels 

in these oligotrophic systems is not well understood. This study compares the nutrient 

concentrations of five lakes and five reservoirs at high-elevation in the Sierra Nevada of 

California through all seasons in 2015, 2016 and 2017, and is the first study to characterize 

high Sierra reservoir limnology. Maximum annual snow water equivalent increased from a 

minimum of 1.3 cm in 2015 to a maximum of 208 cm from 2015 to 2017, to which reservoir 

management was responsive, providing a gradient of conditions with which to compare lake 

and reservoir surface, hypolimnion, and outlet nitrate, ammonium, and soluble reactive 

phosphorus (SRP) concentrations. Lake and reservoir nutrient concentrations were generally 

low, and not significantly different (p > 0.05) in any season. Nutrients accumulated in both 

lake and reservoir hypolimnia, but they were more often discharged from deep-release 

reservoirs, resulting in significantly higher outlet concentrations and export in the stratified 

summer period, and in fall when stratification had weakened. Linear mixed models 

developed for each nutrient indicated primary controls were related to basin characteristics 

and snowpack; reservoir drawdown area was a significant predictor of surface nitrate and 

both hypolimnetic ammonium and SRP, and suggested that reservoir deep-release prevented 

accumulation of ammonium and SRP to the extent observed in lakes. Mixed models 

explained most variability of nutrients, strongly for hypolimnetic ammonium (R2 conditional 

= 0.82), and nitrate (R2 conditional = 0.63), but not well for surface ammonium and SRP (R2 

conditional = 0.23, R2 conditional = 0.24, respectively). Elevated reservoir discharge and 



 

  3 

nutrient export late in the ice-free season contributes to disruption of the natural snowmelt-

dominated flow regime and may have important implications for downstream ecosystems,  

 

Introduction 

Solute concentrations in montane lakes are determined by catchment characteristics 

and processes, including weathering of the underlying lithology (Brown and Lund, 1991), 

atmospheric deposition (Blanchard and Tonnessen, 1993; Marchetto et al., 1995; Kamenik et 

al., 2001; Melack et al., 1997),  vegetation (Kopàcöek et al. 2000), landscape position (Sadro 

et al. 2012), and snowpack levels (Sickman et al. 2003). Snowpack influences variables and 

processes in high-elevation lakes, including seasonal and interannual patterns in nitrate 

concentrations and export (Williams et al., 1995, Melack et al., 1998; Brooks and Willams, 

1999), temperature (Sadro et al., 2019), phytoplankton productivity (Sadro et al., 2018), and 

carbon dioxide evasion (Cohen and Melack, 2019). The extent to which reservoir 

management practices alter the effects of interacting catchment and hydrological 

characteristics on high-elevation, oligotrophic reservoirs is not well understood. At lower 

elevations, management practices (e.g., deep water release) and watershed characteristics can 

influence reservoir water quality (Hannan, 1979; Lee et al., 2009; Park et al., 2014) and 

primary productivity (Knoll et al., 2003), but limited research on high elevation reservoirs 

has focused on the biological impacts of water level fluctuations, rather than on water quality 

and primary production (e.g., Hirsch et al., 2017; Carmignani and Roy, 2017). Reservoir 

management practices, such as hypolimnetic release, decrease downstream water temperature 

(Dickson et al., 2012), but their effects on downstream nutrient chemistry are less clear, with 

one study documenting increases in nitrate concentrations (Kijowska-Strugała et al., 2016), 
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but others showing no change in nitrate, ammonium, or phosphate concentrations (Voelz and 

Ward, 1989; Kijowska-Strugała et al., 2016). Across northern latitudes, reservoir total 

phosphorus concentration is higher and water transparency lower than natural lakes, which 

reflects greater depth of natural lakes and lower agricultural production in their watersheds 

(Doubek and Carey, 2017), but these findings will not apply for headwater systems without 

agricultural production or anthropogenic shoreline development. 

In the Sierra Nevada of California, catchment geology, atmospheric deposition, and 

soil pools are the primary sources of nutrients in high-elevation lakes. Phosphorus in Sierra 

surface waters is obtained primarily from soils derived from weathered granitic bedrock 

(Homyak et al., 2014a), and wet and dry deposition (Jassby et al. 1994; Vicars and Sickman, 

2010), with lake sediments constituting a minor source (Homyak et al., 2014b). Nitrate is 

primarily flushed from soil pools and talus during snowmelt, with additional nitrate being 

derived from the snowpack (Sickman et al., 2003). Ammonium is deposited on Sierra 

watersheds in both rain and snow and can be produced by remineralization of organic matter, 

but most is utilized (Melack et al., 1998) or nitrified (Williams et al., 1995) within a basin. 

Elevated ammonium concentrations have been observed under hypolimnetic anoxic 

conditions, although these are infrequent in Sierra lakes (Melack et al., 1998).  

The high Sierra Nevada (> 2500 m) in California contains 24 reservoirs, which 

represent 16% of the total lake and reservoir surface area in the range but are <1% of the 

more than 3,000 lakes and reservoirs found there (> 0.5 ha). Unlike foothill reservoirs, high-

elevation reservoirs are usually natural lakes enlarged by a dam, their catchments are 

undeveloped and are often protected, they are ice-covered for a portion of the year, and 

hydrological patterns are dominated by snowmelt. After dam construction, reservoirs differ 
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from natural lakes in several important ways, including deep-water releases from the base of 

the dam, and large seasonal and interannual fluctuations in water level and discharge. Despite 

their relatively large surface areas, and importance to downstream ecosystems and as a water 

supply, little research has been conducted on high Sierra reservoirs. A single study 

commissioned by one of the dam operators, Southern California Edison (SCE), was 

conducted from 1985 to 1987 on four Sierra reservoirs (South, Sabrina, Gem, Waugh) where 

major ions were measured once, and vertical profiles of water temperature, dissolved oxygen 

(DO) concentration, and pH were measured six times, with one profile conducted under 

winter ice (Lund, 1987). Seasonal and interannual variability in limnological characteristics 

of Sierra reservoirs and effects of water management practices on downstream nutrients have 

not been examined.  

Studies on the ecological impacts of water level fluctuations have often focused on 

initial reservoir filling and subsequent decreases in water quality in young reservoirs (Hirsch 

et al., 2017); however, physical and chemical fluctuations in reservoirs > 50 years old have 

been largely unstudied (Zohary and Ostrovsky, 2011). Littoral zones are the most productive 

areas in oligotrophic montane lakes (Hampton et al., 2011; Sadro et al., 2011b), and are 

disturbed by water level fluctuations in reservoirs, which can reduce primary productivity, 

particularly where sediments are exposed to freezing (Hirsch et al., 2016). Nutrient cycling is 

disturbed by water level fluctuations, because the exposure of sediments to wet-dry cycles 

can reduce their ability to adsorb phosphorous (Watts, 2000), decrease littoral zone organic 

matter content by limiting macrophyte growth (Furey et al., 2004), increase nitrate release on 

rewetting (Cooke et al., 2003), increase ammonium release even under oxygenated 
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conditions (McGowan et al., 2005), and concentrate nutrients in the hypolimnion as water 

levels decrease (Zohary and Otrovsky, 2011).  

This study compares five reservoirs and five lakes in the high Sierra over three years 

for two purposes: to characterize the nutrient levels of reservoirs and comparable lakes 

within and across years and to determine the effects of water management practices on 

reservoir and outlet nutrient chemistry across years with variable snowpack. I predicted that 

lake and reservoir surface nutrient concentrations would be comparable given the similarities 

of their respective watersheds. In contrast, I predicted that hypolimnetic nutrient 

concentrations and export would differ between lakes and reservoirs because of bottom 

releases and elevated late-summer flows from reservoirs, resulting in elevated nutrient 

concentrations in reservoir outlet streams during stratified periods and early fall. Interannual 

variability in snowpack is expected to alter lake and reservoir characteristics primarily by 

altering the duration of ice cover and the duration of the subsequent ice-free period. 

 

Methods 

I studied five lakes and five reservoirs in the eastern Sierra Nevada, California, within 

or adjacent to protected wilderness areas. Beginning in summer 2015, three lakes and three 

reservoirs were sampled, and an additional two lakes and two reservoirs were added in spring 

2016, then sampled through fall 2017 (Figure 1).  The sites are subalpine to alpine, ranging 

from 2782 to 3383 m a.s.l., (Table 1) in recently glaciated (<12,000 y.a.) watersheds with 

poor soil development underlain primarily by granitoids with sporadic metasedimentary and 

metavolvanic rock. Watershed vegetation is dominated by alpine shrubs, whitebark pine 

(Pinus albicaulis), sporadic wet meadows, and at lower elevations lodgepole pine (Pinus 
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contorta).  The five reservoirs are enlarged natural lakes that were constructed in the early 

1900s (Ellery, 1927; Tioga, 1928; Saddlebag, 1921; South, 1910; Sabrina, 1908), and are 

currently managed for recreation, hydropower generation, domestic use, and irrigation. The 

five lakes were selected for their proximity (Figure 1) and general similarity to the selected 

reservoirs (Table 1), but surface areas and shoreline development were higher in reservoirs 

than lakes. Introduced trout (Oncorhynchus mykiss, Oncorhynchus mykiss aguabonita, 

Salvelinus fontinalis, Salmo trutta) were present at all sites, and were stocked annually in all 

reservoirs as well as one lake (Rock Creek). 

Each site was typically sampled at least once per season from summer 2015 through 

fall 2017 (Supplement 1), where seasons are defined as those typical of dimictic lakes: 

summer stratification, fall mixing, winter inverse stratification, and spring mixing. Water 

column profiles of dissolved oxygen (DO) concentration, temperature, and specific 

conductivity were measured at 1 m intervals during each visit using a Yellow Springs 

Instruments 2030,  DO-temperature-conductivity meter (resolution: ± 0.2 mg DO L-1, ± 0.3 

°C, ± 1 µS cm-1). When sites were stratified, thermoclines were identified in the field from 

each vertical profile, as the depth at which temperature decreased most rapidly. When lakes 

or reservoirs were thermally stratified, surface water samples were collected at ~0.20 m depth 

in high density polyethylene bottles and hypolimnetic samples were collected 1 m below the 

thermocline with a Kemmerer bottle, but only surface samples were taken when the water 

column was well-mixed (isothermal). For samples taken under ice when inverse stratification 

was observed, samples were collected from 1 m below the ice bottom and from the upper 1 m 

of the 4°C water layer. Profiles of photosynthetically active radiation (PAR) were collected 
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seasonally, using a LI-COR LI-192 underwater quantum sensor. The PAR attenuation 

coefficient, kd, was then computed using the Beer-Lambert law.   

Dissolved nutrient samples were filtered through 1.0 µm polycarbonate membranes 

(Nucleopore) < 6 hrs after collection, and frozen for up to 4 months before analysis. 

Chlorophyll-a (chl-a) samples were collected on 0.45 µm nitrocellulose filters (Millipore) 

and frozen for up to 1 month prior to analysis, then extracted in 90% acetone for 24 hours 

prior to analysis on an Abbott V-1100D spectrophotometer (Lorenzen, 1967; detection limit 

= 0.1 µg L-1). DOC samples were filtered through precombusted (2 hours, 500°C) 0.7 µm 

nominal pore size Whatman GF/F filters (Wilde et al., 2014) into precombusted (12 hours, 

500°C) 40 mL borosilicate vials with Teflon-coated septa. DOC samples were acidified with 

hydrochloric acid to pH < 2, and analyzed using the high temperature combustion method on 

a Shimadzu TOC-V (± 1.5% measured concentration; Carlson et al., 2010). 

Nitrate, ammonium, and soluble reactive phosphorus (SRP) concentrations were 

measured on a Lachat Automated Ion Analyzer (Hach Company, Loveland, CO, USA), using 

cadmium reduction (detection limit = 0.3 µM, ±5%; Strickland and Parsons, 1972), 

indophenol red ammonia detection (detection limit = 0.3 µM, ±5%; Williason and Johnson, 

1986), and phosphomolybdate methods (detection limit = 0.2 µM, ±10%; Grasshoff 1976), 

respectively. For samples collected between July and August in 2017, the phosphomolybdate 

and fluorometric o-Phthalaldehyde methods (Taylor et al. 2007) were used to determine SRP 

and ammonium concentrations within 24 h of sample collection using filtered water that had 

not been frozen, which reduced the detection limit (ammonium detection limit = 0.1 µM, 

SRP detection limit = 0.1 µM).   
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 Lake volumes were obtained in three ways: (1) for reservoirs, elevation-storage tables 

were provided by the reservoir operator, Southern California Edison (SCE); (2) for three 

lakes (Spuller, Ruby, Crystal), volumes were obtained from Melack et al. 1998; and (3) for 

the remaining two lakes (Lower Gaylor, Rock Creek), hypsometric curves were generated. A 

Hook-5 (Lowrance, Tulsa, OK) sonar system was used to record depth and location across 

transects of each lake, which were then used to calculate hypsometric curves, using QGIS 3.2 

(QGIS Development Team, 2019). Reservoir exposed areas were computed from elevation-

storage tables and daily water surface level data obtained from SCE. Lake water levels were 

observed to fluctuate by up to 0.2 m but were not measured fluctuations resulted in little 

exposure of lake littoral zones, so lakes were treated as “full” for the duration of the study. 

Watershed areas were calculated from 1/3 arc-second resolution digital elevation models (3D 

Elevation Program, USGS, https://www.usgs.gov/core-science-systems/ngp/3dep), lake area 

and lake network number from the California Department of Fish and Wildlife’s (CADFW) 

California Lakes GIS product (https://data.ca.gov/dataset/california-lakes), land cover type 

from CALVEG (Region 5, Existing Vegetation, 

https://data.fs.usda.gov/geodata/edw/datasets.php), and basin geology from Jennings et al. 

(1997), digitized by Saucedo et al. (2000). The shoreline development factor (SDF) was 

computed using lake perimeters following Wetzel (2001). Watershed, lake, and land cover 

type areas were calculated using ArcMap 10.4 (Environmental Systems Research Institute, 

2016). 

 Basin April 1 snow water equivalent (SWE), treated as annual maximum SWE, was 

obtained from California Cooperative Snow Survey (https://cdec.water.ca.gov/snow/) 

stations nearest to each site (0.25 to 8 km). Ice-on and ice-off dates for all sites were 
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determined from Landsat 7 and 8 satellite imagery (landlook.usgs.gov). Images were 

repeated every 16 days, with an offset of 8 days between Landsat 7 and 8 satellites, ice-on 

and ice-off could be determined within ± 4 day certainty, with sporadic verification by direct 

field observations. Otherwise, dates were chosen as the midpoint between images before and 

after ice-on or ice-off.  

 At reservoir outlets, discharge was recorded by SCE and reported annually to the US 

Geologic Survey, with the data available in the National Water Information System (NWIS). 

At each lake outlet, pressure transducers were installed (Solinst Levelogger 3001 M5,  ± 0.3 

cm), with compensation for atmospheric pressure by the associated deployment of an 

atmospheric pressure logger (Solinst Barologger, ± 0.05 kPa; Spuller, Gaylor lakes) or by 

atmospheric pressure data obtained from the US Army Corps of Engineers’ Cold Regions 

Research and Engineering Laboratory and the University of California, Santa Barbara Energy 

Site at Mammoth Mountain (Bair et al. 2015; Rock Creek, Ruby, Crystal lakes). Discharge 

also was measured manually during the ice-free season with a measuring rule or tape and a 

current meter (Marsh McBirney Flo-Mate 2000) to develop rating curves for each lake outlet. 

Each rating curve was then used to compute discharge from the pressure data.  

To measure metabolism, optical dissolved oxygen loggers (D-opto, Zebratech, ±0.02 

mg DO L-1) were deployed for 24 h at two lakes and two reservoirs in late July to mid-

August and at one lake and one reservoir in late August to mid-September. Instruments were 

calibrated in 0% and 100% saturation solutions prior to deployment. Loggers were deployed 

at two to four depths, dependent on maximum lake depth, and recorded DO every 10 

minutes. A variation of the mass balance method (Sadro et al. 2011a) was used to calculate 

metabolic rates from data averaged hourly. Net ecosystem production (NEP) was calculated 
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for each hourly average as NEP = DDO + FDO/MLD, where NEP (g m-3) is the net change in 

dissolved oxygen that is attributed to biological processes, DDO (g m-3) is the change in 

dissolved oxygen as measured directly by each logger, FDO (g m-2) is flux across the air-water 

interface, and MLD (m) is the mixed layer depth. Flux of oxygen into or out of the lake or 

reservoir due to atmospheric gas exchange was calculated as: FDO= kDO(Cw-Caq), where kDO 

(m h-1) is the coefficient of gas exchange of oxygen at given temperature, Cw (g m-3) is the 

concentration of dissolved oxygen at the water surface, and Caq (g m-3) is the saturation 

concentration of dissolved oxygen at the water surface. Caq was calculated from measured 

water surface temperature and local atmospheric pressure, kDO was estimated from k600 as 

modeled from wind speed, and Schmidt numbers, which were used to compute the gas 

transfer coefficient of oxygen, were calculated based on surface water temperature 

(Wanninkhof 2014). Wind speeds were obtained from the California Data Exchange Center 

(CDEC), which included data from California Department of Water Resources 

meteorological stations ranging from 0.5 km (Rock Creek) to 6 km (Saddlebag) from each 

study site. At Rock Creek Lake in July, wind speed data from a station 13 km away were 

used because repairs were being conducted at the nearer station. Wind data from these 

stations introduce error into my estimates of O2 flux, but approximate local high-elevation 

wind conditions. 

 Calculated NEP hourly averages for each depth layer were summed across each 24 h 

deployment to determine daily rates of NEP and community respiration (CR) was determined 

by summing calculated nighttime NEP and dividing by the duration of night to obtain an 

hourly rate of CR, which was then used for entire deployment duration. GPP was then 

calculated from the difference of NEP and CR where CR is a negative value. Whole-lake 
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areal rates of metabolism were computed by multiplying volumetric metabolic rates by the 

volume of water at each logger depth, summing those rates for all depths, and dividing by the 

surface area of the lake.  

 NEP hourly averages were summed across each deployment to determine daily rates 

of NEP; community respiration was determined by summing calculated nighttime NEP and 

dividing by the duration of night to obtain an hourly rate of CR. GPP was then calculated 

from the difference of NEP and CR, where CR was treated as a negative value. Whole-lake 

areal rates of metabolism were computed by multiplying volumetric metabolic rates by the 

volume of water at each logger depth, summing those rates for all depths, and dividing by the 

surface area of the lake. Although horizontal variation in metabolic rates has been observed 

in mountain lakes (Sadro et al., 2011b), measurements from the lake center provide a 

reasonable approximation of lake metabolism (Sadro et al., 2011a). 

To determine explanatory variables nutrient concentrations across all seasons, mixed 

models were developed for each ‘layer’ (surface, hypolimnion). Continuous, measured or 

computed environmental variables and ‘type’ (lake or reservoir) were included as fixed 

effects. Calendar sampling date was treated as a random effect because sites were sampled 

repeatedly at irregular intervals. Concentrations that were below our limits of detection were 

entered into the dataset as half of the detection limit. Explanatory variables were checked for 

collinearity using a Pearson’s r correlation matrix, where variables with a known mechanistic 

connection to nutrient concentrations were retained and other variables, correlated with these, 

were dropped. Elevation and alpine shrub area, as well as maximum reservoir or lake surface 

area and watershed area, were correlated, thus elevation and surface area were not included 

in initial models. Explanatory variables were then scaled by centering around an adjusted 



 

  13 

mean of zero with a standard deviation of 0.5, and measured nutrient concentrations were 

square-root transformed, satisfying parametric assumptions. The function ‘dredge’ in MuMIn 

was used for automated model selection, to test all possible combinations of an initial linear 

mixed model that included all random and fixed effects. Interactive effects were included 

where fixed effects were thought to be significant in only some seasons. The initial fixed 

effects were: type, days since ice-off,  shoreline development factor, season, duration of the 

ice-covered period, maximum depth, watershed area, current area exposed by water level 

declines, annual maximum exposed area, dissolved oxygen concentration, outlet discharge, 

water residence time, percent of the watershed that was bare, wet meadow, alpine shrub, 

montane chaparral, and conifer forest, percent of the watershed that was underlain by granitic 

rock, hornfels, glacial till, and gabbro, and interactive effects of season*depth and maximum 

exposed area*season. The final model for each response variable was selected using 

minimum values of the Aikake information criterion, and no additional models are discussed 

here because other models had AIC values > 2 over the best model. Model fit was 

determined with a mixed model pseudo-coefficient of determination (Nakagawa et al., 2017), 

which produces two values, one which includes random effects (R2 conditional, ‘R2c’), and 

one which does not (R2 marginal, ‘R2m’). A comparison of the two values then indicates the 

importance of the random effect (sampling date).  

I also examined relationships between pairs of variables using Spearman’s rank 

correlations and compared variable values for lakes versus reservoirs using Mann Whitney U 

tests, and Benjamini-Hochberg adjustment for comparisonwise error. Statistical analyses 

were performed using R, in RStudio, with the base stats package. Linear mixed models were 

developed in R using the packages MuMIn and lme4.  
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Results 

 Annual peak snowpack increased over the study period, beginning with 5% of the 

April 1 long-term Sierra average in 2015, 73-88% in 2016, and 163-173% in 2017. Both 

lakes and reservoirs remained ice-covered for over half of the year, for approximately 7 

months (Table 2). Ice-off in 2017 occurred weeks to months later than in 2016 and 2015, in 

conjunction with substantially higher SWE. There were no significant differences in peak 

SWE between lakes and reservoirs in any study year (2015: n lake = 3, n reservoir = 3; 2016-

2017: n lake = 5, n reservoir = 5). All sites were dimictic: inverse stratification developed in 

winter under ice and persisted until ice-off, followed by a brief period of isothermy, then the 

development and persistence of summer stratification until a second, brief isothermal period 

in late fall before ice cover (Figure 2). Spring surface (p = 0.038; n lake = 5, n reservoir = 5) 

and outlet (p = 0.007; n lake = 5, n reservoir = 5), and summer outlet (p = 0.008; n lake = 5, n 

reservoir = 5), temperatures were higher in 2016 than 2017, summer outlet temperatures were 

higher in 2015 than 2017 (p = 0.016; n lake = 5, n reservoir = 5), but temperatures were 

similar between years for other seasons and layers. After applying Bejamini-Hochberg 

corrections for comparisonwise error for multiple comparisons, temperatures for different 

layers and the outlets were not significantly different between lakes and reservoirs for 

individual seasons, either averaged across years or within individual years.   

Hypoxia (DO < 2 mg L-1) and anoxia were observed rarely in bottom waters of both 

lakes and reservoirs, in winter, summer and fall (Figure 3).  Dissolved oxygen remained high 

in all other cases, and was not different throughout the study period between lakes and 

reservoirs in any season (n lake = 96, n reservoir = 86). kd varied by nearly an order of 
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magnitude over all three years and all sites. A minimum value of 0.04 m-1 was obtained in 

spring 2016 (Saddlebag Reservoir) and a maximum value of 0.56 m-1 was obtained in 

summer 2016 (Lower Gaylor Lake). The lowest values were generally measured in spring 

and the highest in fall with kd being positively correlated with water residence time (r = 0.38, 

p < 0.00001, n lake = 96, n reservoir = 86). Concentrations of chlorophyll-a (chl-a) were low 

(80% of samples were below 2 µg L-1). Metabolic rates also were low and ranged from net 

autotrophy to heterotrophy (NEP: -14.2 to 33.9 mmol m-2 d-1) (Table 3).  

The extent of water level fluctuations varied across reservoirs (Figure 4). Except for 

Ellery which fluctuated randomly over the study period, reservoirs generally had low water 

levels from summer 2015 to spring 2016, associated with a drought, but filled in subsequent 

springs and early summers with drawdown through the following seasons until snowmelt. 

Water flowed over the dam at Tioga reservoir for several days in July 2016, and at Tioga, 

South, Ellery, and Saddlebag reservoirs in July 2017. No data are presented for Tioga 

reservoir from October 2016 - April 2017, because the reservoir was drained to its minimum 

storage level during repairs on the dam. Several lake outflows began flowing only 

intermittently through time in late summer of 2015 and 2016 (Gaylor, Crystal, Spuller), 

whereas all reservoirs but Ellery continued flowing year-round. Outlet nutrient 

concentrations could not be collected where and when flow had ceased, and export in those 

cases was recorded as 0. Ellery discharge was sporadic in 2015 and 2016, but more closely 

resembled lake flow in 2017. A large flow event occurred at Ruby Lake in winter 2017, 

associated with an avalanche during a major snowfall event. Mean daily reservoir discharge 

on sampling dates was nearly three times that of lakes in summer and over eight times greater 

in fall (Table 4).  
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Replicates used for nutrient analyses by year, season, layer, and type are presented in 

Supplement 1. Between summer of 2015 and fall of 2017 concentrations of nitrate, 

ammonium, and SRP ranged from below detection (0.3, 0.2, 0.2 µM respectively) to 24, 26, 

and 4.5 µM, respectively, across all water bodies (Figure 5). Surface and hypolimnetic nitrate 

concentrations generally peaked in winter or spring, then steadily decreased into fall. 

Seasonal trends of hypolimnetic ammonium and SRP were more variable, occasionally 

increasing in stratified periods (winter, summer) and during fall. Surface ammonium and 

SRP were low and near our detection limit throughout the study period. Mean lake and 

reservoir nutrient concentrations in each season in each water layer and the outlets were not 

significantly different (p > 0.05, Mann Whitney U tests with Benjamini-Hochberg 

corrections) (Fig. 5).  

Seasonal mean outlet export of all three nutrients, the product of concentration and 

discharge, was significantly higher from reservoirs than lakes in summer 2017 (Figure 6), 

and ammonium export was also higher in fall of both 2016 and 2017 (all p values  < 0.01, 

Mann Whitney U tests with Benjamini-Hochberg corrections). Nutrient export did not differ 

between lakes and reservoirs in any other season-years (p > 0.05, Mann Whitney U tests with 

Benjamini-Hochberg corrections). 

Associations of nutrient concentrations with environmental variables 

  Final explanatory models for each nutrient and layer, as selected by minimum AIC 

values, are presented in Table 5. Models explained 10-82% of the variation in nutrient 

concentrations in different layers, and were particularly weak where concentrations were 

low, such as for surface ammonium and SRP concentrations (R2c = 0.23 and 0.24). Final 

models explained more of the observed surface nitrate variation (R2c = 0.73) than variation in 
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surface ammonium or SRP concentrations likely due to their low levels, but final models 

explained more of the variation in hypolimnetic ammonium concentrations (R2c = 0.82) than 

in hypolimnetic nitrate (R2c = 0.63) or SRP (R2c = 0.28) concentrations. 

Watershed characteristics, such as coverage by bare rock, conifer forest, chaparral, 

alpine shrubland, glacial deposits, and wet meadow, were included in all models, except that 

for hypolimnetic SRP concentrations. Wet meadow was a significant positive predictor for 

surface ammonium and SRP concentrations, chaparral was a significant positive predictor of 

surface SRP and negative predictor of hypolimnetic nitrate concentrations, alpine shrubland, 

likely a proxy for elevation, was a significant negative predictor for hypolimnetic ammonium 

concentration, glacial till was a negative predictor for hypolimnetic nitrate concentration, 

conifer coverage was a positive predictor of surface nitrate concentration, and proportion of 

bare space was a predictor of surface and hypolimnetic nitrate concentrations. The shoreline 

development factor, which was significantly higher for reservoirs and ranged from 1.19 to 

1.81 across sites (Table 1), was included as a significant negative fixed effect in models for 

hypolimnetic nitrate concentration. Days since ice-off or ice period were included in four 

models (surface nitrate; hypolimnetic nitrate, ammonium, SRP). Dissolved oxygen 

concentration was a significant negative predictor of hypolimnetic concentrations of all three 

nutrients.  ‘Type’ of water body (lake or reservoir), was a significant negative predictor, 

indicating lower concentrations in reservoirs, of hypolimnetic ammonium and SRP. Current 

or maximum reservoir area exposed was included as a term in models for surface nitrate, and 

hypolimnetic ammonium (in winter) and SRP concentrations. Date, as the sole random 

effect, had variable explanatory power but was most important in the model for hypolimnetic 

ammonium concentration.  
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Discussion 

Lake and reservoir nutrient concentrations were not significantly different in any of 

the seasons, when comparing means across all study years. Watershed and/or climactic 

characteristics predicted surface nutrient concentrations, but hypolimnetic concentrations 

were also related to internal processes, which affected dissolved oxygen concentrations and 

water levels. Although outlet nutrient concentrations were not significantly different between 

lakes and reservoirs, year-round hypolimnetic release of reservoir water caused higher export 

of nutrients from reservoirs than lakes in summer and fall. Ammonium and SRP appeared to 

be produced and accumulated in both lake and reservoir bottom waters under anoxic and 

hypoxic conditions, but were continuously released from reservoirs while accumulating in 

stratified lakes. Interannual differences in reservoir and lake discharge were related to 

snowpack levels (5% to 170% of average snowpack levels over study period). In dry years 

(2015, 2016), reservoirs were drained slowly throughout the winter then filled during 

snowmelt, with elevated outlet discharge compared to lakes and reservoir throughout the 

year. In wet years (2017), reservoir discharge was managed in spring to increase capacity for 

later runoff, then increased with snowmelt, matching lake outflow patterns, reflecting 

management to minimize dam overtopping.  

Epilimnion 

 Lake and reservoir surface concentrations of all three nutrients were not significantly 

different across the study period and were related to coverage by different vegetation types 

previously known to control surface nutrient concentrations (e.g. Sickman et al., 2003). 

Surface nitrate concentrations were positively related to bare and conifer watershed cover, 
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suggesting flushing from soil and talus pools (Sickman et al., 2003).  These results differed 

from those for lakes in the Austrian Alps, where water chemistry variability was only weakly 

related to vegetation coverage, but strongly related to catchment morphology (Kamenik et 

al., 2001). In addition, maximum area exposed was positively related to surface nitrate 

concentration, indicating the importance of the drying and rewetting of the littoral zone for 

nitrate release (Cooke et al., 2003).  Nitrate concentrations also declined with time since ice 

off, reflecting decreasing inputs from snowmelt and soils as earlier snowmelt was flushed 

downstream.  

The explanatory power of final mixed models was much weaker for surface 

ammonium and SRP than nitrate concentrations, but catchment characteristics remained 

significant predictors of both ammonium and SRP concentrations. Wet meadow and 

chaparral coverages were included as positive but non-significant fixed effects in models for 

both ammonium and SRP concentrations, possibly reflecting their importance as sources of 

labile nutrient inputs in the Sierra. Net ammonium production can occur in wet meadow soils 

above 0 °C (Miller et al., 2007), and in early to late summer during snowmelt (Miller et al., 

2009), thus the timing of snowmelt and total SWE will determine, at least partly, surface 

ammonium concentrations in watersheds with substantial wet meadow cover. Similarly, SRP 

is partially derived from watershed soil pools (Homyak et al., 2014b). Lake network number, 

which can partially explain spatial variation in montane lake chemistry (Sadro et al., 2012), 

was also included as a negative, but non-significant fixed effect in the final surface 

ammonium model, indicating uptake or nitrification during downstream transport from 

headwater to downstream lakes, which may be enhanced where nitrification is not 

photoinhibited, such as under snow (Kopáček and Blažzka, 1994).   
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Hypolimnion 

 Nitrate, ammonium, and SRP concentrations in the hypolimnion were not 

significantly different between lakes and reservoirs. The final mixed model for hypolimnetic 

nitrate concentration was complex, including predictors that reflected seasonality (ice period, 

season), source area (watershed area), geologic and vegetation characteristics related to soil 

flushing (chaparral, bare rock, glacial till), dissolved oxygen concentration, and water body 

morphology and landscape position (SDF, lake network number). Nitrate inputs come 

primarily from snowmelt and soil flushing in Sierra lakes (Sickman et al., 2003), but the 

mixing model suggested additional sources and limitations on inputs. Nitrate was negatively 

related to dissolved oxygen, and positively related to ice period, suggesting that organic 

matter decomposition and subsequent nitrification allowed some accumulation of nitrate 

under ice. Similarly, the negative relationships of nitrate to lake network number and SDF, 

which reflects the extent of the littoral zone, suggests that biotic uptake in littoral zones and 

streams removes nitrate that otherwise might reach the hypolimnion, as has been observed in 

Rocky Mountain stream networks (Brown et al., 2008). Surface area and SDF were greater in 

reservoirs than lakes (Table 1), which could have contributed to additional nitrate uptake in 

reservoirs, possibly offsetting inputs from the wetting and drying of reservoir littoral areas.   

 Hypolimnetic ammonium and SRP concentrations, like nitrate, were positively 

related to ice period and negatively related to dissolved oxygen, reflecting the accumulations 

of ammonium and SRP, first under ice and again during summer and fall periods with low 

DO levels. Final models also suggested that hypolimnetic ammonium and SRP 

concentrations, after considering DO levels, ice period, and reservoir area exposed, were 

lower in reservoirs than lakes (Figure 5), suggesting that deep-water discharge from 
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reservoirs exported hypolimnetic water downstream, removing ammonium and SRP that 

otherwise accumulate in lake hypolimnia. This is further reflected in the significantly higher 

export observed below reservoirs than lakes in summer and fall (Figure 6), though this is also 

an effect of discharge as well.  Low hypolimnetic oxygen was not observed in 2015 in either 

lakes or reservoirs, possibly because of reduced allochthonous inputs and subsequently 

decreased hypolimnetic decomposition rates. Although kd values indicated that light should 

have reached the bottom of water bodies throughout the study period, higher hypolimnetic kd 

values in the later ice-free season could have reduced photosynthetic rates in the deep waters 

of some lakes and reservoirs with associated reductions in DO concentrations (Tioga 

reservoir, Gaylor Lake),  and kd  and DO were negatively related (r = -0.41, p = 0.002; lake n 

= 42, reservoir n = 29). The short ice period in 2015 also may have reduced the accumulation 

of nutrients under ice, although this was not quantified because sampling did not begin until 

mid-summer.  

In addition, models for both hypolimnetic ammonium and SRP concentrations 

included terms related to reservoir drawdown, including current exposed area in the SRP 

model and season x maximum exposed area in the ammonium model. In the latter case, 

maximum exposed area was only a significant predictor in winter, suggesting the importance 

of the drawdown area exposed to winter freezing for SRP release. Lake sediment exposure to 

air and rewetting can also increase ammonium release (Qui and McComb, 1996), suggesting 

increased remineralization can contribute to hypolimnetic reservoir ammonium production 

when reservoirs refill, even though some ammonium appears to be lost through reservoir 

outlet discharge. Ammonium production by decomposition will persist throughout the year, 

which can then accumulate under anoxic conditions during stratified periods. The final model 
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also showed that hypolimnetic ammonium concentration was positively related to coverage 

by alpine shrubs, the dominant vegetation type in study watersheds that lay largely above the 

tree  line, which may be a source of the organic matter in lake sediments where 

decomposition occurs. 

Although the final mixed model showed a positive relationship between hypolimnetic 

SRP concentration and current exposed area, the explanatory power of this model was lower 

than that for ammonium and mechanisms of phosphorus loading were less clear. Littoral 

sediments that are subjected to annual drying and rewetting have a reduced ability to adsorb 

SRP (Fabre 1988; Watts 2000), thus reservoir sediments may act as P sources. However, 

Sierra lake sediments have been found to be net P sinks (Homyak et al., 2014b), and 

watershed soil nutrient pools are expected to be the primary source of phosphorus inputs to 

lakes and reservoirs. Homyak et al. (2014a) suggested that DOC flushed from watershed 

soils may transport additional P to lakes, but I found no correlation between DOC and SRP 

concentrations (r = 0.02, p = 0.81, hypolimnion n = 71, epilimnion n = 111). Additionally, 

SRP concentrations rise in lake and reservoir hypolimnia after peak snowmelt rather than 

during, suggesting an autochthonous source. High sulfate concentrations may increase P 

release from sediments during anoxia (Caraco et al. 1993), but  sulfate concentrations in the 

Sierra are rarely sufficient (100-300 μeq L-1) to stimulate P release, except in watersheds 

dominated by volcanic rock (Melack et al. 1985). Although volcanic lithology was not 

selected in the final SRP model, the basins of the two sites where anoxia and elevated 

hypolimnetic SRP were most often observed, Tioga Reservoir and Lower Gaylor Lake, were 

dominated by volcanic rock. Nearby lakes in basins dominated by volcanic rocks (Parker 

Pass, Lundy) had SO4 concentrations >100 μeq L-1 (Melack et al. 1995), indicating that 
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watershed sulfate may contribute to sediment P release, although there are additional controls 

on the rate of that release (Hupfer and Lewandowski, 2008; Homyak et al., 2014b).  

Outlet  

Outlet nutrient concentrations did not differ between lakes and reservoirs across all study 

years and seasons, but export was significantly higher from reservoirs than lakes for all three 

nutrients (all p’s < 0.001) in summer and fall, which could be attributed to higher discharge 

from reservoirs than lakes.  Lake outlet flows became temporally intermittent in the summer 

or fall, whereas all reservoirs outlets (except Ellery) continued flowing into the winter. 

Hypolimnetic water release from reservoirs also may reduce the duration of the stratified 

period and cause earlier water column mixing relative to natural lakes (Nowlin et al., 2004; 

Furey et al., 2004), promoting the export of nutrients into the upper water column. Although 

year-round flows from reservoirs allow introduced fish populations to persist, dams disrupt 

the natural flow regime in fall dry periods, which may serve as an important ecological filter 

benefiting native species (Poff and Ward, 1989).  Additionally, increased reservoir nutrient 

export may contribute to downstream productivity (Ward and Stanford, 1979), but this has 

not been examined in high Sierra outlet streams. Where lake outlets continued flowing into 

fall, which was more commonly observed in 2017 due to the larger preceding snowpack, 

nutrients accumulating in lake hypolimnia might be brought to lake surfaces and exported 

downstream.   

Conclusions 

 Lake and reservoir nutrient concentrations were similar across water layers, seasons, 

and years, but nutrient export was greater from reservoirs than lakes owing to differences in 

the levels and timing of outlet discharge. Nutrients could accumulate in lake and reservoir 
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hypolimnia during stratification, likely caused by the decomposition of organic matter in 

sediments, then were exported through hypolimnetic releases from reservoirs and, rarely, 

from lakes during fall mixing, although lake and reservoir nutrient export was similar in 

spring. Dam construction and management results in the deep-water release of water from the 

hypolimnion and, in some cases, increased outlet discharge during dry periods, resulting in 

hypolimnetic nutrient export to downstream areas. Reservoir water level fluctuations were 

associated with nutrient concentrations, possibly by intensifying the release of nutrients from 

sediments exposed to repeated wet-dry cycles. Snowpack levels controlled interannual 

variation in reservoir management and the duration of the ice covered period, with 

repercussions for nutrient concentrations and export, as nutrient export was elevated in wet 

years particularly below reservoirs. Compared to lakes, reservoirs alter the timing and 

amounts of discharge and increase the export of labile nutrients to downstream ecosystems. 
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Table 1: Basic characteristics of study lakes and reservoirs, and comparisonwise error 
adjusted p-values comparing lake and reservoir characteristics. ‘L’ and ‘R’ correspond to 
lake and reservoir; ‘LNN’ is lake network number and ‘SDF’ is shoreline development 
factor.  
 

Site Latitude Longitude Elevation 
(m) 

Max. 
Depth 

(m) 

Surface 
Area 
(ha) 

Watershed 
Area (ha) LNN SDF 

Crystal (L) 37° 35' 39" N 
 

119° 01' 07" W 
 2932 19 5 95 0 1.39 

Spuller (L) 37° 56' 55" N 119° 17' 05" W 3124 5.5 1.9 137 0 1.31 

Lower 
Gaylor (L) 

 
37° 54' 50" N 

 
119° 16' 06" W 3155 13 9.5 99 1 1.33 

Rock Creek 
(L) 37° 27' 14" N 118° 44' 13" W 2957 24 23 3116 9 1.29 

Ruby (L) 37° 24' 55" N 118° 46' 01" W 3383 34 15 449 1 1.19 

Sabrina (R) 37° 12' 35" N 118° 36' 50" W 2782 19 76 4334 6 1.53 

Saddlebag 
(R) 37° 58' 01" N 119° 16' 06" W 3068 22 124 1801 4 1.58 

South (R) 37° 10' 07" N 118° 34' 12" W 2977 10 69 3277 5 1.67 

Tioga (R) 37° 55' 35" N 119° 15' 10" W 2937 16 29 980 0 1.5 

Ellery (R) 
 

37° 56' 07" N 
 

 
119° 14' 07" W 

 
2901 4 25 4139 5 1.81 

Adjusted p-
values   0.34 0.67 0.035 0.095 0.68 0.036 
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Table 2: Dates of ice-on and ice-off for lakes and reservoirs as determined by remote sensing 
(see Methods). Corresponding ice period duration and local peak (April 1) snow water 
equivalent (SWE) are listed. 
 

 Ice period (days) SWE (cm) 
 Ice-on 

2014 
Ice-
off 
2015 

Ice-
on 
2015 

Ice-
off  
2016 

Ice-
on 
2016 

Ice-
off 
2017 

2015 2016   2017 2015 2016 2017 

Crystal (L) 12/5 4/25 11/16 5/17 12/2 6/30 141 183 210 3.8 103 208 
Spuller (L) 11/24 6/14 11/18 6/25 10/15 8/1 202 220 290 5.1 69 164 

Lower 
Gaylor (L) 

11/24 6/7 11/18 6/17 11/24 7/22 195 212 240 3.8 72 138 

Rock 
Creek (L) 

12/9 3/27 12/1 5/4 12/11 6/1 108 155 172 1.3 19 80 

Ruby (L) 12/9 6/1 12/1 6/17 12/2 7/14 174 199 224 12.7 49 132 
Sabrina 

(R) 
1/27/15 2/23 12/25 4/23 12/23 5/10 27 120 138 2.5 34 61 

Saddlebag 
(R) 

12/17 5/30 11/30 6/9 12/10 7/22 164 192 224 5.1 69 164 

South (R) 12/13 3/27 12/1 5/2 12/23 6/3 104 153 162 2.5 34 61 
Tioga (R) 12/5 5/30 11/30 5/29 11/24 7/4 176 181 222 3.8 72 138 
Ellery (R) 11/24 4/25 11/8 5/17 11/24 6/12 152 191 200 15.2 70 160 

 

 
 

 

Table 3: Areal net ecosystem productivity (NEP), community respiration (CR), gross primary 
productivity (GPP) rates (mmol O2 m-2 day-1), and the ratio of gross primary productivity to 
community respiration during the ice-free season of 2017, by site and date.  

 
 
 
 
 

Site Date 

Areal NEP 

(mmol m-2 day-1) 

Areal CR 

(mmol m-2 day-1) 

Areal GPP 

(mmol m-2 day-1) GPP:CR 

Rock Creek (L) Jul. 26 1.2 -73.7 74.9 1.0 

Gaylor (L) Aug. 18 -11.8 -32.6 20.8 0.6 

Rock Creek (L) Sept. 18 -13.1 -96.4 80.3 0.8 

Tioga (R) Aug. 17 -14.2 -83.7 69.5 0.8 

Saddlebag (R) Aug. 19 8.9 -8.3 17.2 2.1 

Tioga (R) Aug. 24 33.9 -16.3 50.2 3.1 
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Table 4: Mean flows (m3 s-1) on sampling dates within each season, pooled across years. 
Significant differences between lakes and reservoirs are shown in bold.  
 
 

Season Type Mean flow Standard 
error 

Winter Lake 0.117 0.058 
Reservoir 0.745 0.356 

Spring Lake 0.716 0.2805 
Reservoir 1.424 0.6401 

Summer Lake 0.409 0.141 
Reservoir 1.105 0.293 

Fall Lake 0.045 0.021 
reservoir 0.377 0.099 
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Table 5: Final mixed models for lake and reservoir nutrient concentrations based on AIC 
values (see Methods). R2 marginal is the coefficient of determination for fixed effects only, 
whereas R2 conditional includes both fixed and random effects. Asterisks denote p-values, 
where: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Effects without asterisks are were not 
significant. Positive and negative coefficients are denoted with (+) and (-). 

Nutrient Layer Fixed effects Random 
effects 

R2 
marginal 

R2 
conditional 

NO3 

 
 

surface 

Season (-) 
Days since ice-off (-)*** 

P. Bare (+)*** 
P. Conifer (+)** 

Max. area exposed (+)*** 

Date 0.58 0.73 

 
hypolimnion 

Season (+)*** 
Dissolved oxygen (-)*** 

Ice period (+)*** 
Lake network number (-)*** 

P. Bare (-)*** 
P. Chaparral (-)*** 

P. Glacial (-)*** 
Shoreline develop. factor (-)*** 

Watershed (+)*** 

Date 0.57 0.63 

 
NH4 

 
surface 

Lake network number (-) 
P. Bare (+) 

P. Chaparral (+) 
P. Meadow (+) *** 

Date 0.19 0.23 

hypoliminion 

Depth (+) 
Dissolved oxygen (-) *** 

Ice period (+) ** 
P. Alpine shrub (-) * 

winter x max. exposed area(-)*** 
Type, reservoir (-)* 

Date 0.52 0.82 

SRP 

 
surface 

Dissolved oxygen (-) 
P. Chaparral (+) ** 
P. Meadow (+) * 

Water residence time (-) 

Date 0.10 0.24 

hypolimnion 
Dissolved oxygen (-)* 

Ice period (+) 
Current exposed area (+) *** 

Type, reservoir (-)* 

Date 0.27 0.28 
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Supplement 1: Number of replicates used in analyses, where epi = epilimnion (surface), hyp = hypolimnion 
(bottom), and out = outlet.  

Year season layer Type n 

2015 

summer 

epi lake 4 
epi reservoir 3 
hyp lake 4 
hyp reservoir 2 
out lake 4 
out reservoir 3 

fall 

epi lake 4 
epi reservoir 5 
hyp lake 2 
hyp reservoir 1 
out lake 4 
out reservoir 5 

2016 

winter 

epi lake 2 
epi reservoir 3 
hyp lake 5 
hyp reservoir 2 
out lake 2 
out reservoir 3 

spring 

epi lake 4 
epi reservoir 5 
hyp lake 4 
hyp reservoir 3 
out lake 5 
out reservoir 5 

summer 

epi lake 4 
epi reservoir 5 
hyp lake 5 
hyp reservoir 5 
out lake 5 
out reservoir 5 

fall 

epi lake 5 
epi reservoir 5 
hyp lake 5 
hyp reservoir 3 
out lake 5 
out reservoir 5 

2017 

winter 

epi lake 3 
epi reservoir 4 
hyp lake 2 
hyp reservoir 2 
out lake 1 
out reservoir 2 

spring 

epi lake 5 
epi reservoir 4 
hyp lake 2 
hyp reservoir 1 
out lake 5 
out reservoir 4 

summer 

epi lake 5 
epi reservoir 5 
hyp lake 5 
hyp reservoir 5 
out lake 5 
out reservoir 5 

fall 

epi lake 5 
epi reservoir 5 
hyp lake 2 
hyp reservoir 1 
out lake 5 
out reservoir 5 
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Figure 1: Study site locations in the eastern Sierra Nevada, California, USA. Topography was 
obtained from USGS digital elevation models, park boundaries from the US Forest Service, 
roads from Tiger Roads, and water bodies from the National Hydrography Dataset. 
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Figure 2a: Mean lake and reservoir temperatures + 1 SE grouped by layer and separated by 
year, across all four seasons. No significant differences were observed (p > 0.05, Mann 
Whitney U tests with Benjamini-Hochberg corrections).   
 

 
 
Figure 2b: Mean lake and reservoir temperatures + 1 SE for each layer, type, and season. 
Bars indicate standard error. No significant differences were observed (p > 0.05, Mann 
Whitney U tests with Benjamini-Hochberg corrections). 
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Figure 3: Relationship of hypolimnetic ammonium concentrations and hypolimnetic 
dissolved oxygen content, pooled across years.  
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Figure 4: Mean daily discharge for each lake (top panel) and reservoir (middle panel) through 
the study period, obtained from USGS for reservoirs and computed from rating curves for 
lakes. The bottom panel presents reservoir area exposed over time. Lake levels did not vary 
appreciably through the study period. 
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Figure 5: Mean lake and reservoir nutrient concentrations + 1 SE for each water layer 
(epilimnion, hypolimnion, outlet) for each season and year over the study period (summer 
2015 through fall 2017). Top panel: nitrate concentration; middle panel:  
Ammonium concentration; bottom panel: soluble reactive phosphorus concentration. 
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Figure 6: Mean lake versus reservoir nutrient export + 1 SE, averaged across dates, then 
years, for each season for each site. Significant differences are denoted with “*” (adjusted p 
< 0.05, Mann-Whitney U tests with Benjamini-Hochberg corrections). Top panel: nitrate 
concentration; middle panel: ammonium concentration; bottom panel: soluble reactive 
phosphorus concentration. 
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CHAPTER TWO 
 

Relationships of nutrient chemistry and flow metrics to benthic macroinvertebrate 

assemblages in high elevation lake and reservoir outlet streams 
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Abstract 

Although reservoirs are known to alter downstream flow and hydrochemical regimes 

and, hence, stream macroinvertebrate communities, almost no studies have compared 

invertebrate assemblages in the outlets of reservoirs versus natural lakes. In this study, I 

compared benthic macroinvertebrate communities in the outlet streams of high elevation 

natural lakes (n = 5) and hydropower storage reservoirs (n = 5) in the Sierra Nevada of 

California over three years (2015-2017) encompassing a wide range of flow regimes. 

Discharge from reservoirs over the study period were greater than from lakes in mean annual 

flow, 30 day minimum flow, baseflow, and, in one year, zero flow days, but other flow 

metrics, such as peak annual flow and the recession period, were similar between lake and 

reservoir outlets across years.  Invertebrate community structure (richness, evenness, density, 

and composition) was similar between lake and reservoir outlets across seasons and years, 

despite flow metric differences, but varying annual snowpack and flow regimes drove 

interannual differences in invertebrate assemblages. Filter feeders (primarily Prosimulium) 

dominated in 2017, likely in response to elevated flow, whereas Ephemeroptera and 

Trichoptera (commonly Baetis, Serratella, Rhyacophila) and chironomids (Tanypodinae, 

Chironominae) were abundant throughout the study period. Non-metric multidimensional 

scaling (NMDS) showed that invertebrate communities were influenced by elevated flow 

(peak annual flow, ammonium export, annual mean flow), substrata sizes, and algal biomass 

(as chlorophyll –a), but not related to low flow metrics such as baseflow and minimum 

flows, which were greater below reservoirs. Reservoir management elevated ammonium 

export in summer and fall of two study years, but did not cause divergence of lake and 

reservoir invertebrate assemblages in those seasons. Although reservoir management altered 



 

  50 

flow regimes and nutrient flux across years in these high elevation systems, interannual 

climactic variability outweighed the effects of flow management on benthic 

macroinvertebrate communities. 

 

Introduction  

The alteration of stream flows by human activities, such as the construction and 

management of dams, water diversions, and groundwater extraction, is recognized as a major 

source of ecological degradation (Poff et al., 1997; Rosenberg et al., 2000; Bunn and 

Arthington, 2002).  To understand the effects of such activities on stream flows and, hence, 

biological communities, it is important to characterize biological responses to natural flow 

regimes then examine how these responses are affected by human-induced flow alterations. 

Hydroelectric dams, including those on high-elevation, headwater streams, often change the 

magnitude, variability, and timing of downstream flows (Poff et al., 2007; Schinegger et al., 

2012), altering invertebrate density, diversity, community composition, and life history 

cycles (Céréghino and Lavandier, 1998; Weisberg et al., 1990; Rehn, 2009; Yarnell et al., 

2010; Bruno et al., 2013; Kennedy et al., 2016; Quadroni et al., 2017). Hypolimnetic releases 

from reservoirs also can modify downstream water temperatures and chemistry, with 

potential repercussions for invertebrate assemblages (Hannan, 1979; Ward and Stanford, 

1979; Jackson et al., 2007; Bona et al., 2008; Dickson et al., 2012; Bini et al., 2014).  

Natural flow regimes are critical in maintaining the biological integrity of fluvial 

ecosystems by driving the physical habitat and connectivity conditions that native species are 

adapted to while preventing invasion by exotic species (Power et al., 1995; Bunn and 

Arthington, 2002; Lytle and Poff, 2004; Poff and Zimmerman, 2009). Natural, seasonal flow 



 

  51 

intermittency can reduce longitudinal connectivity, initially increase invertebrate density, and 

ultimately result in the local extirpation of some species while favoring the dominance of 

drought-resistant taxa (Gasith and Resh, 1999; Rader and Belish, 1999; Donath and 

Robinson, 2001; Robinson and Matthaei, 2007; Vidal-Abarca et al., 2013; Datry et al., 2014; 

Robinson et al., 2015, 2016; Herbst et al., 2019).  How biological communities respond to 

flow regimes altered by reservoir management in headwater, snowmelt streams that are 

characterized by high spring flows and zero or intermittent flows in the fall is less clear.   

In contrast to many headwater hydroelectric reservoirs which dam river or glacial valleys, 

most high elevation reservoirs in California’s Sierra Nevada originated as natural lakes that 

were enlarged to capture snowmelt flows. The dams on these enlarged lakes release water 

through the original stream channel to smaller reservoirs downstream, where water is 

removed for hydropower generation. Stored reservoir water is primarily discharged from 

hypolimnia, but surface flows overtopping the dam can occur in high snowpack and runoff 

years and year-round minimum flows (sensu Tennant, 1976) are often mandated to support 

downstream trout populations. Although most studies examining the ecological effects of 

dam construction and management have compared regulated and unregulated rivers (e.g. 

Rehn, 2009; Steel et al., 2018), this research compares abiotic conditions and benthic 

macroinvertebrate assemblages in the outlet streams of high Sierra reservoirs versus natural 

lakes.  

The serial discontinuity concept (SDC) was initially developed for reservoirs (Ward and 

Stanford, 1983), but has been applied recently to lakes, because both reservoirs and lakes 

disrupt stream continua and impact downstream conditions (Wurtsbaugh et al., 2005; 

Marcarelli and Wurtsbaugh, 2007; Goodman et al., 2010). High elevation lake outlets can be 
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warmer, show less daily temperature variation, and have increased invertebrate richness and 

density compared to streams uninterrupted by lakes (Robinson and Minshall, 1990; Hieber et 

al., 2002), as well as exhibit altered nutrient uptake rates relative to inlets (Arp and Baker, 

2007), demonstrating that outlet effects are not limited to reservoirs. Comparisons of lake 

and reservoir outlet streams rather than unregulated reaches and reservoir outlets allow the 

examination of abiotic conditions and biological communities below lakes and reservoirs 

with similar serial discontinuity. In this study, I measured flow and physical-chemical 

variables, and sampled benthic macroinvertebrate assemblages, in the outlet streams of high-

elevation Sierra lakes and reservoirs across seasons during ice-free periods for three years to 

examine the responses of invertebrate assemblages to reservoir management and 

environmental variables.  

I predicted that reservoirs would reduce flow intermittency, increase baseflows, and 

reduce peak flows relative to lakes through snowmelt storage and year-round hypolimnetic 

releases. Reduced peak flows and lower flow intermittency should favor sensitive taxa (i.e., 

Ephemeroptera, Plecoptera, Trichoptera (EPT)), whereas more tolerant taxa (Chironomidae) 

might be elevated in lake outlets. In addition, elevated ammonium, nitrate, and phosphorus 

concentrations in hypolimnia combined with increased reservoir discharge should result in 

increased nutrient export below reservoirs, which is expected to cause bottom-up effects 

increasing invertebrate abundance. Chlorophyll a (Chl-a) concentrations, here serving as a 

proxy for particulate organic matter (POM), may also be elevated in hypolimnia in response 

to seasonally elevated nutrient concentrations, contributing to increased POM flux out of 

reservoir than lake outlets, which should serve to sustain higher abundances of filterers, 

collector-gatherers, and their predators. 
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Methods 

Five lake and five reservoir outlet streams were studied in the eastern Sierra Nevada, 

California, within or adjacent to protected wilderness areas (Chapter 1, Table 1). Beginning 

in summer 2015, three lake and two reservoir outlets were sampled, and the outlets of an 

additional two lakes and three reservoirs were added in spring 2016, then sampled through 

fall 2017. Although the design entailed sampling 5 lake and 5 reservoir outlets through 2016 

and 2017, the actual number of sites sampled varied across seasons because several sites 

could not be accessed in spring during a high snowpack year (2017) and several outlet stream 

dried in the fall (Table 2). These sites occur at subalpine to alpine elevations near or above 

treeline, ranging from 2782 to 3383 m a.s.l. (Table 1), within recently-glaciated watersheds 

with poor soil development underlain primarily by granitic rock. These outlets are well-

oxygenated, have consistently low conductivity (< 30 µS cm-1), and most have minimal 

riparian cover, characteristic of streams at or above treeline (Ward, 1994).  The reservoirs 

were constructed in the early 20th century (Ellery, 1927; Tioga, 1928; Saddlebag, 1921; 

South, 1910; Sabrina, 1908), and are currently managed for hydroelectric production and 

year-round minimum flow releases, with the exception of Ellery Reservoir where the outlet is 

allowed to cease flowing at any time. Eight reservoirs have been constructed in the eastern 

high Sierra (> 2500 m), five of which were selected for this study based on their year-round 

accessibility, allowing for the same-day processing of nutrient samples in the laboratory. The 

five lake outlets were selected for their similarity to study reservoirs in their elevations, 

landscape positions, and, hence, basin snow cover across years (Table 1).  Introduced trout 

(Oncorhynchus mykiss, Oncorhynchus mykiss aguabonita, Salvelinus fontinalis, Salmo 
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trutta) were present at all sites, and were stocked annually in all reservoirs as well as one lake 

(Rock Creek). 

Outlet benthic macroinvertebrate and water samples were collected across spring, 

summer, and fall at each sampled site from summer 2015 through fall 2017 (Table 2), 

roughly coinciding with upstream lake or reservoir spring mixing, summer stratification, and 

fall overturn. Lack of flow in fall, or deep snow cover in spring, prevented samples from 

being collected at some sites in each year (Table 2). Outlet grab water samples for nutrient 

analyses were filtered through 1.0 µm polycarbonate membranes (Nucleopore) < 6 hrs after 

collection into high density polyethylene bottles, then kept frozen, in the dark, until 

processing later the same day. Measurements of dissolved oxygen (DO) and temperature also 

were collected at each visit (Yellow Springs Instruments 2030,  ± 0.2 mg DO L-1, ± 0.3 °C). 

Stream bed particle size distributions were characterized by visually sorting particles into 

size classes, then computing the median particle size (cm; D50; Wolman, 1954), in summer of 

2016 and 2017.  

Invertebrates were collected from riffles that were 50 m downstream of each lake or 

reservoir outlet with a D net (30 cm wide base, 500 µm mesh), by disturbing an area of 0.09 

m2 directly upstream of the net (3 samples per stream on each sampling date). Triplicate 

samples were combined and preserved in 90% ethanol in the field. All individual 

invertebrates were identified in each composite sample to genus or species for 

Ephemeroptera, Plecoptera, Trichoptera, and Coleoptera, whereas Chironomidae were 

identified to sub-family and other Diptera to genus. Taxa were then assigned to functional 

feeding groups (FFGs) using Merritt and Cummins (2008).  
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Nitrate, ammonium, and soluble reactive phosphorus (SRP) concentrations were 

measured on a Lachat Automated Ion Analyzer (Hach Company, Loveland, CO, USA), using 

cadmium reduction (detection limit = 0.3 µM, ±5%; Strickland and Parsons, 1972), 

indophenol red ammonia detection (detection limit = 0.3 µM, ±5%; Williason and Johnson, 

1986), and phosphomolybdate methods (detection limit = 0.2 µM, ±10%; Grasshoff 1976), 

respectively. For July and August 2017 samples, the phosphomolybdate and fluorometric o-

Phthalaldehyde methods (Taylor et al. 2007) were conducted within 24 hours of collection on 

filtered water that had not been frozen, which reduced detection limits for ammonium and 

SRP concentrations (ammonium detection limit = 0.1 µM, SRP detection limit = 0.1 µM).   

Chlorophyll-a (chl-a) samples were collected on 0.45 µm nitrocellulose filters (Millipore) 

and frozen for up to 1 month prior to analysis, then extracted in 90% acetone for 24 hours 

prior to analysis on an Abbott V-1100D spectrophotometer (Lorenzen, 1967; detection limit 

= 0.1 µg L-1). 

 Discharge in reservoir outlets was recorded by the reservoir operator, Southern 

California Edison, and reported annually to the US Geologic Survey with the data being 

available as daily mean values on the National Water Information System (NWIS, 

nwis.waterdata.usgs.gov/nwis). At each lake outlet, pressure transducers were installed 

(Solinst Levelogger 3001 M5,  ± 0.3 cm) with data compensated for local atmospheric 

pressure by the associated deployment of an atmospheric pressure logger (Solinst 

Barologger, ± 0.05 kPa; Spuller, Lower Gaylor lakes) or by using atmospheric pressure data 

obtained from the US Army Corps of Engineers Cold Regions Research and Engineering 

Laboratory and the University of California, Santa Barbara Energy Site at Mammoth 

Mountain (Bair et al. 2015, snow.ucsb.edu; used for Rock Creek, Ruby, Crystal lakes). Lake 
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outlet discharge was monitored manually during spring, summer, and fall for a minimum of 

eight times at each site from 2015 to 2017 by measuring outlet width, depths, and current 

velocities (using a Marsh McBirney Flo-Mate 2000 current meter) at 10 regularly spaced 

points along a cross-stream transect.  Rating curves of relationships between measured 

discharge and pressure transducer data for each lake outlet were then used to compute 30 

minute discharge values from pressure data, which were then averaged daily for comparison 

to reservoir outlet flow data.  

Statistical analyses 

 Flow metrics were computed using daily discharge data for each outlet stream 

(Indicators of Hydrological Analysis, IHA, Richter et al., 1996). IHA group 2, 3, and 5 

metrics were calculated, which encompassed the magnitude, duration, and timing of annual 

extreme (maximum, minimum) flow conditions, as well as the rate and frequency of daily 

flow changes. The rise and fall rates were calculated as the mean of all positive (rise rate) or 

negative (fall rate) differences for consecutive daily values at each site. Reversals were 

calculated by determining periods of two or more consecutive days when flow was rising or 

falling, then counting the number of times that flow shifted in direction (e.g., “rising” to 

“falling”) during the water year. Two additional flow metrics, days since maximum flow 

(DSMF), and duration of snowmelt recession, were calculated. DSMF was computed as the 

number of days elapsed from the date of peak spring flow to the sampling date, whereas 

recession period was the number of days between peak spring flow and baseflow index (7-

day minimum flow/mean annual flow) at each site. Discharge data were not collected from 

lakes until August 2015, so calculations of reservoir flow metrics did not begin until that time 

and 2015 data cannot be directly compared to 2016 and 2017 data.  
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Flow metrics were examined for collinearity using a correlation matrix (Pearson’s r), 

with some inter-correlated metrics being removed prior to analyses to eliminate redundancy 

in hydrological information. Metrics removed were: 1, 3, 7, and 90 day minimum flow 

(related to 30 day minimum flow); 3, 7, 30, and 90 day maximum flow (related to 1 day 

maximum flow); rise and fall rate (related to 1 day maximum flow); and minimum flow date 

(related to 30 day minimum flow). The metrics retained for analyses were annual mean daily 

flow, mean 7 day discharge before sampling, 1 day maximum flow, 30 day minimum flow, 

zero flow days, baseflow, maximum flow date, recession period duration, DSMF, and 

reversals.  

The benthic macroinvertebrate assemblage data were comprised of a matrix of 

relative abundances of all invertebrate taxa across all sampled sites and times.  Dissimilarity 

between all pairs of site-times was computed using the Sørensen distance metric. Non-metric 

multidimensional scaling (NMDS) was used to visualize patterns in invertebrate assemblages 

across sites-times, grouped by season and water body type (lake or reservoir). Significant 

correlations (Pearson’s r, p < 0.01) between NMDS axes and transformed abiotic variables 

(log10 for continuous measurements, log10 x + 1 for counts), as well as the relative 

abundances of common invertebrate taxa (> 25% of samples), were also calculated. Paired t-

tests were used with NMDS axis scores to distinguish significant differences in the 

multivariate invertebrate dataset among seasons and years. The multi-response permutation 

procedure (MRPP) was used to test for significant differences in multivariate distances 

among water body types.  

 Species richness data were rarified to the minimum number of invertebrates identified 

and counted across samples. Evenness was computed as J = H/ln(S), where H = Shannon-
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Weiner diversity and S is the total number of species in a sample. Statistical differences in 

rarified species richness, evenness, and total invertebrate density between lakes and 

reservoirs, grouped by season-year (e.g., spring 2017), were determined using Mann-

Whitney U tests with corrections for comparisonwise error across all tests using Benjamini-

Hochberg adjustments (Benjamini and Hochberg, 1995; false discovery rate = 0.05).  

Statistical analyses were conducted in R, using the vegan and ecodist packages for 

NMDS, Sørensen distance computation, and rarefaction. 

Results 

Mean annual daily flow varied by two orders of magnitude across the study period 

and all sites, from 0.013 m3 s-1 at Lower Gaylor Lake in 2016 to 1.15 m3 s-1 at Sabrina 

reservoir in 2017. Mean annual reservoir discharge was significantly higher than lake 

discharge in 2016 and 2017 (t-test, Benjamini-Hochberg adjusted (B-H) p < 0.001) (Figure 1, 

Table 3). Mean daily discharge for the 7 days prior to sampling (7 Day Discharge) spanned 4 

orders of magnitude across all sites and times, peaking at 4.5 m3 s-1 at Sabrina reservoir in 

spring 2017, but was not significantly different between lakes and reservoirs in any season-

year (t-test, B-H adjusted p values >  0.05). The recession period ranged from 18 days 

(Saddlebag Reservoir, 2017) to 166 days (Rock Creek Lake, 2016), and was also not 

significantly different in lake and reservoir outlets in each year (t-test, B-H adjusted p values 

> 0.05). Reservoir baseflow and 30 day minimum flows were significantly greater than those 

in lakes in 2016 and 2017 (t-test, B-H adjusted p values < 0.05). Reservoir outlets had more 

zero flow days than lakes in 2016, driven by the Ellery Reservoir outlet, which was dry more 

than 250 days in that year, and year-round low but non-zero flows at Ruby and Rock Creek 

lakes. The remaining four reservoirs had no zero flow days through the entire study period. A 
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likely avalanche hit the surface of Ruby Lake in January 2017, accounting for the peak in 

discharge for lakes shown for that time in Figure 1. 

Lake and reservoir outlet concentrations of ammonium and SRP ranged from below 

detection (ammonium 2015-2016 detection limit = 0.3 µM, 2017 = 0.1 µM; SRP 2015-2016 

detection limit = 0.2 µM, 2017 = 0.1 µM), to 9.2 µM NH4 and 0.46 µM PO4, but were low (< 

1 µM) in most samples (93% and 100%, respectively). Nitrate concentrations ranged from 

below detection limits (0.3 µM) to 13.4 µM, with values > 1 µM occurring in 70% of the 

samples. Nitrate export from both lakes and reservoirs was highest in spring and decreased 

through summer into fall, being most pronounced in 2017 when both concentration and flow 

were higher than in 2015 and 2016 (Figure 2). Ammonium and SRP export from lakes was 

low across seasons in 2015 and 2016, but exhibited a peak in spring 2017, then subsequently 

decreased through summer into fall 2017. Reservoir ammonium export increased through the 

ice free seasons of 2015 and 2016, but decreased slightly from spring to fall in 2017. SRP 

export from reservoirs was low throughout 2015 and 2016, but increased from spring into 

summer of 2017 before decreasing to 2015 and 2016 levels. Export of nitrate, ammonium, 

and SRP were higher out of reservoirs than lakes in summer 2017 and ammonium export also 

was significantly higher from reservoirs than lakes in the summer of 2016 and the autumns of 

2016 and 2017 (t-tests, B-H adjusted p values < 0.05; Figure 2).  

Water temperature in both lake and reservoir outlets followed a seasonal pattern of 

low temperatures in spring, increasing temperatures in summer, and decreases into fall, 

except for 2017 when temperatures were similar in summer and fall. Outlet temperatures 

were not significantly different between lake and reservoir outlets in any season-year (t-test, 

B-H adjusted p values > 0.05) (Figure 3). D50 values similarly were not significantly different 
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in lake (n = 5) and reservoir (n = 5) outlets (t-test, p > 0.60), nor did they consistently change 

across sites from 2016 to 2017 (paired t-test, p ca. 0.98). Outlet chl-a concentrations were 

low (all < 3 µg L-1), but reservoir export was elevated in 2017, and was significantly higher 

than from lakes for each season that year (p < 0.05, B-H comparisonwise error adjustment) 

(Figure 4). 

 A total of 85 invertebrate taxa were identified, with samples being numerically 

dominated by four sub-families of Chironomidae (Chironominae, Orthocladiinae, 

Prodiamesinae, Tanypodinae) and a single Simuliidae genus (Prosimulium), but 

Ephemeroptera, Plecoptera, and Trichoptera also were commonly collected. Coleoptera 

(primarily the elmid beetle Lara) and Tipulidae (Antocha, Pedicia, Tipula) were present at 

low densities. Reservoir outlet invertebrate density increased from summer to fall in 2015, 

but decreased from summer to fall in 2016, reflecting temporal patterns in chironomid 

abundance.  In 2017, total invertebrate, primarily Simuliidae, density increased from spring 

to summer, then decreased into fall (Figure 5).  Lake and reservoir outlet rarified richness 

and evenness were relatively stable across seasons in 2017, but decreased in lakes from 

spring through fall in 2016. In 2015, richness remained stable, but evenness declined, from 

summer to fall in reservoir outlets, whereas richness declined and evenness increased in lake 

outlets. The proportion of total density made up of EPT species showed similar patterns as 

rarified richness, reflecting the importance of EPT species in determining total richness. Lake 

and reservoir evenness, richness, total density, chironomid density, the proportion of total 

density composed of EPT taxa, and Simuliidae density were not significantly different in any 

season-year (p’s > 0.05, Mann Whitney U tests with B-H comparisonwise error adjustment 

applied for each response variable).  
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Invertebrate assemblages were numerically dominated by collector-filterers 

(primarily Prosimulium) in both lake and reservoir outlets in summer and fall 2017 and in 

reservoir outlets in summer 2016 (Figure 6), and densities of each functional feeding group 

were not different between lakes and reservoirs after B-H error adjustment (p’s > 0.05, Mann 

Whitney U tests with B-H comparisonwise error adjustment). Shredders and scrapers were 

rare across all times in both lake and reservoir outlets, with the exception of scrapers in lake 

outlets in spring 2017. Functional feeding groups (FFGs) were more evenly distributed in 

lake than reservoir outlets in summer 2016, but by fall lake outlet assemblages were 

composed almost exclusively of predators and collector-filterers, whereas reservoir outlets 

still additionally contained collector-gatherers and shredders. In 2016, filterer densities were 

stable across seasons in lake outlets, but increased from spring into summer then decreased 

into fall in reservoir outlets.  

NMDS analysis on the relative abundances of invertebrate taxa across all sites and 

times produced three axes accounting for 75% of the variation in the multivariate 

invertebrate dataset (stress = 17.1). The first and second NMDS axes accounted for 34.6% 

and 23.4% of the variation in the multivariate invertebrate dataset, respectively.  Positive 

values of NMDS axes 1 and 2 were positively correlated with 1 day maximum flow, whereas 

D50 values were negatively related to NMDS axis 1 scores and positively related to NMDS 

axis 2 scores (Pearson’s r, p < 0.01) (Figure 7). Positive values of NMDS 1 were associated 

with high relative abundances of the mayfly Baetis and the filter-feeding simuliid 

Prosimulium, whereas negative values were related to high relative abundances of the 

Chironomid sub-family Tanypodinae. Chironominae were positively related, and 

Tanypodinae, Rhyacophila, and Serratella were negatively related, to NMDS axis 2.  NMDS 
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axis 3 accounted for 17.1% of the multivariate variation and was correlated positively with 

ammonium flux, mean annual flow, and chl-a export.  Positive values of NMDS 3 were 

associated with Isoperla and negative values with Prosimulium.  

 Lake and reservoir NMDS scores were not significantly different along the three 

axes, in any season-year (t tests, p values > 0.05, B-H comparisonwise error adjustment). 

Along NMDS axis 2, spring and summer were significantly different from fall when 

averaging scores for each site across all years (paired t tests, p < 0.05, B-H comparisonwise 

error adjustment. NMDS axes 1 and 3 differentiated between 2016 and 2017, where scores 

were averaged across all seasons within individual years (paired t tests, p < 0.01, B-H 

comparisonwise error adjustment).  

MRPP tests showed that multivariate distances between lakes and reservoirs 

combining all season-years were not significantly different (p > 0.05).  

Discussion 

Although baseflow, 30 day minimum flows, and mean annual flow were higher in 

reservoirs than lakes in 2016 and 2017, benthic macroinvertebrate assemblages did not differ 

between lake and reservoir outlets in any season-year, contrary to my initial hypothesis based 

on expected relationships between flow conditions and invertebrate communities. However, 

invertebrate community structure differed across season and years, likely in response to 

variable flow regimes, such as the elevated 1 day maximum flow, mean annual flow, and 

summer ammonium export in 2017 relative to other years. The results suggest, then, that lake 

and reservoir flow differences were not large enough to have a significant effect on 

invertebrate communities against a backdrop of large temporal changes in flow. Although 

other studies have shown that reservoirs affect water temperature via hypolimnetic releases 
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(e.g. Ward and Stanford, 1979), I did not observe temperature differences between lake and 

reservoir outlets in this study, possibly owing to insufficient temporal coverage. On the other 

hand, mean annual flow (2016, 2017), chl-a export (2017), and ammonium flux (summer, 

fall, 2016 and 2017) were higher out of reservoirs than lakes (Table 3, Figure 2), and were 

significantly correlated with community structure (Figure 7). Multivariate invertebrate 

responses to temporal changes in nutrient export and flow apparently outweighed the effects 

of flow alteration by reservoir management. 

Both floods and drought disturbances can have large effects on stream community 

structure (Resh et al., 1988; Naiman et al., 2008; Herbst et al., 2019), but here only a ‘flood’ 

disturbance, 1 day maximum flow, was significantly correlated with community 

assemblages, though maximum flow was also associated with increased mean annual flow. 

Although baseflow or minimum flow metrics were not correlated with community structure 

in this study, lake outlet richness tended to be reduced in the falls versus summers of 2015 

and 2016 (Figure 5), when reservoir outlet richness remained fairly constant, possibly as a 

step response to very low flows (< 0.01 m3 s-1), as has been observed in other streams (Lake, 

2003; Herbst et al., 2019). This study coincided with the final year of a multi-year drought 

(2015), a nearly average snow pack year (2016), and a wet year (2017), so lower flows in 

2015 and 2016 versus 2017 may have resulted in reduced fall richness in lake outlets, 

whereas  reservoir fall richness remained higher owing to higher base and minimum flows 

effected through hypolimnetic release. The recession period was not related to invertebrate 

community structure in this study, despite covering a range of 60-115 days through the study 

period, contrasting with research in Sierra foothill streams showing that the snowmelt 
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recession period duration was positively associated with invertebrate diversity and richness 

(Steel et al. 2018).  

The importance of flow regimes in structuring invertebrate communities in this study was 

confirmed by results showing that 2017 communities were different from 2016, and metrics 

related to flow (export, mean annual flow, 1 day maximum flow) were significantly related to 

invertebrate communities. Species evenness and rarified richness were more seasonally 

variable in 2016 than 2015 or 2017 (Figure 5), reflecting a notable decrease in reservoir 

chironomid density from spring through summer to fall in 2016 but not 2015 or 2017 and 

almost total disappearance of gatherers in fall in both lakes and reservoirs.  Lake and 

reservoir outlet communities were not different in any season-year, again suggesting that the 

magnitude of flow alteration by reservoirs did not have an effect on invertebrate 

communities, even though overall temporal variation in flow did. 

Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa as a proportion of total density 

(% EPT) declined from spring (2016) or summer (2015) to fall, but remained relatively 

constant through the seasons in 2017. Percent EPT also was not significantly different 

between lakes and reservoirs, contrary to my expectation that EPT taxa would be elevated 

below reservoirs. This again is likely due to lake-reservoir flow differences being outweighed 

by interannual variability, because flood disturbance was related to community assemblage 

structure. Baetis and simuliids, which are known to increase in response to disturbance 

(Wallace and Gurtz, 1986; Flecker and Feifarek, 1994) were significantly correlated with 1 

day maximum flow (Figure 7). Other EPT taxa, Rhyacophila and Serratella, were 

significantly related instead to smaller substrata, which in these streams were cobbles or 

pebbles (as opposed to boulders) (Minshall, 1984), but as low NMDS axis 2 scores were 
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related to fall, this is more likely to be a seasonal effect, suggesting that Rhyacophila and 

Serratella were late ice-free season taxa.  

Black flies, primarily Prosimulium, were common below lakes and reservoirs particularly 

during high flow, a common and well-known phenomenon generally attributed to flow and 

the flux of sestonic food from upstream (Richardson and Mackay, 1991). In this study chl-a 

export was used as a proxy for POM flux, but was negatively correlated with Prosimulium 

and positively correlated with the perlodid stonefly Isoperla. Given that Prosimulium was 

also strongly correlated with one-day maximum discharge, it is likely that the observed 

relationships were ultimately driven by increasing Prosimulium density with increasing flow 

and food flux. 

Water temperature is often related to stream invertebrate community structure, including 

in alpine and Sierra foothill streams (Ward and Stanford, 1982; Hieber et al., 2005; Steel et 

al., 2018), but temperature was not related to any invertebrate metrics in this study, which 

may have been due to the infrequency of temperature measurements. Lake and reservoir 

outlet temperatures may not have differed during the ice-free season as hypolimnetic 

reservoir discharge continuously removed the coldest water from reservoirs resulting in 

warmer overlying water replacing hypolimnetic water, and the ice-free season was shortened 

due to high snowpack in 2017, which reduced the time available for stratification.   

Elevated nitrate, phosphorus and ammonium concentrations in low-order streams are 

often related to invertebrate abundance (Hinterleitner-Anderson et al., 1992; Harvey et al., 

1998; Benstead et al., 2005), through bottom up effects, increasing stream primary 

productivity which subsequently drives increases in invertebrate abundances. In this study, 

ammonium export was higher out of reservoirs than lakes in summer and fall 2016 and 2017, 
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and both SRP and nitrate export were higher out of reservoirs in summer 2017 (Figure 2), but 

only ammonium export was significantly correlated with community structure, which was 

also related to differences in flow (Figure 7). SRP concentrations were low or below 

detection limits during the study period, whereas nitrate concentrations and flux in high 

elevation streams usually peak before maximum flow (Melack et al., 1998) then steadily 

decrease into fall (Figure 2), thus effects of nitrate are likely collinear with flow. Ammonium 

concentrations and fluxes were generally low in the dry and average years (2015, 2016) with 

increases in late summer below reservoirs or rarely in early fall below lakes (Chapter 1), 

suggesting that ammonium export increased when invertebrate densities decreased in fall 

when flows were low.  

Conclusions 

Although mean annual flow, minimum flows, and ammonium export were higher in 

reservoir than lake outlets in 2016 and 2017, the structure of benthic macroinvertebrate 

assemblages did not differ between lake and reservoir outlets during the study period. 

Instead, aggregated lake and reservoir outlet community structure differed across seasons and 

years, with the summer and fall of 2017, a wet year, being different from other times. 

Because low or no flows are important determinants of invertebrate community structure in 

alpine streams (Herbst et al., 2019), outlet invertebrate assemblages may be expected to 

diverge in lake versus reservoir outlets during drought years (Weisberg et al., 1990), but no 

such significant effect was observed here after comparisonwise error adjustment. The effects 

of interannual flow variability on invertebrate communities apparently outweighed the 

importance of flow alteration by reservoirs, but reservoir management seasonally increased 

ammonium export from Sierra reservoirs (Chapter 1), which was significantly related to 
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community structure likely as a combined effect of seasonal patterns in flow and resource 

export. In addition, rain-on-snow extreme flow events are predicted to increase over the next 

century (Dettinger et al., 2009), which can have a significant effect on high Sierra stream 

invertebrate assemblages (Herbst and Cooper, 2010), but reservoir management (i.e., winter 

drawdown, runoff storage) may prevent such events from affecting reservoir outlet streams.  
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Table 1: Locations and characteristics of study streams, with annual maximum snow water 
equivalent (SWE) for each basin in each year. “L” and “R” denote lake and reservoir. The 
first year of sampling is indicated below the site name. The bottom row indicates if there 
were significant differences between lake and reservoir outlet characteristics (Mann-Whitney 
U tests with Benjamini-Hochberg (B-H) corrections). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Site Latitude Longitude Elevation 
(m) 

Watershed 
Area (ha) 

2015 
SWE 
(cm) 

2016 
SWE 
(cm) 

2017 
SWE 
(cm) 

Crystal (L) 
(2016) 

37° 35' 39" N 
 

119° 01' 07" W 
 2932 95 NA 103 208 

Spuller (L) 
(2016) 

37° 56' 55" N 
 

119° 17' 05" W 
 3124 137 NA 69 164 

Lower Gaylor 
(L) 

(2015) 

37° 54' 50" N 
 

119° 16' 06" W 
 3155 99 3.8 72 138 

Rock Creek (L) 
(2015) 

37° 27' 14" N 
 

118° 44' 13" W 
 2957 3116 1.3 19 80 

Ruby (L) 
(2015) 

37° 24' 55" N 
 

118° 46' 01" W 
 3383 449 12.7 49 132 

Sabrina (R) 
(2015) 

37° 12' 35" N 
 

118° 36' 50" W 
 2782 4334 2.5 34 61 

Saddlebag (R) 
(2016) 

37° 58' 01" N 
 119° 16' 06" W 3068 1801 NA 69 164 

South (R) 
(2016) 

37° 10' 07" N 
 

118° 34' 12" W 
 2977 3277 NA 34 61 

Tioga (R) 
(2015) 

37° 55' 35" N 
 

119° 15' 10" W 
 2937 980 3.8 72 138 

Ellery (R) 
(2015) 

37° 56' 07" N 
 

119° 14' 07" W 
 2901 4139 15.2 70 160 

p-values, L or 
R greater   0.10 0.026 

(R>L) 0.87 0.92 0.38 
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Table 2: Sites sampled in each season and year. Lack of flow occasionally prevented 
sampling in fall and deep snow cover precluded sampling in spring for some sites. Five 
additional sites were sampled in 2016: Ellery, Saddlebag, South, Crystal, and Spuller. 

Year Season Lakes 
sampled 

Reservoirs 
sampled 

Lakes not 
sampled 

Reservoirs 
not 

sampled 

2015 
Summer Gaylor, 

Rock, Ruby 
Tioga, 
Sabrina - Ellery 

Fall Rock, Ruby Tioga, 
Sabrina Gaylor Ellery 

2016 

Spring 

Gaylor, 
Rock, Ruby, 

Crystal, 
Spuller 

Sabrina, 
South, 

Saddlebag, 
Tioga, 
Ellery 

- - 

Summer 

Gaylor, 
Rock, Ruby, 

Crystal, 
Spuller 

Sabrina, 
South, 

Saddlebag, 
Tioga, 
Ellery 

- - 

Fall 
Rock, 

Crystal, 
Ruby 

Sabrina, 
South, 

Saddlebag, 
Tioga 

Spuller, 
Gaylor Ellery 

2017 

Spring 
Rock, 

Gaylor, 
Crystal 

Sabrina, 
South, 

Saddlebag, 
Tioga, 
Ellery 

Spuller, 
Ruby - 

Summer 

Gaylor, 
Rock, Ruby, 

Crystal, 
Spuller 

Sabrina, 
South, 

Saddlebag, 
Tioga, 
Ellery 

- - 

Fall 

Rock, 
Crystal, 
Ruby, 
Spuller 

Sabrina, 
South, 

Saddlebag, 
Tioga 

Gaylor Ellery 
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Table 3: Mean annual lake and reservoir (2015: lakes, n = 3, reservoirs n = 3; 2016-2017: 
lakes, n = 5, reservoirs, n = 5) flow metrics, computed for each water year. Where lake and 
reservoir metrics were significantly different (t tests, B-H adjusted p < 0.05), values are 
presented in bold.  

Flow Metric 2015 2016 2017 Type 

1 Day Max 0.06 0.44 3.49 lake 
(m3s-1) 0.49 1.36 4.67 reservoir 

30 Day Min 0.04 0.01 0.02 lake 
(m3s-1) 0.24 0.12 0.23 reservoir 

Baseflow 0.48 0.04 0.03 lake 
(m3s-1) 0.75 0.34 0.26 reservoir 

Zero flow days 17 47 57 lake 
(days) 11 59 48 reservoir 

Max. Flow Date 220 176 179 lake 
(Julian day) 228 218 191 reservoir 
Reversals 4 38 69 lake 

(count) 15 51 41 reservoir 
Mean Annual Flow 0.043 0.069 0.221 lake 

(m3s-1)  0.392 0.363 0.92 reservoir 
Recession Period 33.6 95.4 115 lake 

(days) 34.5 60.0 78 reservoir 
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Figure 1: Mean daily discharge averaged across all lakes (red) and reservoirs (blue) 
throughout the study period, August 2015- September 2017. Shaded areas represent ± 1 SE. 
 

 
 
 
Figure 2: Lake and reservoir mean nutrient export rates (+ 1 SE) across seasons and years. 
No samples were collected in spring 2015. Significant differences between lakes and 
reservoirs are denoted with “*” (t-test, B-H adjusted p < 0.05). 
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Figure 3: Mean lake and reservoir outlet temperatures (± 1 SE) across seasons and years. No 
significant differences were observed between lake and reservoir temperatures for any season 
in any year (t-tests, B-H adjusted p’s > 0.05).  

 
 
 
Figure 4: Mean lake and reservoir outlet chlorophyll-a export (mg s-1) (± 1 SE) across 
seasons and years. Significant differences are denoted with “*” (t-tests, B-H adjusted p < 
0.05).  
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Figure 5: Mean benthic macroinvertebrate taxa evenness index, rarified richness (species), 
total density (indv. m-2), chironomid density (indv. m-2), EPT (Ephemeroptera, Plecoptera, 
Trichoptera) taxa as a percent of total abundance, and Simuliidae density (indv. m-2) (+ 1 SE) 
in lakes vs. reservoirs across seasons and years. No samples were collected in spring 2015. 
Lake and reservoir values were not significantly different for any invertebrate metric in any 
season-year (Mann Whitney U test, adjusted p > 0.05). 
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Figure 6: Mean invertebrate functional feeding group densities for lakes (top panel) and 
reservoirs (bottom panel). No samples were collected in spring 2015. Lake and reservoir 
functional feeding group densities were not significantly different in any season-year (Mann 
Whitney U test, adjusted p > 0.05).  
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Figure 7: Ordination plots of nonmetric multidimensional scaling (NMDS) analysis on 
relative abundances of benthic macroinvertebrate taxa across sites during spring (triangles), 
summer (squares), fall (circles) in 2015 (red), 2016 (green), and 2017 (blue). Top panel: 
NMDS axis 1 versus NMDS axis 2. Bottom panel: NMDS axis 1 versus NMDS axis 3. The 
variation in the invertebrate dataset explained by each NMDS axis is displayed with the axis 
labels. The stress of the 3-dimensional NMDS solution is shown in the top panel. Correlation 
coefficients (Pearson’s r) of common taxa (occurring in >1/4 of samples) significantly related 
(p <0.01) to each NMDS axis are shown next to axes. Transformed (log10 for measured 
continuous data, log10x+1 for counts) environmental variables significantly (p < 0.01) 
correlated with NMDS axes are shown on the left side of both plots, where: 1MAX = mean 1 
day maximum flow (m3s-1) ,  NH4F = ammonium export rate (mmol NH4 s-1) , ANNQ = 
annual mean flow (m3 s-1) , D50 = median particle size (mm), chla = chlorophyll-a 
concentration (µg L-1) . 
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Figure 8: Ordination plots of nonmetric multidimensional scaling (NMDS) analysis on 
relative abundances of benthic macroinvertebrate taxa across sites, identical to figure 7, but 
where lakes (red) and reservoirs (blue) are shown in addition to season. Top panel: NMDS 
axis 1 versus NMDS axis 2. Bottom panel: NMDS axis 1 versus NMDS axis 3. The variation 
in the invertebrate dataset explained by each NMDS axis is displayed with the axis labels. 
The stress of the 3-dimensional NMDS solution is shown in the top panel. Correlation 
coefficients (Pearson’s r) of common taxa (occurring in >1/4 of samples) significantly related 
(p <0.01) to each NMDS axis are shown next to axes. Transformed (log10 for measured 
continuous data, log10x+1 for counts) environmental variables significantly (p < 0.01) 
correlated with NMDS axes are shown on the left side of both plots, where: 1MAX = mean 1 
day maximum flow (m3s-1) ,  NH4F = ammonium export rate (mmol NH4 s-1) , ANNQ = 
annual mean flow (m3 s-1) , D50 = median particle size (mm), chla = chlorophyll-a 
concentration (µg L-1) . 
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CHAPTER THREE 
 

Carbon dioxide supersaturation in high-elevation oligotrophic lakes and reservoirs in the 

Sierra Nevada, California 
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Abstract 

 To better understand the contribution of alpine lakes to global CO2 emissions, carbon 

dioxide concentrations and fluxes to the atmosphere were measured in five high-elevation 

lakes and five reservoirs in the Sierra Nevada, California. Median summer surface 

concentrations of dissolved CO2 (reservoirs: 21.1 µM, lakes: 23.7 µM) were supersaturated 

for most of the ice-free season. Median diffusive flux of CO2 was low as compared to other 

inland waters (lakes: 260 mg CO2 m-2 d-1, reservoirs: 192 mg CO2 m-2 d-1). Linear mixed 

modeling demonstrated that the length of ice cover, persisting for 5-9 months and allowing 

for accumulation of under-ice CO2, was a strong predictor of summer surface CO2. During 

the ice-free period, surface evasion of CO2 was highest for the first 40 days after ice-off 

when carbon dioxide that had accumulated during winter was released, though 

supersaturation and evasion continued until fall at most sites despite low rates of ecosystem 

metabolism. This study suggests that the contribution of high-elevation, oligotrophic lakes 

and reservoirs in the Sierra to global CO2 emissions are small despite persistent 

supersaturation, and are primarily driven by the duration of ice-cover.  

 

Introduction 

Supersaturation of CO2 is common in inland waters (Cole et al. 1994), from the arctic 

(Kling et al. 1992) to tropical wetlands (Melack 2016), and many lakes and reservoirs release 

CO2 to the atmosphere (Cole et al. 2007; Raymond et al. 2013). Studies on high-elevation 

aquatic emissions are less common, and often focus on hydropower reservoirs (Del Sontro et 

al. 2010, Diem et al. 2012). Though unproductive, high elevation lakes have been found to be 

supersaturated in CO2 (Jonnson et al. 2003; Pighini et al. 2018).  
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In seasonally ice-covered lakes, summer supersaturation of CO2 at the lake surface 

can be a result of under-ice conditions, as CO2 produced by decomposition during winter is 

trapped under ice and retained into the ice-free season (MacIntyre et al. 2018). Winter CO2 

accumulation can account for 3-80% of total annual CO2 flux in northern lakes (Ducharme-

Riel et al. 2015), and 11-55% of annual flux can occur during the initial ice thaw (Karlsson et 

al. 2013), which can occur in pulses rather than a single event, as spring mixing brings gases 

to the surface (Denfeld et al. 2018). Measuring the rate of CO2 evasion during those periods 

can be accomplished in a variety of ways, including eddy covariance and floating chambers 

(Podgrajsek et al. 2014); chambers are portable and readily deployed in remote areas. 

Reservoirs greater than ~15 years old generally emit CO2 at an areal rate similar to 

that of lakes (Barros et al. 2011), but in the Austrian and Italian Alps, Pighini et al. (2018) 

found that mean summer surface CO2 concentrations were lower in reservoirs than natural 

lakes despite ubiquitous supersaturation. However, they found no significant correlations 

between surface dissolved CO2 and temperature, dissolved oxygen, elevation, surface area, 

and depth, leaving the primary drivers of pCO2 and the mechanism of reduced pCO2 in 

reservoirs unclear.  

California’s Sierra Nevada contain more than 10,000 lakes and several dozen 

reservoirs, which are oligotrophic, primarily at high elevations (>2700 m), and are ice-

covered for some portion of the year. Little work has been done to characterize seasonal or 

spatial control of Sierra lake pCO2, and to date no data have been published on CO2 within 

the high-elevation reservoirs throughout this range. For high elevation lakes within the 

Sierra, watershed snow water equivalent (SWE) determines the timing of ice-off in spring 

(Sadro et al. 2019), which sets the length of time during which CO2 can accumulate under 
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ice. In addition, SWE is negatively correlated with summer dissolved organic carbon (DOC) 

concentrations (Sadro et al. 2018), and an increase in DOC inputs was observed to shift a 

southern Sierra lake to net heterotrophy (Sadro et al. 2011a) by increasing allochthony. Late 

summer pCO2 across a latitudinal gradient of lakes throughout the Sierra in 2014 (S. Sadro, 

personal communication) show surface under saturation of CO2 as low as 7%, and 

hypolimnetic supersaturation of up to 590%, indicating that local factors will play an 

additional role in determining summer CO2 concentrations. Earlier work on Emerald Lake in 

the southern Sierra Nevada demonstrates that a typical high-elevation Sierra lake is net 

autotrophic during the ice-free season (Sadro et al. 2011a), suggesting that net autotrophy 

should contribute to the summer drawdown of CO2. However, metabolic rates are variable 

seasonally and with depth (Sadro et al. 2011b), and periods of net heterotrophy may 

contribute to the CO2 pool even after ice-off.  

 This study examined concentrations and fluxes of CO2 from five lakes and five 

reservoirs in the Sierra Nevada across a gradient of watershed characteristics, lake 

morphologies (Table 1), and ice-covered periods (Table 2), in order to understand controls on 

summer pCO2 in seasonally ice-covered, oligotrophic systems, while also providing the first 

characterization of CO2 emissions from reservoirs in the region. By quantifying CO2 

concentrations under ice and through the ice-free season, in conjunction with measurements 

of surface CO2 flux and metabolic rates, the results of this work should provide a better 

understanding of how environmental factors and aquatic productivity interact to determine 

CO2 retention in these unproductive lakes.  

Accumulation of CO2 and resultant supersaturation in late winter was expected at all 

sites as a result of ice cover, and under-ice CO2 was hypothesized to be positively related to 
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the duration of ice cover allowing for a longer period of accumulation, while negatively 

correlated with dissolved oxygen concentrations, which should act as a proxy for overwinter 

respiration rates. Summer surface CO2 concentrations were expected to decrease rapidly after 

ice-off as a result of diffusive flux and net autotrophy, while summer hypolimnetic 

concentrations were expected decrease more slowly due to net heterotrophy at depth, and 

stratification reducing vertical flux.   

 

Methods 

Ten sites were sampled in the eastern Sierra Nevada, California, within or adjacent to 

protected wilderness areas from June to September 2017 (Figure 1). The sites are subalpine 

to alpine, ranging from 2782 to 3383 m a.s.l. (Table 1) in recently glaciated watersheds with 

poor soil development underlain primarily by granitoids and sporadic metasedimentary and 

metavolvanic rocks. Five of these sites are storage reservoirs constructed in the early 1900s 

managed for recreation, hydropower generation, domestic use, and irrigation. Of the eight 

high elevation eastern Sierra reservoirs, five were selected based on their year-round 

accessibility allowing for same-day processing of samples in the laboratory; high flows in 

2017 closed access to the remaining three reservoirs. The five lakes were selected for their 

proximity to the reservoirs (Figure 1) and to span a range of characteristics comparable to 

that of the selected reservoirs (Table 1). Southern Sierra April 1 snow water equivalent 

(SWE) was ~200% of the 1966-2015 average in 2017 (California Cooperative Snow 

Surveys), causing an extended ice-covered season particularly at higher elevations.  

Sites were sampled at least three times during the ice-free season: immediately 

following ice-off, during midsummer stratification, and during fall overturn. Under-ice CO2 
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samples were collected once from Spuller, Lower Gaylor, Tioga, Ellery, Rock Creek, 

Sabrina, and South lakes. Under ice samples were not collected from Crystal, Saddlebag, and 

Ruby lakes as access was delayed due to the deep snowpack. Water was collected from each 

outlet stream and from a boat over the deepest point of each lake on each sampling date in 

the midmorning or early afternoon, with hypolimnetic samples also collected when lakes 

were stratified. Stratification was first observed in profiles 2-4 weeks after ice-off, and lakes 

were mixed on final fall sampling dates, which was inferred from observed isothermy 

through each water column. Profiles of dissolved oxygen (DO), temperature, and specific 

conductivity were also collected at 1 m intervals at each visit with probes (Yellow Springs 

Instruments 2030,  ± 0.2 mg DO L-1, ± 0.3 °C, ± 1 µS cm-1), which were calibrated for DO in 

0 and 100% saturation solutions in April, June, and September, as well as calibration for 

altitude and temperature prior to sampling at each site.   

Surface water samples were collected at ~0.20 m depth in high density polyethylene 

bottles and hypolimnetic samples were collected 2 m below the thermocline using a 

Kemmerer bottle. Headspace equilibration was performed in the field by transferring the 

sampled water to a syringe, drawing in ambient air, and shaking vigorously for two minutes. 

Headspace gas was then injected directly into evacuated vials. Ambient air samples were also 

collected at each visit. Vials were stored at room temperature in the dark until analysis, 

within 24 hours of collection. All gas samples were analyzed using a PP Systems EGM-4 

portable IRGA, calibrated at 0 and 10,000 ppm and standards of 300, 800, 5,000 and 10,000 

ppm were run prior to sample injection. Dissolved CO2 was calculated with Henry’s law, 

using the concentration of CO2 in air, CO2 solubility in water, and local air pressure and 

temperature (Weiss 1974; Benson and Krause 1984).  
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Chlorophyll-a (chl-a) samples were collected on 0.45 µm porosity nitrocellulose 

filters (Millipore), and extracted in 90% acetone for 24 hours prior to analysis on an Abbott 

V-1100D spectrophotometer. DOC samples were filtered through precombusted (2 hours, 

500°C) 0.7 µm nominal pore size Whatman GF/F filters (Wilde et al. 2014) into 

precombusted (12 hours, 500°C) 40 mL borosilicate vials with Teflon-coated septa. DOC 

samples were acidified with hydrochloric acid to pH <2, and analyzed using the high 

temperature combustion method on a Shimadzu TOC-V (± 1.5% measured concentration) 

 Lake volumes were obtained in three ways: for reservoirs, elevation-storage tables 

were provided by the reservoir operator, Southern California Edison (SCE); for three sites 

(Spuller, Ruby, Crystal), volumes were obtained from Melack et al. (1998); for the remaining 

two sites (Lower Gaylor, Rock Creek), bathymetric maps were generated through depth 

measurements taken with a Lowrance Hook-5 sonar system along transects across these lakes 

in 2016. Depth and location data were then used to calculate hypsometric curves in QGIS 

3.2. Watershed area was calculated from 1/3 arc-second resolution digital elevation models 

(3D Elevation Program, USGS), lake area from the California Department of Fish and 

Wildlife California Lakes GIS product, and land cover was determined from CALVEG 

(Region 5, Existing Vegetation).  Watershed, lake, and land cover areas were calculated in 

ArcMap 10.2. Basin April 1 SWE was obtained from the California Cooperative Snow 

Survey using stations nearest to each site and at similar elevations. 

 Ice-on and ice-off dates for all sites were determined visually from Landsat 7 and 8 

satellite imagery (landlook.usgs.gov); ice-on and ice-off could be determined with ± 4 day 

uncertainty. The date recorded was chosen as the midpoint between images before and after 

ice-on or ice-off, and adjusted when direct observation during sample collection allowed. 



 

  94 

 Reservoir outlet discharge is reported annually by USGS on the National Water 

Information System (NWIS). At each lake outlet, pressure transducers were installed (Solinst 

Levelogger 3001 M5,  ± 0.3 cm), which were adjusted for atmospheric pressure by data from 

an atmospheric pressure logger (Solinst Barologger, ± 0.05 kPa), or atmospheric pressure 

data obtained from the US Army Corps of Engineers Cold Regions Research and 

Engineering Laboratory and the University of California, Santa Barbara Energy Site (Bair et 

al. 2015, snow.ucsb.edu), depending on the distance from each submerged pressure 

transducer. Transducers were installed at Lower Gaylor, Ruby, and Rock Creek lakes in 

August 2015, after which discharge was measured at a minimum nine times at each site over 

the ice-free seasons of 2015, 2016, and 2017. Two additional transducers were installed in 

June 2016 at Crystal and Spuller lakes, where discharge was measured at a minimum seven 

times during the ice-free seasons of 2016 and 2017. Discharge was calculated using 

measurements of stream depth, width, and current velocity, the latter measured with a current 

meter (Marsh McBirney Flo-Mate 2000), to develop discharge rating curves for each lake 

outlet pressure transducer.  

Flux chamber construction, deployment, and resulting calculation of CO2 flux were 

performed following Bastviken et al. (2015). Infrared CO2 sensors (Senseair K33 ELG, ± 3% 

measured value) were installed within plastic containers on the interior of plastic tubs (6.85 L 

volume, 29.5 cm diameter at water surface). A dozen 2 cm diameter holes were drilled in the 

small plastic containers to allow airflow while minimizing the potential for lake water to wet 

the sensors. The rate of increase of CO2 within the chamber was calculated by fitting a linear 

regression to the chamber data, which was used to calculate flux by: 

Flux =
ΔC
Δt ∙

volume
area ∙

p123
R ∙ T 
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 where 𝛥C/𝛥t = fitted slope of CO2 increase within chamber (R2 > 0.98), volume of 

chamber = 6.85 L, area of chamber at water surface = 684 cm2, patm = local atmospheric 

pressure, in atm, R = gas constant 0.08205746 L atm K-1 mol -1, T = water surface 

temperature, in Kelvin. Flux chambers were deployed for ~1 hour during each visit at a 

measurement interval of 30 seconds, over the deepest part of each lake or reservoir. 

 To measure metabolism, optical dissolved oxygen loggers (D-opto, Zebratech, ±0.02 

mg DO L-1) were deployed for 24 h at two lakes and two reservoirs in late July to mid-

August and at one lake and one reservoir in late August to mid-September. Instruments were 

calibrated in 0% and 100% saturation solutions prior to deployment. Loggers were deployed 

at two to four depths, dependent on maximum lake depth, and recorded DO every 10 

minutes. A variation of the mass balance method (Odum 1956; Sadro et al. 2011a) was used 

to calculate metabolic rates from data averaged hourly. Net ecosystem production (NEP) was 

calculated for each hourly average as NEP = DDO + FDO/MLD, where NEP (g m-3)  is the net 

change in dissolved oxygen that is attributed to biological processes, DDO (g m-3) is the 

change in dissolved oxygen as measured directly by each logger, FDO (g m-2) is flux across 

the air-water interface, and MLD (m) is the mixed layer depth. Flux of oxygen into or out of 

the lake or reservoir due to atmospheric gas exchange was calculated as: FDO= kDO(Cw-Caq), 

where kDO (m h-1) is the coefficient of gas exchange of oxygen at given temperature, Cw (g m-

3) is the concentration of dissolved oxygen at the water surface, and Caq (g m-3) is the 

saturation concentration of dissolved oxygen at the water surface. Caq was calculated from 

measured water surface temperature and local atmospheric pressure (Garcia and Gordon, 

1992). kDO was estimated from k600 as modeled from wind speed (Cole and Caraco, 1998) and 

Schmidt numbers were calculated for oxygen based on surface water temperature 
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(Wanninkhof 2014), which were used to compute the gas transfer coefficient of oxygen from 

the relationship between Schmidt numbers (Jahne et al. 1987). Wind speeds were obtained 

from the California Data Exchange Center (CDEC), from California Department of Water 

Resources meteorological stations nearest to each lake or reservoir, which were 0.5 km 

(Rock Creek), 0.9 km (Lower Gaylor), 1.6 km (Tioga), and 6 km (Saddlebag) from each site. 

At Rock Creek Lake in July, wind speed data from a station 13 km away were used because 

repairs were being conducted at the nearer station. Wind data from these stations introduces 

error into the estimate of O2 flux, but provide approximations of local high-elevation wind 

conditions. 

 Calculated NEP hourly averages were summed across each 24 h deployment to 

determine daily rates of NEP; community respiration (CR) was determined by summing 

calculated nighttime NEP and dividing by the duration of night to obtain an hourly rate of 

CR, which was used for the full deployment. GPP was then calculated from the difference of 

NEP and CR where CR is treated as a negative value. Whole-lake areal rates of metabolism 

were computed by multiplying volumetric metabolic rates by the volume of water at each 

logger depth, summing those rates for all depths, and dividing by the surface area of the lake.  

To determine the drivers of ice-free season surface CO2 concentrations across all sites 

while accounting for the non-independence of CO2 concentrations during repeat sampling, 

linear mixed models were developed, with date of sample collection and site treated as 

random effects.  Explanatory variables were checked for collinearity then scaled by centering 

around 0, and observed CO2 concentrations were log-transformed to meet assumptions of 

normality, before model fitting. The function ‘dredge’ in MuMIn was used to test all possible 

combinations of an initial linear mixed model that included all random and fixed effects: 
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log(µM) ~ Site Type + Lake Network Number + Ice period + Days since ice-off + Elevation 

+ Water residence time + surface area + DOC + N2 + PBare + PMeadow + Maximum 

Storage + Depth*Season + 1|Site + 1|Sample Date. The best five models as determined by 

the Akaike information criterion (AIC) are discussed, and the best model overall is presented. 

Visual inspection of the residual plots did not reveal any deviations from normality.  

Nonparametric Spearman’s rho was used to compute correlations, and the 

independent 2-group Mann-Whitney U was used for means comparisons of lakes and 

reservoirs. Statistical analyses were performed using R, in RStudio, with the base stats 

package. Linear mixed models were developed in R using the packages MuMIn and lme4.  

 

Results 

During the ice-free season in the lakes and reservoirs, dissolved CO2 concentrations 

ranged from 15 to 107 µM (Table 3), corresponding to 82-590% saturation. 80% of 

calculated concentrations were below 50 µM; the highest 20% of the measured 

concentrations occurred in the early summer, shortly after ice-off (Figure 2). The lowest 

computed CO2 saturation (83% of saturation) occurred in late September. Under-ice 

concentrations ranged from 44.6 µM to 438.6 µM CO2, corresponding to 250 and 338% 

saturation, respectively. The median surface CO2 concentration over the ice-free period was 

25.8 µM (median absolute deviation ‘MAD’ = 7.6, mean = 27.6 µM), which was lower than 

hypolimnetic concentrations in both lakes (median = 42.8µM, MAD = 22.1, mean = 47.4 

µM) and reservoirs (median = 48.7 µM, MAD = 36.9, mean = 49.3 µM), which were not 

significantly different (p = 0.81; Table 2).  
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Dates of ice-on and ice-off, and resultant ice-covered periods, varied across sites. In 

2016, ice-on occurred as early as Oct. 15 (Spuller) and as late as Dec. 24 (Sabrina, South). 

Ice-off dates ranged from May 15 (Sabrina) to Aug. 1 (Spuller), corresponding to a range in 

the period of ice-cover across sites of 148 days (Sabrina: 142 days, Spuller: 290 days) (Table 

2). 

Surface water temperatures over the period of this study ranged from 0°C under ice at 

all sites to 15.8°C in midsummer (Tioga reservoir, 7/29/17). Dissolved oxygen ranged from 0 

mg L-1 (Lower Gaylor, midsummer) to 10.5 mg L-1 (Ellery, 6/4/17) in surface waters under 

ice. DO decreased throughout the period of study as temperature increased. DO was typically 

near saturation, though there were several exceptions in hypolimnetic waters (<5.3 mg L-1, 

<5.3°C). Median summer chl-a was 0.35 µg L-1 (MAD = 0.3) and below 1 µg L-1 for 80% of 

samples. Summer DOC concentrations ranged from 44.5 µM to 281 µM (Supplement 1). 

Reservoir discharge during sampling peaked at 5.9 m3 s-1 (Sabrina), while lake discharge 

peaked at 2.6 m3 s-1 (Rock Creek), and reservoir discharge was higher than lake discharge for 

the duration of summer 2017. 

Maximum buoyancy frequency (N2) was computed from temperature profiles 

collected at each visit. N2 ranged from 0 s-2, where lakes were isothermal, to 5 x 10-3 s-2 in 

midsummer. Maximum N2 briefly decreased after ice off, but increased in summer as 

stratification developed before falling again in early autumn. Seasons within each waterbody 

are defined by their stratification, as ice-off dates varied widely; “winter” corresponds to 

under-ice samples, “spring” to the unstratified period following ice-off, “summer” to ice-free 

stratified waters, and “fall” corresponds to the second isothermal period reached upon the 

breakdown of summer stratification. 
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The rate of CO2 evasion decreased rapidly after ice-off (Figure 3), with a maximum 

flux of 1.3 mmol CO2 m-2 hr-1 at Crystal Lake in spring (Table 4).  Midsummer flux during 

the stratified period was <0.3 mmol CO2 m-2 hr-1 (median: 0.2 mmol CO2 m-2 hr-1, MAD = 

0.13, mean = 0.1 mmol CO2 m-2 hr-1), with two observations of negative flux (South and 

Sabrina, 8/16/17), indicating reservoir uptake of CO2. An additional two observations of 

uptake occurred in fall (Rock Creek, Ruby lakes), resulting from undersaturation of CO2. 

Midsummer positive and negative fluxes independently were detectably different from zero, 

but overall were not statistically different from zero (p = 0.38). Flux could not be determined 

with this method in three cases (Spuller lake in spring, summer, and fall) where rates of 

emission and uptake were too low to detect over a 1 h deployment. Overall fluxes of from 

lakes (0.2 mmol CO2 m-2 hr-1, MAD = 0.26, mean = 0.4 mmol CO2 m-2 hr-1) and reservoirs 

(median = 0.2 mmol CO2 m-2 hr-1, MAD = 0.25, mean = 0.2 mmol CO2 m-2 hr-1) were not 

significantly different (p = 0.317).  For broader comparisons, daily values of flux were 

computed by applying hourly values over a 24 h period, yielding a median flux of 260 mg 

CO2 m-2 d-1 (mean = 415 CO2 m-2 d-1) from lakes, and 192 CO2 m-2 d-1 (mean = 176 CO2 m-2 

d-1) from reservoirs.  

 Median summer reservoir outlet CO2 concentration was 31.1 µM (MAD = 11.5), and 

median summer lake outlet concentration of CO2 was 28.8 µM (MAD = 10.2), not 

significantly different from each other (p = 0.08).  

 The five best mixed models were selected using AIC, in which several predictors 

were dominant: an interactive effect, Depth*Season, and days since ice-off (DSIO) occurred 

in all five. Length of the ice-covered period and percent of the watershed that is bare were 

included in four of the five best models. Averaged over the best five models, the effect of 
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DSIO (p = 0.0048) was highly significant, and both Depth*Season (p = 0.052) and the ice-

covered period (p = 0.058) were nearly significant.  

 The best model as determined by AIC included DSIO, ice-covered period, and 

Depth*Season as fixed effects, and sample date as a random factor: log(µM) ~ Days since ice 

off + Length of winter ice cover + Depth*Season + 1|Sample Date (R2 conditional = 0.92, R2 

marginal = 0.66, AIC = 99.1) (Figure 4). In this case, each of the predictors was statistically 

significant (DSIO, p = 0.00071; ice-period, p = 0.0035; Depth*Season, p = 0.028).   

 In the ice-covered season, here described as “winter” but extending into late July at 

Spuller, Tioga, Saddlebag, and Lower Gaylor, epilimnetic and outlet CO2 concentrations 

were not significantly correlated with any of the explanatory variables (Table 5). Within the 

hypolimnion, the day of year, basin SWE, length of ice-covered period, days before ice-off, 

and watershed area were strongly and significantly correlated with CO2.   

 Ice-free season surface, hypolimnion, outlet, and winter surface CO2 concentrations 

were not significantly different (p > 0.05) between lakes and reservoirs (Table 6). Summer 

outlet export of CO2 was significantly higher from reservoirs than lakes (p = 0.004). 

 Net ecosystem production was variable between net autotrophy and net heterotrophy, 

across depth, site, and time. Volumetric rates of NEP (Table 7) ranged from -9.2 µmol L-1 

day-1 (Rock Creek, 2 m depth, September) to 10.9 µmol L-1 day-1 (Tioga, 5 m depth, August). 

Volumetric rates of CR and GPP generally increased with depth, ranging from -0.8 to -21.2 

µmol L-1 day-1 and 0.2 to 20.7 µmol L-1 day-1, respectively. Areal estimates of NEP (Table 8) 

also varied between net heterotrophy and net autotrophy, from -14.2 mmol m-2 day-1 (Rock 

Creek, September) to 33.9 mmol m-2 day-1 (Tioga, August).  

 



 

  101 

Discussion 

 Concentrations of CO2 were highest under ice and decreased rapidly after ice-off 

(Figure 2), a decline observed in other seasonally ice-covered lakes (Denfeld et al. 2018). 

Chamber deployments were not frequent enough to determine whether most spring gas 

evasion in these lakes and reservoirs occurs primarily during brief pulses, but flux decreased 

rapidly in the first 40 days after ice-off (Figure 3).  Slight supersaturation and CO2 evasion 

persisted at most sites into autumn, suggesting that supersaturation can be maintained by 

periods of heterotrophy, terrestrial inputs, and sediment respiration. By August, near-surface 

CO2 had decreased to below 200% of saturation at all sites, resulting in low positive fluxes, 

or negative fluxes when surface water was undersaturated in CO2.  

 Rising water temperatures cause a decrease in gas solubility, which contributed to the 

observed decrease of CO2 and dissolved oxygen. The effect of biological productivity could 

not explain the decrease, as computed NEP was nearly balanced, and positive in some cases.   

Though temperature was not included in the mixed modeling due to collinearity with other 

variables, in years when Sierra snowpack was high, such as 2017 when April 1 SWE was 

~200% of normal, Sierra lake temperature rose 1 °C month-1 slower than in a drought year, 

and  peaked at a slightly lower temperature than in low snow years (Sadro et al. 2018b). Thus 

in drought years, higher temperatures will drive gas solubility lower than in a high snowpack 

year, which would cause additional evasion, but this is mediated by the length of the ice-

covered period, a direct result of SWE. Positive correlations between temperature and 

dissolved CO2 are apparent at continental scales (Kosten et al. 2010), but this occurs as the 

result of increasing net heterotrophy, which was not observed here. Similarly, late-season 

observations of CO2 undersaturation might be the result of cooling rather than biological 
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activity, as net heterotrophy was observed during the fall metabolism deployment, and 

concentrations of chl-a were similar to those in the mid-summer.  

 Though allochthonous DOC inputs are predicted to influence aquatic CO2 

concentrations (Jonsson et al. 2003; Lapierre et al. 2013), DOC did not emerge as a strong 

predictor of dissolved CO2 in this study. Sierra lakes are oligotrophic (Sadro et al. 2012) and 

can be driven to net heterotrophy during intervals of high DOC input (Sadro et. al 2011b), 

but these short periods of heterotrophy typically occur in late spring and early summer, when 

gas evasion was found to be highest. Although brief ‘fertilizing’ effects of allochthonous 

DOC on Sierra lake metabolism can drive periods of heterotrophy (Sadro and Melack, 2012), 

this may be outweighed by evasion of accumulated winter CO2.  

 Spatial and temporal variability of metabolic rates calculated from measurements of 

free-water dissolved oxygen suggest a weak relationship between aquatic pCO2 and 

metabolism. A total of six deployments in two lakes and two reservoirs allowed calculation 

of NEP, CR, and GPP (Tables 7, 8). Differences in metabolism between lakes and reservoirs 

in three adjacent basins which span a small range of characteristics including watershed area, 

bare and wet meadow area, and minimum elevation (Table 1), measured over a 3-day 

stratified period in August, suggest lake-specific characteristics which were not quantified 

here are a major control on metabolism, including benthic respiration rates in both littoral 

and pelagic habitats. One reservoir (Tioga) and a lake (Lower Gaylor) were net heterotrophic 

in mid-August, while a second reservoir (Saddlebag) was net autotrophic at the same period. 

Although both CR and GPP generally increased with depth across all three sites, NEP varied 

from net heterotrophy to net autotrophy with no clear relationship to depth. This suggests that 

the contribution of aquatic metabolism to pCO2 can be more complex than would be 
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expected where NEP shifts from net autotrophy near the surface to net heterotrophy below 

the thermocline as observed by Sadro et al. (2011a). In both lakes and reservoirs, summer 

hypolimnetic CO2 was elevated relative to the surface, which cannot be explained by pelagic 

metabolism as net autotrophy was often observed. All sites were stratified in midsummer, 

and an interactive effect of season and depth was a significant predictor of CO2, suggesting 

the persistence of elevated CO2 at depth in summer is more strongly controlled by reduced 

vertical flux across the thermocline. That buoyancy frequency (as a measure of the strength 

of stratification) was a poor predictor of summer dissolved CO2 may suggest that 

stratification is sufficiently high at all sites in midsummer to reduce vertical diffusion, and 

instead vertical flux is mediated by the depth at which hypolimnetic CO2 has accumulated. 

More frequent sampling of pCO2 in conjunction with long-term measurements of metabolism 

would be required to determine its control on the gradual decrease of CO2 observed here.     

Under-ice concentrations of CO2 in late spring were not correlated with DO, 

suggesting that water column community respiration (CR) is not the primary source of winter 

CO2 accumulation. In most cases, DO under ice remained at or near saturation despite 

supersaturation of CO2. Inflow streams may provide some CO2 to the lakes as a result of 

upstream processing (Crawford et al. 2015; Weyhenmeyer et al. 2012) but this cannot be 

quantified as inflows were not sampled. In Rocky Mountain National Park, Crawford et al. 

(2015) found that high mountain headwater streams were supersaturated in CO2 even in 

winter, suggesting that inflow streams could be sources of CO2 to high Sierra lakes. 

However, the lack of a statistically significant correlation between winter pCO2 and lake 

network number suggests upstream processing is not a major winter contributor. A lake’s 

position within a chain of lakes (lake network number, LNN) can partially explain its 
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chemistry (Sadro et al. 2012), but in this case, lake network number was not a significant 

predictor of ice-free season CO2 nor was it included in the best mixed models, and 

additionally had no significant correlation with under-ice CO2 (Table 5). Similarly, the 

proportion of each watershed that is bare (PBare, as rock or ice) or wet meadow were 

expected to be negatively and positively related with summer pCO2, respectively. These 

expectations were based on previous work which found that across 11 lake-chain catchments 

throughout the Sierra, shrub cover explained 42% of the variability in lake surface DOC 

(Sadro et al. 2012), a pattern also observed in the north-central United States (Gergel et al. 

1999), and the Rocky Mountains (Hood et al. 2005).  Wet meadows are known to be a 

particularly important contributor of DOC to downstream lakes (Gergel et al. 1999; Hood et 

al. 2005), though their significance was not examined in the Sierra (Sadro et al. 2012). The 

lack of a significant relationship between DOC and CO2 in this study might explain the lack 

of an association between CO2 and watershed meadow proportion, which was expected to 

represent differences in DOC inputs from each catchment. However, PBare was present in 

four of the five best models of summer CO2, which may reflect a combination of watershed 

elevation, soil cover, and possibly local variation in SWE not captured by the station data 

used here.  LNN and watershed area were poor predictors of summer surface pCO2, which 

may be partially explained by the timing of ice-off, where time since ice-off outweighed any 

effect of the watershed on lake chemistry, particularly as lower LNN lakes are necessarily 

higher in the catchments, and here thawed much later than lower elevation sites. 

Benthic respiration is likely the major contributor to high-elevation Sierra lake CO2. 

At Emerald Lake in the southern Sierra, benthic CR during the ice-free season is on average 

37.3 ± 15.8 mmol O2 m2 day-1, a rate which declines with decreasing temperature but results 
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in a consistently net heterotrophic benthos (Sadro et al. 2011b); this is common in lake 

sediments (Gudasz et al. 2010).  In the Arctic, where MacIntyre et al. (2018) incubated 

benthic lake sediments at ambient under-ice temperatures, respiration rates ranged from 9 to 

24 mmol O2 m2 day-1. Under-ice temperatures of bottom water in the Arctic are no different 

than in the Sierra (4° C), thus despite differences in organic carbon content of sediments, the 

winter rates found in the Arctic may be similar to those in the Sierra. Applying the low end 

of this range over the duration of ice-cover found for lakes and reservoirs in this study, total 

winter accumulation of CO2 from benthic respiration, assuming a respiratory quotient of 1, 

would range from 1.8 to 2.6 mmol m-2.  Winter near-bottom DO was <5 mg L-1 in some lakes 

and less frequently in reservoirs, while remained fully saturated in the upper water column, 

suggesting that under-ice benthic respiration contributes a substantial portion of accumulated 

hypolimnetic CO2. However, under-ice CO2 remained high in South and Tioga reservoirs, 

despite a fully oxygenated hypolimnion, potentially reflecting advection of bottom waters via 

the dam outlet. Benthic organic matter quality and quantity influences respiration rates (den 

Heyer and Kalff, 1998), and thus differences in substrate may aid in explaining the 

differences in winter hypolimnetic CO2 accumulation, but little work has been done to 

characterize benthic substrates in Sierra lakes (Melack et al. 1998; Sadro et al. 2011b).  

Winter hypolimnetic CO2 had a strong, positive and significant correlation with day 

of year, length of the ice covered period, and local SWE (Table 5). An extended period of ice 

cover allows CO2 to continue to accumulate before fluxes to the atmosphere can begin, 

although the reservoirs examined in this study are managed such that they discharge stored 

water from the base of their impounding dam, year round. Importantly, time since ice-off and 

the length of the ice-covered period were the strongest and most important predictors of 
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summer surface CO2 concentrations, reflecting evasion after ice-off, but also the 

accumulation of CO2 described above. Time since ice-off and the ice-covered period can both 

be determined via satellite imagery as described in the methods, thus CO2 concentrations 

during summer could potentially be predicted with a smaller model that requires no physical 

sampling. Using only remotely sensed predictors to fit a new mixed model to the CO2 

concentrations observed in this study, with sample date as a random effect : log(µM) ~ DSIO 

+ Ice period + 1|Sample Date (R2 marginal = 0.53, R2 conditional = 0.70), DSIO remains 

highly significant (p = <0.001) and ice-period nears significance (p = 0.074), which should 

allow for reasonable approximations of summer lake surface CO2 in the high Sierra without 

the need for sample collection.   

The reservoirs in this study release water from the base of the dam that impounds 

them, and though overflow from the reservoir surfaces is possible, it occurs rarely and 

contributes only a small portion to downstream flow. Thus, while most of the natural lake 

outlets in this study stop flowing in winter, reservoirs continue to release water from under 

ice, as SCE manages flow for various purposes downstream. Summer reservoir outlet 

concentrations were slightly higher (median 31.1 µM) than lakes (median 22.8 µM), though 

this difference was not significant (p = 0.08). Concentrations of CO2 were elevated in both 

lake and reservoir bottom waters, particularly under ice and for a brief period following 

spring thaw. Elevated CO2 in reservoir outlet streams reflects the release of hypolimnetic 

water, whereas the natural lakes discharge water from their surface.  

 Export of CO2 in outlet streams, computed from discharge and outlet concentration, 

for reservoirs in summer (30 mmol CO2 s-1) was significantly higher than from lakes (4.5 

mmol CO2 s-1, p = 0.004). Although median reservoir outlet concentrations were only slightly 
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higher, discharge was higher below reservoirs than lakes, especially prior to peak snowmelt. 

In Canadian seasonally frozen reservoirs, discharge of water from depth alters the seasonality 

of CO2 emissions rather than the total annual flux, by releasing gases that would otherwise be 

trapped under-ice and released after ice-off as in natural lakes (Roehm and Tremblay, 2006). 

This finding suggests that in the Sierra, the elevated export of CO2 in winter and spring from 

reservoir outlets relative to lakes should be offset by reduced summer fluxes from reservoirs. 

However, median reservoir fluxes (0.2 mmol CO2 m-2 hr-1) were similar to lake median 

fluxes (0.2 mmol CO2 m-2 hr-1), and the difference was insignificant (p = 0.317). In the 

Sierra, it is thus unclear whether spring reservoir export of hypolimnetic CO2 shifts the 

timing of emissions without altering the total, or whether combined reservoir export and flux 

is greater than that of similar lakes.  

Comparing the results of this study to other regions, median summer surface 

concentrations of 23.7 µM for lakes and 21.1 µM for reservoirs were lower than lakes and 

reservoirs in the Alpine region of Europe (Pighini et al. 2018; Diem et al. 2012) and non-

arctic North American lakes (Cole et al. 1994), and more than an order of magnitude lower 

than tropical reservoirs and lakes (Abril et al. 2006; Melack 2016). Given the low DOC 

concentrations, relatively low temperatures, and low metabolic rates, but combined with 6-9 

months of ice cover allowing for accumulation, weak supersaturation of surface CO2 would 

be expected in subalpine and alpine systems where benthic respiration contributes CO2 to the 

overlying system.  

Median summer fluxes of CO2 from lakes (260 mg CO2 m-2 d-1) and reservoirs (191 

mg CO2 m-2 d-1) were not significantly different (p = 0.317) and are an order of magnitude 

lower than fluxes from North American temperate reservoirs (Barros et al. 2011), and about a 
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fifth that of European Alpine reservoirs (Diem et al. 2012). Previous work has shown 

subalpine and alpine reservoir contribution to global CO2 emissions to be small (Diem et al. 

2012), and this study confirms that high elevation alpine reservoirs as well as natural alpine 

lakes are likely small overall contributors to global emissions.  
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Table 1: Characteristics of each sampled lake (L) or reservoir (R); location (‘latitude’, 

‘longitude’), elevation above sea level (m), maximum depth (m), water surface area (ha), 

watershed area (ha), lake network number (‘LNN’), percent of the watershed that is bare rock 

(‘Bare’) and percent of the watershed that is wet meadow (‘Meadow’).  

Site Latitude  Longitude Elevation 
(m) 

Maximum 
Depth (m) 

Surface 
Area 
(ha) 

Watershed 
Area (ha) 

LNN Bare Meadow 

Crystal 
(L) 

37° 35' 39" N 
 

119° 01' 07" W 
 

2932 19 5 95 0 25.2 0 

Ellery (R) 37° 56' 07" N 
 

119° 14' 07" W 
 

2901 4 25 4139 5 45.5 3.2 

Lower 
Gaylor (L) 

37° 54' 50" N 
 

119° 16' 06" W 
 

3155 13 9.5 99 1 36.7 17.8 

Rock 
Creek (L) 

37° 27' 14" N 
 

118° 44' 13" W 
 

2957 24 23 3116 9 55.7 0.46 

Ruby (L) 37° 24' 55" N 
 

118° 46' 01" W 
 

3383 34 15 449 1 84.7 0 

Sabrina 
(R) 

37° 12' 35" N 
 

118° 36' 50" W 
 

2782 19 76 4334 6 49.1 0.85 

Saddlebag 
(R) 

37° 58' 01" N 
 

119° 16' 06" W 3068 22 124 1801 4 51.1 2.4 

South (R) 37° 10' 07" N 
 

118° 34' 12" W 
 

2977 10 69 3277 5 55.7 0.08 

Spuller 
(L) 

37° 56' 55" N 
 

119° 17' 05" W 
 

3124 5.5 1.9 137 0 68.2 0 

Tioga (R) 37° 55' 35" N 
 

119° 15' 10" W 
 

2937 16 29 980 0 48.9 8.79 
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Table 2: Dates of ice-on, ice-off, ice-covered period, and April 1 snow water equivalent 

‘SWE’ for study sites. Ice-on and ice-off dates were obtained with ±4 day accuracy, from 

Landsat imagery. Ice-off dates confirmed to ±1 day in the field at Tioga, Spuller, Lower 

Gaylor, Saddlebag, and Ruby. Ice-covered period is the length of time between ice-on in 

2016 and ice-off in 2017. April 1 SWE (mm) is obtained from California Cooperative Snow 

Survey measurement sites nearest to each lake or reservoir.  

 

Site Ice-on 2016 Ice-off 2017 Ice-covered 

period (days) 

April 1 

SWE (mm) 

Ellery 11/24/16 6/12/17 200 160 

Tioga 11/24/16 7/4/17 222 138 

Spuller 10/15/16 8/1/17 290 164 

Gaylor 11/24/16 7/22/17 240 138 

Saddlebag 12/10/16 7/22/17 224 164 

Crystal 12/2/16 6/30/17 210 208 

Ruby 12/2/16 7/14/17 224 132 

Rock Creek 12/11/16 6/2/17 173 80 

Sabrina 12/23/16 5/10/17 138 61 

South 12/23/16 6/3/17 162 61 
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Table 3: All CO2 concentration data collected for this study during winter, spring, summer, 

and fall of 2017. ‘Season’ describes individual stratification conditions of lake or reservoir 

rather than calendar dates: winter is under ice, spring is mixing after ice-off, summer is the 

stratified period after spring mixing, and fall is the mixed period after the breakdown of 

summer stratification. ‘Location’ describes depth of sampling: epilimnion is 0.2 m during 

both stratified and mixed periods, hypolimnion is 2 m below thermocline during stratified 

periods, and outlet is the lake or reservoir outlet stream. Percent saturation (%) is computed 

from local water temperature, air pressure, and CO2 concentration.  

 

Sample 

Date 

Site         Season Location Type µM CO2 % 

Sat 

7/2/17 Crystal spring epilimnion lake 67.3 377 

7/2/17 Crystal spring outlet lake 38.5 216 

7/23/17 Crystal summer epilimnion lake 36.4 204 

7/23/17 Crystal summer outlet lake 27.6 154 

8/15/17 Crystal summer epilimnion lake 27.2 152 

8/15/17 Crystal summer hypolimnion lake 28.0 157 

8/15/17 Crystal summer outlet lake 25.8 145 

9/18/17 Crystal fall epilimnion lake 23.7 130 

9/18/17 Crystal fall outlet lake 22.8 125 

6/4/17 Ellery winter epilimnion reservoir 131.7 760 

7/3/17 Ellery spring epilimnion reservoir 28.6 160 

7/3/17 Ellery spring outlet reservoir 30.0 168 

7/18/17 Ellery summer epilimnion reservoir 17.6 98 
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7/18/17 Ellery summer outlet reservoir 24.0 134 

8/19/17 Ellery summer hypolimnion reservoir 25.5 143 

8/19/17 Ellery summer outlet reservoir 34.5 193 

9/20/17 Ellery fall epilimnion reservoir 21.1 115 

7/3/17 Gaylor winter epilimnion lake 78.9 441 

7/3/17 Gaylor winter outlet lake 68.7 384 

7/12/17 Gaylor spring epilimnion lake 91.3 511 

7/12/17 Gaylor spring outlet lake 88.1 493 

7/24/17 Gaylor summer epilimnion lake 48.2 270 

7/24/17 Gaylor summer hypolimnion lake 56.3 315 

8/20/17 Gaylor summer epilimnion lake 15.9 89 

9/21/17 Gaylor fall epilimnion lake 17.0 93 

8/20/17 Gaylor  summer hypolimnion lake 27.9 156 

8/20/17 Gaylor  summer outlet lake 15.2 85 

6/1/17 Rock Creek winter epilimnion lake 100.8 581 

6/1/17 Rock Creek winter hypolimnion lake 235.7 1359 

7/4/17 Rock Creek spring epilimnion lake 21.9 123 

7/4/17 Rock Creek spring outlet lake 15.5 87 

7/17/17 Rock Creek summer epilimnion lake 19.2 107 

7/17/17 Rock Creek summer outlet lake 15.7 88 

8/10/17 Rock Creek summer outlet lake 21.3 119 

8/21/17 Rock Creek summer hypolimnion lake 50.6 283 

9/19/17 Rock Creek fall epilimnion lake 15.1 83 

9/19/17 Rock Creek fall hypolimnion lake 67.8 371 

7/27/17 Ruby summer epilimnion lake 28.1 158 
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7/27/17 Ruby summer hypolimnion lake 35.1 196 

7/27/17 Ruby summer outlet lake 34.6 194 

9/19/17 Ruby fall epilimnion lake 19.6 107 

9/19/17 Ruby fall outlet lake 15.9 87 

9/19/17 Ruby  fall hypolimnion lake 86.3 473 

6/2/17 Sabrina winter epilimnion reservoir 50.7 292 

6/2/17 Sabrina winter hypolimnion reservoir 52.3 302 

6/2/17 Sabrina winter outlet reservoir 48.3 279 

7/5/17 Sabrina spring epilimnion reservoir 15.1 84 

7/5/17 Sabrina spring outlet reservoir 27.5 154 

7/14/17 Sabrina summer outlet reservoir 18.1 101 

9/17/17 Sabrina fall epilimnion reservoir 16.6 91 

7/7/17 Saddlebag spring epilimnion reservoir 22.3 125 

7/7/17 Saddlebag spring outlet reservoir 38.2 214 

7/18/17 Saddlebag summer epilimnion reservoir 45.9 257 

7/18/17 Saddlebag summer outlet reservoir 55.8 312 

8/19/17 Saddlebag summer outlet reservoir 33.6 188 

8/20/17 Saddlebag summer epilimnion reservoir 16.3 91 

8/20/17 Saddlebag summer hypolimnion reservoir 77.7 435 

9/21/17 Saddlebag fall epilimnion reservoir 18.6 102 

9/21/17 Saddlebag fall outlet reservoir 18.1 99 

6/2/17 South winter outlet reservoir 59.7 344 

6/2/17 South winter epilimnion reservoir 115.8 668 

6/2/17 South winter hypolimnion reservoir 133.2 768 

7/5/17 South summer epilimnion reservoir 22.8 127 
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7/5/17 South summer outlet reservoir 107.8 590 

7/14/17 South summer epilimnion reservoir 23.7 133 

7/14/17 South summer outlet reservoir 50.8 284 

9/17/17 South fall epilimnion reservoir 20.3 111 

9/17/17 South fall hypolimnion reservoir 22.2 121 

9/17/17 South fall outlet reservoir 30.1 165 

7/7/17 Spuller winter epilimnion lake 44.6 250 

7/7/17 Spuller winter outlet lake 28.2 158 

7/29/17 Spuller spring epilimnion lake 24.3 136 

7/29/17 Spuller spring hypolimnion lake 27.2 152 

7/29/17 Spuller summer outlet lake 28.4 159 

9/20/17 Spuller fall outlet lake 17.7 97 

9/20/17 Spuller  fall epilimnion lake 15.1 83 

6/4/17 Tioga winter epilimnion reservoir 52.9 305 

6/4/17 Tioga winter hypolimnion reservoir 438.6 338 

7/3/17 Tioga spring outlet reservoir 42.9 240 

7/3/17 Tioga spring epilimnion reservoir 48.1 180 

7/18/17 Tioga summer outlet reservoir 32.1 124 

7/29/17 Tioga summer epilimnion reservoir 22.2 403 

7/29/17 Tioga summer hypolimnion reservoir 72.0 127 

8/9/17 Tioga summer outlet reservoir 22.7 102 

9/20/17 Tioga fall epilimnion reservoir 18.6 269 

9/20/17 Tioga  fall outlet reservoir 17.5 96 
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Table 4: Lake and reservoir CO2 flux (mmol CO2 m-2 hr-1) measured from floating chamber 

deployments, summer 2017. ‘NA’ is given where fluxes were too small to be computed. 

Positive values indicate flux out of the lake or reservoir, negative values indicate uptake into 

the lake or reservoir. 

Date Site Type Flux (mmol 

CO2 m-2 hr-1) 

7/2/17 Crystal  lake 0.3 

8/15/17 Crystal lake 0.2 

9/18/17 Crystal lake 1.3 

7/3/17 Ellery  reservoir 1.1 

7/12/17 Lower Gaylor lake 0.2 

7/24/17 Lower Gaylor  lake 1.2 

8/3/17 Lower Gaylor  lake 0.9 

8/20/17 Lower Gaylor  lake 0.1 

7/4/17 Rock Creek lake 0.2 

7/17/17 Rock Creek lake 0.2 

8/23/17 Rock Creek lake -0.5 

9/18/17 Rock Creek lake 1.1 

7/28/17 Ruby lake 0.3 

9/15/17 Ruby lake -0.4 

7/5/17 Sabrina reservoir 0.4 

8/16/17 Sabrina reservoir -0.5 

9/17/17 Sabrina reservoir 0.1 
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7/18/17 Saddlebag reservoir 0.2 

8/20/17 Saddlebag reservoir NA 

7/5/17 South reservoir 0.5 

8/16/17 South reservoir -0.5 

9/17/17 South reservoir 0.1 

7/29/17 Spuller lake NA 

8/24/17 Spuller lake NA 

9/20/17 Spuller lake NA 

7/29/17 Tioga reservoir 0.2 

8/24/17 Tioga reservoir 0.3 
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Table 5: Spearman’s rho correlations between winter 

lake and reservoir epilimnion, hypolimnion, and outlet 

stream dissolved CO2 concentrations (µM), to 

temperature (°C), day of year ‘DOY’, dissolved 

oxygen ‘DO’(mg L-1), lake network number ‘LNN”, 

basin snow water equivalent ‘SWE’ (mm), length of 

ice-covered period (days), days before ice-off ‘DBIO’ 

(days), elevation (m), discharge (m3 s-1), water 

residence time ‘WRT’ (days), maximum depth (m), 

water body surface area ‘SA’ (ha), watershed area 

(ha), dissolved organic carbon ‘DOC’ (µM),  

proportion of the watershed that is bare rock, 

proportion of watershed that is wet meadow, and 

water body volume (m3). Asterisks denote p-value 

significance levels:  * = p <0.05; ** = p < 0.01. 

 



 

  124 

Table 6: Lake and reservoir median dissolved CO2 concentrations (µM), lake and reservoir 

summer outlet export (mol s-1) computed from discharge*concentration, and p-values 

determined from Mann-Whitney U nonparametric mean comparisons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Lake 

Median 

Reservoir 

Median 

 p-value 

Summer surface 

concentration 

24 21 0.43 

Summer 

hypolimnion 

concentration 

43 49 0.81 

Summer outlet 

concentration 

23 31 0.08 

Winter surface 

concentration 

79 84 0.63 

Summer outlet 

export 

4 30 0.004 
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Table 7: Computed volumetric net ecosystem productivity (NEP), community respiration 

(CR), gross primary productivity (GPP) rates (µmol O2 L-1day-1), and the ratio of volumetric 

gross primary productivity to community respiration, by location, date, and depth (m). 

 

Site Date 

Depth 

(m) 

Volumetric 

NEP 

(µmol L-1day-

1) 

Volumetric 

CR 

(µmol L-1day-

1) 

Volumetric 

GPP 

(µmol L-1day-

1) GPP:R 

Rock Creek Jul. 26 0.1 -0.5 -21.2 20.7 1.0 

Rock Creek Jul. 26 2 1.2 -16.2 17.4 1.1 

Tioga Aug. 17 0.1 -1.1 -4.8 3.7 0.8 

Tioga Aug. 17 2 -6.2 -13.3 7.1 0.5 

Tioga Aug. 17 5 -0.1 -17.0 16.9 1.0 

Gaylor Aug. 18 0.1 0.2 -3.3 3.6 1.1 

Gaylor Aug. 18 2 -8.8 -14.5 5.6 0.4 

Gaylor Aug. 18 5 -0.9 -8.2 7.2 0.9 

Saddlebag Aug. 19 0.1 3.7 -1.0 4.7 4.7 

Saddlebag Aug. 19 2 1.3 -3.3 4.6 1.4 

Tioga Aug. 24 0.1 -0.6 -0.8 0.2 0.3 

Tioga Aug. 24 2 0.7 -2.0 2.7 1.4 

Tioga Aug. 24 5 10.9 -3.8 14.7 3.9 

Rock Creek Sept. 18 0.1 1.4 -0.8 2.2 2.8 

Rock Creek Sept. 18 2 -9.2 -12.6 3.6 0.3 

Rock Creek Sept. 18 5 1.8 -1.3 3.1 2.4 

Rock Creek Sept. 18 9 -0.9 -18.0 17.1 1.0 
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Table 8: Computed areal net ecosystem productivity (NEP), community respiration (CR), 

gross primary productivity (GPP) rates (mmol O2 m-2 day-1), and the ratio of gross primary 

productivity to community respiration during the ice-free season of 2017, by site and date, 

determined from volumetric metabolic rates and water body bathymetry.  

 

 

 

 

 

 

 

 

 

 

 

 

Site Date 

Areal NEP 

(mmol m-2 day-1) 

Areal CR 

(mmol m-2 day-1) 

Areal GPP 

(mmol m-2 day-1) GPP:CR 

Rock Creek Jul. 26 1.2 -73.7 74.9 1.0 

Tioga Aug. 17 -14.2 -83.7 69.5 0.8 

Gaylor Aug. 18 -11.8 -32.6 20.8 0.6 

Saddlebag Aug. 19 8.9 -8.3 17.2 2.1 

Tioga Aug. 24 33.9 -16.3 50.2 3.1 

Rock Creek Sept. 18 -13.1 -96.4 80.3 0.8 
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Figure 1: Study site locations within the Sierra Nevada, California. Background topography 

was obtained from USGS digital elevation models, park boundaries from the US Forest 

Service, roads from Tiger Roads, and water bodies from the National Hydrography Dataset.
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Figure 2: Relationship of lake and reservoir surface CO2 concentrations (µM) and days since 

ice-off in 2017 as determined by Landsat 7 & 8 imagery, at all sites, where ‘0’ marks the date 

of ice-off, and points before ‘0’ are under ice.  

 

 

 

 

 

 

 

 

 

 

 

 



 

  129 

Figure 3: Relationship of lake and reservoir CO2 fluxes (mmol CO2 m-2 h -1) and days since 

ice-off. Days since ice-off were determined from Landsat 7 & 8 imagery, where ‘0’ marks 

the date of ice-off. Lake and reservoir (filled circles and filled triangles, respectively) CO2 

flux (mmol CO2 m-2 hr-1) was measured from floating chamber deployments, summer 2017. 

Positive values indicate flux emissions from the lake or reservoir, negative values indicate 

uptake into the lake or reservoir. 
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Figure 4: Linear mixed model predicted concentrations of log-transformed CO2 and observed 

log-transformed CO2 concentrations, for surface samples across all seasons in 2017, where 

log(µM) ~ Days since ice off + Length of winter ice cover + Depth*Season + 1|Sample Date 

(R2 conditional = 0.92, R2 marginal = 0.66, AIC = 99.1). Solid line indicates location of 1:1 

relationship.  

 

 




