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ABSTRACT

This paper analyzes the quantitative and situational structure of algebra story problems,
uses these materials to propose an interpretive framework for writlen problem solving pro
tocols, and then presents an exploratory study of the episodic structure of algebra story
problemn solving in a sizable group of mathematically competent subjects. Analyses of writ
ten protocols compare Lhe strategic, tactical, and conceptual content of solution attempts,
looking within these attempts at the interplay between problemn comprehension and solu
tion. Comprehension and solution of algebra story problems are complimentary activities,
giving rise to a succession of problem solving episodes. While direct algebraic problem solv
ing is sometimes effective, results suggest that the algebraic formalism may be of little help
in comprehending the quantitative constraints posed in a problem text. Instead, competent
problem solvers ofien reason within the situational context presented by a story problem,
using various forms of “model based reasoning” to idenlify, pursue, and verify quantitalive
constraints required for solution. The paper concludes by discussing the lmmplications ol
these findings for acquiring mathematical concepts (e.g., related linear functions) and for

supporting their acquisition through instruction.




Confronted with an algebra story problem, a student faces a fundamental sort of “ill
structured problem™ (Newell, 1969; Simon, 1973). The problem text gives information
about initial and goal states, but state transition operators taking the text into a quanti-
tative solution are hardly well defined. Even assuming the student has an adequate grasp
of mathematical principles and operators within the formalisms of arithmetic and algebra
(e.g., the distributive property of multiplication over addition or using algebraic substi-
tution), a solution to the presented problem is often obvious only in retrospect. Rather
than searching for a solution path in a well-defined space of representational states, the
problem solver is more likely to be searching among a space of alternative representations
in an attempt to make the problem routine or familiar. Omitted or incorrectly introduced
constraints within the problem representation can lead to prolonged and often meaningless
calculations, and may encourage otherwise sophisticated problem solvers to give up entirely.
Information- processing models of ill-structured problem solving remain elusive.

This state of affairs might be puzzling but acceptable if algebra story problems were
transient disturbances in the secondary school curriculum. However, these problems recur
as a general task throughout the mathematics curriculum and are even found in the quan-
titative sections of entrance examinations for professional schools. If prevalence alone is
an insufficient basis for study, the unique role of these problems in bringing mathematical
formalisms into contact with everyday experience recommends them highly. Viewed from
within the classroom, story or “applied” problems provide students with an opportunity
to validate acquired mathematical abstractions in more familiar domains (e.g., traveling or
shopping). Viewed in a wider context, these problems may provide a curricular microcosm
of a central pedagogical problem: transfer of training from the algebra classroom 1o stu-
dents’ later educational or life experiences. Interpretations derived from either vantage are
controversial. For example, we have anecdotal evidence that these problems are avoided

by some teachers as being too difficult for both students and teachers. On the other hand,

studies of mathematics in practice suggest that “real world” curricular materials may have
little correspondence with mathematical problems or their solution in “real life” (Lave,
1986, 1988). For psychologists and educationalists alike, the problem is to determine how
applied problems are solved by competent problem solvers and how acquisition of that
competence might be supported,

[Insert ‘Table | about here ]

Algebra story problems of Lhe sort shown in Table 1 have been studied extensively by
cognitive and educational psychologists, both as a representative task for mathematical
problem solving (e.g., Hinsley, Hayes, & Simon, 1977; Kilpatrick, 1967, Mayer, Larkin, &
Kadane, 1984; and Paige & Simon, 1968) and as experimental materials for studies of trans
fer (e.g., Dellarosa, 1985; Reed, 1987; Reed, Dempster, & Ettinger, 19K5; and Silver, 1979,
1981). Many studies treat problem solving as an opaque process with an inspectable output
(i.e., correct or incorrect) and duration. Manipulations in problem content or presentation
are introduced, performance data are collected, and inferences are drawn concerning hypo
thetical problem -solving mechanisms. In contrast, much as in Kilpatrick's early work (1967)
and subsequent studies of mathematical problem solving by Lucas (1979) and Schoenfeld
(1985), we have chosen instead Lo present subjects with representative problems and then
to observe and analyze their uninterrupted responses in sume detail. Tlus approach trades
experimental control over the problem solving setting for a richer (albeit interpretive) view
of problem-solving activities. In addition 1o finding whether or not a subject has gotten a
problem “right,” we are at least partially abie Lo explore the solution strategies that sub
jects select and their tactical course in achieving solutions, right or wrong, We find this a
useful approach to characterizing what competent problem solvers actually do when solving
these problems (i.e., a succession of strategic and tactical efforts). ‘This characterization
is a necessary first step towards finding methods for supporting acquisition of competent

problem solving behaviors.




When describing models of algebra story problem solving, we will distinguish between
the generative and predictive capacity' of niodels (computational or otherwise) as successive
approximations to a robust instructional theory. A model with generative capacity uses an
expressive language for describing problems and their solutions to produce descriptions of
problem solving activily that obey certain constraints. For example, given a language that
is adequate for expressing arbitrary algebraic expressions, we might like to generate only
those expressions that reflect mathematical relations stated directly in a story problem text.
For various instructional purposes, this is an improvement over generating all syntactically
permissible algebraic expressions, but it falls well short of addressing typical instructional
problems e.g., why or how has a student generated some particular algebraic expres-
sions? 'This sort of predictive capacity will require considerable extensions to the expressive
language (e.g., a notation for intermediate representational states) and to constraints that
restrict the process for generating algebraic expressions (e.g., a vocabulary of justifications
for a subject’s choices among alternative problem solving activities). Given a sufficiently
expressive language and an appropriate set of constraints, a model may generate descrip-
tions that correspond closely with students’ activities. When this correspondence is of high
fidelity  i.e., the model answers questions of why or how in a psychologically plausible
fashion it can be used to support a variety of important instructional tasks. For example,
a prediclive model of algebra story problem solving might be used to diagnose students’
errors, to plan tutorial activities, or even to provide basic instructional materials.

Work reported in this paper approaches a predictive model by presenting descriptive
languages for problem- solving activities, examining constraints that arise from interactions
between these languages, and then exploring problemn-solving behaviors observed in a siz-

able group of competent problem solvers. In the first section of the paper we examine some

! We are not arguing for explanatory adequacy in the sense usually reserved for linguistic theoriea (Chom-
sky, 1965). The models discussed in this paper approach descriptive adequacy but do not yet propose

slionger constraints on ac ing probl: solving competence.

basic materials out of which algebrivstory problems and their solutions can be constructed

Our working hypothesis is that in order 1o generate a solution enabling representation of o

problemn, reasoners must assemble quantitative constraints under the guidance of their an

derstanding of the situational contert presented by the story problem This context serves

not only as a vehicle for the quantitative problens, but also as « framework for Justifying the

existence of quantitative constraints and their interrelationships. Ad cordingly, we examine

the quantitative and situational structure of typical algebra story problems, and then use

representative problems in the exploratory study.

In later sections of the paper we analyze the written protocols of 85 upper division
compulter science undergraduates who were instructed to show their work when solving fous,
representative algebra story problems. An interpretive framewark i developed in which

a written solution attempt is divided into a series of coherent problem solving spisodes

Each of these episodes is coded along a set of categories reflec ting strategic and tactical

role, conceptual content, manipulative or conceptual errors, and refationship 1o surrounding”

episodes. Exploratory analyses of the scored protocols provide evidence for the frequendy

with which various problem solving behaviors occur within subjects’ solution attemnpts, the

content and outcome of the “final episodes” during which subjects cont lude their efforts,
and the role that “model based reasoning” plays in solution attempts One of our contral
findings is that competent problem solvers frequently engage in problemn solving activities
“outside” of the traditional algebraic formalism. These aclivities, based on an analysis
of protocol results, often take the form of constructive and elaborative problem solving
inferences within the situational context presented by an algebra story problem.  These
findings are interpreted as evidence for a model of quantitative problem solving in which
mathematical formalisins (e.g., algebraic expressions) provide a sometimes useful ool for

comprehending quantitative constraints. In the discussion section, we relate this model to

existing accounts of mathematical problem solving, and then consider the implications of
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these findings for acquiring mathemaltical concepts (e.g., related linear functions) and for

supporting their acquisition through instruction.

PROBLEM STRUCTURE

Before presenting our exploratory study, we examine the domain of algebra story prob-
lems at two levels of abstraction: the quantitative structure of related mathematical eatities
and the situational structure of related physical entities within a problem. The central ac-
Livity in our model of problem solving is to find conv;rgenl constraints through constructive
elaboration of a problein representation. Structural abstractions examined in this section
give two basic materials for such a constructive process. Ultimately, these and other levels
of analysis may provide a relatively complete domain “ontology” (Greeno, 1983) for algebra
story prablems and other situations that give rise to mathematical problem solving. For

the purposes of this paper, we want o identify materials that can provide a descriptive

vocabulary for behavioral observations presented in later sections and can assist our intu-
itions in framing a model of problem solving, learning, and teaching within this domain.
These materials can play several roles: as a description of the task of solving algebra story
problems, as a hypothetical account of the representations held by subjects during the so-
lution process, and as an illustrative medium for teaching. This section focuses on task and
representational issues; the utility of quantitative and sitnational structures in education is

examined in the discussion section.

Quantitative structure

By the quantitative structure of algebra story problems, we mean the mathematical enti-
ties and relationships juesented or implied in the problem text. A particular problemn has a
“structure” at this level of analysis to the extent that the relationships between mathemat-
ical entities take a distinguishable form when compared with other algebra story problems.

Of course, there might be mauy ways of characterizing the quantitative structure of an

arbitrary problem or group of ostensibly related problems  e.g., as algebraic equations o
as matrices of coeflicients, Bobrow (1968) uses algebraic equations as a canonical internal
representation of meaning for story problem texts, while Reed et al. (1985) use equations
to define the a priori similarity of problems and their solution procedures. The language ot
algebraic equations may be suflicient for analyzing the task of algebiaic manipulation, but
it is less useful when the analysis is to include what students actually waderstand and use
while learning 1o solve algebra story problems.

A network language of quantitative entities. We start with a conceptuai frame
work originally proposed by Quintero (1981; Quintero & Schwaiv 1 1) and later extended
by Shalin & Bee (1985) and Greeno (1985, 1987; Greeno, Brown, Fuss, Shalin, Bee, Lewis,
& Vitolo, 1986). The framework serves all three roles mentioned above: as an analysis of
task structure, as a hypothetical account of subjects’ representations of algebra problems,
and as an instructional medium. Qur interest in this work is twolold. First, we will use the
framework as a means for describing constraints essential for problem solution, although
several additions to the framework would be necessary [of it 10 setve as a representational
hypothesis. Second, we will employ some aspects of the framework to describe how an
arbitrary pair of problems might be considered similar for problem solving purposes.

Shalin & Bee (1985) describe the mathematical structure of an algebra story problem
as a network consisting of quantitative elements, relations over thase clements, and vom
positions of these relations. Quantitative clements are divided into four basic types: an
extensive element denotes a primary quantity {(e.g., some number of unles or hours), an
intensive element denotes a map between two extensives (e.g., a motion rate relates tine
and distance); a difference clement poses an additive contrast of two extensives (e g one
time interval is 2 hours fonger than another); and a factor element gives & multiphica
tive cotnparison of lwo extensives (e.g.. one distance is twice anothe Compositig these

elements according to their type yields quantitative relations A quantitative relation




defined as an arithmetic operation (i.e.. addition, subtraction, multiplication, or division)
relating three quantities. For example, the fact that a train traveling 100 ki /h for 5.5 hours
covers a distance of 550 kin can be expressed as a relational triad over two extensives (550
kilometers and 5.5 hours) and a single intensive (100 km/h) as shown in Figure 1. Fach
clement is presented graphically as a box containing several expressions. ‘T'he shape at the
top of the box designates element type - - e.g., a rectangular top designales an extensive,
a triangular top an intensive,
[Insert Figure 1 abou't here.]

As an additional level of structure, relational triads can be composed by sharing various
quaulities to yield “problem structures.” These are quantitative networks describing typed
quantities and constraints among them. As shown with solid lines? in Figure 2(a), a single
quantitative network can be used to graphically represent the problem of trains traveling
in opposite directions (problem MOD from Table 1). Sharing a common time, two rates
combine through multiplicative triads to yield parts of the total distance. These parts are
combined in an additive triad to give a single extensive quantity representing the total
distance. Figure 2(b) shows a quantitative network corresponding to the round trip (MRT)
problem. In both networks, the term “output” serves as a generalization over distance and
work.

Taken together, quantities, relations and structures provide a language for describing
the quantitative form of particular algebra story problems. While a variety of equiva-
lent graphical languages might be used (e.g., parse trees for arithmetic expressions), this
language gives explicit representational status Lo mathematical entities, associates a quanti-
tative type with each, and incorporates a metaphorical sense of storage for holding semantic
information (e.g., textual phrases) and intermediate calculations. Constraints on the arith-

melic composition of Lyped quantitative entities restrict the space of possible quantitative

2Portions of the network in dashed lines will be discussed shortly.

relations (Greeno et al., 1986). For example, the multiplicative composition of intensive and
extensive quantities (rate and time) in Figure | is allowed, while an additive composition
of the same quantities would he disallowed. Greeno (1987) points out that constraints are
also available from compositional restrictions on the units of measurement for quantities?,
although the network Janguage does not presently incorporate these constraints. Finally,
the interconnectivity of a quantitative network supports a form of written algebraic calou
lus. Expressions can be propagated through the network with the goal of finding convergent
constraints on the given unknown.
{Insert Figure 2 about here.]

Quantitative networks provide a visually accessible notation for comparing the structure
of different algebra story problems. [lowever, the notation and compositional constraints
do not specify which of the permissible quantilative structures a subject might generate
when solving an algebra story problem. For example, the quantitalive network shown
with solid lines in Figure 2(a) describes the opposite direction problem after several crucial
inferences have occurred: component distances have been inferred within the total of 880
kilometers, and a single extensive quantity for travel time has been correctly inserted in
the network. For the same problem, consider elaborating the quantitative network to
include network components shown with dashed lines in Figure 2(a). We might imagine
a subject inferring that the given rates can be added. The resulting combined rate (160
km/h), when multiplied by the unknown time, gives the total distance without adding
constituent distances. During empirical studies with this and similar problems, we lind
considerable variety in the solution approaches taken by different subjects as well as by
individual subjects within a single problem solving effort.

The networks shown in Figure 2 are idealized graphical representations of problem

3An instructional tool developed by Schwartz (1982) enforces unit constraints to help users avond ireel
evant calculations, particularly when using inteamive quanuties  Thompson (1988} combines quantitative
networks and unit constraints in another ool pamed *Word Problem Asastant ”
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structure as they might be constructed by problem solvers who understand the quantitalive
network langnage and are able to use the language to comprehend and solve algebra story
problems. These networks give a particular gnantitative representation, but their content
is largely the result of inferential processes that draw on other knowledge sources. These
processes may. include: recognizing quantitative entities directly contained in or implied
by the problem text, composing these entities into local relational structures, composing
relational substructures into larger problem structures, recognizing familiar substructural
arrangements, and detecting when constraints are sufficient for solution. The results of each
action lie within the quantitative formalism for which Shalin & Bee’s (1985) framework
provides a functional description. However, the enablement conditions for these actions or
the knowledge sources that support them lie partly outside the formalism. These issues are
explored further when we consider the situational structure of problems.

Quantitative networks as problem classes. Quantitative networks provide an
analytic tool for examining aspects of quantitative similarity. At the level of entire problems,
this approach gives a stronger basis for mathematical similarity than simply noting common
equations. At a more fine grained level, there may be significant areas of substructural
isomorphism in globally dissimilar problems.

The problems from Table | can be grouped into structurally similar pairs as follows:
MOD/WT and MRT/WC. Each problem in a pair is a “quantitative isomorph™ of the
other, as shown graphically in Figure 2. In the MOD/WT pair, extensives for kilometers
traveled correspond with those for parts of a job completed (outputl and output2). In the
MRT/WC pair, a round trip travel extensive corresponds with an extensive for boxes filled
and then checked (output). Comparing problems within each pair, extensive and intensive
quantities play identical roles in the surrounding network structure. However, when com-
paring problems across pairs, structural roles of similar quantitative entities change or are

even reversed. For example, the additive extensive relation for combined distance (or work

output} in Figure 2(a) is locally similar (o the additive extensive relation for combined
time in Figure 2(b), but these relations play very different roles in their overall quantita

tive structures. In general, a specific quantitative network delines an equivalence class of
algebraic problems, each of which may have a different sitwational instantiation Of course,
being directly similar in forin does not mean that problems must e solved in the same way
Figure 2 presents the quantitative structure of problem materials required for a quantitative
solution. We could as well depict the quantitative structure of intermediate representational
states in subjects’ solulions, an exercise that sometimes leads to a surprising sequence of
graphical images as various conceptual errors are introdnced or repaired.

Turning to a finer grained level of comparison, we can identify classes of problems that
are similar Lo each other by sharing particular quantitative substructures. A substructure
is a subgraph within a larger quantitative network consisting of stated quantities, inferred
quantities, and relationships among these quantities. For example, “current” problems are
similar at a quantitatlive level because they contain an additive relationship between the
rate of the vehicle (steamer, canoe, etc.) and the rate of the medinm in which it travels
(current, tide, etc.). While other aspects of the quantitative siructure fur a pair of cur
rent problems can be dissimilar, such a shared substructure may contribute to subjects’
estimates of pioblem similarity. As in the results of Hinsley «f al (1979), similarity judg
ments at the level of “river” problems may appear an educational failure: problem solvers
acquire content- specific categorizations when the true pedagogical goal is to facilitate their
learning of mathematical forms. Another interpretation is that quantitative substructures
are learned through instruction and problem solving expericnce and thus form part of the
underlying competence in this domain. Since particular substructures are correlated with
problem types, the resulling categorizations appear overly content specific. However, there
may be a functional or pragmatic basis for learning these problen classes: despite dissim

ilarity of overall mathematical structure, shared quantitative substructures require similar




partial solution strategies.

Situational structure

The quantitative network formalism does not attempt to account for the problem struc-
tures that subjects actually generate during problem solving, although some constraints are
placed on combining quantitative types into relational triads. In this section, we examine
another level of ahstraction --- the situational structure of a story problem - as a source
of additional constraint when subjects construct a solution-enabling representation of an
algebra story problem. Our view of the situational structure of an algebra story problem
is not synonymous with what other researchers have called “surface content.” Although
surface materials like trains, buses, or letters are important problem constituents, and may
be particularly so for novice problem solvers, we will not focus on these materials.

Instead, we present a language for describing the situational structure of “compound”
algebra story problems involving related linear functions, and use the language in a detailed
examination of problems involving motion or work* (see Table 1). As with the quantitative
network formalism, our language for describing the situational structure of problems can
play several roles: as an analysis of problem structure, as a hypothetical cognitive represen-
tation, or as an educational medium. llere we develop a relational language for describing
problems, argue for its utility in generating key problem-solving inferences, and then use
the language to present a viewpoint on the space of possible algebra story problems that
is complementary to problem classes based on quantitative structure. In later sections
of the paper, we also use the language to help interpret various activities observed in an
exploratory study of algebra story problem solving and then to consider the educational
implications of these findings.

A relational language of situational contexts. We present the basic terms of our

*Motion and work are frequently used as the setting for story problems in algebra texts, compnising 20%
of an exlensive sampling by Mayer (1981).

relational language first, followed by au example of their use shown in Figure 3. Compound
motion and work problems are assembled around related events  e.g., traveling in opposite
direclions, working together, riding a bus and walking, or filling envelopes and checking
them. In each event, an agent engages in aclivity that produces some output (distance
or work) over a period of time. Hence, output and time are the basic dimensions thal
organize story activities. These aclivities start and stop with particular times, locations, or
work products that can be modeled as places along the appropriate dimension. Places that
bound an activity define particular segments of output or time, and these segnients can be
placed in relation to each other within a common dimension®. Rates of motion or work give
a systematic correspondence between dimensions of output and time, and using rales in
the solution of a quantitative problem requires a strategy for integrating these dimensions
Arranging output and time dimensions orthogonally gives a rectilinear framework in which
rate is a two-dimensional entity. We inodel these rate entities as inclines that associate
particular output and time segments. Relational descriptions involving typed dimensions,
places, segments, and inclines provide a language (or expressing the situational context
of an individual problem.
[fnsert Figure 3 about here.)

The situational context of problemm MOD (from Table 1) is shown in Figure 3. Parts
(a) and (b) of the figure show place and segment representations for output (distance) and
time, while part (¢) of the figure shows an orthogonal integration of these dimensions with
time on the vertical axis. In part (a) of the figure, trains traveling in oppuosite directions
from the same station provide two spatial segments (Distance 1 and Distance 2) sharing a
place of origin (S) but with unknown places for destinations. These segments are colhnear
and oriented in opposite direclions. Since trains leave from the same place of ongin, these

distance segments are also adjacent amd can be arranged within the horizontal dimension

S | within a d

£ are simlar 1o Allen’s (1983, 1984) relational descnptions ot
temporal intervals.



shown in part (¢} of the figure. In part (b) of the figure, trains leave at the same time (t0)
and are separaled by 880 kilometers at some later time, providing time segments (Time 1

and Time 2) that are congruent (i.e., cainciding at all points) when arranged within the

vertical di ion. We collinearity and the same directional orientation for all
lime segments. Representing rates of travel as two-dimensional inclines, part (c) of the
figure puts particular instances of output and time in correspondence (e-g., 60 versus 100
kilometers in the first hour of travel). Inclines can either represent a concrete situation, as
shown here, or an invariant relation between output and time dimensions. Treating rate
as an invariant relation approaches the algebraic sense of rate as a linear function. Each
interpretation enables different problem-solving activities, discussed below.
Problem-solving inferences based on situational contexts. Before using this re-
lational language to describe a space of situational contexts for algebra story problems, we
brielly consider its utility as a representation for problem solving. First, we describe how a
represenlation of situational context like that shown in Figure 3 could be constructed; sec-
ond, we consider how this relational description might be useful for problem comprehension
and solution. Both are ongoing research questions that touch on the role of our situational
language as a representational hypothesis and an instructional medium.
On the issue of how these representations might be constructed (either spontaneously
‘or as an educational exercise), we propose a series of constructive inferences that operate
on a case frame representation® of the events described in the text of a compound algebra
story problem. These inferences build a situational model of the problem by assembling a
relational description of a particular situational context. Assuming the case frames contaiu
roles that specify typed places and segments (e.g., the starting location versus the starting
time), we can model these ro.les as situational places and segments within output and
time dimensions. From these initial situational entities, a series of elaboralive inferences

——

*See Brachman (1979) for a review of related representation schemes and Kintach & Greeno (1985) for
an example of & case frame represcatation for the text of word arithmetic problems
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identify places and segments implicit in the problem statement and relations over segments
within each dimension. What results is a relational description of situational context as
in Figure 3. Constructive inferences that assemble a relational description of situational
context are similar to the comprehension strategies that Kintseh & Greeno (1985) use to
take propositional encodings of arithmetic word problems into a set based representation

On the issue of utility, we suspect that segment relations within situational dimen
sions support the construction of quantitative representations like the aetworks of Shalin
& Bee (1985). For example, knowing that spatial segments are collinear and adjacent while
times are congruent supports two useful problem -solving inferences in problem MO con
stituent distances can be added to yield a total distance, and the rates of each train can
be added to give a combined rate. The first inference is a necessary quantitative constrant
for solution, while the second inference effectively compresses the compound problem into
a simpler problem which can be solved without extended algebraic manipulation. These
are precisely the inferences about problem structure that were not accounted for in our
examination of quantitative structure. For example, the network components shown with
dashed lines in Figure 2(a) would result if a student decided to add motion or working
rales. Hence, in addition to constructive inferences that build a situational context, there
are also constraint-generating inferences that take descriptions of situational structure into
quantitative relations. Each inference about a quantitative constraint, supported by rel
evant situational relations, gives a substructural component in a larger set of constraints
that may enable a solution.

It is also possible to use dimensions, places, segments, and inclines directly in a solution
attempt by treating these representational entities as a model of the problem sitnation. We
will develop a general account of model based reasoning as a problem solving Lactic here
Following sections introduce operational categories for interpreting this tactic within the

structure of written protocols and give an empirical account of its nse and consequence 1n
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algebra story problem solving.

[Insert Figure 4 about here.)

Placed within a single dimension to model time or output, segments provide an explicit
spatial representation that enables a variety of problem-solving operations like “copying,”
“stacking,” “comparing,” or “decomposing” their one-dimensional extent. Similarly, us-
ing inclines as models of rate enables operations like “joining™ or “scaling™ their two
dimensional extent. Joining, shown in part (a) of Figure 4, places copies of the concrete
incline along the diagonal in an iterative fashion. Scaling, in part (b) of the figure, treats
the incline as an invariant relation by estimating the extent of a segment in one dimension
and then projecting that value through the incline to generate an associated extent in the
other dimension. Each operation is based on a different interpretation of rate as a relation
across dimensions, and each coordinates operations on associated segments within single
dimensions.

Both join and scale operations enable problem solving by model-based reasoning with-
out requiring algebraic representation. Figure 5 shows solution attempts using join and
scale operations on the opposite direction motion problem (MOD). Treating inclines as
concrete entities in part (a) of the figure, the join operator enables an iterative simulation
over five successive one hour increments in the time dimension. These correspond to in-
termediate states in a two-dimensional model of the problem, successively constructed and
tested against Lhe given constraint of being 880 kilometers apart after 2 common interval
of time. Treating inclines as invariant relations in part (b) of the figure, the scale operator
enables a heuristic estimate of the problem's final state by choosing five hours as the time at
which the trains will be 880 kilometers apart and projecting this choice of a common time
through each incline to find associated distance segments. In both solution attempts, spatial
relations within the two- dimensional model support and organize relatively simple quanti-

talive operations like addition, multiplication, and value comparison. Thus, even without

utilizing the metric qualities that such a model might afford (e.g., testing whether adjacent
distance segments precisely “fill” the composed 880 kilometer segment), model based rea
soning can lead to a solution without explicitly constructing an algebraic representation of
the problem.

[Insert Figure 5 about here.]

While entities and operations in model based reasoning can support solution attempts
directly, they also provide a vocabulary of problem solving activities that could be used
to construct an algebraic representation. For example, introducing a variable, £, as a label
on the unknown common time in part (b) of Figure 5, we can use the scale operator o
project that variable into expressions for labels on each distance segment in the horizontal
dimension. Since these segments are adjacent and must fill the given combined distance of
880 kilometers, addition of label expressions in the horizontal dimension gives an algebraic
expression for the combined distance, 100¢ + 60t = 880. Thus, model based reasoning
operations can also participate in constraint generating inferences described carlier.

In general, inferences in model based reasoning correspond 1o relatively opaque oper
ations in the algebraic formalism (e.g., distribution of a product). ‘Their spatial character
and granularity may provide an accessible problem solving medium for subjects who are
newcomers to the algebraic formalism. In addition, the results of these operations could jus
tify more abstract activities in an algebraic or quantitative network representation, allowing
problem solvers to verify quantitative constraints or results about which they are uncertain
Evidence for these hypothetical roles of model based reasoning, even in competent problem
solvers, is presented in the sections that follow.

Situational contexts as problem classes. Beyond Lheir role as a representational
hypothesis or an instructional mediwn, situational contexts provide a viewpoint on the
space of possible compound algebra story problems that is n)mp‘h-nmnlary to the problem

classes provided by quantitalive structure. Even if we restrict analysis to compound mo



tion problems in which movement must be collinear and directed, a variety of situational
contexts are possible. Taking two collinear distance segments we can select from a set
of spalial relationships (e.g., congruent or adjacent) and combine this selection with direc-
tional orientation (e.g., same or opposite) to yield a distinct spatial situation. Also selecting
a relation between time segments (e.g., congruent or adjacent), we can combine segment
refations for distance and time dimensions to yield a particular situational context for a
compound motion problem. For example, problem MOD has adjacent distance segments
oriented in opposite directions and has congruent time segments, yielding the situational
context used in Figure 5.

A similar approach is possible with compound work problems. Work outputs can also
be modeled as collinear segments, although their directional orientation is less directly
interpretable. In the present analysis, we exclude a sense of direction for work outputs.
Working “together” can be modeled as adjacent output segments and “competitive” work
as congruent output segments. For example, the work together ( WT) problem has adjacent
output segments that add to yield a single job and congruent time segments that, in concert
with additive output, allow addition of working rates. This corresponds directly with the
situalional context of problem MOD, without directional orientation of output segments.
The competitive work problem ( WC) can be modeled in a similar fashion. Since Randy
and Jo each work on the same set of boxes, we choose congruent segments to model the
same output. Adjacent time segments are associated with the completion of each output,
leading to a direct situational correspondence with the round trip problem (MRT).

[insert Figure 6 about here.]

Figure 6 shows a matrix of situational contexts formed by crossing segment relations
from output and time dimensions. Compound motion and work prablems in each cell have a
common situational structure (e.g., problems MOD and WTin the upper right cell), and off-

diagonal cells contain pairs of problems that reverse segment relations for Lime and output.

For example, reversing adjacent distances and congruent times in problem MOD produces
problem MRT, provided Lhat opposite directions are retained in hoth problems. Problem
structures in diagonal cells of the figure (shaded) are not used in this study but also provide
the basis for particular algebra story problems. For example. the lawer right cell of Figure 6
contains what Mayer (1981) calls “speed change” problems. ‘This coustructive approach o
situational contexts can be extended to larger relational vocabularies for output and time
(e.g., including overlap, disjomnt, elc.), yielding a sizable space of sitnational contexts that
provide the dimensional basis for algebra “stories” about motion and work.

These examples show that our language of dimensions, places, segments, and inclines
can be used to model compound motion and work problems. We have also examined the
coverage of this language over different classes of algebra story problems, like those in
cluded in Mayer's exhaustive taxonomy (1981). Useful models of situalional context can be
constructed for most of these classes, including current, mixture, simple interest, cost, and
coin problems. Some extensions of the language appear necessary to model relational con
straints involving additive and multiplicative comparisons (e.g., “12 more than” or “twice
as fast as”). In general, however, models of situational context are possible for any problem
in which related linear functions can sensibly be shown within two dimensions. Although
arbitrarily complex quantitative relations can be graphed in a Cartesian plane, the pro
vision that their dimensions be “sensible” restricts our modeling language to situations
where one-dimensional relations like adjacent and two dimensional operators like “joining”
or “scaling” have meaning. Thus, dimensional models of situational context may be ap
plicable beyond textbook algebra story problems and include everyday situations involving
related linear functions.

Comparison of situational and quantitative structure. lsomorphism within cells
and reversed structure across cells of the matrix in Figure 6 partition the space of compound

algebra story problems in a way that is complementary o the problem classes described
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in the preceding section on quantitative structure. In fact, the problems paired in each
cell also have an isomorphic quantitative structure, and problems from off-diagonal cells
reverse quantiilative relations. For example, an additive triad over distance extensives in
problemm MOD contrasts with a shared extensive for distance in problem MRT. in our
view, this complementarity arises precisely because the quantitative substructures serve
a8 a mathematical abstraction for describing situational contexts. In turn, our relational
language of situational contexts provides an abstraction for describing (or modeling) events
within particular problems. Thus, choosing segment relations for output and time gives
rise to an organized space of situational contexts for compound motion and work problems,
each with a corresponding quantitative structure.

While quantitative and situational viewpoints on algebra story problems are comple-
mentary, they are not identical. The guantitative network formalism models conceptual
entities of time, output, and rate as abstractions that preserve quantitative type (e.g., ex-
tensives versus intensives) and value, either as a number or an algebraic expression. In
contrast, situational segments and inclines model these same entities as individuals that
preserve semantic type (e.g., time versus output), dimensional order (i.e., segments versus
inclines), quantitative value, a physical sense of extent (i.e., the length of a segment or the
slope of an incline), and local “spatial” relations between individual instances of extent
(e.g., the 60 and 100 kilometer segments after the first hour of travel are adjacent). Pre-
serving physical extent and relations of locality allows a problem solver to utilize spatial
knowledge when identifying or verifying quantitative constraints. For example, when a total
distance can be decomposed into component distances which exactly fit within the total,
there is a direct physical justification for their addition. “Joining™ or “scaling” inclines us-
ing a two -dimensional model of rate promises a similar physical justification for operations
on intensive quantities. Whether students actually use such a vocabulary for justification

is an interesting issue, not directly addressed in the present study, that we are exploring
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further (Hall, 1987). We suspect that shared situational structare, in addition to quanti
Lative structure, contributes to subjects’ judgments of similarity between an arbitrary pais
of algebra story problems.

Quantitative and situational structure are not the ouly materials in the domain of
algebra story problems that are important for problem solving, learning, aud teaching
Neither can we tacitly assume that these structures, as described above, are actually held
by subjects during problem solving. However, these structural abstractions may help
understand what subjects actually do when confronted with a problem 1o be solved, and to
hypothesize what must be learned for competent problem solving to be achieved. Knowl
edge sources that guide the generalion of quantitative representations, and the manner in
which they are manifested during problem solving, comprise an important part of compe
tent performance. By grounding quantitative structure in conceptual understanding, these
knowledge sources may allow a problem solver to effectively assemble and validate repre
sentational structures and operators in the algebraic formalism. llaving described some
aspects of the underlying situational and quaatitative structure of algebra story problems,

we now turn to an exploratory study of problem solving.

METHOD

The primary goal of this study is to characterize the activities of “competent” problem
solvers on representative algebra story problems. When compared with the activities of
beginning algebra subjects, the contrast should give a rough image of the terrain over
which a learner must travel to become a skilled problem solver. We chose to study subjects
who have clearly mastered the algebra curriculum up to existing institutional standards,
but who were not recent recipients of algebra based instruction. Thus we are altempting
to describe a primary target of traditional instruction in algebra: a problem solver who has
mastered the tools of the aigebraic formalism, has practiced these skilis during instruction,

and should be able to apply these skills in novel settings. The study involves niinimal
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experimental intervention, and our interpretation and analysis of problem-solving protocols

are primarily descriptive.

Subjects

Subjects in this study wére 85 undergraduate computer science majors in their junior and
senior years. They were enrolled in an introductory course in artificial intelligence, and par-
ticipated in the study as part of their classroom activities. These subjects could be viewed
as “experts” in algebra story problem solving since they must have successfully completed
courses in algebra during secondary schooling. In addition, prerequisites to the artificial
intelligence course include three university-level courses in calculus and completion or cur-
rent enrollment in courses covering discrete mathematics. Thus the level of mathematical
sophistication in this sample of problem solvers should be high. Alternately, one might
argue that these subjects were expert algebra story problem solvers at one time but that
their skille have in some sense been “retired” with the passage of time. As will be clear

shortly, the solutions offered by many members of this sample do not fit an image of smooth

execution of a practiced “skill.”

Materials

Subjects were asked to solve the four algebra story problems shown in Table 1. Problems
MOD, MRT and WT were taken directly from Mayer's (1981) sample of algebra story
problems, with minor alterations in their number set and phrasing. These alterations were
intended Lo free students from unwieldy calculations during problem solving and to make
wording between selected pairs of problems more similar. Problem WC was constructed to
be isomorphic to the MRT problem at the level of quantitative structure.

These problems were selected for two reasons. First, with the possible exception of WC(,
they are highly typical of problems found in secondary school texts. Out of an exhaustive set

of 1097 algebra story problems drawn from 10 texts, Mayer found that problems like MOD,
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MRT, and WT accounted for 7.8% of all observed problems. Second, different pairings
of these probiems allow us to present subjects with opportunities for positive or negative
transfer across contiguously presented problems.

Specifically, problem pairings MOD/WT and MRT/W (' acs isomorphic in their quanti
tative structure (see Figure 2 for a graphical representation of these pairs) and have similar
situational contexts. In the MOD/WT pair, vutput dimensions are adjacent, being collmear
and sharing a starting point, while time dimensions are congruent, overlappiug completely
by sharing both starting and ending times. In the MRT/W(" pair, outputs are congruent
while time segments are adjacent and of different value (see Figure 3). Should subjects
recognize Lhis similarity, they may exhibit soime form of positive transfer. Alternately,
problem pairingg MOD/MRT and WT/WC( are similar at a more superficial level, sharing
types of surface materials (e.g., distance traveled or parts of a job completed) while having
quite dissimilar quantitative and situational structures. In fact, relations over output and
time dimensions are exactly reversed, as described in the preceding seclion on quantitative
structure. In the MOD/MRT pair for example, outputs in MOD) are adjacent and times are
congruent, while outputs in MRT are congruent and limes are adjacent. When presented
contiguously, these problem pairs may induce fairly specific forms of negative transfer {e.g

adding rates in the MRT problem after correctly solving the MOD problem).

Procedure

Problem materials were distributed so that subjects with adjacent seating during data
collection would be in different groups. Group membership was not randomly determined
but should reflect no systematic bias. Subjecls were allowed eight minutes to solve each
problem, and all subjects worked through the problems at the same time. ‘Those finishing
early on an individual problem waited until the eight minute time limit expired before
proceeding Lo the next problem. Before solving any problems. subjects were asked to “show

all of your work™ in a written form, to “work from top to hottom, wriling new material
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below previous material,” and not to erase after making a mistake. Instead, they were
asked to mark through any mistake with a single line. Finally, subjects were instructed to
“...draw a box around your answer.” After solving all four problems, subjects were given
20 minutes to explain their solutions in writing on facing pages of the text booklet without
changing their original work.

Problem ordering. The first group of subjects (group M, n = 46) saw problems
in the following order: MOD, WT, WC, MRT. The second group (W, n = 39) saw the
following order: WT, MOD, MRT, WC. Thus, each group solved pairs of problems that were
isomorphic at quantitative and situational levels (MOD/WT or WC/MRT) and also solved
pairs of problems that were superficially similar but had reversed relations in quantitative
and situational structure (WT/WC or MOD/MRT).

Data collection. The “behaviors” reported here, and all interpretations of them, are
based entirely on subjects’ written protocols. Relying solely on written protocols has several

obvious disadvantages.

o There is no timing information. While students were allowed eight minutes to solve
each problem, we can neither determine how long a subject works on any single prob-
lem, nor how long any particular written episode lasts — e.g., performing algebraic

manipulation.

e Written material may be a lean or even distorting window on @ subject’s cognitive
processing. A subject may omit materials that seem unimportant or potentially em-
barrassing; alternately the subject may give written evidence of processes or stralegies

that bear little relation to what she actually does.

Since this study is exploratory in nature, we present our results as a heuristic tool for
generating hypotheses, and leave more manipulative procedures for confirmatory studies.
Scoring. Written protocols were scored in commitiee by the authors, using majority

rule for categorization of troublesome cases. A scoring system was constructed around the
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analysis of problem structure described earlier, using an iterative process with subsets from
the total pool of protocols. Scoring categories were added, refined, or dropped from the

final system when scorers had persistent difticulty reaching consensus,

THE EPISODIC STRUCTURE OF WRITTEN PROTOCOLS

This section describes a qualitative framework for interpreting written problem solving,
protocols, showing representative protocols as examples of scored categories within the
framework. We point out connections between several of these categories and hypothetical
representations. and inferences described earlier, although these connections are open to
many interpretations. Our framework resembles Schoenfeld’s (1985) analysis of mathemat
ical problem solving by concentrating on coherent episodes of problem solving behavior
(see Ericsson & Simon (1984) for a review of aggregation techniques). We also explicitly
score the transition belween problem solving episodes.

A subject’s written protocol for a given problem is interpreted in two stages. First the
protocol is divided into a sequence of coherent problem solving episodes, and then each
episode ia scored individually with respect to its content, its correctness and its function
in the overall sequence. In nearly all cases, the following definition of a problens solving

episode allowed scorers to reach consensus:

o Strategic coherence. The subject is pursuing the same overall goal.
o Tactical coherence. The subject is using the same method for attaining tlis goal.

o Conceptual coherence. The subject is exhibiting the same conceptualization of the

problem.

Although episodes divide problem solving into coherent chunks, the context created by
earlier episodes is assumed to be inherited by later ones, unless there is evidence that a

reconceptualization has occurred. Qur definition of an episode will be sharpened in the
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following paragraphs as we specify in detail the scoring calegories used to describe episodic
content.

After dividing the written protocol into coherent problem-solving episodes, each episode
is examined to determine its general content. Content categories include: strategic purpose,
tactical content, conceptual content, the presence of conceptual or manipulative errors, and
finally the status of the episode in the overall solution attempt. The latter covers relative
correctness and the reason for transition to a new episode. With the exception of conceptual
content, each of these categories is further differentiated into alternative subcategories, as
shown in Table 2. In some cases only one subcategory ie selected as best describing the
more general category (e.g., simulation as a type of model-based reasoning under tactical
content); in other cases, each subcategory can occur within a single episode (e.g., various
kinds of conceptual and manipulative errors).

[Insert Table 2 about here.}

The remainder of this section takes up each of these interpretive categories in detail,
showing representative written protocols as examples of their use in scoring the episodic
structure of subjects’ solution attempts. For example, subject m20 in Figure 7 goes through
three error-free episodes, each with a specific purpose, tactic, content, and transition. In
the protocols shown in figures as illustrations of various categories, episodes are separated
by dashed lines, and their sequence is shown with circled numbers. Several protocol excerpts

are presented directly in the text without accompanying figures.

[Insest Figure 7 about here.]

Strategic purpose

The strategic purpose of an episode is its relation to the ultimate goal of finding a solution.

Judgments of a problem solver’s “purpose” are clearly a matter of our own interprétation,

although we present scoring criteria that make these judgments operational across individ-

ual ratings. In this regard, our scoring distinguishes between three abstract problem solving
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modes.

Compreheusion. The subject is not directly seeking a final solution, but is construct
ing a representation of the problem by incorporating various constraints. In episode 1 of
Figure 7, the subject finds a way to express working rates by vonsidering their outputs after
one hour.

Solution attempt. The subject is attempting a series of operations that work directly
toward a solution (Figure 7, episode 2).

Verification. The subject has already produced a solution to the problem and is now
seeking confirmatory evidence for it, for instance by rederiving the solution with another

method or by inserting the answer in some intermediate equations (Figure 7, episode 3)
Tactical content

The tactical content of an episode is the method used by a subject to achieve some strategic
purpose. Our operational criteria refer primarily to the protocol material for the current
episode, but in a few cases information contained directly in the protocul was insufficient to
make an operational category judgment. In these cases, surrounding episodes and post hoc

written explanations supplied by the subject were used to assist scoring.

[Insert Figure 8 about here.|
Annotation. These episodes usually occur early in the protocol when subjects are

collecting information about the problem. Three cases are covered.

o Problem elements. The subject is recording elements of the problem text (e.g., V4 =

60km/hr, Figure 8, episode 2).

o Retrieval of formulas. The subject is remembering and writing down memorized

formulas which seem relevant, (e.g., v = ‘;’, Figure 8, episode 4).

o Diagram. The subject draws a pictorial representation of the problem situation (e g,

Figure 8, episode 1).
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Algebra. An episode is algebraic if it makes use of one or more equations placing
constraints on the value of one or more variables. However, ;simple assignments are not
ticated as equations. Thus neither 100 + 60 = 160 nor d = 880 are considered equations,
while d = 100 x t is considered an equation. As shown unusually clearly in the protocol of
Figure 9, the tactical approach of the typical algebraist is to express constraints as a system
of one or more equations (or proportions) and to solve for the appropriate unknown. We
have also found cases of subjects trying equations in a generate-and-test fashion until, as
one subject explained, an equation “looks good.”

[Insert Figure 9 about here.]

Model-based reasoning. This category is scored when a subject “executes” a model
of the problem situation along the dimension defined by an unknown quantity such as time,
distance or work. Subcategories of model-based reasoning relate to constructive problem-

solving inferences described in the preceding section on situational structure.

o Simulation”. The subject selects a base unit for the chosen dimension and “runs”
the model for each successive unit increment as illustrated in episode 3 of Figure 8.
Consistent with our earlier development of situational structure, a simulation episode
could be interpreted as an iterative “joining” of concrete individual inclines. Simula-
tion can also be partial (just one or two increments) in that it is not used to reach a
solution, but to examine relations between quantities and to enable some other solu-
tion method. In both episode 1 of Figure 7 and episode 5 of Figure 13, a simulation

for one hour establishes the quantitative combination of entities from distinct events.

o Heuristic. The base quantity “jumps” by variable increments whose magnitude is

determined at each point by estimations of closeness to the solution. A heuristic

"Our use of “simulation” is somewhat different from its usc in computational studies of common sense
reasoning. For example, de Kleer’s (1977, 1979) “envisionment” uses quantitative calculation to resolve qual-

itative ambiguity, while our sense of simulation uses physical construction to help disainbiguate quantitative
constraints,
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model based reasoning episode conld be interpreted as “scaling” inclines that repre
sent invariant relations, as described earlier. The progression of this generate and
test approach can be monotonic, as in episode 2 of Figure 10, or {ollow some form
of interpolation search. After each generation of a value, the state of the problem

situation being modeled is reconstructed and evaluated.

(Insert Figure 10 about here.]

Ratio. This subcategory covers a number of tactics by which relations of proportion
ality between quantities are used, sometimes providing clever “shortcuts™ to a solution
These tactics clearly utilize a representation of quantity (e.g., intensive quantities, as de
scribed earlier), but the manner in which related quantities are integrated way depend
upon constructive inferences within the situational context (€.g., COMposing segments or

inclines).

[Insert Figure 11 about here.]

o Whole/part. The subject views a part as fitting some number of times into a whole

quantity, as in episode 6 of Figure 13.

o Part/whole and part/part. These two Lypes of ratios compare portions of entities. Use
of the part/whole ratio is illustrated in episodes 2 4 of Figure 11, where the subject
considers parts of the total job®. A version of the part/part ratio appears in episode

2 of Figure 12, involving the respective rates of bus and foot travel.

e Proportion. Non-algebraic proportions cover reasoning of the type exhibited by sub
ject m0S on the work together (WT) problem: “... they've done 197» {of a job] in 2

hrs, so % hr more would do for [the job] left to be done ..."

*Although this protocol illustrates the category cleatly, 1t 1a probable that successful use uf this ratia
was somewhat fortuitous on the part of this student, since a geacsal Justification (or ita valubty i» rather
complex.
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e Scaling. The subject solves a related version of the problem or reaches an unexpected
answer, and simply scales the answer to fit the quantities given in the problem. This
may relate to our earlier description of “scaling” rates as invariant two dimensional
inclines. In episodes 3 4 of Figure 12, for example, the subject solves an easier
problem by heuristic model-based reasoning and then scales her answer to “6t" the

MRT problem.

[Insert Figure 12 about here.]

Unit. In a few cases, a subject reasons purely in terms of units of measurement given in
the problem. For instance, on the work competitive problem (WC), subject m44 examines
alternative rate forms with the following manipulations:

box min

—————— . min = bo — -bor = mus
min(utes) min T oz | 00F = min

Procedure. This subcategory is scored when there is evidence that a subject is execut-
ing some stored sequence of actions or operations other than routine algebraic or arithmetic
manipulation. For example, on the work together problem (WT) subject m21 appears to use

a simple averaging tactic for combining quantities, writing “total = %(5 +4)= % = 43hrs”
Conceptual content

The conceptual content of an episode reflects the subject’s conceptualization of the problem
situation and the resulting set of constraints between probleimn entities. There is a subtle
but crucial distinction between situational understanding and the quantitative constraints
that are implied by it, as suggested in previous sections. Without further subcalegorization,
our scoring of conceptual content simply contains the constraints that the subject clearly
recognizes and uses in the episode. For instance, subject m39 in Figure 9 manifests an
understanding of all necessary constraints: equal distances, additive composition of times,

and the distance-rate-time relation.
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[Insert Figure 13 about here |
Errors

Within each problem solving episode, we consider two broad classes o errors
Conceptual errors. These are scored when a subject esther idludes a conatiaint that
is inappropriate for the problem or excludes a constraint that is a cntical requirement for

the current episode.

o Errors of commission. These errors are incorrect constraints that the subject antro
duces during an episode, either by incorrectly representing the situational context of
the problem or by making erroneous quantitative inferences. For example, in episodes
4 6 of Figure 13 the subject subtracts distances because she thinks that the trains

are going in the same direction.

o Errors of omission. These errors are overlooked constraints To he scored as an error
of omission, an overlooked constraint has to be critical to the solution method applied
by the subject. This usually means that two entities are explicitly used while the
relation between them is ignored. In Figure 14, episode 3, the subject has overlooked

that working times represented as z and y are equal.

[Insert Figure 14 about here.)
Manipulation errors. Since written protocols usually display algebraic or arithmetic

manipulations clearly, our scoring identifies manipulative errors of three types.

o Algebrii <rrors. For example, on the MOD problem, subject w39 writes "SR = !;__u

followed by “T = $2.»

o Variable errors. We observed two types of errors related to the concept of variable In
“switch errors,” the meaning of a variable changes in the course of problem solving

In “label errors,” subjects are using variables as labels for quantitios. For instance, in

32




the round trip problem (MRT), subject m10 writes the equation “1 B 4+ 8W = 6Ars”

and explains that “for every 1 hour on the bus, it takes 8 hours to get back.”

e Arithmetic errors. For example, on the opposite direction motion problem (MOD)
subject m20 writes “% = '—"—." After detecting this arithmetic error in a verification

episode, the subject recovers by using the ratio scaling tactic mentioned earlier.

Status of episode within solution attempt

Categories listed so far deal with internal characteristics of an episode. The two aspects of
the scoring scheme described here, consistency and transition, concentrate on the relation
of an individual episode to the overall problem-solving effort.

Consistency. This category assesses the correctness of an episode in the context of

the problem--solving sequence and is scored correct or incorrect for three facets.

o Before. This subcategory reflects the correctness of the context inherited by the
episode. For example, errors may be generated in former episodes and passed into
the current episode, as with the conceptual error of commission (same direction)

passed between episodes 4 and 5 of Figure 13.

During. This scores the correctness of the current episode with respect to the inherited
context. An episode producing an incorrect result can be internally correct if it is
consistent with an incorrect context. For example, episodes 5 and 6 of Figure 13 are

internally consistent with the conceptual error of commission introduced in episode

4.

e After. This subcategory assesses the absolute correctness of the outcome of the current
episode. If a solution is presented, the scoring reflects its correctness, otherwise scoring

assesses whether or not the subject is on a possible right track.
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Transition. The intent here is to determine the reason why a subject passes from one

episode to the next. Unlike consistency, which reflects the scorers’ judgment of correctness,

this aspect attempts to capture the subject’s point of view,

Subgoal. The subject accomplishes an intermediate goal, bringing the episode 1o
an end (Figure 7, episodes 1 and 3). luformation identificd when achieving a sub

goal (e.g., changing the form of a working rate) is generally carried into subsequent

episodes.

Wrong. The subject decides that she is on the wrong track and abandons the current
approach, usually by marking through the work (Figure 13, episode 3). This transition

is often Lhe result of an explicit verification episode.

Impasse. The subject reaches a point where she cannot continue with the current
method. A good example of impasse is shown in episode 3 of Figure 8, where the
subject correctly applies simulation by hourly increments, overshoots the non integer

solution, and then switches to an algebraic tactic after adding rates.

Lost. The subject reaches a point where she cannot determine how to proceed, as in

episode 2 of Figure 14.

Final solution. The subject reaches a result and presents it as a solution o the
problem.
Found solution wrong. The subject realizes or believes that the solution presented i

incorrect.

This presentation of our framework for interpreting written protocols gives an overly

linear picture of its use in scoring subjects’ solution attempts. In fact, categonzing the

episodic structure of a written protocol within this framework was usually done quickly

(from 5 to 20 minutes per protocol) and with little subsequent disagreement among the
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scorers. By design, each category was raled with at least 75% agreement over four scorers;
most categories approached unanimous agreement.

In addition to determining whether or not a subject has managed to find thie “cor-
rect” solution to an algebra story problem, this framework for interpreting problem solving
episodes allows us to describe the internal structure of the subject’s solution attempt. Our
interpretation of episodic structure supports more fine—grained explorations of the strate-
gic and tactical course of problem solving. In the quantitative results section that follows,
we form composite analytic categories by identifying episodic patterns among the atomic
category judgments described above. Thus we will be able to speak of subjects reaching a
“final episode” with some particular tactic and content or to examine a series of contiguous
episodes during which model-based reasoning is used. Beyond the results presented here,

we expect the set of scored protocols to provide a rich dataset for continuing analysis.

QUANTITATIVE ANALYSIS OF PROBLEM-SOLVING EPISODES

In the section on problem structure, we argued that competent problem solving pro-
ceeds as an elaborative, interdependent exploration of two distinct problem spaces: the
situational context of a story problem and the quantitative constraints given explicitly or
implied in the problem statement. Results presented in this section provide evidence for this
interdependency at a global level of problem-solving activity and at a more detailed level
of episodic content. Our analysis distinguishes between subjects’ problem solving attempts
and the cpisodic structure of those attempts. By problem-solving attempt, we mean all of
the activities evident in the written protocol, which may include several distinct episodes.
By episodic structure we mean the alternation of problem-solving episodes of various types,
and the constraints or errors thal are contained within and across those episodes.

First we examine the tactical content, strategic purpose, transitional status, and er-
rors present in subjects’ solution attempts. These analyses pool episodes within solution

attempts to show the prevalence of different interpretive categories, and so they provide
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only a coarse image of competent problem solving. Second, we look within individual so
lution attempts and examine two episodic patterns in detail. Au analysis of the episode
during which a final solution is offered provides a finer immage of problem solving outcome,
describing relations between solution outcomes and other interpretive «ategories within the
episode. We also identily individual episodes of model bused reasonmg to permit a closer
examination of problem -solving activity outside of the traditional algebraic formalism By
considering the content of surrounding problem solving episodes, we can begin to examine
subjects’ reasons for using model based reasoning and to assess its effectiveness for making
correct problem -solving inferences or recovering from existing errors. I'he section ends with

a summary of major quantitative findings.
Problem-solving attempts

Since many of our rated categories represent hypotheses about problem solving processes,
we present their frequency of occurrence within subjects’ problem solving attempts. ‘1a
ble 3 shows the percentage of subjects having one or more episodes in which various rated
calegories were observed. Percentages are shown separately for each problem (MOD, MRT,
WT, WC) but are collapsed over groups (M, W) since none of these contrasts were stalis

tically reliable. Most findings are as expected, while several are surprising

[Insert Table 3 about here.)
Tactical content of scored episodes. While most subjects use algebra in their
solution attempts (63.5 to 85.9% across problems), reasoning within the situational context

presented by 1h- pioblem is surprisingly common.

e Looking within individual problems, at least one model based episode is used by
22.4% to 47.1% of subjects, depending on the problem. A separate analysis pooling
across problems shows that 72.9% of subjects have one or more episodes of model
based reasoning in their written protocols. These episodes are explored more fully

fater.
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o Use of ratios is the next most prevalent non-algebraic tactic (14.1% to 42.4% across
problemns) and may depend upon a variety of factors: the complexity of the constraints
presented by a problem’s quantitative structure, the accessibility of situational justi-
fications for those constraints, and the manner in which the constraints are presented

in the problem text.

o Few solution altempts contain episodes using a “procedure” or reasoning with “units.”
Most subjects using a procedure on the WT problem chose to take an average over
working rates, a strategy that violated the situational meaning of “working together”

in that problem and generally led to an incorrect solution.

o Annotations, in the form of diagrams or notations about problem elements, were ei-
ther scarce or common, depending upon the situational and surface content of the
story problem. Motion problems (MOD, MRT) showed few notations (7.1%, 15.3%)
but more frequent diagrams (69.4%, 36.5%), while work problems showed frequent
notations (21.2%, 29.4%) but fewer diagrams (8.2%, 9.4%). Although it is likely
that the spatial content of motion problems makes them more accessible to diagram-
matic representation, some subjects are able to construct effective diagfa.ms for work

problems (e.g., see Figure 11, episode 3).
Strategic purpose of scored episodes.

e Most subjects show explicit attempts at comprehension in their written protocols
(57.6% to 84.7% across problems), typically through diagrams, notations or model
based reasoning.

o While all subjects make some attempt to solve the problem, only a minority give

evidence of atlempting to verify the results of their work (7.1% to 28.2% across

problems).

Transitions out of scored episodes.

e Most subjects find and explicitly present a solution (either correct or incorrect) as
part of their problem solving attempt, although problems MET and W T appear more
difficult than their quantitative isomorphs in this regard ( W and MOD). A more

detailed analysis of solution outcomes follows shortly.

o Likewise, the three transitions without solution (i.e., impasse, lost, or wrong) are most

common in the more difficult problems (MRI'and WT).
Errors in scored episodes.

o Conceptual errors of omission and commission increase for the more dificult prob
lems (MRT and WT), and appear much more frequently than mauipulative errors

(arithmetic, algebraic, or variable errors) on all problems.

Several interesting patterns emerge in these findings. First, subjects’ written protocols
are not composed solely of material generated while performing algehraic transformations.
Instead, many subjects appear to use various forme of direct situational reasoning, which we
have termed model- based reasoning, conducted within their understanding of the context
posed by a story problem text. Second, although most subjects do present a solution in some
form, their efforts do not appear as a smooth progression toward a quaatitative solution.
Rather, their problem-solving efforts are often interrupted by varied conceptual difficulties
that must be repaired before a solution is found. Third, manipulation errors within algebraic
and arithmetic formalisms do occur, but these are overshadowed by conceptual errors of
omission or commission as a primary source of problem -solving difficulty. Consistent with
our earlier treatment of problem structure, we interpret these findings to mean that students
form an understanding of the problem at the level of its situational context and then use

this understanding to introduce quantitative constraints. As a result, many of the activities
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present in an episodic analysis of algebra story problem solving fall outside the traditional

algebraic formalism.

Final episodes: outcome,-tactical content, and errors

Examination of the written protocols clearly shows that subjects undertake a variety of
problem-solving activities when attempting to solve these problems, particularly when they
encounter difficulties in reaching a solution. However, the previous findings speak only to
the presence of various conditions in subject’s problem-solving efforts. By our scoring,

subjects averaged approximately 2.5 scored episodes per problem-solving effort, with some

protocols presenting evidence for as many as 10 distinct episcdes. In the following analyses,
we look within individual protocols for more finely-detailed episodic structure.

Within an individual's efforts on any given problem, we extract a “final episode™ for a
first level of detailed analysis. This episode need not be the subject’s last effort in a solution
attempt, but it is final in one of three senses: it is the last episode during which a subject
presents a solution that is correct, the last episode during which they present a solution that
is incorrect, or the last episode of a problem-solving effort in which no solution is presented.
“Incorrect” means the subject presents an incorrect final solution without detecting any
errors. The “no solution” category includes subjects who present an incorrect solution but
realize they have done so during a subsequent attempt at verification, without being able
to recover, Thus, the final episode may be either correct, incorrect, or present no solution.

[Insert Table 4 about here.]

Performance cutcomes across groups. Table 4 shows the final outcomes for each
problem, broken out to show anticipated eflects of problem ordering. For example, on
problem MOD group W should perform better than group M (shown as M < W in the
table), since subjects in group W are exposed to an isomorphic problem (WT) just before
seeing problem MOD. If positive transfer occurs, subjects in group M should be at a relative

disadvantage, having seen no prior problem. None of the group contrasts wec. . twlically

39

significant, even taking into account whether subjects were correct or weorrect on preceding
problems. Thus, the problem ordering manipulation introduced to provide opportunities
for positive and negative transfer appears to have had litthe eflect on subjects’ performance
at the level of solution correctness. We consider this finding at a mare detailed level in the
discussion section. Clearly, problems MRT and WT were most difficult, with percentages
of subjects reaching a correct solution on these problems (51.8% and 61 2% ) falling well
below those reaching correct solutions on problems MO and W( (90 6% and 91.8%).
{Insert Table 5 about Inére.] B

Relations between solution outcome and tactical content. Table 5 shows taclical
content and error categunes for final problem solving episodes. For lactical content, a
subject receives a single category score, 5o cell [requencies sum o give appropriate column
totals. A few protocols contain insufﬁrienlvinformalion to score tactical content in the final
episode. For errors, a subject may achieve a correct solution in the final episode but still
demonstrate an error, or they may have several types of errors. As a result, cell entries for
errors do not always add up to coincide with column totals.

The prevalence of tactical content and error categories in the final episode is generally
consistent with findings for overall solution attempts. However, by looking within these

attempts we can focus more closely on relations between tactic and outcome

o Even within the final episode, not all solutions (correct or incorrect) are found using
algebra. Excluding those with no solution or with contents that were not scorable,
between 22.0% and 44.0% of subjects (across problems) used other tactics to find

their final solution.

o Use of ratios is the most prevalent form of non algebraic reasoning in final episodes,
with the exception of an incorrect averaging procedure on problem W7T. Model based

reasoning is the next most prevalent tactic.
o Algebra, model based reasoning, and ratio tactics are about equally effective in the
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final episode. Pooling across problems, algebra is slightly more successful (number cor-

rect/total observed) and slightly less error-prone (number incorrect /total observed)

than either of the non- algebraic tactics.

Thus, even within the final episode where a solution might be found, a normative account
of problem solving consisting of successive algebraic transformations would be disconfirmed
by these data. Instead, subjects find solutions through a variety of reasoning strategies
that, in some cases, involve relatively little formal algebra. In a moment, we examine the
episodic structure of model-based reasoning tactics more closely.

Relations between solution outcome and errors. Errors observed during final
episodes are also interesting although more difficult to interpret since individual subjects
can have multiple errors. We distinguish between “conceptual errors,” which arise through
omission or commission of specific quantitative constraints, and “manipulative errors,”
which arise through impraper use of arithmetic, algebraic operations, or variables. These

error categories are shown in the lower panel of Table 5.

o With the exception of problem MOD, conceptual errors are more prevalent than

manipulation errors. This is particularly true of the more difficult problems (MRT

and WT).

e Subjects who achieve a correct solution have fewer conceptual errors than those with
an incorrect solution or no solution (1:6, 0:30, 1:37 and 1:4 across problems). In the
few cases where a solution is found despile conceptual errors, offsetting manipulative

errors fortuitously “correct” these conceptual errors.

Although manipulative errors are found among subjects who do not reach a correct
solution, they are also observed among subjects giving a correct solution. These errors

are repaired within the final episode to allow for a correct solution.
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e Among subjects who reach an incorrect solution, the number with manipulative errors
could not account for more than a third of these failures (2/6, 5/15, 7/21, and 1/5
across problems). Alternately, at least two thirds of the incorredct solutions must be

based on conceptual erross.

One interpretation of these results is that manipulative errors are less frequent and
more recoverable than conceptual errors. That is, subjects who miake an error during a
problem -solving episode are more likely Lo recover from that error if it stems from arithmetic
or algebraic manipulation than if it is a result of misunderstanding or misencoding the
structure of the problem. Since errors may persist across cpisodes, this conclusion cannot
be unambiguously supported. Nonetheless, the most serious errors among this group of

relatively competent problem solvers are conceptual rather than manipulative

Episodic structure of model-based reasoning

One of the most intriguing findings in these data are subjects’ use of what we call “model
based reasoning.” In these episodes, subjects depart from the algebraic formalism and
reason directly within the situational context presented by the story problem. In tus
section, we examine the functional role that model based reasoning plays witliin the overall
solution effort. We are interested in determining under what circumstances ths form of
reasoning occurs, what purpose it serves within a particular solution attempt, and what
outcomes are likely when subjects reason in this fashion.

As with the analysis of final episodes, we identify specific episodes within subjects’
solution attempts where model based reasoning occurs. We also extract the preceding
problem solving episode in the hopes of identifying enabling conditions for model hased
reasoning. Since some subjects’ only use of model based reasoning occurs during their first

scored episode, they will have no preceding episode.

[Insert Table 6 about here.]
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Precursors to model-based reasoning. A first task for describing the role of model
based reasoning in subjects’ solution attempts is to determine their reasons for using this
method. We will contrast the correctness and transition out of an immediately preceding
episode with the purpose (as we have rated it) for using model-based reasoning.

Table 6 shows the number of subjects who use model--based reasoning for some purpose
(scored as comprehension, solution attempt, or verification) subsequent to various condi-
tions in the preceding episode. A subject may either have no preceding episode, have a
preceding episode without errors, or have a preceding episode with one or more scored

errors (i.e., an error of commission, omission, or manipulation from which the subject does

not recover in that episode).

o From 26.3% (5 of 19 on MRT) to 70.0% (21 of 30 on WT) of model-based reasoning

episodes occur as the first episode in a solution attempt.

e Of these initial model-based episodes, the majority (except for problem MRT) are
undertaken for the apparent purpose of comprehending some aspect of the presented

problem. The remaining initial episodes are scored as solution attempts.

For subjects having a preceding episode, their transition out of this episode is scored as
achieving a subgoal, finding a solution, reaching an impasse, or deciding they are wrong. Of
the model -based reasoning episodes following an error-free episode, there are two essentially
different conditions. In the first, a subject’s preceding episode ends with achieving a subgoal
or finding a solution. This subject could be considered “on track” in her solution attempt.
In the second condition, subjects “abandon” the preceding episode after reaching an impasse
(also alter getting lost, as described earlier) or deciding that their efforts are wrong. These
subjects are technically on track since their preceding episodes are free of errors, but they

encounter sufficient difficulty that they abandon a previous line of reasoning in favor of

model based reasoning.
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o Amost all subjects who are “on track” in a preceding episode either attempt a solution

or continue attempts at comprehension during the model hased reasoning episode.

e Only a few subjects are “on track” and undertake maodel based reasoning for the
purpose of verification. On problem W these verification episodes follow finding a
solution; the single verification attempt on problem WT comes from a subject who

verifies a recalled formula using a simplification of the original problem.

e Subjects “abandon” (i.e., lost, impasse or wrong) a prior, error free episode infre
quently and subsequently use model based reasoning for comprehension or 1o altempt

a solution.

Model- based reasoning episodes following an episode with errors are less frequent than
those discussed above, but fall into similar categories. Relatively few subjects have preced
ing errors, are unaware of Lhose errors, and proceed as if “on track™ (achieve a subgoal or
find a solution). Subjects who are aware of their preceding error nearly always decide that

they are wrong and “abandon” the preceding episode.

e Among those who “abandon” a preceding episode with errors, subsequent model

based reasoning is used either for comprehension or as an attempt to find a solution.

Although based on a subset of all subjects studied, these findings support an inter
pretalion in which model-based reasoning plays four basic roles in problem solving: as
a preparatory comprehension strategy when the model based episade is cither the first
problem-solving activity attempted or follows other comprehension episodes, as a solution
strategy when subjects feel they are on track, as an emdence gathering strategy when a so
lution has been found previously (this is infrequent), or as a recovery strategy when subjects
suspect that their comprehension or solution effurts may be “ofl track " These interpreta

tions are consistent with our earlier argument that reasoning within the situational context
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of a problem supports the generalion of quantitative constraints, can be used directly as a

solution method, or can be used to verify that these constraints are appropriate.

{Insert Table 7 about here.|

Effecti of del-based reasoning. As well as inferring subjects’ reasons
for undertaking model -based reasoning, we would like to characterize the effectiveness of
this reasoning strategy. To assess efficacy, we examine the occurrence of any errors within
successive episodes. Table 7 shows the relationship between errors during a preceding

episode (when there is one) and errors within the model-based reasoning episode.

o When model-based reasoning is the subject’s first evident activity, as indicated by
“No episode” in Table 7, errors are not often encountered within that episode. The two
errors shown for problem MRT are mis-conceptualizations in which subjects assume
that round trip times are equal. The error in problem WT comes from a subject who

assumes that Mary and Jane do equal amounts of work.

When a previous episode contains errors, the subsequent model-based episode is
usually error-free. Thus, existing errors may be “repaired” during model -based rea-

soning.

o Following an error-free episode, only one subject introduces a new error with model-

based reasoning by omitting the constraint that distances are equal on problem MRT.

While these findings are not conclusive, they are again consistent with the four hypotheti-
cal roles for model- based reasoning described in the analysis of final episodes. Preparatory
comprehension promotes an error-free conceptualization of Lthe problem situation, enabling
subjects to correctly assemble the quantitative structure of the problem during later rea-
soning episodes. Subjects also attempt to find solutions directly through model based
reasoning, generally without introducing errors. Alternately, after encountering an error

during previous problem -solving activities, subjects may be able to recover through the

45

use of model -based reasoning. Finally, model based reasoning can play a confirmatory role

when subjects have identified important problem constraints or a possible solution.

Summary of quantitative findings

As part of our effort to explore the episodic structure of algebra story problem solv
ing, this section presents three levels of quantitative analysis: the prevalence of dilerent
interpretive categories in subjects’ overall solution attempts, relations between outcomes,
tactical content, and errors in subjects’ final episodes of problem solving, and the role and
effectiveness of model-based reasoning episodes within the wider problem solving context.
Each successive level of analysis tightens the focus on findings at coarser levels.

A global view of solution attempts reveals significant non algebraic reasoning as a preva
lent and somewhat unexpected constituent of competent problem solving. Most prevalent
among these tactice is model based reasoning. Among observed errors, conceptual omis
sions or commissions are more frequent than manipulative errors within arithmetic or alge
braic formalisms. An examination of final episodes, the “boltom line” in a very lean view
of these problems, corroborates this global image of significant non algebraic reasoning on
non-routine problems. l.ooking more closely at errors, we find that manipulative errors
are both less frequent and less damaging than conceptual errors, since subjects are more
likely to recover from errors of manipulation within the final episode. Finally, we examine
the episodic structure of model based reasoning and propose four roles for this tactic: as
preparatory comprehension, as a solution method, as evidence galhering for a candidate
solution, or as a recovery method for errors generated earlier in the solution attempt. ‘Fhese
quantitative analyses of problem solving agree with out earlier description of 1he interplay

between the quantitative and situational structure of algebra story problems.

DISCUSSION

Interpreted as a series of problem solving episodes, the written protocols described
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above provide an opportunity to look within individual solution attempts for evidence of
strategic and tactical approach. We have also been able to look across a relatively large
sample of mathematically sophisticated subjects in an effort to describe “typical” problem -
solving behaviors. In this section, we compare the results of our study with other research on
mathematical problem solving and discuss the implications of these findings for conceptions

of mathematical “knowledge™ and instruction.

Competent problem solving

Our findings are offered as a preliminary exploration of “competent” algebra story problem
solving. By choasing the term competent, we hope to contrast the problem-solving behav-
iors we have observed against images of “expertise” in problem solving as they are often
portrayed in the literature. For example, Hinsley et al. (1977) and Mayer et ol. (1984)
report that experienced problem solvers use problem-solving schemata to categorize prob-
lems by type and then represent these problems using familiar quantitative constraints.
While this account corresponds with some of our protocols, many subjects in our sample
appear Lo construct solutions to algebra story problems. Rather than a smooth execution of
a highly practiced skill, these constructions often proceed with some difficulty and include
reasoning aclivities only partly connected to algebraic or arithmetic formalisms.

As noted earlier, subjects in this study should be considered mathematically sophis-
ticated. Nonetheless, judging from the varied behaviors we have observed, the algebra
story problems we presented to subjects are not routine problems. On problems MRT and
WT, for example, many subjects fail to reach a correct solution, and those who do suc-
ceed often experience considerable difficuity. Analyses of errors encountered by subjects
when attempting solutions suggest that conceptual errors of omission and commission are
both more prevalent and more damaging than manipulative errors in algebra or arithmetic.
These results support a model of algebra story problem solving in which problem compre-

hension and solution are complimentary processes. Integrating dual representations of a
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problem at situational and yunantitative levels is a central aspect of competence. These
intermediary structures provide a representational bridge between the text of a problem
and a quantitative solution. Reasoning about the sitnational context of a probleny can
serve as a justification for assembling quantitative constraints that max eventually lead o
a correct solution. Thus, a substantial portion of a subject’s activity 15 devoted 1o reach-
ing an understanding of the problem that is sufficient for applying the routine of formal
manipulation.

Despite their mathematical backgrounds, perhaps our subjects have yet to achieve com
petent algebra story problem solving, well beyond the curricular setting designed 1o teach
it. Alternately, they may have been “experts” during and shortly after algebra instruction,
but with the passage of time have lost the facile performance demonstrated by [linsley et
al. (1977). Whichever explanation is chosen, the issue remains how to characterize os
tensibly competent problem solving in a population for whom tiwe algebra curriculum is
designed. Recent studies of mathematical problem solving in “practice™ (Carraher, Carra
her, & Schliemann, 1987; Carraher & Schliemann, 1987; and de la Rocha, 1986) present
similar images of competent quantitative reasoning: problemn solvers organize their quan
titative knowledge around the demands of the situational context presented by the tlask,
often using the problem situation (or knowledge of it) to assemble or verify quantitative
constraints. If an image of competent problem solving in this domain is to inforin teaching
efforts -- i.e., it is to have some prediclive capacity as described in the introduction of this
paper — then activities like these are a legitimate topic of study. We return to issues of

competence and acceptable transitional performance in a moment.

Transfer effecta

Aside from their use as representative problem solving tasks, alg.vbra story problems of
ten serve as materials for studies of analogical transfer. Given a target problem to solve,

subjects exhibit positive transfer when they can use the solution method from a previ

48




ously encountered source problem to help solve the target problem. Alternately, subjects
exhibit negative transfer when they access and use the solution from an inappropriately
related source problem. Studies of analogical transfer with algebra story problems have
produced mixed results, but show that both positive and negative transfer sometimes oc-
cur. Positive transfer has been more likely when subjects are alerted to the experimental
manipulation (Reed, 1987; Reed, Dempster, & Ettinger, 1985) or are high in mathematical
achievement (Novick, 1987). Transfer effects related to higher achievement have been at-
tributed to subjects’ improved attention to aspects of quantitative structure (Novick, 1987;
Silver, 1979) and better memory for previous solution methods (Silver, 1981). Negative
transfer in subjects with lower achievement (Novick, 1987) has been attributed to a re-
liance on inappropriate problem features and an inability to reject misleading analogical
sources. Finally, Dellarosa (1985) has experimentally manipulated sub jects’ use of analog-
ical and schematic problem comparisons to produce improvements in their categorization
and solution of related problems.

In the present study, we did not alert subjects to the comparability of problems, nor
did we encourage them to look back over their prior solutions as they worked through
the problems. Their backgrounds insure high mathematical achievement, and entrance
requirements for academic majors in computer science and engineering preselect for high
quantitative abilities. There is no performance level evidence of positive or negative transfer
within the problem-solving session, despite our manipulation of problem structure and
presentation order to elicit these effects. At the aggregate level, our subjects appear to take
the “school math™ task we present them al face value: each problem, presented individually
on a blank sheet of paper, is treated as a self-contained exercise, rather like what a student
might lace during examinations in a course on algebra. However, on closer inspection of
individual protocols and explanatory remarks we find that several subjects give evidence

for some form of negative transfer.
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In some cases, transferred material directly violates the quantitative and situational
structure of the target problem. For example, subject w08 incorrectly attempts to add
working rates on problem WC, first writing 1/5 » bores + 1/2 » bores = 56, followed by
7/10 + bozes = 56. In explanatory remarks, wOB states that “The mustake | made was
that | assumed it was like problem 1 where they work together.” In the preceding solution
to WT, this subject had written “Together = 1/5 + 1/4 in one hour = 9/20” and then
correctly divided one job by the combined rate. Adding working rates in problem WTis
justified since Mary and Jane work together at the same time. However, situational and
quantitative relations are exactly reversed in probleln W(' (see Figures 6 and 2(b)). Since
times are added together (adjacent) and work is performed on the same boxes (congruent),
the addition of working rates (i.e., output over time) cannot be similarly justified.

In other cases, sub jects recognize an appropriate source problem, but then fail o transfer
information at the correct level of abstraction. For example, on problem MOD subject
w01 correctly attempts to add motion rates, but uses an algebraic expression of the form:
1/60 + 1/100 = z/880. On the previous ( WT) problem, the subject manages a correct
solution using an expression of the form, 1/5+ 1/4 = 1/z, and remarks that this “.. is a
formula used to find a total of time they work together.” Although the addition of rates
can be justified in both problems, it appears that the rate form in the retrieved formula
is reversed (i.e., time over output) when used in a solution attempt on the A(JD) problem
Thus in a situation where we anticipate that Lthe subject will benefit by transfer of a solution
approach, their failure to justify transferred material actually produces a negative effect.

It may be that the problem solving context, completing a test booklet in a proctored
examination setting, as well as our decision not to alert subjects to Lthe comparability of
problems, prevented them from recognizing and elaborating effective analogical comparisons
between problems. In more detailed verbal protocol studies where subjects are encouraged

to make problem comparisons (Hall, 1987, 1988}, attempts at aralogical inferences between
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algebra story problems are quite common. These comparisons are usually lengthy and
can introduce misconceptions, but also frequently lead to fruitful explorations of problem
structure, both quantitative and situational. In addition, comparisons need not encompass
the entire problem structure, but often instead make effective use of relevant substructural
similarities. These alternative findings are largely consistent with other verbal protocol
studies of learning from worked examples (Pirolli & Anderson, 1985; Singley, 1986; Chi,
Bassok, Lewis, Reiman, & Glaser, 1987), and suggest that analogical comparison may be

a common problem-solving and learning strategy in settings where subjects have some

control over their work.

Model-based reasoning

We are not the only researchers to note the prevalence of model-based reasoning during
mathematical problem solving. A number of psychological studies have found similar ev-
idence, although interpretations of this activity vary. Paige & Simon (1966), comparing
human protocols with Bobrow’s (1964) computational model of translating algebra story
problems into equations, found that subjects with varied mathematical backgrounds used
“auxiliary representations” of the physical setting of a problem. These representations
allowed some subjects to detect impossible problems or to assemble relevant quantitative
constraints (e.g., additivity in part-whole relations). Using verbal protocols to study the
prevalence of Polya’s (1945) heuristics for mathematical problem solving, Kilpatrick (1967)
reported that 60% of an above-average group of eighth graders used “successive approxima-
tion™ while attempting to solve word problems. These trial-and-error approaches were often
successful and were sometimes combined effectively with more deductive solution strate-
gies. Silver (1979) found similar successful approximation strategies in students who had
yet to receive formal algebraic training. Studying geometry problems, Schoenfeld (1985)
found that students used a trial-and-error approach to generate hypotheses about geomet-

ric relations and then evaluated these hypotheses by physical construction. He argued that
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these exploratory episodes of “naive empiricism” were usually poorly organized and often
interfered with forms of deductive verification that students knew how to use Finally,
Kintsch & Greeno (1985) described a process model of solving arithmetic word problems
in which quantitative strategies were triggered by information contained in a “situation
model” of the problem. The situation model was constructed during text comprehension
and contained a set-based representation of typed quantities and their interrelationships
(e.g., part-whole). Follow on studies (Kintsch, 1986) have shown that the construction of
a situation model is important for recall, inference, and learning from text.

Laoking over this evidence, we find that studies of mathematical problem solving con
sistently encounter activities similar to what we call inodel based reasoning: subjects con-
struct some form of situation model, take inferences within the model to help comprehend
and sometimes to solve a quantitative problem, and use the model in a supportive role for
assembling or verifying quantitative constraints. Beyond model based reasoning in math
ematical problem solving, similar evidence is available across a wide range of cognitive
activities. For example, Johnson- Laird (1983) argues for a model driven account of syllo
gistic reasoning that underlies common sense inference. Given a pair of premises like, All
the artists are beekeepers/All the beckeepers are chemists, Johnson Laird’s subjects appear
to build successively more elaborate models of the situation described by the premises when
searching for valid inferences. The validity of each inference, rather than being logically
deduced by sound rulés of inference, is evaluated with respect to these concrete models
of the premises. Errors occur when subjects are unable to build sufficient models of the
premises and thus overlook or fail to eliminate various inferences. Relatively concrete forms
of reasoning outside traditional (i.e., schooled) formalisms have also been observed for de
cision making under uncertainty (Tversky & Kahneman, 1974), various forms of statistical
reasoning (Nisbett, Fong, Lehman, & Cheng, 1987), and explanations of physical processes

(Clement, 1983; McCloskey, 1983).
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In general, these studies raise questions about the relationship between what students
bring to an educational setting i.e., their “preconceptions” about a subject matter
and materials that the curriculum explicitly presents. In the domain of mathematical prob-
lem solving, students’ “preconceptions” and associated activities are often pushed to the
background of legitimate practice and inquiry. At best they are “auxiliary” to quantitative
reasoning, while at worst they interfere with preferred problem-solving activities and pro-
duce “lost opportunilies, unfocused work, and wasted effort” (Schoenfeld, 1985, p. 308).
In their stead, the manipulation of symbolic representations of quaatity, quite apart from
the situations thal give rise to these quantities, is held in the foreground. Our findings
on model -based reasoning, in concert with other studies reviewed briefly above, suggest
that this foreground/background conception of quantitative problem solving may need to
be reconsidered.

In our sample of “competent” subjects, a routine problem is one in which the use of
familiar algebraic operations will provide a precise value for an unknown entity. This is
the power of the algebraic formalism: it is perfectly general, sound, and often simple to
apply. However, quantitative precision is of little value when the subject is uncertain about
the problem’s structure. Our characterization of overall episodic activity, the frequency
and consequence of conceptual versus manipulative errors during those episodes, and the
role of model-based reasoning show that routine activities within the algebraic formalism
make up only a portion of competent problem-solving. For many of our subjects, algebra
story problems are not routine exercises. Instead, much of their problem-solving activity is
devoted to assembling a sensible set of constraints on a desired quantity, an effort that un-
covers the problem’s structure. When algebraic constraints are unclear, subjects sometimes
attempt solutions using model-based reasoning (e.g., Figure 8), a tactic that approximates
a certain value for an unknown entity. The value is certain when gquantitalive constraints

that determine its derivation are grounded in a representation of problem structure that is
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familiar to the subject.

The strategic ;igniﬁrance of this aclivity is consistent with varying explanations. On
one hand, enacting a set of physical coustraints may provide otherwise skilled quantitative
problem solvers with an efficient means of estimating quantitative solutions. Under this
interpretation, the model based episode shown in Figure B may result sisnply from the
subject’s preference for repeated additions over a more complicated division. Wilkening
(1981) makes a similar argument when interpreting results of a developmental study on the
relationship between velocity, time, and distance. In contrast, we argue that episodes of
model -based reasoning serve as problem solving strategies in their own right, and are used
when more “formal” activities (e.g., algebraic substitution) are unreachable given the cur
rent problem representation. Under this interpretation, the subject in Figure # undertakes
model-based reasoning because her representation of the problem cannot justily a division
of the total distance by a combined rate. Enacting motion and time constraints over suc:
cessive hours of travel makes the quantitative structure of the problem more certain. The
results of model-based reasoning support a conceptualization of quantitative constraints
in which the total distance can be divided by a combined rate to give a precise account
of the elapsed time. Further constraints are introduced by establishing that the correct
quantitative solution falls between the fifth and sixth hours of travel.

Interpreting model-based reasoning as an alignment of certain and precise represen-
tations of problem structure leads lo deeper questions about a competent understanding
of mathematical concepts, in this case related linear functions. One point of view takes
mathematical concepts as objects of knowledge in and of themselves, quite apart from their
physical embodiment in a situational context. Hence the story in an algebra story problem
serves only as a vehicle for carrying a mathematical structure. An alternative point of view
takes mathematical concepts as tools for modeling physical situations, in this case related

motion or work events as presented in problem texts. The question is how far vehicles
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will travel or how long it will take to complete a job, and mathematical concepts serve as
sometimes useful tools for answering these questions.

We suspect that these points of view are not incompatible. In fact, the latter view
may provide an educational bridge to mathematical concepts as self-contained sources of
knowledge. That is, a competent mathematical conception of related linear functions is
based on and extended through a physical understanding of the situational context that
the “story” of an applied problem presents. An activity like iterative simulation “joins™
concrete inclines, allowing the subject to successively construct a systematic relationship
between rates and providing an introduction to related linear functions that can be directly
supported within a familiar context. Over time, the mathematical concept reflects a history
of use as a tool for modeling physical situations. The concept of rate changes as its modeling
role is extended over a wider range of situational contexts, perhape leading to heuristic
estimates or algebraic constructions based on “scaling” inclines as invariant relations. The
result could eventually resemble a relatively context—free mathematical abstraction. Of
course, this account of the acquisition of mathematical concepts is highly speculative and
not a focus of our study. However, judging from the problem-solving behavior observed
in this study, even ostensibly “competent™ mathematical problem solvers continue to base

their quantitative efforts within the situational context of presented problems.

Educational implications

We have interpreted the relative prevalence and consequence of conceptual versus manipula-
Live errors as evidence that subjects have difficulty in assembling the quantitative structure
of algebra story problems, long after they have mastered the algebraic formalism. Likewise,
the prevalence and functional role of modei-based reasoning are interpreted as evidence
that even mathematically-sophisticated problem solvers explore the situational context of
these problems in an attempt to construct or repair a representation that will upport a

solution. Based on these findings and their interpretation, we examine several implications
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for teaching mathematical problem solving.

The primacy of conceptual errors and use of model based reasoning, in some cases to
recover {rom these errors, suggest that instruction based solely within the mathematical
formalism may be inadequate for solving non routine problems. Textbook instruction in
algebra story problem solving typically addresses this issue by providing scme suggestions
for “... translating from words to appropriate algebraic forms” (Kolman & Shapiro, 1981, p.
64). These range from direct translation rules taking textual phrases into equations (e.g.,
rewrite “twice” as 2x) to the construction of tables that organize quantitative entities and
their interrelationships around known formulas. The desired result is a set of simultaneous
linear equations amenable to algebraic operations. While these suggestions provide a sort
of organizational strategy for the student’s problem solving activity, they fall well short
of specifying how quantitative relations, particularly those that are only implied by the
problem text, can be identified, arranged as entries in a table, or effectively used. lnstead,
the results of our study point to persistent problem -solving difficulties that the traditional
algebra curriculum addresses weakly if at all.

How might these components of competent problem solving be taught more cflectively?
We argue that the situational context of an algebra story problem, and in particular the
correspondence between situational relations and quantitative constraints, should be a le
gitimate object of teaching in the algebra curriculum. This is clearly appreciated in other
problem-solving curricula. For example, consider the utility of force diagrams for solving
statics problems in physics. Students who ignore or incorrectly construct force diagrams
can be expected to manipulate equations or formulas without visible signs of progress.
This is quite similar to Paige & Simon's (1966) finding that “auxiliary representations”
helped subjects to detect impoasible algebra story problems, sometimes before writing any
equations at all. Our question, then, is whether there might not be a similar organizing

representation for algebra story problem solving? There are some suggestive precedents:
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Gould & Finzer (1982) describe an animated computational environment that allows stu-
dents to make guesses in a one- dimensional world of motion; Greeno (1983) describes an
effective instructional technique in which students use an electric train set to help calculate
solutions to compound motion problems.

As one possibility among many, we present a representation that draws directly from the
analysis of situational structure presented earlier and consider under what circumstances
it could provide a useful instructional model for constructive problem solving. As with
any model used in teaching, there are problems of registration: the model may cover some
aspects of the target domain well but cover other aspects poorly. Qur propoeal addresses
relations and operations possible within a representation of the situational structure of

compound algebra story problems, and the correspondence of these aspects Lo relations

and operations possible with a representation of quantitative structure. We expect that in
combination with a quantitative model like that proposed by Greeno et al. (1986), their
joint contribution could prove more effective than either used alone.

[Insert Figure 15 about here.)

Figure 15 shows paired graphical representations of situational and quantitative struc-

ture for the MRT problem. Al the top of the figure, a di ional frame displays orthogo-
nal output (in this case, distance) and time dimensions, with entities arranged along those
dimensions by their respective situational relations: times are adjacent and distances con-
gruent. At the bottom of the figure, a quantitative network (Shalin & Bee, 1985) shows the
common distance found by applying motion rates to component times. Each representa-
tional device provides a directly accessible illustration for important aspects of competence
in this problem-solving domain.

In contrast with translation rules or tabular arrangements, the illustrative medium
of dimensional frames provides a spatial abstraction for compound rate problems that

promotes a physical justification for essential quantitative constraints. Time segments
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add because they are adjacent within the vertical dimiension, while distance segments are
equal because they are congruent within the horizontal dimension. As noted in our earlier
discussion of quantitative structure, substructures corresponding to these constraints must
be constructed before using the quantitative network to find a solution  e.g., the additive
triad over time extensives that centers the quantitative network in Figure 15. The ability
to appropriately select and place these quantitative substructures appears tu require a
substantial investment in training time (Greeno et al, 1986). We expect thal a well
designed illustration® around the idea of dimensional frames could effectively support the
acquisition and use of a quantitative network illustration.

In contrast with a set of algebraic equations, quantitative networks provide a spatial
abstraction for variables and equivalence relations that makes the global structure of what
would otherwise be a linear encoding more apparent. Rather than writing a set of equa
tions with repeated variable names or constants, a notation that can obscure the role of
quantitative entities and make the applicability of cerlain algebraic operations diflicult 1o
recognize, the quantitative network directly captures the notion of shared variables or con
stants and multiple ways of reaching a particular unknown. The network provides a visually
inspectable form of algebraic calculus, essentially constraint propagation, that may prove
easier for students to learn than more traditional instructional methods (i.e., algebraic op-
erations on linear equations). Thus, the two illustrative media are collaborative in that
they provide interdependent representational stages intermediate between a problem text
and a correctly manipulated set of algebraic constraints.

Returning to Figure 15, we give a more detailed treatment of this collaborative inter-
dependence. As a compound molion problem, MRT involves two events, each contributing
entities modeled as segments on output and time dimensions. Across events, segments on

each dimension are related in a manner that determines their quantitative composition.

*Ohlsson (in press) gives a prescriplive methodology for constructing inleractive sllustrations as well as
a particular illustration, called “Rectamgle World,™ for the ralio scase of rational numbers
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Adjacent Lime segments can be composed to yield a single segment whose extent along the
verlical dimension corresponds directly to the value of total time traveled, thus implying an
additive relation over extensives in the quantitative network. Similarly, congruent segments
in the distance dimension have an identical extent, implying the same (and same-valued)
extensive in the quantitative network. Within each event, the rate provides a comparative
mapping between dimensions, modeled as individual inclines in the figure. Placed at the
top of the dimensional frame, walking covers 3 miles in one hour, and after transformation
to reflect a common output (discussed in a moment), the bus is shown to cover the same 3
miles in } hours at the bottom of the frame.

In addition to sanctioning relations among quantitative entities, more direct problem-
solving inferences using model-based reasoning are also possible within the dimensional
frame. Treated as invariant relations across dimensions, motion inclines can be “scaled” to
give heuristic estimates of common distance and composed times, as shown w::% i .hed lines

in Figure 15. Alternately, treating rates as concrete associations, inclines could be “joined”

together during an iterative simulation of comp d motion. In each case, a model-based
solution is reached when a common distance is found that precisely requires six hours for
round trip traversal. Both forms of model-based solution attempts are consistent with
observed protocols. For example, subject m31 uses a form of “scaling” to make heuristic
estimates of 24, 12, and 15 miles for a common distance, checking the combined time
required for each estimate against the given six hours. After the third estimate, she notices
that “each mile takes... & hours” and later uses this constraint to construct an algebraic
expression in a single unknown, “,’; x X = 6.” In contrast, subject m18 uses a form of
“joining” by choosing 3 miles as a concrete distance segment, determining that the bus takes
7.5 minutes to cover this distance (shown as } hours in Figure 15), and then extending these
concrete relations in a simulation of successive three-mile retucn trips. Both subjects alter

the form in which motion rates are expressed (i.e., output over time) during their model-~
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based solution attempts, and subject m31 finds a way of combining rates for a “return trip
mile.” In each case, activities within model based reasoning episodes observed in written
protocols directly sanction multiplicative relations between rates (intensives) and times
(extensives) shown in the quantitative network of Figure 15.

An appropriate combination of these representations could be a helpful aitifact for in
struction in algebra story problem solving. First, representational choices in the dimensional
frame can serve as justifications for more abstract relations or operations in the quantita
tive network. As argued above, a justification for adding times within the quantitative
formaliam is that Lheir composed spatial extent is sensible within the situational context
of the story. As a more complex example, subject m31's decision (0 transform and then
add motion rates in this problem cleverly restructures the dimensional frame to have single
segments on both time and output dimensions - e.g., & hours for each “return trip™ mile.
The corresponding quantitative network would require only three entities: a time extensive
(6 hours, given) results from multiplying the combined rate intensive (fi hours per mile,
inferred) by an unknown extensive for round trip distance. This is a sensible change in
representation only because the time segment given in the “goal state™ of the problem is
presented as a composed whole (i.e., “... he was gone for 6 hours™ in the text of problem
MRT), and round trip distance segmeats are congruent. Thus, representational choices
in the dimensional frame provide justification for construction of a simplified quantitative
network.

Second, problem-solving activity (e.g., iterative simulation) within the dimensional
framework can actually help to recover from prior conceptual errors. For example, con-
sider a subject who first attempts a solution within the algebraic formalism and omils the
constraint that distances are the same (i.e., the same variable). Finding two sisiuitaneous
linear equations in three variables, this subject reaches an impasse. Choosing model hased

reasoning for the purpose of comprehension in the next episode, the subject immediately
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faces a representational decision in the distance dimension: should positionally distinct
or identical spatial segments be chosen? Certainly, the possibility of an incorrect choice
remains, but when making this choice in the algebraic formalism of the prior episode,
the consequences of an incorrect representational decision were less apparent. Correctly
choosing congruent distance segments in the dimensional frame could allow this subject to
achieve a solution within the model-based reasoning episode, or to return to the algebraic
formalism with a more complete representation.

In summary, choosing an apt combination of situational and quantitative models for

instructional purposes is a challenging problem. Our suggestion for the dimensional frame as

an illustrative mechanism would require further refi t to achieve effective integration
with an algebraic illustration, as discussed above. Nonetheless, we feel this approach is
interesting in several respects. Firat, our proposal is consistent with an empirical picture of
episodic problem-solving behavior in mathematically sophisticated subjects. Taking these
findings as evidence for competent (if not expert) problem solving, we are interested in
supporting what problem solvers actually do during their attempts to solve non-routine
problenﬁ. Our instructional proposal is based on a characterization of these attempts and
an analysis of common problem-solving difficulties. Second, although the solution of a
particular class of problems may become routine with practice, the ability to construct an
algebraic representation will continue to be important for novel problems or problems that
have become unfamiliar with the passage of time. Being able to construct a representation
in the algebraic formalism, based on the constraint-generating inferences we have described
as one role for model-based reasoning, may never become entirely routine. Last, combined
illustrative media may be of some practical value in delivering instruction on algebra story
problem solving, whether provided through computer-based instruction or a traditional

algebra curriculum.
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Table 1: Representative algebra story problems.

Motion: Opposite direction (MOD).

‘Two trains leave the same station at the same time. They travel in opposite directions.

One train travels 60 km/h and the other 100 km/h. In how many hours will they be
880 lun apart?

Motion: Round trip (MRT).

George rode out of town on the bus at an average speed of 24 milea per hour and

walked back at an average speed of 3 miles per hour. How far did he go if he was gone
for six hours?

Work: Together absolute (WT).

Mary can do a job in 5 hours and Jane can do the job in 4 hours. If they work together,
how long will it take to do the job?

Work: Competitive (WC).
ftandy can fill a box with stamped envelopes in 5 minut His boes, Jo, can check a
bux of stamped envelopes in 2 minutes. Randy works filling boxes. When he is done,
Jo starts checking his work. How many boxes were filled and checked if the entire
project took 56 minutes?
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Table 2: Categories for interpreting the purpose, coutent, errors, and relative status of

problem -solving episodes.

Strategic purpose
Comprehension
Sotution attempt
Verification

Tactical content

Annotation
Problem elements
Retrieval of formulas
Diagram

Algebra

Model-based reasoning
Simulation
Heuristic

Ratio
Whole/part
Part/whole, part/part
Proportion
Scaling

Unit

Procedure

Conceptual content

Frrors

Conceplual errors
Errors of comumission
Errors of omission

Maaipulation errors
Algebraic errors
Variable errors
Arithmetic errors

Status of episode within solution attempt
Consistency
Before
During
Aflter
Transition
Subgoal
Wrong
Impasse
Lost
Final solution
Found solution wrong
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Table 3: Percentage of subjects with a scored category during their solution attempts.

Table 4: Final episodes: percentage correct by subject groupings.

Problem MOD | MRT | WT | WC
Tactical content
Algebra 824] 859] 71.8] 635
Model 306 | 224 353| 471
Ratio 1761 141 153 ] 424
Procedure 0.0 1.2 21.2 0.0
Units 3.5 12 1.2 1.2
Notations 71| 153 21.2| 294
Diagram 694 | 365 8.2 94
Strategic purpose
Comprehension 84.7| 64.7| 57.6| 60.0
Solution attempt | 100.0 | 100.0 | 100.0 | 100.0
Verification 28.2 | 20.0 7.11 200
Episode transitions
Solution 976| 753)] 859 | 976
Impasse 94| 10.6 71 4.7
Lost 4.7 212 153 3.5
Wrong 165 3881 2591 165
Errors
Omission 7.1) 212} 235} 118
Commission 176 | 494 | 424 | 14.1
Arithmetic 9.4 4.7 35 24
Algebra 5.9 8.2 8.2 0.0
Variable 1.2 59| 141 24
71

Problem MOD MRT WT TTwe
Group contrast* | M < W M>W M>W M<w }
Correct 891923 [[478 564587 64.1]] 93587
Incorrect 65| 7.7)19.6| 1541 283 | 20.5 65| 5.1
No-solution 43) o0 fl326 282 130]154] 00| 51
"M sees MOD, WT, WC, MRT; W sees WT, MOD, MRT, W("

72



Tabl Final epi i Table 6: Errors and transitional status of a previous episode compared with the puipose of
able 5: Final episodes: tactical content and errors by correctness. a model-based reasoning episode.

Problem MOD MRT WT wC Problem MOD MRT WT W
Outcome® CJI|INJC] I|INJJC] I|]NJC]|IIN n 2 || 19 30 a0
n 77161 20Kk44115126 1521211124 78151 2 Purpose‘ CISTVIETsS TV © SJV ‘(:J 5 J v
Tactical content No preceding SRS i e
Algebra 6586|0136 8|20 437 S| 7([[44]|2{ 1 episode vitoll ilal oll? “J ol 2 ()]
Model 3j010 41 21 6 2 1 2121110 N ; S et G LI R
Ratio ol 2f af 3 of 5] af 2221 O oine coisod
Procedure olojoj of ojoff 1)Jun] 1}l ojofo '(’)': fm';g cpisode tetatstetatststitioll »
Units PANR ] o ol o ofj of o ojofo .
Not scored 1o ol ol 2| of 1] 1] o 0]1]0 Abandon tjojojtit]of 0j2i00 0] 0ff)
Errors Error:oi: preceding 1 1
Conceptual t{6foffofa{6l 1{27fw0l 1({alo episode L]
Manipulative | 7[2[ of 1| 5] 2 «| 7| 1 2]1] o 2: ":“‘ : g g ‘l’ g e ‘z’ o
andon
“EC = correct; I = incorrect; N = no solution. - = - = = - _L--—_~ RSN P Iy
C = comprehension; S = solution attempt; V = verilication.
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Table 7: Errors before and during model-based reasoning. distance
100 + 5.5
Problem MOD MRT WT WC 550 kilometers
n 26 19 30 40 /\_‘
Model episode Errors | None || Errors | None || Errors | None || Errors | None
Previous episode rate time
No episode 0 8 2 3 1 20 0 12
55h
Frrors 1 4 2 4 o 2 1 q 100 kph ours
No errors 0 13 1 7 0 7 0 23
Figure 1: A multiplicative relation involving two extensives and a single intensive
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.
total output
(a) prodl + prod2

(given)

L output 1 output 2
- ratel » time rate2 » time

P (inferred) {inferred)

(a) (b)
‘ {unknown) Collinear A Opposite direction Collinear
____________ Distance | Distance 2 Time | Time 2

~~~~~~ r- ate 2 @ @ @ @ @

(given) | ()
Thiih
— 60 k/h 100 k/h
output ) ’ Y
(b) ratel « (total — time2) Congruent
= rate2 » time2 100 k Adjacent
{unknown) ‘ - ——

60 k

—

Figure 3: A situational context for motion in opposite directions: (a) and () show places
total time

and segments for output and time, while (¢) shows inclines for rates when these dumensions
are arranged orthogonally.

(given)

rale | time | time 2 rate 2
total — time2
(given) (inferred) _({inferred) {given)

Figure 2: The quantitative structure of two problem classes: (a) contains problems MOD,
W T while (b) contains MRT, W(..
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]
-------- ° (@) g T (4)
(a) —_— - (b) —————— e m - m - l ' | L '
880 kilometers 880 kilometers

Figure 4: Operations based on different interpretations of two~dimensional inclines: (a)
shows a concrete situation successively “joined” 1o give an iterative simulation of states
within the problem model; (b) shows an invariant relation “scaled” to give a heuristic
estimate of a final state in the model.

Figure 5: Solution attempts using model- based reasoning on problem MOI): (a) “joins”
successive concrete inclines in an iterative simulation; (b) “scales”™ inclines as an invariant
multiplicative relation in a heuristic estimation.
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OUTPUT RELATIONS
Congruent Adjacent

——

MOD, WTA
problems

CELTS
B O s m0R B 00N

[ MRT, WC

J problems

Figure 6: A matrix of situational contexts for pairs of isomorphic motion and work problems.
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Mary can do & job in § hours and Jane can do the ; b i
work together, how long will it take to do the job? o8 1n 4 houra. If they

Hoxy dos s et o A2
__ /«Z v My e [ fr @

V?aﬂ/q«.*l T
x (V54 ) =)
1:('7;0*‘/:4)‘(
x( V)= @

Dovee creer -
Vs (%56 ) +(%) %= |
. Ya + % = @

r;&?.

Figure 7: Protocol of subject m20 on the WT problem.
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Two trains leave the same station at the same time. They travel in opposite
directions. One train travels 60 km/h and the other 100 km/h. In how many
hours will they be 880 km apart?

I
| Yy = 62 \LW/LW-,@
b - = (<‘,'/ '/4
) e /e

- - m—— =T TV o b et
D/..)' o [r0 \02 = {62
‘g e 3D ) =3
4(~x77 2y ) 377 ? a((g @
v o
c+ Yo 300 L’UO) N qt L’O o
L4 em " 30 b = .
e i Bl St o=t
- = —— t: uly = S YM
@ od r-dlees 5o
—‘ —/_:;—r “(‘ I!(‘r
\\o(‘,) Ty @

Figure 8: Protocol of subject w06 on the MOD problem.
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George rode out of town on the bus at an average speed of 24 miles per hour

and walked back at an average speed of 3 miles per hour. How far did he go
if he was gone for six hours?

bus distance = @L{ miles /kc-)()( bus)
(.Ua“:inj distance = (3 m‘kr/ﬁ.-)(b-xhoux)
bus distance = wa“(fv\ﬂ dictance
G4 miles /he) (X hours) = (Bmiler/nm)((o-X howrs)
™ x = 18-3x
@ QAIx = 18

- 8 _ 2
x— —ﬁ-,3hou.rs

bus distance = (2‘-& miles/hr) (%)\ours)

bus distance = lo miles = wach'fa distance

[ miles
22 miles

Dne way
Rou.nd T"fP

Figure 9: Protocol of subject m39 on the MRT problem.
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Two trains leave the same station at the same time. They travel in opposite
directions. One train travels 60 km/h and the other 100 km/h. In how many

hours will they be 880 km apart?

£0 {4!/1/
i

100 km/H @

60 EMIK
————
160 e/

180 km JOO0 km

5 HRS

J00 ke 500 km

370 kmm S50 £m

Figure 10: Protocol of subject m03 on the MOD problem.
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Mary can do a job in § hours and Jane can do the job in 4 hours. If they
work together, how long will it take to do the job?

N Marg = She (1) ¢ .° ,

Figure 11: Protocol of subject m32 on the WT problem.
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George rode out of town on the bus at an average speed of 24 miles per hour
me: vgalked back at an average speed of 3 miles per hour. How far did he g°
if he was gone for six bours?

~-4

oty el 24 mpe o
I
!

C ‘F v .
i 2L} Bus Hrovels @ x faster trant Gere
he © pC

éworgc travels bace 24 mites foc B hours

g g b et QD
—er Wwe want [ hours whith s 54 .

Mm~l’«: [ M
a3 Th# @

ua ma(esJ

Figure 12: Protocol of sub Jject w17 on the MRT problem.
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— em . o wm  cmms =

directions. One train travels 60 km/h and the other 100 km/h. In how many
hours will they be 880 km apart?

@ e 830 kw Wk 4 be dran Tewls W/ 60 ku/h
b " — " "_/-um l"’-‘—/k

@ /‘NW\ | Shy (%) ) _2\[_1.(:& AsuC  tram

o A ./So A .éy Mo bax Oj, -'ké‘-\.fs
- —o;:\:-}%ﬁﬁs_ gh'mn' t bt ‘5%0 [N c\_‘)a(‘f A,

® - paae]

Figure 13: Protocol of subject m19 on the MOD problem.
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Mary can do a job in § hours and Jane can do the job in 4 hours. U they
work together, how Jong will it take to do the job? @

X=3' \’sq

X !-0\1 =95 @

Ox +y = Y

HY =g

<L - . .

sty | Hourdpeod o oo [ha
P "%\(' s %(ﬁu d(..'.):, Bibwn\a\_
L!xcf\, =0 @

Figure 14: Protocol of subject w23 on the WT problem.
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? miles
—
distance
(3/ ) *(6-ta)
=3 %t
(unknown)

||
total time
6 hours

rate 1 time 1 time 2 rate 2
3m/} gh 6 — ta ta "~ 3m/h
(given) (inferred) (inferred) (given)

Figure 15: Combining interactive illustrations: a two—dimensional frame and a quanmtatxve
network for problem MRT.
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