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Abstract

Recent advances in continuum plasticity: phenomenological modeling and experimentation
using X-ray diffraction.

by
John Kearney Edmiston
Doctor of Philosophy in Engineering - Mechanical Engineering
University of California, Berkeley

Professor David J. Steigmann, Co-chair
Professor George C. Johnson, Co-chair

This work explores the field of continuum plasticity from two fronts. On the theory side,
we establish a complete specification of a phenomenological theory of plasticity for single
crystals. The model serves as an alternative to the popular crystal plasticity formulation.
Such a model has been previously proposed in the literature; the new contribution made here
is the constitutive framework and resulting simulations. We calibrate the model to available
data and use a simple numerical method to explore resulting predictions in plane strain
boundary value problems. Results show promise for further investigation of the plasticity
model. Conveniently, this theory comes with a corresponding experimental tool in X-ray
diffraction. Recent advances in hardware technology at synchrotron sources have led to
an increased use of the technique for studies of plasticity in the bulk of materials. The
method has been successful in qualitative observations of material behavior, but its use in
quantitative studies seeking to extract material properties is open for investigation. Therefore
in the second component of the thesis several contributions are made to synchrotron X-
ray diffraction experiments, in terms of method development as well as the quantitative
reporting of constitutive parameters. In the area of method development, analytical tools
are developed to determine the available precision of this type of experiment - a crucial aspect
to determine if the method is to be used for quantitative studies. We also extract kinematic
information relating to intragranular inhomogeneity which is not accessible with traditional
methods of data analysis. In the area of constitutive parameter identification, we use the
method to extract parameters corresponding to the proposed formulation of plasticity for
a titanium alloy (HCP) which is continuously sampled by X-ray diffraction during uniaxial
extension. These results and the lessons learned from the efforts constitute early reporting
of the quantitative profitability of undertaking such a line of experimentation for the study
of plastic deformation processes.
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Chapter 1
Introduction

¢

On the profession of structural engineering: modeling materials we do not really
understand, into shapes we cannot really analyze, so as to withstand forces we cannot really
assess, in such a way that the public does not really suspect’ in Winds on High Rise Buildings,
(Parmelee, 1970)

The subject of this thesis falls under the weathered and tattered banner of continuum
plasticity!. In this introductory chapter we explain why such a classical subject still warrants
attention and give an overview of the thesis content. In §1.1 we begin by discussing the
general issues that remain in theoretical and experimental plasticity, as we see them. In
§1.2, the essential source of these issues is diagnosed as being difficulties in experimental and
constitutive frameworks for plasticity; a description of these difficulties is given. Finally in
§1.3 a summary of the rest of the thesis content is given.

1.1 Why plasticity?

Plasticity has been the subject of academic research for over 100 years (Reusch, 1867; An-
drade, 1914; Taylor, 1938; Schmid and Boas, 1950). Over that time, many models of plasticity
have been suggested. Many have been successful for their target application. Given its long
history it follows that one might ask why further study of plasticity is warranted. To this
question we respond with the following two observations from the field:

1. Lack of experimental techniques. Apart from simple tests such as uniaxial tension,
experimental capabilities for the quantitative comparison of plasticity models to physical
data simply have not been developed and/or are not widely available. More details of
these issues will be explained in §1.2. A modern, promising answer to this challenge are

ITo set terminology, in this document the term plasticity always refers to plasticity of continuous media.
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X-ray diffraction experiments, particularly from synchrotron sources (Poulsen et al., 1997)2.
Therefore, as one component of this work we provide detailed information about the ability
of X-ray diffraction experiments to investigate plasticity phenomena. This type of X-ray
diffraction experiment is referred to in the literature as High Energy Diffraction Microscopy
(HEDM) or Three Dimensional X-ray Diffraction (3DXRD) (Poulsen, 2004; Lienert et al.,
2011). Application of the method in several experiments is used to demonstrate how this
method can provide previously unquantified data. In particular, we are interested in using
the technique for constitutive investigation. Furthermore, we would like to determine which
properties and characteristics of single crystals can be obtained by experimentation using
polycrystals.

2. Unexplored gap in theoretical development. These days, the framework most
often used to model the plasticity of single crystals is crystal plasticity (Asaro, 1983). Details
of this model will be given later on in this chapter. For now it suffices to characterize the
model as being physically motivated, based on experimental observations of dislocations
moving through a crystal at the atomic scale.

In contrast, the plasticity of polycrystalline materials has historically been approached
using phenomenological considerations which have few inherent restrictions apart from ma-
terial symmetry or other fundamental relations such as frame-invariance. For example,
many macroscopic polycrystals are reasonably successfully characterized by isotropic mate-
rial symmetry; the well known J; theory arises from the application of this phenomenological
approach (Malvern, 1969, p. 347). This type of modeling has also been used to describe
certain types of anisotropic polycrystals: the deformation processes required in the produc-
tion of sheet metal result in materials which have been profitably modeled as transversely
isotropic or orthotropic (Barlat et al., 1991; Cleja-Tigoiu and Tancu, 2011).

In summary, researchers of single crystals use crystal plasticity, and researchers of poly-
crystals use classical phenomenology. Although these may each be assessed as phenomeno-
logical theories, a distinguishing feature is that the latter imposes minimal restrictions apart
from material symmetry, whereas the former is constrained to slip system activity. For
the most part, these two similar yet distinct approaches characterize the modern plasticity
literature to date.

Between these two approaches there is a modeling possibility which, at present, remains
unexplored apart from theoretical suggestions: a classically motivated phenomenological the-
ory for single crystals. Certain aspects of this approach may be considered similar to the
formulations used to model polycrystals. However the material symmetries characterizing
single crystals are much more challenging to deal both theoretically and experimentally, than,
e.g., transverse isotropy. Given the widely accepted successes of crystal plasticity, such a
phenomenological theory might seem out of date. On the other hand, in terms of arriving at
answers of practical interest, phenomenological modeling is typically (historically speaking)

2 Although synchrotrons are not widely available!
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excellent. After all, phenomenological relations such as Hooke’s law seem to have turned out
fairly well in terms of guiding structural design. Many similar examples exist, such as Fick’s
law of diffusion for chemical engineering problems. Such formulations exhibit a degree of ele-
gance in the acceptance of our modeling ignorance, and recognition that detailed interactions
of individual atoms will in the end not be important to the goals of a particular macroscopic
application. More precisely stated, these models simply express that complicated physics can
at times be captured better by using a model which is flexible enough to accommodate the
complexity while remaining true to the most fundamental considerations. Therefore, while
physically motivated models like crystal plasticity are clearly attractive, we should keep in
mind the community’s experience from other applications of continuum physics, where the
ability of physical models to describe experimental data at continuum length scales is often
wanting. For example, strain energy functions for rubber materials derived from statistical
thermodynamics considerations prove to be inadequate in comparison to phenomenological
approaches (Treloar, 1974; Ogden, 1982). Furthermore in plasticity itself, there are still
phenomenological observations which have not been well answered, such as the Hall-Petch
effect (Lim et al., 2011).

In conclusion, given the unexplored nature of the modeling framework, along with possi-
ble benefits in certain applications, the second aspect of this thesis is the development of a
classically justified phenomenological model of plasticity for crystalline materials. Constitu-
tive equations are suggested, and numerical predictions of the resulting theory are reported.
The hope is that this work at least gives the proposed approach to plasticity the opportunity
to show itself to be useful. Whether or not it is of course, can be judged upon the basis of
the model’s ability to explain experimental observations.

In the next section, we see that these points are really two aspects of the same fun-
damental problem - the lack of validated constitutive frameworks for plasticity. We share
some general thoughts on the importance of constitutive functions in continuum mechanics,
and explain why the constitutive problem is singularly difficult to establish for theories of
plasticity.

1.2 Challenges in constitutive equations for elastic-plastic
materials

In theories describing the motion of continuum material bodies, constitutive functions re-
lating the motion of the material to the forces generated by the material are required to
make predictions. These functions can only be deduced from experimental observations at
some stage, a theoretical model is not sufficient (even for molecular-level modeling, particle
masses must be known from experiment). With these constitutive functions in hand, numer-
ical simulations can be utilized to make predictions about material behavior under various
situations of practical engineering interest.
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The specification of constitutive functions is usually reducible to the determination of
certain constants which characterize the material behavior. That is, for the same family of
constitutive functions, the numerical values of the constants generally differ from material
to material. Such constants quantify the distinction in physical behavior between dropping
a block of steel from a given height onto the ground from that of water under the same
conditions. Intuitively, the vastly different outcomes expected from this scenario underlines
the importance of determining these material dependent functions and parameters in order
to make predictions. It is noteworthy to point out that in this steel/water example, the
core theoretical framework (balance equations) in both cases are identical - therefore the
determination of the material parameters is crucial in order to make meaningful physical
predictions of material behavior in different conditions.

The experiments required to obtain values for these constitutive parameters are not
always straightforward to execute. For solid elastic bodies, the experimental prescription is
well established, at least for materials which are available as large single crystals. To date,
however, the situation remains challenging for the constitutive specification of functions
involved with elastic-plastic deformation. This is the case for several reasons, which we now
describe.

(1) First, the mathematical description of elastic-plastic deformation requires some notion
of a decomposition of the total material deformation into elastic and plastic parts.®> The task
of measuring both elastic and plastic portions of the deformation immediately causes severe
experimental challenges compared with considering elastic strains alone, challenges which to
date have not been adequately put to rest.

Currently, measuring elastic and plastic strain has the most hope for crystalline materials,
where techniques such as X-ray diffraction give a unique definition of elastic strain. The
total material strain is also measurable at the surface on the same length scale as the X-ray
diffraction measurement with modern techniques such as Digital Image Correlation or DIC,
(Sutton et al., 1986; Vendroux and Knauss, 1998). A proposed experiment would use both
techniques at the same time, thereby enabling the measurement of both elastic and plastic
strain by deducing plastic strain from the independently measured total strain and elastic
strain.

Interestingly, in Taylor’s original experiments on the plasticity of single crystals in the
1920s (Taylor and Elam, 1923), he was essentially able to measure both elastic strain (at
least lattice orientation) and total material strain by using a combination of X-ray diffraction
and the geometric measurement of a set of lines scribed into the material, see Figure 1.1.
Even now, we really haven’t improved experimental techniques for the study of plasticity to
a great degree over the methods of Taylor almost 100 years ago. Digital Image Correlation is
simply a more refined method of measuring total material strain than Taylor used: essentially

3More formal definitions of what is meant by elastic strain vs. plastic strain in this study will be provided
in the next section
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\Scribed lines
===
Figure 1.1: Scribed lines on the single crystals used in Taylor’s experiments, translated from
(Taylor and Elam, 1923). Taylor’s careful measurements of these lines gave an estimate
of the total material deformation. At the same time, X-ray diffraction measurements were
performed, giving an estimate for the lattice strain (orientation). This complex experimental

technique is required for constitutive validation of elastic-plastic constitutive equations, but
executing such a program with modern technology is still not easily achieved.

taking a ruler to measure the evolving lengths of material lines. X-ray diffraction technology
has also improved, so that full elastic strain tensor can be estimated instead of only the
orientation component. However the basic method for X-ray analysis is the same as for
Taylor. Only the data collection hardware and the quality of X-rays have changed.

(2) The second reason constitutive specification for elastic-plastic deformation is challeng-
ing is that there are simply many constitutive functions to determine, many more than for
elasticity for instance. In the theory developed here, we will see that at a bare minimum,
we require the specification of a plastic flow rule, which describes the time evolution of the
plastic strain. The flow rule might simply be a function of, say, a stress measure. Based
on the experimental challenges mentioned in the previous paragraph, however, the task of
determining this ‘simple’ function is difficult enough to accomplish. The situation becomes
progressively more complicated as arguments which are necessary to capture phenomenology
associated with plasticity are added to the constitutive functions. For example, incorporat-
ing hardening behavior into the model necessitates additional functional arguments, hence
additional experimental measurements, and therefore a greatly complicated experimental
picture.

Summary. Clearly, the experimental undertaking required in obtaining constitutive func-
tions for elastic plastic deformation of single crystals is challenging. The challenges to produc-
ing a constitutive framework validated by experimental data for elastic plastic deformation
have not been significantly reduced since Taylor’s time. This is probably one reason con-
tinuum plasticity is still subjected to new theoretical formulations. The lack of constitutive
information and experimental validation enables such a proliferation of formulations. Ad-
mittedly, in this work we further muddle this state of affairs, by adding another formulation
of plasticity to the mix. However, we also describe how this theory may be investigated
experimentally, and establish calibration of constitutive functions to available data. That is,
we pay our debt, so to speak.
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1.3 Overview of thesis content

The primary contributions in this work present progress in plasticity by developing an ex-
tension of phenomenological plasticity to single crystals, as well as a detailed analysis of a
modern class of synchrotron X-ray diffraction experiments. These topics are naturally syn-
ergistic since X-ray diffraction is required to execute an experimental investigation of the
proposed theory. They also share a clean commonality of formulation. We now describe a
more detailed summary of the thesis. What are felt as novel contributions to the field are
pointed out as they are addressed, in order to draw experienced readers’ attention.

In Chapter 2, we develop the phenomenological formulation of single crystal plasticity
and give numerical predictions. The theoretical development is in the family of work by
Fox (1968); Naghdi and Srinivasa (1993a); Gupta et al. (2011). The present contribution is
made distinct from these previous works by developing these models to the level of detail
needed to make numerical predictions, then coding and executing the simulations. For the
first time, therefore, the validity of the previously proposed phenomenological frameworks
for single crystals can be critically examined against experimental observations.

Of primary importance, this task requires the construction and validation of constitutive
functions. One may be tempted to consider the problem of writing down constitutive func-
tion representations for crystals trivial, upon recognition of the presence the review article by
Zheng (1994). These methods use the elegant structural tensor approach to generate consti-
tutive functions in a systematic fashion (Liu, 1982). However, for higher symmetry crystals
such as cubics, the representation problem is not as easy as with low crystal symmetries like
monoclinic, for instance. If high symmetry crystals were of little use in applications, this
may not pose a problem, but high symmetry crystals include the practically important struc-
tural metals such as iron (BCC), aluminum (FCC), and titanium (HCP). Furthermore, the
structural tensor approach becomes rapidly less favorable when considering multiple tensor
arguments (Xiao, 1996), as we will require.

We found that producing appropriate constitutive functions for the symmetry groups
characterizing crystals requires a certain willingness to tolerate relatively lengthy mathe-
matical procedures needed to reduce the constitutive equations. In fact, the tedious nature
of generating these functions may be one cause of the previously mentioned gap between
Jo phenomenological plasticity and slip system based crystal plasticity*. We give examples
which should be sufficient to develop constitutive functions for each of the 32 crystal point
groups, for functions of several arguments. In particular the maximal cubic symmetry and
maximum hexagonal symmetry groups are investigated. This contribution is further embold-
ened by providing a calibration of the constitutive framework against available data. These
efforts open up this line of modeling to further application-based study by the community,
and is a useful outcome of the modeling component of this thesis.

4As we will see, the formulation of slip system based crystal plasticity cleverly avoids these computations.
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A second contribution is that the numerical framework has the capability to compute
the geometrically necessary dislocations as a quantity derived from the spatial gradients in
plastic deformation. The role of geometrically necessary dislocations in theories of plasticity
is not a new notion (Acharya and Bassani, 2000; Gupta et al., 2007), however incorporating
such quantities into simulations is more recent (Lele and Anand, 2009). Therefore we exam-
ine the predictions resulting from several proposed constitutive functions which incorporate
hardening due to geometrically necessary dislocations.

Next we examine experimental aspects of the theory. In Chapter 3, we discuss modern
synchrotron X-ray diffraction techniques from the HEDM and 3DXRD family in detail. To
date, the method has been successful in terms of discovery type research, which is important
but is of a qualitative nature. It remains to be determined what else the experiment can
be used for. Here, we are interested in using it to investigate constitutive behavior of single
crystals. Several early studies along these lines are reported in the literature (Bernier et al.,
2008; Efstathiou et al., 2010) but further research is needed. We recast the kinematic theory
of X-ray diffraction from a mechanics, as opposed to crystallographic, perspective. This
imbues a natural synergy between single crystal plasticity and X-ray diffraction which is
hopefully appealing to non-crystallographers, and highlights the natural relation between
X-ray diffraction and the theory developed in Chapter 2. These background sections should
then serve as a good one-stop reference for other crossover researchers from mechanics to
applied crystallography, although they are also needed as the foundation for modeling efforts
in later sections of the chapter.

Following this background, we examine two novel methods of analyzing the data from
this type of experiment. The first method is targeted at investigating the attainable precision
from the measurements, i.e. uncertainty analysis. Such uncertainty analysis determines the
strength of the conclusions which can be made from a given experiment, and is particularly
important to consider in the constitutive context (Zohdi, 2001). The second method develops
the theory for numerical implementation of a novel approach to lattice refinement which can
quantify the intragranular texture development in single crystal grains by forward modeling
individual diffraction peak intensities. It should be emphasized that the deductions from
these approaches to the analysis of X-ray diffraction data are not accessible with conventional
methods. Finally, the model and experiment are brought into direct alignment when we
extract constitutive parameters from the plasticity theory by analyzing the data from a
titanium alloy loaded in tension with in situ X-ray experimentation.



Chapter 2

Phenomenological Plasticity

Chapter overview. In this chapter we develop the theoretical foundations of the proposed
model for single crystal plasticity. An attractive goal of the theory is for it to be amenable
to investigating using a prescribed experimental approach. In light of this all quantities
presented in the theory are directly measurable using X-ray diffraction experiments!.

The theoretical basis for the plasticity model is similar in thinking to those previously
proposed in the literature (Fox, 1968; Naghdi and Srinivasa, 1993a,b; Gupta et al., 2011).
The basic idea in these theories is that, in addition to the standard mathematical structure of
a continuum, a triad of inertia-less directors is defined at each material point. The directors
characterize the stress response of the material, which in turn couples to the overall material
motion through balance laws. Importantly, during plastic deformation the directors evolve
independently of the material. In the present theory, these directors are interpreted as
the (direct) lattice vectors of the crystal. Since the direct lattice is isomorphic with the
reciprocal lattice, and X-ray diffraction measures the reciprocal lattice, we can therefore
obtain experimental measurements of the directors.

At a minimum, this theory requires constitutive functions for the stress response and
the evolution of the directors during plastic low. The main contribution in this chapter is
that we develop these constitutive functions for various classes of crystal symmetries, e.g.
cubic, hexagonal (Green and Adkins, 1970). These functions are the missing ingredient
in, for instance, previous papers (Fox, 1968; Naghdi and Srinivasa, 1993a,b; Gupta et al.,
2011), which has limited the investigation and subsequent judgment of the viability of the
formulation until this point. Based on the importance of cubic crystals in engineering (e.g.
aluminum (FCC), iron (BCC)), we calibrate several proposed constitutive functions for cu-
bic crystals against available data. This data is generated through simulations of crystal
plasticity models from the literature. In Chapter 3 we also calibrate a hexagonal crystal
model directly against X-ray diffraction data. Together, the proposed constitutive functions
for several crystal symmetries with calibrated parameters constitute the one outcome from

1 X-ray diffraction theory and application is discussed in Chapter 3.
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this chapter.

We then implement the model in numerical plane strain simulations to test its predictions
in illustrative boundary value problems. A benefit of the numerical framework we use is that
it enables the computation of geometrically necessary dislocations from gradients in the
plastic deformation field. Several authors have proposed incorporating such information into
the plastic constitutive equations (Acharya and Bassani, 2000; Gupta et al., 2007), but only
recently has this been reported on numerically (Lele and Anand, 2009). In the work of Lele
and Anand (2009), it is not clear how to relate their definition of geometrically necessary
dislocations to ours, since their material is isotropic, which we do not restrict ourselves to
here. Therefore, the numerical predictions of geometrically necessary dislocations and their
incorporation into constitutive functions for cubic crystals are a second contribution from
this chapter.

Content of chapter. In §2.1, a historical review of plasticity research is given. We explain
the fundamental discoveries resulting from G.I. Taylor’s influential experiments, and summa-
rize the largely independent evolutions of crystal plasticity and phenomenological plasticity.
We also discuss objections that have been leveled toward these two approaches to plasticity.
In §2.2, we develop the advertised theory of phenomenological plasticity for single crystals.
Relevant thermodynamics and balance laws are recorded, along with the general constitutive
framework. We describe a rate independent model, as well as the rate dependent, viscoplas-
tic extension. In §2.3, more precise constitutive functions are posed by accepting additional
hypotheses such as maximum plastic dissipation. Phenomenological constitutive equations
for single crystals are difficult to determine, particularly for high symmetry crystals such
as cubics. This difficulty may be one reason previous researchers have not attempted the
present approach to modeling single crystal plasticity. In an attempt to make the framework
more appealing for future investigation, in §2.3 we provide detailed examples of the gener-
ation of constitutive equations for several crystal types. The hope is that these examples
serve as points of reference should other researchers utilize this model for any of the 32 crys-
tallographic point groups. In §2.4 the theory and constitutive framework from the previous
sections are implemented into numerical simulations. The phenomenological constitutive
model is calibrated against data by using material point simulations constructed to approx-
imate experimental techniques. The data is obtained through simulation, using calibrated
crystal plasticity models from the literature in the same material point simulation. Finally,
plane strain boundary value problems are executed. The results are assessed for qualitative
properties such as the localization of plastic flow and development of geometrically neces-
sary dislocations. A lack of experimental data restricts the investigation beyond this level
of detail. Since the constitutive framework is basically open, several parameter studies are
performed. In particular, implications of hardening and plastic flow viscosity are examined.
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2.1 Background

The goal of this section is to review aspects of the history of plasticity. In this way we can
see a zoomed out view of plasticity theories, in hopes that the gap in development mentioned
in §1.1 becomes evident. We begin by reviewing G.I. Taylor’s experimental work (Taylor
and Elam, 1923), which eventually led to modern crystal plasticity. We then discuss the
simultaneous but independent developments of crystal plasticity and classically motivated
phenomenological plasticity. Finally we discuss objections which have been leveled at both
approaches to plasticity. It is important to note that all objections made carry admittedly
little weight until the experimental challenges to investigating plasticity phenomena noted
in §1.2 are answered.

2.1.1 Historical review of continuum plasticity

In this section we give a brief history of continuum plasticity. We first give an account of
Taylor’s contributions to plasticity. Then we describe the subsequent development of the
current gold standard modeling framework, crystal plasticity. We also review the devel-
opment of phenomenological theories similar to the one we will be employing later in the
chapter. We begin with a brief exposition on an atomistic view of plasticity in crystals, the
main ideas of which are commonly seen in undergraduate texts of materials science.

Review: crystal slip. In materials science, the description of the mechanics of plastic de-
formation of single crystals is dominated by the notion of slip. Kinematically, slip is a simple
shear deformation on particular crystallographic lattice planes in particular crystallographic
directions. Recall that the deformation gradient for a simple shear motion is written as

F=I+vs®n, (2.1)

where F is the deformation gradient, I is the identity, n is the normal to the plane of shear,
s is the direction of the shearing motion, and ~ is the magnitude of the shear. For later use,
the velocity gradient corresponding to time evolution of 7 in (2.1) is given by

FF ! =4s®n, (2.2)

where 4 = v, is the rate of shear on the slip system.

According to experimental studies near the atomic scale, plastic deformation is accom-
modated by the motion of dislocations on certain planes in the material. The motion of a
large number of dislocations on the same family of lattice planes approximates the shearing
motion given by Equation (2.1). This shear deformation mechanism becomes active when
the resolved shear stress on the dislocation reaches a certain critical level. Given an appro-
priate stress measure T (say, the Cauchy stress), the traction vector, t, on the shear plane
with normal n is given by t = Tn. The resolved shear stress conjugate to the shearing
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motion (2.1) is then given by projecting the traction vector t on the shear direction, giving
the quantity 7 = Tn - s, where 7 is the resolved shear stress. Typically, we impose that for
T < T., where 7. is a certain critical stress level, there is no slip. For resolved stresses at or
above 7., the shear rate % is non zero, and a shearing motion of the form (2.1) is manifested
in the material over time.

These notions of plastic deformation, which are accepted as obvious to modern students
of engineering or materials science, were not given an experimental foundation until the work
of G.I. Taylor in the 1920s-1930s (Taylor and Elam, 1923; Taylor, 1938). His experiments
showed that simple shear, (2.1), was indeed the deformation mode present in crystals. This
was deduced by loading specially prepared samples in tension, and simultaneously using X-
ray and visual measurements of the lattice and material, respectively. Although simple shear
was suggested as the deformation mode of crystals based on previous observations of glide
bands in single crystals, see for instance Schmid and Boas (1950, p. 57), Taylor examined
the problem without accepting this notion a priori.

In many respects, the experiments of Taylor have not been surpassed - since in his
work both material deformation, F, and lattice deformation, denoted H, were measured
independently. Due to the importance of Taylor’s contribution to the mechanics of crystals,
and as an interesting point of historical discussion, we review his experimental method and
subsequent deductions in the next section.

2.1.2 Contributions of G.I. Taylor

The advent of many concepts in modern plasticity are generally attributed to G.I. Taylor’s
experiments in the 1920s. In this section we give a short overview of Taylor’s methods
and findings. We focus on the experiment reported by Taylor and Elam (1923). In these
experiments, large single crystals of aluminum, machined into a parallelepiped geometry,
were scribed with a set of lines, see Figure 1.1. These samples were loaded in axial tension,
until plastic flow commenced. At various points during this process, the scribed lines were
used to measure the total material deformation in the sample, by measuring angles and
lengths with microscopes and micrometers (Taylor and Elam, 1923). Simultaneously, X-ray
diffraction measurements were made, monitoring the rotation of the crystal. They extended
the crystal up to 78% total strain, measuring the material deformation at various times
during the test.

Analysis of their data resulted in the following deductions. From the X-ray observations,
they found that during the extension, the material remained of the same crystal symmetry.
From the total deformation, they found that the material density was essentially constant.
Based on these findings, and perhaps some hints from glide band geometry, they decided to
examine what they call the unstretched cones in the material. The term cone is somewhat
laden with connotation; here the unstretched cones are the sheets of material that remain of
the same Fuclidean length at various stages of deformation. They are not necessarily a cone
shape in normal usage of the term.
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For a visualization of the unstretched cone upon different deformations in a two dimen-
sional schematic, see Figures 2.1(a) and 2.1(b), which depict simple shear and axial extension,
respectively. In these figures, an initial array of material points is traced by a circle. Upon
deformation, these points map to become elliptical shapes. The unstretched cone is defined
instantaneously by the line segments which may have rotated but do not change in length.
Using the constant length attribute, the unstretched cone can be plotted geometrically by
finding the points of intersection between the deformed ellipse and the initial circle, as shown
in Figures 2.1(a), 2.1(b). In the book by Havner (1992), Taylor’s expressions for determin-

extension

shear

£ o unstretched cone

unstretched cone

(a) Simple shear. (b) Uniaxial extension.

Figure 2.1: Two-dimensional depiction of the unstretched cone, in a homogeneous simple
shearing deformation on the left and uniaxial extension on the right. The initial material
points traced by the circle are deformed into an ellipse. The line elements in the material
with the same length at the deformed and undeformed state constitutive the unstretched
cone. This cone is defined at the intersection between the initial circle and the ellipse.

ing the unstretched cone are simplified mathematically; they are concisely expressed as the

directions v, such that
v-F'Fv =1, (2.3)

where F' is the material deformation gradient, and v is the unit vector of unextended direc-
tion.

Taylor’s original published results of the unstretched cones are reproduced in Figures
2.2 and 2.3. In these figures, the unit directions v satisfying Equation (2.3) are projected
onto the stereographic net, which is shown in Figure 2.4. To make sense of the symbols in
Figures 2.2 and 2.3, assign a standard spherical polar coordinate map to v. Then the crosses
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in the figures represent material directions for which 6 > /2, where 6 is the polar angle,
and the solid dots represent material directions for which § < 7/2. Figure 2.2 represents
the unstretched cone data up to 40% axial strain, while Figure 2.3 represents the same data
from 40 - 78% axial strain. There are clearly some qualitative differences between the two
levels of deformation, which we explain next.
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Figure 2.2: Experimental data of the unstretched cones from (Taylor and Elam, 1923).
The crosses indicate projected points which have spherical polar angle § > 7 /2 dots are at
0 < m/2. This data is similar to what would be expected upon a simple shear deformation,
see Figures 2.1(a), 2.5(a).
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Figure 2.3: Experimental data of the unstretched cones from (Taylor and Elam, 1923).
The crosses indicate projected points which have spherical polar angle § > /2 dots are at

0 < /2. This data is similar to what would be expected upon a uniaxial deformation, see
Figures 2.1(b), 2.5(b).
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Figure 2.4: Stereographic net used to visualize the projection of unit vectors onto a two
dimensional plane, from (Taylor and Elam, 1923). To relate this to a familiar object, the
vertical lines meeting at the poles represent longitude, the corresponding orthogonal set of
lines represent latitude.
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Analysis of Taylor’s results. The low strain result of Figure 2.2 has an unstretched cone
consisting of what are apparently two planes, cutting through the initial material ellipsoid (a
sphere in three dimensions). Taylor deduced that this indicates that simple shear deformation
is indeed prevalent during plastic deformation. To see this, we first generalize the two
dimensional schematics in Figures 2.1(a) and 2.1(b) to three dimensional deformation in
Figures 2.5(a) and 2.5(b). In three dimensions, these figures show how a simple shear
deformation has two unextended planes, while uniaxial extension produces a conical section
which projects to a circle on the stereographic projection.

Comparing the simple shear deformation depicted in Figure 2.5(a) to the data in Fig-
ure 2.2 shows that the simple shear hypothesis appears valid up to moderate extensions. For
higher strains, the data in Figure 2.3 compares more favorably to Figure 2.5(b), which de-
picts an axial extension. This latter case can probably be explained by a history of multiple
slip, that is, that two slip systems eventually became activated.

In summary, Taylor’s experimental measurements indicated that simple shear kinematics
of plastic deformation of single crystals is experimentally observed. As a secondary observa-
tion, they found that multiple slip occurs at higher extensions, in which case the unstretched
cone looks more like that of a volume preserving uniaxial deformation.

unstretched cone

unstretched cone

T

(a) Simple shear. (b) Uniaxial extension.

Figure 2.5: Three dimensional illustration of the unstretched cones for simple shear on the
left and axial extension deformation on the right. The projection of the unstretched cone
on a stereographic net for simple shear more closely represents the data in Figure 2.2 than
Figure 2.3, and vice versa.
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Subsequent developments in plasticity. Taylor’s conclusive deductions of simple shear
slip kinematics led to a long history of experimental and theoretical development of single
crystal slip, in the years leading up to roughly 1970. See (Bell and Green, 1967) for a critical
review of many studies of the deformation of single crystal wires in tension up to that point
in time. This quantitative experimental work set the foundations for the development of
crystal plasticity in the 1980s.

Meanwhile, during this activity of investigating slip in single crystals in the years 1920-
1970, the modern theory of continuum mechanics was under development. These theories
were concerned with determining the most fundamental aspects of general continuum theory.
After considering thermodynamic restrictions, the only impositions on constitutive functions
were due to material symmetry requirements and observer invariance. Constitutive hypothe-
ses such as equipresence®are probably open for debate from practical grounds. Typically,
the form of these constitutive functions was in the form of polynomials, due to convenience.
For an arbitrary constitutive function, there is no physical reason polynomials should be
preferred. Nevertheless, there are many examples of successes with simple polynomial con-
stitutive functions. For the strain energy function, a quadratic order polynomial in the strain
tensor leads to a linear elastic stress response for instance.

With regard to plasticity theory in particular, applied studies from the phenomenologi-
cal/continuum school were largely concerned with polycrystalline materials. J, plasticity is
probably the best known example. Jy theory arises as a phenomenological formulation by
considering isotropic material symmetry, which is a reasonable approximation for polycrys-
tals at sufficiently large length scales. The application of similar phenomenological formu-
lations to single crystal plasticity was apparently overlooked however, at least with regard
to developing constitutive equations and examining applications. Instead of this seemingly
natural evolution, crossover between the experimental foundations of single crystal slip and
continuum mechanics theory began to overlap with the works of Rice (1971), Hill and Rice
(1972), Hill and Havner (1982), and Asaro (1983). These important combinations eventu-
ally culminated in modern computational crystal plasticity (Peirce et al., 1983; Asaro and
Needleman, 1984), which is an up-scaling of Taylor’s experimental findings based on (2.2) to
model a phenomenological combination of deformation modes due to the presence of differ-
ent slip systems. The basic framework of crystal plasticity hasn’t changed much in structure
since these foundations were laid, nearly 30 years ago.

We now examine some of the details of modern crystal plasticity models. Havner (1992)
suggests that the advent of crystal plasticity is an outgrowth of the constitutive equation for

2The principle of equipresence states that if a constitutive function is presumed to have certain dependen-
cies, say T = T(A,B, C,...), then any other constitutive function should have the same set of dependencies
as long as such a form does not violate a more fundamental physical relationship.
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slip plane flow apparently first suggested by Hutchinson (1976)
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where 7(®) = T - (sym (s ® n(®) is the resolved shear stress on the o™ slip system,

s(® n(® are the current slip direction and slip plane normal, respectively, and Téa), Mo, N are

material parameters representing physics akin to a stress scale, reference shear rate, and
rate sensitivity, respectively (Havner, 1992). The parameter n falls between 3 and 8 for most
metals, according to Hutchinson (1976). The shear rates 4, are then incorporated into slip
kinematics of the form (2.2). In modern crystal plasticity theories, the constitutive equation
for plastic flow has been refined and improved to the most often used form

Fo(EY) = Y75 @, 25

where F? € GL(3,R) is the plastic deformation. Here s, nj are the slip direction and
normal in a fixed intermediate configuration of the lattice (Asaro, 1983). The shear rate 4
is typically given by, (see Anand et al. (1997); Barton et al. (2005), among others)

o (TN
A =4 | — sign(7%), (2.6)

where 7% = S - sj ® nf is the resolved shear stress on the slip system, S is the symmetric
Piola-Kirchoff stress in the intermediate configuration of the lattice, s® is the flow resistance
for the slip system, 7, represents a reference shear rate, and m is a rate sensitivity parameter.
The total material deformation is constructed using the multiplicative decomposition

F = F°F”, (2.7)

where F€ is the elastic deformation. Some familiarity with crystal plasticity is assumed in this
section and we do not go into further details. Comments on the intermediate configuration
of the lattice, and other quantities are given in a later section; here the goals are to introduce
the historical development.

The original application for Equation (2.4) was to model plasticity at elevated temper-
atures Hutchinson (1976). Although authors such as Havner (1992, p. 201) suggest that
applying equations similar to (2.4), (2.5), (2.6) to analyze mechanics at ordinary tempera-
tures are ‘computational expedients’, he acknowledges that macroscopic texture predictions
have been successful with the method. The reduction of plastic flow to the form (2.5) along
with the Taylor hypothesis for polycrystals also gave rise to alternate views of analyzing
deformation textures which effectively avoid the solution of solving the full boundary value
problem (Mathur and Dawson, 1989; Bohlke et al., 2006).
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In contrast to this history of robust work based on crystal plasticity hypotheses, applica-
tions of classically motivated phenomenological theories of plasticity have generally been rel-
egated to polycrystalline materials. Although theoretical development of these phenomeno-
logical theories has continued (Gupta et al., 2011; Cleja-Tijoiu, 2003), most modern work,
and certainly most incorporation of experimental information, appears to be in the sheet
metal community. For example, deformation-induced anisotropy from the rolling process re-
quires phenomenologically derived anisotropic yield functions (Barlat and Lian, 1989; Barlat
et al., 1991, 2005) which are measured by punching out tensile specimens from the sheet and
performing uniaxial tension tests.

Of late, there has been renewed interest in refinements to phenomenological theories
of anisotropic materials due to the elegant mathematical structures available (Cleja-Tijoiu,
2003; Gupta et al., 2011; Steigmann and Gupta, 2011). However apart from a few studies
of related formulations (Papadopoulos and Lu, 2001), analysis of these phenomenological
theories remains of a theoretical nature. It bears repeating that one large obstacle to testing
the capabilities of the phenomenological modeling regime is the lack of experimental data
(Papadopoulos and Lu, 2001, section 5). Crystal plasticity does not suffer from this obstacle
as much, since the vast assortment of single crystal experiments done in the decades after
Taylor’s experiments (Bell and Green, 1967) can be directly implemented into constitutive
equations of the form (2.6).

It might be thought possible to calibrate a phenomenological model based on the same
data used to inform crystal plasticity. However, as noted by Bell and Green (1967), most if
not all of the data from these tests are presented in such a way that it is not possible to re-
deduce phenomenological constitutive behavior. For example, the classical crystal plasticity
experiment of the time (1920-1970) was uniaxial tension tests on single crystal wires. The
data from these tests are presented in the literature by resolving the shear stress on the
active slip plane (Bell and Green, 1967). In hindsight, it would have been more useful to
have the uniaxial stress-strain data, along with the associated lattice orientation. Such data
could then be used to calibrate a phenomenological model, which by nature does not suppose
the simple slip shear mode a priori.

Lack of usable data aside, the present work attempts to breathe some life into a phe-
nomenological theory which is amenable to investigating using an experimental methods
such as X-ray diffraction. We calibrate the model against a crystal plasticity prediction from
the literature. Although not as good as data, it will have to suffice. Of note, in Chapter 3,
we calibrate directly against X-ray data for a titanium alloy.

In the next sections, we highlight potential objections which have been made in the
literature against both crystal plasticity and classical phenomenological approaches. For
single crystals in prescribed orientations and under quasistatic conditions, models which
reduce to single slip, such as (2.5), make for an excellent model, as Taylor’s experiments
showed. The question of behavior in more complicated situations, such as a single crystal
embedded in a polycrystal, the influence of rate dependence, and the presence of large
elastic strains and/or hardening, is more open experimentally. We should keep in mind
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that experimental investigations of crystal behavior in these sort of practical but complex
situations has been limited, to date. Until this state of affairs improves, a degree of open-
mindedness should be kept toward alternate modeling approaches which are backed up by
experimental observations.

2.1.3 Deficiencies of crystal plasticity

Although crystal plasticity has been dominant in the computational plasticity community
over the last 30 years, it is not without detractors. Recall that the characteristic hypothesis
of crystal plasticity is form of the flow rule, written in Equation (2.5). An important thing
to note in regard to (2.5) is that, although physically motivated, it is still phenomenological
since slips are assumed to occur simultaneously, and not sequentially. When viewed as a
phenomenological theory, however, the form of the plastic flow is restricted by the supposed
physics of the material behavior, which may leave deformation modes exhibited in true
materials difficult or even impossible to manifest in the theory (consider how to model plastic
volumetric flow in the context of crystal plasticity, for instance). In essence, as the physics
and true slip behavior becomes more complicated, it is possible that an approach following
the structure of Equation (2.5) may detectably differ from experimental observations. The
point we are trying to make is that the form of the flow rule potentially limits the flexibility
of the theory to be predictive for the macroscopic quantities which are typically of interest
for engineering purposes, e.g. the macroscopic phenomenology.

One objection to the model from the point of view of mathematical elegance is because the
classically considered rate independent limit is not possible to achieve in crystal plasticity.
This is due to the non-uniqueness of slip systems required to accommodate a particular
plastic deformation (Havner, 1992). Therefore, in computations, either serious modifications
of the update algorithm are needed, or crystal plasticity must assume that all slip systems
are active simultaneously, hence the use of (2.6).

Thirdly, although constitutive parameters can be refined to match macroscopic experi-
mental data, it’s also not clear from literature reports if those constitutive parameters for the
same material work in other experimental configurations. Calibration of the plasticity model
(say, s, o, m of (2.6)) is done according to one experiment, but frequently the resulting
parameters are not checked against other situations. The limited scope of experimentation
available is of course a general deficiency of most studies of material behavior, and is not an
objection at crystal plasticity per se. Therefore this is a general criticism that can be leveled
at most theories of material behavior. The point is that being of restricted phenomenology,
following Equation (2.5) may be less flexible than other phenomenological formulations.

Lastly, as in any plasticity theory, there is no overwhelming experimental evidence that
the theory of crystal plasticity describes experimental data, apart from achieving the un-
doubtedly important single slip limit. This is particularly true for modeling polycrystals
where the mechanics of individual grains is of interest. Although we showed that Taylor’s
experiments clearly support the notion of simple shear and slip, the material length scales at
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which this notion is a good one are not clear. Applying the Taylor hypothesis to single crys-
tal grains embedded in polycrystals has been shown experimentally to be possibly suspect
(Winther et al., 2004).

As noted in the introduction, plasticity experiments do not yet have the widely available
capability needed to fully investigate these questions, but there have been a few attempts.
For example, in a recent study by Kalidindi et al. (2004), finite element simulations of a
polycrystal were compared to X-ray diffraction data. Although the macroscopic texture pre-
dictions agreed with the data, the behavior of individual grains was not as positive. This
only underscores the motivation for having improved experimental techniques to critically
examine crystal plasticity models’ ability to capture physics in complicated loading situa-
tions.

The goal behind listing these objections is only that we should leave the door open to other
modeling frameworks until experiments can catch up to supporting the model development.
It is not to refute the viability of crystal plasticity, which is clearly a thoughtfully constructed
model which has attractive features and which has shown itself to be useful in applications.
In this current work we accept crystal plasticity models as the current gold standard. Our
goals are simply to offer a potentially viable alternative, by adopting a phenomenological
viewpoint with fewer assumptions from the start, and to see how far this vantage point takes
us.

2.1.4 Deficiencies of phenomenological modeling

Of course, phenomenological theories also have deficiencies which have been described in
the literature. To illuminate these, it is useful to explicitly record a discussion by Yang
and Lee (1993, section 2), where an excellent review of phenomenological plasticity theories
up to that time is given. Although the notion of a phenomenological plasticity theory for
single crystals (i.e. the present work) had not been considered in their review, they list some
limitations of what they call ‘macroscopic plasticity’. Macroscopic plasticity is interpreted
to be synonymous with phenomenological plasticity. The framework they promote is called
‘mesoplasticity’, which for the purposes of comparison can be understood as following the
hypotheses of slip-system based crystal plasticity. We list their issues with phenomenological
plasticity here, since they serve as useful points of discussion. Direct quotations from their
book are enclosed in ‘.

From Yang and Lee (1993, p. 60): ‘At present moment |...] the painful practices [sic| on
displaying the major limitations of macroplasticity has to be exercised as follows:’

1. ‘Detached from actual plastic deformation mechanisms. The source of plastic deforma-
tion in a macroplasticity formulation is either assumed devoid of physical explanation
or observed phenomenologically through macroscopic data. In macroplasticity, plas-
tic deformation is defined by concept rather than through actual physical image. |...]
A related consequence of macroplasticity [...] is the lack of any direct (mechanical
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and experimental) means to detect current plastic deformation without the help of a
hypothetical (and sometimes unjustified) process of elastic unloading. ’

2. ‘Empirical assumptions on material responses. The basic practice in continuum me-
chanics approach relies on a priori, empirical assumptions for different material re-
sponses, under the help of the general guidelines deduced axiomatically from the basic
postulates and limited empirical testing data. Whereas a mesoplasticity analysis is
lined with detailed material specification and microstructural parameters of the mate-
rial system under consideration. The significance of this distinction is highlighted by
the ability (for mesoplasticity approach) or limited ability (for macroplasticity) to get
material insights into constitutive formulation.’

3. ¢ Ambiguities in the essential structures of macroscopic plasticity framework. Although
new results on the essential structures of plasticity formulation have been constantly
emerged [sic] from study on macroplasticity aspect, several vitally important issues
are still elusive and probably cannot be fully resolved from macroplasticity knowledge
alone. Those issues include the basic physical postulate which gives rise to the structure
of the flow rule, the selection of the co-rotational rate, the cause and evolution of
anisotropic hardening in accompany with material texture development, the resolution
(both physical and mathematical) of elastic and plastic deformation at large strain,
the geometry of yield surface especially the vertex formulation, etc.’

4. ‘Difficulties in the description of microstructural sensitive phenomena. Phenomena
such as phase transformation, flow localization, ductile fracture and material damage
are extremely sensitive to the microstructural details, especially the inhomogeneities
scattered inside the material systems. The homogeneous continuum devoid of any
internal structures is assumed as the corner stone in macroplasticity. However, it
would undoubtedly cause barriers in the characterization of microstructural sensitive
phenomena, rendering their accurate description intrinsically difficult if approached
from macroplasticity methodology alone.’

5. ‘Unable to handle applications of microplastic nature. [...] there are some practical ap-
plications which are intrinsically mesoplastic. Examples for these applications include
ultra-precision machining, texture control of superconductive alloys, surface finishing
improvement of mechanical processing, superplastic manufacturing, etc., not to men-
tion the applications related to the material failures. These applications are closely
related to the evolution of microstructures and the stress-strain history recorded by
individual grains’

We now respond, one by one, to these criticisms of phenomenological formulations of plas-
ticity with the current framework of anisotropic phenomenological plasticity in mind.



CHAPTER 2. PHENOMENOLOGICAL PLASTICITY 24

1. This objection, while probably valid for polycrystalline plasticity theories where def-
initions of elastic and plastic strain are difficult to measure experimentally, does not
apply to the current study. In the next section, we will see that plastic deformation
here is defined by the time evolution from an initial state in space-time. The material
state can be measured using standard methods. Given a source of X-rays, the lattice
state can also be measured. Therefore we have direct experimental means to detect
plastic deformation since the theory relates the two through a multiplicative decom-
position like (2.7). It should be noted that Yang and Lee (1993) suggest that in the
crystal plasticity approach experimental capabilities for their target variables (such as
dislocation flow) are well established. This might be the case for certain quantities
like F°, but if they are supposing their theory to be based on experimentally mea-
suring dislocation densities, this would require destructive evaluation of the material
and therefore cannot be used for direct validation of elastic-plastic deformation even in
the mesoplasticity case. At least in our model, we directly describe the experimental
program needed to investigate the theory.

2. This objection seems to suggest that phenomenological constitutive equations are not
adequate to serve as macroscopic predictors. I would again point to isotropic Hooke’s
law, which seems to have served engineers well for a long time. Their statement is
largely a manifestation of the fact that experimental plasticity of single crystals has
been historically inadequate for phenomenological models to develop detailed constitu-
tive equations; therefore it is supposed that focusing on smaller length scale phenomena
gives rise to better macroscopic constitutive behavior. We have yet to see irrefutable
evidence that microscale mechanics gives macroscopic predictions which can not be
reproduced with a phenomenological approach applied at the micro-scale. We must
keep in mind the type of information we are hoping to obtain from implementing our
theories in simulations for the purposes of solving engineering applications, which is
usually of a macroscopic nature. See Treloar (1974) for a related debate from another
field, rubber elasticity.

3. By using the anisotropy of the single crystal in constitutive equations, phenomeno-
logical parameters will naturally be demanded by the theory. These parameters have
the capability to model the features mentioned. Therefore this objection is really a
symptom of not attempting to apply anisotropic phenomenology to the mechanics of
single crystals.

4. We will see that the model presented here naturally leads to predictions of plastic local-
ization in plane strain tension. This comment is evident again, of the lack of attempt at
an anisotropic plasticity model. The comment may be true for isotropic/polycrystalline
plasticity, but it is not true for our model, at least for the question of strain localization.

5. Historically speaking, phenomenological models have had superior performance in
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terms of predicting macroscopic information: the force required to achieve a certain
level of deformation in a material processing plant is one example of were phenomeno-
logical approaches shine. These authors acknowledge this. But it’s not evident that
their cited applications have in fact benefited from mesoplasticity apart from qualita-
tive understanding and observation of certain phenomena. Again, no one has tried a
single crystal phenomenological approach, so it’s not fair to say that such a framework
cannot be useful for the analysis of these applications.

Summary. Setting argued benefits or deficiencies of differing approaches to plasticity aside,
review of the literature has indicated that there is room for a contribution of classical con-
tinuum mechanics phenomenology applied to single crystals. Crystal plasticity is a proven
framework, but experiments may potentially show that it has deficiencies which might be
better addressed with a flexible phenomenological approach. The lack of good constitutive
information required to implement a phenomenological model should not make such a theory
irrelevant to consider.

In the next section, we develop the phenomenological theory of plasticity which has been
referred to in these introductory sections. We then move on to describe philosophies of con-
stitutive behavior, and present numerical simulations. We also calibrate several proposed
constitutive models against crystal plasticity models reported in the literature; this being
the closest connection to experimental data we can find. Finally we give examples of imple-
menting the calibrated model into plane strain simulations, and report several qualitative
and quantitative observations from them. Throughout, we assume a certain familiarity with
standard mechanics formulations and mathematical manipulations.

2.2 Theoretical development

As stated in the introduction, plasticity is a phenomenon which has been studied for over
100 years but is one which still receives attention and suggested modeling frameworks. These
theories share many of the same basic ingredients. Commonalities include notions of elastic
and plastic strain, the specification of a plastic evolution equation (flow rule), the concept of
a yield function, and phenomenology to account for hardening.Ideally, each proposed theory
must be evaluated against data in order to provide a proven measure of the usefulness of the
model. However, quantitative experimental validation of plasticity models is prohibitively
difficult; in fact only recently has technology advanced to the degree where such studies can
realistically be attempted®(Winther et al., 2004; Kalidindi et al., 2004; Quey et al., 2010).
Therefore, these experimental obstacles have led to the current state of affairs in plastic-
ity, which we feel still has open questions with regard to settling on a modeling approach
which gives verified physical predictions. Until the experimental challenge is answered, these

3Reasons for this difficulty were noted in §1.2.
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questions will surely linger.

In this section we develop the theoretical framework for the proposed formulation of
plasticity of single crystals. An appealing characteristic of the theory is that it can be
quantitatively investigated using X-ray diffraction experiments, and, at this stage, does not
appeal to any so-called hidden or internal variables which are a hallmark of many theories of
plasticity including crystal plasticity (Rice, 1971; de Souza Neto et al., 2008). In Chapter 3
practical application of the experimental method is described in detail. The content of the
section is as follows. First, in §2.2.1 we define our decomposition of elastic plastic strain, and
describe how X-ray diffraction enables this decomposition to be measured experimentally.
Then in §2.2.2, a brief overview of the thermodynamic structure is given, along with the
equations of motion. In §2.2.3 the general constitutive problem is described.

Almost all of the content of this section is standard based on previous literature, for a
review see Gupta et al. (2007) and references therein. This development is required in order
to implement the numerical simulations, which represent the new material. Throughout the
section, a familiarity with notions of continuum mechanics is understood.

2.2.1 Definition of elastic and plastic strain

To begin, we describe in general how the mathematical description of elastic-plastic defor-
mation differs from the description of purely elastic bodies. It is useful to give a review of
classical elastic bodies in continuum mechanics in order to underscore how plasticity differs.

Review of elasticity. In elasticity material bodies are considered to be differentiable
manifolds, covered by a single coordinate chart. Material coordinates on the manifold are
denoted by X. The motion of the body is described by the function x (X, ¢), which satisfies
differential equations representing the balance of forces, obtained from Newton’s laws. For
instance, the balance of linear momentum equation reads

2
pod—t); = grad - T + pb, (2.8)
where T is the (Cauchy) stress response of the material, p is the material density, ¢ is the
time, and b is the body-force vector, representing gravitational forces for example, and grad
is the gradient operator in the spatial configuration. In elasticity theory, the stress response
of the material, T is given by constitutive functions T(F), where F = Vx(X,1) is called
the deformation gradient, where V is the gradient operator in the reference configuration.
The balance of angular momentum equation requires that the Cauchy stress is symmetric,
T = T". This requirement is typically incorporated in the constitutive specification of the
stress response T(F).

The principal unknown in elasticity theory is therefore the field x (X, ¢) which completely
specifies the state of the body. In contrast, in plasticity theory the unknowns are the motion
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of the material, x (X, t), along with a field representing plastic deformation. Here we denote
this field as K(X,t). Furthermore, the stress response is not a function of F, but instead a
function of elastic deformation. We denote this field as H(X,¢). Since notions of elastic vs
plastic strain has been a historically contentious issue (Naghdi, 1990; Yang and Lee, 1993)
we spend some effort explicitly describing our formulation for this to avoid misinterpretation
of what we are advocating.

Geometric notion of elastic and plastic deformation

Much of the difficulty in defining elastic vs. plastic strain arises when the concept of a local
unloading process after straining is required to define the elastic strain, as noted in §2.1.4,
item 1. In this notion it is supposed that the unloading process removes any elastic strain
and the remaining strain is deemed plastic. The current proposed formulation does not
define elastic and plastic strain via an unloading process, but instead uses a geometrically
motivated definition that is supported experimentally by X-ray diffraction measurements. To
see this, first note that this formulation of elastic-plastic deformation is closely tied with the
beautiful director theory of Fox (1968). In that theory, along with the motion of the material
x (X, t), Fox (1968) describes the motion of a microstructural component, characterized by
three linearly independent vectors, d;,z = 1,2,3, which can rotate and distort relative to
the material itself, but carry no inertia. The stress response function is determined by the
rotation and distortion of these microstructural directors, T(dl, d,, d3).

To see why that theory is relevant to mention, recall that our model is meant to apply
to single crystals, which are characterized by a lattice of atoms. The description of a crystal
lattice requires knowledge of only three linearly independent lattice vectors, 1,7 = 1,2, 3.
Furthermore, the distortion of the lattice is coupled to the stress response through constitu-
tive relations, T(ly,13,15). Therefore the lattice vectors (or their duals) play the role of the
directors in the theory of Fox (1968).

The directors are experimentally measurable for crystals, since the structure of single
crystals can be probed in detail using X-ray diffraction (Cullity, 1978). To explain, in X-ray
diffraction, the definition of lattice distortion comes from characterizing linear transforma-
tions from a fixed lattice configuration & to the current configuration where the diffraction
measurement is made.* The configuration & is constructed based on an assigned reference
state of the lattice. Usually it can be thought of as a stress free configuration, since K is
generated by unit cell parameters obtained from a powder sample under ambient conditions.
In such a case, the tensor H can be used in a normal interpretation of constitutive equations
for stress, e.g. T = T(H) and T(H = I) = 0. The physics of this measurement and further
details are developed in Chapter 3, for now it suffices to accept that such a measurement
is possible. This transformation is denoted by H, and this tensor defines what we call the

4In addition to the fixed lattice configuration k, there is a material reference configuration which has the
normal definition from traditional elasticity. That is, the motion of the material, x is defined over the points
of this material reference configuration, x (X, t).
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lattice deformation. To relate this transformation to lattice vectors, H can be written in
terms of its action on the lattice vectors in the fixed lattice configuration, by

], = HL,, (2.9)

where L;,7 = 1,2,3 are the lattice vectors in the configuration &, and 1; are the lattice
vectors in the physical configuration. Define the reciprocal lattice vectors by L’. These have
the basic property

L,-L’ = ¢ (2.10)

By inspection of (2.10) and (2.9), H has the representation
H=1L®L, (2.11)

so that H is defined in terms of the lattice vectors L; and the transformed 1;.

Comparing this framework with the theory of Fox (1968), we see the same structure in
both cases - inertia-less directors (HL;) which determine the elastic response T(H). There-
fore, in this work, statements referring to (1) lattice vectors (2) directors (3) H, are all
synonymous through the construction used in developing (2.11). To summarize, the lat-
tice distortion H, or equivalently, the directors 1; are well defined quantities which can be
measured experimentally. Next the measurement of plastic strain is described.

In the context of crystal lattices, in the presence of plastic deformation the local lattice
deformation H evolves independently of the local material deformation F. Therefore the
field H(X,t) is not compatible with the overall motion, for instance H # Vx in general.
However the material deformation F = Vx is by definition compatible. Therefore the plastic
deformation K restores compatibility by the relation

F=HK". (2.12)

As a motivating illustration, consider Figure 2.6, which shows the construction of the ref-
erence lattice configuration &, and subsequent mappings into the material reference config-
uration and physical configuration through K, H. In the figure the subscript & is used to
emphasize the dependence of H, K on the construction of the fixed lattice configuration.
Consider Figure 2.6, which shows a reference cube with edges e, e;,e3. Under a struc-
tural map Hg using the unit cell parameters ag, by, co, g, 50, Y0, the configuration k is defined
and fixed. Lattice vectors in k are denoted L;. These reference lattice vectors can be thought
of as originating from the cube edges e; through the relationship, L, = Hge,. In the current
configuration, the lattice vectors are mapped to 1, = HL;, see the lower right of the figure.
The material vectors G; are defined in the material reference configuration, in the lower left
of Figure 2.6. There is no explicit connection between G; and L;. However, the material
vectors (G; may be conveniently defined based on the lattice vectors at the initial time, so
that G;(X) = K(X,0)L;. In the definition of G; based on initial lattice vectors, it becomes
easy to see that a non-zero plastic deformation implies that the resulting lattice deformation
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differs from the material deformation, as indicated in the lower right image of Figure 2.6.
More is said on the construction of unit cells, the structural map, and the configuration K
in §3.3.5.

L3 - c0 COC((XO) BO’ YO)

/]
/
e3 Hs(aO’ bOJ CO’ aO’ BO YO) B o
(Structural map) T
YO L2 - b() - b(Jer(y();elﬁ el)
€,
| L, =a,=a,e, K (fixed)
(Plastic deformation) K. H (R,U) \ (Lattice deformation)
G,

6, F-nk >

F=HK/

(Material deformation)

l 1 <

G, g

Figure 2.6: Illustration of elastic plastic deformation, resp. H, K making up total material
deformation, F. Constructing the reference configuration s requires a structural map Hs,
which acts on a fictitious reference cube to generate the reference lattice configuration. More
details on this construction are provided in §3.3.5, see also (Edmiston et al., 2012). The red
lines track the mappings of lattice vectors L; in the fixed reference configuration k, whose
construction is introduced later, in §3.3.5. The lattice vectors in the physical configuration
are denoted 1;.
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Dislocations

Materials science observations suggest that dislocations are fundamental to plasticity be-
havior. In the present framework, incompatibility in the H, K fields can be interpreted to
represent the geometrically necessary dislocation density in the crystal. For example, inte-
gration of the plastic deformation around a closed contour 02 of the area () gives the net
Burgers vector of all dislocation lines passing through €2,

d= [ K'.dX. (2.13)
o0

We can rearrange this equation using Stokes’ theorem, written as

/n-va:/v-dl7 (2.14)
A !

and substituting v = K" a, in (2.14) for a an arbitrary constant vector. After simplifications
we obtain the equivalent result

d= /(CurlK—l)NdA, (2.15)
Q

so that Curl K™ is related to the dislocation content. Gupta et al. (2007) define what they
call the true dislocation content,

£ = JxK 'Curl K™, (2.16)

which has convenient properties under changes of reference frame. We investigate the effect
of adding the dislocation measure &€ to constitutive functions in a subsequent section.

Summary remarks.

It is important to establish some limitations of this approach to describing plastic evolution.
With respect to applications, we determine the K field at an initial time ¢;. Time evolu-
tions of the plastic deformation, K, from this initial state can then be modeled effectively
in our given framework. The initial K-field can be calculated indirectly from X-ray diffrac-
tion measurements, which give direct measurements of H(X,¢). To see this, in the initial
measurement state, per normal usage define the material reference configuration such that
F =1 and so from (2.12), Ko = Hy. This history dependence could only be overcome by
using an experimental technique and theory which can obtain the positions of all atoms in
the material. Such a technique is not available, and if it were continuum mechanics would be
relegated to ancient history. Until then, users of either this model or crystal plasticity must
understand that evolutions are what the model is predicting. In any case, this is sufficient
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for a most engineering applications. See Barton et al. (2011) for an example of the evolution
toward using atomic information in a continuum level simulation.

In the next section we develop the thermodynamic framework for this theory of elastic
plastic deformation, including balance laws and constitutive equations. Familiarity with
basic continuum mechanics is assumed, see (Liu, 2002) for a good modern treatment.

2.2.2 Thermodynamics and balance equations.

Continuum field theories define quantities of interest over differentiable manifolds which are
diffeomorphisms of a reference configuration of the material body. In the thermoelastoplastic
case, we seek the fields x (X, t),0(X, ), K(X,t), where 6(X,t) is the temperature field. The
other fields have been defined previously. We do not make explicit use of temperature in
this thesis, but, in following with standard presentations, retain it for this section. We now
derive the balance equations and thermodynamic restrictions for such a mathematical body.
Using the material reference configuration the equation of motion is (Liu, 2002)

poX = DivP(F,K) + pob, (2.17)

where X = X 4, po is the reference material density, Div is the divergence operator in the
material reference configuration, b is the body force, and P is the Piola stress in the material
reference configuration. P is given by a constitutive function of F, K. It is related to the
Cauchy stress, T, by

P=JTF ", (2.18)

where J = det F. So far this is no different than elasticity, (2.8). The difference is that we
have a time evolution of the plastic deformation, described by a flow rule

K = K(F,K), (2.19)

where, for now, we have used the same functional dependence in the flow rule as for the
Piola stress. This can be thought of as a result of the principle of equipresence, which states
we should at least have the same dependence in all constitutive functions unless precluded
by more fundamental information. Experimental evidence, while limited, appears to suggest
that equipresence is not a good practical assumption for plasticity, due to observations of rate
dependence and dislocation content, &, on plastic flow, which are not strongly manifested
in the elastic response. Incorporating these entities into the plastic flow rule (2.19) will be
considered later.
Next, we postulate the energy balance,

/ potdV = / P VxdV + / qdA + / rdV, (2.20)
1% 1% A 1%
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where V' is the material volume, A is the associated bounding area, u is the internal energy
function, q is the energy flux vector, and r is the volumetric energy generation. Using the
divergence theorems and localization gives the local form

po =P -Vx —V-q+ por. (2.21)

Equation (2.21) is needed if the temperature field 0(X,¢) is desired.

Coleman-Noll procedure. We now follow the classical Coleman-Noll procedure to re-
strict constitutive equations (Coleman and Noll, 1963; Coleman and Gurtin, 1967). The
second law of thermodynamics requires

d 1 pPor
— dV > — [ =q-ndA —dV, 2.22
dtvpn_/Aeqn +/V9, (2.22)
where 7 is the entropy, which localizes to
pony > —v - 44 20 (2.23)
0 0
Multiplying (2.23) by 6 gives
1
Opoit > =V - a+ 5o VO + por. (2.24)
Next, define the Helmholtz energy function ¥ by
U =u—0n, (2.25)
so that
u=W+0n. (2.26)
Using (2.26) in (2.21) gives
po(U +6n) = po(¥ +0n+60n) =P -Vx—V-q+ por. (2.27)
Rearranging (2.27) gives
po(¥ —6n) —P - VX +V - q= pbh. (2.28)
Implementing this in (2.24) gives
1 ..
Opory 2 5 VO + po(¥ + 0n + 0) — P -V, (2.29)

or

1 : .
0> ga Vo + poV + potin — P - V. (2.30)
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For elastic-plastic bodies, the material energy function V¥ is assumed to be related to the
strain energy of the lattice configuration W (H) by

U(F,K) = JLW(FK). (2.31)

The material energy rate W has the following chain rule representation in terms of the lattice
energy W: (taking derivative of (2.31))

1

. 1 - ow .. ow .. oW,
UV=——WK"' K+— -F K+ 0. 2.32
7 +JK(aF TR T > (2:32)
Substitution of (2.32) in (2.30) gives
1 1 0w . OW 1 oW :
> _q- —(-WK"'" K+ — F+ — K —_— —P-Vy.
O_Hq V9+poJK< W +8F +8K )+po(JK 20 +77) Vx
(2.33)
Rearranging (2.12) gives
H = FK. (2.34)
Next, using (2.34) the partial derivatives in (2.33) are given by
ow .. oWoH . oW :
PV o= KT R 9.
OF F OH OF F oH (2:35)
and oW . oW oH oW
K K=F'— K. (2.36)

K OHOK oH
Then using (2.35) and (2.36) in (2.33) we have

1 1 oW 1 oW : 1 oW :
~q-V6 — —K'"'F+ — (F'—— —-WK ") .K —_— 6—P-Vy.
0> GaVeto (JK OH L ( OH o\ g8 T VX
_ (2.37)
Using Vx = F and rearranging gives
1 1 oW : 1 oW : 1 oW :
> —q- — —K'—-P) . F4p— (F'=—= - WK ' |.K —_— 0.
0= gaVvor (pOJK OH ) g ( o " ) o (JK 06 “7)
(2.38)

Assuming no temperature gradients, and taking arbitrary independent variations of the
kinematic fields F, K, # shows that (2.38) requires

1
P=—PuK", (2.39)
Jr

where

Pu=-—— (2.40)
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is the Piola stress in the fixed reference lattice configuration. The stress measure P in (2.39)
can also be obtained by matching Cauchy stresses in the current configuration, so that

%PFT = ﬁPHHT, (2.41)
and solving (2.41) for P gives (2.39). We also will see that
Py = JTHPK‘T = JxPK™T. (2.42)
Similarly, the entropy is given by
n= _iaﬁ_vg (2.43)

Next we examine the plastic evolution, K. Rearranging the conjugate stress to K in (2.38),
we have the condition

1 :
0> (FTP - —WI) K ' K, (2.44)
JK
where we have used (2.42). Rearranging (2.44), we have the requirement
1 :
(—WI — FTP> KK >0, (2.45)
JK

which represents positive dissipation due to plastic flow. In (2.45), the quantity in parenthesis
is the Eshelby stress, defined by

E=V(F,KI-F'P. (2.46)

where we have used (2.31) in obtaining (2.46).
In summary the second law of thermodynamics through the Coleman Noll procedure
shows that the dissipation, D is positive,

D=&-KK'>0. (2.47)

Another form of the dissipation based on (2.46) is useful to expose the intrinsic sources of
the phenomena. Define

& =WI-H"Py (2.48)
as the Eshelby stress in the lattice configuration, so that we can rewrite (2.47) as

1 .

D=—K"'™K" KK'>0 (2.49)
JK
1 .

=—& - K'K>0. (2.50)

JK

We now examine (2.50) to get an intuitive picture of what the dissipation equation indicates
physically.



CHAPTER 2. PHENOMENOLOGICAL PLASTICITY 35

Physical interpretation of dissipation inequality. This section provides a physical
interpretation of the dissipation inequality (2.50) in the form

g-K'K>0. (2.51)
Recall that the decomposition of elastic and plastic deformation is given by
F=HK (2.52)

In recognition of experimental facts we regard the primitive quantities to be F and H, in
that F is derived from the motion of the material relative to the assigned material refer-
ence configuration, and H tracks the evolution of lattice vectors (measurable from X-ray
data). Using convected coordinates (material coordinates), any linear transformation from
a material reference configuration to a material deformed configuration is specified by the
deformation of three material tangent vectors, G;,7 = 1,2, 3, in the reference configuration
to the current configuration, g; = FG;. Using this with the property G; - G’ = 5{ gives the
representation

F=g ®G, (2.53)

where G’ are the material reciprocal vectors. Similarly, we have

where L is a reference reciprocal lattice vector in the crystal, and 1; is a lattice vector in the
physical configuration. From (2.53) we have

F'=G,o¢g (2.55)
by inspection. Next, from K = F~'H, we compute

K= (Gog) (L, oL)

=(g' )G ®L. (2.56)
Then, define '
so that (2.56) becomes .
K=r,oL" (2.58)
This leads to ' ‘
K=r,L' (2.59)

and '
K'=L®r/, (2.60)
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so that . . '
K'K=(r)L;oL" (2.61)

To simplify things, considering the first instant of plastic flow, where say ij =0,8; # 0.
Therefore ) .

To continue from this result, the reciprocal material vectors g’ are not convenient for inter-
pretation. Instead, we would like to use the direct material vectors, g,, since these have a

more intuitive behavior under deformations (e.g. they grow in size and rotate along with
deformation). Then, we have the results

Resolving gz on the reciprocal material basis gives

gl = (éﬂ' : gi) g (2.64)
Then using (2.63) in (2.64) gives
g = (—¢-g)g (2.65)
Substitution of (2.65) into (2.62) gives
iy = (g -¢) (g )Gy (2.66)
Taking K™! = H™'F gives
K'=(L;®V)(g oG (2.67)
=¥ g)L; @G, (2.68)

so that by comparing with (2.60) we see that
r’ = (V- g,)G" (2.69)

Then using (2.69) and (2.66) in (2.61) we have
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Next we consider the stress. Using (2.48), (2.54), and Py = Pyl = PyL’ ® L; the Mandel
component of the Eshelby stress is expressed as

H'Py = (L'® L,,)(I; - PgL™). (2.74)
Use of (2.74) and (2.61) in the dissipation term (2.51) gives

H'Py - K 'K = (r/ - 1;)(l; - PgL’) (2.75)
=—(g, V) (g™ 1)1, - PuL’) (2.76)
=—(Pul’'®g,) (;@V)(g" L) (2.77)
= —(PuL’-g,,)(g" 1) (2.78)

Finally, let the reference material vectors G; be defined by the images of the lattice vectors
under the plastic deformation field K, so that G; = KL;. Standard kinematic relations also
give

G" =K L™ (2.79)

and
g"=FTGg™ (2.80)
=FTK'L™ (2.81)

Then with 1, = HL, = FKL,; we have
g"- = (F 'K 'L™) . (FKL))

—L™. L,
= 5m, (2.82)
and substitution of (2.82) into (2.78) gives
D=-H"Py K 'K (2.83)
= (PyL’-g;,) >0. (2.84)

Equation (2.84) has a nice physical interpretation. Note that PgL? is the resolved stress on
the L7 plane in the lattice reference configuration (L’ is the crystallographic plane normal).
The positivity of dissipation in Equation (2.84) states that the resolved traction vector PgL’,
and the direction of instantaneous material motion g;, during plastic flow, must not be in
opposite directions. By the construction of the G; using G; = KL;, this relation holds for
any value of plastic deformation K.

This section should not be thought of as a fanciful exercise in vector operations. The
notion of plastic flow as the independant evolution of the material configuration with respect
to the lattice configuration, used in motivating (2.62), is used in §3.5 for the determination
of constitutive equations for yield from X-ray diffraction experiments. Next we consider the
constitutive functions requested by the theory developed so far.
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2.2.3 Constitutive development: general considerations

The formulation of plasticity thus far presented is general; no constitutive equations have
been introduced, so no predictions of material behavior can be made. This is the point
at which earlier incarnations of the theory have stopped (Fox, 1968; Naghdi and Srinivasa,
1993a,b; Gupta et al., 2011). In this section we develop a constitutive theory to complete
the modeling framework. This will enable us to examine numerical predictions of the theory
which is presented in §2.4. The minimum requirements for the constitutive theory are that

we need (1) the strain energy function W (H) and (2) the flow rule K(H). In this section we
will also introduce a yield function, y(H), which, with the maximum dissipation postulate,
gives an appealing mathematical structure in which to model rate independent plasticity.
We can modify the rate independent theory slightly to allow for rate dependence, and then
describe the rate independent theory as the limit of the rate dependent theory as the plastic
flow viscosity tends to 0.

For each of the required constitutive quantities, we will first consider only general consid-
erations, primarily the core requirements of material symmetry and observer invariance. We
then introduce the maximum dissipation postulate and rate independent flow rule. Next,
additional conditions on constitutive relations motivated from experimental observations will
also be given. Then, in the next section, we will describe the general specific representation
problem, and carry out the calculations for crystals of engineering interest.

2.2.3.1 Strain energy function

We require the specification of a strain energy function to determine the elastic stress (2.39)
and complete the equation of motion (2.17). In the current formulation, we see no reason to
adopt entities such as geometrically necessary dislocations into the strain energy function,
as some authors propose (Kuroda and Tvergaard, 2008). Therefore in this model there is
nothing different from the strain energy functions of standard elasticity. We employ strain
energy functions of the form

where E;; = E-e; ® e;, E = (1/2)(H"H — I), and Cyjy are the elastic constants. The
reduced form W(H) = W(E) comes from the requirement of observer invariance. For any
Q € O(3,R) we must have W(H) = W(QH). Therefore taking Q = R' where H = RU
is the polar decomposition gives that W(H) = W (U) = W(C) = W(E). where C = H'H
is the lattice metric. The function (2.85) can be expanded in an arbitrary number of terms,
with an associated increased experimental cost. Truncating at quadratic order in strain as
depicted in (2.85) gives the familiar linear elastic stress response,

Sij = Cijui B, (2.86)
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where S;; = S-e; ®e; and S = H 'Py is the second Piola Kirchoff stress in the lattice
configuration. It should be noted that other proposed strain energies can be employed for
crystals, see Schroeder et al. (2008); Ebbing (2010); Schroeder et al. (2010) for some recent
examples.

2.2.3.2 Flow rule

In (2.19) we require the specification of the evolution of the plastic deformation, the K-field.
For reasons of the thermodynamic interpretation of Equation (2.50) it will be convenient to
write the constitutive function for plastic flow in the form

K 'K = L,(F,K). (2.87)

where L, is called the plastic velocity gradient. We expect plastic flow to occur due to
intrinsic lattice distortion, so we collapse the functional dependence to simply

K 'K = L,(H). (2.88)

Using the basic formulation of (2.88), invariance under change of physical observer then
requires that we have

K'K=L,(H)=L,(QH) VvQ € O(3,R). (2.89)

To see this, note that the plastic velocity gradient is invariant under change of observer
by the construction of K, so that K™ = K and K' = K. These taken together give
(K'K)* = K 'K. Next in (2.89) take the particular choice Q = R”, where H = RU is
the polar decomposition of H. This shows that we must have the reduced form

K 'K = L,(U) = L,(C) = L,(E). (2.90)

In the rest of this section, each of the kinematic quantities U, C, E as defined here can be used
as arguments in the plastic flow function, L, and we do not assign any special interpretation
to any of them due to the bijections between them. Furthermore, under the assumption of
small elastic strains, the second Piola Kirchoff stress is given by S = C[E], where C : sym —
sym are the elastic moduli, with representation C = Cjjpe; ® e; ® e, ® €;. This is a bijective
relation since the moduli are invertible for convex strain energies, a characteristic which can
be imbued to the value of the constants C;;; of (2.85). Using the bijection between S and
E we can also use flow rules of the form L,(S). In the rest of the section we use the symbol
C, but again, either of U, E, or S for the small elastic strain formulation can be substituted.

Rate independent flow function. A classically considered problem in phenomenological
plasticity is the rate independent limit, which effectively means that the material’s plastic
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response is instantaneous. In this limit, we must have the flow function invariant under
change in time scale, so that under ¢ — A\t we have

K 'K =L,(C,C) - \K 'K =L,(C,\C) = L,(C,\C) = A\L,(C,C). (2.91)

Therefore for rate independence, Lp(C,C) is linear in C. The constitutive function for
plastic flow can then be written as

L,(C,C)=T(C)-C. (2.92)

for a fourth order tensor T'(C) : sym — R?. Thus far we have considered the restrictions
due to observer invariance and rate independence. Next we consider the effect of material
syminetry.

Material symmetry restrictions Denote the symmetry group of the material by g..
Coarsely speaking, g, is a collection of elements of O(3,R), whose operation does not affect
constitutive functions. For the flow rule, invariance under the symmetry group of the material
gives the necessary conditions

Lp(Q(i)CQg)v Q(i)CQ(Ti)) = Q(i)Lp(Ca C)QE) Qi) € Y- (2.93)

Here we have used K~ = QK and K = QK. Q = 0 since Q is a fixed element of the
symmetry group in this analysis. Note that these transformations differ from those in (2.90),
since the rotations Q;) operate on the lattice configuration, not the spatial configuration as
for the change of observer.

The hypotheses we have accepted to this point can get us no further in suggesting a form
for L,(C, C). Any constitutive function which satisfies the necessary conditions of material
symmetry (2.93) is admissible in this framework; experimental data is required to inform a
particular functional form. With this in mind, one approach which is certainly admissible
under the given framework is to simply consider polynomial functions

L,(C, (C))i; = (DijttmnConn + D! CounClop + ..)Ch (2.94)

ijklmnop

for the rate independent formulation, where the arrays D;jpimmn, D;jklmnop represent material

constants which have appropriate symmetries. We could also have

1ymmnop

CounClop + --. (2.95)

where Eijmn, Efjnop are material constants with dimensions of [t]™!, where [t] are time
units, for an alternative approach which is not rate independent. In recognition of similar
constitutive formulations in the historical development of elasticity, the equations (2.94)
and (2.95) might be considered ‘hypoplastic’ constitutive functions, since we have not made
appeal to any notion of a flow potential. See Xiao et al. (2006, p. 21) for critical comments

on flow functions of the form (2.94), (2.95).
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2.2.3.2.1 Yield function, maximum dissipation. A primitive observation of the
behavior of crystals under load is that below a certain level of lattice distortion, the material
returns to its original configuration upon unloading, with no plastic flow. The region in stress
or strain coordinates where no plastic flow occurs is called the elastic region or elastic range
in the literature. It makes physical sense, then, to conceive of a material function which
delineates between elastic and plastic behavior. Therefore, introduce the yield function,
y(C), which is designed to induce the basic property

y(C) <0 = L,(C)=0
y(C) >0 = L,(C) #0.

That is, below some level of critical lattice distortion, there is no plastic flow. Going back to
the text after (2.2), recall that this notion is encoded in the critical shear stress level needed
to move a dislocation. Constitutively, the yield function may be a scalar valued function
of the lattice distortion measure, e.g. y = y(C). Other functional dependencies can be
incorporated into the yield function, such as the dislocation density, &.

We may propose simple polynomials to describe y as done for the flow rule. However,
here we introduce an additional feature, that the function be an even function of lattice
distortion such that y(C) = y(—C), (Hill, 1950). That is, in the polynomial representation,
we’d have expansions of the form

Y(C) = CijtiCiiCri + ChimnopCij CriCrnCop + .. (2.96)
for constants Cyjri, Cflppmnep-  This requirement is due to experimental observations that

yield stresses in tension and compression are usually of equal magnitude. If materials are
studies which do not exhibit this behavior, the requirement can be relaxed. The constants

" . . . .
Cijkty Cligimnop Satisty the necessary conditions for material symmetry, written as

y(C) = y(Q(i)CQ(j;)) VQi) € gx- (2.97)

The yield concept can be incorporated into the flow rules developed thus far by postu-
lating flow functions of the form

SR a9

for a flow function f : sym — Lin, and where 7 : sym — R* may embed effects of material
viscosity in the flow rate, for instance. Note that the structure of (2.98) is similar to the
overstress models of Perzyna (1966); Nath (1998), typically used with isotropic material
models.
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Eshelby stress formulation. Finally, in recognition of the role of the Eshelby stress as
the work conjugate quantity to plastic flow from (2.47), it seems reasonable to postulate that
the flow rule be of the form

K 'K =L,(&') = L, (&, &), (2.99)

where & = sym &’ and &, = skw £’. Based on (2.99), invariance requirements are automart-
ically satisfied by the intrinsic nature of £’. That is,

= (WO - ()P =

I+ _ —_
¢ _J;g( Ji

(W(C)I-H"Py) =£". (2.100)
Similarly, in this framework it is reasonable to postulate that the yield function be formed
directly over the Eshelby stress space, so that

y(€) <0 = Ly(&) =0
y(&') >0 = Ly(&) #0.

Next, we refine the hypoplastic flow rules in (2.94),(2.95) by taking advantage of the yield
function along with the maximum dissipation postulate.

Maximum dissipation postulate Not satisfied with the arbitrariness of the flow rules
(2.94),(2.95), we now improve the situation to a degree. The principle of maximum dissipa-
tion is a widely used constitutive hypothesis in modern continuum plasticity. The postulate
follows from Drucker’s postulate, or the weaker version, Ilyushin’s postulate (Gupta et al.,
2011).

In isotropic plasticity, the maximum dissipation postulate requires only the scalar valued
yield function y be specified; the flow rule L;, is then given by appropriate derivatives of the
yield function. This capability clearly simplifies the constitutive description of the plastic flow
process, since we need only consider a scalar function rather than a arbitrary tensor function.
However the current model is constructed with recognition that the lattice deformation H
is directly measurable from X-ray diffraction experiments. We will see that the classical
version of the maximum dissipation postulate is not sufficient to describe the behavior of the
materials we are trying to model, and we require an extra constitutive relation to capture
lattice reorientation (Lubliner, 1986). We now work out the details.

Given the following: (1) an elastic-plastic body, with (2) a strain energy function, W,
and (3) a yield function y, we can solve for the form of the flow rule satisfying the principle
of maximum dissipation. The dissipation D is given by (2.50), see also Gupta et al. (2007,
2011)

D=¢& KK, (2.101)

where & = JI_(IKTSK*T, is the Eshelby stress in the fixed lattice configuration, and £ =
WI—FTPg is the Eshelby stress in the material reference configuration. The Eshelby stress
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in the fixed lattice configuration may then be written as
J& =WI—-H"Py = WI - CS. (2.102)

The implementation of the maximum dissipation postulate is phrased as an optimization
problem on the permissible states of stress: The energy dissipation D, (2.101) is maximized,
subject to the constraints y(£’) < 0. That is, that the elastic stress is at or below the yield
surface. Additionally, we have equality constraints on the stress state, £’'C € sym. The
optimization problem is then written as

maximize D
subject to the inequality constraints y(£') < 0 (2.103)
and the equality constraints £'C € sym.

We can then solve for the form of the flow rule once and for all by satisfying the Kuhn
Tucker conditions of the optimization problem (2.103), see Greig (1980). The Kuhn-Tucker
conditions applied to (2.103) then give (Steigmann and Gupta, 2011)

K 'K = Ag—g + QC, (2.104)

where A > 0 is a Lagrange multiplier associated with the inequality constraint and €2 € skw
are Lagrange multipliers associated with the equality constraint. The Lagrange multipliers
Q) appear from taking the equality constraint in the form

E'C esym = skw £&'C =0. (2.105)

For an arbitrary A, (skw A);; = €pjay, for ay the axial vector of skw A, and so a; =
(1/2)eix;(skw A);;. The Kuhn-Tucker conditions for the optimal solution to the system
(2.103) require calculation of

(‘Mk €ikj 8 C
oE!,

kelkjéé C = kerk]C —QQ;ijj, (2.106)

where p; are the Lagrange multipliers associated with the three constraint equations
(skw £'C) =

and 2(€2') = upe;. Here () denotes the map from skew tensors to axial vectors, see (A.16),
(A.17). Finally, redefining (2.106) through Q = 2€’ gives the result (2.104).

Small elastic strain. We now consider the small elastic strain reduction of the flow rule
(2.104). That is, strains at which linear elasticity is thought to be valid. To order O(E) we
have the Eshelby stress as

E=WI-CS~ -S. (2.107)
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The yield function y(&’) is then expressed as a function of the symmetric Piola Kirchoff
stress,
y =y(S). (2.108)

The maximum dissipation postulate with the constraints y(S) < 0 and S = ST gives the

flow rule (2.104) as
K'K=-\-2+Q. 2.109
55 T (2.109)
Furthermore, rate independence requires that the flow rule be linear in S, (Gupta et al.,
2007), so that we consider flow rules (2.109) of the form
L Oy .
K 'K = —\22 + Q(S,S), (2.110)
S
where the spin (S, S) is linear in S (see (2.92)). In a later section, we also use flow functions
of the form

- 0
K 'K =) (—y + Q(S)> . (2.111)
S
As a final point, in the small strain limit, the dissipation (2.50) is written
i y
D=K'K--S=23L.8>0, (2.112)

since the inner-product with S € sym eliminates the contribution from the spin. Regarding
S as coordinates of a six-dimensional space, this inequality implies that the yield function
y(8S) is a convex function. Therefore convexity of the yield function will be another important
property which the theory implies. Convex yield functions have a rich literature in the sheet
metal community (Soare and Barlat, 2010). We describe the imposition of convexity into y
for cubic crystals later in this chapter, and again for hexagonal crystals in §3.5.1.2.

This completes the treatment of the theoretical implications on the constitutive frame-
work. We now consider aspects which should be taken into consideration based on experi-
mental observations.

2.2.3.3 Additional observations from experimental plasticity

We began this section with the simplest complete constitutive formulation for elastic plastic
bodies: a strain energy function and a flow rule. We refined these results by deriving a rate
independent flow rule. We then introduced the yield function concept, and incorporated
it into flow functions of the over stress/Perzyna type. Accepting the maximum dissipation
postulate gave us further use from the yield function, although we were not able to completely
characterize the plastic flow from the consequences of the postulate (Lubliner, 1986) since
lattice reorientation is a fundamental experimental observable. The functional forms for
the constitutive relations are basic polynomial expansions consistent with the point group
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symmetry of the material. We have only required that the yield function be an even function
of the distortion, (2.96).

As noted several times previously, conclusive experimental observations of plasticity have
been historically elusive (Bell and Green, 1967). Nevertheless, we now consider further
refinements to the constitutive framework developed thus far, by considering what is known
to be observed from what experiments are available. Incorporating these observations into
the constitutive functions will make the theory of greater practical use.

Lattice reorientation - requirement for plastic spin The basic experimental obser-
vation which motivates the inclusion of the spin is that the lattice of a single crystal, pulled
in uniaxial tension, rotates, while the material does not. Equivalently, the lattice of a single
crystal in simple shear on a slip plane, does not rotate, while the material does. In crystal
plasticity, the reorientation effect comes out naturally from the assumed form of the flow
rule

P(FP)"' =) 4sf @nf. (2.113)

The skew part of (2.113) is naturally nonzero, in general, by the presumed form of the plastic
flow function on slip dyads s§ ® nf. Directly computing, we have

W, = skw FP(FP)~ Zy s @ ng — ng ® sg). (2.114)

In a precursor to this work, Gupta et al. (2007) construct a model of plasticity which defines
K so that the plastic flow K™ 'K is restricted to be symmetric. However with this restriction
H loses its interpretation in terms of the transformation of lattice vectors from a fixed
reference state, as in Figure 2.6. This removes the ability of X-ray diffraction experiments
to be used to evaluate the predictions of the theory, since in uniaxial extension there would
be no lattice rotation predicted by such a theory, apart from elastic rotations which would
be small. To see this, consider the symmetric axial material deformation

1
F(s) =sei@e; + —=(e; @ ey + €3 ® e3), (2.115)

Nz

where s € R* is the extension parameter. This implies that FF~! € sym . Using the
decomposition F = HK ! and K'K = KK we have

FF'=HH '-HK 'KH . (2.116)

To cut through this equation, consider large plastic strains, so that [|[K™'| > |[H||. Then
H ~ R, where H = RU is the polar decomposition of H. With this, (2.116) becomes

FF'=RR ' -RK 'KR™. (2.117)
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Next, recall that RR™! € skw , since R € O(3,R). Taking the skew part of (2.117), for the
extension (2.115) gives

skw FF™' =0 =RR™' — skw (RK'KR ™). (2.118)
But, skw (RK'KR!) = RK'KR - R""K 'K 'R” . Therefore
skw (RK'KR ™) = R(skw K 'K)R .
Substituting this in Equation (2.118) shows that for axial material deformations,
RR ™' = R(skw K 'K)R . (2.119)

Now, if K™'K € sym as supposed in Gupta et al. (2007), then (2.119) indicates that RR ™ =
0, hence R = 0, and there is no lattice reorientation due to plastic flow. Therefore in the
present theory we cannot make the supposition K™'K € sym . This discussion is necessary
to include since this present theory closely resembles that in Gupta et al. (2007), however this
proves the model presented here is clearly distinct. From another perspective, the spin factor
(2 is a necessary ingredient of the theory in order to utilize the experimental method coupled
to the theory, X-ray diffraction. Should further justification be needed, in the previous
section we showed that a non zero spin is permissible under thermodynamic restrictions of
the maximum dissipation postulate. Hence there is no thermodynamic reason why a spin
should not exist, although we find the argument based on experimental observations more
convincing to appeal to.

Next, we consider another experimentally observed phenomena which crystal plasticity
encodes naturally but which we must consider as a separate hypothesis: lattice spin reversal
under load reversal.

Lattice reorientation reversal Consider the spin to be written as a function of a single
argument, say

Q= Q(S). (2.120)
If the spin were of even order in S, then the lattice reorientation would not change directions
upon reversal of the load, S — —S. For example consider tension and compression exper-
iments on single crystals. Note that this reorientation reversal is naturally encoded in the
crystal plasticity model (2.5), (2.6), through the use of 4* o sign(7). In terms of polynomial
expansions, we therefore require £ to be an odd function of S. It is not clear how lattice
reorientation reversal would be encoded a priori in the rate independent functions of the
form Q = Q(S, S) This is a critical point to highlight, and makes such constitutive for-
mulations based on bilinear dependence on the stress or strain-rate dubious in our opinion.
Although such a formulation may capture data in certain scenarios, there could also be some
non-physical predictions in different experimental situations. That is, if the constitutive law
is calibrated in one test, it may not give acceptable predictions in a second experimental
test. In summary, we have much more confidence in predictions based on (2.120) than on
Q= Q(S, S), although both cases are investigated in a later section.
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2.3 Constitutive functions: detail

Thus far, we have developed the theory behind the current model of elastic-plastic deforma-
tion of single crystals and given an outline of the proposed constitutive framework. In this
section we develop the precise constitutive equations required to complete the model, and
make numerical predictions. We focus on the version of constitutive model for plastic flow
which makes use of the maximum dissipation postulate. To review, the entities we require
are

1. W(E), the strain energy function
2. y(E) or y(&'), the yield function
3. Q(S), Q(S,S) or Q(E',E), the lattice spin

We will also consider the effect of incorporating geometrically necessary dislocations &, in
(2.16). Therefore, we also would like to determine

2a. y(E, &) or y(&,€)
3a. Q(S,S,€) or QEEE)

First, some preliminary comments on the generation of phenomenological constitutive
equations respecting material symmetry requirements. For constitutive functions of one
variable, it is straightforward to compute the representation problem by a variety of meth-
ods (Green and Adkins, 1970; Liu, 1982; Zheng, 1994). However for functions of several
variables and higher order polynomials, it gets more complicated, (Xiao, 1996). Each of
these techniques for the representation problem can be thought of as reporting a functional
basis for the constitutive equation. For an idea, isotropic materials (e.g. no material symme-
try requirements) would have the smallest functional basis, while highly anisotropic crystals
would have a larger basis. According to a given material symmetry, the smallest integrity
basis is desired. Rigorously showing a particular functional basis is the smallest representa-
tion is difficult, especially for multiple tensor argument, no matter which method in Green
and Adkins (1970); Liu (1982); Zheng (1994) is used.

Although generating constitutive functions using any representation procedure is some-
what of a crank-turning procedure, it is not really a process which can be automated. For
example, detecting redundant basis element using symbolic tools like Mathematica is not
straight-forward. In this section we examine the use of both method: anisotropic structural
tensors and integrity bases for polynomial functions. We generate several of the constitutive
functions enumerated in the above list. We focus on cubic symmetry, this being an example
of a symmetry which is both difficult to generate reduced constitutive functions for, as well

as being relevant to the target application of the theory. Furthermore, cubic crystals are
common in structural metals of interest (Fe(BCC), AI(FCC), Cu(FCC)).
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We now consider many of the functions we are required to compute in order to com-
plete the model. In Table 2.1, we list the functional expansions we require for the theory
of §2.2. Here A,B, C represent arbitrary symmetric second order tensors, and v, w,u,t
represent axial vectors of skew symmetric tensors. Note that for functions incorporating
arbitrary second order tensors, such as £’ €, in the representation formula the symmetric
and skew-symmetric factors are split off and handled independently. For example, for a
scalar function, f, depending on the geometrically necessary dislocation content, we have
f(&) = f(sym &,skw &) = f(A,v), where A = sym £ and v = (skw &). Note that in this

study, only the first three function classes in Table 2.1 will be examined in detail.

Table 2.1: Constitutive equations required for phenomenological plasticity. These functions
must be constructed to be invariant under the point group symmetry of the material.

Scalar valued function — Target constitutive entity
F(A) = W(E),y(E)
F(A,v) = Q(S), y(&)

F(A,B,v) — Q(S,S), y(E, &)
F(A,B,v,w) — y(&,¢§)
F(A,B,v,w,u) = Q(&,&)
F(A,B,C,v,w) — Q(S,S, )
F(A,B,C,v,w,u,t) = Q(&,&,€)

2.3.1 Structural tensor methods

In the continuum mechanics literature, constitutive representation theory is typically con-
cerned at its core with the representation of isotropic functions (Spencer, 1971), that is,
functions for which

Qx f(A)=f(QxA) vQ € O(3,R), (2.121)

where * is an operator to denote the rotation operation on arbitrary tensor quantities. This
notation is also used in the representation literature (Zheng, 1994; Xiao, 1996). As an
example, for a second order tensor T, Q * T = QTQT. For a given constitutive function
f(A), it has been shown (Liu, 1982) that by adding a functional dependence on tensors which
characterize the anisotropy, in the sense that they are invariant under action of elements
of the symmetry group, that an isotropic function of the original agencies along with the
structural tensor has the desired functional properties (Zheng, 1994). Therefore, by using
structural tensors, classical results from isotropic function representations (Spencer, 1971)
can be applied to anisotropic materials. For background literature on the structural tensor
approach, see Liu (1982); Zheng (1994); Xiao (1996).
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The structural tensor method works brilliantly for material symmetries commonly en-
countered in applications of non-linear elasticity. For example composites or biological ma-
terials are often treated assuming transversely isotropic symmetry or orthotropic symmetry.
For crystals, the method also works well for low symmetry materials, such as monoclinic. But
for higher symmetry materials, such as cubic or hexagonal, higher order structural tensors
(fourth order for cubics, sixth order for hexagonals) need to be incorporated. Generation
methods then create an assortment of complete yet redundant function basis elements (Xiao,
1996), from which it can be difficult to decipher the complete basis. For simple constitutive
functions like the strain energy function, the structural tensor approach is manageable for
crystals, but we would like to be able to consider functions with multiple tensorial arguments.
Therefore we consider an alternative method.

2.3.2 Polynomial generation

An older framework to obtaining constitutive equations is the method described in Green
and Adkins (1970); Spencer (1971). In this method, polynomial scalar valued constitutive
functions are considered, and algebraic theorems are applied to find the integrity basis of the
function by examining the symmetries in the arguments under the symmetry transformations
Q € gx.

This method can be extended to obtain tensor functions and not just scalar valued
functions. To show this, consider a tensor function A : sym — sym ,A = A(E). The
necessary condition for invariance under symmetry transformations is given by

A(QEQ") = QA(E)Q",VQ € gs, (2.122)

where g, is the symmetry group for the material relative to the configuration x. Now, using
(2.122), form the inner product with an arbitrary tensor D, which has the transformation

D = QDQ". Then o .

Ay(E)Dy; = QA (E)Qj Dy, (2.123)
where E = QEQ", and similarly for D, for Q € g.. Next, the result D;; = QuDuQji
substituted into (2.123) and simplifying gives

Ay;(E)Dyj = Ap(E) Dy, (2.124)
so that the scalar valued function
F = A;(E)D; (2.125)

is invariant under the symmetry group of the material, g,. The constitutive equation for
A;;(E) is then given by computing the derivative of the scalar function F' through

oOF

’ aDij D=0

(2.126)
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Using this approach we can generate tensor valued functions by applying the methods in
Green and Adkins (1970); Spencer (1971). The examples in these references are helpful but
not sufficient for our purposes, since we require the incorporation of multiple arguments. As
a side note, we highly recommend reviewing these examples, in order to better digest the
rest of this section.

Now we examine the functions we must consider in order to complete the quantities shown
in Table 2.1. The scalar valued strain energy W and yield function y are straightforward to
determine. The generation of the lattice spin, however, deserves emphasis. We first repeat
the derivation leading to (2.126). Since €2 € skw , the inner product

only depends on the antisymmetric part of D;;. Therefore we can obtain

F= QijDij = D?]QU = eikjdkeiljwl = 5kldkwl = dkwk, (2128)

a
177

_ o
C Odk | g

For example, for item 3, in Table 2.1, the rate independent spin, we require the representation
for the anisotropic scalar function

where wy, d;, are the axial vectors of €);;, Dy, respectively. The axial vector of €2 is then

obtained via

F=F(S,S,v), (2.130)

where v is the axial vector of a skew symmetric tensor.
Similar arguments hold if the desired constitutive function is a symmetric tensor. Taking
the product
F — AijDij
for a symmetric A, A;; = Aj;, only depends on the symmetric component of D;;, and the
constitutive function is obtained by computing

OF

i = As :
aDij D5;=0

A (2.131)

where D}; is the symmetric part of D;;.

2.3.3 Constitutive functions for plasticity - integrity basis.

We now develop several constitutive equations from Table 2.1. For the functions not covered
explicitly, the general plan of attack should be evident. The procedure utilizes the prescrip-
tion in Green and Adkins (1970); Spencer (1971) which is based on mathematical theorems
of polynomials. In overview, we apply the elements of the symmetry group one at a time,
and apply one of several theorems, as they are required, in order to ensure invariance of the
polynomial integrity basis. Specifically, we will make use of the following theorems:
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Theorem 1 (Green, 1970). A polynomial basis for polynomials which are symmetric in the
two sets of variables (Y1, Yz, .., Yn) and (z1, 22, ..., 2p) 18 formed from the quantities

1 .

Kj = 5(%- + Zj) (j = 1,2, ,n) (2.132)
1 .

Kk = 59520 + 9r) (Jk=1,2,....,n) (2.133)

Theorem 2 (Green, 1970). A polynomial basis for polynomials which are symmetric in the
three pairs of variables (y1,21), (Y2, 22), and (ys, z3) is formed by the quantities

Li=y1+y2+ys Lo = yoys + ysy1 + Y12
L3 = y1y2y3 Ly=2z1+ 2+ 23
Ly = 2923 + 2321 + 2122 Lg = 212923

L7 = yoz3 + ysz1 + Y122 + 22y3 + 23y1 + 21Y2  Lg = y12223 + Ya2321 + Y32122
Ly = z192y3 + 22Y3y1 + 23Y192

Theorem 3 (Green, 1970). A polynomial basis for polynomials which are symmetric in
variables (Y1, Y2, Ys, 21, 22, 23) which are form-invariant under cyclic rotation of the subscripts
1,2,3 is formed by the quantities

My =y1+y2+ys My = yays + ysy1 + Y192

M3 = y192y3 My =2+ 2+ 2

My = 2923 + 2321 + 2122 Mg = 212223

M7 = y223 + Y321 + Y122 Mg = zy3 + z3y1 + 2192

MQ = ygyg + y1y§ + ygy% M10 = 2325 + leg + ZQZ%

My = y12023 + yazs21 + Ysz122 Mg = 2192y3 + 22Y3y1 + 23Y1Y2
Mg = y1yaza + Yoyszs + ysy121 Mia = 2120Y2 + 2223Y3 + 23211

Theorem 4 (Green, 1970). A polynomial basis for a polynomial in the variables
Y1,Y2,---5 Zn, Nl, N27 ceey Nk,

which is form-invariant under a group of transformations under which Ny, N, ..., Ny are
wmvaritant is formed by adjoining to the quantities Ny, No, ..., Ny the polynomial basis for
polynomials in the variables yy,ys, ..., 2z, which are form-invariant under the given group of
transformations.

Theorem 5 (Spencer, 1971). An integrity basis for polynomials which are symmetric in the
three sets of variables (uy, vy, wy, ..., 21), (U, Vo, Wa, ..., 29), (U3, V3, W3, ..., 23) is formed by

Uy + ug + us, UgUs3 + usuy + UTU2 U1UU3 (2134)
together with the expressions obtained by substituting v;, w;, ..., z; for u;;

UV + UgUy + U3, UgU3V] + U3ULV9 + U UsV3 UVU3 + U3V + uzv1ve  (2.135)
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together with the expressions obtained by substituting for u; and v; all distinct combinations
of two different symbols formed from u;, v;, ..., z;;

ULV1 W1 + UgVoWe + UV3W3

together with the expressions obtained by substituting for wu;,v;, w; all distinct combinations
of three different symbols formed from wu;,v;, ..., z;.

Theorem 6 (Spencer, 1971). An integrity basis for polynomials in the three sets of vari-
ables (uy,vi,wy, ..., 21), (Ug, V2, We, ..., 22), (U3, V3, ws, ..., z3) which are invariant under cyclic
permutations of the suffives 1,2, and 3 consists of the integrity basis for polynomials which
are symmetric in the variables given by Theorem 5;

UQUg(UQ — U3) —+ U3U1(U3 — Ul) + U1U2(U1 — UQ) (2136)
together with the expressions obtained by substituting v;, w;, ..., z; for u;;

uy(vy — v3) + us(vz — v1) + uz(vy — vo) (2.137)
UQUQ,(’UQ — Ug) + Uz (Ug — Ul) + U1U2(’U1 — ’U2>

U2U3(U2 - U3) - U3U1(U3 - Ul) - U1U2(U1 - UQ)

together with the expressions obtained by substituting for u; and v; all distinct combinations
of two different symbols formed from u;, v;, ..., z;;

u1v1(we — w3) + ugve (w3 — wy) + uzvz(w; — wo)

together with the expressions obtained by substituting for w;, v;, w; all distinct combinations
of three different symbols formed from wu;,v;, ..., z;.

After applying the one or more of the above theorems, depending on the case under
consideration, we will arrive at an integrity basis for the polynomial F = F(A,B,v,...),

written in the form
F=F(A) = F(21,2, s Y1, Y2, ces 21, 22, -+ (2.138)

where, in this case x;,y;, 2; : A — R are the integrity basis elements based on the argument
A. Here only, let the symbols x,y, z carry additional meaning: they refer to the order of
the integrity element. Therefore x;,¢ = 1,2, ..., N, are of, say order 1, y;,7 = 1,2,..., N, are
of order 2, and z;,7 = 1,2, ..., N, are of order 3. Depending on the symmetry group, higher
order terms may be required. The polynomial representation (to order 3) is then given by
the expansion

F(A) =b + Z CiT; + Z Z dijxixj + Z €Y + Z Z Z fijkxi$j$k
i i g i i J ok
+ DD gy + ) iz, (2.139)
g i
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where the arrays b, ¢;, dij, €;, fijk, 9ij, hi are material constants which have certain symmetries
like d;; = dji, fijx = fj, etc. Of course, cross order terms have g;; # gj;, in general. The
expansion (2.139) is more complicated for multiple arguments in the function F, but the
same idea holds; take all possible combinations of the integrity elements up to a certain
specified order of expansion. We now proceed to apply the above tools to generate the
constitutive equations for specific crystal types.

2.3.3.1 Cubic crystals

In this section we generate constitutive functions for cubic crystals. These are an important
case to consider, both as a point of practical relevance (iron is BCC, aluminum is FCC), and
of theoretical interest, since constitutive functions are more difficult for cubic crystals than
for monoclinic, for example. There are several groups in the cubic class (Green and Adkins,
1970). The group of maximum order is the hexoctahedral point group, which character-
izes many elemental metals. The hexoctahedral group consists of the following elements of
O(3,R)

I, C7 Rl, RQ’ R37 Dl, DQ, D3, Tl, CTl, RlTl, R2T17 R3T17 DlTl, D2T1’ D3T17
Ty, CTy, R Ty, RyTo, R3Ty, DTy, DTy, D3Ty, Ty, CT3, RT3, RoT3, R3 T,

D,T3,D,T3, D3T3, My, CM;, RiM;, RoMy, RsMy, DMy, DoMy, D3My, (2.140)
M27 CMZ) R1M27 R2M27 R3M27 D1M27 D2M27 D3M27
where C = —I is central inversion, R; are reflections though planes normal to e;, D; are

7 rotations about e;, T is reflection in the plane through the e; axis bisecting the angle
between e, and e3, T is reflection in the plane through the e, axis bisecting the angle
between e3 and e;, T3 is reflection in the plane through the e; axis bisecting the angle
between e; and e;. My, M are rotations of 2 /3, 47 /3 respectively about the axis e; +ex+e3.
These elements are introduced in the book by Green and Adkins (1970).

We will carry out the general procedure for functions F(A, B, v) under the elements of
the symmetry group given in (2.140). As seen in Table 2.1 this will give us access to W (E),
y(E), Q(S), y(&), Q(S,S), y(E,£). The requirements for each of these functions will be
different, that is, we have previously established that y(E) will be even in E where Q(S) will
be odd in S. During the derivation we highlight when relevant constitutive equations can
be picked out for lower symmetry crystals. For example, note that the elements in (2.140)

include the subgroups
ILC,Ry, Dy (2.141)

and
IaC7R17R2aR37D1;D27D3; (2142)

which characterize the symmetry groups for the monoclinic-prismatic and rhombic-dipyramidal
point groups respectively. Constitutive equations for these groups will be pointed out in the
course of deriving the representation for the hexoctahedral point group, (2.140).
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Before beginning, an important fact to recall is that axial vectors transform under rota-
tions Q € O(3,R) as
v = det QQv. (2.143)

For example, under the reflection R; =1 — 2e; ® e; we have
v=—-1(v—2v-ee)=—v+2V-e. (2.144)

Therefore these transformations differ from those of vectors (Green and Adkins, 1970, section
1.6).

Integrity basis for cubic crystals. In this section, the general function whose integrity
basis we are seeking is the function

F=F(A,B,v), (2.145)

for which F' linear in v, B, and quadratic in A. This function represents the spin function
Q(S, S) for the rate independent version in (2.110). The linearity in v, B follows from the
fact that we are after a skew tensor {2 and that we have rate independence. The quadratic
dependence in A is largely arbitrary. These restrictions are crucial to keep in mind, otherwise
the computational task increases greatly. This function is more complicated than most
examples seen in the literature (Green and Adkins, 1970; Spencer, 1971), which focus on
single arguments, and so is a useful example to provide. Some familiarity with Green and
Adkins (1970) is useful to refer to as a simpler case of the following procedure. The derivation
of the function (2.145) also serves as something of a workhorse in this document, since many
steps can be retraced with slight modifications for other functions in Table 2.1 which we will
make use of.

To begin, consider the effect of the reflection symmetries on F'. Under R, we have the
component transformations

17_1 = U1 17_2 = —V3 1_1_3 = —Uj
Ri: An=An Ap= Ay Az = Ass (2.146)
Agy = Agz A1z = —Aiz An = —Ap.

The transformation properties in (2.146) are the same for B as A, so we will not list them
here. Also note that (2.143) implies that the transformation of v under D; is the same as
(2.146), which is not true for a normal vector.

Based on the results of the transformation (2.146), we use Theorem 1 with

(Y1, Y2, Y3, Ya, Y5, Ys) = (A12, A1s, Bia, Bis, U2, v3)

and
(21, 22,23, 24, %5, 26) = (—A12, —A13, —Bi3, — B3, —2, —Us),
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and obtain the following invariant terms, organized in the symmetric array (see (2.133))
[ A%Q A12A13 A12Bis AIZBIB Aqov9 A12U3 1
Af; Ai3Bia AisBiz Aizvg Ajzus

B%g Bi2Bi3s Biavay Biavs

K;:](Ry) = 9.147
[ j]( 1) B%S 313'02 Bl3U3 ( )
v3 VgUs
| sym v3
Next, Dy gives the transformations (equivalent to Ry)
Up=—v1 V2= U3 = —U3
D2 : AH = AH AQQ = A22 A33 = A33 (2148)

AQB = _AZS AIS = A13 12112 = _A12-

In the function we require for the current analysis, the product vvs will not appear at the
order we are considering. The result of the transformation D5, indicates again using Theo-
rem 1, with {y;}, {2} = (£) {A2s, Bas, v1, A13 A1, A13B12, A12 B3, A12v2, A13vs, B1avs, Bisvs}
and obtain the new integrity elements

[Ki5](D2) =

A%, Ax3Bos [Aazvi] A23A12B13 AssAi13Biz [A23Ai2va]  [A2sAisvs]  [A23Biava]  [A2sBisvs]  AxzAi12Ais
B2, [Basvi] B2sA12B13  BagAi13Bia [B23A12v2]  [Ba2zAi3vs] B3 B12vz By3Bi3vs Ba3Ai12A13
v} [viA12B13]  [v1A13B12] v1 A1202 v1A13v3 v1 B2 v1 B13vs v1A12A13

A2,B?,  A19B13A13B12 A12B13A12v2 A12B13A13v3 A12B13Biavs A12B13B13vz A12BisA12A13

A2.B%, A13B12A12v2 A13B12A13v3 A13B12B12v2 A13B12B13v3 B12A13A12A13

A2,v2 AjpvaA13v3 Aj2v2Biovs  A12v2Bizvz AjpvaAiaAis
A2.02 A13v3Biava  A13vsBizvs  Ai13vsAi2Ais
B2,v2 BiavaBizvs  BiavaAi2Ai3
Bf3v§2 Bi3zvzA12413
sym
(2.149)

Next, we can reduce the basis elements developed in Equations (2.147), (2.149). For
example, in calculating (S, S) we need terms which multiply v linearly (since in the end
we apply Equation (2.129)). It is required to carry out the reductions with this in mind;
else we would be clearly be buried in symbols. The other requirement to recall is that we
want a linear function in B, (B represents S), which we must have for rate independence,
see (2.92). Therefore, we will look at expansions up to order (2,1,1), where the indices in
the array of polynomial order, (i, j, k), indicates that entries of A have index i, entries of
B have index j, and entries of v have index k. With this we can immediately drop from
consideration terms which have higher order terms in B,v. In (2.149), terms which we will
accept in the representation of F' are highlighted by braces [()]. After this reduction we have
the function

Aq1, Agg, Asz, Bui, Bag, Bsz, Aagvr, A13vs, A19v3, Bogvy, Bisva, Biavs
F=F| v1A12Bi3,v1413B12, BagA1202, Aa3 Biava, BagA13v3, Asz Bisvs, . (2.150)
A%Q; A%37 A%g, A2 B, A13Bis, Ag3 Boz, Aoz A1av, Aaz A13vz, v1A12A13
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Equation (2.150) turns out to also be invariant under D3. Equation (2.150) therefore char-
acterizes the integrity basis for the plastic spin (S, S) through the rhombic classes, (2.142).
To completely write down the function, apply the expansion technique of (2.139) up to order
(2,1,1) in A, B,v. Then executing (2.129) gives the spin. This expansion is also sufficient
to characterize the yield function incorporating dislocation content, y(E, &), with the caveat
that we have not retained quadratic powers of €. Since quadratic dependence on £ is proba-
bly desirable, we revisit this issue in a later discussion. The spin function for the monoclinic
class (2.141) would be obtained by taking all terms in (2.147) which are of order < 1 in
powers of v;.

To complete the constitutive framework for the rhombic and monoclinic classes, we can
consider the functions W (E), y(E), to quadratic order in a single symmetric argument. Fol-
lowing the previous steps with these functional arguments we have the integrity basis

F = F(Aq, Ay, Asz, A5y, A5 A3). (2.151)

Taking this a step further, of relevance to y(€') = y(sym &', skw &£’) to quadratic order, we
have the integrity basis

F= F(Alla Agg, Az, Aazvy, A13va, A103, A§37 A%ga A%Q, U% U; v§) (2-152)

The basis elements in (2.151) and (2.152) are also invariant under the transformations R, D3.
Therefore these functions are completed up to the rhombic point group symmetry. For the
monoclinic system these same two functions are given by the forms

F = F(Ayy, Ay, Ass, Ags, Aly, ATy, A1y Ass) (2.153)
and

F= F(An, Ago, Azs, Az, A%g, A%z; A1aA13, 01, V903, Ug, v§, A13vz, Ay3v3, A1ovy, A12113)-
(2.154)

Again, to completely write down the polynomial function, we would apply the expansion
technique of (2.139). For the yield function we would look at order 2 in A, and for the
function based on Eshelby stress we would go to the order (2,0), (0,2), (1,1) in A,v.
Clearly these constitutive functions represent experimental challenges in terms of validation
for low symmetry crystals, since an enormous number of material parameters are rapidly
required, each of which must be measured. Things improve somewhat for cubic symmetry;
we now continue the derivation leading to that result.

To briefly summarize to this point, after consideration of the actions of Dy, Dy, Ds,
R, Ry, R3 the invariant function for spin is given by (2.150). Next consider the action of
M, M, the rotations through the cube diagonal. These actions give the transformations

EJ_ZUQ Egzvg 5§:U1
M, : {111 = Ay {122 = Ass {133 = An (2'155)
Agz = A1z Az = An A = Ass,
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1_)_1:1)3 1_)_2:1)1 1_)_3:1)2
M2 : 411 = A33 /_122 = All /_133 = A22 (2156)
A23 = Al2 A13 = A23 Al? = AlS-

Considering both transformations, we have the equivalences

F(A B V) —Fr ( Ay, Ao, Asg, Biv, Bog, Bag, Aosvr, A13va, Ai9vs, Bogvy, Bisva, Biavs )
T V1 A19B13, V1 A13B12, Bag A1202, Aoz B1av2, Bag A13vs, Asg Bigus, ...
_ F< Aga, Asz, Av1, Bag, Bss, Bi1, A13va, A19v3, Agsvi, Bi3va, Biavs, Basvy )
v3A13Bo3, v3A23 813, B1a A13v1, A12B13v1, B1a Aoz, A2 Basvy, ...
_ F( Assz, A11, Aga, Bss, Bii, Baa, Aosvi, A13va, A1ov3, Bogvy, Bi3va, Biavs )
Vo Aoz Brg, VaA12Bas, Bi3Aasvs, A13Basvs, BigAiava, A13Biavy, ... '
(2.157)
The transformations of (2.157) are therefore cyclic in the grouped quantities

(An, A22, A33) ; (Bn, Bss, B33) ; (A2301, A13U2, A12U3) ) (32301, Bizvs, B121}3) )
(U1A123137 v3A13Bas3, U2A23312) ) (U1A13312, v3Ag3 By, U2A12323) ) (A%Qa A%?,a A%:a) ) (2-158)
<A123127 A13Bs, A23323) ) (A23A12U2, Ag3Aj3v3, 71114121413) .

We see that these satisfy the conditions of Theorem 6. Restricting attention only up to order
(2,1,1), we see from Theorem 6, which includes (2.134), that the lowest order terms (2.134),
are given by the sums of the 9 cycles in (2.158):

(A1 + Agg + Asz) , (Bi1 + Ba + Bsz) , (Aasvy + Aigva + A12v3) , (Basvy + Bisve + Biavs)
(v1A12B13 + v3A13Bog + v2 A3 Bia) , (1 A13B1a + 03423 Bis + v2A12Bag) , (AT, + A + A3s)
(A12B12 + A13B13 + A3 Ba3) , (A2 Argvs 4+ Az Argvs +v1A12A13) .
(2.159)
Due to the appearance of the term |e;;x|B;;vr in (2.159) we also need to retain the quadratic
combination of (Aj1, Agg, Asz) in the final expansion for F'; so we must also include the term

A11Ass + A Ass + AszAnr. (2.160)

We now examine the higher order combinations between terms in (2.158). For purposes of
shorthand convenience, denote the cyclic triples in (2.158) by the designations (in respective
order)

A, B, Av, Bv, (vAB),, (VAB),y, A%, AB, A%v. (2.161)

Then taking a combination of terms in (2.161) we use the notation (for the terms A, B in
(2.161))
A, B:[.] (2.162)

where [...] follows from applying Theorem 6, which includes for example (2.135) and (2.137).
If the combination would produce a term of order greater than (2,1,1), that term is not
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recorded in the following. Therefore, taking all combinations of terms in (2.161) gives

A, (UA) : (An, Ay, A33) ) (A23U1, Ay309, Amvs) :
A1 Agzvy + Agg Aigve + Asz Ajavs,
Agzv1(Agg — Asz) + A13va(Ass — Anr) + Arpvs (A — Aso),

A7 (UAB)l : (A117 A22, A33) s (U1A12Bl3, 02A23B12, U3A13Bz3) y -
V1 A12B13 A1 + v2As3 B1aAgo + v3A13Bo3 Ass,
v1A12B13 (Agg — Ass) + v2Aa3 Bia (Ass — A1) + v3A413B93 (A1 — Ago)

A» (UAB)z : (U1A13B12,U2A12323, U3A23313) ) (A11>A227A33) :
V1 A13B12A11 4+ v2A19Bag Agg + v3A93 B13Ass,
U1A13B12 (Azz - A33) + 02A12323 (A33 - Au) + U3A23313 (Au - A22) ,

A vB (323?11731302, 312U3) ) (A11,A22,A33) :

Bosv1 A1 + Bi3vaAgs + BiovzAss,

Bosv1 Agp Asg + B13va Asz Ay + Biavz Ay Ago,

Bosvy (Agg — Ass) + Bigva (Ass — A1) + Biavs (A1 — Ag)

Agp Ass (31302 - 312U3) + AsgAny (312U3 - B23U1) + A1 Ag (32301 - 313U2) )

Av, B : Bi1, Bag, Bss, Asguy, A13112, Aqgvs
Agzv1 By + A13vaBog + A12U3B33,
Ag3vy (Bag — Bsg) + Ai3v9 (Bss — Biy) + A12vs (B — Bag) .

A27 UB . (B23U1, Blg’UQ, Blgvg) s (A%% A%3, A%s) .
B2301A%2 + Bl3U2A%3 + B12?J3A%3>
Basvy (A%:a - Agg) + Bizvy (Agg - A%Q) + Biavs (A%Q - A%?,) )

AB,vA : (A23323, A13Ba3, AlzBlz) ) (A237117 Ai303, A127J3) :

Ag3v1 A9z Bog + A13v2A13B13 + A12U3A12312,

Aggvy (A13313 - A12B12) + Aq3v9 (A12Bl2 - A23323) + Ajovs (A23B23 - A13B13) )
A2U, B: (U1A12A13,A23A12@2,A23A1303) ) (31173227333) :
v1A19A13B11 4 Aoz A0 Boy + Az A13v3 Bss,
v1A12A13 (322 - B33) + Az A1ovs (B33 - Bn) + AggAi3v3 (Bn - 322) )

and

B, A, Av : (Bn, By, 333) ) (An, Aaa, A33) ) <A23U1> Aq3v2, A12U3) )
Bi1A11 Aoy + BagAgg A13v9 4+ Bag Az Aqavs,
By1 Ay (Ar3vg — Ajovs) + Bag Aoy (A1aus — Aggvr) + BagAss (Agzvr — Ajsva) .

(2.163)

(2.164)

(2.165)

(2.166)

(2.167)

(2.168)

(2.169)

(2.170)

(2.171)

The integrity elements listed thus far in (2.164) to (2.171) are representative of the tetartoidal
and diploidal point groups in the cubic class. Continuing our march to hexoctahedral, we
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consider the element T3. We have the transformation

77_1 = V2 17_2 =V @_3 = —U3
Ts: 411 = Ay /_122 = An /_133 = Ass (2.172)
Aoy = —Aiz Az =—Ay A= Apn.

In passing, note that these are different results for T3 than given in (Green and Adkins, 1970,
p. 12), however we believe his results reporting the strain energy function in the end were
correct, perhaps since he was only considering single arguments into the scalar function. We
need to also consider the transformation of the terms of (2.159). Upon the action of T3 we
have the results

Agst1 + A1302 + A3 = —A1302 — Agzvr — Arpvs

Aoz A1z + Aoz Ar30s + U1A12A13 = — A1z Aravr — Az Aszvy — vi A A
U1 A12B13, U3A13Bog, U2 Aos B1a = —vaA12Bog — v3 A3 B — v1A13Bro
01413 B12, U3 A93 Bug, U2 A19Baz = —va A9z Bio — v3A13B23 — v1A12 B3,

(2.173)

Therefore, upon application of Theorem 1, the first two invariants in (2.173) thus disappear
from consideration since they are only retained as terms of order (2,0,2) and (4,0,2), respec-
tively. The second two terms in (2.173) are retained by Theorem 1. Additionally, the term
analogous to (2.173)1, |€;x|Bi;vk, is removed. With no terms of order (0,1, 1) remaining, we
can also remove the (2,0,0) term (2.160). Now consider the transformation of the higher or-
der terms under T3. In these transformations the terms on the left hand side are considered

in the (-) frame.

A, (UA) : (An, Ay, A33) ) (A23U1, Aj309, A12U3) :

A1 Agzvr + Agp Avzvg + Az Ajovs —

—Ago A13vy — Ay Agsvy — AsgAius, (2-174)
Agzvi (Agy — Asg) + Ar3v2(Asg — Ary) + Appvg(Ay — Agp) —

—A13U2(A11 - A33) - A23U1(A33 - A22) - A121}3(A22 - An)

A vAB; : (U1A12Bl37U2A233127U3A13B23) ) (A11,A22,A33) :
V1 A12Bi3 A1 4 v2A23 B1o Ay + v3A13 893 A33 — —v9A19Bo3 Agy — v1 A13B1o A1 — v3A3B13Ass,
v1A12Bi3 (A22 - A33) + v2Ag3Bio (A33 - An) + v3A13B83 (An - A22) —
—v9A19 B3 (An - A33) —v1A13B19 (A33 - A22) — v3A93 B3 (A22 - An)
(2.175)
A vAB, : (U1A13312,UzA12323,U3A23313) ) (AllaA227A33) :
V1 A13B1a A1y + v2A19Bo3 Agy + v3A93B13A33 — —v9Aa3 B1oAgy — v1 A1 Bi3 A1 — v3A13B23A33,
v1A13B12 (A22 - A33) + v2A12Ba3 (A33 - An) + v3Aa3Bi3 (An - A22) —
—v9A23 B9 (An - A33) —v1A12B13 (A33 - A22) — v3A13B893 (A22 - An) ( )
2.176
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A vB (B23U1,B13U2, 312U3) ) (A117A22,A33) :

Bosv1 A1 + Bi3vaAgg + BiavzAsy — —Bi3vg gy — Basvi Ay — BiavgAss,

Bogvy Agp Asg + Bi3vg Asz Ay + Biavz A1 Asy — —Bisvp A1 Ay — Bogv1 Agz Agy — BiavsAge Ay,
Basvy (Agg — Agz) + Bigvs (Asg — Air) + Biavs (A — Ag) —

— B30, (An - A33) — Bazv; (A33 - A22) — Biavs (A22 - All) )

Agp Ass (B13U2 - 312U3) + AssAn (312U3 - B23U1) + A1 Ag (BQ3U1 - 313?12) —

— A1 As3 (32301 - 3121)3) — AgzAg (B1QU3 - Bls?JQ) — ApAn (B13U2 - 3231}1)

(2.177)
Av, B : (Bn, 3227333), (A23U1,A1302,A12?13)
Aozv1 Byy + A13v3Boy + A1ovzBss — —A13v2Bog — Agsv1 Biy — A12v3 B3, (2 178)
A3y (Bog — Bss) + A13vs (Bsz — Bi1) + A12vs (Bin — Bag) — '
—A13v9 (Bn - B33) — Agsvy (333 - B22) — Ajovs (B22 - Bn)
AQ, ’UB . (3231}1, 313’02, Blg’Ug) 5 (A%Q, A%g), A%3) :
BQgUlA%Q + 313@214%3 -+ 312’1)314%3 — —3131}214%2 — BQg”UlA%?’ — 3121}314%3, (2 179)

Basvy (Al3 — A%,) + Bigva (A, — A3g) + Biovs (A33 — Afs) —
—Bi3vy (A33 — A%y) — Basvy (A%, — Afy) — Bious (Af; — A3)

AB,vA : (A23B237 Ai3B3, A12Bl2) ) (A23U1, Ai309, A12U3) :
Aoz A9 Bog + A13v2A13Brg + A1avsA19Bra — —A1302A13B13 — Agzv1 Aoz Bz — A1av3A12 B9,
Agzvr (A13Bis — Ao Bia) + A13vs (A12Bra — Ag3Bag) + Aovs (AgsBaz — A13Bi3) —
—A1309 (A23B23 - A12312) — Agzvy (A12312 - A13313) — Appus (A13313 - A23323)
(2.180)
sz, B : (U1A12A13,A23A12U2,A23A13U3) ) (31173227 B33) :
v1A12A13B11 4 Aoz A1ave Bog + Ags Aizuz Bys —
—v9A19A93 B9y — A13A19v1 B1y — A13A9303 B33, (2.181)
v1A12A3 (322 - 333) + Agz A1ovo (333 - Bn) + Aoz Ai3v3 (Bu - 322) —
—vA12A23 (Bn - B33) — Aiz3Apu (333 - 322) — Ay3A9303 (322 - Bn)

A B, Av: (An, Ay, A33) ) (Bn, Bos, B33) ) (A23U1, Ai309, A12U3) :

By1 A1 Asgur + By Aga A13vg + Bz Ags Aiovs —

—Boy Agp A13v5 — Bi1 A1 Asgvy — BagAzz Ajovs, (2.182)
B A (A13U2 - A12U3) + By Ay (A12U3 - A23U1) + B3z Ass (A23U1 - A13U2) —

—BayAgy (A23111 - A12U3) — BiiAn (A12713 - A13U1) — B33 As3 (A13U2 - A23U1)

Applying Theorem 1; to the results gives the final integrity basis elements. Theorem 1,
need not be considered since it gives higher order contributions, as encountered previously
in the text after Equation (2.173). In other words, many terms are eliminated after use of
Theorem 1, since they must be squared after elimination by Theorem 1; and hence are no
longer linear in v. Final terms in the integrity basis are the terms given by the higher order
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combinations with shorthand designations

’io = (A, UA)Q,il = (A, ’UABl)l — (A,’UABQ)l, ’ig = (A, UABl)Q — (A,UABQ)Q,
ig = (A,UB)g, 1:4 = (A, ’UB)4, i5 = (A’U,B)g, i6 = (A2,BU)2, (2183)
i7 = (AB, A’U)Q, ig = <A2'U, B)Q, 7;9 = (B, A, AU)Q, 7;10 = UABl - ’UABQ,

where the subscripts (e.g. the 2 in the shorthand (A, vA),) denotes the line in the associated
result from the previous equations; in the particular case of (A,vA)q, (A,vA)s denotes the
first term from line 2 of Equation (2.174), which (2.174) demonstrates is invariant under T'.
The explicit integrity elements from i, ..., 719 in (2.183) are denoted as

wi = Ag3vi (Ao — Asz) + A1zva(Ass — Anr) + Aipvs(Arg — Ag)
%1 = U1A13312 + U3A23Bl3 + U2A12323 - U2A23312 - U3A13Bz3 - U1A12313
?/é b — Basvy (A22 - A33) + Bi3vy (A33 - A11) + Biaus (A11 - A22)
;(3 = Ag3vy (B — Bs3) + A13va (Bss — B11) + Aiavs (Byp — Bao)
Z?’l’l) = 01 A12B13A11 + v2 A3 B1aAgs + v3A13Bo3 Ass
—v1A13B12A11 — voA19BogAge — v3A93B13A33
252’1’1) = U1A12313(A22 - A33) + U2A23312(A33 - An) + 03A13Bz3(1411 - A22)
—U2A12B23(A11 - A33) - U1A13B12(A33 - A22) - U3A23313(A22 - An)
Z;E,Q’l’l) = A Ass (Bi3va — Biavs) + Az Air (Biavs — Basvy) + A1 Ags (Bagvr — Bisvs)
2 = Bagun (A3 — A%) + Bugva (A2, — A3y) + Buovs (A3 — A2)
(2 b — = Aszuy (A13B13 - A1zB12) + Ai309 (A12B12 - A23323) + Ajov3 (A23323 - A13Bls)
((;2 b = v1A12413 (322 - B33) + A3 Ai909 (333 - Bn) + Az Ai3vus (Bn - B22)
52 U= BlAy (A13v2 — A1ov3) + BagAsgg (A12v3 — Agsvy) + Bz Ass (Aagvr — Aqsvg) ,
(2.184)
where the notation (-)(*%) denotes the order of the term in powers of A, B, v, as used

previously in this section. To complete the expansion we also need accounting of the lower

order terms

100) = Ay + Ay + Ass

By + By + Bss.
Putting it all together, in (2.184) we have the expansion

F(A,B,v) = ZZb(“”” (1.0.0) +226010 20w+ ez (2.186)

for a total of (\{b(loo)}| =3) + (|{b010 H=1)+ ({e}| =7) = 11 constants. This basis
holds under all other transformatlons in the hexoctahedral point group, so it is indeed the
integrity basis. Additionally, it is valid for hextetrahedral and gyroidal point groups as well.
The spin € is finally given by executing Equation (2.129) on (2.186). The tensor components
of the spin are

(2.185)

2y
$$1m

Q23 = —8F/8U1 913 = 8F/0U2 912 = —8F/8"U3 (2187)
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with the matrix representation

0 Qg 43
Q= |- 0 Q. (2.188)
—y3 =y 0

In our applications we assume that reorientation functions depend on the stress and the
stress rate, so that £ = €2(S,S) is given by using (2.184), (2.185), (2.186), (2.187) and
(2.188) with the replacements A;; = S;;, and B;; = S;;. The material parameters are given

by the arrays {bg’o’“)}, {bgg,1,0)}’ {c;} in (2.186). To complete the flow rule (2.110), we now
consider the yield function using the polynomial framework established thus far.

The yield function and strain energy function, both of the form F'(A) for cubic symmetry,
are obtained by applying the same sequence. Considering first Ry, Do, we obtained (2.151).
Then upon considering M, My, T3, Ty, we can use Theorem 2 directly, and obtain the

integrity basis to quadratic order as
F(A) = F(AH + A22 + A33, Agg) + A%3 + A%Q, A22A33 + A33A11 + A11A22). (2189)

The polynomial is then written as
FA) =YY " tvatal + by (2.190)
i i

for constants bi-’j, ¢/, with the superscript y used to designate these constants relate to yield.

The basis terms are

oy = App + Agy + A, (2.191)

and
Yl = Ay + A3, + Al (2.192)
Yy = AppAsz + AzzAiy + A Ag, (2.193)

so that [{b;}] = 1, [{c/}| = 2, for a total of three constants (at quadratic order in A).
We therefore have y(S) for hexoctahedral symmetry being specified by three constants, and
similarly for the strain energy function W (E). The coefficients Cjjj; from the array (2.85)
can be related to the constants in (2.190) by computing,

OF
Cijp = —
T A0 Ak | 5,

through the direct use of (2.190).
Applied to yield functions, it proves convenient to use the equivalence

(2})? = A}, + A3, + A% + 208 (2.194)
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so we can replace y5 with the basis element
(y")s = Aly + A3, + A3, (2.195)

while everything else goes through unchanged in the expansion (2.190). Next we consider
some other theoretically and empirically motivated aspects to encode in the form of the yield
function.

Positive dissipation. First, to match the stated requirements of the optimization prob-
lem associated with the maximum dissipation postulate, (2.103), we must have y(S) = 0
indicating a state of yielding. Therefore we subtract off a fourth material constant v, from
the polynomial expansion which is quadratic in S. Secondly, there is experimental evidence
that pressure does not lead to yield®. Therefore we remove the dependence on the first basis
element z¥ from the expansion. With this change, applying (2.190) for the yield function
gives

y(S) = cf(S5; + Sty + Sho) + (ST + 935 + 533) — Ymax- (2.196)

The thermodynamic requirement of positive dissipation states that

dy
= . 2.1
95 S>0 (2.197)

Using (2.196), we have (Gupta et al., 2011)

D = 20?1“5%3 + 5%3 + 5122 + Sfl + 532 + 533) + 2(032’ - C%)(Sfl + 532 + S§3)
= 2¢1||S|1* + 2(c} — &) (ST, + S5, + S33). (2.198)

Imposing D > 0 then requires that ¢i > 0 and ¢; > ¢f, where in Gupta et al. (2011) they
used the deviatoric stress S in (2.198). Based on the simple quadratic form for y, we could
get a similar result without imposing deviatoric stress by considering that (2.196) is of the

form
1

y(S) = §Yz‘jk55ij5kl — Ymax (2.199)

for material constants Y;jp(cy, cy). Then the dissipation restriction simply states that

D>0 = Y,-jleijSkl >0 (2.200)

so that the eigenvalues of Y;;x must be positive. Relating Y;ju to ¢f, ¢j through the use of,
e.g. Yiju = 0%y/0S,;;0Sk thus gives the restriction ¢} > 0, ¢4 > 0.

SBut it can affect when yield occurs.
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Plastic incompressibility. Finally, plastic incompressibility (that is, no volumetric flow
during plastic deformation) requires that tr K™'K = 0, hence we have the restriction
Ay v
0=tr (9_8 = 2C2(Sll -+ 522 —+ Sgg). (2201)
This equation can be satisfied by replacing the functional dependence of the yield function

on S by the deviatoric stress B
S=S-1/3(tr S)L

The lattice spin could likewise be considered as dependent upon the deviatoric stress, {2 =
(S, S), however, this is an additional assumption which may or may not be borne out in
experimental observations. We note that the crystal plasticity model of (2.6) is naturally only
dependent upon the deviatoric stress since S-sf®@n§ = S-s§®@ng, since I-s§®@ng§ = s§-ng = 0

Summary. Taking all restrictions together, the yield function for cubic symmetry, at
quadratic order in its argument (S or E), with the form y(S) = 0 defining the bound-
ary of the elastic region, satisfying the dissipation inequality and isochoric plastic flow is
written as

y(S) = c{(S3; + St3 + Sta) + 5(Sty + S35 + 533) — Ymax- (2:202)

with the restrictions ¢ > 0,c§ > ¢{, and with a contribution to the flow rule of

Ay 03215'11 0‘11/5'12 0%15'13
% =2 CgSQQ C:llj§23 . (2203)
sym 3533

The material parameters in the model are then ¢¥, ¢3, yax. The values for these parameters
can only be obtained from experimental data.

We had previously raised questions as to the physicality of the rate independent flow
rule developed here, €(S, S) and resulting in (2.186), see §2.2.3.3. The problem is that this
form is not guaranteed to have the property that the spin reverses upon change of loading
direction. Therefore we now consider other forms for the spin which more clearly capture
this crucial property.

Alternative formulations for the spin

In this section we investigate lattice reorientation functions derived from scalar functions of
the form
F=F(Av). (2.204)

This enables spin functions of the form Q = €(S), which by construction satisfies the
physical requirement Q(S) = —(—S). Rate independence can be satisfied by modifying
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the flow rule from (2.110) to be written

Oy

K 'K = —
A(as

+ Q(S)> (2.205)
Factoring out A gives the rate independent phenomenology, since A is solved for based on
the constraint from the yield surface, independent of any material-dependent time scale.

Previously we considered developing the constitutive function (2.145) out to order (2,1,1)
in powers of A, B, v for hexoctahedral point group symmetry. In this section we consider
expansions up to order (3,1) and (5,1) in A, v. This is because for hexoctahedral symmetry
there is no such function

Qi = Wik Aw (2.206)

for a symmetric tensor Ay, and skew symmetric 2;;. Therefore we need to consider at least
the cubic order expansion
Qij = WijklmnopAklAmnAop- (2207)

Cubic order integrity basis. Much of the same derivation used to obtain (2.186) applies
here. To prove that there are no contributions to the spin at linear order for hexoctahedral
symmetry, from our previous derivation note that there are no terms in the integrity basis
which are linear in A, v due to the required invariance under the T;,7 = 1,2, 3 transforma-
tions, see Equation (2.172) and (2.173). On the other hand, the cubic groups tetartoidal and
diploidal classes do not have any T; rotation elements and a linear contribution of the form
(2.206) would be anticipated for those cases.

Following the same prescription as done previously for F'(A,B,v), we eventually obtain
the integrity basis elements

F(Av):
2P = Ay + Ago + Asg
Z/fube Apq (Aizvg — Ajovg) + Agg (Arv3 — Aogvr) + Asg (Agsvr — Ag3v,),
Cube = A Ass (A13712 A1203) + AszApy (A12U3 - A23U1) + A Ag (A23711 - A13U2) )
Zgube = A23 (A13U2 A12U3) + A%3 (A12U3 — A23U1> -+ A%Q <A23U1 — Algvg) s
CUbe = An (A23A12U2 A23A13U3) + Ao (A23A13U3 - UlA12A13) + Ass (01A12A13 - A23A12U2)
(2.208)
with associated polynomial expansion

_ zl:zl:bcube cube cube_l_z cube cube (2209)

i=1 j=1

Cube

where the arrays b{'°, ¢{">® are material constants. The associated spin vector w = () =
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w;€; has components
wi = 1P (A1 + Ags + Asz) (As3Ass — Aoz Aso) + ™ (A11Asp Asy — Az Az3Ary)
+ e ( Ag3 ATy + A} A23) + Cgube (—ApA1A13 + Ag3A1pAr3)
wy = b1 (Arr + Ass + Ass) (A1 Ais — Ai3Ass) + " (AgpAss Ars — Ar3A11 As)
+ e (A§3A13 A12A13) + 5" (A1 Aoz Arp — Asg Az Ar)
wz = b§YPC (A1 + Ags + Aszz) (AspArn — A1 Aro) + ™ (As3A11Ars — A2 Az Ass)

+ 5" (—AJ3 A1y + AT Ar) + &5 (— A1 Aoz Ay + Az AszAss) . (2.210)
The spin tensor €2 components are related to w; by
ng = —Ws ng = W2 923 = —Wws. (2211)

with final matrix representation in Equation (2.188).

Quintic order integrity basis As long as the iron is hot, so to speak, we continue
expanding up to the quintic order. In the parameter calibrations performed in the next
section, we were interested in if there was improvement in the phenomenological match to
the crystal plasticity data by adding additional functional flexibility. Carrying out the same
procedure as before, the required integrity basis terms for a function up to order 5 in a single
argument for cubic symmetry are given by:

= Ay + Agp + Asz

y = Al + A%, + Al

yo = A3y + Al + Al

2 = A1 AxpAss

2y = Aj1pA13A03

23 = AllAgg + AQQA%?) + A33A%2

wy1 = Aggvy (Azg — Asg) + Aizvg (Ass — Apy) + Argvs (A — Agg)

w21 = Agaui (Afs — Afy) + Auava (A7, — A%y) + Arpug (A3; — Ay)

r2y = v1A19A13 (Age — Ass) + AsgA1av (Asg — A1) + AszAr3vs (A — Ag)

Tz3 = AgAss (A13U2 - A12113) + AszAqy (A12U3 - A23U1) + A1 A (A23U1 - A13U2)

rwy = AgAgz (AazA1ovs — AsgAr3vs) + AsgAry (AgzAigvs — v1 A1 Arg) +

A1 Az (U1A12A13 - A23A12U2)

TWy = U1A12A13 (A%S - A%Q) + A23A12U2 (A%Q A%g) + A23A13U3 (A A%S)

TW3 = A11A23U1 (A%3 - A%2) + A22A13U2 <A12 — A23> + A33A12U3 (A A%E‘))

vy = Af3 ALy (Ai3vy — Appvg) + A%y A3, (Argvs — Agguy) + A3 AT, (A23111 A13v9)
vy = A11v1 412453 (A%:z, - A%g) + Aga AgzAravs (A%:% - A§3) + Az A2z A13vs (A%2 - 14(%3) . )
2.212

We consider deviatoric dependence only, therefore we do not include the basis element z; in
the expansion. Then the polynomial function is written as

F(A)=2z(3) + zy x 2(3) + vz x y(6) + zv(2), (2.213)
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where we are using the shorthand a*b to denote polynomial combinations between the terms
a and terms b. For example, xz * y = ¢;;x2;y; for 6 constants ¢;;. The number of constants
required for the given combination is denoted by the notation zz*y(6) in (2.213). Therefore
(2.213) has a total of 14 total constants, with the assigned pairings

a; . TZ;

bi : (zy1 * 2)
¢y (22)iy;
d; : xv;.

(2.214)

Hardening phenomenology, backstress

Next, we consider a possible constitutive formulation to capture experimentally observed phe-
nomena such as the Bauschinger effect, kinematic and isotropic hardening. In our framework
this phenomenology enters into evolution of the yield function. Based on the polycrystalline
plasticity literature (Chaboche, 1987, 2008) a typical approach is to pose the yield function
as

v =y(Sij — Xij) (2.215)
where x;; is a phenomenological quantity called the backstress. The center of the yield
surface is translated in its domain space when there is a non-zero backstress, thus leading
to kinematic hardening phenomenology. A possible explanation for the microscopic origin
of kinematic hardening is an evolving dislocation density. Therefore, it seems reasonable
to assume that the backstress is some function of the geometrically necessary dislocation
content, £. Therefore, we consider yield functions of the form

y = 4(S — x(&)) — (&), (2.216)

where x : R® — sym is the backstress, associated with kinematic hardening and 4 : R — R*
is the radius of the yield surface, associated with isotropic hardening. The function x is of
the form F(A,B,v), from Table 2.1, see (2.131).

_OF

x(&) = 9B )
B=0

(2.217)

with the interpretations A = sym &, v = (skw £). The requirements on F(A,B,v) we
consider are then: (1) linear in B, in recognition of (2.217) (2) up to quadratic order in
either of A, v, for computational expedience. Using our previous notation we need integrity
basis elements of the orders (2,1,0),(1,1,1),(0,1,2), and order below this. The development
leading to (2.150) is valid to consider, with some modifications, in order to obtain the required
integrity basis.

First off, we can directly retain the R;-invariant terms recorded in Equation (2.147).
Note in passing that this completes the monoclinic class specification for the constitutive
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function for x. Next, considering the terms leading to (2.149) we have an additional factor.
This is generated from including vyvs in the integrity basis, which we did not have to do
previously. Carrying out the modifications to (2.149), the expression analogous to (2.150) is
then

Avr, Agg, Asz, Bii, Bog, Bsz, Aagvr, A13vs, A1ov3, Bogvy, Bisva, Biavs
v1A12B13, V1 A13B1a, Baz A12v2, A2z B1ava, Bag A13v3, Aoz Bi3vs,
A%g; A%g, A%g; A19B9, Ai3Bi3, Aoz Bos, AagA13Big, A3 A12Bi3, BazA12 A3,
U%, U%; U%; Basvavs, Bigvzvy, Biavavg
(2.218)

As before, under My, M, the function (2.218) is cyclic in the quantities

(An, A22, A33) , (Bn, B, B33) s (A2301, A13U2, A12U3) ) (32301, Bigvs, B1203) )
(UlAlQBl& v A3 Bia, UsAlsBzfs) ) (UlAlsBm, V9 A12Bag, U3A23B13) ) (A§3, A%?,a A%z) ) (2 219)
(Uf, 'U§, ’032,) ) (A23B23, A13Bys, A12312) ) (323A12A13, Ag3A19Bs3, A23A13312) ) '
(

Basvavs, Bigvsvn, B12U2U1) .

After applying Theorems 5 and 6 we obtain the following integrity basis, with the order of
the basis terms indicated

0 Bagvovz + Bizvzvy + Biavavg

: B11v? + Baov3 + Bazv?

: A1 As3Boy + Az Agp Biy + A Ay Bss,

: B11A3; + Bog A2, + Bz A2,

: A1 Ag3 Bos + Agp A13Big + Az A2 By

: Ag3Bas (Agy — Asz) + A13B13 (Asg — A1) + Apa B (A — Ago)
: Bog Ao A1z + Aoz A1 Big + Az A3 By,

xﬁl’o’o) : A+ Agg + Ass,
a:ﬁ”’l 0 Bi1 + Bay + B
yiz,o o AgaAszz + Az Anr + A Ago
?J%Z’S’Z; : 1452 + ;433 t A,
Yy vy vy F g
20 A9y Byy + Ay Biy + AssBss,
$§1’1’0) : Ag3Bas + A13B13 + A12Bio
yil’l . Agzvy (Bag — Bsg) + A13ve (Bss — Bi1) + A1ovs (Bin — Bao)
yél’l’l) : B23'U1 (AQQ — Agg) + B13U2 (Agg — All) + BlQ'US (All - A22) (2220)
st 1; : 1 A19B13 4 v Aa3 Bia + v3A13Ba3 — vaA13Boz — v1 A13B1a — v3A23B13
)
)
)
)
)
)
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the polynomial expansion is then written as

F(A,B,v) =
Z(;),l,o),(1,0,0)x§0,1,0)x§1,0 o b;)l 0),(2, oo)xl(o 1, O)y](2 00) b;)l 0), 00’2)9550’1’0) §0,0,2)+
61(1,1,0)351(1,1,0) n cg;,1,o)(1oo)$2(1,1,0) (1,00) | d. (1,1;1) (1,1,1) 4 750,1,2)21’(0,1,2) " fi(2,1,0)zz(2,1,0)’
(2.221)
where agj), bEJ), ¢, za)’ dl , € ,fi(') constitute a set of 18 material constants.

2.3.4 Discussion

In this section we have given several detailed examples of generating several constitutive
functions from Table 2.1 for hexoctahedral symmetry (maximum cubic symmetry). During
the course of the derivations, we also arrived at integrity basis forms for rhombic and mono-
clinic classes, as well as several lower order groups from the cubic class. These examples are
useful to give since the procedures are not well documented in the literature, (Green and Ad-
kins, 1970; Spencer, 1971), and we found the structural tensor approach to be unattractive
when dealing with multiple functional arguments due to the tendency to generate redundant
basis elements. Such lack of examples may be one reason why the present approach to single
crystal plasticity has not been completed prior to this study.

Later in this document we perform similar analysis for the other practically important
yet difficult to analyze crystal class: the hexagonal system. In §3.5.1.2 we examine the yield
function for this system. Then in §A.5 we give a detailed treatment of the spin function of
the form € = Q(S) up to cubic order for dihexagonal-dipyramidal point group symmetry
(maximum hexagonal symmetry).

Since the hexoctahedral and dihexagonal-dipyramidal classes represent the groups with
the most symmetry out of the 32 crystallographic point groups, lower symmetry groups can
readily be picked off at various stages of the given derivations. This was done with monoclinic
and rhombic symmetry in this section, for example. All these examples taken together from
this thesis should therefore provide enough reference material to allow other researchers
interested in implementing this constitutive framework to generate complete integrity basis
elements for any of the 32 crystal point groups.

For those familiar with crystal plasticity implementations, it may be of interest to em-
phasize that this constitutive framework does not explicitly distinguish between for example
FCC and BCC crystals. Here, constitutive equations are generated based on the point group
symmetry, which is of the cubic class in both cases. In the next section we calibrate the
plasticity model defined by (2.110) against crystal plasticity models for FCC and BCC crys-
tals from the literature. According to crystal plasticity theory, FCC and BCC crystals have
different slip systems in (2.5), and therefore different reorientation behavior under the same
conditions. In our framework, this distinction will have to come out in the numerical values
of the material constants in the constitutive equations we are considering. Therefore it will
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be interesting to see how well our functions capture the different reorientation behavior be-
tween FCC and BCC. After these calibrations, we perform plane strain simulations in order
to assess the model in qualitatively simple yet informative boundary value problems.

2.4 Numerical simulations

In this section we exercise the plasticity model in numerical simulations. We ground the
model in reality by first calibrating our constitutive equations for plastic low. Then we
develop a simple numerical method for executing plane strain simulations, incorporating
dislocation &, as derived from the plastic deformation field, rather than as a primitive vari-
able. Results from several simple but informative boundary value problems are shown.

2.4.1 Calibration of constitutive functions; material point simula-
tions

First we calibrate the constitutive formulas for yield and plastic flow developed in the pre-
vious section against available data. Due to a lack of usable data (Bell and Green, 1967)
our best recourse is to calibrate against a crystal plasticity model from the literature. We
calibrate these parameters by performing one of the simplest possible simulations, a spa-
tially homogeneous isochoric uniaxial extension. This simulation has the benefit of having a
degree of experimental feasibility. We now describe the algorithm used to update the plastic
variables such as the lattice reorientation. This algorithm will be used again in the plane
strain simulations.

2.4.1.1 Numerical algorithm

We calibrate the evolution of K between the phenomenological and crystal plasticity models
by simulating an isochoric extension of the form

F(s) = se;®e + L(eg ® ey +e3®e;). (2.222)
NG

Although this homogeneous deformation does not necessarily correspond to the material
deformation in a uniaxial extension or compression test, it is close enough to be considered
representative of such tests. The discussion in §2.2.3.3 surrounding lattice reorientation in
axial extension experiments is pertinant to review, as this deformation results in non-zero

lattice reorientation from the crystal plasticity model.
The material is initialized at s = so = 1 with K(0) = K;. The initial plastic deformation
is set at Ko € SO(3,R) in recognition of the experimental fact that only initial orientations
are detectable using X-ray diffraction, see the summary paragraph of §2.2.1. A constant
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extension rate parameter $ = const is specified, so that the extension is discretized as
s — () 4 At (2.223)

for an assigned temporal increment At. Then FU+Y = F(s(t) is updated using (2.222).
Next, given K@, H® FO+D e perform what is usually referred to as a predictor corrector
scheme to stay on the yield surface, although it is really just solving a system of nonlinear
equations. The procedure is as follows. First, assume the increment F® — FO*Y constitutes
elastic deformation. That is, set KOt = K@ compute HFY = FOFUK D and evaluate
the yield function y = y(S(Z+1 ). Note here that the trial stress is dependent on K*Y through
the sequence S = S(HHY) = S(FEFVK D) If the yield condition y(S™Y) < 0 is
satisfied, accept K = K@ and go to the next F-step by incrementing s through (2.223).
If the yield condition is violated by the new elastic state, so that y > 0, then solve the
following system of equations for A\, K"V where we are using the flow rule of (2.205)

(K(iJrl))flK(i—I—l) — )\ (8_ + Q(S(z+1 ))

oS (2.224)

y(S(i—H)) -0
where K'Y = (KD _K®)/At, and S = (S —S¥) /At. The implicit form of (2.224) is
motivated by our initial studies of flow rules of the form (2.110), in which having = (S, S)
to achieve rate independence would necessitate an implicit solve.

The equation (2.224), enforces the yield constraint. Alternatively, instead of adding
(2.224)5 to the system of equations, to solve for A we could use the so-called consistency
condition in the form

0=9=—% — E (2.225)

where
9 = C =K F'FK + K'F FK + KTFTFK + K'FTFK.
Next, K is given by the flow rule (2.205),
. 8y
K=-K\N =<+ 2.22
(5e+2). (2.226)

which gives
(Y o)k FFK 4+ KFFK (Y L0
C= oS

98 (2.227)
+K"F FK + K'F'FK.
Then, substitution of (2.227) into (2.225) and solving for A gives
Bg g; (K"F'FK + KTFTFK)}
A= (2.228)

9y 0S8 [(9y _ TRT TRT 9y '
%S B [(as Q)KFFK+KFFK g+ 9
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Equation (2.228) can be used to evaluate the multiplier A and thereby reduces the number of
equations in the system (2.224) by one, but we find it more straightforward and as effective
to simply enforce remaining on the yield surface at the end of the iteration in the system of
equations. Equation (2.228) can also be used to incorporate rate independence into explicit
schemes. The solution of the equations (2.224) is obtained by Newton Raphson iterations
from initial guesses K(()iﬂ) =K@, and taking ACtD from (2.228). Taking a positive number
for the initial guess )\(()Hl) generally works, but for some boundary value problems successful
convergence of the solution was found to be dependent on the numerical value for )\(()Hl).

Therefore for robustness we use Equation (2.228) to give the initial guess for A(+1).

Crystal plasticity model As mentioned previously, the raw experimental data we desire
to calibrate against was not readily available. However crystal plasticity models which have
apparently been calibrated against experimental data are generally available in the literature.
Therefore we use these models to generate simulated data in order to furnish the calibration.

Although raw experimental data would be more meaningful to calibrate against, matching
the phenomenological lattice reorientation function €2 and yield function y against crystal
plasticity models which have been calibrated against data is the best we can do at this
time. In order to relate the two models more clearly, we have the equivalence K™ = F?,
where F = FPF° is the multiplicative decomposition of F. Then in our notation the crystal
plasticity flow rule, Equation (2.5), becomes written as

. Nslips
K 'K =) 4% ®n], (2.229)

where the summation is over the slip systems in the crystal, obtained from the space group
symmetry of the crystal. The shear rate 4% is typically given by (Anand et al., 1997)

1/m
¥4 = Yo (—) sign(7%), (2.230)

where 7 is the resolved shear stress on the slip system, computed from the second Piola
Kirchoff stress as 7* = S - sj ® nj. s* is the flow resistance for the slip system, 7, is
a material property representing material viscosity, and m is a rate sensitivity parameter.
The Miller indices for the slip system vectors s§, ng, a = 1,2, ..., Ngips for FCC (Ngips=
12) and BCC (Ngips= 24) space group symmetry are recorded in Table A.1 and Table A.2,
respectively. Due to the cubic symmetry, directional indices common in crystallography
moniker are closely related to the Cartesian components of crystallographic vectors, so that
1,1,1=1/v3(e; —ey+e3) and 1,2,1 = 1/4(e; + 2e, + e3) for example (Hosford, 1993).

The flow parameters in (2.230) for BCC and FCC crystals are given in Table 2.2; these
parameters are from Anand et al. (1997); Barton et al. (2005). The slip systems used are
recorded in Tables A.1, A.2 for FCC and BCC crystals respectively. The plastic state update
is obtained from the integration of (2.229) and (2.230) during the extension (2.222).

«
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Table 2.2: Table of crystal plasticity parameters from (Barton et al., 2005; Anand et al.,
1997).

crystal type | m | Yo[s™'] | so[ MPa]
BCC 0.05 | 0.003 250
FCC 0.012 | 0.001 16

2.4.1.2 Results

In order to calibrate the phenomenological model we performed the uniaxial deformation sim-
ulation described by (2.222) from a several random initial orientation, Ky € SO(3,R). From
these initial orientations tests were performed to a total material stretches of s, = 1.1,0.9
in (2.222). These two cases represent isochoric extension and contraction, respectively. The
phenomenological model was calibrated to the crystal plasticity model by using a standard
least squares method, see §3.4.1. In order to determine the phenomenological parameters we
decoupled the considerations of the yield parameters ¢}, ¢§, Ymax, introduced in (2.202), from
the lattice reorientation parameters b$iPe, c§ue csube cSbe wwhich were introduced in (2.209).
That is, we used separate calibration criteria for the two in order to get initial guesses for
the parameters.

2.4.1.2.1 Calibration of yield parameters. For the yield parameters of (2.202), the
residuals were formed by taking differences in the axial Cauchy stress T, so that the residual
contribution, r, from one initial orientation is written

r°(0Y) = (Tep(sk))11 — (Tphen(OY)(sk))11, (2.231)

where T, is the Cauchy stress from the crystal plasticity model and T, is the Cauchy
stress from the phenomenological model. The free parameters are

OV = (Y, Y, Ymax) (2.232)
from (2.202). The least squares objective function associated to the residual (2.231) is written

Ngrains Nsteps

©OY) = > D ()l (2.233)

where Ngpains is the number of initial grains taken through the simulation (2.222) and Nggeps
is the number of steps s’ in (2.223) where comparison between data and simulation is made,
respectively. We found that this approach works in terms of fitting the stress data, but that
there is an undesirable flexibility in the absolute numerical values of ¢?, ¢%, Ymax. That this
makes sense is seen by dividing the yield equation (2.202) by any arbitrary constant, which
gives the same elastic region. To set a meaningful scale for the magnitude of the parameters
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Table 2.3: Best fit material parameters for y(S) for hexoctahedral symmetry, from (2.202).

crystal | ¢f A5 | Ymax|GPa]
BCC | 0.396 | 0.463 0.106
FCC | 0.412 | 0.412 0.00041

(2.232), we take insight from the classical J, theory of plasticity. There, the yield function
is of the form o
y(S) =8-S —&? (2.234)

where it can be shown that (Malvern, 1969, p. 338)

Y
k= 7 (2.235)

where Y is the yield stress in tension. In our formulation we would like to have something
similar, such as
Ymax ~= k2 =Y?/3, (2.236)

in order to give an order of magnitude guess for y.,.,, with subsequent effect on the values
of ¢¥,cy. To facilitate this, to the objective function (2.233) we add the residual equation
1 2

Ti = Ymax — g(Tphen)ya (2.237)
where (Tphen)y is the axial Cauchy stress at yield, determined from the T71vss curve. Should
there be confusion it is emphasized that the procedure of assigning the extra residual (2.237)
is used simply to get more numerically intuitive values for the parameters in the yield func-
tion.

The final results for a BCC and FCC crystal are given in Table 2.3. In these results the
number of initial orientations simultaneously incorporated into the objective function was
Ngrains = 7. Since the crystal plasticity model does not have uncertainties associated with
the model parameters, we cannot assess quantitative precisions to the best fit parameters;
this being something of an unfortunately common occurrence in the literature. After cal-
ibration, the Cauchy stress curves for tension and compression were plotted in Figure 2.7
and Figure 2.8. There are only two parameters in the yield function, so fully matching the
crystal plasticity result which has corners in the yield surface is not possible. Higher order
polynomial forms for the yield function may give further improvements in the calibration,
but this is not as straightforward a proposition as might be thought. More comments on
these issues are in the discussion section following the calibration results.

2.4.1.2.2 Calibration of lattice reorientation function For the lattice reorientation
function, €2, the residuals for the objective function were formed from the difference in
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Figure 2.7: T}; Cauchy stress components for the FCC crystal plasticity model in Table 2.2
and best fit phenomenological yield function for seven initial orientations Ky € SO(3,R).
Both extension and contraction behavior was used to calibrate the model as indicated in the
figure. Solid lines are results of the phenomenological model, the dashed lines are the crystal
plasticity model.

Cartesian components of the plastic deformation K at various states of the deformation
Sk, k=1,2, ..., Ngeps. For an individual grain the residual array is

rsk(@) = [ch(Sk) - Kphen(@)(sk)]

v

i (2.238)
where © = (bS4P°, c§uPe c5uPe "¢ are the reorientation parameters from (2.209), K, (s)
is the plastic deformation according to integrating the crystal plasticity flow rule (2. 229)
and Kppen () is the plastic deformation according to the phenomenological flow rule (2.205)
with the yield parameters of Table 2.3. The objective function for the lattice reorientation
parameters is then written

gralns Nsteps 3

Z Z ZZ[ r. (2.239)
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Figure 2.8: T}; Cauchy stress components for the BCC crystal plasticity model of Table 2.2
and best fit phenomenological yield function for seven initial orientation Ko € SO(3,R).
Both extension and contraction behavior was used to calibrate the model as indicated. Solid
lines are results of the phenomenological model, the dashed lines are the crystal plasticity
model.

In these results the number of initial orientations tested was Nguins = 7, and the plastic
deformation was sampled at Ngeps = 10 data points. The best fit parameters are given in
Table 2.4. The units are such that the flow rule makes sense, e.g. we have dy/9dS of the same
units as €2(S), so since £2(S) has cubic expressions of S, the constants in € must be units
of stress™2 to match the linear-in-stress dy/dS. The numerical differences between the BCC
and FCC models have to do with with the stress values present during plastic flow, compare
for example Figure 2.7 and Figure 2.8. The last column entry ®* denotes the objective
function value at the optimal solution. This value is mostly useful for comparisons between
models.

Next, the calibrated parameters are used to qualitatively assess the ability to capture
the reorientation behavior of the single crystal. In Figure 2.9 and Figure 2.10 are shown the
extension axis e; of (2.222) projected into the crystal reference configuration ;; an inverse
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Table 2.4: Best fit material parameters for (S) . The units are [GPa™?], as required by the

flow rule.

Table 2.5: Best fit material parameters for £2(S) up to quintic order. The units are [GPa™?],

crystal b11 1 Co C3 o
BCC | 0.452 9.73 -7.72 | -0.961 | 0.207
FCC | 432.93 | -1740.61 | 1092.45 | 198.73 | 0.227

[GPa™"] as required by the flow rule.

crystal ay as as by by bs c11
BCC 52.3 —20.2 | —=0.12 | 0.88 99.9 21.0 | —50.4
FCC —1488.4 | 921.8 | 1094 | —5.4 | —29.7 | 27.8 —1.3
Ci2 Ca1 C22 C31 C32 d; dy o~
—178.4 28.1 59.7 -5.9 5.1 —48.5 | —99.7 | 0.14
5.5-107% 17.5 —7.6 17.1 —49.6 | 23.8 23.4 0.23

pole figure. The inset figure is a zoomed in region from the figure. Blue and black circles
represent the crystal plasticity prediction in extension, contraction respectively; red and
purple crosses represent the phenomenological model prediction in extension, contraction
respectively. On a visual basis the agreement is generally very good for the BCC crystal.
The FCC crystal captures the sense of reorientation decently well, but the final reorientation
on the inverse pole figure is of less magnitude than the crystal plasticity model.

We also tabulate calibration results from the other constitutive models for lattice reori-

entation. Table 2.5 shows the results from the quinitic order reorientation function, Q(S),

in (2.213), (2.212). Table 2.6 shows the results based on the function €(S,S) in (2.186),
(2.184), with the reduction

F(A,B,v)=> . (2.240)

Equation (2.240) follows from (2.186) after considering only deviatoric stress and stress rate
contributions.

2.4.1.2.3 Viscoplastic extension Using the same material point simulation, (2.222),
we can exercise the viscoplastic extension of the model and the evolution to the rate inde-

Table 2.6: Best fit material parameters for (S, S) up to order (2,1) in S, S.

crystal c1 Ca c3 C4 Cs Ce cr o>
BCC | 0.045 | 0.16 | 0.002 | 0.079 | —0.122 | —1.97 0.02 0.194
FCC | 35.2 | 774 | 25.2 | =70.5 | 292.2 | —384.4 | =169.9 | 0.211
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pendent limit. The viscoplastic extension uses flow rule of the form

K 'K = —% (g—g + Q) : (2.241)

where v is a material constant representing viscosity of plastic low. Note that the rate
independent limit is ¥ — 0, which we achieve in practice by executing the algorithm in
(2.224). Also note that this extension is an example of a simple Perzyna-type overstress
model, see (2.98). For example, taking a stress dependent viscosity of the form v = v(S) and
generating constitutive equations from the methods in §2.3.3.1 would be another admissible
formulation of the model mentioned in (2.98).

In (2.241), the yield condition y(S) is the same as for the rate independent case; the
calibrated parameters from Table 2.3 are used. The axial deformation in (2.222) at different
deformation rates can be characterized by the fixed parameter s. In Figure 2.11, the axial
(e1) stress behavior as a function of the ratio of the extension rate s to the material viscosity
v is plotted. As the viscosity v decreases, the rate independent limit is reached. As an
important point, Figure 2.11 shows that the assumptions of small elastic strain in (2.107)
may not be satisfied for certain material viscosities or for sufficiently high rates of loading. In
the rate independent case, there is a natural restriction to stress states to be within the elastic
region defined by y(S) < 0, see (2.103). However in the overstress model of (2.241), there is
no restriction of stress states to the elastic region. Therefore with viscoplastic simulations
the strains should be checked to make sure that the conditions presumed to be valid in the
theoretical construction are indeed still valid; in this case, that elastic strains are small < 1%.
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Figure 2.9: Inverse pole figure for extension axis e; with s € [1,1.1] in for extension and
s € [1,0.9] for compression, for BCC crystal. Blue and black circles are the crystal plasticity

prediction in extension, contraction resp.;red and purple crosses are the phenomenological
prediction in extension, contraction.
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Figure 2.10: Inverse pole figure for extension axis e; up to s € [1,1.1] in extension and
s € [1,0.9] in contraction, for FCC crystal. Blue and black circles are the crystal plasticity
prediction in extension, contraction resp.; red and purple crosses are the phenomenological
prediction in extension, contraction.
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Figure 2.11: Material point simulations of the viscoplastic overstress model (2.98) with flow
rule (2.241). The figure indicates that elastic strains may not be small depending on the
material viscosity and/or rate of loading, thereby requiring use of (2.104). Such conditions
must be checked if simulation results are to be trusted.
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2.4.1.3 Discussion

In this section, constitutive functions requested by the phenomenological theory of §2.2 were
grounded in reality by calibrating against a prediction from a crystal plasticity model which
is regarded as experimental data. This calibration was constructed in recognition of the fact
that lattice deformation is measurable using X-ray diffraction, so a theory which predicts how
the lattice evolves can, in principle, be related to experimental observations®. We obtained
reasonable agreement with the crystal plasticity model. The BCC fit in Figure 2.9 was
qualitatively better than the FCC fit of Figure 2.10, in terms of matching the reorientation
behavior (see figure insets). One reason this may be is because the BCC crystal plasticity
model we were calibrating against had 24 slip systems, while the FCC model had 12 slip
systems, see Tables A.1, A.2. The increased number of slip systems to consider makes the
BCC model more isotropic in some sense.

One question we were curious in investigating was how the model would handle the
different reorientation behavior of FCC and BCC crystals. For example, according to crys-
tal plasticity, the point group symmetry of the crystal is largely irrelevant in determining
plastic flow; it is the space group symmetry determines the slip systems and the flow in
(2.229). Therefore, the plastic flow evolution for FCC and BCC crystals have seemingly
little in common from this viewpoint. However in classical phenomenological thinking, we
only require information about the point group symmetry of the material. Therefore the
distinction between BCC and FCC must come out in the constitutive equations; for the
same type of constitutive equation this must be evidenced in the numerical values of the ma-
terial parameters associated to the constitutive equation. This was indeed borne out in our
calibration, where we achieved reasonable matching of both FCC and BCC crystal plasticity

models with our seven parameter model, c¥, c, Ymax, b§IPC, c§P¢, c5uPe cSPe. Interestingly, in

Table 2.4 the signs of the dominant parameters c§"*°, 5" are opposite one another, in terms
of sign, for the FCC and BCC cases. This is consistent with the crystal plasticity based
observation that the skew part of the flow rule differs between FCC and BCC crystals, see
Table A.1 and Table A.2 and note that n{(BCC) = s (FCC) and s)(BCC) = n(FCC), so
that (skw K'K)pce ~ —(skw K™'K)pcc.

Clearly the phenomenological model cannot compete with the simple shear deformations
predicted by crystal plasticity in the simple material point simulation employed for cali-
bration in this paper. However as more complicated crystal plasticity models are proposed
to describe experimental observations the phenomenological model may prove to be more
attractive. In fact, viewed through the same lens as our phenomenological theory, crystal
plasticity has many more parameters: 3 for each s§ ® n§ system note (||s§|| = ||ng| = 1, and
s§ - ng = 0), along with the two parameters 4o, m, for a total of 38 parameters for the FCC
model. The phenomenological theory here has seven parameters, which shows some promise
for improving the constitutive framework.

It is important to note that an open question is whether the best fit parameters are

6See Chapter 3 for a thorough treatment of this task from the experimental side of the equation.



CHAPTER 2. PHENOMENOLOGICAL PLASTICITY 83

the best fit in a global or local sense of optimization. The phenomenological function for
2 was surely among the simplest consistent with the core requirements of hexoctahedral
symmetry and the requirement 2(S) = —Q(—S). Even so, the four material parameters
available to the material, (b3, c§®Pe, cSube SuPe) | constitute a large parameter search space;
and there are no thermodynamic restrictions on these parameters which might otherwise
reduce the search region. As a preliminary effort to examine if there were effects of local
optimum, we tested various initial conditions, but did not observe any better parameter
combinations. However, this is not proof that there does not exist better parameter values.
Roughly speaking, the more parameters introduced into the phenomenological model in the
format suggested here, the more the question of whether an optimum value is a global vs local
maximum will arise. With more parameters included in the model, a more exhaustive genetic
algorithm is suggested. This is a general issue in constitutive parameter determination (Liu
and Han, 2003).

We also investigated other functional forms for the lattice reorientation Q(S). For ex-
ample, the crystal plasticity flow rule has a lattice reorientation analogous to ours, with

~ skw K'K. In the crystal plasticity flow rule however, this is related to the symmetric
part of the flow, sym K 'K, through the shear rates 4. That is, both skew-symmetric and
symmetric parts of the low K~ 'K originate from one function, the so called hidden variable
v (Rice, 1971). Inspired by this coupling, we attempted to fit parameters to reorientation

functions of the form 5
A )

Q=Q (= 2.242

(5) (2249)

which uses the same constitutive framework as that resulting in (2.209), e.g. we simply repace
A — yg. This was also used in a similar context for sheet metal plasticity by Cleja-Tigoiu
and Tancu (2011). No significant improvements in the ability to match the crystal plasticity
model with this form for €2 were observed upon executing the same fitting algorithm with
this modification. There was perhaps a modest < 5% improvement, judged by comparing
optimal residual values, which may or may not be significant. The slightly better matching
may simply be a symptom of the fact that the crystal plasticity model naturally encodes
such coupling, which may or may not be borne out in raw experimental data. Further study
of applications will judge whether such a reorientation function is to be preferred, but it has
a certain intrinsic appeal.

A final point to make is that the residuals used to calibrate the lattice reorientation in
(2.238) have a non-trivial dependence on the accuracy of the matching to the yield function.
That is, it is possible that our attention should be drawn to improving the yield function
fits of Figure 2.7 and Figure 2.8 instead of focusing on improving the lattice reorientation.
Higher order polynomials for the yield function have additional material constants and may
get better fits to experimental data. For that investigation to proceed, a good starting point
would be the publications like Soare and Barlat (2010), in regard to yield functions for sheet
metals. This community has developed the techniques to ensure that they obtain convex
yield surfaces.
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In order to facilitate initial studies, that is, to get estimates for the yield and lattice
reorientation functions, we recommend using the two stage estimation method employed in
this section. That is, first fit the yield function parameters using (2.233), and then the lattice
reorientation, (2.239). From these initial estimates, further refining both sets of parameters
simultaneously, in a global optimum search may be a useful framework to explore.

In the next section, we implement the model into plane strain simulations, in order to
examine predictions from the model. To our knowledge this constitutes the first attempt at
implementing classical models along the lines of Fox (1968) into simulations.

2.4.2 Plane strain simulations

In this section we solve for the motion of an elastic-plastic body according to the theory of
§2.2. We obtain x(X, ), K(X,t) by numerically integrating the equation of motion (2.17),
along with the flow rule, (2.19). We test out the calibrated constitutive models from §2.4.1.2.
In this introduction we give a short overview of the numerical formulation of the problem.
Later we give details such as which particular constitutive functions were tested.

Overview of numerical formulation. To reduce computational resource requirements
we consider plane strain boundary value problems, so that

3 (X, t) = X3 (2.243)

and
Xa(X, 1) = Xa(X71, X, 1), a=1,2 (2.244)
These requirements imply that the deformation gradient F is of the form
8X1/8X1 8X1/8X2 0

0 0 1
We also consider plastic deformation to be of the form

K(X,t) = K(X1, Xa, 1), (2.246)

and for simplicity take the restriction

Kll K12 0
K= |Ky K 0. (2.247)
0 0 1

The lattice deformation is computed from F, K using (2.12), so that

H=FK = (Vx)K. (2.248)
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In overview of the method, we discretize the material and time domain Xt and solve for the
correspondingly discretized functions x (X, t), K(X, ). Then these fields can be integrated in
time using a simple forward Euler scheme. For example, we need the velocity of the material

(D) _ ()

y=vi =2 = 2.249
X=V A ( )

from which the position field x is updated at the step (i 4+ 1), the acceleration

L VO —y0)

x =v" = —x (2.250)
which updates the velocities v at the next step (i + 1), by using the balance of linear mo-
mentum equation (2.17), and
K(i) _ KD _ Kg®

At
is the evolution of the plastic deformation, which updates the plastic deformation using the
flow rule (2.19). Taking (2.249), (2.250), (2.251) we have the staggered update equations
Herrmann and Bertholf (1983)

(2.251)

<) = D A 4 <) (2.252)
) 1 ) ) )
¥ — — (Div P(H,K)® + pob ) At 4 v (2.253)
Po
K = KYAL + KO, (2.254)

where P(H, K) and K are given by constitutive functions which are given later. We now
describe the discretization scheme employed in this study, which is an explicit Lagrangian
framework. Literature discussions of the method can be found in the reviews (Herrmann
and Bertholf, 1983; Silling, 1988). For completeness we describe our take on the method
here; for other details consult Herrmann and Bertholf (1983); Silling (1988).

2.4.2.1 Computational grid and data storage

The computational grid used in the solution of Equations 2.252 to 2.254 is described in
this section. Discretization of the material domain is performed; the nodes of subsequent
domain carry information on x, v, or more simply, the function x(X,t). Zonal values carry
information on the deformation gradient and plastic deformation, F, K, and hence the lat-
tice deformation and stress response H,P. The proposed computational grid is shown in
Figure 2.12, the solid dots are the nodes, and the rectangular regions are the zones. On the
left side of the figure is the fixed material domain where computation is performed. Under
the motion x the rectangular grid in the material domain gets distorted as shown on the
right side of the figure.
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Our consideration of plane strain (2.244) allows the use of Green’s theorem in the plane
to relate nodal values x to zonal values F in a manner consistent with the discretization,
We now describe in detail how we compute the quantities F, Div P, &, which enter into the
formulation.

K9H9P X,V

5

(X, 9

Figure 2.12: Illustration of the computational grid for the plane strain simulations. The
nodes store position and velocity, x, v, while zones store F, K, and hence H, P. Since & may
be used in the yield function, it needs to be determined on the zones as well.

Determination of F. The gradient of the material motion F = Vx is given by
1 1
F = —/ VxdA=— | x®NdA, (2.255)
A Jao A Joa

where F is the zone volume averaged deformation gradient over {2, N is the normal vector
in the fixed material reference configuration, set by the initial discretization of the material
domain. We have used Green’s theorem in the plane to arrive at (2.255);. The zonal area A
is obtained by Gaussian quadrature over the reference discretization of the material domain,
see §A.4 for further information.

In Figure 2.13 is illustrated the method used to obtain F from the nodal data of x. The
boundary of a zonal region, 02, is indicated by the solid dark line. The local nodal points
are labeled 0, 1,2, 3 in a counterclockwise ordering. The mapped region x(£2) is shown on the
right hand side of the figure, with the values of x at the local nodes indicated. Integration of
X ® N over the boundary 02 with nodal locations 0, 1, 2, 3 is accomplished by decomposition
along each edge, e.g.

/x®N: x®NdA+/ x®NdA+/ x®NdA+/ x ® NdA.  (2.256)
o0 0,1 1,2 2,3

3,0
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1) = 1(X", 1)

Figure 2.13: Computational grid, highlighting the integration curve used for obtaining the
zonal value of F.

For illustration, take one term from the right hand side of (2.256). We have
/ X @ NdA = / X (s) ® Nds, (2.257)
0,1 0,1

where the area integral is reduced to the form dA = 1 - ds from the imposition of plane
strain, and along the edge 0,1 we have the linear approximation

x(s) = x” + (xV = x)s, (2.258)

where x() is the value of x at local node 0 and x! is the value of x at local node 1, see
Figure 2.13. Using (2.258) in (2.257) gives

211
S

/ x ©NdA = x5+ (xV = x) 5| Ny, (2.259)

0,1 0

1
=xO + (x® - X(O))§ ® Noa (2.260)
1

_ 5(X(o> +x™) ® Ny, (2.261)

where Ny ; is fixed based on the initial discretization of the material reference configuration.
It can be computed from

N = (X0 = XO) x e/ (XD~ X) x o] (2:262)
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Therefore we can compute F on the zonal data structure. Like F, the plastic deformation
K is stored on the zonal data structure. Hence, so is H = FK, the lattice deformation.

Determination of DivP. The divergence of the stress at the nodal locations is obtained
by using the sequence

1 1

(Div P)node = —/ DivPdA = — PNdA, (2.263)
A Ja A Joo

where we have again used Green’s theorem in arriving at (2.263),. To compute the integration

of (2.263)2, we employ a similar decomposition as in (2.256), although with a different local

numbering scheme, as shown in Figure 2.14. Taking one term to illustrate, we have

/ PNdA — / P(s) @ N(s)ds, (2.264)

A

with P(s) = Po1 = P(Ho1,K0,1)) given by a constitutive equation, (2.39), and N(s) = Ny,
is computed as in (2.262). Figure 2.14 illustrates the described integration procedure. The
solid red line is the boundary 0€2, with local nodes labeled 0, 1, 2, 3 in counterclockwise order.
The nodal points X XM are indicated in the figure. The required normal vector Ny is
also shown. The result of the integration is the vector Div P, shown at the center of the
integration region. This nodal force is coupled to the nodal acceleration through the equation
of motion, (2.253).

From (2.253) we also require nodal densities, which are defined on the zones. The nodal
density in (2.253) is obtained from the equation

1
A(po)node = 1(A0,1P0,1 + Avap12 + Aszpas + Asopsp), (2.265)

where A is obtained from the methods of §A.4 for the stencil shown in Figure 2.14, p; ; are
the (fixed) material densities in the zonal area, and A, ; are the zonal areas obtained from
the stencil in Figure 2.13.

Determination of £. Finally, we consider the dislocation content &, (2.16), which is
reprinted here for convenience

€= JgK 'Curl K. (2.266)

The computation of € is new in the plasticity literature, see Lele and Anand (2009) for a
version of this for isotropic materials using ABAQUS. We seek to directly incorporate &
derived from the plastic deformation field into hardening phenomenology, see §2.3.3.1, which
to our knowledge is a new effort.
In the present numerical framework, £ is obtained by considering the Cartesian compo-
nent expressions
K™ = (K ')e @ey,



CHAPTER 2. PHENOMENOLOGICAL PLASTICITY 89

F,K,H,P a

Figure 2.14: Computational grid for Div P. The solid line shows the integration region used
to obtain the vector Div P at the required node location.

V x ]E(_1 = (K_l)mkei X e; X e
= 6jkm<K_1)ij,ke@' ® en. (2.267)

For the plane strain case under consideration given by Equation (2.247), (2.267) simplifies
to

VxK' =K "ise®e;— (K 1€ ®es
= [(Kfl)u,z - (K71)12,1]el ® ez + [(K71)21,2 - (K71)22,1]e2 ® €3. (2.268)

This quantity can be computed for the present numerical grid in the following manner.

Consider Stokes’ theorem,
/n~V><v:/ v - dl, (2.269)
A DA

where 1 is the tangent vector to the boundary dA. We wish to apply the theorem to K.
Therefore take v = (K~!)Ta, for a a constant vector. Then Stokes’ theorem reads

/ n-VxKTa= [ KTa-dl (2.270)
A 0A
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Since a is constant, the right hand side is written

K'a-dl=a- [ K'-dl, (2.271)
0A 0A

which can be computed with our computational grid using techniques similar to those already
employed. The left hand side of (2.270) is written in components as

/ n-V x K_Ta = / eijkai(K_l)mjamnde
A A

=a- / eijk@»(K’l)mjnkemdA. (2272)
A

For the plane strain case, the normal n in Stokes’ theorem is n = es, so (2.272) becomes

a - / eijk@(Kfl)mjndeem =a- / [Eijg,az‘(Kil)mjem} dA. (2273)
A A
The quantity in brackets on the right hand side is expanded out as

6ij38i(K_1)mjem = al(K_l)Mel + 81(K_1)22e2 - 82(K_1)11e1 - 82(K_1)21e2
= [01(K Ny — (K ) iler + [01(K Hgo — (K Hales,  (2.274)

a vector whose components are the required quantity in the expression for V x K™, in
(2.268). Therefore (2.274) and (2.268), along with (2.273), (2.272), and (2.270), (2.271) we

have .
— :[(71 -dl = —(V X K71)1361 — (V X Kﬁl)ggeg, (2275)
A Joa
where V x K™! represents the area average of V x K™ on the left hand side of (2.270), and
the factor 1/A comes from pulling out this area average from (2.270).
We now compute the left hand side of (2.275). We integrate piecewise around the loop

depicted in Figure 2.15 in a fashion again similar to (2.256). A single term of which is written

K*'-dl= [ K(s)-dl, (2.276)

0,1 0,1
where in this equation K™'(s) = K1 and dl = (X® — X)ds. The net result of one piece
of the integration is

K- dl=Kg} (X" -XO) (2.277)

0,1

Repeating (2.277) for the other integration segments gives the nodal values of V x K.
The computational stencil is illustrated in Figure 2.15, which shows the integration region
in solid red line, with one element dX; = XM —XO The vector V x K™! is shown at the
center of the integration region. The values of & at the zones are found by integrating the
nodal values of £ in the manner of §A.4, which results in a simple numerical average of the
nodal values for .
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F,K,H,P o

Figure 2.15: Computational grid for V x K™, which is required for computing &, the
dislocation content.

Summary. In this section we have described how to obtain the required terms in the state
update equations (2.252), (2.253) according to our simple discretization approach. To recap,
the deformation gradient at the zones is obtained from (2.255), which incorporates the nodal
quantities x. The lattice deformation H is obtained from F along with the zonal values of K,
through H = FK, (2.248). The Piola stress P is obtained from (2.39) which requires H, K
and an assigned strain energy function. The divergence of the Piola stress is given at the
nodes by (2.263), which couples to the evolution of the nodal data x through (2.253). The
plastic deformation is updated from (2.254) through the flow rule. We have mentioned two
methods of updating the plastic deformation. For the rate independent constitutive model,
described in §2.2.3.2.1, (2.104), the plastic deformation flow rule is integrated by solving
the equations (2.224), with the additional constraint that K™ is of the form (2.247).
Therefore, for the plane strain case under consideration Equation (2.224) represents five
equations for the five unknowns A, (K™1)11, (K™ )19, (K™ )a1, (K™!)22. The viscoplastic rate
dependent model is described in (2.241), which does not require the solution of a set of
nonlinear equations.

This completes the explanation of the numerical discretization algorithm. The theory
requires the specification of the initial values for K(X, ), as discussed in §2.2.1. In the next
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section, we give an account of the algorithm used to generate these simple microstructures.

2.4.2.1.1 Microstructure generation algorithm In this section we describe the al-
gorithm used to seed the plane strain simulations with initial grain orientations. The initial
microstructure will be an interesting parameter to consider when examining the results of
the simulations. Classical experimental observations including the Bauschinger effect and
Hall-Petch relation may be sensitive to such microstructural details. Different initial grain
orientations sets up elastic anisotropy, which causes strain localization phenomena.

To define the microstructure, we require initial values for the plastic deformation field
at time t = ty. In an X-ray diffraction experiment, the reference material configuration is
defined to be the observed configuration - so that F(t = tg) = I. Therefore (2.12) implies
K(t =ty) = H(t = to). For small elastic strains, H ~ R, for R € SO(3,R), where in experi-
ments H is determined by X-ray diffraction. In recognition of the experimental realities, we
seed our numerical simulations with K(¢ = ty) € SO(3,R). The following prescription for
generating the microstructure is simple and is easily generated with pseudorandom numbers,
so that Monte Carlo simulations may be performed over ensembles of microstructures, if so
desired.

Given a spatial region parametrized by coordinates x which we wish to fill with crystals,
we first generate an array of random locations in the mesh, {x® : i = 1,2, ..., Nyains }, which
represent the grain center positions. We also assign random orientations

A = {0(1) t= 17 27 RS Ngrains} (2278)
to these locations by using the one dimensional orientation parametrization
Ko(0) = Roes,0). (2.279)

where the axis of rotation ej is the out of plane direction. Finally, we assign random sizes
(according to a specified distribution function) to the locations, which represents something
akin to the grain diameters, D, so that we generate the set

B={DY:i=1,2 . Ny} (2.280)

The sizes are incorporated into matrices which represent a distance metric g;;, so that we
write

o= gl (2.281)

The isotropic metric in (2.281) can be modified to be anisotropic (g11 # ga2, for example).
Non isotropic metrics might be used if elongated grains are known to exist, or if experiments
can give such information. Finally, the initial microstructural data is expressed by the set

C ={(x,60,D,gu(D)? :i=1,2,..., Nyrains }- (2.282)
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Given the seed data, C, the algorithm to specify the rest of the microstructure is given as
follows. For each zone in the mesh, with center position x,,,., compute the 'closest’ seed
point and give that zone the orientation, 6, corresponding to that closest seed point. Here
‘closeness’, denoted 9, is determined by the distance metric to the seed point, written

50 = glg) (Xzone — X(i))kz(xzone — x(i))l. (2.283)
The minimum distance is then given by
mind = min{g,(:l) (Xzone — x(i))k(xmne — X(i))l 11 =1,2, ..., Ngains } (2.284)

so that 0(X,one) = 0%, where 6* is the orientation of the closest seed point, determined by
(2.284). Carrying out this procedure for all zones in the mesh completes the assignment of
the initial plastic deformation, K(t = ¢y). An example microstructure generated from this
procedure is shown in Figure 2.16.

Figure 2.16: Microstructure generated by the algorithm described in the text leading to
(2.284). The K11(0) component is visualized by the colormap.

2.4.2.2 Boundary value problems

We tested the numerical method in several simple boundary value problems. We used a
square material domain, as shown in Figure 2.16 to perform the tests. In this section we
describe the variety of boundary conditions imposed to the material, the exact constitutive
equations used, and two methods of implementing hardening phenomenology.
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2.4.2.2.1 Boundary conditions The boundary conditions used were one of the follow-
ing

1. Extension - contraction cycles
2. Axial extension

3. Simple shear

4. Shock contraction

The axial extension, extension-contraction, and shock contraction boundary conditions were
simulated by prescribing nodal velocities on the right hand edge, see Figure 2.17. The
horizontal velocity v; on the left hand edge nodes was set to zero, while the velocity v, on
the same edge was not fixed by boundary conditions. In other words, this is a roller type
boundary condition. We also experimented with fixed placement boundary conditions on
the left hand edge. The top and bottom boundaries were traction free. Surface tractions, if
desired, would be implemented into the nodal force balance equations of (2.253), as described
by Silling (1988).

—

free \£

|
=

[l
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VVVVVVVVVYVYV YV

free

Figure 2.17: Illustration of typical boundary conditions for the plane strain simulations. The
horizontal velocity was prescribed on the left and right boundaries; on the left it is zero, on
the right it is generally non-zero.

The extension-contraction cycles were constructed to investigate work hardening phe-
nomenology, which is described in the next paragraph. An example right hand edge velocity
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cycle is shown in Figure 2.18. The difference between the axial extension and shock con-
traction boundary conditions is simply one of time-scale: boundary velocities for the shock
contraction condition were high in comparison to the elastic wave speed of the material. We
tested both single crystals and polycrystalline domains using the microstructure generation
of §2.4.2.1.1.

0.15

0.10 F—

0.05F

s 0.00F

—0.05

—0.10

—0.15

Figure 2.18: Right edge boundary condition for e; component of boundary nodal velocity.
This boundary condition was used to investigate the effect of different constitutive relations
for hardening phenomenology.

2.4.2.2.2 Constitutive equations

Stress response The constitutive formulation requires the stress response from (2.39),
(2.40) and (2.190). Therefore for hexoctahedral cubic crystals there are three elastic con-
stants. The elastic constants are normally presented based on the Voigt form

S;=CEy, (2.285)
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where (Ep) = (Eu, By, E33,2E03,2F13,2E15) and S; = (Si1, S22, 533, Sa3, S13, S12), and
where C7; is a matrix of elastic constants given by

[ Cll C112 C113 C(14 C115 ClG
022 023 024 C’25 C'26'
C133 C134 C’35 C{36

Crr = 2.286
1 Cu Cis Ci (2.286)
Css Cse
| sym Cés |
For hexoctahedral symmetry, we have
Ci1 = Cop = Csg,
Ci2=C13=0Cy

C’14 = C’15 = 016 = 024 = 025 = C(26 = CV34 = 035 = C’36 = C’45 = C146 = 056 - 07

and

C44 = C'55 = C'66-

The Piola stress in the lattice configuration is given by evaluating
Py = HS, (2.287)

with S given by (2.285). Equation (2.39) then gives the stress response for use in the equation
of motion, (2.253). The values for the elastic constants were taken as C1; = 226 GPa, Cy =
140 GPa, Cyy = 116 GPa, which are representative of iron (BCC).

Plastic response. For plasticity equations, we need equations for the yield function y
and lattice reorientation, €2. The yield function is obtained from (2.196), with calibrated
parameters Table 2.3. We also tested hardening relations based on (2.216). In particular we
report on isotropic hardening relations of the form

Y(S,€) = Y(S) — Ymax(1 + kico || €)™, (2.288)

where ki, € R has the dimensions of L, and the parameter A3 is modified in our parameter
investigations. Here y is the quadratic polynomial presented in (2.202). Equation (2.288) is
of the form (2.216) with x (&) = 0 and h(€) = Ymax (1 + kiso||€]])2.

We also used the plastic work to account for hardening phenomenology (Malvern, 1969;
Dowling, 1999), which is computed from

W, = / Ddt, (2.289)
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where D = —S - K™'K is the dissipation, see (2.47), since & ~ —8 for the small elastic
strain model. Then we use yield functions of the form

Y(S, W) = y(S) = Ymax(1 + kW)™, (2.290)

where k, has dimensions of Energy . The form of (2.290) is in recognition of the fact that &
does not capture all dislocation content, and there are statistically stored dislocations below
the length scale revealed by the integration loop of (2.275).

Finally, the lattice reorientation function we used is taken from Equations (2.209), (2.210)
and (2.211), which represent the cubic order spin 2 = Q(S). Calibrated constitutive pa-
rameters are from Table 2.4. We used the BCC model results from the table for both lattice
spin and yield function.

2.4.2.3 Results

In this section we discuss the results from the plane strain simulations for the boundary
conditions and constitutive formulations described in the previous section.

2.4.2.3.1 Extension-contraction cycling In this section we give the results from the
cyclic loading tests. In Figure 2.19 is shown the initial microstructure of a polycrystal at a
10 x 10 grid resolution. The component K1; (¢t = 0) is visualized by the colormap. We tested
the velocity cycling program specified in Figure 2.18 to this microstructure, and tested the
hardening relations (2.288) and (2.290). The rate independent plastic flow model, (2.224),
was used, with the reorientation function of (2.205).

Figure 2.19: Initial microstructure for cyclic tests. 10 x 10 grid.

Effect of £&. Due to the nature of the computation of &, the grain boundaries of Fig-
ure 2.19 are equivalent to high concentrations of geometrically necessary dislocations. The
representative visualization of &-concentration is shown in Figure 2.20 which plots [|£]| in
the colormap. Comparing this to Figure 2.19 clearly shows the correlation between grain
boundaries and the computed ||£]| using Equation (2.275). In Figure 2.21 the value of ||K]|| is
visualized at the same stage of deformation, for the values A3 = 0,0.1,0.5 from left to right.
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The influence of the parameter A on the plastic deformation is clearly evident based on the
relative locations of plastic deformation from these figures. For example, in Figure 2.21(a)
plastic deformation is heterogeneous, but evenly distributed throughout the polycrystal. In
Figure 2.21(b), for A3 = 0.1, plastic deformation is isolated in a band which passes through
the large grain in Figure 2.19, without crossing grain boundaries. In Figure 2.21(c), sim-
ilar behavior is seen.  To examine the influence of hardening on stress strain hysteresis,

Figure 2.20: Initial picture of ||£]|? for the microstructure of Figure 2.19. Grain boundaries
serve as high dislocation density sites using the numerical stencil of (2.275).

(a) Plot of | K|| for the case A3 = (b) Plot of ||K| during plastic (¢) Plot of ||K]| during plastic

0 in (2.288). Plastic deformation flow, for A3 = 0.1. The plastic flow, for A3 = 0.5. The plastic

is heterogeneous but evenly dis- deformation is localized to a re- deformation is localized to a re-

tributed in the polycrystal. gion with low £ content, see Fig- gion with low £ content, see Fig-
ure 2.20. ure 2.20.

Figure 2.21: Images of |K]|| for various exponents Az in Equation (2.288).

a measure of the total force on the right hand boundary is shown in Figures 2.22 to 2.24
for the cases A3 = 0,0.1,0.5, respectively. This force quantity is plotted to get an idea of
the axial stress response. From these figures, the hardening behavior induced by the model
(2.288) is not very strong. Most of the determination of the yield is dominated by the initial
microstructure; deformation dependent hardening is largely absent.

Next we examine similar data using the plastic work-based hardening of Equation (2.290).
In Figures 2.25 - 2.27 are shown the axial stress vs. axial stretch for the microstructure shown
in Figure 2.19. The yield function used was (2.290), with hardening exponent A3 = 1, 3,10
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Figure 2.22: Plot of axial stress vs. extension for the microstructure shown in Figure 2.19.
The yield function used was (2.288). The hardening parameter was A; = 0. There is no
hardening effect.

respectively in the figures. Qualitative agreement with notions of isotropic hardening are
good with the hardening model, better than for (2.288). Finally, in Figure 2.28, the same
cyclic test is performed for the rate dependent model, (2.241), with viscosity v = 2.5 -
10~*GPa™! - s. The mesh is refined from 10 x 10 to 40 x 40 to 50 x 50. Convergence of the
integrated stress vs. stretch relation is rapid.

Next, in Figures 2.29 - 2.33 are the hysteresis plots for the 11 -parameter lattice reori-
entation model of (2.186), Q = Q(S,S) from (2.205). Figures 2.29 - 2.30 used (2.288),
and Figures 2.31 - 2.33 used (2.290). Although calibrated in the same fashion as €2(S),
there is a bias towards certain lattice reorientation, evidenced by the changing slope in the
load extension curve. This indicates that there is a net reorientation in the crystal upon
tension and compression cycling, since anisotropic elasticity causes a resulting change in
stress-strain slope. This serves as further justification that reorientation functions of the
form Q = Q(S, S) should be used with caution, if at all, in applications.
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Figure 2.23: Plot of axial stress vs. extension for the microstructure shown in Figure 2.19.
The yield function used was (2.288). The hardening parameter was A3 = 0.1. The isotropic
hardening effect is not modeled as well as for Equation (2.290).

Figure 2.24: Plot of axial stress vs. extension for the microstructure shown in Figure 2.19.
The yield function used was (2.288). The hardening parameter was A3 = 0.5. The isotropic
hardening effect is not modeled as well as for Equation (2.290), there is only a dependence
on the initial yield point as the exponent increases.
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Figure 2.25: Plot of axial stress vs. axial stretch, for the microstructure shown in Figure 2.19.
The yield function was (2.290). The hardening parameter was A = 1. A small amount of
isotropic hardening is evident.

0.96 0.98 1.00 1.02 1.04

Figure 2.26: Plot of axial stress vs. axial stretch, for the microstructure shown in Figure 2.19.
The yield function was (2.290). The hardening parameter was Az = 3. A larger amount of
isotropic hardening than for Figure 2.25 is evident.
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Figure 2.27: Plot of axial stress vs. axial stretch, for the microstructure shown in Figure 2.19.
The yield function was (2.290). The hardening parameter was A3 = 10. The increase in
isotropic hardening is clearly monotonic with As, by comparing Figures 2.25, 2.26.

== 10 x 10grid
~~~~~ 40 x 40grid |7
50 x 50grid
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Figure 2.28: Plot of axial stress vs. extension, for the microstructure shown in Figure 2.19
for several mesh resolutions. The yield function was (2.290). A rate dependent model was
used. The parameter A3 = 10. Convergence of the macroscopic stress vs. stretch is rapid.
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Figure 2.29: Plot of axial stress vs. extension, for the microstructure shown in Figure 2.19
with the reorientation function from (2.186), Q@ = Q(S,S). The yield function was (2.288).
The parameter Az = 0.
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Figure 2.30: Plot of axial stress vs. extension, for the microstructure shown in Figure 2.19
with the reorientation function from (2.186), @ = (S, S). The yield function was (2.288).
The parameter Az = 0.1.
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Figure 2.31: Plot of axial stress vs. extension, for the microstructure shown in Figure 2.19
with the reorientation function from (2.186), Q@ = Q(S,S). The yield function was (2.290).
The parameter Az = 1.
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Figure 2.32: Plot of axial stress vs. extension, for the microstructure shown in Figure 2.19
with the reorientation function from (2.186), @ = (S, S). The yield function was (2.290).
The parameter Az = 3.
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Figure 2.33: Plot of axial stress vs. extension, for the microstructure shown in Figure 2.19
with the reorientation function from (2.186), Q = (S, S). The yield function was (2.290).
The parameter A3 = 10. The simulation failed to integrate the rate independent equations
at the final point in the simulation.
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(a) y(S), 48 x 48 mesh (b) ||IK]|, 48 x 48 mesh (¢) K|, 30 x 60 mesh

Figure 2.34: On the left, the color map is of y(S) near the beginning stage of deformation.
The lightened pixel indicates where the material has been weakened by changing the value
Of Ymax. The right two figures are a comparison of || K]|| for 48 x 48 mesh along side a 30 x 60
mesh. The location and orientation of the localization band is the same for both cases.

2.4.2.3.2 Investigation of mesh dependence Based on statements by Silling (1988),
we were interested in investigating the effect of mesh dependence on simulation results.
Silling (1988) stated that results regarding, for example, localization bands can be mesh
geometry dependent if there is not a strong localization effect in the model. His context was
not precisely the present one, but it is close enough to presume that similar observations apply
to our physics. To examine mesh dependence, we constructed a mesh where the material is
weakened in a particular zone Q* by setting Ymax(2*) < Ymax. Recall that yyay is the nominal
yield parameter in Equations (2.288), (2.290), which are of the form y(S) = ¥/(S) — Ymax-
The microstructure was a constant lattice orientation of § = 20°, see (2.279). The boundary
conditions were of the axial extension nature, velocity prescribed on right edge, traction free
top and bottom. In Figure 2.34 is shown the value of y(S) for an early stage of deformation
on the left; the right two figures are plots of ||K|| at identical stage of deformation. The
center figure is a 48 x 48 mesh, the right figure is a 30 x 60 mesh. The orientation of
the localization band in the figures is the same in both cases, giving some comfort in the
predictions from the numerical framework.
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Next, in order to investigate the issues of convergence we tested the same weakened
material in 12x 12, 24 x 24, and48 x 48 mesh resolutions. We again used 6, = 20°, and used the
rate dependent model with v = 0.0003 GPa™'-s. We used the yield function based on (2.288),
which incorporates £ into the hardening. In Figures 2.35 - 2.41, 2.42 - 2.48 are plotted ||K]|,
|€||* respectively for a hardening exponent Az = 0, representing no hardening. In Figures
2.49 - 2.55, 2.56 - 2.62 are the same displayed data, at the same stages in deformation,
but with A3 = 0.1. In the captions of these figures, the parameter ‘hardeningmode’ refers
to the use of either plastic work hardening, Equation (2.290) (hardeningmode = 0), or &-
based hardening, (2.288) (hardeningmode = 1). This designation of ‘hardeningmode’ will
be in effect for the rest of the document. The addition of the hardening exponent in the
simulations appears to give better convergence properties. Since the viscoplastic model was
used, elastic strain should be checked for compliance with the small elastic strain theory; this
was indeed the case for these quasistatic simulations. Other examples from these simulations
for different grain orientations are given in the appendix.
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(a) 12 x 12 mesh ) 24 x 24 mesh ) 48 x 48 mesh

Figure 2.35: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||K|| A3 =0, v = 0.0003, hardeningmode=1, 6, = 20, sequence number =0

(a) 12 x 12 mesh ) 24 x 24 mesh ) 48 x 48 mesh

Figure 2.36: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||K|| A3 = 0, v = 0.0003, hardeningmode=1, 6, = 20, sequence number =1

(a) 12 x 12 mesh (b) 24 x 24 mesh ) 48 x 48 mesh

Figure 2.37: Mesh resolution comparison for axial extension with local weakening. The
colormap shows | K| A3 = 0, v = 0.0003, hardeningmode=1, §, = 20, sequence number =
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(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.38: Mesh resolution comparison for axial extension with local weakening. The
colormap shows || K| A3 = 0, v = 0.0003, hardeningmode=1, 6, = 20, sequence number =3

(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.39: Mesh resolution comparison for axial extension with local weakening. The
colormap shows || K| A3 = 0, v = 0.0003, hardeningmode=1, 6, = 20, sequence number =4

(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.40: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||K|| A3 = 0, v = 0.0003, hardeningmode=1, §, = 20, sequence number =5
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(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.41: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||K|| A3 = 0, v = 0.0003, hardeningmode=1, 6, = 20, sequence number =6
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(a) 12 x 12 mesh (b) 24 x 24 mesh ) 48 x 48 mesh

Figure 2.42: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€||*> A3 = 0, v = 0.0003, hardeningmode=1, §, = 20, sequence number =0

(a) 12 x 12 mesh (b) 24 x 24 mesh ) 48 x 48 mesh

Figure 2.43: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€||*> A3 = 0, v = 0.0003, hardeningmode=1, §, = 20, sequence number =1

(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.44: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€||* A3 = 0, v = 0.0003, hardeningmode=1, 6, = 20, sequence number =2
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(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.45: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€||*> A3 = 0, v = 0.0003, hardeningmode=1, §, = 20, sequence number =3

(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.46: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€||*> A3 = 0, v = 0.0003, hardeningmode=1, §, = 20, sequence number =4

(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.47: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€||* A3 = 0, v = 0.0003, hardeningmode=1, 6, = 20, sequence number =5
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(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.48: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€||* A3 = 0, v = 0.0003, hardeningmode=1, 6, = 20, sequence number =6
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(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.49: Mesh resolution comparison for axial extension with local weakening. The
colormap shows |K|| A3 = 0.1, ¥ = 0.0003, hardeningmode=1, 6y = 20, sequence number

=0

(a) 12 x 12 mesh (b) 24 x 24 mesh ) 48 x 48 mesh

Figure 2.50: Mesh resolution comparison for axial extension with local weakening. The
colormap shows |K|| A3 = 0.1, ¥ = 0.0003, hardeningmode=1, 6y = 20, sequence number

=1

(a) 12 x 12 mesh (b) 24 x 24 mesh ) 48 x 48 mesh

Figure 2.51: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||K|| A3 = 0.1, ¥ = 0.0003, hardeningmode=1, 6y = 20, sequence number
=2
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(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.52: Mesh resolution comparison for axial extension with local weakening. The
colormap shows |K|| A3 = 0.1, ¥ = 0.0003, hardeningmode=1, 6y = 20, sequence number

=3

(a) 12 x 12 mesh (b) 24 x 24 mesh ) 48 x 48 mesh

Figure 2.53: Mesh resolution comparison for axial extension with local weakening. The
colormap shows |K|| A3 = 0.1, ¥ = 0.0003, hardeningmode=1, 6y = 20, sequence number
=4

(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.54: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||K|| A3 = 0.1, ¥ = 0.0003, hardeningmode=1, 6y = 20, sequence number
=5



CHAPTER 2. PHENOMENOLOGICAL PLASTICITY 116

(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.55: Mesh resolution comparison for axial extension with local weakening. The
colormap shows |K|| A3 = 0.1, ¥ = 0.0003, hardeningmode=1, 6y = 20, sequence number
=6
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(a) 12 x 12 mesh (b) 24 x 24 mesh 48 x 48 mesh

Figure 2.56: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€||*> A3 = 0.1, v = 0.0003, hardeningmode=1, 6, = 20, sequence number

=0

(a) 12 x 12 mesh (b) 24 x 24 mesh ) 48 x 48 mesh

Figure 2.57: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€||*> A3 = 0.1, v = 0.0003, hardeningmode=1, 6, = 20, sequence number
=1

(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.58: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€]|? Az = 0.1, v = 0.0003, hardeningmode=1, 6, = 20, sequence number
=2
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(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.59: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€||*> A3 = 0.1, v = 0.0003, hardeningmode=1, 6, = 20, sequence number
=3

(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.60: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€||*> A3 = 0.1, v = 0.0003, hardeningmode=1, 6, = 20, sequence number
=4

(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.61: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€]|? Az = 0.1, v = 0.0003, hardeningmode=1, 6, = 20, sequence number
=5
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(a) 12 x 12 mesh (b) 24 x 24 mesh (c) 48 x 48 mesh

Figure 2.62: Mesh resolution comparison for axial extension with local weakening. The
colormap shows ||€||*> A3 = 0.1, v = 0.0003, hardeningmode=1, 6, = 20, sequence number
=6
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2.4.2.3.3 Shock contraction Next, we simulate a high velocity impact loading on a
single crystal. The crystal is oriented at 6§, = 10°. The boundary conditions are the same as
for the previous simulations, except the horizontal velocity is amplified to be on the order of
the elastic wave speed. Additionally, the duration of this velocity pulse is short, after which
the right edge becomes traction free. The time step is dropped to a level where dynamic
behavior is accurately captured. In the following images the rate independent flow rule is
used, based on (2.205). In Figure 2.63 and Figure 2.64 is shown the pressure, tr S, at several
time steps. In Figure 2.65 and Figure 2.66 is shown the geometrically necessary dislocation
content, in the form ||£||?, at the same time steps as in Figure 2.63, Figure 2.64. In Figure 2.67
and Figure 2.68 is shown the plastic deformation in the form ||K]||, again at the same time
steps. In applications, the & content can be measured with X-ray diffraction experiments
or the related EBSD. See Kysar et al. (2007) for recent experiments where geometrically
necessary dislocation content was measured. Therefore, if the shock loading were produced
experimentally, the sample could be post mordem sectioned and compared to simulations to
validate high strain rate constitutive behavior. Further examples of the shock contraction
boundary condition can be found in the appendix.
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() (f)

Figure 2.63: Shock animation frames, color bar is the pressure, tr S. Incident pressure wave
propagation is depicted
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(c) (d)

Figure 2.64: Shock animation frames (cont’d)
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() (f)

Figure 2.65: Shock animation frames, color bar is a measure of the geometrically necessary
dislocation content, ||&||. Same frames as for the previous figure. The color map has been
modified to better visualize the fine scale structures.
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(c) (d)

Figure 2.66: Shock animation frames, ||&|| (cont’d),
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Figure 2.67: Shock animation frames, color bar is ||K||. Snapshots are at the same time as
the previous figures in this series. The color map has been modified to better visualize the
fine scale structures.
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Figure 2.68: Shock animation frames, ||K]| (cont’d)
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2.4.2.3.4 Shear deformation We also show results from shear boundary condition.
The nodal velocity on the right is set in the vertical e, direction, with the same cycling as in
Figure 2.18. The top and bottom boundaries are traction free, and the left edge is fixed. In
Figures 2.69-2.72 are shown the results for several initial orientations of 6y, with A3 = 0.1,
with [|&]|* plotted in the colormap. The localization of plastic flow is evident due to the
boundary conditions at the edges. In Figures 2.73-2.76 the same simulation is plotted with
|K|| shown.
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(a) =0 (b) 6 =10 (c) =20 (d) 6 =30 (e) 6 = 40 (f) 6 =45

Figure 2.69: Comparison of §-dependence for shear boundary condition. The colormap shows
1€|1>. A3 = 0.1, v = 0.0010, hardening mode=1, 6, = 45, sequence number = (

Figure 2.70: Comparison of #-dependence for shear boundary condition. The colormap shows
1€|I%. A3 = 0.1, v = 0.0010, hardening mode=1, 6y = 45, sequence number = 1

(c) 6=20 (e) 0 = 40 (f) 6 = 45

Figure 2.71: Comparison of #-dependence for shear boundary condition. The colormap shows
1€|I%. A3 = 0.1, v = 0.0010, hardening mode=1, 6, = 45, sequence number = 2

(1) |
i v,:%.
(f) 6 =45

Figure 2.72: Comparison of #-dependence for shear boundary condition. The colormap shows
1€|1>. A3 = 0.1, v = 0.0010, hardening mode=1, 6, = 45, sequence number = 3

(a) 0 =0 (b) 6 =10

4

(a) =0 (b) 6 =10 (c) =20 (d) 6 =30 (e) 6 = 40
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(a) 6=0 (b) 6 =10 (c) =20 (d) 6 =30 (e) 6 = 40 (f) 0 = 45

Figure 2.73: Comparison of #-dependence for shear boundary condition. The colormap shows
|K]||. A3 = 0.1, v = 0.0010, hardening mode=1, 6y = 45, sequence number = 0

(a) 6=0 (b) 6 =10 (c) 6 =20 (d) 6 = 30 () 6 = 40 (f) 0 = 45

Figure 2.74: Comparison of -dependence for shear boundary condition. The colormap shows
|K]||. A3 = 0.1, v = 0.0010, hardening mode=1, 6, = 45, sequence number = 1

(a) 0 =0 b) =10  ()§=20  (A)0=30  (e) 6 =40 (f) 6 = 45

Figure 2.75: Comparison of -dependence for shear boundary condition. The colormap shows
|K]]. A3 = 0.1, » = 0.0010, hardening mode=1, §, = 45, sequence number = 2

(a) =0 (b) 6 =10 (c) =20 (d) 6 =30 (e) 6 = 40 (f) 0 = 45

Figure 2.76: Comparison of #-dependence for shear boundary condition. The colormap shows
|K]||. A3 = 0.1, v = 0.0010, hardening mode=1, 6y = 45, sequence number = 3
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2.4.2.4 Discussion

We now summarize and discuss the results from these simulations. First, the results of
§2.4.2.3.1 indicated several things. (1) plastic work hardening based on (2.290) gives better
isotropic hardening phenomenology than hardening based on &, (2.288), and (2) reorientation
functions of the form €2(S) in the flow rule (2.205) should definitely be preferred to functions
of the form ©(S,S) of (2.110), unless experiments otherwise dictate. This is because the
reorientation behavior of the net material using (2.110) were not equal and opposite in
extension-contraction simulations, thus leading to a changing slope of the elastic region due
to the anisotropic crystal structure.

Second, we performed simulations based on weakening the material in a fixed location.
This caused plastic deformation to be localized in a consistent region with out mesh depen-
dent effects entering in. Convergence upon mesh refinement was qualitatively better when
imposing a parameter of A3 > 0.1 in the &-based yield function of (2.288), rather than hav-
ing no such hardening. Further study of the implications of well known convergence issues
of localization phenomena in plasticity, as they pertain to the current model, is required.

On the positive side, the deformation bands in e.g. Figure 2.34 and following images
is reminiscent of experimental images such as Figure 2.77 from Spitzig (1981) showing the
fracture pattern of Fe-Ti-Mn single crystals (BCC).

@ )

Fig. 13. Propagation of localized shear ia nitrogenated Fo-Ti-Mn crystal of orieatation D deformed at
295K: (a) 20 percent decreass in load from maximum load, (b) 40 percent decrease in losd from
‘mazimum load.

Figure 2.77: Fracture of Fe-Ti-Mn single crystal in qualitative agreement with Figure 2.34.
From (Spitzig, 1981). Reprinted with permission from Elsevier.

Thirdly, the notion of treating geometrically necessary dislocations at grain boundaries
in the same fashion as in a bulk crystal in this framework should be further analyzed. For



CHAPTER 2. PHENOMENOLOGICAL PLASTICITY 131

instance, in the determination of € based on (2.275), the dimensions of & are on the order

1 1
- K' -dl~ -AK™! 2.291
x| ; (2.291)

where h is a characteristic mesh dimension and AK ™! is some measure of the difference in
K~ around the integration loop dA. At a grain boundary, AK ™! is fixed by the difference
in orientations, irrespective of the mesh resolution, and as h — 0, & — oo. In yield functions
based on (2.288), for a fixed ynax there will therefore be a mesh resolution at which no
plastic deformation is expected at grain boundaries. This numerical behavior may or may
not be a problem in practice. At worst, the elements on the boundary of the grains will
not achieve flow in the simulations, but adjacent ones certainly will. As h — 0, this lack
of flow at the exact boundary material becomes irrelevant. We don’t believe that treating
grain boundary based hardening in a different fashion than & seems physically appealing, as
hardening should only depend on local neighbors. Such a study of grain boundaries on yield
behavior may be crucial to developing simulations which predict phenomenological effects
such as the Hall-Petch effect (Lim et al., 2011) which relates polycrystalline yield strength
to the grain size diameter.

The numerical simulations developed here are probably most efficiently suited for the
shock contraction simulations, due to the retention of dynamics information. At large plastic
deformations, the Lagrangian mesh becomes distorted, and additional computational steps
which were beyond the current scope are required to prevent problems. For shocks however
the numerical performance was qualitatively excellent. We previously stated that plastic
deformations in the current theory can only be experimentally determined from an initial
state. In shock compression experiments, measuring in situ elastic and total material strain
as suggested for quasistatic experiments is far beyond current capabilities. However the
calculation of £ can serve as an independent indicator of past plastic deformation. Given
an initially perfect crystal, after shock loading geometrically necessary dislocation content
can be deduced by post mordem analysis like EBSD or X-ray diffraction. High resolution
EBSD measurements are only recently becoming available (Kysar et al., 2007), but they
have the advantage of being more readily available than synchrotron sources. Therefore
the shock simulations and prediction of & from this work can be directly compared against
experimental data, even if K cannot. In our visualizations we have normally plotted |£||*.
However we can also plot directly the Burgers vectors from the integration loop, compare
(2.13) and (2.275), shown in Figure 2.78. We were not able to discern any implications from
this type of data visualization, besides that the Burgers vectors typically collect in 4+/— pair
orientations instead of monotonically aligning in a certain direction.
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Figure 2.78: Burgers vectors, (2.13), from numerical simulation. The color map is based on

1€11%.
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2.5 Conclusion

In this chapter we have completed the specification of a proposed theory of elastic-plastic
deformation based on the model of Fox (1968). This model was infused with the maximum
dissipation postulate and applied to symmetry groups characteristic of single crystals. The
intended application of the model is identical to that the situations in which crystal plasticity
is used.

The differences between the formulations are most generally viewed as being of a con-
stitutive nature. The flow rule of crystal plasticity is given by (2.229), (2.230), whereas our
flow rule is given by (2.205) or (2.110). Crystal plasticity elegantly reduces to the single slip
theory based on observations from Taylor and Elam (1923). However it’s ability to predict
data in more complicated situations such as embedded grains in a polycrystal has not been
verified by available experimental methods. Based on the mechanics community’s past ex-
perience with other aspects of continuum physics, physically motivated theories have been
at times inadequate in comparison to experimental data (Treloar, 1974). Therefore until
the experimental investigation of plasticity becomes of a more quantitative than qualitative
nature, there will remain some uncertainty as to which plasticity formulations are success-
ful in certain situations. Even before that however, there are still many phenomenological
observations in plasticity which have not been adequately answered by current modeling
approaches, such as the Hall-Petch effect (Lim et al., 2011). For most engineering applica-
tions, macroscopic phenomenology is more important than the modeling methodology used
to obtain the answer; our approach still shows the ability to model strain localization and
geometrically necessary dislocations which was raised as a potential reason not to implement
such theories, in §2.1.4. Our view is that as long as theories remain true to the most funda-
mental principles of physics they should be investigated; which has not been the case for the
proposed formulation of single crystal plasticity. Therefore this model seeks to serve as a vi-
able alternative framework for such situations where crystal plasticity becomes cumbersome
to deal with or is found to be inadequate in capturing data.

The primary contribution in this chapter is the constitutive framework needed to complete
the theory and make predictions. Of the 32 crystallographic point groups, we focused on
the cubic class due to the importance of cubic crystals in engineering. For cubics, we found
examining polynomial integrity basis elements to be more attractive than using structural
tensors (Liu, 1982). We gave detailed examples of constitutive function generation, building
off of similar examples given in the literature (Green and Adkins, 1970; Spencer, 1971).
We obtained expressions for lattice reorientation as well as yield functions incorporating
hardening phenomenology. The hope is providing these examples makes the constitutive
framework more friendly to future investigation.

Lattice orientation is a fundamental observable in experimental plasticity using X-ray
diffraction; our theory seeks to make predictions of the orientation evolution due to plastic
flow. With this experimental situation in mind a simple extension experiment should be
sufficient to calibrate the model to experimental data. Such an experiment is feasible given
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proper resources but here we calibrated our constitutive equations for yield and plastic flow to
simulated data from a crystal plasticity model using a material point simulation of isochoric
extension.

The resulting constitutive model was implemented into plane strain simulations to in-
vestigate predictions from the theory in simple boundary value problems. We used an ex-
plicit Lagrangian numerical method (Herrmann and Bertholf, 1983; Silling, 1988) which was
straightforward to implement into code, gave a measurement of £, and proved to be gener-
ally useful for early investigations of the model. The simulations passed several consistency
checks, such as mesh dependence of strain localization bands and convergence of the solu-
tion. We learned several things about our plasticity model from these simulations. First,
we learned that rate independent reorientation function of (2.205) appears to be must more
attractive than that initially established in (2.110), since it assures that the lattice reorien-
tation direction reverses upon reversal of the load. This behavior is naturally encoded in
crystal plasticity flow rules. Second, we learned that flow localizations are naturally pre-
dicted in the model, giving some counter to the statement by Yang and Lee (1993) that
such microstructural information could not be deduced from phenomenological theories, see
§2.1.4, item number 3. The numerical method also gave predictions for geometrically nec-
essary dislocation content, &, which in this theory is derived based on the spatial gradients
in the plastic deformation field and not stored as an independent state variable. This in-
formation is only recently being incorporated into numerical simulations (Lele and Anand,
2009). Experimentalists have suggested that the development of £ is responsible for many
phenomenological observations, the modeling of which is still open to improvements. The
present model may prove to be helpful in providing flexibility to constitutive frameworks in
the presence of such complexity.

In the next chapter we give a detailed treatment of the experimental method which is
naturally coupled to this model of plasticity - X-ray diffraction.
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Chapter 3

Experimental: X-ray Diffraction

Chapter overview. The major areas of scientific research work activity consist of the-
oretical development, numerical simulation, and experiments. In the previous chapter we
developed a theory for the plasticity of single crystals, and gave numerical predictions. This
chapter describes considerations associated with investigating the model experimentally.

Experiments serve two primary functions in research. One function is that experiments
enable the discovery of new behaviors and properties of materials. The second function is
that experiments provide the physical data needed to ground theoretical models in reality.
In particular, the values of material parameters in constitutive models cannot be obtained
without the input of experimental data at some stage. After obtaining such values, numerical
studies can be performed. This is useful because simulations are a cost-effective way to
inform design processes, for example. However, quite often the constitutive models required
by a given theory are left unfounded by experiment. This is particularly true, historically
speaking, for phenomenological continuum plasticity. In this situation, promising numerical
simulations have to be performed with unknown constitutive parameters (Papadopoulos and
Lu, 2001). In this chapter we seek to determine constitutive parameters for the theory in
Chapter 2 directly from experiments.

The experimental technique addressed in this chapter is high energy synchrotron X-
ray experimentation. This is a relative newcomer to the array of methods available for
experimentation (Poulsen et al., 1997). To date, much attention has been given to using the
experiments to make novel observations (Jakobsen et al., 2006), but little attention is given
to experiments where quantifiable information is derived. In this chapter we analyze the
data from some recent high energy X-ray diffraction experiments to determine constitutive
behaviors in materials of interest. We also give a thorough background to the method, to
serve as a reference for crossover researchers from mechanics to applied crystallography.
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3.1 Introduction

In the following sections we discuss theoretical and practical aspects of X-ray diffraction
experiments for analysis of the plasticity theory developed in Chapter 2. We provide a
thorough introduction to basic X-ray diffraction theory, so that researchers from a mechanics
background can use this as a concise translation between mechanics and crystallographic
notions and terminologies.

As noted in the introduction to this thesis, experimental investigation of plasticity the-
ories is challenging. Techniques to quantitatively validate theories of plasticity for length
scales at which crucial mechanical details purported to be modeled by the theory manifest
themselves simply do not exist or are not widely available. This is particularly true for the
investigation of polycrystalline behavior.

Although a synchrotron is not a common instrument to have available in a small research
lab (1), synchrotron X-ray diffraction is one of the most promising experimental tools avail-
able to investigate these theories. For example, the brilliance of modern third generation
synchrotron sources (Mills et al., 2005), in combination with improvement in hardware tech-
nology, has opened up the field to in situ testing at comparatively fine temporal resolutions
appropriate for quasistatic processes. This enables the quantitative study of interesting de-
formation processes or phase changes (Margulies et al., 2001; Larsen et al., 2004; Offerman
et al., 2006; Aydiner et al., 2009). Scans sufficient to characterize a polycrystal can now be
completed on time scales on the order of tens of seconds at Sector 1 of the Advanced Photon
Source, Argonne National Lab.

The core contributions of the following sections are summarized by three major points.
These are:

1. Advancing the community’s understanding of the quantitative capabilities of the high
energy X-ray diffraction technique by developing the analytical tools to estimate un-
certainty in the measurements.

2. Developing an improved modeling methodology to increase the amount of kinematic
information able to be deduced from X-ray diffraction data.

3. Using X-ray diffraction data from experiments on polycrystalline materials to extract
single crystal constitutive parameters.

To elaborate on (1): as we shall soon see, the output from X-ray diffraction measurements are
estimates of the lattice deformation with respect to the fixed reference configuration, which
we called H in Chapter 2. This is accomplished by measuring the locations of reciprocal
vectors, which are functions of the ambient lattice structure and the lattice deformation
H. At the high X-ray energies we will consider (50 -100 keV), the available resolution of
reciprocal space is poor. Therefore there is a relatively large degree of uncertainty associated
with the measurements of H. For constitutive determination, this uncertainty must be
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quantified in order to be a useful experimental tool. This uncertainty has not been quantified
before in the hierarchical framework we will propose later in this chapter.

On (2): In conventional methods of X-ray diffraction analysis, the principal output, H,
is assumed to be spatially homogeneous on a grain averaged basis. Associated with the
homogeneity assumption, each diffraction peak is assumed to represent a single location in
reciprocal space. This simplification is acceptable for many studies. However for plastically
deformed crystals, the diffraction peaks smear out as a symptom of the single crystal breaking
up - that is, the single crystal becomes spatially inhomogeneous. The diffraction technique
considered in this chapter cannot measure the lattice deformation state on the length scales
required to quantify this spatial inhomogeneity. However by projecting the inhomogeneity
into H-space, and forward modeling the diffraction pattern from this projection, we can
make deductions about the plastic deformation processes having occurred in the crystal.
This modeling approach adds to the list of capabilities of the X-ray diffraction technique,
increasing the profitability of pursuing such experiments.

For (3): we first motivate why single crystal properties are of interest, since polycrys-
talline materials are the materials most often encountered in applications. Polycrystals typ-
ically have better mechanical properties than a single crystal of the same material, have less
anisotropy, and are easier and cheaper to produce. Clearly, accurate prediction of polycrys-
talline behavior is of interest in many fields of study. Advances in computational capabilities
have led to methods of numerical simulation which discretize polycrystals at length scales
which require constitutive information about the single crystal. Therefore obtaining consti-
tutive information of single crystals is required for these sorts of numerical studies. This
is, of course, in addition to the situations where single crystals are directly required to be
employed in an engineering application (e.g. silicon-based microelectronics).

When large (macroscopic) single crystals are cheaply available, obtaining the single crys-
tal properties is only a matter of executing the experiments to obtain material properties,
such as the constants in the strain energy function. However many materials of interest to
engineering applications, such as complicated alloy mixtures, may be difficult to possess as
a large single crystal due to the required heat treatments, etc. Therefore having the capabil-
ity to extract single crystal properties from a more readily available polycrystalline sample
would be desirable.

We present these topics in 5 sections.

1. In §3.2 we give the requisite background of X-ray diffraction theory used in this study.
The presentation of §3.2 constitutes only a subset of a fully general treatment of X-ray
diffraction, but one that is relevant to full understanding of the results and concepts
behind the type of experiment used in the present work. The most useful outcome
of §3.2 is that we derive the Fourier transform of the crystal lattice which leads to
the reciprocal lattice description. Once the reciprocal lattice is obtained, we can then
rapidly translate all required quantities to a style in line with continuum mechanics
notions of deformation analysis. We also derive the expression for scattering intensity,
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including structure factors, Thomson polarization factor, and Lorentz polarization fac-
tors. These factors are needed, for example, in order to estimate the relative volume
of grains in the polycrystal for microstructure reconstruction. In addition, developing
the general structure of analysis afforded by the Fourier transform leads to an elegant
and practically useful model of X-ray diffraction for the forward modeling of diffraction
peaks, (see item (2) in the previous list).

2. In §3.3 we apply the theory developed in §3.2 to describe technical details of a class
of synchrotron X-ray diffraction experiments. In the literature this technique is re-
ferred to as 3DXRD or HEDM (High Energy Diffraction Microscopy). At their essence
these techniques basically describe the classical rotating crystal method; the distinc-
tive features being the high X-ray energies, from synchrotron sources. We describe the
explicit mapping from observations of diffracted beams to reciprocal lattice vectors in
preparation for grain indexing and estimating lattice deformations. We discuss gen-
eral approaches to grain indexing, and suggest a novel indexing algorithm. We describe
techniques for refining the lattice deformation measurement, and compare and contrast
the approaches of a crystallographer with that of a mechanics perspective.

3. In §3.4 we present the framework for estimating kinematic information such as lattice
deformation from X-ray diffraction. In effect, this section explains how to ‘read’ the
strain gauge enabled by X-ray diffraction. We give a brief review of weighted least
squares, which is used extensively in this chapter. We present two methods for ex-
tracting information from X-ray diffraction data: a grain averaged approach and a
forward modeling approach.

The grain averaged approach leads to an efficient framework for estimating the uncer-
tainty associated with X-ray diffraction measurements of the lattice deformation H.
We implement a hierarchical method in which uncertainties in the locations of diffrac-
tion peaks are communicated to the lattice stretch and rotation parameters by using
the classical method of weighted least squares. This enables the uncertainty of the
lattice stretch and rotation parameters to be estimated based on a single full rotation
scan. We apply our framework to diffraction data obtained from a ruby single crystal
and a titanium polycrystal. We are able to state precisions for lattice orientation and
strain of 0.1° and 200 - 1075 respectively, which were found to be comparable to statis-
tical analysis of repeated measurements. Our analysis also shows that we are able to
identify the source of maximum uncertainty of our measurements, in order to inform
experimental methodologies and improvements to the experimental configuration. The
basic framework of the uncertainty analysis is generally applicable to any experimen-
tal program, although specific results are unique to monochromatic X-ray diffraction
experiments.

The forward modeling approach has a certain aesthetic appeal over the grain averaged
approach. In this method, simulated diffraction peaks are forward modeled based on
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the collective information from all measured diffraction peaks, rather than having each
peak be a separate entity. Such modeling gives kinematic information inaccessible from
the grain averaged approach, such as the intragranular misorientation. The intragran-
ular misorientation can be interpreted to provide a measure of the plastic deformation
history in the grain. By the relationship between the misorientation and the unit cell
of the lattice, we can obtain a direct indication of the plastic deformation processes in
the crystal. The addition of this capability makes the high energy technique attractive
for experiments.

4. In §3.5 we attempt constitutive parameter extraction from a uniaxial tension test of
a titanium alloy (Ti-7Al, HCP). This undertaking closes the loop between Chapter 2
and the present chapter by relating experiment with the plasticity model. From the
measurements of H, we use independently obtained elastic moduli to compute grain
averaged stresses. We fit phenomenological constitutive parameters for the yield func-
tion, according to the theory in Chapter 2. We perform a similar analysis adopting
crystal plasticity theory, where we can project these stresses on the slip systems in the
material in order to obtain evidence of critical shear stress for a given slip system. The
resulting comparison between models is informative.

5. Concluding remarks are given in §3.6.

We begin with the background discussion of X-ray diffraction that closely follows the
treatment of Guiner (1963).

3.2 Background - X-ray diffraction theory

In this section we present background information for an efficient description of X-ray diffrac-
tion. The main outcome of this section is that we derive the importance of the reciprocal
lattice construction for description of diffraction observations.

We start from considering the radiation scattered by an entity such as an atom, eventually
deriving the reciprocal lattice by taking the Fourier transform of a spatial distribution of
atoms. Once the reciprocal lattice description is established, we can then effectively abandon
the formal computation of the Fourier transform and use standard notions from differential
geometry in Euclidean space to give a more computationally efficient description of the
reciprocal lattice and its evolution due to elastic deformation.! Once this description is
obtained, we can then derive the evolution of the reciprocal lattice under elastic deformations
in a straightforward manner. That is, we derive the relation

19 = H-TLO (3.1)

IThis description works well for the type of X-ray diffraction conditions undertaken in subsequently
presented experiments - these conditions being far field detector, high energy, synchrotron radiation, and
known a priori crystallographic symmetry and structure.
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where L is an arbitrary reciprocal lattice vector of the reference lattice configuration,
1) is a reciprocal lattice vector of the current lattice configuration, and H is the lattice
deformation between configurations. A relation analogous to (3.1) which should be familiar
to mechanicians is the relation between reference and deformed material vectors,

where G;), g(;) are the reference and current material tangent vectors. This equation is of
importance in the use of bonded resistance strain gages, whose readings track the deformation
of material elements on the surface of the material. This relation between (3.1) and (3.2)
suggests a reassuring analogy for mechanicians not familiar with X-ray diffraction procedures:
the processing of X-ray diffraction images can be considered to be readings from an three
dimensional strain gage, which has been implanted into each grain. We examine this analogy
in greater detail in §3.2.3.

The kinematic linking between elastic deformation and evolution of reciprocal lattice
vectors was long observed in theoretically minded papers by previous authors. However
the description in this section lays down in one place the relationship between a classical
X-ray diffraction treatment and a more modern approach, and applies the analysis to data.
The communication of X-ray diffraction data in terms of finite deformations as in (3.1) is
somewhat recent (Edmiston et al., 2012).

We give the background presentation in 3 sections. First, in §3.2.1 we state the assump-
tions necessary to simplify the X-ray diffraction analysis, assumptions appropriate for the
experiments undertaken in this work. We record the effect on radiated waves of a single and
then multiple scattering entities. We also give results regarding the effect of a finite material
size. This is a negligible effect in our experiments, but the derivation of this illustrates the
usefulness of the Fourier transform. In §3.2.2, we apply the Fourier transform concept to
atoms arranged in a crystal lattice, and derive the relevance of the reciprocal lattice for X-ray
diffraction. We introduce the structure factor of the unit cell, and give an example compu-
tation. We then proceed to derive the scattering power from a body, as a function of the
diffraction angles. This will be used later on in §3.5 to estimate the size of grains in a poly-
crystal and generate an experimentally suggested polycrystalline microstructure. In §3.2.3
we give a convenient description of the lattice using notions from continuum mechanics.
This will enable us to complete the transition from Fourier transforms to computationally
easier differential geometric constructions. We record expressions for the evolution of recip-
rocal lattice vectors to elastic deformation of the crystal lattice. We compare and contrast
X-ray diffraction kinematic analysis with the conventional macroscopic tool, the strain gage
rosette. Before beginning, we first list some caveats of the approach we are taking to X-ray
diffraction theory.

X-ray diffraction background - preliminaries. In this background we are considering
the kinematic theory of X-ray diffraction. This is the classical formulation given in most
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introductory books on the subject (Azaroff et al., 1974; Cullity, 1978; Guiner, 1963). The
kinematic theory is the simplest useful model for X-ray diffraction; it is also readily pushed
into a continuum mechanics friendly framework. It should be noted that, being a simplified
model, we do lose generality, and cannot characterize effects such as Compton or incoherent
scattering. The restrictions of the kinematic treatment are well explained in Azaroff et al.
(1974), but for completeness we repeat these here:

1. Small scattering amplitude - implies that the interaction between the incident beam
and the scattered beam may be neglected. If interactions between the incident and
diffracted beams may not be neglected the dynamic theory of diffraction is used, see
Azaroff et al. (1974).

2. Plane-wave approximation - implies that the incident beam has a plane wave front as
opposed to a spherical front.

3. Coherent scattering - implies that the wavelength does not change due to scattering.
This is crucial since the entire kinematical theory is built on the idea of extinctions of
diffracted waves in particular directions - an effect which is strongly dependent upon
a uniform wavelength.

An additional important restriction on the advertised generality of the background theory
presented here is that we are assuming the crystal structure is known from prior studies.
In the course of our background treatment, we will introduce some of the notions needed
to give an abstract proposition of the full structure determination problem, but will not go
into any details of this. With the limitations of the current theory established, we now begin
with the description of the X-ray diffraction problem.

3.2.1 Description of X-ray diffraction, interference computations

An X-ray diffraction experiment may be simply stated as the simultaneous processes of (1)
bombardment of a material sample under electromagnetic radiation with X-ray wavelength,
together with (2) measuring the resulting response of the material and electromagnetic field.

From this perspective, the response of the material and field are then obtained by solving
the differential equations for electromagnetism (and associated material response), which
accounts for the positions of each of the individual atoms and electrons. However in the
absence of omniscient experimental or computational capabilities, we can get a very good
approximation for the electromagnetic field diffracted by a distribution of atoms with a much
simpler model than the general boundary value problem.

The simplified model considered here is called the kinematical theory of X-ray diffraction.
The crucial assumptions required for this framework are enumerated in the introduction to
this section. We refer to Azaroff et al. (1974) for a detailed account of the assumptions made
upon employing the kinematical theory.
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In the following sections we first focus on the primary characteristic of a scattering prob-
lem which unlocks the general boundary value problem of electromagneto-mechanics to a
tractable form: consideration of the electromagnetic wave interference between diffracting
species - in our case, atoms. From this basic interference model, we can derive the impor-
tant conclusions of the kinematical theory: the concept of a Fourier transform of a spatial
distribution of atoms, and the related description of reciprocal space. Generalization of this
model to consider a crystal lattice eventually allows us to relate experimental X-ray diffrac-
tion patterns to an averaged state of deformation in the crystal. From a mechanical point of
view, this gives us kinematic information about deformation processes in the crystal. And,
in relation to the theory set out in Chapter 2, this kinematic information gives us direct
measurements of H, which can be used to validate constitutive theories of elastic-plastic
deformation of crystals.

We first we consider the effect of a single scatterer on the electromagnetic field in §3.2.1.1.

(a) )
S
7

3.2.1.1 Single scatterer

®,

/N

Figure 3.1: (a) Incident beam with unit vector direction sy (b) diffracted beam with unit
vector direction s (c) scattering particle

In this section we consider the effect of a single scattering entity, such as an atom, in a
propagating electromagnetic wave. Figure 3.1 illustrates a schematic representation of an
beam with direction sy € S? incident upon a single scatterer. The diffracted wave propagates
in all directions s € S2. Let

A(t) = Ag cos 2t (3.3)

be the amplitude of incident radiation at the scattering point x, where t is time, v is fre-
quency, and Ay is the intensity factor. This is simply an arbitrary periodic function of the
type that solves the wave equation. The amplitude of the scattered wave a distance r from
x is (Azaroff et al., 1974)

A(t;x) = fAcos [27w (t — C) — w}, (3.4)
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where f is called the scattering factor, it is the ratio between incident and scattered ampli-
tudes, 1 is the phase shift, and c is the speed of light. As an example, when the scattering
center is a free electron, the phase shift ¢y = 7 (Guiner, 1963). In the book by Guiner (1963)
it is stated that even for atoms, ¥y = 7 is a good approximation. We can write (3.4) in
complex form as (Guiner, 1963)

A = fexp(—i)Apexp [27m'1/ <t - g)} . (3.5)
From the periodicity of the above amplitude function, it is evident that an interference
relation is set up when more than one scatter is present. Depending on the relative spatial
location of these entities, the interference may have different effects, between constructive
and destructive interference. In the next section we consider how this interference leads to
the notion of reciprocal space and the Ewald or reflection sphere.

3.2.1.2 Scattering pair, Ewald sphere.

S~

S-r

Figure 3.2: Pair of scattering entities. The relative position of the scatterers, r, determines
the phase shift between diffracted waves.

Fundamental to understanding X-ray diffraction experiments is consideration of the in-
teractions between the scattered waves set up by individual waves of the form (3.5). The
simplest example demonstrating this scenario is to consider the scattered intensity from a
pair of atoms, separated by a spatial position vector r, as depicted in Figure 3.2. The incident
radiation wave propagation direction is denoted by sg, and the scattering wave propagation
direction is denoted s. Both s and sy are unit vectors, as in Figure 3.1. The wave fronts
are denoted in the figure by the lines perpendicular to the vectors s, sg. The wave fronts
coincide up to the points indicated in the figure, where a perpendicular is dropped. The
path difference obtained from the incident and scattered beams between the two scatterers,
0, is obtained from geometry, by computing the projections of the separation r onto the wave
direction unit vectors s, sg as

d=s-r—s80"T. (3.6)
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Since we are concerned with periodic functions, the path difference, ¢, is essentially equivalent
to a phase shift, ¢ (modulo the period), multiplied by the common wavelength, A, e.g.

_ ¢
6—27T)\,

the phase shift ¢ is then given by

0 S‘r—sg-r
=2T— = - 2n——m«— 3.7
where we have used (3.6). We note in passing that the wavelength A being common to the
incident and diffracted beams is a consequence of the kinematic theory requirement of wave
coherence, see the introduction to this section. Next, define the vector g by

__S—958

and apply (3.8) to (3.7). This gives the phase shift function ¢(g;r) as
¢ =—-21g-r. (3.9)

The vector g will be crucially important to the following analysis. (3.9) indicates that phase
differences between scattering entities depends only on the combination g(s,sg, A), and not
independently on wavelength A, s, or s;.

One can gather from (3.9) and considering illustrative periodic functions of the form

A(t) = Aj cos2mt + Ag cos 2mia(t + @)

that integral values of g - r will lead to constructive interference as a result of the spatial
positions of the scatterers, and that non integer values will exhibit some degree of destructive
interference. Therefore one can to begin to conceive in the abstract of the notion of an
intensity function I(g;r) which will have a structure induced by the spatial structure of
the scatterers. Certain scattering directions will have constructive interference, so that the
value of I(g;r) will be high, and other directions will have destructive interference, so that
I(g;r) = 0. The space parametrized by g € R? is called reciprocal space, G, and will be a
useful construction throughout the all sections in this chapter.

In fact it may be stated that the intensity of radiation scattered at each g, that is, the
function /(g) over reciprocal space, is the principle result diffraction measurements seek to
obtain. Later on, we will relate this function to the distribution of scatterers in the sample
(e.g. the material structure). In §3.2.2 we will also see that a crystal lattice in real space has
a corresponding reciprocal lattice in G3. Denote the reciprocal lattice set by L. Therefore
for crystals, the function I(g) will be similar to an array of Dirac d-functions, with high
intensity at the nodes of L and low intensity elsewhere. The deviations in the crystal lattice
structure due to elastic strains will be of interest for our mechanical analysis.
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(s- sy — N

Figure 3.3: Ewald sphere depiction. The reciprocal space 'positions’ g!, g? are respectively
on and slightly off the sphere for this combination of sg, \.

In practical experiments, one typically deals with a fixed experimental setup, so that s,
and A\ are fixed or otherwise known from independent control systems. Then, for a given
input vector sy and wavelength A, we can trace the path of g(s;sg, A) for all test directions,
s. Considering all test directions s(f, ¢) traces out a unit sphere in physical space, centered
at the position of the scattering material, where 6, ¢ are spherical polar coordinates. This
unit sphere, under the function g(+;sg, A) : R*> — G3, maps to a sphere in reciprocal space,
g(s(f, ¢);s0, ), which is constructed in Figure 3.3. Denote this sphere in reciprocal space
by S. This is called the Ewald or reflection sphere. From an experimental perspective, if
all diffracted radiation was captured via some detector bounding the inside of a spherical
cavity centered at the material sample, then I(g) would be completely quantified in the two
dimensional region in reciprocal space defined by the Ewald sphere.

To illustrate, in Figure 3.3 is shown the (two dimensional projection of) the Ewald sphere
defined by a fixed wavelength A and a fixed incident beam s. s is defined to be a unit vector,
so its limiting surface is depicted as originating from the origin O. The sphere defined by
s — sp is also shown in Figure 3.3; it is simply constructed by adding —sy to the sphere
defining all possible s. To generate the corresponding g sphere in reciprocal space (Ewald
sphere), recalling (3.8), the sphere s—s; is amplified by the factor A~! as shown in Figure 3.3.
Then this Ewald sphere, whose surface passes through the origin in reciprocal space, O*, is
the set of points where the diffraction condition is satisfied. For a fixed \,sg, all g € G3
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Figure 3.4: Ewald sphere depiction after a rotation of sg through an angle w, compared to
Figure 3.3. The reciprocal space 'positions’ g!, g? are now respectively off and on the sphere
for this combination of sy, A. This rotation is necessary to probe the entire reciprocal space
(bring all g' onto reflection sphere).

which emanate from O* and terminate on the sphere surface would produce constructive
interference. Conversely, given g on the sphere, the direction of diffracted radiation s can
be forward mapped by rearranging (3.8) as

S(8: 80, A) = Ag + So. (3.10)

For a fixed sg, A, the intersection of the diffraction sphere and reciprocal lattice points
may be empty, SN L = (). For example, the reciprocal space point g? in Figure 3.3 is
off the sphere, but after rotating the incident beam sy through an angle w, as depicted in
Figure 3.4, we arrive at a condition where the diffraction sphere intersects g2. This is the
reason that in monochromatic experiments we must rotate the crystal, c.f. the rotating
crystal method (Cullity, 1978). Conversely, in polychromatic wavelength experiments, the
reflection sphere becomes effectively a spherical annulus, e.g., a continuum of Ewald spheres
for each wavelength. In these experiments more points in reciprocal space are accessible
from a single sy, and no rotation of the material is required.

By going to lower and lower wavelengths, i.e., higher beam energies, the total volume
in reciprocal space which is possible to probe by physically rotating the sample is given by



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 147

the spherical ball with radius 1/A. It is computed simply as (47/3)A73. As the wavelength
decreases, the reciprocal space volume which may be probed increases. However, as a trade
off, with the same detection capabilities, the precision with which the determination of
I(g) is made decreases along with the wavelength. In our experiments we use a relatively
low wavelength (high energy) of about A(50keV) & 0.0238 nm, so the precision of our
measurements is important to quantify. In particular, we need to determine how precision
in the measurements of 1(g) corresponds to precision in the grain averaged deformation, H.
We will consider this issue in §3.4. It should be noted that an important benefit of using
higher beam energies is that we have greater penetration depths into the sample, which is
usually a primary factor to consider.

3.2.1.2.1 Multiple scatterers Returning to the consideration of interference computa-
tions, we now consider an arbitrary array of scatterers. Starting from the equation (3.5),
for an array of scattering entities with different scattering factors f; we can arrive at the
amplitude function (Guiner, 1963)

Alg) = Ao ) _ fiexpidi(e), (3.11)

where ¢;(g) = ¢(g;r;) is given from (3.9), with r; the position of the scatterer with respect
to an arbitrary common origin (fig).

Next we specialize to solid crystals, by computing the intensity /(g) for a group of atoms
organized in a regular lattice. Assign a distinguished atom by setting the origin at its
location. Then assigning position vectors x;, and scattering factors f; we have the amplitude
function expressed as

F(g) = Z fi exp(—2mig - x;), (3.12)

where N is the number of atoms in the distribution, and where we have used (3.9) and (3.11)
with r = x;. The function F(g) is called the structure factor for this grouping of atoms; it is
simply the amplitude function A(g) for the array, (3.11). An example practical computation
of the structure factor for a BCC material will be given in §3.2.2.3.

We have seen that the structure factor in equation (3.12) depends on the choice of origin
for computing x;. However, the intensity, defined to be the square of the modulus of the
amplitude function, A(g), that is

I(g) = |A(g)]* = A(g)A*(g), (3.13)

where A* is the complex conjugate of A, is independent of the choice of origin. To see this,
we compute the intensity of the distribution using (3.12) in (3.13). The result is given as
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(Guiner, 1963)

I(g) = (F-F*)(g) = Z Z fif; exp(—2mig - (x; — x;)), (3.14)

which depends only on relative positions between the atoms, x; —x;. In fact, the intensity is
the only measurable quantity from a diffraction experiment - as phase information ¢;(g) is
not available with conventional diffraction experiments. Were phase information detectable,
as noted in Guiner (1963), X-ray diffraction experiments would perform as a microscope to
directly visualize and probe the lattice structure.

We pause here to examine (3.14) for the case of a spatially homogeneous deformation of
the scatterers x;. We adopt terminology typically used in mechanics, see Liu (2002). For
a reference configuration position X, the current position is simply x = FX, modulo some
translation. Here F is a spatially homogeneous deformation gradient. Any translational
offset will not matter in the end since we need relative positions in the intensity expression,
(3.14). Therefore we have the kinematic equivalence

X; — Xj = F(Xz — Xj),

which gives

I(g) = (F- F)(g) = > 3 ffexp(~2rig - F(X; - X,)). (3.15)

For an infinite summation in (3.15) , I(g) will be zero unless g = F~ TG, for some G € G,
the reciprocal space of the reference configuration. To see this, consider the sequence

g -F(X;-X,)=F "G -FAX
=G -F 'FAX
=G -AX
=HA+ KB+ LC €Z, (3.16)
where AX = AG; 4+ BG4+ CG3, and G = HG!' + KG? 4+ LG? are parametrizations of the
direct and reciprocal reference lattices. The result (3.16) implies that I(g) will differ from

zero since exp(—2min) = 1 for n € Z. Translating (3.15) into the reference configuration,
the intensity distribution over reference reciprocal space is given by

I(G) = (F - F*)(G) = Z Z fifi exp(=2miG - (X; — X;)). (3.17)

? J

The computations in (3.16) will be more evident after the discussion in §3.2.3.
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3.2.1.3 Continuous distribution of scatterers, Fourier transforms

The diffracted intensity from a discrete distribution of scatterers (3.11) can be generalized
by passing to a continuous distribution with spatial density p(x). In this case we have, using
(3.9) in (3.11) and passing to the continuous limit,

Ag) = /p(x) exp(—2mig - x)dx. (3.18)

In usual usage p(x) is the electron density function (per unit spatial volume), and the
integral extends to all physical space, x € R3. The practically important case of a finite
body is interesting to consider; we will look at this problem in the next section.

Upon passing to the continuous limit, (3.18) indicates that the amplitude function A(g)
is the Fourier transform of the spatial distribution of scattering particles p(x). The notion
of taking the Fourier transform of a crystal is useful from a conceptual and computational
perspective. It will also enable us to eventually derive the reciprocal lattice, which will
be a fundamental construct in passing to a geometric/mechanics-centric analysis of X-ray
diffraction.

We pause here to note another significant aspect of (3.18), at least in terms of providing
motivation for the general crystal structure determination problem. Hypothetically speaking,
the critical step in the task of determining structure from X-ray analysis is stated as taking
the inverse Fourier transformation of the amplitude A(g) in order to determine the spatial
distribution p(x),

p(x) = /A(g) exp(2mig - x)dg. (3.19)

The determination of p(x) is then equivalent to determining the atomic structure of the
material being studied. It bears restating - were phase information available, (3.19) could
be used to turn X-ray diffraction data into a microscope where the distribution of scatterers
is known precisely. Ultimately however, this procedure cannot work since the function A(g)
cannot be observed. X-ray diffraction does not measure the relative phases of the diffracted
waves, so that the amplitude function cannot be measured directly, and p(x) is therefore
inaccessible by using (3.19). Only total intensity, e.g. 1(g) = AA* is measured. See (Guiner,
1963) for an informative treatment for this general case. Fortunately, in this study, the
structure of the material may be assumed to be known from prior experimental studies,
so a full structure determination framework is overly general for our purposes here. Our
interests are in the evolution of the lattice structure due to deformation (strain) and not in
the determination of the structure without prior knowledge.

Before considering computational details of the Fourier transform of a crystal lattice
in §3.2.2, we first consider the practically important effect of a finite object on the theory
developed thus far. This will be useful in the section on forward modeling, §3.4.2.2.
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3.2.1.4 Finite size effect.

As a final background point before applying the Fourier transform framework to crystal
lattices, it is interesting to consider the effect of a finite object on the diffraction pattern.

Consider an object, denoted as V', where p(x) # 0, x € V, and p(x) = 0,x ¢ V. The
spatial density of scatterers p(x) may then written as the product

p(x) = (peo0)(x), (3.20)
where
1 ifxeV
o(x) = {0 fx gV (3.21)

is called the indicator function, and p., is the scatterer density, extended to infinite spatial
domain. Next, denote A(g) = trans[p(x)], where trans : f(x) — F\(g), is the Fourier
transform defined by (3.18). Then we have, taking the transform of (3.20)

Alg) = /poo(x)a(x) exp(—2mig - x)dx. (3.22)
Using the Faltung product, (3.22) becomes
Ag) = X(g) * Ax(8), (3.23)

where ¥(g) = trans[o(x)] and A (g) = trans|ps(x)]. The Faltung product or convolution
in (3.23) has the interpretation that the amplitude A(g) is essentially superposition of the
transform Y(g) placed at each point of the amplitude function which would be nonzero if
the material were infinite.

As a simple intuitive example of the Faltung/convolution integral for a different case,
consider a problem of a light beam, shining on a planar surface. Given an appropriate sensor,
one could measure the intensity of light falling on the surface as a function of position on
the surface. Denote this intensity function as F' = F(x), where z is a position coordinate,
and F' is the intensity. Next consider a spatial array of lights. Let the spatial density of
these lights be p(x). The resultant intensity on the wall is given by the convolution of the
two functions, Fi,; = F % p. Equation (3.23) suggests a similar behavior to this example.
Practically speaking, once the transform A..(g) is characterized for idealized, infinite solid
crystals, for finite bodies (e.g. the practical case), diffraction peaks are not mathematically
sharp points but have some width corresponding to the finite size effect, ¥(g). It should
be noted that this size effect is in addition to other sources which create finite peak widths,
such as spatial gradients in the lattice deformation.

In an ideal situation (3.23) would be enough to quantify the size effect of the crystallites?.

However since the amplitude A(g) is not experimentally accessible, we must consider the
effect of the finite size on the integrated intensity I(g), which is a more complicated problem.

2In the following we will use the terms crystallite in several situations. We basically use crystallite to
imply a small coherently diffracting crystalline domain. The length scale of the material at which the term
applies in this context may vary from that microns to the dimension for a grain of a polycrystal.
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We now compute the finite size effect on the intensity, /(g). The following comes from
the description in Guiner (1963), where the derivations are carried out with greater detail.
First we require the expression for the diffracted intensity. We have

Iy(g) = A"A
—/p( )exp (2mig - u)du/p(v) exp (—2mig - v)dv
// v) exp (—27ig - (v — u))dudv, (3.24)

where we have used (3.18), and where Iy is the total diffraction intensity. Defining x = v—u
we have from (3.24)

// p(x + u) exp (—27ig - x)dxdu

= /P( ) exp(—2mig - x)dx, (3.25)
where
P(x) = /p(u)p(x +u)du (3.26)
is called a Patterson function. Inverting (3.25) via Fourier transform we obtain

P(x) = /](g) exp (2mig - x)dg. (3.27)

As stated before, X-ray diffraction experiments measure 7(g). Therefore the function P(x)
is obtained experimentally.
With a finite object, (3.26) becomes

P(x) = / o (W) (1 4 3) pao (1) poc (% + 1)l (3.28)

Due to the nature of the indicator function o, we have that we can write (3.28) as

P(x) = /v( )poo(u)poo(u—l—x), (3.29)
where the volume V(x) is the region in R? where o(u)o(u + x) = 1. Therefore we define

V(x) = /a(u)a(u +x)du=V-V(x). (3.30)

We give the following additional interpretation to V' - V(x) in(3.30) from Guiner (1963).
V -V (x) is the volume common to the physical diffraction object and to its 'ghost’ obtained
by displacing the object a distance x. With this intuitive picture in mind we state the
following properties which will be used later
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1. V(0) =1,sinceat x =0,V -V(x)=V
2. V(x) =V(—x)

3. V(x) is decreasing, becoming zero when x is greater than the diameter of the object
in the direction x

From (3.30) we have
VoV(x) = / o (w)or(—(x — w))dw. (3.31)
Recalling that from the properties of a Faltung, (A.11), we have

[ otwiot=x = widw = [ otw)io o 17)x - wdw

=0(x) * (6017 H)(x)

= 0(x) *x o(—x), (3.32)
where the inversion function 17! : A — A, 17!(z) = —=, for a group A (here A = (R? +)).
The transform of V' (x) is then given by, with (3.31) and (3.32),

1

V(x) = VO‘(X) * o(—x). (3.33)

Now trans|[o(x)] = 3(g), trans[o(—x)] = ¥*(g) and using the Faltung theorem, (A.12),
Equation (3.33) gives

1 *
trans[V(x)] = -(8)" (&)
1
= —|2(g)|>. 3.34
e (334
Writing out the left hand side of Equation (3.34) and rearranging gives

S(g)f =V / V(x) exp (—2rig - x)dx. (3.35)

Recall also the expression for the Fourier transform of o(x):

Y(g) = /a(x) exp (—2mig - x)dx, (3.36)

so that

%(0) = /U(x)dx =V, (3.37)
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which implies
12(0)]* = V2. (3.38)

Next, we can show that |X(g)|? is centrosymmetric. Since o(x) € R = X(g) = X*(—g),
we have

X(—g) = (—g)x*(—g) = X' (g)2(g) = [X(g)|%, (3.39)

symmetry being shown.

Now, if the physical object were large, say V(x) = 1, with||x|| — oo, then from (3.35)
|X(g)|* would essentially be a Dirac-delta function in g-space, see (A.10). From this view-
point we conclude that |X(g)|? is a rapidly decreasing function from its maximum at g = 0.
Therefore the maximum is given by (3.38), V2. Transforming |3(g)|* gives

1
V(x) = v / 1¥(g)|? exp 27ig - xdx, (3.40)

and V(0) = 1 from the previously stated properties of V(x) so that we have the result

/|E(g)|2dg =V, (3.41)

where V' is the spatial volume of the diffracting material, which will be used later, and the
integral is over all reciprocal space. From the established properties of |¥(g)|?, approximating
|X(g)|?* by its maximum, V2| in a small nonzero (reciprocal space) volume, w centered at
g = 0, is a useful exercise and gives

/]Z(g)|2dg = VQ/dg = wV?, (3.42)
where w is the volume of the region in reciprocal space where the approximation for |%(g)|? =

V2 holds. Then equating (3.42) and (3.41) gives

1
= —. 3.43
W= (343
The actual width of the function ¥(g) in reciprocal space is then estimated by taking w to

be a three dimensional cube with side length 2sg, which with (3.43) gives

1
3 _ _
(250)° = 7 = 3 (3.44)

where we have used V = 73, with r the size of the material in physical space, e.g. the cube
edge length, and s is the size of the region of volume w. Rearranging (3.44) gives

1
= 4
So o (3 5)
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For a given wavelength, A\, the angular spread in the diffraction peak coordinate € due to
the finite size of the object can be computed from Bragg’s law, with d = s;' through the

relation 5 i 8
s = S;n , (3.46)

Solving (3.46) for 6(so(r)), with (3.45) then gives the angular spread in the diffraction peak
due to the particle size effect. This data is plotted on log scale in Figure 3.5, for A =
A(50keV) = 0.0238nm. Figure 3.5 indicates that finite size effects become most important

103 |

107 |

Diffraction angle spread, degrees

10° 101 10° 10°

Crystallize radius (microns)

Figure 3.5: Trend of crystallite size effect on the spread in the Bragg angle, 6, from (3.46).

for submicron (nano) grain sizes. Our grains are on the order of a hundred microns, so
size effects due to sub-grain or crystallite breakdown will not be a critical ingredient in the
modeling required for this work. We will however use the formal consideration of size effects
in the development of a forward model, see §3.4.2.2.
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To further justify neglecting size effects, we have to introduce some details of the experi-
mental configuration. The geometry of the setup is described in Figure 3.13, §3.3. Consider
the resolution determined by the pixel size, p/L, where p is the pixel size and L is the sam-
ple to detector distance. From the far field geometry, the resolution in the Bragg angle
is approximately p/L. Bragg’s law gives that the corresponding reciprocal space resolution
is 20 = Asy == sp ~ 2p/(AL). And (3.46) gives that size effects become detectable
for \/(2r) ~ 2p/L. With typical pixel size and detector distances, p/L ~ 0.2 - 1073, and
A = 0.0238nm, this occurs for r ~ 0.03 pm. For an alternate treatment see Warren (1969),
where they report
0.94)\
rcosf’
where FWHM denotes full width at half max of the Bragg angle spread. FWHM can be
related to the standard deviation parameter of a Gaussian distribution. With this, Opway ~
p/L =~ 0.2 -1073, and 0., ~ 0.1 gives a detectable particle dimension of detection of
0.1 pm, which is in the same order of magnitude as the previous estimate. From these
estimates, broadening due to particle size effects will not be significantly detectable in our
experiments. Observable broadening will instead come from a variety of factors, collectively
grouped under the category ’'instrumental broadening’, (Warren, 1969). For example the
deviation in wavelength A from monochromatic experiments will cause some broadening
effect. See §3.4.2.2 for more information.

In the next section, we apply the general framework developed thus far to the regular
array of atoms found in a solid crystal. We will use the Fourier transform concept from
Equation (3.18) in order to derive the reciprocal lattice associated with the physical crystal
lattice. Once we obtain the reciprocal lattice description we can apply analytical techniques
following from considerations of diffeomorphisms of differentiable manifolds representing the
lattice structure to deduce the effect of lattice deformations on the diffraction pattern. This
geometric framework will be more convenient for computations of lattice strain, for example,
than using the more cumbersome Fourier transforms.

HFWHM =

3.2.2 Application to crystalline lattices.

In this section we consider the theory of diffraction resulting from crystal lattices. Crys-
talline materials are of primary interest to solid mechanics studies. For example, important
structural metals such as iron, titanium, and aluminum are naturally crystalline. Although
normal processing procedures induce a polycrystalline structure, the single crystal domains,
called grains, can be analyzed with the framework we develop in this section.

A primary outcome of this section is the derived importance of the reciprocal lattice
description of the crystal. We first begin with the general notion of a crystal lattice in the
spatial configuration. The following formulation and description works without caveat for
simple lattices such as simple cubic, but the results can be applied to more complicated



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 156

structures easily®. Simple lattices are considered to make the notation and discussion less
cumbersome.

3.2.2.1 Spatial crystalline lattice

In this section we derive the Fourier transform of the crystal lattice. First we must charac-
terize the spatial distribution of atoms in a crystal, in order to obtain an expression for the
scattering density p(x). This quantity was introduced in (3.18).

Figure 3.6 depicts a simple lattice. The origin of the spatial coordinate system is set

x(1,-1, 1)

a

Figure 3.6: The lattice of a simple cubic crystal. The lattice vectors a,b,c for a basis.
Positions x can be described relative to the basis, as shown for the vector x(1,—1,1) =
a— b+ c. In this basis integral coefficients of the basis vectors correspond to lattice points.

on a node of the lattice, as shown in the figure. The linearly independent vectors a, b, c
generate the lattice by translations; they are called the lattice vectors. The position field in
the crystal lattice, x, may be described by the function

X(O) = 01a + egb + 93C, (347)

where x is the spatial position and @ = (0y,6,,05) € R3. Generally 0 range freely, but
0 € 73 on lattice sites. To apply the Fourier transform to such arrays of atoms, we divide

3Non simple lattices have non trivial extinction reflections which must be considered. The set of active
reflections comes from the structure factor calculation. An example is given later in this section.
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the description of the crystal into the (Faltung) product of unit cells at each lattice site, so
that the scattering density p(x) may be expressed as the convolution of two terms,

p(X) = pe(x) * [z(x)o (x)], (3.48)

where p.(x) is the local electron density defined over the unit cell, the lattice function z(x)
is nonzero only on lattice sites, and o(x) is the indicator function introduced in (3.21) which
accounts for the macroscopically finite size of the crystal. The lattice function z(x) can be
described by a combination of Dirac-delta functions, written as

2(x) =) d(x—x(6")), (3.49)

where 6% € Z3. Should there be confusion with what is meant by (3.49), we are using the

shorthand
D ox=x(07)) =D ) 6(x — Xpnnp), (3.50)

where
Xmnp = ma + nb + pc (3.51)

for m,n,p € Z. Recalling the intuitive example of convolutions given in §3.2.1.4, we can see
that the operation given in Equation (3.48) has the mathematical features we are looking
for in describing a lattice (population of a locally nonzero function at discrete lattice points)

Next, recall the general expression for the amplitude function regarded as a Fourier
transform of the scatterer density. That is, A(g) = trans|p(x)], see Equation (3.18). Further
recall that the magnitude of the amplitude gives the diffraction intensity, I(g) = |A(g)|?,
which is the observable in a diffraction experiment. Therefore to compute the intensity we
must first compute the Fourier transform of p(x) of the combination in Equation (3.48), and
then take the modulus. Using the property of Fourier transforms in (A.12), (A.13), A(g) is
given by the product,

A(g) = F(g)lZ(g) * X(g)], (3.52)

where F'(g) = trans[p.(x)] is the transform of p.(x) over the unit cell and is called the struc-
ture factor, and ¥(g) is the transform of the indicator function over the crystal, described in
§3.2.1.4. We previously introduced the structure factor for the unit cell in Equation (3.12)
in the previous section. We will return to the structure factor calculation shortly and give
an example computation; first let us examine Z(g) = trans[z(x)], as this will lead to the
reciprocal lattice construction which is more crucial to the rest of the framework.

3.2.2.2 Reciprocal lattice

From Equation (3.49) and Equation (3.52) we need to compute the transform of z(x) in
order to compute the amplitude, A(g). Using the definition of the transform and (3.49), we



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 158

have
Z(g) = /z(x) exp(—2mig - x)dx
= /Z d(x — x(0")) exp(—2mig - x)dx
pe

= Zexp[—?m’g -x(0")], (3.53)
o

where we have used the properties of the Dirac delta function, given by
/(5(x —x")f(x)dx = f(x"). (3.54)

Then, using (3.47) in (3.53), and with evaluations of x on lattice sites, x(6) given by (3.51),
Equation (3.53) becomes

Z(g) = (Z exp|—2mimg - a]) (Z exp[—2ming - b]> (Z exp[—2mipg - c]) . (3.55)

m n D

It can be shown (see Guiner (1963)) that by taking the summation limits in (3.55) from
—N/2to N/2, N € N, the result of a single summation factor from (3.55) can be simplified
to

N/2 N/2
Z exp[—2mimg -a] = 1+ 2 Z cos [2mm(g - a)] (3.56)
m=—N/2 m=1
_sin[(N + 1)7g - a
= sl a) (390

The terms sin[27wmg-a] drop out of (3.56) since sin is an odd function, e.g. sin (z)+sin (—z) =
0. The final expression Equation (3.57) is plotted vs g - a in Figure 3.7 for various values
of N. Equation (3.57) has a discontinuity at integral values of g - a, but the right and left
hand limits at these points are the same at integral values of g - a. Therefore by taking the
limit as g - a approaches an arbitrary integer, we obtain the result

lim sin [(N + 1)7g - a] _ g Sin (N +1)rg - a
ga—szt  sin[r(g-a)] gal— sin [7(g - a)]

— N+1. (3.58)

The width of the peaks at the integral values of g - a is obtained by considering the zeros of
the numerator of (3.57). Rewriting the numerator gives

sin(N + 1)rg-a=sin2rfg-a, (3.59)
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Figure 3.7: Plot of Equation (3.57) for various values of N. The limiting behavior is quali-
tatively similar to Dirac-delta functions at the integral values of g - a

where f = (N + 1)/2 is the frequency. Then (3.59) has a full period, T', of

1 2
T=-=__"-__ 3.60
f N+1 (360)
and a half period (i.e. peak width, w) of
T 1
- 61
YT TN (3:61)

With the interpretations provided by (3.61) and (3.58), Equation (3.57) clearly represents
something akin to a Dirac delta function, see Figure 3.7. In other words, as N — oo, then
for g-a € Z, (3.57) tends to a large number, and for g - a ¢ Z, with fixed g, the summation
tends to zero (Guiner, 1963). Applying these observations to each of the summations in the
product (3.55) gives the result that (3.55) becomes

~ 3

Z(g):{K if(g-a,g-b,g-c)eZ (3.62)

0 else,

where K is a constant which will eventually be related to the physical size of the unit cell
later in this section. In other words, Z(g) is zero unless we have the simultaneous conditions

g-a=h, g-b=kF, g-c=1I, (3.63)
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where h, k,l € Z. This is a restriction on the reciprocal vectors which give rise to non zero
intensities, (see the discussion in §3.2.1.2.

At this point it is useful to introduce a formal parametrization for reciprocal space.
We resolve g on the dual basis to the lattice vectors a, b, c, giving the representation (see
Equation (A.15))

g=(g-a)a*+(g-b)b"+ (g-c)c”, (3.64)
where a*; b*, c* are the reciprocal basis to a, b, c. Then using the results of (3.63) in (3.64)

we have the form
g = ha* + kb* + Ic". (3.65)

Ranging h, k, [ over the integers and noting the values given by (3.65) represents a lattice in
reciprocal space. More generally, we can parametrize reciprocal space by

g(B) = pia” + Bb" + Bz, (3.66)

where here 3 € R3, and 3,,7 = 1,2,3 are the components of 3. Equation (3.66) simply
reflects the fact that a*, b*, c* are a basis for reciprocal space. With (3.66) parametrizing
reciprocal space, the results of (3.62) and (3.63) are rewritten as

Z(gB)=0 B¢Z’

and
Z(g(B) #0, BeZ’

The parametrization given by (3.66) thus forms a lattice in reciprocal space much as Equa-
tion (3.47) does in the physical space, with lattice points at 3 € Z3. This lattice will be
referred to as the dual or reciprocal lattice, and vectors on reciprocal lattice sites will be
referred to as reciprocal lattice vectors.

Denoting 3 € Z? by B = B* we now rewrite (3.62) as

Z(g)=K>» d(g—glB)). (3.67)
-

In (3.67) we are using the shorthand similar to that used previously for the spatial lattice,
Equation (3.50). That is,

Y ag—gB)N =D D> g guwm) (3.68)
3" hook

where
g = ha* + kb™ + Ic* (3.69)

denotes a reciprocal lattice node, h,k,l € Z. We now compute the scaling constant K
required in Equations (3.62), (3.67).
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Computation of scaling constant

To compute the value of K in (3.67) we integrate Z(g) around an h, k, [ node of the reciprocal
lattice. By the properties of the Dirac delta function,

K = Z(g)dg. (3.70)

node

We now write out the integral on the right hand side. To simplify the notation we replace
the parametrization of reciprocal space in (3.66) by

g(g1, 92, 93) = 18" + 928° + 9s8° = g:g’, (3.71)
where g; € R,i = 1,2,3, and g!, g% g®> = a*,b*, c*, respectively. Next we have, by (3.55)
with (3.57) and (3.71), for some large natural number N,

sin [(N + 1)7g,] ) <sin (N + 1)7rgg]> (sm [(N + 1>7rg3]> '

sin [7(g1)] sin [7(g2)] sin [7(g3)]

259 = ( 3.1
Around a particular g,;; node of the reciprocal lattice, we take an integration box with
dimension +e. Using the expressions for peak height and width from (3.58) and (3.61),
considering a single factor in (3.72) gives

gu(hkD)+e i TN 4+ 1 .
/ sin [( + )7?91]dgl (N4 1) =1, (3.73)
ahk)—e  sin[m(g1)] N +1
Next, we have
/ Z(g)dg —/ Z(g)lg' -g" x g’] (3.74)
node node

_ / Z(g) det Frdg, A dgy A dgs
node

= / Z(g)Vidgi Adge Adgs
node

=V / Z(g)dg1 A dga A dgs (3.75)
node

=V

=V (3.76)

where we have used (3.73) in arriving at (3.76). Here
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and where V = detF} is the volume form of the reciprocal unit cell. Should further
explanation of the above operations be helpful, the volume element dg in (3.74) is represented
by the parallelepiped with edges given by g',i = 1,2,3. The integral in (3.75) is over
the natural coordinates g;,7 = 1,2,3, hence the Jacobian F is introduced. With this,
Equation (3.76) taken with (3.70) gives

K=V (3.77)

When we introduce the differential geometry for crystalline lattices, in §3.2.3, we will see
that we have the relation

1
Vi=— 3.78
c ‘/57 ( )
where V, is the unit cell volume in physical space. Taking Equation (3.78) in (3.77) gives
1
K=— 3.79
‘/67 ( )
so that (3.67) is written as
1 *
Z(g) =3 ) 0(g—8(B). (3.80)
c 3"

We have therefore completed the determination of the transform Z(g). We now return
to considering the rest of the terms in Equation (3.52). First, the Faltung product in (3.52)
is simplified by using a property of Faltung with Dirac-delta functions, see Guiner (1963,
Appendix), yielding

C

Z(g)+ S(g) = - > d( ~ 8(6°) * Xg) (3.81)
2

1

A Z E(g —8(8)). (3.82)
c B

Next, recall from §3.2.1.4 that 3(g) is a rapidly decreasing function with non zero value in
a volume around the origin of reciprocal space. The volume of the region where ¥(g) differs
from zero was shown to be approximately 1/V where V' is the physical volume of the entire
crystal. Therefore, the Faltung of the lattice transform with the size effect, Z(g) * X(g),
broadens the sharp points of Z(g) to distributions with width proportional to the physical
size of the crystal. For future use, following Guiner (1963), we denote this Faltung by

R(g) = Z(g) *%(g) == = Y X(g — &(8")). (3.83)

To complete the specification of the amplitude function in (3.52) we now consider the
structure factor of the unit cell, F(g), i.e. the transform of the electron density function

p(x).
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3.2.2.3 Structure factor computation

In Equation (3.52) we need the transform of the electron density over the unit cell,

F(g) = /p(x) exp(—2mig - x)dx. (3.84)
Using Equation (3.83) in (3.52), we rewrite (3.52) as

A(g) = F(g)R(g), (3.85)

where R(g), defined by (3.83), is a sharp function around the reciprocal lattice nodes at g =
g(8") = guu- Since R(g) is sharp, we can simplify (3.85) by considering the approximation
to F'(g) at a reciprocal lattice node, giving

A(g) = F(g(B"))R(g) (3.86)
= F(g")R(g), (3.87)

where g* = g, see (3.69). Then

Flg) = / p(x) exp(—2migyy - x)dx
= Fhkla (388)

where Fy, is the structure factor of the unit cell. From Equation (3.88) each h, k,l node of
reciprocal space has a corresponding structure factor, differing from point to point, according
to the atomic structure described by the unit cell. For a discrete crystal lattice with unit cell
containing N atoms at the lattice points enumerated by x(67),i = 1,2,..., N, the structure
factor from (3.88) can be written as, (Cullity, 1978)

N
Fhkl = Z fj exp 27righkl . X(e;)) (389)

[ exp(2mi(hm; + knj + Ip;)), (3.90)

||Mz

where we have used Equation (3.51), (3.65), and the property of the reciprocal and direct
lattice encoded by the relations g; - g/ = ¢7.

Structure factor - example computation. For completeness an example of the compu-
tation of structure factor described by (3.90) is given. Consider the lattice motif in Figure 3.8.
This is the motif for a body centered cubic lattice. There are two atoms per unit cell, hence
the motif has two atoms. The lattice points X1, X, have the coordinates

X1:0a
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8

@ " ®

BCC motif BCC unit cell

Figure 3.8: On the left, the BCC lattice motif for structure factor calculation. On the right,
the BCC unit cell.

1
Xg = 5(%1 + g+ g3)~

A reciprocal vector is given by the parametrization
g=hg' + kg’ +lg’
so that Equation (3.90) is computed as

Fhkl = f1 +f2€Xp27Ti(h/2 +l€/2 +l/2)
= fi+ foexpmi(h+ k+1). (3.91)

For simplicity, take f; = fo = f, e.g. the same atoms are at both points of the motif. This
would be the case for elemental iron, for example, along with many other important metals.
By inspection of Equation (3.91), setting h + k + [ = even gives

Fu = f(14+1) = 2f,
and for h + k + [=odd, (3.91) gives

Therefore, in consideration of the reciprocal lattice parametrization from (3.65), we have
some reciprocal nodes h, k,l where there is no diffraction. This is because the BCC lat-
tice is not a simple lattice. For BCC, the extinctions are described by, e.g., h,k,[ =
(1,0,0),(1,1,1), etc., and diffraction will occur for, e.g., h,k,l = (1,1,0),(2,0,0),etc.. In
this way, the generation of the h, k, [ indices for which diffraction occurs generates the recip-
rocal lattice by using the integral parametrization g = hg! + kg? + Ig>. O
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Equations (3.88) and (3.82) now completely specify the amplitude function we are after,
(3.52),
Alg) = F(g)l2(g) * X(g)]

As mentioned several times, the amplitude A(g) is not measurable in an X-ray diffraction
experiment, however the intensity, 7(g) = |A(g)|* is. In the next section we consider the
scattering power for a given reflection, which is proportional to 7(g). This calculation will
give the true integrated intensity picked up by the detector, hence it is the directly measured
quantity in the X-ray diffraction experiments we are considering. We will also introduce
the Lorentz and Thomson polarization factors, which also contribute to the experimentally
measured intensity.

3.2.2.4 Scattering power

The intensity at a point in reciprocal space is given by taking the modulus of Equation (3.85),

In(g) = A(g)A*(g)

= F(g)F"(g)R(g)R"(g)
1 "
= 7z 2_ FiulS(e — (B (3.92)
where we have used
F(g)F*(g) = |Fuul’ (3.93)
along with a simplification of the product
R(g)R(g) = 17 D %(g — 8(B))3; D _T'(8 — 8(8))). (3.94)
C i C ]

Derivation of (3.92) To simplify Equation (3.94) we use the following logic. Since the
functions 3(g) are confined to the neighborhoods of the lattice nodes, via the results of the
finite size computation from (3.46), we can take the 7, j overlaps between the summations in
(3.94) to be zero. This gives the following sequence of reductions,

Rg)l'(g) = 3 ZZ g—g(8 ZE* g~ 8A)
_ W Z ZE(g - 8(8))x" (g — &(8)))d;;
V2 ZZ g — g Z*(g g(/B ))

= 2 Y INle - B (3.95)
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Now, starting from Equation (3.52), we use (3.88) along with (3.82) and (3.95). The result
(3.92) then follows. O

The scattering intensity (power per solid angle) per unit cell is obtained by dividing
(3.92) by the total number of unit cells N. For a body of volume V', and unit cell volume V..
there are N = V/V_ unit cells. This gives

VW

_ % > Fuls(e - g8 (3.96)

I(g)

We now consider the scattering power from a finite crystal. A general reciprocal lattice
peak where 1(g) # 0 is indicated in Figure 3.9, where the Ewald sphere is also indicated. We
will return to this figure in a subsequent discussion. As shown previously, for monochromatic
radiation one must physically rotate the crystal to have the Ewald sphere intersect the
reciprocal lattice vector. The geometry of how the reciprocal lattice vector intersects the
Ewald sphere has implications for the scattering intensity produced by the reciprocal lattice
vector passing through the Ewald sphere. To simplify the geometry of this intersection
process, in Figure 3.9 we first consider a reciprocal lattice vector which is in the plane of
rotation, and derive the expression for the scattering power. We then generalize to the case
when the reciprocal vector is not in the plane of rotation, depicted in Figure 3.10.

Rotation in-plane analysis Let us assume that the crystal is rotating with angular rate
w. The energy transmitted, per unit cell, F/, by going through a diffraction condition is given

by
1
o / Lawn / LI(g)de, (3.97)
A Q

w W

where [, is the Thomson polarization factor, see §A.2, I(g) is the scattering power per unit
cell given by Equation (3.96), understood as power per solid angle, and df2 is the solid angle
area element. In terms of the geometry of the Ewald sphere the solid angle is related to the
angular coordinates 6,17, see §3.3.2 by

dQ = sin 20d(260) A dn. (3.98)

We would like to convert the integral of (3.97) over the coordinates dw A d€2 into an integral
over reciprocal space coordinates, dg, so that we obtain an expression of the form

E=E (/I(g)dg) . (3.99)

Then we can use (3.96) to simplify (3.99).
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(5- sy =V

5(26)

2sin O/A

Figure 3.9: Ewald sphere construction of a diffraction event, with reciprocal vector g’ in the
plane of rotation generated by w. The geometry of the construction of crossing the Ewald
sphere determines the diffracted power received by the detector. The geometric factor the
power is only a function of #-location of the peak in this case.

To do this, we will compute the volume element induced by tracing the path of g/ through
small changes in w, and multiply by the solid angle area element in Equation (3.98). See
also (Cochran, 1948) for a similar method of computation.

The equation of the Ewald sphere gives that the magnitude of the reciprocal vector g’ is

S — Sp

A

2sin 0
g/l = 4 (3.100)

where s - 59 = cos 260, see Figure 3.13 and discussion associated with a general experimental
setup. As the crystal rotates, the reciprocal vector g’ likewise rotates; the arc of this rotation
is traced in reciprocal space, as indicated in Figure 3.9. The tangent vector to the arc traced
by the reciprocal vector, projected on the normal to the Ewald sphere, s, is given by cos 6, as
indicated in Figure 3.9. This can be seen by geometric construction. Therefore the reciprocal
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(5- s~V

(20,m) _ s(26,n)

Figure 3.10: Ewald sphere construction of a diffraction event, as in Figure 3.9, for the general
case when the reciprocal vector g’ is not in the plane of rotation induced by w. The diffracted
power received by the detector is determined by the n-location of the peak as well as by the
f-location.

space volume element in the angular coordinates is given by

dg = —|gldo A g, - sdw (3.101)

B 2sind

cos fdw A do, (3.102)

where do is the solid angle on the reflection sphere. It is related to the solid angle on the

unit sphere by
d)  sin260

With Equation (3.103) and (3.102) we can rewrite the expression for total energy, (3.97), as

gl X /1( )d (3.104)
= wsin2o | TBE '
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In (3.104) we are making the assumption that the peak is tight enough so that the 6-
broadening is negligible, letting us remove it from the integration. For small particle appli-
cations, we may wish to integrate directly over the angular coordinates 26,7, w. In that case
using (3.102) with (3.103) gives the volume element as

L.
dg = e sin®260d(260) A dn A dw. (3.105)

Therefore combining (3.102) and (3.103), the total integrated energy using intensity over
angular coordinates becomes

1A [ 1(20,0,
E= 3 / <Sii2’720“>d(29) Adny A dw. (3.106)
Recall that the total energy computed in Equations (3.104), (3.106) were for the case of the
reciprocal vector in the plane of rotation of the crystal. Next we consider the general case,
where the reciprocal vector is not in the plane of rotation. The same computational ideas
apply - we seek the volume element generated by extruding the solid angle element on the
Ewald sphere along the tangent vector traced by a reciprocal vector as the crystal is rotated,
in order to relate the angular coordinates to the integrated intensity.

Out-of-plane rotation analysis. In this case it is convenient to formally parametrize
reciprocal space in terms of the diffraction angles, 20,7, w as

1
g(20,n,w) = X(31(29, n,w)er + 52(260,m,w)es + s3(20,1,w)es), (3.107)
where
s1 = —sinw(1l — cos 26) + cosn cos w sin 26 (3.108)
So = sin 7 sin 26 (3.109)
s3 = cosw(1 — cos 260) + cos n sinw sin 26. (3.110)

Note that the array (s, s, 3) is not a unit vector. These equations are obtained from the
analysis in §3.3.3. The normal on the reflection sphere is parameterized by 26,7 as

S:ep(20777§ _e37el7e2)7 (3111)

where e,(-) is defined in (A.1). In the expression for energy given by (3.97) the solid angle
d) is unchanged, but the result of the volume extrusion is changed from (3.102), which was
obtained for an in plane reciprocal vector. It is computed by forming first the path of the
reciprocal vector upon rotation, w as

LQue!| =awe! (3.112)
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where w* is the value of w upon bringing g’ onto the Ewald sphere, and Q(w) = R(eg,w)
is the induced physical rotation of the sample by the stage. Then the volume element is
computed by projecting the path of the rotating reciprocal vector on the normal to the
Ewald sphere, which gives

d
dg = dQ A <d—Q(w)gI : s) dw (3.113)
W w=w*
cos 7 sin 26
=dQ A (T) dw (3.114)
.2
cos 7 sin” 20
= (T) d(20) A dn A dw, (3.115)
where we have again used
dQ
=%

and
dQ = sin26d(26) A dn.

Then using the expression for the volume element from (3.114), the energy, (3.97), becomes

o IeA—:))/](g)dg, (3.116)

& sin 26 cos n

where we are using the assumption of negligible angular broadening of the diffraction peak.
Should this not be the case, re-expressing (3.116) on angular coordinates using (3.115) gives
that (3.97) becomes

E:/A ldw/\/ﬂfef(g)dg (3.117)

w W
I3 I(20

:( : )/ [20.1.9) 459 5 dy A deo. (3.118)
w sin” 26 cos n

We can also arrive at (3.115) in a much cleaner fashion by considering the diffeomor-
phism between manifolds representing reciprocal space, being parametrized by the map
£(20,n,w) = (s1, $2, 83) where s;,i = 1,2,3 are given by (3.108)-(3.110). Then the volume
element is given by the standard formula

dg = (\/det E) 4260 A dn A dw, (3.119)
where E;; = £, - £ ;. This computation is executed in Mathematica and results in

de — (sin2 20 cosn

= E ) d26 A dn A dw, (3.120)
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which is equivalent to (3.115).

We have now an expression for the total energy integrated from a reciprocal lattice vector,
given by (3.104), and the more general (3.116). We now compute (3.99), the total energy
for a node. Using Equation (3.96) we have, after some rearrangement,

1
/I(g)dgz WFf?kz/IE(g)lzdg

1
= 77 Fs (3.121)

where we have used (3.41). The energy per unit cell is computed from (3.121) and (3.116)

* I A3 1
E=(2)(——)(=F% ). 3.122
(w) <sin2000877) <VC hkl) ( )

The total reflected energy for the whole crystal is then given by taking the product of (3.122)
times the number of unit cells

v

By = EVC’ (3.123)
where V' is the total spatial volume of the crystal. Therefore for the same crystal (e.g. unit
cell is constant), increasing the macroscopic volume increases the diffracted intensity (lin-
early). To complete Equations (3.122), (3.123), the Thomson formula gives, for an initially

unpolarized beam?

1 296
I, = Iy (—+ C;)S ) , (3.124)
where [ is the nominal beam intensity. The full power is given by
B 5 (14 cos? 20 A3 1 )
P= = — | F7,V 3.125
Iy Te ( 2 sin20cosn ) \V2) " ( )
= QuV, (3.126)
where ) 259 \3 )
2 + cos 9
= — | F7,. 3.127
Qna =1 ( 2 ) (sin 26 cos 7]) (Vf) Il ( )

The factor (1 + cos®26)/(2sin26 cosn) is called the Lorentz factor (Guiner, 1963; Warren,
1969). When using a monochrometer, the Thomson formula does not apply and a correction
factor must multiply (3.127) in order to get the absolute intensity correctly. For details, see
Guiner (1963, p. 100). For the purposes of this work, we only use relative intensities so
the numerical value of this correction factor does not matter to the present work. The most
important results from the derivations leading to (3.127) are that we can now relate the
intensity picked up on a pixel of the detector to (1) the structure factor of the reflection, (2)
the diffraction angles of the peak, and (3) the physical volume of the crystal. These factors
will be important to consider in §3.5.

4see §A.2 for details
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Summary. In this section we have arrived at the relationship between the reciprocal lattice
and X-ray diffraction intensity, using the Fourier transform operation. The reciprocal lattice
is an array of points in reciprocal space, corresponding to the spatial distribution of lattice
points in physical space. The importance of the reciprocal construction was revealed when
we showed that we can formulate the description of diffraction processes in a geometric
fashion: that diffraction occurs when a reciprocal lattice vector lies on the Ewald sphere.
To complete a predictive model of diffraction, we derived the resulting total energy recorded
by a detector, as a reciprocal lattice vector passed through the diffraction condition. This
required the introductions of the structure factor and Lorentz polarization factor, which
were both provided. This description for diffraction in terms of Fourier transforms will be
important to consider in §3.4.2.2 when we describe a forward model to simulate diffraction
intensities.

In the next section we further build on the deductions from this section, and recast
the reciprocal lattice in a more geometric context. Upon taking this perspective we can
reformulate some notions of experimental X-ray diffraction without using Fourier transforms,
in a framework more natural to mechanics work. We now present the details.

3.2.3 Geometric description for X-ray diffraction

In §3.2.2 we used the physics of coherent scattering of an array of atoms to motivate com-
putation of the Fourier transform of the physical lattice. It was shown that constructive
interference occurs for diffraction vectors, g, which are located on reciprocal lattice sites;
equivalently, when reciprocal lattice sites are coincident with the Ewald sphere. The rele-
vance of the reciprocal lattice to diffraction experiments was therefore established. In this
section the crystalline lattice is reexamined from a geometric point of view. This point of
view is natural to consider in order to couple the framework of continuum mechanics with
X-ray diffraction analysis.

We will first restate the basic formulation of a crystal lattice, and then quickly derive the
geometric construction of the reciprocal lattice. We then derive some kinematic results which
were suggested in the previous section, see Equation (3.15). Many of the results in this section
exist in other forms in the mechanics literature. In order to keep the treatment simple for
now, we will restrict the treatment to elastic deformations, so notions of material deformation
and lattice deformation will be identical. When plasticity occurs, lattice deformation and
material deformation are not equivalent, as was described in Chapter 2. However the results
of this section still carry over very well to that case, differing only in some details. A final
note is that in this section, the use of the term kinematic will be used to denote the idea of
deformation, and does not refer to the kinematic theory of diffraction, a term used previously
in this chapter.

As we have seen, a primary notion in the geometry of crystals is the existence of an array
of atoms which are generated by combinations of translations of three linearly independent
position vectors. To relate this array to a continuum field description, we can assign the
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position field according to the parametrization (see (3.47))
x(6',0% 6°) = 0'a + 0*b + O°c, (3.128)

where a, b, c are constant lattice vectors, #; € R,i = 1,2,3 and the position field x has
the property that a lattice point is defined to be at @ € Z3. Therefore 6;,7 = 1,2,3 may
be considered the material coordinates for the body, a common construction in mechanics
analysis. In this convected coordinate formulation, the point defined by a particular values
of 0 is the same material point throughout any deformation of the body. This is done so
that we can bring in the machinery from differential geometry and apply it to the mechanics
of the crystal, which we now proceed to exercise.

Having established the position field in the crystal by (3.128), the material tangent vectors
are defined by the traditional formula

_0x

Applying (3.129) to (3.128) gives that a = g;, b = g,, ¢ = g3. Therefore we have the
equivalent, compact representation of position referred to the lattice vectors as

(3.129)

x(0) = 0'g;, (3.130)

where we are using the Einstein summation convention on repeated indices.
The kinematic metric of interest in material coordinates ¢’ is induced by the Euclidean
metric, d, in the spatial configuration,

§ = dx' ® dx’, (3.131)

where we are using the notation of exterior calculus to denote the basis elements dx*. Using
the mapping from material coordinates to spatial coordinates, x : R? — R3 x(0) — x is
given by

g=x9
=g, - g;df' @ de’, (3.132)

where ()* denotes the pullback map. So that in material coordinates therefore the metric
components are

9i5 = 8 " 8- (3.133)
To generate the reciprocal lattice, we can use the lattice vectors g, and use the relations
g =Ig'=g,0g g =(4")g, (3.134)

Using ¢;;¢°F = 6F, and the uniqueness of matrix inverses, (3.134) gives the reciprocal vector
in terms of the lattice vectors as

g =8'(g.8.85) = l9] '8, (3.135)
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where [g;;] denotes the matrix constructed from the components g;;. The volume of the unit
cell, V., in physical space can be computed from

Ve = (g1, 82, 83] = V/det gy (3.136)

Likewise, the volume of the reciprocal unit cell, in reciprocal space can be computed from
vi=lg" g’ g’ (3.137)
To relate Equations (3.136), (3.137), we use (3.135) and the relations

' g% g’ = g"g,. %8 &8,
= g78% 8" ¢jkm /g
= det [g7]\/g
= det (gij)_l\/§

= (/9) ", (3.138)

where
g=detgy; =V2 (3.139)

C

so that after substitutions (3.138) gives the result

1

V.= .
V'C*

(3.140)

This was a required relation in (3.78). From another direction, we can consider a structural
deformation mapping from a Cartesian material coordinate system with coordinate directions
ey, eq, €3 into the lattice configuration, g,, g,,gs. This construction is developed further in
§3.3.5. Denoted this mapping as Fy, we have the sequence

‘/C = [gb o, g3] = [Fseb FseQa Fse3] = det Fs[ela €7, eS] = det Fs- (3141)
On the reciprocal vectors we have A
g =F e, (3.142)
so that
V=g g’g’l = [F, e, F, e, F, "ej] (3.143)
= det F '[ey, ey, €3] (3.144)
=V (3.145)

We record here some further kinematic results relating the reciprocal lattice vectors to
the direct lattice vectors. For any three independent lattice vectors g, we can construct a
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reference configuration based around the measured state g,;. Following common conventions,
we denote this triad by G;. Then the evolution of lattice vectors occurs through the action
of a deformation gradient, F. In equation form, we have

g, = FG; (3.146)

for i = 1,2,3. Since the choice of the triad G; is an arbitrary basis for the lattice (see
Figure 3.6, the relation (3.146) holds for any lattice vector G;. Based on Equation (3.146)
and properties of the reciprocal lattice, a representation for F is given by

F=g ®G" (3.147)

By direct computation, FF~! = I so that

and .
F'=g' oG, (3.149)
so that apparently , ,
FTqgi— gl (3.150)

That is, (3.150) maps reference reciprocal lattice vectors to their state in the current con-
figuration. Based on the arbitrariness of the sublattice Gy, (3.150) holds for any associated
pair G', gi. Therefore we can write

F TGO =g (3.151)

where (i) denotes the index into an enumeration of the reciprocal lattice points. For non-
simple lattices this enumeration is determined by the h, k,[ extinctions from the structure
factor for the unit cell, see §3.2.2.3 for an example. Recalling that X-ray diffraction mea-
surements detect reciprocal lattice vectors, we can see that (3.150) forms the basis for strain
analysis using X-ray diffraction measurements of the reciprocal lattice.

Furthermore, only three reciprocal vectors suffice to determine F, once a reference con-
figuration has been defined. To see this, from (3.147), we can use

g =g -glg = (V)¢ (3.152)

! is the reciprocal metric tensor. Therefore Equation (3.152) in

where ¢ = g’ - gl = [g;5]”
(3.147) gives F as

F=(g'¢g)'geG, (3.153)

an expression only in terms of the reciprocal lattice vectors, which are measurable from X-ray
diffraction.
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To relate this with other methods of strain determination, in traditional studies on bulk
materials, some components of the deformation F described by (3.146) may be obtained
experimentally with the use of a bonded resistance strain gage. The strain gauges mea-
sure the deformation on the surface of the material. For crystalline materials we have an
analogous X-ray diffraction measurement, with the kinematic relationship for any reciprocal
lattice vector given by (3.151). Therefore, X-ray diffraction experiments operate like a three
dimensional strain gage rosette. A difference is that the diffraction measurement has many
more ‘gauges’ than is possible with a strain gage rosette: one gauge for each reciprocal lattice
vector.

More explicitly, for a strain gage rosette, the deformation of material lines is measured.
Since they are bonded, the gauge stretches along with the material. The resistance in
the gauge wire thereby changes. This change in resistance then gives an indication of the
(surface) strain in the material. To relate this to F, take a given gage element of length L,
aligned with the in plane direction e;. The gage element is described by the vector Le;.
Upon deformation by F, using (3.146), the new length of that line element is given by

I? = L’Fe,; - Fe, = L’C -e; ® ey, (3.154)

where [ is the deformed gage length, and C = F'F. The stretch in the gage is given by

[
L—llz \/C-e1®e1: \ 011. (3155)

Computing the same quantity for a gage oriented in the direction orthogonal to e; gives

)
2o /G ene=n (3.156)

For a gage initially aligned with a third direction, coplanar with e;, e, oriented at
e.(0 = 7/4; e, es),

we will introduce mixed terms so that

l 1 1
(E)ezﬂ/4 = E\/C (e1+e) ®(e1+e) = E\/C’H + Ca + 2C1s. (3.157)

Solving the three equations (3.155) - (3.157) for Cyy, C2, Cy gives a measurement of the
(surface) strain in the material. Similarly, for X-ray diffraction, we have the kinematic
relation (3.151) As in the strain gage example, equation (3.151) could be used with only
three measurements of reciprocal lattice vectors in the deformed and current configuration.
But generally these computations will have large errors, and there are more measurements
available since there are many reciprocal vectors than the amount of strain gages which could
be simultaneously bonded to the same spatial location. Since (3.151) holds for any associated
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pair g, G we can form a least squares system over all detected pairs to determine the F
which minimizes the difference between the model ((3.151) and the experiment.

Thus, strain gage and X-ray diffraction measurements each characterize the deformation
of a material. Whereas strain gages measure the deformation of material lines, X-ray diffrac-
tion measures the deformation of reciprocal vectors. There are differences which should be
pointed out here between the two measurements. First, it is evident that material rotation
is not accessible from the basic strain gage method. This is evident from the fact that only
C was involved in the gauge equations. Arguing intuitively, the bonded gage rotates with
the material, and the electrical resistance does not change due to such rotations. For X-ray
diffraction, equation (3.206) enables both strain and rotation to be determined experimen-
tally. Secondly, the strain gage measurement is a measurement of total material strain. That
is, strain gages measure the deformation of material lines, and not just of lattice vectors.
This is an important distinction when considering plasticity of crystals. In plasticity the-
ory, the total deformation is given by F = HK ™', see Chapter 2, where H is called the
lattice deformation, K the plastic deformation. X-rays measure only lattice deformations
H. Therefore, the use of diffraction measurements in experimental plasticity must be com-
plemented by a simultaneous measurement of the total material deformation if one desires
to measure all kinematic variables. This is precisely what Taylor did in his fundamental
studies (Taylor and Elam, 1923), where material lines were scribed on the surface of the
material and visually measured at various stages of deformation, see Figure 1.1. Promising
modern techniques for such simultaneous studies include digital image correlation, where the
spatial position of points from a speckle pattern are tracked by a high resolution camera.
By combining these measurements with X-ray diffraction, the full deformation field can be
measured in an elastic-plastic deformation.

Vector bundle depiction of elastic-plastic body In Figure 3.11 is a depiction of the
vector bundle M — B characterizing the geometry of an elastic plastic body. The state of
the body is described by its spatial location coordinate x, the local lattice deformation H and
local plastic deformation K. Equivalently, H, K can be replaced by the lattice deformation
and material deformation, H, F. Denote the bundle space by M = R3 x GL(3,R) x GL(3, R).
The projections 7 : M — Q,mp : M — TQ = GL(3,R), g : M — GL(3,R) correspond to
the projections of the point of the body to spatial position, local material deformation gra-
dient, and local lattice deformation, respectively. X-ray diffraction measurements represent
the action of the function 7y, with a weak coupling to the spatial projection m, as will be
shown later. Strain gauge or digital image correlation measurements represent the action of
the function 7g, giving the material deformation. Digital image correlation experiments also
expose the projection 7. In order to characterize the state of the body fully, all functions
w, T, Ty must be probed experimentally, through a combination of X-ray diffraction with
digital image correlation for example.

The picture of Figure 3.11 is an idealization, since there is no mention of the experimental
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limits on the resolution on the base space, €2. In Figure 3.12, the action of X-ray diffraction
is more accurately depicted. A finite beam of width w probes the base space of the material,
x. Therefore X-ray diffraction measurements over a finite volume of material represent the
projection of the function H(x) into H-space. The incorporation of this projection into
analysis codes is recent; we give an in depth look at how to squeeze out some additional
information from the projection in §3.4.2.2.

Figure 3.11: Fiber bundle picture of elastic plastic bodies with application to X-ray diffrac-
tion. The bundle is of the structure M — B where M = R? x GL(3,R) x GL(3,R) is the
bundle space and B is the spatial configuration of the manifold. The material tangent space
is coordinitized by F (through the material tangent vectors m;), the lattice tangent space
by H = 1. X-ray diffraction techniques measure the projection 7y, other techniques are
required to obtain 7 such as digital image correlation.

Summary. This completes the geometric description of crystal lattices. We now may
envision lattice deformation in a crystal equally as the evolution of the physical lattice under
F or of the reciprocal lattice under F~1, by using (3.151). The modifications of this treatment
for elastic plastic bodies are simply that F is replaced by H in (3.151). See §2.2.1 for more
background.
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X-ray

Figure 3.12: Fiber bundle picture of X-ray diffraction. The X-ray beam has finite width
w. This means that the projection g probed by X-ray diffraction is really the projection
fQ(w) 7 over a finite volume of material Q(w) in the base space.
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3.3 Experimental - practical application

In this section details of the X-ray diffraction procedure used in this study are described. We
present data from several experiments performed at the Advanced Photon Source, Sector 1-
ID, Argonne National Lab. These experiments represent current state of the art capabilities
in high energy X-ray diffraction.

We previously made the analogy between X-ray diffraction measurements and electrical
resistance strain gauges. The reading of the X-ray diffraction ‘gauge’ is more complicated
than for the resistance strain gauge and hence requires the background development we cover
in this section. Although numerous software programs exist for analyzing X-ray diffraction
data of this sort (Gotz et al., 2000; Oddershede et al., 2010), the type of measurements
taken for this work required the writing of in house codes and analytical software tools.
For instance, a major undertaking for this thesis was spent developing analytical software
tools to analyze the data taken from such experiments in unexplored directions: quantifying
experimental precision and developing a modeling approach to quantify intragranular texture
of single grains in a polycrystal.

The experimental technique which will be focused on is a far field technique, which
uses high energy, monochromatic X-rays, (50-100 keV) produced by a synchrotron source.
In simplified terms, the outputs of the experiments in this study are the grain averaged
measurements of the lattice deformation H. See §3.2 for general background on X-ray
diffraction, and Chapter 2 for background on elastic-plastic deformation. We are also able
to obtain estimates for the grain averaged center of mass position, useful for reconstruction
of the polycrystalline configuration.

We begin with an introductory level overview of the particular class of X-ray diffraction
experiment used in this study. We will describe how one converts from the raw diffraction
data, the electromagnetic field intensity, to an estimate for the local lattice deformation.
We refer to this conversion from raw data to useful physical estimates as the data reduction
process. The diffraction images files are large O(GB) and hence impractical to use in a raw
state, hence the term data reduction has relevance. We give a detailed exposition of the
relationship between observed diffraction peaks and reciprocal lattice vectors. We also give
a brief discussion of grain indexing methods and illustrate a novel algorithm for indexing a
polycrystal. We also discuss general considerations of the lattice refinement procedure for
estimating grain averaged deformation from the X-ray measurements, as these procedures
differ between crystallographers and mechanics researchers.

3.3.1 XRD experiment overview

Generally stated, for our goals the purpose of an X-ray diffraction experiment is to obtain
the lattice deformation H of the crystal lattice, with respect to a fixed lattice configuration.
The electromagnetic field intensity diffracted by the material is the primitive experimentally
measured quantity which must be analyzed to obtain this output. In §3.2 we described how
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the spatial state of the atomic configuration affects the X-ray diffraction pattern, and we
derived the reciprocal lattice description. In this section, we will describe how one converts
from the raw diffraction data, the electromagnetic field intensity, (see Equation (3.122)) to
an estimate for the local lattice deformation. We refer to this conversion from raw data
to useful physical estimates as the data reduction procedure. This procedure involves many
steps which will each be explained in this section. We introduce a generic coordinate system,
useful for describing X-ray diffraction patterns, in order to facilitate quantitative descriptions.

3.3.1.1 General procedure.

In this section, an overview of standard methodologies for reducing data from raw diffraction
images to lattice structure information is given. In addition to general background informa-
tion, this exposition motivates the structure of the uncertainty analysis presented in §3.4.2.1.
In that section, uncertainty in the data at each step affects results derived from that data,
hence the hierarchical nature of the reduction procedure is emphasized here.

We specialize the foregoing discussion of X-ray diffraction experiment procedure to the
rotating crystal method (Milch and Minor, 1974; Cullity, 1978; Kabsch, 1988). Although the
details of experimental setups may vary from the setup used here, the general nature of the
treatment given in this particular case should serve as an example of the sort of computations
which must be undertaken in processing data from any X-ray diffraction experiment.

Before describing the experimental setup, we recall an important consideration for the
rotating crystal method. As described previously, in §3.2, for monochromatic radiation the
Ewald sphere is defined by the incident beam, sg and the wavelength A, see Figure 3.3. The
orientation of sy with respect to the sample must be changed in order to allow more reciprocal
vectors to pass through the Ewald sphere surface, and thereby be observed as a diffraction
peak, see Figures 3.3-3.4. Physically rotating the crystal (instead of moving the beam) is
the easiest way to accomplish this procedure; more will be said shortly. Lastly, we consider
high energy (50-100 keV) X-rays, which have the effect of compressing the Bragg angles to
a small solid angle, so that a two dimensional detector may be used to record much of the
reciprocal space of the lattice (Poulsen et al., 1997; Poulsen, 2004). This compression has
the consequence of relatively poor reciprocal space precision, so that uncertainty analysis is
an important consideration. There are benefits to using high energy X-rays as well. For one,
deeper penetration into the material is possible, so that bulk deformation processes can be
probed by the method.

The main steps in the data reduction we consider are

1. assigning locations to the diffraction peaks (peak detection),
2. indexing the resulting dataset of peak locations to lattice orientations (grain indexing)

3. refining the parameters which characterize the lattice orientation and stretch, the de-
formation parameters (lattice refinement).



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 182

(d)

)

Figure 3.13: Experimental setup for far field, high energy, monochromatic X-ray diffraction.
(a) X-ray beam with wavelength A, direction sy = —e3, (b) sample, mounted on rotation
stage with rotation axis p = eq, and rotation coordinate w, (¢) beam stop, (d) detector, at a
distance L from the rotation axis, (e) diffraction peak corresponding to a diffracted beam
with unit direction s(26,7).

We now describe each of these steps in greater detail, beginning with a general experimental
setup.

3.3.1.2 Lab geometry.

A schematic experimental setup is shown in Figure 3.13. Only major aspects of this figure
will be described in this section, further details will be given in §3.3.2. The components
of the experiment are the X-ray beam (a), the sample, mounted on a rotation stage (b),
the beam stop (c), and an area detector (d). A diffraction peak is indicated at (e). The
incident beam propagates in the direction sy = —e3 with wavelength A. The rotation stage
has rotation axis p = e,, and the angular rotation about that axis, induced by a stage motor,
is denoted by the coordinate w. The intersection of the rotation axis and the beam center
is denoted O. In the general case, the center of mass of the sample may be precessed with
respect to the rotation axis, see Bernier et al. (2011) for further details required to handle
this situation. Precession is also addressed later in this chapter.

The detector is positioned a known position relative to O, and has a known orientation,
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e.g. in Figure 3.13 the detector is spanned by (e, e3). The distance and orientation of the
detector are estimated from a calibration procedure by using the powder diffraction pattern
from a material such as LaBg, see (Bernier et al., 2011) for further details on the detector
calibration. Typically the distance to the center of the detector is described along the beam
direction, so that the detector is a distance Ly, from O along sy. For our experiments, Ly is
on the order of 1 meter.

The detector consists of an array of X-ray sensitive pixels. In our experiments the size of
an individual pixel is approximately 200 um. As the sample is rotated through an amount
dw, incident radiation diffracted by the sample is recorded by the pixels. We refer to the
intensity recorded by the pixel, integrated over an increment of rotation, dw, as the inte-
grated intensity. The magnitude of dw used is determined by experimenter choice apart
from hardware limitations at small dw. Typically, dw increments are chosen from the range
dw € [0.25, 1] degrees.

We now break down the steps in the data reduction.

3.3.1.3 Raw data collection

The pixel data recorded after each dw step constitutes a two dimensional array of integrated
intensity values, each array is referred to here as a diffraction image. See Figure 3.14 for
an example of a diffraction image from a polycrystalline titanium alloy. These images are
recorded for a specified range of rotation angles, w € [wp, wg|, where wy is the starting position
for the scan, and wy is the final position of the scan.

The entire set of images obtained for the chosen scanning range of w constitutes what
will be referred to as the detector image stack. Define Aw = wy — w). Then, for example,
there are Aw/dw images like that in Figure 3.14 constituting the detector image stack. These
images are recorded for a specified range of rotation angles w. Note that a complete scan
of the reciprocal lattice would require w € [0,7). This range may be restricted based on
experimental factors such as if a load frame is in use, which would prevent a full w € [0, 7)
scan. In radial diamond anvil cell experiments, which may be the most angular-restrictive
experiment in common use, w € [0,2m/3] is still readily possible with special design of the
diamond anvil cell. In the experiments presented later on, a tensile load frame was used,
which was restricted to w € [0, 27/3].

3.3.1.4 Peak detection.

The detector image stack described in the previous paragraph, an element of which is shown
in Figure 3.14, represents the fundamental layer of diffraction data. The information encoded
in this data can be concisely described by a field of integrated intensity over image stack
coordinates as

E = E(p1,p2,w), (3.158)
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Figure 3.14: An example image of the diffraction data from a single dw step. This image is
from polycrystalline titanium. The x and y values represent pixel coordinates on the 2048
by 2048 detector.

where F is the integrated intensity and pi, ps denote general position coordinates on the
detector plane. In the peak detection step, the integrated intensity field is searched for
peaks; that is, where the recorded intensity is above some chosen threshold value,

E(pl;an w) > Emina

where F,,;, is the threshold intensity specified by the data analyst. The value of E,,;, can be
chosen to suppress unwanted background signals for example. The peaks with intensity above
the threshold value are then located and isolated from each other, substantially reducing the
size of the dataset.

Next, the data contained in each individual diffraction peak is (usually) further reduced
by fitting a local intensity distribution to a model. Conventional methods require simply
computing the intensity weighted average of the distribution, however we use a slightly
more informative approach. We describe the diffraction peak model we employed in greater
detail in §3.4.2.1. At this stage it is sufficient to understand that upon fitting the intensity
distribution to a model, the location of the center of the " peak is expressed by an array
of three numbers (py, pa, @)(i). In §3.3.3 we will show how these coordinates are related to a
reciprocal lattice vector g, which contains kinematic information about the state of strain
in the crystal.
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3.3.1.5 Indexing and fitting lattice deformation.

After the centers of all diffraction peaks in the image stack are obtained, giving the set
{(p],pg,a))(“ ti = 1,2, ..., Npeaks }, We assign peaks to grains until all peaks are processed.
This is known as indexing the pattern, and is generally a challenging task for the case of a
polycrystal. See Lauridsen et al. (2001); Poulsen (2004) for further information on indexing
techniques.

The set of diffraction peaks assigned to a particular lattice orientation constitutes the
input data for obtaining the lattice deformation parameters, i.e., the orientation and stretch
of the lattice. As established in §2.2.1, the orientation and stretch parameters we are charac-
terizing are the components of a linear transformation from a chosen reference configuration,
K, into the current configuration where diffraction was observed. This transformation may
be denoted H,, to emphasize the dependence on the reference lattice k. For elastic deforma-
tions, the transformation H,, is equivalent to the deformation gradient, (Liu, 2002)

a 7
F, = Grad,y = a_zje" ®e;, i,j=123, (3.159)

where x = a'e; denotes position of a material point in the reference configuration, and
y = y'e; denotes position of the same material point in the physical configuration. However
for plastic deformations, Hy is not the gradient of a deformation (see Chapter 2, so (3.159)
can’t be directly applied for such cases. The parameters for H, are obtained by a procedure
called lattice refinement; more details of this procedure which will be explained later in this
section.

Upon obtaining H,, for a particular grain, the data reduction is complete. One may
obtain stresses from H,, measurements by using an elasticity model for the material under
consideration. For example, the Piola stress with respect to x, P, may be obtained by
specifying a strain energy function, W, (H) for the material and computing

O,
- OH
In the rest of the section all quantities can be assumed to be dependent upon choice of &
and we suppress the subscript.

P,.(H)

(H). (3.160)

3.3.1.6 Summary.

We summarize the data reduction process in the following flowchart:
E(p17p27w) — {(p_lap_%@)@} ) 1= ]-7 '~--7Npeaks — {HZ(]IC)} ’ k= ]-7 seey Ngrain87 (3161)

where E(p1, p2,w) is the intensity distribution in the image stack, (p1, p2, @)(i) are parameters
which represent the location of the i diffraction peak, and Hl-(f) are the 7,7 components
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of the lattice deformation for the k"™ grain. Experimental variance at the first layer of
data, F(p1,p2,w), will affect the uncertainty in the peak center, (pi, pa, @), which will affect
the uncertainty in the lattice deformation parameters, the H;;. One of our goals in this
chapter is to implement a framework which systematically communicates uncertainty from
the diffraction intensity to the overall lattice deformation parameters, and to be able to
state confidence intervals for the lattice deformation parameters based on a single rotation
scan through a range of w. The uncertainties on the components H;; can then be used to
form confidence intervals on quantities derived from H, such as orientation relationships
and stresses, (3.160). Having confidence intervals on orientation relationships and stresses
directly influences the strength of conclusions that experimentalists can draw from their
observations, and completes the experimental program.

In the next sections we describe the data reduction steps introduced here in more details.
First we introduce a coordinate system which is natural to use for analysis of this class of
X-ray diffraction experiments. This coordinate system naturally parametrizes the location
of diffraction peaks, and hence, parametrizes reciprocal space. We will first describe the
coordinate system, and then give a general derivation of the conversion from this coordi-
nate system to reciprocal space. We will then describe indexing procedures and techniques.
Finally we will describe further details of the lattice refinement.

3.3.2 Angular coordinates

In this section we introduce an angular coordinate system which is useful for describing
the location of diffraction peak intensity distributions. We again consider the experimental
geometry shown in Figure 3.13, where the detector panel has been aligned so that its surface
is spanned by the vectors {ej,e;}. Note that in general, these vectors may not be the same
as the global Cartesian basis e, e5. We consider the aspect of detector tilt in §3.3.3. Incident
radiation (a) propagates in a direction sy = —e3, with wavelength A. For simplicity consider
the case of a grain centered at the intersection of the rotation axis and beam at O, (b). We
will provide the analysis for the more general case of a precessed grain in §3.3.3. A diffraction
peak (e) is indicated on the detector (d). The unit vector representing the direction of the
diffracted beam, s, is conveniently parametrized with a spherical polar coordinate system
constructed on the bases (—es, e, e3). The azimuth is measured from —e3 and is denoted
260, and polar angle from e; is denoted 7, so that we have

s(20,n) = cos(20)(—e3) + sin(260)(cosne; + sinnes). (3.162)
Note that the azimuthal angle 26 also serves as the Bragg angle in the classical Bragg’s law
2dW sin 0 = )\, (3.163)

where d® is the planar spacing on the i*" plane and 6 is the Bragg angle for this plane.
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Proof. This can be seen by using the diffraction condition in the form (Boumann, 1957)

S — 9o

A

=g’ (3.164)
where g’ is the i*® reciprocal lattice vector. Using the relation

gog = (d) 7, (3.165)
and taking inner products of both sides of (3.164) gives

)\2
EZ(S—SU)'(S—S())

= 4sin*#), (3.166)

where we have used s - sy = cos2f = 1 — 2sin? in obtaining (3.166). Simplification of
(3.166) recovers Bragg’s law in the form (3.163). O

Motivation for introducing these angular coordinates is evident when the diffraction peaks
are spread out due to intragranular mosaicity. An example diffraction peak is shown in Fig-
ure 3.15. The order of the tiles in the figure is such that the w-location of the diffraction
image increases from left to right and top to bottom. Such curved peaks with spread along
the angular coordinate directions become approximately ellipsoidal distributions of intensity
in angular coordinates. Loosely, the spreading of a diffraction peak along the n direction, as

Figure 3.15: Image of a spot spread out in angular coordinates. The w frames allocated to
the peak are also shown in increasing order, from left to right and top to bottom.

in Figure 3.15, is due to the presence of spatial gradients in the orientation of the crystal.
Spreading along the 26 direction corresponds to gradients in the lattice strain. It is notewor-
thy that conventional methods of diffraction peak analysis do not differentiate between peaks
that are spread out and peaks which remain tight - for both cases, the intensity weighted
average is used. There is clearly potentially useful microstructural information in the nature
in which the peaks may be spread out. In §3.4 we give two different approaches which seek
to utilize this information.

In the next section we describe in detail how one may transfer between angular coor-
dinates of a peak (20,7, w)Pand a reciprocal lattice vector g?. This transfer is the first
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step in the data reduction where error propagation should be considered, since identifying a
particular location to the peak in Figure 3.15 must necessarily come with some uncertainty
in that location. The process of converting to a reciprocal vector also involves calibration
constants representative of the experimental setup, whose uncertainty also contributes to
the final uncertainty in the components of the reciprocal vector.

3.3.3 Conversion to reciprocal space coordinates

In this section we give a treatment of the conversion between the spatial location of a
diffraction peak and its preimage in reciprocal space. The motivation for including this
section is that it is common in the crystallography literature to give confusing algebraic
formula with a low degree of what we would call, ‘invariance of application’; that is, the
type of information which can be applied to different situations which may differ from those
presented in the literature contributions. Here, we use a concise geometric construction, so
that those with comfort in direct vector notation can readily apply the following relations
for their particular geometry.

In addition to the two dimensions used to describe diffraction peaks in the previous
section, pi,ps or 26,7, the experimental stage rotation coordinate w is appended to fully
parametrize the observation of diffraction peaks®. Aspects of this stage rotation were de-
scribed in §3.3.1.1. In this section we also account for grains offset from the rotation axis, so
that the grain averaged center of mass location is denoted by x = x(w). Incorporating the
stage rotation, whose action is denoted by Q, and the precession, and consulting Figure 3.13,
the position of a diffraction peak relative to O may be written as

r= Q(p7 w)XO + PS(29a 77)7 (3167)

where r is the spatial position of the diffraction peak relative to O, Q(p,w) is the stage
axis rotation about p with angular coordinate w, and xq is the position of the diffracting
material at w = wy, some reference w location, p is the spatial distance between the diffracting
material (grain center-of-volume) at the w location of the observation, and s is the unit vector
describing the direction of the diffracting beam relative to the w location of the observation.
We suppress the functional dependencies for Q, s, and p in the rest of this section for reasons
of appearance. Also note that in (3.167) we are using slightly different angular coordinates
than that depicted in Figure 3.13: here the angles 26,7 are defined with respect to the
current grain position x = QX instead of the intersection of the rotation axis and the beam,

0.

5Tt bears repeated that for a diffraction peak as shown in Figure 3.15, describing the location of the
diffraction peak by a three dimensional parametrization 20,7, w is associated with some loss of information,
and some uncertainty in the precise location of the peak. This uncertainty will then be communicated to
the lattice deformation estimate. We will examine the effect of this peak location uncertainty in §3.4.2.1.
We will also describe an approach to analyzing more of the local integrated intensity, using a forward model
prediction of the lattice state, in §3.4.2.2.
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Consider the rectangular pixel array constituting detector to be aligned with the or-
thonormal basis €], €}, which generally differ from the laboratory basis e, e, due to errors
in beam-detector alignment. The detector basis is related to the laboratory basis by

[
e, = Rye;,

where R; € SO(3,R) is the tilt of the detector panel. Ry is described by a parametrization
of SO(3,R), written as Ry = Ry(t1,t2,t3). The detector image stack is parametrized by
p1, P2, w. Positions of peaks in the detector image stack, (p1, p2,w) are related to (26, 7n,w)

coordinates by the geometrically equivalent statements
r = pi€] + paey + Lo(—e3) = ||r|| [cos 20(—e3) + sin 20(cosne; + sinnes)], (3.168)

where |r|| = /v - r is the spatial distance between O and the detector position (p1,ps) are
defined relative to the beam location on the detector (projection of O along sy on the detec-
tor). Given the py, ps location of the peak, the functions n = 7(p1, ps, Lo), 20 = Qé(pl,pg, Lo)
can be solved for by taking inner products of (3.168) with e, e3 in succession and solving
the resulting equations.

Next we relate the position of a peak r to the reciprocal space vector preimage, g.
There is much geometric information contained in Equation (3.167). First consider the inner
product with the incidence beam direction sy = —e3. To avoid cluttering the equations, let
us consider the effect of no detector tilt, so that r - s = Ly, from (3.168);. We obtain

r-so=Qxq-80+ps-sy =
Lo = Qxq - sg + pcos20. (3.169)

Furthermore, solving for p and noting that [|s|| = 1 we have
p=|lr— Qxq. (3.170)
The parametrization of the stage rotation Q can be profitably written as
Q=e®e+(e;®e +e3®e3)cosw — (e3Re; —e; ®e3)sinw. (3.171)

Next consider the diffraction requirements that for diffraction to occur, a reciprocal vector
must lie on the Ewald sphere, see §3.2. Therefore a diffraction peak, located by s must

satisfy
S — 8o

A

where g' is a reciprocal lattice vector in the current (rotated by Q) state of the crystal. At
the reference location w = wy we have the relation

g = Qg (3.173)

=g (3.172)
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where g’ is the reciprocal vector in the spatial configuration of the lattice at the reference
rotation w = wp. Rearranging (3.172) and use of (3.173) gives the forward model

s = AQg’ + s, (3.174)

which will be used later in §3.4.2.2, where we simulate diffraction peak intensities based on
the state of the crystal lattice (hence g'). Returning to the inverse problem, determining
gi(s,...), from (3.167), we have the geometric statement

r(p17p27 L07 t) - Q(W)XO
T — Qxol 7
where all functional dependencies are highlighted, r is given by (3.168), and t = (¢, 2, t3).

From (3.172) and (3.173) we have the relation between reciprocal space and geometry written
as

(3.175)

S(LOJ W, t7 X07p17p2) =

A 1
gz(L())w)taXO?pl?p% /\7 SO) = XQT[S(L())w)taXU?phpQ) - S0]7 (3176)

where s is given by (3.175). Clearly any error in any of the fundamental arguments Lo, w,
t, Xo, p1, P2, A, So will lead to error in the computation of g'. The formula simplify when
the precession is neglected, by taking xo = 0. In that case we can use

Mg -p=Q'(s—s0)p, (3.177)
and with (3.171) we have '
g p=p-s, (3.178)
noting that p = e;. Then we have
A\gh =p-s =sin20siny, (3.179)
gl =QT(s—s0) e, (3.180)
and
Agt = QT (s —s0) - es. (3.181)

With the representation for Q in (3.171) and the spherical polar parametrization for s as
s(20,n) = cos 20(—e3) + sin 20(cosne; + sinney), (3.182)
we have

Q's = e, sin 20 siny
+ e (sin 260 cos ) cosw + sin w cos 26)
+ e3(sinw sin 26 cos ) 4 cos w cos 20), (3.183)
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and
Q'sy) = e; sinw — ez cosw. (3.184)
Therefore
Q" (s —sp) = (—(1 — cos 26) sin w + cos 7 cos w sin 20)e, (3.185)
+ sin 7 sin 20ey (3.186)
+ (cosw(1 — cos 26) + cosnsinw)es. (3.187)

So finally Equation (3.176) is established where the second factor on the right hand side is
given by (3.187).

The presence of lattice deformation alters the components of the reciprocal vector, g
with respect to the configuration k. The measured reciprocal vector g has preimage in the
reference configuration, denoted G*. The mapping between G and g’ will be shown to be
given by

g =H"TG". (3.188)

Therefore with respect to a reference configuration the forward model (3.174) becomes
s = AQ(w)H T(®)G' + sy, (3.189)

where ® denotes parameters characterizing the deformation. In a later section we will use
© = (R, U), where H = RU is the polar decomposition of the non-singular transformation
H. In a traditional crystallographers approach, ® = (Hg, R), where Hy is the structural map
from a reference cube to the prerotated configuration. Both approaches have dim® = 9. A
comparison and translation between the two methods is described in §3.3.5. For the case of
a precessed grain, the use of (3.189) is combined with (3.175). The refinement problem is
then over the array ©® = (H,x) so that dim® = 12. Looking ahead, in §3.4.2.2 the list of
parameters © is further expanded to account for the presence of spatial inhomogeneities in
the lattice deformation, H = H(x).

Once the data in the form of diffraction peaks locations have been converted to the form of
reciprocal lattice vectors (e.g. components), the lattice deformation may be estimated based
on the relations (3.188). Starting from the raw list of reciprocal vectors, the refinement is
typically done in two steps. The methods for the two steps differ greatly from each other.
This is because at the first stage of analysis, we do not know the membership correspondence
between reciprocal vectors in the data and grains in the polycrystal. We only have a collection
of diffraction peaks (and hence, reciprocal vectors).In other words, for each g° we do not know
the corresponding G* in the reference lattice configuration, since such information requires
knowledge of H through (3.188).

In the next section we will discuss the first step, called grain indexing. The function
of indexing is to obtain the unknown associations between g, G'. Following that, we will
describe the final lattice refinement procedure which gives a finer estimate for H, but requires
the completion of grain indexing before attempting.
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3.3.4 Indexing

In this section we briefly describe grain indexing procedures for the analysis of X-ray diffrac-
tion data. Grain indexing algorithms are an interesting topic of applied mathematics in
their own right, but are a vital component for diffraction experiments when the states of
single crystals must be independently distinguished from a polycrystal. From a semantic
point of view, we can describe the indexing program as coarse lattice refinement, in that we
obtain an estimate for the rotation component, R of H = RU. The final stage of lattice
refinement is discussed in §3.3.5, but indexing must be performed for the final refinement to
be possible. The primary task of the indexing step is creating the pairs (Gi, gi), between
reciprocal lattice vectors in the configuration k and the current configuration, at a reference
state of the rotation stage, Q = Q(wp). This process is easier in terms of computational
algorithms with a single grain than for a polycrystal (< 1000 grains) but the procedures are
the same for both.

We briefly summarize conventionally deployed indexing algorithms, and suggest a pro-
posed novel formulation. Conventional methods are generally excellent; the different for-
mulation is given here mostly as an interesting example of applications of the geometry of
orientation space.

3.3.4.1 Standard indexing method.

In §3.3.1.1 and §3.3.3 we described how raw diffraction data is transformed into reciprocal
vectors. The reciprocal vector data is then the fundamental data for the indexing algorithm.
The X-ray diffraction data set is then written

M = {gz 1= 1,2, -~-7Nobs}7

where N, is the number of observed reciprocal lattice vectors in the entire sample.
A hypothetical indexing procedure can be stated as follows. First, define the set of
observable reciprocal lattice vectors in k by

H = {Gz’] = ]_, 2, ceny Nreﬂ()\)}7

where Nq(A) emphasizes the dependence of the size of the observable reference lattice on
the chosen wavelength. This definition is meaningful because lattice strains are generally
small, otherwise the observable set would be dependent upon the lattice strain.

Then, for each H € GL(3,R), test the data set M for the membership

H'G' eM (3.190)

for all observable G* € H. Since this is experimental data, the condition in (3.190) must
involve some tolerance, denoted by tol. Then the indexing problem is stated as determining
the set

{H:for G'c H: |H'G' — g| < tol}, (3.191)



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 193

where || - || is an appropriate norm (the Euclidean norm is fine). The function evalua-
tions prescribed by Equation (3.191) is prohibitively expensive to compute - the space
dim GL(3,R) = 9 is large. However since elastic deformations are typically small, we can sim-
plify the search space by taking H ~ R, where R € SO(3,R). Then since dim SO(3,R) = 3,
the computational search space is tractable. Considerations of material symmetry further
reduce the size of the space which must be probed.

We summarize the above indexing problem in words: rotation space SO(3, R) is parametrized
via Euler angles or angle axis parameters, and we search this space for rotations which have
good agreement between the mapped reference configuration reciprocal vectors H"TG' and
the observed reciprocal vectors g’. The indexed set is written

{H:H € SO(3,R),and for G' € H : |[H T'G' — g'|| < tol}. (3.192)

One approach to practically solving the indexing problem is clearly a brute force method:
discretize the three dimensional rotation space with some chosen resolution, and test each
nodal point in the discretized space for agreement with the data. Here ‘agreement’ is deter-
mined by: for each trial H, the percentage of G* € H which are found to have images in M.
If agreement is above a threshold of completeness, remove the matched reciprocal vectors
from M and continue. A typically used threshold might be 75%. For polycrystals, results of
the indexing can be sensitive to tolerances on testing the membership condition H"'G* € M.
Too stringent of a tolerance and zero grains may be found, too loose a tolerance and many
spurious grains may be found in the data, leading to erroneous results.

As an alternative, we next present an approach which is based on calculation of the
distance between two orientation fibers. If the fibers intersect, this point defines a trial ori-
entation to test for completeness, (3.192). Essentially, the fiber intersection in this approach
boils down to computing eigenvalues of a 2 x 2 matrix, which, at least on simulated data,
is faster than the other indexing methods which require some notion of discretization and
subsequent probing of some space.

3.3.4.2 Alternate indexing approach - introduction.

In the following treatment, we will denote R, € SO(3,R) as the orientation of the grain we
are seeking to determine. As stated in the previous section, given an arbitrary measured
reciprocal vector g?, we can extract the possible family of reciprocal vectors in the reference
lattice configuration by knowledge of the reference crystal structure, which gives the set
of {G"}, the reciprocal vectors characteristic of that particular structure. Specifically, the
magnitude of the measured vector g’ can be used to subset the possible G* which have the
same magnitude and are possible generators for that particular measured vector through the
mapping g’ = R,G'. Note that R, € SO(3,R) = Rg_T = R,, when applying (3.188).
Next, given a potential correspondence G* — g’ we can generate a one parameter family
of rotations which give identically the correspondence G* — g’. We can see this by observing
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that the set ' .
R={R;:R,G'=¢g'} (3.193)

has |R| > 1 To see this, given an Ry which satisfies (3.193) we can operate by a second
rotation with rotation axis g’ without changing the result, e.g. the equation

g' =R(g’ . 0)R,G’ (3.194)

is valid for any value of §. Here recall that the function f{(gi,ﬁ) is the rotation tensor
with rotation axis being the unit vector parallel to g’, and with rotation angle 6, see (A.5).
We can construct an rotation Ry which satisfies (3.193) in a unique way by computing a
rotation taking G* to g’ as the rotation about the axis defined by G* x g’ with rotation angle

cos_l((ii . g'). Define this rotation by Rpas (G, g). In terms of angle axis parameters
Rine (G, g') = R(G' x g, cos™ (G - g)). (3.195)

We can then operate on the rotation Ry, by a rotation with axis g¢ and any rotation angle
0 € [0,27]. The result of this combination is a one parameter family of rotations which map
G' — g'. In other words, we have the family of rotations satisfying g’ = Ryest G' where

Rtest (67 Gla gl) = R(gz’ G)Rbase<Gi7 g’L) (3196)

The family of rotations parametrized by (3.196) is called an orientation fiber. The question
of grain indexing previously stated thus can be restated as: given two measured reciprocal
vectors, g!, g2, and two possible generator reciprocal vectors for those measurements, G',
G?, does there exist, for each fiber Ry, (G*,g%),i = 1,2, a point of intersection between the
two one parameter families of rotations. That is, for some 6,6, along the two respective
fibers, (3.196), do we have

Riest; (01) =7Ritest, (02). (3.197)

If (3.197) is true, then there is evidence to suggest that there exists a grain with R, =
Riest1(01) = Riest2(62). The data structure M can then be probed by this R, to see if the
completeness condition is met at this intersection point.

We now reduce the problem of fiber intersections to determining the eigenvalues of a 2
by 2 matrix. Here we use quaternion geometry for describing elements of SO(3,R). The
quaternions have a one-to-one correspondence with S3, the unit sphere in R*, and doing
all operations in R* lends some profitable reductions in the problem formulation. There-
fore, from here on, any multiplication involving quaternions should not be confused with
quaternion multiplication; only their representation on S? C R* is used to do some vector
operations.

The one parameter family of rotations given by Ryes (0, G*, g°) in (3.196) generates a path
around S? which is a geodesic. Employing a hyper-spherical-coordinate chart on S* exposes



CHAPTER 3. EXPERIMENTAL: X-RAY DIFFRACTION 195

the geodesics in a simple way, and we can achieve some nice benefits from this property. The
coordinitization used for a quaternion p is

p(a, 8,7) = cos aey + sin a(cos fes + sin F(cos ye; + sinyey), (3.198)

where «, 5 € [0, 7],y € [0,27] and the basis vectors e,,« = 1,2,3,4 are orthonormal under
the standard Euclidean metric, e.g. e, - €g = d,5. That this parametrization ‘exposes’ the
geodesics in a simple way is a result of the following viewpoint: the equator of S* may be
described by the one parameter path given by p(w/2,7/2,2nt),t € [0,1]. Noting that any
geodesic on S? can be reduced to this ‘equatorial’ form with a corresponding re-association,
that is, an R* — R* rotation of the 4-basis {e,}. In other words, when the basis elements
{en} are aligned correctly with the one-parameter fiber path traced out by the rotations, the
path is simply given by p() = cosfe; + sinfley, § € {0,27}. Note that e;,e; € S C R,
and the way the basis e;, e; may be found in terms of the fiber will be explained next.

3.3.4.3 Fiber plane basis construction

The construction of the basis vectors e;, e; which span the plane in R* on which the one
parameter family of quaternions lies can be generated in the following procedure, which is es-
sentially a Gram-Schmidt basis construction procedure. Recall that the fiber is given in terms
of rotation matrices as Riest(0; G, g7) = R(g%, 0)Rpase(G, g7), and that Ryes(0; G, gl) =
Riase(GY, g') since R(g?,0) = I. The quaternion representation for Ryet(0; G, g') will be
denoted as q,. By the parametrization p(6) = cosfe; + sin feq, where at each 0, p(6) gives
the quaternion representation for Ryes(6; G*, g?), it is evident that a logical choice for e; is
dy, so hereby define

e; =gy = Rt (0; G', g"). (3.199)

Next use the fact that for Ry (; G, g"),0 # 0, the resulting quaternion form of Rieg,
denoted as q, lies in its geodesic plane P, with P = {p|p € span(ej, e;)}. By removing the
gy component along e; via a projection, the leftover component q,,,; is written

Qproj = 1[e1]q07 (3200)

and is orthogonal to e;. By unitizing q,,; we obtain the basis vector ey, e.g.

ey = —broj_ (3.201)
|G

With these bases, €1, es given by (3.199), (3.201), g, € P for all 6 € [0, 27].

3.3.4.4 Distance to fiber computation.

Now we consider the comparison of two fibers, constructed from the pairs (G', g!), (G2, g?).
Denote the fiber constructed from (G', g!) as f!, and the fiber constructed from G? g? as
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f2. Denote the basis vectors for f! as a;,a; € R* and for f? as by, by, € R*, where these
bases are constructed through the procedure described in the previous paragraph. We are
using a;, b; for the basis in preference to something like e, e?. We seek to find if the fibers
intersect at a point along their path, and if so, what the rotation corresponding to that point
is.

To accomplish this, consider the following procedure: take one of the fibers (f!, say) as
the native space on which to do the distance-to-fiber comparison. As f? is traversed (by
adjusting 6), project the quaternion described by f? onto the plane containing f!, by the
projection tensor with represented as a; ® a; + a; ® a,. This tensor takes any x € R* and
projects it onto the plane containing f!. Since the fiber f2 can be described in terms of its

basis {by, by} as p(8) = cos b, + sin fb,y, we write out the projection operation as:

1p(0) = (a1 ® a; + a2 ® ay)[cos fb; + sin Oby]
= (a; - bycosf + a; - bysinf)a; + (ay - by cos + ay - by sinf)a,. (3.202)

In other words, if x = x1b; + x3b, is the initial point along the f? geodesic, the projection
onto ap, as is given by

x=1x= (a:lal . bl + xoQaj - bg)al + (x1a2 : bl + x9ay - bg)ag. (3203)

This may be viewed more clearly as a linear transformation from x € span(by, by) — x =
F®x ¢ span(a;, a;) where

F® = {C“ 012] , (3.204)

Co1 C22

with ¢;; = a; - by, c1o = a; - by, o1 = as - by, cos = ay - by. Here the superscript (p)
is used to convey the idea of projection. When F® is non singular, which will generally
be true, barring pathological cases which can be handled by examining other fibers, the
polar decomposition theorem applies. Therefore we can find an orthogonal matrix R® and
symmetric positive definite matrix U® such that F® = R®U®  We can construct UP via
a spectral decomposition of C® = (FP)TF®) = S"2(\u; @ w;), through UP) = (CP)1/2 =
S22V @ u;, and R® via R® = F®(U®P)~1. This is useful because the closest distance
between f1 and f2 is proportional to the largest eigenvalue of U®). If U® has an eigenvalue
of 1, then the two fibers do in fact intersect somewhere along their trajectories on S3. The
value of the quaternion at this intersection point is found by letting R® operate on the
eigenvector of U® which has eigenvalue 1, and then expressing this on the R* basis aj, as
to obtain the quaternion at the intersection. This intersection quaternion is then mapped
to the fundamental region, Quma for the crystal and denoted as the generating Ry, € Qgund-
The fundamental region is defined operationally in §A.1. By repeating this process for each
pair of fibers in M the grains’ orientation can be found.
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3.3.4.5 Examples

Here is shown a few plots of the fiber previously denoted as f! (as it is traversed by 0 €
0,27]), plotting on its own plane with basis a;,a, € R* along with a second fiber f?
traversing its own plane spanned by basis by, by, € R?*, but with points on the fiber f?
projected into the basis a;, a;. This was shown in the previous paragraphs to define a linear
transformation with a polar decomposition into R®, U®. The symmetric positive definite
multiplicative factor (U®) has real eigenvalues with useful interpretation: if an eigenvalue
is 1 then the fibers f!, f? intersect at some quaternion, thus indicating they came from the
same grain orientation. This quaternion at the intersection is described by the operation of
R® uy, where u; is the eigenvector of U associated with the eigenvalue of value 1. To get
the quaternion, recognize that R u; was expressed on the basis aj, as, so the representation
for this quaternion would be

Qiseer = (RPuy - ay)a; + (RPuy - ay)ay, (3.205)

that is we simply resolve the intersection point R®u; on the basis aj, as.

Figure 3.16 shows the results of plotting f2 on the basis generated by f! for two reciprocal
vectors which where constructed as originating from the same grain. Therefore the fiber pro-
jections are seen to intersect at a given quaternion. The fiber f! in its plane span (a;, ay) is
a circle, as expected. The straight lines across the diagonal denote the maximum eigenvector
of U™ and the mapped vector R®u;. In the figure it is clear that R® uy, the major axis of
the projected ellipse, is hitting the correct intersection point between f!, f2. In an indexing
algorithm, the intersection point R®u; would then be used to test for completeness in M.

Figure 3.17 and Figure 3.18 show the resulting geodesic projections for two fibers which
come from different base orientations, R, so that there is no intersection. The maximum
eigenvalue for U® upon calculating the polar decomposition of (3.204) would therefore be
less than 1. In an indexing algorithm, these two fibers would then not be used to generate
a trial orientation to test for completeness; the algorithm would proceed to the next pair of
trial fibers and repeat the calculation.

3.3.4.6 Summary

This section has described the ideas behind the indexing of diffraction patterns coming from
polycrystalline materials, and has suggested an indexing algorithm. The viability of indexing
methods is measured by the computational efficiency and effectiveness of the algorithm. In
this method, the main computational expense comes from

1. Solving for eigenvalues of (F®)TF®) (F®) as defined in (3.204))
2. Gram-Schmidt construction to find the basis for the plane containing the fiber f°

These requirements are therefore more attractive than the brute force search methods, since
a check of the eigenvalues of a 2-by-2 matrix takes fewer computational time than querying
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— fiberf'ona, a,
-------- fiber /* on a,, a,

Figure 3.16: Diagram of the projection of fiber f? onto the plane containing fiber f! for
G!, g! and G?, g2 coming from the same grain orientation. The eigenvector of U® u, is
plotted, along with R®™u;, the major axis of the ellipse. Notice the intersection since these
fibers come from the same grain rotation.

the entire reflection data structure for completeness. In simulations, this method is faster and
more efficient than such brute force methods. However, when applied to experimental data
which contains noise, the precision at which fiber intersections is determined by obtaining the
eigenvalues of U® is lacking. The tolerance on the eigenvalue check of U(p)( f1, f%) must be
opened up to the point where the potential advantages of the method in reducing the amount
of trial orientations disappear rapidly, since many spurious orientations are still tested for
completeness. It is possible with further tweaking of the tolerances that a robust solution
can be found. In any case, the method has some interesting features that may prove useful
for the indexing of certain materials. A potential application might be for the indexing of
low symmetry materials, where the probe space required for a brute force approach is large
(since there are few reductions in the size of the orientation space).

This concludes the information on grain indexing, which constituted the first step of lat-
tice refinement by obtaining estimates for H from the data set of reciprocal vectors, M. In
the next section, we consider the second step of lattice refinement. The finite deformation
framework described here differs from conventional approaches, from both crystallographers’
approach, and from a conventional infinitesimal strain approach. We describe our approach
and compare the other approaches. We describe how our approach reduces to the infinitesi-
mal strain approach, and we quantify the error made in the infinitesimal strain approach.

3.3.5 Lattice refinement strategies

In this section®we consider the final step of lattice refinement, after the indexed pairs in the
reference lattice configuration gi, G* have been obtained. After grain indexing, we have an
approximation for the rotation factor R of the lattice deformation H, effectively assuming

6Some of this section is taken from (Edmiston et al., 2012)
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— fiber /' ona,, a,
-------- fiber /* on a,, a,

Figure 3.17: Plot of the projection of fiber f2 onto the plane containing fiber f* for G', g! and
G2, g2 coming from the different grain orientation. The projected geodesic does not intersect
the base geodesic, and the eigenvalues of the projection tensor (3.204) would therefore be
less than one. In algorithms, this indicates that these fibers do not come from the same
grain, and the next fiber is then checked.

U = I. We now would like to obtain a more accurate estimate of H, by refining the estimates
for R, U. The basic relation we exploit is

g =H TG, (3.206)

which holds for the pairs g, G*. These pairings are available after the indexing step described
in §3.3.4.

There are various ways of implementing the kinematic relation (3.206) in order to obtain
an experimental estimate of H. To motivate different ways we may use this relation, consider
the traditional decomposition for a deformation F,

F—m; oM, (3.207)

where i = 1,2, 3, and the pairs m;, M are specifically chosen tangent and reciprocal tangent
vectors in the deformed and reference configurations. In this formulation, one only needs to
select the reference reciprocals M, obtaining the reference tangent vectors M, from these.
Then the m; are defined by convecting M; through the action of F:

m; = FM,. (3.208)

For the present consideration of X-ray diffraction analysis, we are interesting in applying
this result to lattice and reciprocal lattice vectors. Therefore we similarly write

H=g ®G" (3.209)

where the pairs g;, G* are interpreted lattice and reciprocal lattice vectors in the deformed
and reference configuration, respectively. Although X-ray diffraction only directly measures
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— fiber /' ona,, a,
-------- fiber /* on a,, a,

Figure 3.18: A second plot of the projection of non-matching grain orientations for the two
fibers f!, f2 . There is a distinct gap between the fiber f’s path and fiber f?’s path, with
no intersections.

the reciprocals g', G', we can compute the lattice vectors g; by the simple relations

g7 =g g (3.210)
and B
gi; = ("), (3.211)
giving A .
g = g8 = [9:]7'g’, (3.212)
so that
H=g G
= (¢") g’ ® G". (3.213)

Here g;; is the lattice metric tensor, and ¢” is the reciprocal lattice metric tensor. Equa-
tion (3.213) therefore only contains information which can be directly obtained from X-ray
diffraction measurements, that is, from measurements of reciprocal lattice vectors in the
deformed and reference state. From (3.213), it is evident that only six reciprocal vector
measurements are required to fully characterize the lattice deformation H: g, G*,i = 1,2, 3,
by measuring a reciprocal lattice vector in a reference state with the same reciprocal lattice
vector in the deformed state. If the reference structure is known before hand, only three
observations are required. However, we will see later that (3.213) is not actually all that
useful in experimental crystallography, due to the requirement of needing to index a crystal
initially to actually obtain the pairs g’, G’ which make constructing (3.213) possible in the
first place. In addition, using (3.213) directly would be prone to errors in the individual
measurements of the reciprocal vectors g’. In order to increase the precision of the mea-
surements, one would like to be able to apply (3.213) to all the observed reciprocal vectors,
instead of only three, thus arriving at an averaged estimate of H.
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To accomplish this, note that the selection of the G* in (3.209) is largely arbitrary, apart
from the requirement that the set G' must be linearly independent (hence a basis). Any
other set of linearly independent vectors G' must also give (3.209). Therefore, we have the
relation

g =H TG (3.214)

holding for any indexed pair g, G%. The superscript (1) is used to denote the enumeration
into the array of observable reflections, as determined by a structure factor calculation,
§3.2.2.3. Then, we can use (3.214) as the modeling equation in a least squares algorithm to
determine the value of H such that residual equations of the form

r(G,g ' H) =g -H TG’ (3.215)

are minimized for all indexed pairs g', G'. We describe least squares estimation analysis
based on equations like (3.215) in greater detail in §3.4.
In summary, the overall strategy in our approach is to:

1. Assign a reference configuration k& where one generates GY, i =1,2 .. 00, where i
is an index into the particular reciprocal lattice node. The nodes of the reciprocal
lattice are one-to-one with an h, k, [ index, see (3.65). The h,k,1 indices which produce
diffraction are determined from the structure factor, (3.90). We have

GO(h, k,1) = hL' + kL2 + [L?, (3.216)

where L', L%, L* are the reciprocal vectors based on the unit cell geometry. We will
return to this concept in the next section.

2. The crystal is indexed and the pairs are created, g%, G*, i = 1,2, ..., Nyis, where Ny <
oo is the the number of experimentally visible reciprocal lattice vectors, which will be
a function of the wavelength, A, crystal structure g,, and angular rotation range Aw
for the rotating crystal method, see §3.3.1.1.

3. The data g’, G’ are implemented into an optimization algorithm based on solving
equations based on (3.214). The result of the optimization problem are to obtain the
deformation H which best satisfies, (3.214): that is the H which best matches the
data.

It should be pointed out that the transformation H is the elastic deformation in the model
for elastic plastic deformation developed in Chapter 2. With an appropriately chosen con-
figuration kK, stresses are readily computed through constitutive equations using H,, see
Equation (3.160). This synergy makes X-ray diffraction attractive for the investigation of
the model in Chapter 2.

Some details of the strategy to lattice refinement prescribed here differs from the tradi-
tional methods in the crystallography literature. In these methods, one performs a similar
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optimization problem to refine the lattice, but the optimization occurs over the internal an-
gles and lengths of a unit cell, along with an orientation operation, instead of the components
of H. We can relate these two approaches by translating the unit cell parameters into the
present language - we now describe the details.

3.3.5.1 Construction of structural map.

For simple lattices we can clearly link the approaches of refinement between the mechanics
approach and the crystallographic approach, as shown in Figure 2.6.

To achieve this we first consider a reference cube aligned with a Cartesian basis ey, e, es.
For later use, the reciprocal vectors in this configuration are trivial due to orthonormality of
the Cartesian system; we have

* k *
e] =e;, €, =ey, €; =e3, (3.217)

where e7,7 = 1,2, 3 are the reciprocal basis vectors to e;. Throughout this section, reciprocal
vectors will be distinguished by the notation (-)*. This cube is mapped by a structural
map, Hg, which takes the unit cube into its conventionally prescribed lattice parameter
configuration. This configuration is defined by the three length changes of the cube axes,
a, b, c, and the internal angles of the cell, a, 8,v. We construct this deformation according
to the following definitions:

Hee; = a=ae (3.218)
H.e; =b = be.(7; €1, €2) (3.219)
Hge; = c = cé(a, 5,7), (3.220)

where a, b, c are the unit cell edges after the structural map, and where we are using the
assignment of the polar coordinate unit vector e, defined by

e, (7;e1,ey) = cosve; + sinvyey. (3.221)

The Cartesian representation for c, which is defined off of the internal angles «, 3,7, is
lengthy to compute; details are provided in the Appendix, see Equation (A.39). Also consult
Neustadt et al. (1968) for an alternative point of view on this computation.

Now returning to the consideration of Equations (3.218)-(3.220), recall that Equation (3.217)
defines the reciprocal basis G*(= e) with respect to the reference cube configuration. Then
we can apply (3.207) to Equations (3.218)-(3.220), observe that a = g;, b =g,, and ¢ = g5,
and see that Hg has the representation

H. =—a®e;  +bRey+cRe;s
= ae; ® e; + be,(a;e1,e) ® ey + c&(a, f,7) ® es. (3.222)
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As an example we display Equation (3.222) in matrix form for the general triclinic case.
Resolving on the Cartesian basis e; gives

a bcosy ccos
H,= |0 bsiny c(cos v — cos Fcosy)/ siny ,
0 0 c(l—I—ZCosozcosﬂcosv—coszoz—00825—00527)1/2/sin7 om0
1 (3.223)

where e; ® e; denotes the tensorial basis being used. Details of the computations leading to
Equation (3.223) are provided in the Appendix, §A.3. Finally, the reciprocal basis in (3.216),
L', L? L3 are generated from the equations
L'=H"e;, i=1,2,3. (3.224)
So far we have only related unit cell parameters to the structural map of a convenient
artificial reference cube. To complete the lattice refinement problem we must be able to
account, for the orientation of the physical configuration of the lattice when the X-ray ob-
servation is made. Therefore to go from the structural map configuration to an arbitrary
current configuration, an additional rotation operation, denoted by R € SO(3,R), is re-
quired. This rotation tensor may be parametrized by three coordinates, e.g. Euler angles
or angle axis parameters, see (A.5). Finally, the full set of parameters characterizing the
deformation from the reference cube to the current configuration are summarized by

Heupe(r1, 72,73, 0,0, ¢, 0, B,7) = R(r1, 79, 73)H(a, b, ¢, , 5,7), (3.225)

where 1,79, 73 are e.g. the angle axis parameters for a rotation. The lattice refinement
procedure then occurs on the array 1,79, 73, a, b, ¢, a, 3,~; that is, these values are modified
to match experimental diffraction data via an algorithm such as least squares. The entire
process is depicted in Figure 3.19, where the actions of the structural map Hg and rotation
R are illustrated, arriving at the final configuration where the diffraction measurement is
made.

An approach more in line with the mechanics view would be to fix the lattice parameters
from the structural map corresponding to a chosen reference state, (e.g. let Hy define the
reference state!) and then simply evolve this structure with an unrestricted transformation
H,.. Then the map from the fixed reference configuration to the current configuration is
parameterized by

H,(R,U) = RU, (3.226)

where R is parametrized by three coordinates, and U is parameterized by six coordinates
due to symmetry. See Figure 3.20 for a depiction of this situation.

Comparing Figure 3.20 and Figure 3.19 shows that in theory either approach works as
well as the other, since the final solutions for the deformation relative to the unit cube would
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Figure 3.19: Depiction of the lattice refinement procedure using six unit cell parameters
a,b,c,a, B, and three rotation parameters rq, 79,73 to arrive at the physical configuration
of the crystal where diffraction is measured. The final state based on evolution from the
initial cube is given by the mapping Heuwe = RHg. The evolution of lattice vectors from the
reference cube to the physical configuration is shown by e; - G; — g;
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Figure 3.20: Depiction of the lattice refinement procedure using the lattice deformation H
from a fixed reference configuration k. The reference lattice is generated from the structural
map at a convenient state, fixing ag, bg, co, g, Bo, V0. The reference parameters typically
define a stress free state (the material may be a powder) so that constitutive equations
defined with respect to k are easily interpreted.
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be equivalent. We can relate both approaches with respect to the initial reference cube,
giving the equivalence
Hewe = H.Hsp = RH,. (3.227)

However upon consideration of the structural map in (3.223), in the crystallographic ap-
proach modification of the unit cell parameters induce both stretch and rotation, (3.223).
In the mechanics approach, these kinematically meaningful quantities are decoupled, by the
direct use of the polar decomposition. Therefore these two techniques can have quantitative
difference when it comes to calculating uncertainties, a consideration which will be explored
in §3.4.2.1. Therefore the mechanics perspective of fixing k with reference unit cell parame-
ters and refining H,, based on the data is preferred in this study. See Edmiston et al. (2012)
for further details of these comparison.

A common approximation made in the literature on diffraction based stress analysis is
to use infinitesimal strain kinematics to account for lattice strain. In the next section we
investigate this approximation and compare it to the finite deformation result preferred here.

3.3.5.2 Error in small strain estimate.

We now consider typical expressions used for infinitesimal strain based analysis of diffraction
data in the literature. These equations differ in appearance from Equation (3.206). For
example, common methodologies for strain analysis take fundamental relation

5d®

PO
0

(3.228)

where ||e|| << 1 is the infinitesimal strain tensor, N is the normal vector to the ith lattice
plane, and 6d®) = dgi) — déi) is the change in planar spacing for the ¢th reflection. Here dgi) is
the deformed spacing, and d(()i) is the initial spacing. Then a least squares algorithm is formed
from residuals based on Equation (3.228) in order to solve for . Most crystalline materials
yield before reaching the levels of distortion which would make infinitesimal strain measures
such as (3.228) unacceptably erroneous compared to a finite deformation measure such as
H,,. However recent experiments are pushing this envelope. Large elastic strains are possible
for short time scale studies such as impact loading, where plastic flow is absent (Kalantar
et al., 2005; Hawreliak et al., 2011), or when high hydrostatic pressures are imposed, such as
those attained in diamond anvil cell experiments (Jayaraman, 1983; Yamanaka et al., 2001;
Katrusiak, 2008). Although to date the error in using infinitesimal kinematic measures
has been acceptable, since typically ||e|| < 1 %, finite deformation measures may become
important to consider as experimental techniques enable large-strain studies.

Furthermore, upon critical examination of Equation (3.228), these kinematics are objec-
tionable from the outset. Traditional definitions of strain tensors do not operate on planar
normals, but on tangent vectors or line elements, and these have different behavior under
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the same transformation. For example, consider the Lagrangian strain tensor given by

1
E=-(H'H-I). 3.229
L (HTH -1 (3.229)
Noting from Equation (3.213) that H operates on line elements, Equation (3.229) indicates
that E likewise operates on line elements. Instead, the appropriate kinematic relationship

for planar normals is obtained from Nanson’s formula (Chadwick, 1999)

(det HY H TN® = ;)

where n® is the deformed unit normal, ;" = (C_l NO N(i)>1/2 is the area ratio, and
C=H"H=U

We do not in the end seriously object to the use of Equation (3.228) for small strain
studies, which is the most common situation to date. We point out the deficiency should
experimental conditions advance to the point where using Equation (3.228) would give dis-
tinguishable errors, or for the large elastic strain cases noted in the introduction. In the next
section we will show that Equation (3.206) reassuringly reduces to Equation (3.228) upon
linear approximation. We find these computations useful to elucidate, since this equivalence
may not be evident upon first comparing (3.228) to (3.206).

Linear approximation procedure.

We now derive the error made when replacing the general kinematics given by Equation (3.206)
with the approximate kinematics in Equation (3.228). The linearization method shown here
gives is less rigorous than the general approach given by Hughes and Pister (1978), but gives
the same results. The result of the procedure is that the kinematics of Equation (3.228) are
correct to within an error of order €2. For a rough idea of the meaning of this, let’s assume
we have strains of € ~ 1% = 0.01, with error Ae = €? ~ 1-107%. Then for a material with
elastic modulus F ~ 100 GPa, the nominal stress level would be ¢ ~ 1 GPa and the error
in the stress would be Ag ~ 10 MPa. This error is currently below the magnitude of error
arising from other sources such as precision uncertainty (Edmiston et al., 2011); however
as instrumentation and data analysis algorithms improve this may not always be the case.
From another perspective, at the higher stress levels which may be obtained in diamond
anvil cell or shock experiments, where o =~ 10 GPa this error may also be detectable.

We begin by considering with the relative change in spacing for a given lattice plane, e.g.
the right hand side of Equation (3.228),

5 d—dy
d ~ dy

(3.230)

In Equation (3.230) and all the following equations, the superscript (7) designating the lattice
plane will be suppressed to clean the notation. Next we employ the finite deformation
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kinematics of Equation (3.206) to linearize Equation (3.230) about the reference state. We
have the typical requirements of R = I, and use a simple expansion for the stretch,

U=1I+e. (3.231)

In practice we obtain R = I effectively by rotating the reference configuration . To compute
dd/dy from Equation (3.230) we expand the planar spacing in the deformed configuration,
d, giving
d=dy+ — e+ O(e”). (3.232)
e e=0
Using Equation (3.232) in Equation (3.230) gives the leading order expansion for the relative
change in spacing as

od od
— =dy'—| e+O0(). 3.233

=g et o) (3.239)
Next, it can be shown that lattice planar spacing, d, is related to the magnitude of a reciprocal
lattice vector g* by the equation

(d) = llg™ll~ (3.234)
Substitution of Equation (3.206) in Equation (3.234) gives
d=lg|"
— (HfTG* . HiTG*)_l/Q
—(C'- G aa) (3.235)
For later use, we note that in the reference state, similar computations give d, = |G*|_1.
Then using Equation (3.235) with the chain rule we compute
ad 1 1 I(C ) mnGL G
LIE P (AmGEY (g
Ocgy 2 (C_l .G ® G*) / Ock

where G*, = G* - e, is notation for projection on the Cartesian basis. Similarly (C™!),,, =
C '-e,®e,. Next, we use C = U? the initial expansion for the stretch in Equation (3.231),
and the result (I+¢€)™! =1 —e + O(e?) (Liu, 2002, p. 261), giving

C'=1-2e+0(?). (3.237)

Then substitution of Equation (3.237) in Equation (3.236) and evaluating at € = 0 so that
C ~ 1 gives
od 1

—_— = —GIGE. 3.238
D)oo~ (G R (3:238)
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Now we write G* = |G*|G* where G* is the unit vector associated with G*. The
properties of reciprocal space geometry are such that G* = N, where N is the unit normal to
the lattice plane. Using this property, Equation (3.238) and d, = |G*|”! in Equation (3.233)
gives, after simplifications,

‘;—d =e-N®N + O(&?). (3.239)
0

Thus we have shown that the finite deformation expression of Equation (3.206) reduces
to the conventional expression of Equation (3.228) upon a linearization procedure. The
infinitesimal relation in Equation (3.228) is therefore demonstrated to be correct to within
an error of O(e?). The detailed form of the error term is a complicated function and is
too lengthy to report here. Should there be desire to compute these higher order terms by
continuing the expansion, we suggest simply using the finite deformation framework from
the beginning.

3.3.5.3 Summary

In this section, we have derived the relations between the descriptions of lattice distortion
based on unit cell parameters and that based on a lattice deformation tensor relative to
a fixed reference configuration, k. This was done to establish the equivalences of the two
approaches in order to assist in communications and collaborations between mechanics and
crystallography communities. We pointed out that the lattice deformation tensor approach
should be preferred for studies where constitutive quantities such as stress tensors are even-
tually required. This is because the constitutive formula for phenomenological continuum
theories are explicitly expressed in terms of tensor functions of H; in addition in this frame-
work the uncertainties for lattice stretch and rotation are naturally decoupled (Edmiston
et al., 2011).

We have also derived the evolution relation for reciprocal lattice vectors under finite
lattice deformations, H. This result enabled the demonstration that the finite deformation
relations of Equation (3.206) reduce to the more commonly used infinitesimal kinematic
relations of (3.228) upon linearization about the reference state. The error term in us-
ing the infinitesimal kinematic relations was shown to be O(g?). Recognition of this error
when using small strain kinematics is becoming more important to consider as experimen-
tal precisions improve and as higher lattice strain levels are probed. The implementation
of Equation (3.206) into analysis codes is a suggested course of action to avoid this error,
should there be sufficient need.

3.3.6 Conclusion

In this section we have developed the core ingredients to analyze X-ray diffraction patterns.
We have described aspects of each step in the data reduction procedure which takes the
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detector images from polycrystalline materials, shown in Figure 3.14, in order to produce
estimates for the lattice deformation H. We have described how the geometry of the ex-
perimental setup is used in converting the pixel location of a peak on the detector image
to a reciprocal lattice vector, including grains offset from the rotation axis and tilt of the
detector panel. We gave background information on the indexing of diffraction patterns, and
described an indexing algorithm which may be of use in certain applications. Finally, we de-
scribed the method of lattice refinement based on linear transformations from a meaningfully
chosen reference lattice, k. This transformation was denoted H, which can be interpreted
as the elastic strain in the model for elastic-plastic deformation developed in Chapter 2.
We related this approach to the refinement problem with the traditional crystallographic
approach of refining on unit cell parameters, and showed our equations to be equivalent to
infinitesimal strain equations after a linearization procedure.

In several places in this section we mentioned the use of least squares methods in to
estimate quantities such as the transformation H. In the next section we describe the
background and implementation of these methods, including uncertainty quantification. We
also suggest two methods for the estimation of H from diffraction data which offer increased
capabilities over conventional methods.

3.4 Kinematic parameter estimation

This section describes details of the incorporation of X-ray diffraction data in algorithms
to make estimates on quantities such as the lattice deformation H in §3.3.5. In §3.5 the
kinematic estimates obtained from the methods in this section are used with constitutive
models to extract material parameters.

The most common method of parameter estimation are least squares methods (Bard,
1974). Both this section and §3.5 use least squares methods extensively. In overview these
methods are described by defining a model, using the model to predict experimentally ob-
servable values as a result of given input data, and carrying out an algorithm to change model
parameters to minimize the difference between these predicted and experimentally measured
values. With an appropriate formulation, the least squares method also gives uncertainties
on the best-fit model parameters. In the next section we describe the weighted least squares
method in some generality; we then apply the method to X-ray diffraction data in various
applications in this section and in §3.5. The style of presentation and terminology for this
background section closely follows that of Bard (1974).

3.4.1 Background - weighted least squares

We briefly summarize several basic results from the method of weighted least squares, and
refer to Bard (1974) for further details. The basic entity of the theory given in Bard (1974)
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are the structural equations for the model,
r(z1,29,0) = 0, (3.240)

where the m dimensional array z; represents independent variables, the n dimensional array
Zo are dependent variables, and the [ dimensional array ® are the model parameters. Here
both z; and z, are considered experimentally measured or derived quantities. Equality in
(3.240) only holds if both the model r(-, ®) and the data (z1, z2) are exact and free of errors.
When the model is in error or the data has scatter, the model may be written as

r(z1,22,0) = e, (21,22, 0), (3.241)

where e,(z1, 22, ©) is called the residual for the p™ experiment. For convenience we will
suppress denoting the zy, 2z, dependence of e,(z1,22, ®), and simply write the residual as
e,(©). In many cases the structural equation, (3.240), can be rewritten in reduced form as

r(z1,22,0) = 2y — f(z1,0). (3.242)

Therefore for the reduced equations (3.242), the residual e, (@) is interpreted simply as the
difference between measured and predicted data for the '™ experiment. As an example,
recall Equation (3.215), which is written in the form of (3.240) and (3.242).

The method of least squares can be stated as finding the minimum of an objective function
¢ (@), where the general objective function is of the form (Bard, 1974)

®O) = "> > > Buammeul®)en(®), (3.243)

where Buq)omp) are the weight coefficients, and e,,(®) are multidimensional residual func-

tions. The indices p,n indicate the experiment index, and the indices a, b indicate indexes

into the residuals from the p'®, n'" experiment, respectively. For example, in (3.243) we have

indicated that N experiments were made, each resulting in an M-dimensional residual array.
The optimal model parameters are estimated by solving the equation

0P

eF

where ®* denotes the solution parameters. This solution is obtained by, e.g. Newton itera-
tions, or any other optimization technique. The covariance matrix of the solution parameters
©* can be estimated by computing the inverse of the Hessian of ® (Bard, 1974),

(3.245)
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Figure 3.21: Schematic of the ellipsoidal confidence region described by (3.246) for dim® = 2.
The maximum projections of the ellipse on the ®-coordinate axes are one method, among
many, to report the uncertainty in ©*.

The covariance matrix is important if uncertainties in the solution parameters ©* are of
interest, which for constitutive determination is certainly the case (Zohdi, 2001). The co-

variance matrix Vg« defines a confidence region in ®-space around the optimal solution ©*
which is described by the ellipsoid (Bard, 1974)

(© - ©7)'Vg'(0 - ) <\, (3.246)

where Xi,l is the upper point of a chi squared distribution with [ degrees of freedom, and «
is the chosen confidence level.

Figure 3.21 depicts a schematic confidence region described by (3.246) for [ = 2. When
Ve~ is such that the principal axes are not coaxial with the ® coordinate axes, as depicted
in Figure 3.21, there is some discretion in how to quantify the confidence interval for a
particular component of ®*. In the present work, as an estimate, we find the bounds of
V- in the directions of the eigenvectors of Vg«, and project these extents onto each ©
coordinate axis. The maximum distance achieved by this procedure for each ®-coordinate
is then assigned as the uncertainty interval for that particular parameter. With this, the
solution parameter is stated as @] = ©; + ue:, where ug: is the uncertainty in the solution
value.

The background presented in this section is general for any consideration of fine tun-
ing model param