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Abstract

Purpose—Donor smoking history and higher FiO2 at reperfusion are associated with primary 

graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidative injury 

biomarkers would be elevated in PGD, with higher levels associated with donor exposure to 

cigarette smoke and recipient hyperoxia at reperfusion.

Methods—We performed a nested case control study of 72 lung transplant recipients from the 

Lung Transplant Outcomes Group cohort. F2-isoprostanes and isofurans were measured by mass 

spectroscopy in plasma collected after transplantation. Cases were defined in two ways: grade 3 

PGD present at day 2 or day 3 after reperfusion (severe PGD), or any grade 3 PGD (any PGD).

Results—There were 31 severe PGD cases with 41 controls and 35 any PGD cases with 37 

controls. Plasma F2-isoprostane levels were higher in severe PGD compared to controls (28.6 

pg/ml vs. 19.8 pg/ml, p=0.03). Plasma F2-isoprostane levels were higher in severe PGD compared 

to controls (29.6 pg/ml vs. 19.0 pg/ml, p=0.03) among patients reperfused with FiO2>40%. 

Among recipients of lungs from donors with smoke exposure, plasma F2-isoprostane (38.2 pg/ml 

vs. 22.5 pg/ml, p=0.046) and isofuran (66.9 pg/ml vs. 34.6 pg/ml, p=0.046) levels were higher in 

severe PGD compared with controls.

Conclusions—Plasma levels of lipid peroxidation products are higher in patients with severe 

PGD, in recipients of lungs from donors with smoke exposure, and recipients exposed to higher 

FiO2 at reperfusion. Oxidative injury is an important mechanism of PGD and may be magnified by 

donor exposure to cigarette smoke and hyperoxia at reperfusion.

Introduction

Primary graft dysfunction (PGD) is a form of acute lung injury predominantly resulting from 

severe ischemia reperfusion injury (IRI) in the allograft in the setting of lung 

transplantation1-3. We have previously reported that receipt of a lung from a donor with 

smoking exposure history as well as higher fraction of inspired oxygen (FiO2) at the time of 

organ reperfusion are independent risk factors for the development of PGD4. The 

mechanisms leading to these associations are unclear.

Exposure to both cigarette smoke and hyperoxia can induce oxidative injury in the lung5,6. 

Although the role of reactive oxygen species (ROS) in signaling and lung homeostasis is 

complex, during lung transplantation there may be an excess of ROS production, leading to 

lipid peroxidation7. F2-isoprostanes are a group of prostaglandin-like compounds formed via 

nonenzymatic free radical-induced peroxidation of arachidonic acid that serve as robust 

markers of oxidative lipid peroxidation8. Some of these compounds have other physiologic 

effects in the lung including vasoconstriction of the pulmonary vasculature9. F2-isoprostane 
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levels are higher in smokers compared to non-smokers and decrease in response to smoking 

cessation and antioxidant therapy10,11. In animal models of ischemia and reperfusion of the 

heart and liver, F2-isoprostanes are released in response to reperfusion12-14. In rabbit lungs, 

hyperoxia and anoxia induced release of F2-isoprostanes15. Plasma F2-isoprostane levels 

have also been associated with organ dysfunction in patients with severe sepsis16.

Isofurans are also formed as a result of lipid peroxidation of arachidonic acid, but differ 

from F2-isoprostanes by the presence of a tetrahydrofuran ring17. The formation of isofurans 

and F2-isoprostanes share an intermediate step that is dependent on oxygen concentration. In 

the presence of high oxygen tension, isofuran formation is favored18,19. Isofurans may thus 

play a role in hyperoxia-induced oxidant injury18.

Because oxidant injury and lipid peroxidation may be important mechanistic pathways in 

PGD, we hypothesized that higher systemic F2-isoprostane and isofuran concentrations 

would be associated with PGD. Furthermore, based on the association of F2-isoprostanes 

and isofurans with hyperoxia and cigarette smoke exposure, we hypothesized that the 

association of F2-isoprostanes and isofurans with PGD would be impacted by donor 

smoking history and higher FiO2 at reperfusion.

Materials and Methods

Subject selection and study design

A nested case control study was chosen for efficiency based on the cost of performing the 

bioassays of lipid peroxidation. Subjects were selected from lung transplant recipients 

enrolled in the prospective multicenter Lung Transplant Outcomes Group (LTOG) cohort 

between 2002 and 20124,20. PGD cases were defined utilizing the International Society for 

Heart and Lung Transplantation guidelines in two ways: 1) grade 3 PGD present at day 2 or 

day 3 after reperfusion (severe PGD); 2) any grade 3 PGD in the first 72 hours after allograft 

reperfusion (any PGD) 2,4,21-24. The severe PGD definition is thought to represent a more 

severe phenotype, associated with worse mortality, and has been utilized in previous 

studies4. Cases and controls were selected to ensure inclusion of subjects who had received 

allografts from both donors with and without a history of cigarette smoke exposure as well 

as a broad range of fraction of inspired oxygen (FiO2) at the time of allograft reperfusion. 

Donor smoke exposure was defined as any reported current or former history of donor 

cigarette use, collected prospectively from multiple sources at the time of transplant, 

including UNet data. FiO2 at reperfusion was defined as the value recorded in the anesthesia 

clinical record at the time of allograft reperfusion4. The number of controls was limited by 

the small number of non-PGD patients receiving an allograft from a previously non-smoking 

donor in the overall LTOG cohort. Subjects had blood samples collected 6 hours after 

allograft reperfusion in citrated tubes; samples were processed within 30 minutes and then 

stored at −80°C as previously described25-28. Clinical information regarding donor, 

recipient, and perioperative characteristics and events were prospectively recorded on 

standardized case report forms4,20. The institutional review boards at all participating centers 

approved the study.
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Plasma F2-isoprostane and isofuran measurement

Plasma F2-isoprostane and isofuran levels were measured in duplicate by stable isotope 

dilution negative ion chemical ionization gas chromatography mass spectrometry29. There 

was no association between sample storage time and plasma concentration measurements. 

All laboratory personnel were blinded to the PGD status of the recipients.

Statistical Analysis

Donor, recipient, and peri-operative demographics were compared utilizing Student's t-test 

or Chi-squared analysis as appropriate. Plasma F2-isoprostane and isofuran concentrations 

were log transformed for statistical analyses in order to account for non-normal 

distributions. Differences in mean transformed concentrations were evaluated using two-

sided Student's t-test. Reported plasma concentrations correspond to the mean transformed 

concentrations. There was >90% power to detect a 1 standard deviation difference in 

transformed plasma concentration. We utilized a priori subgroup analysis in order to 

evaluate the impact of reperfusion FiO2 and donor smoke exposure on the association of 

plasma F2-isoprostanes and isofurans with PGD. All statistical analysis was performed using 

STATA 13.1 software (STATA Corp., College Station, TX); GraphPad Prism 6 (GraphPad 

Software, La Jolla, CA) was used for generating graphs. A p-value <0.05 was used to 

determine significance.

Results

Severe PGD case definition

There were 31 severe PGD cases and 41 non-PGD controls. Table 1 describes the donor, 

recipient, and perioperative characteristics. Recipients with severe PGD had significantly 

higher mean body mass index (BMI) compared to controls (27.4 vs. 24.0, p<0.001), and 

other risk factor variables were similarly distributed as in prior studies4. Plasma F2-

isoprostane levels were significantly higher in patients with severe PGD compared to those 

without PGD (28.6 pg/ml vs. 19.8 pg/ml, p=0.03). There was no significant difference in 

plasma isofuran levels according to PGD status (39.7 pg/ml vs. 31.9 pg/ml, p=0.2) (Figure 

1).

The impact of reperfusion FiO2 and donor smoke exposure history on the association 

between lipid peroxidation products and severe PGD was assessed using subgroup analyses. 

In patients reperfused with FiO2>40%, plasma F2-isoprostane levels were significantly 

higher in patients with severe PGD compared to those without PGD (29.6 pg/ml vs. 19.0 

pg/ml, p=0.03). In contrast, there was no association between plasma F2-isoprostane levels 

and severe PGD in subjects reperfused at FiO2≤40% (24.9 pg/ml vs. 21.5 pg/ml, p=0.6). 

There was no detected association of plasma isofuran levels with severe PGD in subjects 

reperfused with either FiO2>40% (39.3 pg/ml vs. 34.0 pg/ml, p=0.5) or FiO2≤40% (41.2 

pg/ml vs. 28.2 pg/ml, p=0.3) (Figure 2).

Among patients receiving a lung from a donor with cigarette smoke exposure, plasma F2-

isoprostane levels were significantly higher in patients with severe PGD compared to 

controls (38.2 pg/ml vs. 22.5 pg/ml, p=0.046). There was no association between plasma F2-
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isoprostane levels and severe PGD among patients receiving a lung from a non-smoking 

donor (23.2 pg/ml vs. 18.1 pg/ml, p=0.3). In subjects receiving a lung from a previously 

smoking donor, isofuran levels were significantly higher in patients with severe PGD 

compared to controls (66.9 pg/ml vs. 34.6 pg/ml, p=0.046). In subjects receiving a lung from 

a non-smoking donor, there was no difference in isofuran levels between patients with and 

without severe PGD (27.2 pg/ml vs. 30.2 pg/ml, p=0.5) (Figure 3).

Alternate PGD case definition

The demographics of the patients utilizing any PGD as the case definition are presented in 

Supplemental Table 1. There was an association between plasma F2-isoprostanes with any 

PGD (28.8 vs. 19.1, p=0.01) but no association between isofurans (40.1 pg/ml vs. 31.1 

pg/ml, p=0.1) and any PGD (Supplemental Figure 1). Among patients reperfused with 

FiO2>40%, F2-isoprostane levels were significantly higher in patients with any PGD 

compared to control subjects (30.2 pg/ml vs. 18.3 pg/ml, p=0.02). In patients reperfused at 

lower FiO2, there was no difference in F2-isoprostane levels (24.7 pg/ml vs. 21.0 pg/ml, 

p=0.6). There was no association between isofuran levels and any PGD when evaluating 

subgroups defined by reperfusion FiO2. In contrast to the analysis of severe PGD, there was 

no association between F2-isoprostane or isofuran levels and any PGD when evaluating 

subgroups defined by previous donor smoking status.

Discussion

We found that post-reperfusion plasma levels of lipid peroxidation products are associated 

with severe PGD after lung transplantation. Furthermore, the association between plasma 

F2-isoprostanes and PGD differed according to donor smoking history and reperfusion FiO2. 

These findings provide possible evidence that previously identified associations between 

receipt of a lung from a donor with smoke exposure or higher reperfusion FiO2 and 

development of PGD involve potentiation of oxidant injury by these pre- and peri-operative 

exposures4.

Oxidative injury may be an important mechanism of acute lung injury in PGD that may be 

potentiated by donor exposure to cigarette smoke. There is a well-documented association 

between lipid peroxidation products and cigarette exposure11,30. For example, thiobarbituric 

acid reactive substances (TBARS), biomarkers of lipid peroxidation, are doubled in the 

bronchoalveolar lavage (BAL) fluid of chronic smokers and increased 6-fold in acute 

smokers compared to non-smoking controls31. Thus, the allograft procured from a donor 

with smoke exposure may be inherently prone to injury due to the accumulation of lipid 

peroxidation products, and less likely to be able to recover from IRI in the setting of 

oxidative damage. In support of this, donor smoking history is strongly associated with risk 

of PGD in both risk factor as well as predictive models4,32. Furthermore, donor smoking is 

associated with increased pulmonary edema, impaired gas exchange, and higher BAL levels 

of inflammatory chemokines in explanted lungs not used for transplantation33. The current 

finding of association of PGD with high levels of lipid peroxidation products secondary to 

donor smoke exposure further supports the importance of oxidative injury pathways in PGD. 

However, given that our results cannot rule out that lipid peroxidation is an epiphenomenon 
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rather than the underlying cause of lung injury, model systems such as the ex vivo human 

lung will need to be employed to provide further evidence of causality. Our study provides 

proof-of-concept to justify such studies.

Higher FiO2 at reperfusion was also associated with increased lipid peroxidation. Hyperoxia 

is associated with increased reactive oxygen species production and neutrophil 

recruitment34. In prior studies, both isofuran and isoprostane formation increase with 

hyperoxia. Isofuran formation increases with increasing oxygen tension in rat lung models 

and in vitro using arachodonic acid oxidation models17. Increasing FiO2 from 21% to 28% 

for one hour in healthy human subjects and subjects with COPD resulted in a significant 

increase in exhaled breath condensate levels of isoprostanes in both groups35. Mice exposed 

to hyperoxia have increased production of pulmonary F2-isoprostanes and isofurans 

compared to mice maintained at room air36. We previously demonstrated that compared to a 

reperfusion FiO2 less than 0.40, reperfusion FiO2≥0.40 was associated with a 6% absolute 

risk increase for the development of PGD4. While the increased risk of PGD with higher 

reperfusion FiO2 may simply be a marker of poor allograft function at the time of 

reperfusion and a need for higher FiO2 in order to maintain reasonable PaO2 levels, we have 

previously demonstrated that there is wide variability of reperfusion FiO2 across transplant 

centers and that centers with the lowest PGD incidence reported the lowest mean reperfusion 

FiO2
4. Increased lipid peroxidation in the setting of higher FiO2 may provide an explanation 

for the association of hyperoxia at reperfusion with PGD. When combined with previous 

animal and human studies, the suggestion of differing relationships between lipid 

peroxidation products and PGD based on reperfusion FiO2 highlights the need to focus on 

reducing reperfusion FiO2 as a possible preventative therapy for patients undergoing lung 

transplantation.

Lipid peroxidation pathways may be an attractive therapeutic target for decreasing PGD risk. 

Dietary flaxseed contains lignans, specifically secoisolariciresinol diglucoside, that have 

been shown to scavenge hydroxyl radicals and inhibit lipid peroxidation37. Pre-treatment of 

mice with dietary flaxseed containing lignans decreased lung tissue production of F2-

isoprostane after IRI in a hilar crossclamp model38. Urinary F2-isoprostane levels decreased 

in patients with cystic fibrosis after ingestion of dietary flaxseed compared to baseline39. 

Increases in bronchoalveolar lavage isoprostane levels after lung ischemia-reperfusion were 

attenuated in mice pre-treated with 14-days of azithromycin, suggesting that azithromycin 

may have an anti-oxidant effect40. Maternal tobacco smoke exposure significantly decreases 

tissue glutathione levels in the lungs of fetal rats. Maternal administration of the anti-oxidant 

n-acetylcysteine protected rat fetal lungs from oxidative damage and prevented the smoke 

exposure-related decline in glutathione levels41. In a feline cigarette exposure model, 

tiotropium administration was associated with reduction in serum, lung, and tracheal lipid 

peroxides and abrogated reductions in antioxidant levels42. Tiotropium may increase anti-

inflammatory signaling through modification of histone deacetylases (HDAC) and 

modulation of nitric oxide production43. Similarly, treatment with valproic acid, an HDAC 

inhibitor, during hypoxia resulted in decreased levels of lipid peroxidation biomarkers and 

enhanced anti-oxidant enzymatic function in newborn rats44. Ex vivo lung perfusion 

technology allows for evaluating therapies in the allograft prior to organ implantation45,46. 

Therefore, lipid peroxidation product levels may be useful biomarkers of therapeutic 
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efficacy for preliminary trials of dietary flaxseed or lignans, azithromycin, n-acteylcysteine, 

valproic acid, and tiotropium, therapies with known safety profiles in human studies.

This study has some limitations. The overall sample size is small because measurements of 

plasma F2-isoprostanes and isofurans are costly and labor intensive. In order to maximize 

the power of our study design using small numbers of subjects, we enriched the sample for 

patients receiving an organ from a previous smoker as well as a wide range of reperfusion 

FiO2. The small sample size limits our ability to perform formal tests for interaction, e.g. 

using multiplicative terms in logistic regression models. Despite the small size and lack of 

power, a priori sub-group analyses suggest potential effect modification by both donor 

smoke exposure and reperfusion FiO2. Given the post-transplant collection of plasma, we 

are also unable to make definitive conclusions regarding the causal relationship between 

lipid peroxidation products and PGD. Future studies evaluating longitudinal changes from 

recipient pre-transplant levels of these products as well as the impact of donor plasma and 

BAL levels of lipid peroxidation products prior to allograft procurement combined with 

model systems will be needed to further define the relationship between these products of 

oxidant stress and PGD.

In summary, plasma levels of lipid peroxidation products are significantly higher in patients 

with PGD after lung transplantation compared to those who do not develop PGD and there 

are significant differences within groups defined by donor smoking history and reperfusion 

FiO2. This study further highlights the importance of oxidative injury in the development of 

lung injury after lung transplantation. Future studies should be aimed at evaluating the 

causal relationship of lipid peroxidation with PGD after lung transplantation and therapies 

targeting lipid peroxidation pathways and products in order to prevent the development of 

PGD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Box plots of lipid peroxidation product plasma levels. Box represents the non-transformed 

plasma levels corresponding to the mean and 95% confidence intervals of the transformed 

values. Black boxes are patients with severe PGD and grey boxes are patients without 

PGD.A: Comparison of F2-isoprostane levels in patients with and without severe PGD; B: 

Comparison of isofuran levels in patients with and without severe PGD. P-value represents 

result of t-test of log-transformed values.
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Figure 2. 
Box plots of lipid peroxidation product plasma levels with subgroups defined by reperfusion 

FiO2≤40% vs. FiO2>40%. Box represents the non-transformed plasma levels corresponding 

to the mean and 95% confidence intervals of the transformed values. Black boxes are 

patients with severe PGD and grey boxes are patients without PGD. A: Comparison of F2-

isoprostane levels in patients with and without severe PGD; B: Comparison of isofuran 

levels in patients with and without severe PGD. P-value represents result of t-test of log-

transformed values.
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Figure 3. 
Box plots of lipid peroxidation product plasma levels with subgroups defined by donor 

smoking history. Box represents the non-transformed plasma levels corresponding to the 

mean and 95% confidence intervals of the transformed values. Black boxes are patients with 

severe PGD and grey boxes are patients without PGD. A: Comparison of F2-isoprostane 

levels in patients with and without severe PGD; B: Comparison of isofuran levels in patients 

with and without severe PGD. P-value represents result of t-test of log-transformed values.
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Table 1

Subject Demographics. PGD is defined as grade 3 PGD at day 2 or 3.

Covariate PGD (n=31) Non-PGD (n=41) p-value

Donor Variables

    Male Gender, n (%) 19 (61) 25 (61) 0.9

    Age, mean 35.2 35.1 0.9

    Race, n (%) 0.4

        Caucasian 16 (52) 29 (71)

        African American 9 (29) 6 (15)

        Other 6 (19) 6 (15)

    Any smoking, yes 13 (42) 17 (41) 0.1

Recipient Variables

    Male Gender, n (%) 16 (52) 22 (54) 0.9

    Age, mean 53.9 53.9 0.9

    BMI, mean 27.4 24.0 0.0008

    Pulmonary Diagnosis, n (%) 0.3

        Chronic obstructive pulmonary disease 9 (29) 19 (39)

        Idiopathic pulmonary fibrosis 13 (42) 14 (34)

        Cystic Fibrosis 1 (3) 6 (15)

        Other 8 (26) 5 (12)

    mPAP 50.5 44.2 0.2

    Race, n (%) 0.2

        Caucasian 22 (71) 35 (85)

        African American 8 (26) 4 (10)

        Other 1 (3) 2 (5)

Operative Variables

    Ischemic time, min 324 332 0.7

    Transplant type, single, n (%) 10 (32) 13 (32 0.9

    PRBC volume, ml 1282 1015 0.5

    Reperfusion FiO2, % 73 64 0.2

    Reperfusion FiO2 category, n (%) 0.2

        21-40% 6 (19) 14 (34)

        >40% 25 (81) 27 (66)

    Cardiopulmonary bypass use, yes, n (%) 18 (58) 17 (41) 0.2

BMI: Body mass index

mPAP: mean pulmonary artery pressure

FiO2: Fraction of inspired oxygen

Percentages may not exactly equal 100% because of rounding.
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