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(a) Isovolume mesh extracted from a 21 billion cell struc-
tured grid decomposed across 2197 processors.

(b) Isovolume mesh colored by connected component la-
bel.

Figure 1: Example input data-set and connected components labeling algorithm result. The algorithm uses a multi-stage ap-
praoch to resolve the global connectivity of the 2.62 billion cell isovolume.

Abstract
We present a data-parallel algorithm for identifying and labeling the connected sub-meshes within a domain-
decomposed 3D mesh. The identification task is challenging in a distributed-memory parallel setting because
connectivity is transitive and the cells composing each sub-mesh may span many or all processors. Our algorithm
employs a multi-stage application of the Union-find algorithm and a spatial partitioning scheme to efficiently
merge disjoint sets and produce a global labeling of connected sub-meshes. Marking each vertex with its corre-
sponding sub-mesh label allows us to isolate mesh features based on topology, enabling new sub-mesh analysis
capabilities. We briefly discuss two specific applications of the algorithm and present results from a weak scaling
study. We demonstrate the algorithm at concurrency levels up to 2197 cores and analyze meshes containing up to
68 billion cells.

Categories and Subject Descriptors (according to ACM CCS): D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming, F.1.2 [Computation by Abstract Devices]: Modes of Computation—
Parallelism and concurrency, I.3.5 [Computational Geometry and Object Modeling]: Geometric algorithms, lan-
guages, and systems—
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1 Introduction

Parallel scientific simulations run on today’s state of the
art petascale and terascale computing platforms generate
massive quantities of high resolution mesh-based data. Sci-
entists rely on deployed scientific visualization tools to ex-
plore and analyze the data-sets produced by these simula-
tions. Applying traditional scalar field visualization meth-
ods, such as isosurface or isovolume extraction, to these
massive data-sets generates complex derived geometry with
intricate structures that are not easily isolated or further ana-
lyzed using a standard visualization tool set.

In these instances, representations of the topological
structure of a mesh can be helpful. A labeling of the con-
nected components in a mesh provides simple and intuitive
topological characterization of which parts of the mesh are
connected to each other. Each connected component is a
unique sub-mesh that contains a sub-set of cells that are di-
rectly or indirectly connected via series of cell abutments.

The global nature of connectivity poses a challenge for
parallel algorithms. Distributed-memory computers are the
dominant resource for parallel scientific computing appli-
cations. In this setting pieces of the mesh are distributed
across processors and the entire data-set is too large to fit
into the memory of single processor. Cells comprising con-
nected sub-meshes may span any set of processors and cell
neighbor information may only exist on a single processor.
These factors constrain the approaches available to resolve
connectivity.

We have developed a novel data-parallel connected com-
ponents labeling algorithm for analyzing data-sets in this
context. Our multi-stage algorithm constructs a unique la-
bel for each connected component identified and marks each
vertex with its corresponding connected component label.
The final labeling enables:

• Calculation of aggregate quantities for each connected
component.

• Feature based filtering of connected components.
• Calculation of statistics on connected components.

The algorithm provides an intuitive tool for domain scien-
tists with applications where physical structures, for exam-
ple individual fragments of a specific material, correspond
to the connected components contained in simulation data-
set. This paper presents an outline of the algorithm (Section
4), an overview of two specific applications of the algorithm
(Section 5), and results from a weak scaling performance
study (Section 6).

2 Related Work

Research into connected components algorithms has fo-
cused primarily on applications in computer vision and
graph theory. Several efficient serial algorithms have been

developed. We review these serial algorithms, survey ex-
isting parallel algorithms, and then discuss implications of
these approaches in a distributed-memory parallel setting.

2.1 Applications of connected components

2.1.1 Computer Vision

Labeling connected components in binary images is a
common image segmentation technique used in computer
vision [RW96]. To gain efficiency, labeling algorithms use
sweeps that exploit the structured grid nature of image data.
Algorithms focus on providing results for four- or eight-
connected neighborhoods. These optimizations do not easily
generalize to the problem of resolving connectivity in un-
structured meshes.

2.1.2 Graph Theory

The cell abutment relationships in an unstructured mesh
can be encoded into a sparse undirected graph representa-
tion, so methods for finding the connected components of
graphs can potentially be made applicable mesh-based data.
Connected components algorithms are used in various graph
theory applications to identify partitions. There are two com-
mon approaches. The first employs a series of Depth-first
or Breadth-first searches [HT71]. Initially all vertices are
unmarked. Each search starts at an unmarked vertex walk-
ing the graph edges and marking each reached vertex. New
searches are executed until all vertices are marked. Each
search yields a tree which corresponds to a single connected
component. This approach is analogous to a region growing
scheme.

The second approach uses the Union-find algorithm
[CSRL01] for disjoint-sets. This is typically used for track-
ing how connected components evolve as edges are added
to a graph. This incremental approach requires only lo-
cal connectivity information and efficiently handles merg-
ing disjoint-sets as each new edge is added. The Union-find
algorithm and data structures are also used to efficiently con-
struct topological representations such as a Contour Tree
[CSA00] or Reeb Graph [TGSP09] of a data-set. We use the
serial Union-find algorithm as a key building block for our
approach. It is discussed in detail in 3.1.

2.2 Parallelism

2.2.1 Parallelism in computer vision and graph
algorithms

[AP92,CT92] provide overviews of several parallel com-
puter vision algorithms for connected components label-
ing, including a few approaches for distributed-memory ma-
chines. Like the serial computer vision algorithms, these
approaches make communication assumptions that require
structured grid connectivity.

Much of the research into parallel algorithms for graph
connected components has focused on shared-memory ar-
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chitectures [HW90, AW91]. [CAP88] provides a parallel al-
gorithm using the Union-find algorithm that is structurally
similar to a connected components algorithm. They obtained
speedups on a shared-memory machine, but observed poor
performance when mapping their algorithm to a PRAM
model on a distributed-memory machine.

[KLCY94, MP10] both use a hybrid local-global ap-
proach on distributed-memory machines. [KLCY94] uses a
Breadth-first search to resolve local connectivity, followed
by a global PRAM step to incorporate edges that cross
processors. [MP10] presents a distributed-memory Union-
find algorithm that employs a strategy similar to ours. They
using the Union-find algorithm in both local and global
step. Unlike our approach, their global stage distributes
the Union-find data structure across several processors. The
path-compression and union-by-rank heuristics used to gain
efficiency in the serial case are not completely reproduced,
leading to increased parallel communication in the global
phase.

A naive distributed-memory implementation of the graph
search approach would have a runtime proportional to the
number of cells in the largest sub-mesh and would require
complex communication to track visited cells as mesh re-
gions grow across processors. The runtime of this approach
would be unacceptable for datasets with sub-meshes on the
order of the size of the entire mesh. A naive distributed-
memory implementation of the Union-find algorithm is dif-
ficult due to the indirect memory access patterns used by
the disjoint-set data structures to gain efficiency. Both of
these approaches map conceptually well to a PRAM model
of computation, however they are difficult to implement ef-
ficiently in a distributed-memory parallel context.

2.2.2 Parallelism strategy for end user tools

Our algorithm is intended for data-sets so large that
they cannot fit into the memory of a single node. Popu-
lar end user visualization tools for large data, such as En-
Sight [Com09], ParaView [AGL05], and VisIt [CBB∗05],
follow a distributed-memory parallelization strategy. Each
of these tools instantiate identical visualization modules on
every MPI task, and the MPI tasks are only differentiated
by the sub-portion of the larger data-set they operate on.
The tools rely on the data-set being decomposed into pieces
(often referred to as domains), and partition the pieces over
their MPI tasks. This approach has been shown to work well
to date, with the most recent example demonstrating VisIt to
perform well on trillions of cells with tens of thousands of
processors [CPA∗10]. Our algorithm fits well in the setting
provided by today’s distributed-memory large data visual-
ization tools and has been implemented as a module inside
VisIt.

Our algorithm uses a multi-stage approach were local con-
nectivity is resolved within a processor to reduce the com-
munication required to resolve global connectivity. A novel

contribution of our approach is a compression from a po-
tential label set with a size on the order of the total number
of cells, to a much smaller intermediate labeling that can be
used during the global resolve. Our approach also handles
the constraint that connectivity information across proces-
sors is not known a priori, a problem that does not occur in
general graph applications.

3 Algorithm building blocks

This section describes three fundamental building blocks
used by our multi-stage algorithm. The first is the serial
Union-find algorithm which allows us to efficiently identify
and merge connected components. The second is a parallel
balanced spatial partitioning scheme which allows us to ef-
ficiently compute mesh intersections across processors. The
third is the practice of generating ghost data, which, if avail-
able, allows us to use an optimized variant of our algorithm.

3.1 Union-find

The Union-find algorithm is an important building block
for our approach. The algorithm enables efficient manage-
ment of partitions. It provides two basic operations: UNION
and FIND. The UNION operation creates a new partition by
merging two subsets from the current partition. The FIND
operation determines which subset of a partition contains a
given element.

To efficiently implement these operations, relationships
between sets are tracked using a disjoint-set forest data struc-
ture. In this representation each set in a partition points to a
root node containing a single representative set used to iden-
tify the partition. The UNION operation uses a union-by-
rank heuristic to update the root node of both partitions to the
representative set from the larger of the two partitions. The
FIND operation uses a path-compression heuristic which up-
dates the root node of any traversed set to point to the cur-
rent partition root. With these optimizations each UNION
or FIND operation has an amortized run time of O(α(N))
where N is the number of sets and α(N) is the inverse Ack-
ermann function [Tar75]. α(N) grows so slowly that it is
effectively less than four for all practical input sizes. The
disjoint-set forest data structure requires O(N) space to hold
partition information and the values used to implement the
heuristics. The heuristics used to gain efficiency rely heavily
on indirect memory addressing and do not lend themselves
to direct a distributed-memory parallel implementation.

3.2 Balanced Spatial Partitioning

To determine if a component on one processor abuts a
component on another processor (meaning they are actually
part of the same component), we will need to relocate the
components (or parts of them) to guarantee that components
that are spatially next to each other can be directly compared.
We do this with a “balanced spatial partitioning," which
partitions two- or three-dimensional space into Nprocessors
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pieces. If the partition were to divide space into regions that
cover appreciably different numbers of elements, it would
lead to load imbalances and potentially exhaust memory.
Therefore, we want the partitioning to be “balanced," mean-
ing there are roughly the same number of cells in each of the
partition’s pieces.

The algorithm to determine a balanced spatial partitioning
is recursive. We start by creating a region that spans the en-
tire data-set. On each iteration and for each region that rep-
resents more than 1/Nth of the data (measured in number of
elements covered), we try to select “pivots", which are pos-
sible locations to split a region along a given axis. This axis
changes on each iteration. All elements are then traversed,
and their positions with respect to the pivots are categorized.
If a pivot exists that allows for a good split, then the region
is split into two sub-regions and recursive processing contin-
ues. Otherwise we choose a new set of pivots, whose choice
incorporates the closest matching pivots from the previous
iteration as extrema. If a good pivot is not found after some
number of iterations, we use the best encountered pivot and
accept the potential for load imbalance.

Figure 2: The process for constructing a balanced spatial
partitioning. On the left, the cells from the original mesh.
Assume the red portions are on processor 1, blue on 2, and
so on. The iterative strategy starts by dividing in X, then in
Y, and continues until every region contains approximately
1/Nprocessors of the data. Each processor is then assigned one
region from the partition and we communicate the data so
that every processor contains all data for its region. The data
for processor 3 is shown on the far right.

After constructing a balanced spatial partition, we assign
one portion of the partition to each MPI task and then re-
distribute the cells such that each MPI task contains every
cell from its partition. Cells that span multiple partitions are
duplicated.

3.3 Ghost Cells

When a large data-set is decomposed into domains, inter-
polation artifacts can occur along domain boundaries. The
typical solution for this problem is to create “ghost cells," a
redundant layer of cells along the boundary of each domain.
Ghost cells are either pre-computed by the simulation code
and stored in files or calculated at run-time by the postpro-
cessing tool. More discussion of ghost cells can be found
in [ILC10, CBB∗05].

Ghost cells can provide benefits beyond interpolation.
They also can be used to identify the location of the bound-
ary of a domain and provide information about the state of

the abutting cell in a neighboring domain. It is in this way
that we use ghost cells for this algorithm. Note that this pa-
per uses ghost cells that are generated at run-time and uses
the collective pattern described in [CBB∗05], not the stream-
ing pattern described in [ILC10].

4 Algorithm description

Our algorithm identifies the global connected components
in a mesh using four phases. We first identify the connected
components local to each processor (Phase 1) and then create
a global labeling across all processors (Phase 2). We next de-
termine which components span multiple processors (Phase
3). Finally, we merge the global labels to produce a consis-
tent labeling across all processors (Phase 4). This final la-
beling is applied to the mesh to create per-cell labels which
map each cell to the corresponding label of the connected
component it belongs to.

Figure 3: Example illustrating the four phases of our algo-
rithm on a simple data-set decomposed onto three proces-
sors.

We present two variants of the algorithm. This first
provides a general solution, applicable to any domain-
decomposed 3D mesh. The second algorithm is an optimized
variant of the first which can be used if ghost data is avail-
able for the mesh. The optimizations in the second variant
greatly reduce the communication and processing required
to resolve global connectivity.

4.1 General Algorithm

Phase 1: Identify components within a processor

The purpose of this phase is for each processor to label the
connected components for its portion of the data As men-
tioned in section 2, the Union-find algorithm efficiently con-
structs a partition through an incremental process. A parti-
tion with one subset for each point in the mesh is used to
initialize the Union-find data structure. We then traverse the
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cells in the mesh. For each cell, we identify the points inci-
dent to that cell. Those points are then merged (“unioned")
in the Union-find data structure.

In pseudocode:

UnionFind uf ;
For each p o i n t p :

u f . S e t L a b e l ( p , Ge tUniqueLabe l ( ) )
For each c e l l c :

p o i n t l i s t = G e t P o i n t s I n c i d e n t T o C e l l ( c )
p0 = p o i n t l i s t [ 0 ]
For each p o i n t p i n p o i n t l i s t :

i f ( u f . F ind ( p0 ) != uf . F ind ( p ) )
u f . Union ( p0 , p )

The running time of this phase is dependent on the number
of union operations, the number of find operations, and the
complexity of performing a given union or find. The number
of finds is equal to sum over all cells of how many points
are incident to that cell. Practically speaking, the number of
points per cell will be small, for example eight for a hex-
ahedron. Thus the number of finds is proportional to the
number of cells. Further, the number of unions will be less
than the number of finds. Finally, although the runtime com-
plexity of the Union-find algorithm is nuanced, each indi-
vidual union or find is essentially a constant time operation,
asymptotically-speaking. Thus the overall run time of this
phase is proportional to the number of cells.

Phase 2: Component re-label for cross-processor
comparison

At the end of Phase 1, on each processor, the components
within that processor’s data have been identified. Each of
these components has a unique local label and the purpose of
Phase 2 is to transform these identifiers into unique global la-
bels. This will allow us to perform parallel merging in subse-
quent phases. Phase 2 actually has two separate re-labelings.
First, since the Union-find may create non-contiguous iden-
tifiers, we transform the local labels such that the numbering
ranges from 0 to NP, where NP is the total number of labels
on processor P. For later reference, we denote N = ∑NP as
the total number of labels over all processors. Second, we
construct an unique labeling across the processors by adding
an offset to each range. We do this by using the MPI rank
and determining how many total components exist on lower
MPI ranks. This number is then added to component labels.
At the end of this process, MPI rank 0 will have labels from 0
to N0−1, MPI rank 1 will have labels from N0 to N0+N1−1
and so on. Finally, a new scalar field is placed on the mesh,
associating the global component label with each cell.

Phase 3: Merging of labels across processors

At this point, when a component spans multiple proces-
sors, each processor’s sub-portion has a different label. The
goal of Phase 3 is to identify that these sub-portions are ac-
tually part of a single component and merge their labels. We

do this by re-distributing the data using a balanced spatial
partition (see 3.2) and employing a Union-find strategy to
locate abutting cells that have different labels. The Union-
find strategy in this phase has four key distinctions from the
strategy described in Phase 1.

• The labeling is now over cells (not points), which is made
possible by the scalar field added in Phase 2.

• We merge based on cell abutment, as opposed to Phase 1,
where we merged when two points were incident to the
same cell.

• Each cell is initialized with the unique global identifier
from the scalar field added in Phase 2, as opposed to the
arbitrary unique labeling imposed in Phase 1.

• Whenever a union operation is performed, we record the
details of that union for later use in establishing the final
labeling.

In pseudocode:

C r e a t e B a l a n c e d S p a t i a l P a r t i t i o n ( )
UnionFind uf ;
For each c e l l c :

u f . S e t L a b e l ( c , l a b e l [ c ] )
For each c e l l c :

For each n e i g h b o r n o f c :
i f ( u f . F ind ( c ) != u f . F ind ( n ) )

u f . Union ( n , c )
RecordMerge ( n , c )

After the union list is created, we discard the re-
distributed data and each processor returns to operating on
its original data.

Phase 4: Final assignment of labels

Phase 4 incorporates the merge information from Phase 3
with the labeling from Phase 2. Recall that in Phase 2 we
construct a globally unique labeling of per-processor com-
ponents and denoted N as the total number of labels over all
processors. The final labeling of components is constructed
as follows:

• After Phase 3, each processor is aware of the unions it
performed, but not aware of unions on other processors.
However, to assign the final labels, each processor must
have the complete list of unions. So we begin Phase 4
by broadcasting (“all-to-all") each processor’s unions to
construct a global list.

• Create Union-find data structure with N entries and each
entry having the trivial label.

UnionFind uf
For i i n 0 t o N−1:

u f . S e t L a b e l ( i , i )

• Replay all unions from the global union list.

For un ion i n G l o b a l U n i o n L i s t :
u f . Union ( un ion . l a b e l 1 , un ion . l a b e l 2 )
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The Union-find data structure can now be treated as a
map. Its “Find" method transforms the labeling we con-
structed in Phase 2 to a unique label for each connected
component.

• Use the “Find" method to transform the labeling from the
scalar array created in Phase 2 to create a final labeling of
which connected component each cell belongs to.

For each c e l l c :
v a l [ c ] = uf . F ind ( v a l [ c ] )

• Optionally transform the final labeling so that the labels
range from 0 to NC − 1, where NC is the total number of
connected components.

Note that the key to this construction is that every pro-
cessor is able to construct the same global list by following
the same set of instructions. They essentially “replay" the
merges from the global union list in identical order, creating
an identical state in their Union-find data structure.

4.2 Ghost cell optimized algorithm
One of the strengths of the general algorithm is that lo-

cal connectivity, which encapsulates the majority of cell
abutments, is resolved concurrently on each processor. Af-
ter Phase 2 completes, the only cells that can contribute and
merge labels across processors are those cells that could po-
tentially abut cells residing other processors. If we can iden-
tify which cells intersect the spatial boundary of each proces-
sor, we can limit the re-distribution in Phase 3 to this subset
of cells. Processing a reduced set of cells in Phase 3 can lead
to significant performance gains.

We created an optimized variant of the general algorithm
using this strategy. To do so we add Phase 0, a new prepos-
sessing step, and modify Phase 3 to down-select amount of
re-distributed cells. Phases 1, 2, and 4 are reused from the
general algorithm.

Phase 0: Identify cells at processor boundaries
The goal of this preprocessing phase is to identify cells

that abut the spatial boundary of the data contained on each
processor. Using ghost data we can easily identify boundary
cells as those that are adjacent to ghost data. We cannot di-
rectly use the ghost cells to represent processor boundaries
because they may have been transformed by an earlier oper-
ation, such as isovolume, in a way that alters global connec-
tivity. We also remove any ghost cells after the boundary is
identified for this reason.

In pseudocode:

For each c e l l c :
boundary [ c ] = f a l s e
i f ( n o t I s G h o s t C e l l ( c ) )

For each n e i g h b o r n o f c :
i f I s G h o s t C e l l ( n ) :

boundary [ c ] = t r u e
RemoveGhostCel ls ( )

Number of components
Isosurface 2023812
Isovolume 2010473

Table 1: Number of components after applying algorithm.
It is expected that the number of isovolume components will
be slightly less than the number of isosurface components,
since they contribute a different number at the boundary of
the problem. Consider the two-dimensional shape S, where

points P in S satisfy 0.5 ≤
�

Px2 +Py2 ≤ 1.0. Further con-
sider the case when the problem domain is limited to pos-
itive X and Y. Then, an isosurface that isolates S will have
two components (the quarter-circles at radius 0.5 and 1.0),
while an isovolume that isolates S will have just one.

Phase 3’: Merging of labels across processors

In Phase 3’ we create the spatial partition using only the
set of boundary cells identified in Phase 0, in contrast to the
general algorithm which re-distributes all of cells. We iden-
tify abutment and construct each processor’s union list using
the same Union-find strategy from Phase 3 in the general
algorithm. By using the boundary information identified in
Phase 0, we down-select the number of cells re-distributed
by an order of magnitude. This greatly reduces the amount of
communication and the complexity of the intersection tests
used to identify cell abutment.

5 Applications

The labeling produced by a connected components algo-
rithm opens up new analysis capabilities. Having a topolog-
ical description of the connected components of a mesh al-
lows us to isolate features in ways fundamentally different
from standard visualization tools. To demonstrate this, we
present two analysis applications on real data-sets that were
enabled by our algorithm. We also report the performance
characteristics of our algorithm on these data-sets.

5.1 Turbulent flow

TODO: Kelly will write motivation. Hank’s thoughts: sci-
ence problem ... want to understand worm behavior. Maybe
some discussion of birth, death, marriage, divorce, but dis-
cussion is conn comp-centric. 4K cubed data. Create “isovol-
umes" to isolate worms. Will probably reference 1. Needed
to locate conn comps so we could do that analysis. Will prob-
ably be a reference to Figure 4. This is just my thoughts,
Kelly, I defer to you and feel free to deviate.

We now present performance characteristics for calculat-
ing the connected components for this data. Our actual anal-
ysis used isovolumes and data with no ghost cells. For this
paper, we added the option to calculate ghost data and also
repeated the analysis with isosurfaces, giving a total of four
tests. The data sizes involved are in Table 2. The overall per-
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Figure 4: This figure shows the 224 “worms" that have vol-
ume larger than a certain threshold. Each worm is colored
by its volume.

.

Num cells Num cells
wo/ ghosts w/ ghosts

Input data-set 68.7 billion 77.2 billion
After isosurface 1.08 billion 1.21 billion
After isovolume 1.81 billion 2.04 billion

Table 2: Number of cells processed. The input mesh was a
40963 rectilinear grid of hexahedral cells (voxels). For the
first test, applying an isosurface, the cell types are triangles.
For the second test, applying an isovolume, the cells types
are hexahedrons, tetrahedrons, wedges, and pyramids.

formance is described in Table 3 and the per-phase perfor-
mance is described in Table 4.

5.2 Turbulent flow in a nuclear reactor

In [FLPS08], Fischer et al use the Nek5000 code to simu-
late the flow of coolant around a 217-fuel rod nuclear reactor.
In this simulation, coolant flows through the assembly with
a strong bias along a fixed axis (the “Z-axis"), with each rod
also being aligned this axis. It is not desirable for the coolant
to travel directly down this fixed axis. If one of the rods is
“hot," the ideal scenario is for coolant to absorb heat and
then move away, letting other material come in to continue
the cooling process. One important question is where “pock-
ets" of coolant are transferring through the assembly most
quickly. Since each rod is aligned with the z-axis, this is
equivalent to locating regions with significant x,y-velocity,
which can be accomplished via an isosurface operation on
this derived field. Of course, only regions above a certain

Algorithm Ghost Iso CC
Isosurf. wo/ Ghost - 16.3s 30.2s
Isosurf. w/ Ghost 18.5s 17.1s 16.9s
Isovol. wo/ Ghost - 24.4s 108.5
Isovol. w/ Ghost 18.3s 26.3s 69.6s

Table 3: Performance of connected components identifica-
tion algorithm in the context of overall performance, in-
cluding time to calculate a layer of ghost cells (“Ghost"),
apply either an isosurface or isovolume algorithm (“Iso"),
and apply the connected components identification algo-
rithm (“CC"). Note that read times regularly exceed one
minute and vary greatly due to disk contention, caching by
the operating system, and other factors. (All tests read the
same data.)

Algorithm / Phase 0 1 2 3 4
Isosurf. wo/ Ghost - 4.4s 0.01s 24.2s 1.5s
Isosurf. w/ Ghost 4.2s 4.3s 0.01s 5.0s 3.1s
Isovol. wo/ Ghost - 12.5s 0.03s 89.2s 6.7s
Isovol. w/ Ghost 12.9s 13.2s 0.03s 37.9s 5.4s

Table 4: Performance of connected components algorithm.

size criteria represent significant trends, so we once again
only study components above a size threshold.

This simulation takes place on a 1.012 billion cell unstruc-
tured mesh of hexahedrons. There was no ghost data avail-
able and we could not calculate it for comparison’s sake as
we did in section 5.1. We used 30 nodes of Argonne Na-
tional Laboratory’s “Eureka" machine, with each node con-
taining two 2.0 GHz quad-core Xeons (a total of 240 MPI
tasks). The resulting isosurface had 3.04 million cells spread
over 25,189 components. By discarding components below a
size threshold, we arrived at 214 “large" components. These
components almost all resided at the exterior of the assem-
bly, meaning that coolant is communicating better in the ex-
terior than in the interior. The resulting visualizations can be
seen in Figure 5 and specific performance measures can be
found in Table 5.

Stage Time
Read 14.7s

Isosurface 1.1s
Phase 1 0.1s
Phase 2 0.01s
Phase 3 0.5s
Phase 4 0.1s

Table 5: Performance of connected components algorithm
on reactor coolant simulation.
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Figure 5: Connected components for a nuclear reactor coolant simulation on a 1.03 billion cell unstructured mesh. On the left
is the full assembly, in the middle is an image showing all components that have high transverse velocity, and on the right is
just the large components. Note that the large components occur mostly near the exterior of the assembly.

6 Performance study

To explore to the performance characteristics of our algo-
rithm, we conducted a weak scaling study that looked at con-
currency levels up to 2197 cores with data-set sizes up to 21
billion cells. We ran this study on a 216 node linux cluster,
where each node has two six-core 2.8GHz Intel Westmere
processors installed. The system has 96GB of memory per
node (8GB per core) and 20TB of aggregate memory.

6.1 Problem setup

We used synthetic data as input, upsampling structured
grid data from a core-collapse supernova simulation pro-
duced by the Chimera code [BMH∗08]. This data-set was se-
lected because it contains large isovolume components that
span many processors. To test weak scaling we upsampled
the input data-set creating new data-sets composed of 10
million cells per processor. We extract isovolumes from the
upsampled structured grid to create an unstructured mesh for
input to the connected components algorithm. Table 6 out-
lines the number of cores and the corresponding data-sets
used in our scaling study. Figure 1 shows a rendered view of
the isovolume data-set and labeling result for the largest run
of the scaling study. We tested both the general and ghost
cell optimized variant of the algorithm.

6.2 Performance

Figure 6 presents the timing results from our scaling
study. As expected, the timings for phases 1,2, and 4 are
consistent between both variants of the algorithm. At 125
processors and beyond the largest subset of the isovolume
on a single processor approaches the maximum size, 10 mil-
lion cells. At this point we expect weak scaling for Phase 1.
This is confirmed by flat timings for Phase 1 beyond 125
processors. The ghost cell optimized variant dramatically

Num cores Input mesh size Isovol. mesh size
23 = 8 80 million 10.8 million
33 = 27 270 million 34.9 million
43 = 64 640 million 80.7 million

53 = 125 1.25 billion 155.3 million
63 = 216 2.16 billion 265.7 million
73 = 343 3.43 billion 418.7 million
83 = 512 5.12 billion 621.5 million
93 = 729 7.29 billion 881.0 million

103 = 1000 10 billion 1.20 billion
113 = 1331 13.3 billion 1.59 billion
123 = 1728 17.2 billion 2.06 billion
133 = 2197 21.9 billion 2.62 billion

Table 6: Scaling study data-set sizes. We targeted proces-
sor counts equal to powers of three to maintain an even spa-
tial distribution after upsampling. The highest power of three
processor count available on our test system was 133 = 2197
processors. This allowed us to study processor counts from
8 to 2197 and initial mesh sizes from 80 million to 21 bil-
lion cells. The isovolume operation creates a new unstruc-
tured mesh consisting of portions of approximately 1/8th of
the cells from the initial mesh.

outperforms the general algorithm in Phase 3. These tim-
ings demonstrate the benefit of having ghost data available to
identify per processor spatial boundaries. The small amount
of additional preprocessing time required for Phase 0 allows
us to reduce the number of cells transmitted and processed
in Phase 3 by an order of magnitude.

By upsampling we maintain a fixed amount of data per-
processor, however the number of connectivity boundaries
in the isovolume increases as the number of processors used

)
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Figure 6: Scaling study timings for connected components identification algorithm. Phase 3 timings are significantly reduced
by using ghost zones. Note that the two tables have different scales, going up to 150 seconds without ghost data, but only up to
25 seconds with ghost data.

Num cores Num cells in Cores holding Num global
largest comp. largest comp. union pairs

23 = 8 10.1 million 4 16
33 = 27 32.7 million 17 96
43 = 64 76.7 million 29 185
53 = 125 146.6 million 58 390
63 = 216 251.2 million 73 666
73 = 343 396.4 million 109 1031
83 = 512 588.9 million 157 1455
93 = 729 835.5 million 198 2086

103 = 1000 1.14 billion 254 2838
113 = 1331 1.51 billion 315 3948
123 = 1728 1.96 billion 389 5209
133 = 2197 2.49 billion 476 6428

Table 7: Largest component information and number of
global union pairs transmitted. As the size of the data-set in-
creases we see a linear correlation (0.994322) between the
number of cores spanned by the largest connected compo-
nent of the isovolume and the number of union pairs trans-
mitted in Phase 4.

in decomposition increases. This is reflected by the linear
growth in both the number of union pairs transmitted in
Phase 4 and the number of cores spanned by the largest con-
nected component (See Table 7).

7 Conclusion

We have presented a novel data-parallel algorithm that
identifies and labels the connected components in a domain-
decomposed mesh. Our algorithm is designed to fit well into
currently deployed distributed-memory visualization tools.
The labeling produced by our algorithm provides a topolog-
ical characterization of a data-set that enables new types of
analysis. We presented two applications which demonstrate
our approach is suitable for analyzing the massive data-sets
created by today’s parallel scientific simulations. Our scal-
ing study highlighted a significant speed up in runtime when
ghost data is available. It also pointed out the best target for
optimization is the implementation of the balanced spatial
partitioning scheme used to re-distribute cells in Phase 3.
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