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Modeling for Dynamic Ordinal Regression Relationships: An

Application to Estimating Maturity of Rockfish in California

Maria DeYoreo and Athanasios Kottas ∗

Abstract

We develop a Bayesian nonparametric framework for modeling ordinal regression relation-

ships which evolve in discrete time. The motivating application involves a key problem

in fisheries research on estimating dynamically evolving relationships between age, length

and maturity, the latter recorded on an ordinal scale. The methodology builds from non-

parametric mixture modeling for the joint stochastic mechanism of covariates and latent

continuous responses. This approach yields highly flexible inference for ordinal regression

functions while at the same time avoiding the computational challenges of parametric

models. A novel dependent Dirichlet process prior for time-dependent mixing distribu-

tions extends the model to the dynamic setting. The methodology is used for a detailed

study of relationships between maturity, age, and length for Chilipepper rockfish, using

data collected over 15 years along the coast of California.

KEY WORDS: Chilipepper rockfish; dependent Dirichlet process; dynamic density estima-

tion; growth curves; Markov chain Monte Carlo; ordinal regression
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1 Introduction

Consider ordinal responses collected along with covariates over discrete time. Furthermore,

assume multiple observations are recorded at each point in time. This article develops

Bayesian nonparametric modeling and inference for a discrete time series of ordinal regression

relationships. Our aim is to provide flexible inference for the series of regression functions,

estimating the unique relationships present at each time, while introducing dependence by

assuming each distribution is correlated with its predecessors.

Environmental characteristics consisting of ordered categorical and continuous measure-

ments may be monitored and recorded at different points in time, requiring a model for the

temporal relationships between the environmental variables. The relationships present at a

particular point in time are of interest, as well as any trends or changes which occur over

time. Empirical distributions in environmental settings may exhibit non-standard features

including heavy tails, skewness, and multimodality. To capture these features, one must move

beyond standard parametric models in order to obtain more flexible inference and prediction.

The motivating application for this work lies in modeling fish maturity as a function of age

and length. This is a key problem in fisheries science, one reason being that estimates of age at

maturity play an important role in population estimates of sustainable harvest rates (Clark,

1991; Hannah et al., 2009). The specific data set comes from the National Marine Fisheries

Service and consists of year of sampling, age recorded in years, length in millimeters, and

maturity for female Chilipepper rockfish, with measurements collected over 15 years along the

coast of California. Maturity is recorded on an ordinal scale, with values taken to be from 1

through 3, where 1 indicates immature and 2 and 3 represent pre- and post-spawning mature,

respectively. More details on the data are provided in Section 3. Exploratory analysis suggests

both symmetric, unimodal as well as less standard shapes for the marginal distributions of

length and age; histograms for three years are shown in Figure 1. Bivariate data plots of

age and length suggest similar shapes across years, with some differences in location and

scale, and clear differences in sample size, as can be seen from Figure 2. To make the plot
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Figure 1: Data histograms of length and age for female Chilipepper rockfish in years 1994,
1998, and 2000.

more readable, random noise has been added to age, which is recorded on a discretized scale.

Maturity level is also indicated; red color represents immature, green pre-spawning mature,

and blue post-spawning mature. Again, there are similarities including the concentration of

immature fish near the lower left quadrants, but also differences such as the lack of immature

fish in years 1995 through 2000 as compared to the early and later years.

In addition to studying maturity as a function of age and length, inference for the age

and length distributions is also important. This requires a joint model which treats age

and length as random in addition to maturity. We are not aware of any existing modeling

strategy for this problem which can handle multivariate mixed data collected over time.

Compromising this important aspect of the problem, and assuming the regression of maturity

on body characteristics is the sole inferential objective, a possible approach would be to use an

ordered probit regression model. Empirical (data-based) estimates for the trend in maturity

as a function of length or age indicate shapes which may not be captured well by a parametric
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Figure 2: Bivariate plots of length versus age at each year of data, with data points colored
according to maturity level. Red represents level 1, green level 2, and blue level 3. Values of
age have been jittered to make the plots more readable.

model. For instance, the probability a fish is immature (level 1) is generally decreasing with

length, however, in some of the years, the probability a fish is post-spawning mature (level 3)

is increasing up to a certain length value and then decreasing. This is not a trend that can be

captured by parametric models for ordinal regression (Boes and Winkelmann, 2006, discuss

some of these properties). One could include higher order and/or interaction terms, though

it is not obvious which terms to include, and how to capture the different trends across years.

In practice, virtually all methods for studying maturity as a function of age and/or length
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use logistic regression or some variant, often collapsing maturity into two levels (immature

and mature) and treating each covariate separately in the analysis (e.g., Hannah et al., 2009;

Bobko and Berkeley, 2004). Bobko and Berkeley (2004) applied logistic regression with

length as a covariate, and to obtain an estimate of age at 50% maturity (the age at which

50% of fish are mature), they used their estimate for length at 50% maturity and solved

for the corresponding age given by the von Bertalanffy growth curve, which relates age to

length using a particular parametric function. Others assume that maturity is independent

of length after conditioning on age, leading to inaccurate estimates of the proportion mature

at a particular age or length (Morgan and Hoenig, 1997).

We develop a nonparametric Bayesian model to study time-evolving relationships between

maturation, length, and age. These three variables constitute a random vector, and although

maturity is recorded on an ordinal scale, it is natural to conceptualize an underlying continu-

ous maturation variable. Distinguishing features of our approach include the joint modeling

for the stochastic mechanism of maturation and length and age, and the ability to obtain flex-

ible time-dependent inference for multiple ordinal maturation categories. While estimating

maturity as a function of length and age is of primary interest, the joint modeling framework

provides inference for a variety of functionals involving the three body characteristics.

Our goal is to construct a modeling framework for dynamic ordinal regression which

avoids strict parametric assumptions and possesses features that make it well-suited to the

fish maturity application, as well as to similar evolutionary biology problems on studying

natural selection characteristics (such as survival or maturation) in terms of phenotypic traits.

To this end, we build on previous work on ordinal regression not involving time (DeYoreo and

Kottas, 2014a), where the ordinal responses arise from latent continuous variables, and the

joint latent response-covariate distribution is modeled using a Dirichlet process (DP) mixture

of multivariate normals (Müller et al., 1996). In the context of the rockfish data, we model

maturity, length, and age jointly, using a DP mixture. This modeling approach is further

developed here to handle ordinal regressions which are indexed in discrete time, through

use of a new dependent Dirichlet process (DDP) prior (MacEachern, 1999, 2000), which
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estimates the regression relationship at each time point in a flexible way, while incorporating

dependence across time.

We review the model for ordinal regression without the time component in Section 2.1.

Section 2.2 introduces the DDP, and in Section 2.3, we develop a new method for incorpo-

rating dependence in the DP weights to handle distributions indexed in discrete time. The

model is then developed further in Section 3 in the context of the motivating application, and

applied to analyze the rockfish data discussed above. Section 4 concludes with a discussion.

Technical details on properties of the DDP prior model, and on the posterior simulation

method are included in the appendixes.

2 Modeling Framework

2.1 Bayesian Nonparametric Ordinal Regression

We first describe our approach to regression in the context of a single distribution, that is,

without any aspect of time. Let {(yi,xi) : i = 1, . . . , n} denote the data, where each obser-

vation consists of an ordinal response yi along with a vector of covariates xi = (xi1, . . . , xip).

The methodology is developed in DeYoreo and Kottas (2014a) for multivariate ordinal re-

sponses, however we work with a univariate response for notational simplicity and because

this is the relevant setting for the application of interest. Our model assumes the ordinal

responses arise as discretized versions of latent continuous responses, which is natural for

many settings and particularly relevant for the fish maturity application, as maturation is a

continuous variable recorded on a discrete scale. With C categories, introduce latent contin-

uous responses (Z1, . . . , Zn) such that Yi = j if and only if Zi ∈ (γj−1, γj ], for j = 1, . . . , C,

and cut-offs −∞ = γ0 < γ1 < · · · < γC =∞.

We focus on settings in which the covariates may be treated as random, which is appro-

priate, indeed necessary, for many environmental applications. In the fish maturity example,

the body characteristics are interrelated and arise in the form of a data vector, and we

are interested in various relationships, including but not limited to the way in which ma-
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turity varies with age and length. This motivates our focus on building a flexible model

for the joint density f(z,x), for which we apply a DP mixture of multivariate normals:

(zi,xi) | G
iid∼
∫

N(·;µ,Σ)dG(µ,Σ), with G | α,G0 ∼ DP(α,G0).

By the constructive definition of the DP (Sethuraman, 1994), a realization G from a

DP(α,G0) is almost surely of the form G =
∑∞

l=1 plδθl . The locations θl = (µl,Σl) are

independent realizations from the centering distribution G0, and the weights are deter-

mined through stick-breaking from beta distributed random variables. In particular, let

vl
iid∼ beta(1, α), l = 1, 2, . . . , independently of {θl}, and define p1 = v1, and for l = 2, 3, . . . ,

pl = vl
∏l−1
r=1(1− vr). Therefore, the model for f(z,x) has an almost sure representation as a

countable mixture of multivariate normals, and implies the following induced model for the

regression function:

Pr(Y = j | x;G) =
∞∑
r=1

wr(x)

∫ γj

γj−1

N(z;mr(x), sr) dz (1)

with covariate-dependent weights wr(x) ∝ prN(x;µxr ,Σ
xx
r ), covariate-dependent meansmr(x) =

µzr + Σzx
r (Σxx

r )−1(x−µxr ), and variances sr = Σzz
r −Σzx

r (Σxx
r )−1Σxz

r . Here, µr is partitioned

into µzr and µxr according to Z and X, and (Σzz
r ,Σ

xx
r ,Σ

zx
r ,Σ

xz
r ) are the components of the

corresponding partition of covariance matrix Σr.

This modeling strategy allows for non-linear, non-standard relationships to be captured,

and overcomes many limitations of standard parametric models. In addition, the cut-offs

may be fixed to arbitrary increasing values (which we recommend to be equally spaced and

centered at zero) without sacrificing the ability of the model to approximate any distribution

for mixed ordinal-continuous data. In particular, it can be shown that the induced prior

model on the space of mixed ordinal-continuous distributions assigns positive probability to

all Kullback-Leibler neighborhoods of any distribution in this space. This represents a key

computational advantage over parametric models. We refer to DeYoreo and Kottas (2014a)

for more details on model properties, a review of existing approaches to ordinal regression,

and illustration of the benefits afforded by the nonparametric joint model over standard
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methods. This discussion refers to ordinal responses with three or more categories. For

the case of binary regression, i.e., when C = 2, additional restrictions are needed on the

covariance matrix Σ to facilitate identifiability (DeYoreo and Kottas, 2014b).

2.2 Dependent Dirichlet Processes

In developing a model for a collection of distributions indexed in discrete time, we seek to

build on previous knowledge, retaining the powerful and well-studied DP mixture model

marginally at each time t ∈ T , with T = {1, 2, . . . }. We thus seek to extend the DP prior

to model GT = {Gt : t ∈ T }, a set of dependent distributions such that each Gt follows

a DP marginally. The dynamic DP extension can be developed by introducing temporal

dependence in the weights and/or atoms of the constructive definition, G =
∑∞

l=1 plδθl .

The general formulation of the DDP introduced by MacEachern (1999, 2000) expresses

the atoms θlS = {θl,t : t ∈ S}, l = 1, 2, . . . as independently and identically distributed (i.i.d.)

sample paths from a stochastic process over S, and the latent beta random variables which

drive the weights, vlS = {vl,t : t ∈ S}, l = 1, 2, . . . , as i.i.d. realizations from a stochastic

process with beta(1, αt) marginal distributions. The distributions could be indexed in time,

space, or by covariates, and S represents the corresponding index set, being Z+ in our case.

The DDP model for distributions indexed in discrete time expresses Gt as
∑∞

l=1 pl,tδθl,t , for

t ∈ T . The locations θlT = {θl,t : t ∈ T } are i.i.d. for l = 1, 2, . . . , from a time series model

for the kernel parameters. The stick-breaking weights plT = {pl,t : t ∈ T }, l = 1, 2, . . . , arise

through a latent time series with beta(1, αt) marginal distributions, independently of θlT .

The general DDP can be simplified by introducing dependence only in the weights, such

that the atoms are not time dependent, or alternatively, the atoms can be time dependent

while the weights remain independent of time. We refer to these as common atoms and

common weights models, respectively. While the majority of DDP applications fall into

the common weights category, we believe the most natural of the two simplifications for time

series is to assume that the locations are constant over time, and introduce dependence in the

weights. Although we will end up working with the more general version of the DDP with
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dependent atoms and weights, for the application and related settings, it seems plausible

that there is a fixed set of factors that determine the region in which the joint density

of body characteristics is supported, but dynamics are caused by changes in the relative

importance of the factors. The construction of dependent weights requires dependent beta

random variables, so that p1,t = v1,t, pl,t = vl,t
∏l−1
r=1(1 − vr,t), for l = 2, 3, . . . , with each

{vl,t : t ∈ T } a realization from a time series model with beta(1, α) marginals. Equivalently,

we can write p1,t = 1−β1,t, pl,t = (1−βl,t)
∏l−1
r=1 βr,t, for l = 2, 3, . . . , with each {βl,t : t ∈ T }

a realization from a time series model with beta(α, 1) marginals.

There have been many variations of the DDP model proposed in the literature. The com-

mon weights version was originally discussed by MacEachern (2000), in which a Gaussian

process was used to generate dependent locations, with the autocorrelation function control-

ling the degree to which distributions which are “close” are similar, and how quickly this

similarity decays. De Iorio et al. (2004) consider also a common weights model, in which the

index of dependence is a covariate, a key application of DDP models. In the order-based DDP

of Griffin and Steel (2006), covariates are used to sort the weights. Covariate dependence is

incorporated in the weights in the kernel and probit stick-breaking models of Dunson and

Park (2008) and Rodriguez and Dunson (2011), respectively, however these prior models do

not retain the DP marginally. Gelfand et al. (2005) developed a DP mixture model for spatial

data, using a spatial Gaussian process to induce dependence in DDP locations indexed by

space. For data indexed in discrete time, Rodriguez and ter Horst (2008) apply a common

weights model, with atoms arising from a dynamic linear model. Di Lucca et al. (2013)

develop a model for a single time series of continuous or binary responses through a DDP

in which the atoms are dependent on lagged terms. Xiao et al. (2015) construct a dynamic

model for Poisson process intensities built from a DDP mixture with common weights and dif-

ferent types of autoregressive processes for the atoms. Taddy (2010) assumes the alternative

simplification of the DDP with common atoms, and models the stick-breaking proportions

{vl,t : t ∈ T } using the positive correlated autoregressive beta process from McKenzie (1985).

Nieto-Barajas et al. (2012) also use the common atoms simplification of the DDP, modeling
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a time series of random distributions by linking the beta random variables through latent

binomially distributed random variables.

2.3 A Time-Dependent Nonparametric Prior

To generate a correlated series {βl,t : t ∈ T } such that each βl,t ∼ beta(α, 1) marginally, we

define a stochastic process

B =

{
βt = exp

(
−ζ

2 + η2t
2α

)
: t ∈ T

}
, (2)

which is built from a standard normal random variable ζ and an independent stochastic pro-

cess ηT = {ηt : t ∈ T } with standard normal marginal distributions. This transformation

leads to marginal distributions βt ∼ beta(α, 1) for any t. To see this, take two independent

standard normal random variables Y1 and Y2, such that W = (Y 2
1 + Y 2

2 )/2 follows an expo-

nential distribution with mean 1, and thus B = exp(−W/α) ∼ beta(α, 1). To our knowledge,

this is a novel construction for a common atoms DDP prior model. The practical utility

of the transformation in (2) is that it facilitates building the temporal dependence through

Gaussian time-series models, while maintaining the DP structure marginally.

Because we work with distributions indexed in discrete time, we assume ηT to be a

first-order autoregressive (AR) process, however alternatives such as higher order processes

or Gaussian processes for spatially indexed data are possible. The requirement of standard

normal marginal distributions on ηT leads to a restriction on the variance of the AR(1) model,

such that ηl,t ∼ N(φηl,t−1, 1 − φ2), t = 2, . . . , T . Thus |φ| < 1, which implies stationarity

for the stochastic process ηT . Since B is a transformation of a strongly stationary stochastic

process, it is also strongly stationary. Note that the correlation in (βl,t, βl,t+k) is driven by

the autocorrelation present in ηT , and this induces dependence in the weights (pl,t, pl,t+k),

which leads to dependent distributions (Gt, Gt+k).

We now explore this dependence, discussing some of the correlations implied by this prior

model. First, consider the correlation of the beta random variables used to define the dynamic
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stick-breaking weights. Let ρk = corr(ηt, ηt+k), which is equal to φk under the assumption of

an AR(1) process for ηT . The autocorrelation function associated with B is

corr(βt, βt+k | α, φ) =
α1/2(1− ρ2k)1/2(α+ 1)2(α+ 2)1/2{

(1− ρ2k + α)2 − α2ρ2k
}1/2 − α(α+ 2) (3)

as described in Appendix A. Smaller values for α lead to smaller correlations for any fixed φ at

a particular lag, and φ controls the strength of correlation, with large φ producing large corre-

lations which decay slowly. The parameters φ and α in combination can lead to a wide range

of correlations, however α ≥ 1 implies a lower bound near 0.5 on the correlation for any lag k.

In the limit, as α → 0+, corr(βt, βt+k | α, φ) → 0, and as α → ∞, corr(βt, βt+k | α, φ) tends

towards 0.5 as ρk → 0+, and 1 as ρk → 1−. Assuming ρk = φk, gives limφ→1− corr(βt, βt+k |

α, φ) = 1 and limφ→0+ corr(βt, βt+k | α, φ) = α1/2(α + 1)(α + 2)1/2 − α(α + 2). This tends

upwards to 0.5 quickly as α→∞.

Note that corr(βt, βt+k | α, φ) is a function of ρ2k but not ρk, which is to be expected since

ηt enters the expression for βt only through η2t , and thus −ρk and ρk have the same effect

in the correlation. The same is true of the correlation in the DP weights, which is given

below. We believe that φ ∈ (0, 1) is a natural restriction, since we are building a stochastic

process for distributions correlated in time through a transformation of an AR process, which

intuition suggests should be positively correlated. However, all that is strictly required to

preserve the DP marginals is |φ| < 1.

Assuming βl,T = {βl,t : t ∈ T } is generated by B, from an underlying AR(1) process

for ηT with coefficient φ, we study the dependence induced in the resulting DDP weights at

consecutive time points, (pl,t, pl,t+1). The covariance is given by

cov(pl,t, pl,t+1 | α, φ) =

{
α3/2(1− φ2)1/2

(2 + α)1/2 {(1− φ2 + α)2 − α2φ2}1/2

}l−1
{

1− 2α

α+ 1
+

α3/2(1− φ2)1/2

(2 + α)1/2 {(1− φ2 + α)2 − α2φ2}1/2

}
− α2l−2

(1 + α)2l
, (4)

which can be divided by var(pl,t | α) = {2αl−1/((1+α)(2+α)l)}−{α2l−2/(1+α)2l} to yield
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corr(pl,t, pl,t+1 | α, φ); note that E(pl,t | α) = E(pl,t+1 | α) and var(pl,t | α) = var(pl,t+1 | α).

Derivations are given in Appendix A. This expression is decreasing in index l, and larger

values of φ lead to larger correlations in the weights at any particular l. Moreover, the

decay in correlations with weight index is faster for small α and small φ. As α → 0+,

corr(p1,t, p1,t+1 | α, φ) → 1 for any value of φ, and as α → ∞, corr(p1,t, p1,t+1 | α, φ) is

contained in (0.5, 1), with values closer to 1 for larger φ. Note that corr(pl,t, pl,t+k | α, φ) has

the same expression as corr(pl,t, pl,t+1 | α, φ), but with φ replaced by φk; it is thus decreasing

with the lag k, with the speed of decay controlled by φ.

Finally, assume Gt is a random distribution on RM , such that Gt =
∑∞

l=1 pl,tδθl , where

the {pl,t : t ∈ T } are defined through the dynamic stick-breaking weights {βl,t : t ∈ T },

and the θl are i.i.d. from a distribution G0 on RM . Consider two consecutive distributions

(Gt, Gt+1), and a measurable subset A ⊂ RM . The correlation of consecutive distributions,

corr(Gt(A), Gt+1(A) | φ, α,G0), is discussed in Appendix A.

3 Estimating Maturity of Rockfish

3.1 Chilipepper Rockfish Data

We now utilize the method for incorporating dependence into the weights of the DP and

the approach to ordinal regression involving DP mixtures of normals for the latent response-

covariate distribution to further develop the DDP mixture modeling framework for dynamic

ordinal regression.

In the original rockfish data source, maturity is recorded on an ordinal scale from 1

to 6, representing immature (1), early and late vitellogenesis (2, 3), eyed larvae (4), and

post-spawning (5, 6). Because scientists are not necessarily interested in differentiating be-

tween every one of these maturity levels, and to make the model output simple and more

interpretable, we collapse maturity into three ordinal levels, representing immature (1), pre-

spawning mature (2, 3, 4), and post-spawning mature (5, 6).

Many observations have age missing or maturity recorded as unknown. Exploratory
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analysis suggests there to be no systematic pattern in missingness. Further discussion with

fisheries research scientists having expertise in aging of rockfish and data collection revealed

that the reason for missing age in a sample is that otoliths (ear stones used in aging) were

not collected or have not yet been aged. Maturity may be recorded as unknown because

it can be difficult to distinguish between stages, and samplers are told to record unknown

unless they are reasonably sure of the stage. Therefore, there is no systematic reason that

age or maturity is not present, and it is reasonable to assume that the data are missing at

random, or that the probability an observation is missing does not depend on the missing

values, allowing us to ignore the missing data mechanism, and base inferences only on the

complete data (e.g., Rubin, 1976; Gelman et al., 2004).

Age can not be treated as a continuous covariate, as there are approximately 25 distinct

values of age in over 2, 200 observations. Age is in fact an ordinal random variable, such that

a recorded age j implies the fish was between j and j + 1 years of age. This relationship

between discrete recorded age and continuous age is obtained by the following reasoning.

Chilipepper rockfish are winter spawning, and the young are assumed to be born in early

January. The annuli (rings) of the otiliths are counted in order to determine age, and these

also form sometime around January. Thus, for each ring, there has been one year of growth.

We therefore treat age much in the same way as maturity, using a latent continuous

age variable. Let U represent observed ordinal age, let U∗ represent underlying continuous

age, and assume, for j = 1, 2, . . . , that U = j iff U∗ ∈ (j, j + 1]. Equivalently, U = j iff

log(U∗) ∈ (log(j), log(j + 1)], for j = 1, 2, . . . , and U = 0 iff log(U∗) ∈ (−∞, 0], so that the

support of the latent continuous random variable corresponding to age is R. Letting W be

the latent continuous random variable which determines U through discretization, we assume

ut,i = j iff wt,i ∈ (log(j), log(j + 1)], for j = 0, 1, . . . , so that W is interpretable as log-age on

a continuous scale.

Considering year of sampling as the index of dependence, observations occur in years 1993

through 2007, indexed by t = 1, . . . , T = 15, with no observations in 2003, 2005, or 2006. Let

the missing years be given by s, here s = {11, 13, 14}, and let sc = {1, . . . , T} \ s represent

13



all other years in {1, . . . , T}. This situation involving time points in which data is completely

missing is not uncommon in these types of problems, and can be handled with our model

for equally spaced time points. We retain the ability to provide inference and estimation

in years for which no data was recorded, which we will see are reasonable and exhibit more

uncertainty than in other years.

3.2 Hierarchical Model and Implementation Details

The common atoms DDP model presented in Section 2.3 was tested extensively on simulated

data, and performed very well in capturing trends in the underlying distributions when there

were no missing years or forecasting was not the focus. In these settings, the common atoms

model is sufficiently powerful from an inferential perspective such that the need to turn to a

more complex model is diminished. However, as a consequence of the need to force the same

set of components to be present at each time point, density estimates at missing time points

tend to resemble an average across all time points, which is not desirable when a trend or

change in support is suggested. A more general model is required for this application, since

it is important to make inferences in years for which data was not collected. We therefore

consider a simple extension, adding dependence through a vector autoregressive model in the

mean component of the DP atoms, such that θl = (µl,Σl) becomes θl,t = (µl,t,Σl).

Assuming Z represents maturity Y on a continuous scale, W is interpretable as log-

age, and X represents length, a dependent nonparametric mixture model is applied to es-

timate the time-dependent distributions of the trivariate continuous random vectors Y ∗ti =

(Zti,Wti, Xti), for t = 1, . . . , T , and i = 1, . . . , nt. In our notation, T is the number of years

or the final year containing data (and it is possible that not all years in {1, . . . , T} contain

observations), and nt is the sample size in year t.

We utilize the computationally efficient approach to inference which involves truncating

the countable representation for each Gt to a finite level N (Ishwaran and James, 2001), such

that the dependent stick-breaking weights are given by p1,t = 1−β1,t, pl,t = (1−βl,t)
∏l−1
r=1 βr,t,

for r = 1, . . . , N−1, and pN,t =
∏N−1
l=1 βl,t, ensuring

∑N
l=1 pl,t = 1. Since α is not a function of

14



t, the same truncation level is applied for all mixing distributions. In choosing the truncation

level, we use the expression relating N to the expectation of the sum of the first N weights

w1, . . . , wN generated from stick-breaking of beta(1, α) random variables. The expression is

E(
∑N

j=1wj | α) = 1 − (α/(α + 1))N , which can be further averaged over the prior for α to

obtain E(
∑N

j=1wj), with N chosen such that this expectation is close to 1 up to the desired

level of tolerance for the approximation. The hierarchical model can be expressed as follows:

yt,i = j ↔ γj−1 < zt,i ≤ γj , t ∈ sc, i = 1, . . . , nt

ut,i = j ↔ log(j) < wt,i ≤ log(j + 1), t ∈ sc, i = 1, . . . , nt

{y∗t,i} | {µl,t}, {Σl}, {Lt,i} ∼
∏
t∈sc

nt∏
i=1

N(µLt,i,t,ΣLt,i)

{Lt,i} | {ηl,t}, {ζl} ∼
∏
t∈sc

nt∏
i=1

N∑
l=1

pl,tδl(Lt,i)

ζl
iid∼ N(0, 1), l = 1, . . . , N − 1

ηl,1
iid∼ N(0, 1), l = 1, . . . , N − 1

ηl,t | ηl,t−1, φ ∼ N(φηl,t−1, 1− φ2), l = 1, . . . , N − 1, t = 2, . . . , T

µl,1 |m0,V0 ∼ N(m0,V0), l = 1, . . . , N

µl,t | µl,t−1,Θ,m,V ∼ N(m+ Θµl,t−1,V ), l = 1, . . . , N, t = 2, . . . , T

Σl | ν,D
iid∼ IW(Σl; ν,D), l = 1, . . . , N (5)

with priors on α, ψ = (m,V ,D), φ, and Θ. Recall that βl,t is defined through (ηl,t, ζl, α),

and the {βl,t} determine the {pl,t} through stick-breaking.

The parameters {ζl} and {ηl,t} can be updated individually with slice samplers, which

involves alternating simulation from uniform random variables and truncated normal ran-

dom variables, implying draws for {βl,t}, and hence {pl,t}. The configuration variables

Lt,i are drawn from discrete distributions on {1, . . . , N}, with probabilities proportional to

pl,tN(y∗t,i;µl,t,Σl) for l = 1, . . . , N . The update for Σl is IW(ν +Ml,D+
∑
{(t,i):Lti=l}(y

∗
t,i−

µl,t)(y
∗
t,i − µl,t)T ), where Ml = |{t, i} : Lt,i = l|, and each µl,t is updated from a normal
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distribution. The parameters α and φ, given priors IG(aα, bα), and uniform on (0, 1) or

(−1, 1), respectively, can be sampled using Metropolis-Hastings steps. We assume that Θ

is diagonal, with elements (θ1, θ2, θ3), however we advocate for a full covariance matrix V .

This implies that each element of µl,t has a mean which depends only on the corresponding

element of µl,t−1, however there exists dependence in the elements of µl,t, which seems rea-

sonable for most applications. We assume uniform priors on (0, 1) or (−1, 1) for each element

of Θ, and update them with a Metropolis-Hastings step. Finally, the parameters ψ have

closed-form full conditional distributions, given priors m ∼ N(am,Bm), V ∼ IW(aV ,BV ),

D ∼W(aD,BD). The full conditionals and posterior simulation details are further described

in Appendix B.

To implement the model, we must specify the parameters of the hyperpriors on ψ. A

default specification strategy is developed by considering the limiting case of the model as

α→ 0+ and Θ→ 0, which results in a single normal distribution for Y ∗t . In the limit, with

Y ∗t | µt,Σ ∼ N(µt,Σ) and µt | m,V ∼ N(m,V ), we find E(Y ∗t ) = am and Cov(Y ∗t ) =

Bm+BV (aV − d− 1)−1 +aDBD(ν− d− 1)−1, where d is the response-covariate dimension,

here d = 3. The only covariate information we require is an approximate center (such as

the midpoint of the data) and range, denoted by cx and rx for X, and analogously for

U . We use cx and rx/4 as proxies for the marginal mean and standard deviation of X.

We also seek to scale the latent variables appropriately. The centers and ranges cu and ru

provide approximate centers cw and ranges rw of latent log-age W . Since Y is supported on

{1, . . . , C}, latent continuous Z must be supported on values slightly below γ1 up to slightly

above γC−1, so that rz/4 is a proxy for the standard deviation of Z, where rz = (γC−1− γ1).

Using these mean and variance proxies, we fix am = (0, cu, cx). Each of the three terms

in Cov(Y ∗t ) can be assigned an equal part of the total covariance, for instance being set to

3−1diag{(rz/4)2, (rw/4)2, (rx/4)2}. For dispersed but proper priors, ν, aV and aD can be

fixed to small values such as d+ 2, and Bm, BV , and BD determined accordingly.

It remains to specify m0 and V 0, the mean and covariance for the initial distributions

µl,1. We propose a fairly conservative specification, noting that in the limit, E(Y ∗1) =
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m0, and Cov(Y ∗1) = aDBD(ν − d − 1)−1 + V 0. Therefore, m0 can be specified in the

same way as am but using only the subset of data at t = 1, and V 0 can be set to

diag{(rz1/4)2, (rw1 /4)2, (rx1/4)2} − aDBD(ν − d − 1)−1, where the subscript 1 indicates the

subset of data at t = 1.

In simulation studies and the rockfish application, we observed a moderate to large amount

of learning for all hyperparameters. For instance, for the rockfish data, the posterior distri-

bution for φ was concentrated on values close to 1, indicating the DDP weights are strongly

correlated across time. There was also moderate learning for α as its posterior distribution

was concentrated around 0.5, with small variance, shifted down relative to the prior which

had expectation 2. The posterior distribution for each element of m was reduced in variance

and concentrated on values not far from those indicated by the prior mean. The posterior

samples for the covariance matrices V and D supported smaller variance components than

suggested by the prior.

3.3 Results

Various simulation settings were developed to study both the common atoms version of the

model and the more general version (DeYoreo, 2014, chapter 4). While we focus only on the

fish maturity data application in this paper, our extensive simulation studies have revealed

the inferential power of the model under different scenarios for the true latent response

distribution and ordinal regression relationships.

We first discuss inference results for quantities not involving maturity. As illustrated with

results for six years in Figure 3, the estimates for the density of length display a range of

shapes. The interval estimates reflect the different sample sizes in these years; for instance,

in 1994 there are 271 observations, whereas in 2000 and 2004 there are only 64 and 37

observations, respectively. A feature of our modeling approach is that inference for the

density of age can be obtained over a continuous scale. The corresponding estimates are

shown in Figure 4 for the same years as length.

The posterior mean surfaces for the bivariate density of age and length are shown in
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Figure 3: Posterior mean and 95% interval estimates for the density of length (in millimeters)
across six years, with the data shown as a histogram.
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Figure 4: Posterior mean and 95% interval estimates for the density of age on a continuous
scale across six years, with the data shown as a histogram.
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Figure 5: Posterior mean estimates for the bivariate density of age and length across all years.
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Figure 6: Posterior mean and 95% interval bands for the expected value of length over
(continuous) age, E(X | U∗ = u∗;Gt), across three years. Overlaid are the data (in blue) and
the estimated von Bertalanffy growth curves (in red).

Figure 5 for all years, including the ones (years 2003, 2005 and 2006) for which data is not

available. The model yields more smooth shapes for the density estimates in these years.

An ellipse with a slight “banana” shape appears at each year, though some nonstandard

features and differences across years are present. In particular, the density in year 2002

extends down farther to smaller ages and lengths; this year is unique in that it contains a

very large proportion of the young fish which are present in the data. One can envision

a curve going through the center of these densities, representing E(X | U∗ = u∗;Gt), for

which we show posterior mean and 95% interval bands for three years in Figure 6. The

estimates from our model are compared with the von Bertalanffy growth curves for length-

at-age, which are based on a particular function of age and three parameters (estimated here

using nonlinear least squares). It is noteworthy that the nonparametric mixture model for the

joint distribution of length and age yields estimated growth curves which are overall similar

to the von Bertalanffy parametric model, with some local differences especially in year 2002.

The uncertainty quantification in the growth curves afforded by the nonparametric model is

important, since the attainment of unique growth curves by group (i.e. by location or cohort)

is often used to suggest that the groups differ in some way, and this type of analysis should

clearly take into account the uncertainty in the estimated curves.
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The last year 2007, in addition to containing few observations, is peculiar. There are no

fish that are younger than age 6 in this year, and most of the age 6 and 7 fish are recorded

as immature, even though in all years combined, less than 10% of age 6 as well as age 7 fish

are immature. This year appears to be an anomaly. As there are no observations in 2005 or

2006, and a small number of observations in 2007 which seem to contradict the other years

of data, hereinafter, we report inferences only up to 2004.

Inference for the maturation probability curves is shown over length and age in Figures 7

and 8. The probability that a fish is immature is generally decreasing over length, reaching a

value near 0 at around 350 mm in most years. There is a large change in this probability over

length in 2002 and 2004 as compared to other years, as these years suggest a probability close

to 1 for very small fish near 200 to 250 mm. Turning to age, the probability of immaturity

is also decreasing with age, also showing differences in 2002 and 2004 in comparison to other

years. There is no clear indication of a general trend in the probabilities associated with

levels 2 or 3. Years 1995-1997 and 1999 display similar behavior, with a peak in probability

of post-spawning mature for moderate length values near 350 mm, and ages 6-7, favoring

pre-spawning mature fish at other lengths and ages. The last four years 2001-2004 suggest

the probability of pre-spawning mature to be increasing with length up to a point and then

leveling off, while post-spawning is favored most for large fish. Post-spawning appears to have

a lower probability than pre-spawning mature for any age at all years, with the exception of

1998, for which the probability associated with post-spawning is very high for older fish.

The Pacific States Marine Fisheries Commission states that all Chilipepper rockfish are

mature at around 4-5 years, and at size 304 to 330 mm. A stock assessment produced by

the Pacific Fishery Management Council (Field, 2009) fitted a logistic regression to model

maturity over length, from which it appears that 90% of fish are mature around 300-350

mm. As our model does not enforce monotonicity on the probability of maturity across age,

we obtain posterior distributions for the first age greater than 2 (since biologically all fish

under 2 should be immature) at which the probability of maturity exceeds 90%, given that it

exceeds 90% at some point. That is, for each posterior sample we evaluate Pr(Y > 1 | u∗;Gt)
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Figure 7: Posterior mean (black lines) and 95% interval estimates (gray shaded regions)
for the marginal ordinal probability curves associated with length. Category 1 (immature)
given by solid line, category 2 (pre-spawning mature) given by dashed line, and category 3
(post-spawning mature) shown as a dotted line.
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Figure 8: Posterior mean (black lines) and 95% interval estimates (gray shaded regions) for
the marginal ordinal probability curves associated with age. Category 1 (immature) given
by solid line, category 2 (pre-spawning mature) given by dashed line, and category 3 (post-
spawning mature) shown as a dotted line.
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Figure 9: Posterior mean and 90% intervals for the smallest value of age above 2 years at
which probability of maturity first exceeds 90% (left), and similar inference for length (right).

over a grid in u∗ beginning at 2, and find the smallest value of u∗ at which this probability

exceeds 0.9. Note that there were very few posterior samples for which this probability did

not exceed 0.9 for any age (only 4 samples in 1993 and 8 in 2003). The estimates for age at

90% maturity are shown in the left panel of Figure 9. The model uncovers a (weak) U-shaped

trend across years. Also noteworthy are the very narrow interval bands in 2002. Recall that

this year contains an abnormally large number of young fish. In this year, over half of fish

age 2 (that is, of age 2-3) are immature, and over 90% of age 3 (that is, of age 3-4) fish are

mature, so we would expect the age at 90% maturity to be above 3 but less than 4, which

our estimate confirms. A similar analysis is performed for length (right panel of Figure 9)

suggesting a trend over time which is consistent with the age analysis.

Due to the monotonicity in the maturity probability curve in standard approaches, and

the fact that age and length are treated as fixed, the point at which maturity exceeds a

certain probability is a reasonable quantity to obtain in order to study the age or length at

which most fish are mature. However, since we are modeling age and length, we can obtain

their entire distribution at a given maturity level. These are inverse inferences, in which we

study, for instance, f(x | Y = 1;Gt) as opposed to Pr(Y = 1 | x;Gt). It is most informative

to look at age and length for immature fish, as this makes it clear at which age or length
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there is essentially no probability assigned to the immature category. The posterior mean

estimates for f(u∗, x | Y = 1;Gt) are shown in Figure 10.

3.4 Model Checking

Here, we discuss results from posterior predictive model checking. In particular, we generated

replicate data sets from the posterior predictive distribution, and compared to the real data

using specific test quantities (Gelman et al., 2004). Using the MCMC output, we simulate

replicate data sets {(yti, wti, xti)rep} of the same size as the original data. We then choose

some test quantity, T ({yti, wti, xti}), and for each replicate data set at time t, determine

the value of the test quantity and compare the distribution of test quantities with the value

computed from the actual data. To obtain Figure 11 we computed, for each replicate sample,

the proportion of age 6 fish that were of maturity levels 1 and 2. Boxplots of these proportions

are shown, with the actual proportions from the data indicated as blue points. The width of

each box is proportional to the number of age 6 fish in that year. Figure 12 refers to fish of at

least age 7 with length larger than 400 mm. Finally, Figure 13 plots the sample correlation

of length and age for fish of maturity level 2. The results reported in Figures 11, 12 and 13

suggest that the model is predicting data which is very similar to the observed data in terms

of practically important inferences.

Although results are not shown here, we also studied residuals with cross-validation, ran-

domly selecting 20% of the observations in each year and refitting the model, leaving out

these observations. We obtained residuals ỹti − E(Y | W = w̃ti, X = x̃ti;Gt) for each obser-

vation (ỹti, w̃ti, x̃ti) which was left out. There was no apparent trend in the residuals across

covariate values, that is, no indication that we are systematically under or overestimating

fish maturity of a particular length and/or age.
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Figure 10: Posterior mean estimate for the bivariate density of age and length for immature
fish across years. The data on age and length of immature fish is overlaid in each plot.
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Figure 11: Distributions of the proportion of age 6 fish that were of maturity level 1 (left
panel) and 2 (right panel) in the replicated data sets are shown as boxplots, with width
proportional to the number of age 6 fish in each year. The actual proportion from the data
is given as a blue circle.
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Figure 12: Distributions of the proportion of fish age 7 and above and length larger than 400
mm that were of maturity level 1 (left panel) and 2 (right panel) in the replicated data sets
are shown as boxplots, with width proportional to the number fish of this age and length in
each year. The actual proportion from the data is given as a blue circle.
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Figure 13: Distributions of the sample correlation between length and age for fish that were
of maturity level 2 in the replicated data sets are shown as boxplots, with width proportional
to the number of level 2 fish in each year. The sample correlation based on the data is given
as a blue circle.

4 Discussion

The methods developed for dynamic ordinal regression are widely applicable to modeling

mixed ordinal-continuous distributions indexed in discrete time. At any particular point

in time, the DP mixture representation for the latent response-covariate distribution is re-

tained, enabling flexible inference for a variety of functionals, and allowing standard posterior

simulation techniques for DP mixture models to be utilized.

In contrast to standard approaches to ordinal regression, the model does not force spe-

cific trends, such as monotonicity, in the regression functions. We view this as an attribute

in most settings. Nevertheless, in situations in which it is believed that monotonicity ex-

ists, we must realize that the data will determine the model output, and may not produce

strictly monotonic relationships. In the fish maturity example, it is generally accepted that

monotonicity exists in the relationship between maturity and age or length. Although our

model does not enforce this, the inferences generally agree with what is expected to be true

biologically. Our model is also extremely relevant to this setting, as the covariates age and
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length are treated as random, and the ordinal nature of recorded age is accounted for using

variables which represent underlying continuous age. The set of inferences that are provided

under this framework, including estimates for length as a function of age, make this modeling

approach powerful for the particular application considered, as well as related problems.

While year of sampling was considered to be the index of dependence in this analysis, an

alternative is to consider cohort as an index of dependence. All fish born in the same year, or

the same age in a given year, represent one cohort. Grouping fish by cohort rather than year of

record should lead to more homogeneity within a group, however there are also some possible

issues since fish will generally be younger as cohort index increases. This is a consequence

of having a particular set of years for which data is collected, i.e., the cohort of fish born in

2006 can not be older than 4 if data collection stopped in 2009. Due to complications such

as these, combined with exploration of the relationships within each cohort, we decided to

treat year of data collection as the index of dependence, but cohort indexing could be more

appropriate in other analyses of similar data structures.

The proposed modeling approach could also be useful in applications in finance. One

such example arises in the analysis of price changes of stocks. In the past, stocks traded

on the New York Stock Exchange were priced in eighths, later moved to sixteenths, and

corporate bonds still trade in eighths. In analyzing price changes of stocks which are traded

in fractions, it is inappropriate to treat the measurements as continuous, particularly if the

range of values is not very large (e.g., Müller and Czado, 2009). The price changes should

be treated with a discrete response model, and the possible responses are ordered, ranging

from a large negative return to a large positive return. One possible analysis may involve

modeling the monthly returns as a function of covariates such as trade volume, and must take

into account the ordinal nature of the responses. In addition, the distribution of returns in a

particular month is likely correlated with the previous month, and the regression relationships

must be allowed to be related from one month to the next. In finance as well as environmental

science, empirical distributions may exhibit non-standard features which require more general

methods, such as the nonparametric mixture model developed here.
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A Properties of the DDP Prior Model

Here, we provide derivations of the various correlations associated with the DDP prior, as
given in Section 2.3.
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Autocorrelation of (βt, βt+k)

Since the process is stationary with βt ∼ beta(α, 1) at any time t, E(βt | α) = α/(α+ 1) and
var(βt | α) = α/{(α+ 1)2(α+ 2)}. We also have

E(βtβt+k | α, φ) = E
{

exp(−ζ2/α)
}

E
{

exp(−(η2t + η2t+k)/2α)
}

(A.1)

using the definition of the B process in (2). The first expectation can be obtained through
the moment generating function of ζ2 ∼ χ2

1, which is given by E(etζ
2
) = (1 − 2t)−1/2, for

t < 1/2. Hence, for t = −1/α, we obtain E
{

exp(−ζ2/α)
}

= α1/2/(2 + α)1/2. Regarding
the second expectation, note that (ηt, ηt+k) ∼ N(0, Ck), with Ck a covariance matrix with
diagonal elements equal to 1 and off-diagonal elements equal to ρk. Integration results in
E
{

exp(−(η2t + η2t+k)/2α)
}

= α(1− ρ2k)1/2/{(1− ρ2k + α)2 − α2ρ2k}1/2. The correlation in (3)
results by combining the terms above with the expressions for E(βt | α) and var(βt | α).

Autocorrelation of DP weights

First, E(pl,t | α) = E{(1 − βl,t)
∏l−1
r=1 βr,t | α}. Since the βl,t are independent across l, and

E(βl,t | α) = α/(α + 1), we obtain E(pl,t | α) = αl−1/(1 + α)l. Similarly, E(p2l,t | α) =

E{(1−βl,t)2 | α}
∏l−1
r=1 E(β2r,t | α) = 2αl−1/{(α+ 1)(α+ 2)l}, from which var(pl,t | α) obtains.

Since pl,tpl,t+1 = (1 − βl,t)(1 − βl,t+1)
∏l−1
r=1 βr,tβr,t+1, and (βl,t, βl,t+1) is independent of

(βm,t, βm,t+1), for any l 6= m, we can write

E(pl,tpl,t+1 | α, φ) = E{(1− βl,t)(1− βl,t+1) | α, φ}
l−1∏
r=1

E(βr,tβr,t+1 | α, φ).

The required expectations in the above equation can be obtained from (A.1) for k = 1, such
that ρ1 = φ. Combining the above expressions yields the covariance in (4).

Autocorrelation of consecutive distributions

The DDP prior model implies at any t a DP(α,G0) prior for Gt =
∑∞

l=1 pl,tδθl , where the θl
are i.i.d. from a distribution G0 on RM . Hence, for any measurable subset A ⊂ RM , we have
E(Gt(A) | α,G0) = E(Gt+1(A) | α,G0) = G0(A), and var(Gt(A) | α,G0) = var(Gt+1(A) |
α,G0) = G0(A)(1−G0(A))/(α+ 1).

The additional expectation needed in order to obtain corr(Gt(A), Gt+1(A) | φ, α,G0) is
E(Gt(A)Gt+1(A) | φ, α,G0) = E {(

∑∞
l=1 pl,tδθl(A))(

∑∞
m=1 pm,t+1δθm(A)) | φ, α,G0}, which

can be written as

E
(∑∞

l=1
pl,tpl,t+1(δθl(A))2

)
+ E

(∑∞

l=1

∑
m 6=l

pl,tpm,t+1δθl(A)δθm(A)
)
. (A.2)

For the first expectation in (A.2), note that pl,tpl,t+1 is independent of (δθl(A))2, and E(pl,tpl,t+1 |
α, φ) has been derived earlier. Moreover, since (δθl(A))2 is equal to 1 if θl ∈ A and 0 oth-
erwise, E((δθl(A))2 | α,G0) = G0(A). Regarding the second expectation in (A.2), we have
again that pl,tpm,t+1 and δθl(A)δθm(A) are independent. Here, E(δθl(A)δθm(A) | α,G0) =
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(G0(A))2, since θl and θm are independent for m 6= l. The final step of the derivation in-
volves the expectations E(pl,tpm,t+1 | α, φ), for m 6= l. Note that, if l < m, pl,tpm,t+1 =

(
∏l−1
r=1 βr,tβr,t+1)βl,t+1(1− βl,t) (

∏m−1
r=l+1 βr,t+1) (1− βm,t+1), and an analogous expression can

be written when m < l. Therefore, for general m 6= l, pl,tpm,t+1 can be expressed as a product
of max{l,m} independent components, since each component comprises one or two of the
random variables in {βl,t} and {βm,t+1}, in the latter case having the same first subscript.
Thus, E(pl,tpm,t+1 | α, φ) can be developed through products of expectations of the form
E(βl,t | α) and E(βl,tβl,t+1 | α, φ), which have been obtained earlier.

B Posterior Simulation Details

We derive the posterior full conditionals and provide updating strategies for many of the
parameters of the hierarchical model in Section 3.2.

Updating the weights

The full conditional for ({ζl}, {ηl,t}) is given by p({ζl}, {ηl,t} | . . . ,data) ∝

N−1∏
l=1

N(ζl; 0, 1)N(ηl,1; 0, 1)

T∏
t=2

N−1∏
l=1

N(ηl,t;φηl,t−1, 1− φ2)
T∏
t=1

nt∏
i=1

N∑
l=1

pl,tδl(Lt,i).

Write
∏nt
i=1

∑N
l=1 pl,tδl(Lt,i) =

∏N
l=1 p

Ml,t

l,t , where Ml,t =| {(t, i) : Lt,i = l} |, i.e., the number
of observations at time t assigned to component l. Filling in the form for {pl,t} gives

nt∏
i=1

N∑
l=1

pl,tδl(Lt,i) =

(
1− exp

(
−
ζ21 + η21,t

2α

))M1,t

exp

(
−
MN,t

∑N−1
l=1 (ζ2l + η2l,t)

2α

)
N−1∏
l=2


(

1− exp

(
−
ζ2l + η2l,t

2α

))Ml,t

exp

(
−
Ml,t

∑l−1
r=1(ζ

2
r + η2r,t)

2α

) .

The full conditional for each ζl, l = 1, . . . , N − 1, is therefore

p(ζl | . . . ,data) ∝ exp

(
−
ζ2l
2

)
exp

(
−ζ2l

∑T
t=1

∑N
r=l+1Mr,t

2α

)
T∏
t=1

(
1− exp

(
−
ζ2l + η2l,t

2α

))Ml,t

giving

p(ζl | . . . ,data) ∝ N(ζl; 0, (1 + α−1
T∑
t=1

N∑
r=l+1

Mr,t)
−1)

T∏
t=1

(
1− exp

(
−
ζ2l + η2l,t

2α

))Ml,t

We use a slice sampler to update ζl, with the following steps:

• Draw ut ∼ uniform

(
0,

(
1− exp

(
− ζ2l +η

2
l,t

2α

))Ml,t
)

, for t = 1, . . . , T.
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• Draw ζl ∼ N(0, (1 + α−1
∑T

t=1

∑N
r=l+1Mr,t)

−1), restricted to the lie in the interval{
ζl : ut <

(
1− exp

(
− ζ2l +η

2
l,t

2α

))Ml,t

, t = 1, . . . , T

}
. Solving for ζl in each of these

T equations gives ζ2l > −η2l,t − 2α log(1 − u
1/Ml,t

t ), for t = 1, . . . , T . Therefore, if

−η2l,t − 2α log(1 − u
1/Ml,t

t ) < 0 for all t, then ζl has no restrictions, and is therefore

sampled from a normal distribution. Otherwise, if −η2l,t − 2α log(1 − u1/Ml,t

t ) > 0 for

some t, then | ζl |> maxt{(−η2l,t−2α log(1−u1/Ml,t

t ))1/2}. This then requires sampling ζl
from a normal distribution, restricted to the intervals (−∞,−maxt{(−η2l,t− 2α log(1−
u
1/Ml,t

t ))1/2}), and (maxt{(−η2l,t − 2α log(1− u1/Ml,t

t ))1/2},∞).

In the second step above, we may have to sample from a normal distribution, restricted to two
disjoint intervals. The resulting distribution is therefore a mixture of two truncated normals,
with probabilities determined by the (normalized) probability the normal assigns to each in-
terval. These truncated normals both have mean 0 and variance (1+

∑T
t=1

∑N
r=l+1Mr,t/α)−1,

and each mixture component has equal probability.
The full conditional for each ηl,t, l = 1, . . . , N − 1, t = 2, . . . , T − 1, is proportional to

N

(
ηl,t; 0,

α∑N
r=l+1Mr,t

)
N(ηl,t;φηl,t−1, 1− φ2)N(ηl,t+1;φηl,t, 1− φ2)

(
1− exp

(
−
ζ2l + η2l,t

2α

))Ml,t

∝ N

(
ηl,t;

φα(ηl,t−1 + ηl,t+1)

φ2(α−
∑N

r=l+1Mr,t) + α+
∑N

r=l+1Mr,t

,
α(1− φ2)

φ2(α−
∑N

r=l+1Mr,t) + α+
∑N

r=l+1Mr,t

)
(

1− exp

(
−
ζ2l + η2l,t

2α

))Ml,t

Each ηl,t, l = 1, . . . , N − 1, and t = 2, . . . , T − 1, can therefore be sampled with a slice
sampler:

• Draw u ∼ Unif

(
0,

(
1− exp

(
− ζ2l +η

2
l,t

2α

))Ml,t
)

.

• Draw ηl,t ∼ N

(
ηl,t;

φα(ηl,t−1+ηl,t+1)

φ2(α−
∑N

r=l+1Mr,t)+α+
∑N

r=l+1Mr,t
, α(1−φ2)
φ2(α−

∑N
r=l+1Mr,t)+α+

∑N
r=l+1Mr,t

)
,

restricted to

{
ηl,t :

(
1− exp

(
− ζ2l +η

2
l,t

2α

))Ml,t

> u

}
, giving η2l,t > −2α log(1−u1/Ml,t)−

ζ2l .

In the second step above, we will again either sample from a single normal or a mixture
of truncated normals, where each normal has the same mean and variance, but the trun-
cation intervals differ. Since the mean of this normal is not zero, the weights assigned to
each truncated normal are not the same. The unnormalized weight assigned to the nor-
mal which places positive probability on ((−2α log(1 − u1/Ml,t) − ζ2l )1/2,∞) is given by
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1−F ((−2α log(1−u1/Ml,t)−ζ2l )1/2), where F is the CDF of the normal for ηl,t given in the sec-
ond step. The unnormalized weight given to the component which places positive probability
on (−∞,−(−2α log(1− u1/Ml,t)− ζ2l )1/2) is given by F (−(−2α log(1− u1/Ml,t)− ζ2l )1/2).

The full conditionals for ηl,1 and ηl,T are slightly different. The full conditional for ηl,1 is

p(ηl,1 | . . . ,data) ∝ N(ηl,1; 0,
α∑N

r=l+1Mr,1

)N(ηl,1; 0, 1)N(ηl,2;φηl,1, 1−φ2)

(
1− exp

(
−
ζ2l + η2l,1

2α

))Ml,1

,

∝ N

(
ηl,1;

φαηl,2

α+
∑N

r=l+1Mr,1 − φ2
∑N

r=l+1Mr,1

,
α(1− φ2)

α+
∑N

r=l+1Mr,1 − φ2
∑N

r=l+1Mr,1

)
(

1− exp

(
−
ζ2l + η2l,1

2α

))Ml,1

.

For ηl,T , we have:

p(ηl,T | . . . ,data) ∝ N(ηl,T ; 0,
α∑N

r=l+1Mr,T

)N(ηl,T ;φηl,T−1, 1−φ2)

(
1− exp

(
−
ζ2l + η2l,T

2α

))Ml,T

,

which is proportional to

N

(
ηl,T ;

φαηl,T−1

α+
∑N

r=l+1Mr,T − φ2
∑N

r=l+1Mr,T

,
α(1− φ2)

α+
∑N

r=l+1Mr,T − φ2
∑N

r=l+1Mr,T

)
(

1− exp

(
−
ζ2l + η2l,T

2α

))Ml,T

The slice samplers for ηl,1 and ηl,T are therefore implemented in the same way as for ηl,t,
except the normals which are sampled from have different means and variances.

Updating α

The full conditional for α is

p(α | . . . ,data) ∝ p(α) exp

(
−
∑T

t=1MN,t

∑N−1
l=1 (ζ2l + η2l,t)

2α

)
exp

(
−
∑T

t=1

∑N−1
l=2 Ml,t

∑l−1
r=1(ζ2r + η2r,t)

2α

)

T∏
t=1

N−1∏
l=1

(
1− exp

(
−
ζ2l + η2l,t

2α

))Ml,t

Therefore, with p(α) = IG(aα, bα), we have

p(α | . . . ,data) = IG

(
α; aα, bα +

1

2

T∑
t=1

(
MN,t

N−1∑
l=1

(ζ2l + η2l,t) +

N−1∑
l=2

Ml,t

l−1∑
r=1

(ζ2r + η2r,t)

))
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T∏
t=1

N−1∏
l=1

(
1− exp

(
−
ζ2l + η2l,t

2α

))Ml,t

The parameter α can be sampled using a Metropolis-Hastings algorithm. In particular we
work with log(α), and use a normal proposal distribution centered at the log of the current
value of α.

Updating φ

The full conditional for the AR parameter φ is

p(φ | . . . ,data) ∝ p(φ)
T∏
t=2

N−1∏
l=1

N(ηl,t;φηl,t−1, 1− φ2)

∝ (1− φ2)−(N−1)(T−1)/2 exp

(
−

T∑
t=2

N−1∑
l=1

1

2(1− φ2)
(ηl,t − φηl,t−1)2

)
p(φ)

We assume p(φ) = uniform(0, 1) or p(φ) = uniform(−1, 1), and apply a Metropolis-Hastings

algorithm to sample log
(

φ
1−φ

)
or log

(
φ+1
1−φ

)
, respectively, using a normal proposal distribu-

tion.

Updating {µl,t}

The updates for µl,t are N(m∗,V ∗), with m∗ and V ∗ given by:

• For t = 2, . . . , T−1, ifMl,t = 0, then the update for µl,t has V ∗ = (V −1+(Θ−1V Θ−T )−1)−1

and m∗ = V ∗(V −1(m+ Θµl,t−1) + (Θ−1V Θ−T )−1Θ−1(µl,t+1 −m))

• For t = 2, . . . , T−1, ifMl,t 6= 0, then the update for µl,t has V ∗ = (V −1+(Θ−1V Θ−T )−1+

Ml,tΣ
−1
l )−1 and m∗ = V ∗(V −1(m + Θµl,t−1) + (Θ−1V Θ−T )−1Θ−1(µl,t+1 − m) +

Σ−1l
∑
{i:Lt,i=l} yt,i)

• for t = 1, if Ml,1 = 0, then the update for µl,1 has V ∗ = ((Θ−1V Θ−T )−1 + V −10 )−1,

and m∗ = V ∗((Θ−1V Θ−T )−1Θ−1(µl,2 −m) + V −10 m0)

• for t = 1, if Ml,1 6= 0, then the update for µl,1 has V ∗ = (Ml,1Σ
−1
l + (Θ−1V Θ−T )−1 +

V −10 )−1 and m∗ = V ∗(Σ−1l
∑
{i:L1,i=l} y1,i + (Θ−1V Θ−T )−1Θ−1(µl,2 −m) + V −10 m0)

• for t = T , if Ml,T = 0, then the update for µl,T has V ∗ = V , and m∗ = m+ Θµl,T−1

• for t = T , if Ml,T 6= 0, then the update for µl,T has V ∗ = (Ml,TΣ−1l + V −1)−1 and

m∗ = V ∗(Σ−1l
∑
{i:LT,i=l} yt,i + V −1(m+ Θµl,T−1))

Updating {Σl}

The posterior full conditional for Σl is proportional to IW(ν + Ml,D +
∑
{(t,i):Lti=l}(yt,i −

µl)(yt,i − µl)T ). When |{(t, i) : Lt,i = l}| = 0, Σl is drawn from IW(ν,D).
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