
UC Berkeley
Recent Work

Title
From RESTful Services to RDF: Connecting the Web and the Semantic Web

Permalink
https://escholarship.org/uc/item/3425p9s7

Authors
Alarcon, Rosa
Wilde, Erik

Publication Date
2010-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3425p9s7
https://escholarship.org
http://www.cdlib.org/

From RESTful Services to RDF:

Connecting the Web and the Semantic Web

Rosa Alarcon 1 and Erik Wilde 2

1 Departamento de Ciencia de la Computacion, Pontificia Universidad Catolica de Chile
2 School of Information, UC Berkeley

UC Berkeley School of Information Report 2010-041
June 2010

Available at http://escholarship.org/uc/item/3425p9s7

Abstract

RESTful services on the Web expose information through retrievable resource representations that
represent self-describing descriptions of resources, and through the way how these resources are interlinked
through the hyperlinks that can be found in those representations. This basic design of RESTful services
means that for extracting the most useful information from a service, it is necessary to understand a
service’s representations, which means both the semantics in terms of describing a resource, and also
its semantics in terms of describing its linkage with other resources. Based on the Resource Linking
Language (ReLL), this paper describes a framework for how RESTful services can be described, and
how these descriptions can then be used to harvest information from these services. Building on this
framework, a layered model of RESTful service semantics allows to represent a service’s information in
RDF/OWL. Because REST is based on the linkage between resources, the same model can be used for
aggregating and interlinking multiple services for extracting RDF data from sets of RESTful services.

Contents

1 Introduction 2

2 Related Work 2
2.1 Semantic Web Services . 3
2.2 Harvesting RDF data from Web resources . 3

3 REST Semantics 4

4 REST Semantics in ReLL 5

5 Describing Services with ReLL 6

6 Harvesting RDF from Resources 6

7 Composition as a Service 8

8 Implementation and Results 9

9 Conclusions 9

http://www.dcc.uchile.cl/
http://www.ischool.berkeley.edu/
http://escholarship.org/uc/item/3425p9s7

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

1 Introduction

The core model of the Semantic Web [6] is centered around resources that are identified by URIs, and by
descriptions that make assertions about these resources based on properties (which also are identified by
URIs) and values assigned to these properties (which can be URIs or literal values). This interconnected
network of URI-described resources is defined by the Resource Description Framework (RDF) [19], and
more sophisticated languages then build additional layers of semantics on this foundation. The underlying
assumption of this approach is that the Web exposes a large number of resources, and that RDF can therefore
be used to describe this large set of resources. In this paper, we describe how resources can be discovered
using the Web’s basic architectural principle (REST), and how this discovery process can be used to expose
resources and their relationships as RDF data.

Large amounts of RDF interlinked data are required in order to provide a critical mass of information for
developers, and reaching this critical mass is one of the initial problems of the Semantic Web vision. There-
fore, there is a lot of activity in research projects that create large collections of RDF data by transforming
structured data sources into RDF using specialized mappings, exposing the generated RDF dataset in RDF
triple stores, often exposing query interfaces in a RDF-oriented query language such as SPARQL [26]. Re-
solvable semantic resource URIs are provided and triples provide connectivity in this graph of RDF data
for steering semantic crawlers and Semantic Web browsers. Although this approach creates large collec-
tions of RDF data, they result in centralistic approaches where access is typically mediated through a single
“endpoint” and require sophisticated mechanisms to retrieve, process, and publish the information [8].

On the other hand, there is an increasing interest in the relationship of Representational State Transfer
(REST) [16], the architectural principle underlying the Web, and the Semantic Web. Approaches in this
area vary from the semantic annotation of resources (e.g., hREST, SA-REST), to middleware that mediates
resources handling, following in general the same approaches of more traditional SOAP/WSDL semantic
services (e.g., WSMO). But REST requires a different approach because services are based on the principles
of resources identified with unique and opaque URIs, that are resolved to clients in various “representations”
with a media type, and are handled through a uniform interface. REST resources are interlinked through
hyperlinks that are found in these representations and guide clients in their interactions with a service.

This paper presents a metamodel for describing RESTful services and a language for creating descriptions
of these services that is based on REST’s central principle, the hyperlinking of resources. This approach
provides a natural mapping from the graph-oriented world of RESTful services (resources interlinked by
links found in resource representations) to the graph-based model of RDF. It is possible to directly ex-
pose structured data in Web services that expose an interface in line with Representational State Transfer
(REST) [16], thereby supporting lightweight approaches for structured data [30]. Based on this starting
point of using plain Web technologies, it is possible to go one step further and expose the same data based
on Semantic Web technologies. Individual resource representations as well as the hyperlinks connecting them
can be mapped to RDF in a variety of ways. Gleaning Resource Descriptions from Dialects of Languages
(GRDDL) [10] is a framework for doing this, but as long as there are well-defined mappings, any RESTful
service can be transformed into an RDF graph. This even includes representations such as images or PDF
documents, which might contain embedded metadata, which can be extracted with an appropriate toolset.

2 Related Work

Related work in Web services and Semantic Web can be broadly categorized into two areas. Semantic
Web Services (Section 2.1) deal with how to either annotate service descriptions with semantic annotations,
or how to design and describe Web services that directly provide support for Semantic Web technologies.
Harvesting (Section 2.2) deals with the question of how to use existing Web services (often those which do
not expose any Semantic Web data) in a way so that they can serve as providers for Semantic Web data.

June 2010 2 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

2.1 Semantic Web Services

Semantic Web Services (SWS) address mainly SOAP/WSDL services which, without additional annota-
tions, are only focused on the syntax required for describing exposed functionality (operations, input and
output types). SWS approaches extend WSDL services with semantic models. For instance, OWL-S [22]
proposes a meta-ontology describing services in terms of operations, inputs, outputs, preconditions, and
effects; WSMO [28] follows a similar approach though domain ontologies and goals are allowed for service
discovery and composition, requiring a highly specialized reasoning platform. A lightweight approach is
SAWSDL [14], which allows annotations in WSDL descriptions referring to elements in a semantic model.

A similar approach has been proposed for RESTful services. Since REST services lack a service descrip-
tion, SA-REST [21] and hREST/MicroWSMO [20] propose a service description as an annotated resource
(e.g., an HTML page) containing the list of input and output parameters, methods, and URIs exposed by a
service by means of property value pairs or RDFa [1] annotations. The description is transformed to RDF
using a GRDDL-based [10] strategy for generating a domain ontology in RDF, but no information about
the REST resources themselves (instances) are retrieved. Battle and Benson [5] provide similar annotations
to WADL [18] documents describing REST services, and also propose extensions to SPARQL in order to
support an HTTP REST uniform interface. Extensions to the payload of the HTTP REST methods (e.g.,
PUT, DELETE and GET) are also proposed for keeping consistency between a REST resource and its semantic
equivalence (a triple) in some triple store.

The main problem of these approaches is that they are based on the assumption of a “service endpoint”
(which is then described semantically), so they basically reflect the RPC-style service model of WSDL/SOAP.
By using a RPC-style for the description of the service, though, they do not align well with the principles
of RESTful service design, since they disregard fundamental properties such as the hypermedia nature of
REST, and the possibility of multiple representations for resources. They also introduce coupling in their
design by adhering to URI templates for describing the URIs of resources, input, and output parameters [23],
or in the case of Battle and Benson, they introduce new semantics to the standard REST interface.

EXPRESS [2] is a SWS model that explicitly avoids the RPC-orientation of the approaches mentioned so
far. It starts from HTTP’s uniform interface, and then describes the available resources in an OWL ontology.
However, the model of EXPRESS is a centralized one as well, because it is assumed that there is a complete
description of a Web Service’s available resources, and then this description is used to generate URIs for
classes, instances, and properties.

2.2 Harvesting RDF data from Web resources

As a rough classification of how to extract RDF from existing Web sources, there are approaches built
specifically around using one particular dataset/service, such as DBpedia [4] and the growing set of other
datasets exposed as linked data, and there are generic approaches. The generic approaches can be further
categorized into those that extract information based on the explicit structures found in data sources; and
those that utilize additional rules for information extraction, often based on Natural Language Processing
(NLP) or other information retrieval methods.

In the approach described by Futrelle [17], RDF is used as the “integration layer” in a scenario of
heterogeneous data sources, and the main focus is on harvesting well-known and cooperating data sources.
This approach thus falls in the category where it can be applied to a variety of data sources, but they have
to be cooperating in the sense that they expose RDF themselves. The harvester’s main role is to be notified
of new and updated data, and to pull it in from these sources. While this scenario uses RDF’s power to unify
heterogeneous data sources on the metamodel level, it is only applicable in closed and cooperating settings.
In our approach, data sources are not required to publish RDF themselves. As long as access to data is
provided through RESTful services, they can be harvested and used as RDF. A weakness of the current
implementation is that updating is not supported in a way that allows efficient incremental updates, but we

June 2010 3 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

plan to address this issue in our future work mentioned in Section 9, where we describe extensions to our
language that represent update services (and thus the ability to use those for incremental updates) on the
language level.

SOFIE [29] focuses on information extraction from Web resources, and ANGIE [25] on using both ex-
tracted information and Web services endpoints, for building a more interactive system that does not require
an exhaustive crawl of data, but retrieves information on demand. SOFIE thus falls into the category of
approaches that start from resource representations, and use information retrieval methods to extract RDF
from them. The current implementation of ANGIE focus on the dynamics of query processing in the RDF
data managed by the system, and uses a hardwired set of Web services as the back-end. Similar to SA-
REST, it uses a set of lowering/lifting transformations to translate the results of function calls from and to
RDF. ANGIE focuses on SPARQL processing (the framework is able to use Web services while processing
SPARQL queries), and less on the ability to easily accommodate a large variety of RESTful services.

Deimos [3] is another system that starts with information found on Web pages or through Web forms, and
then uses semantic analysis to map the syntax of these representations to semantically richer information.
Instead of relying on the richness of links discovered in known resources, though, the approach taken in
Deimos uses tagging services to discover new resources.

3 REST Semantics

Unlike WSDL services that expose URIs identifying endpoints where service functionality can be invoked
(based on the underlying RPC model), REST services expose URIs for a set of resources and clients encounter
URIs by following hyperlinks. In order to avoid coupling between clients and servers, resource URIs must
be opaque, that is, no assumptions must be made about the structure of the URI (a popular approach that
violates this principle is that of URI templates, where URIs are composed based on a template and instanti-
ation rules). Instead, resource URIs must be discovered by following the hyperlinks embedded in a resource
representation, which ensures that clients are not tightly coupled to any particular URI structure [24].

REST requires a uniform interface that depends on the scheme used for a URI, in case of HTTP, the
standard methods are GET, PUT, POST, DELETE, and OPTIONS. Methods are external to the resources, and are
invoked by sending standard messages to the server indicating the URI of the requested resource, the method,
the payload of the message and possibly standard metadata (HTTP header fields). These invocations may
force changes in the state of the resources according to the semantics of the method. REST resources are
conceptual entities that belong to the application logic, and are rendered to the user as representations
that convey a standardized format or media type (e.g., text/html,application/xml, etc.). The content of
representations depends on the application scenario and requested resource, but in RESTful designs they
must contain the necessary links that allow clients to discover other resources (or affect the state of a resource)
by following such links.

These properties imply that there are no “endpoints” for the case of REST services, instead there is a
collection of resource URIs and a set of standard operations. A resource can have multiple representations
(e.g., plain text, HTML, or PDF) that can be negotiated. Resource URIs are discovered by following the
links contained in representations, that is, representations contain links to related representations. The
sources for semantic information differ greatly from the WSDL model: In REST graphs, resources, links and
representations are fundamental, whereas in WSDL, the complexity of an exposed service is often mostly
exposed as a set of available functions that must be known in advance, and then can be invoked by the client.

June 2010 4 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

name
description

Service
id
name
description
schema
mediaType

Representation

name
description

Link Type

id
minOccurs
maxOccurs

Link

0..*

0..*1

0..*

1target
1 0..*

id
name
description
URIpattern

Resource

0..10..*
type

1

0..*

0..* 1

expression
type

Selector
0..*

type
request
response

Protocol

0..*

collection
1

0..*

Figure 1: ReLL Metamodel for the description of REST services

4 REST Semantics in ReLL

Figure 1 shows a metamodel for REST service descriptions. This metamodel is the basis for the Resource
Linking Language (ReLL) which is a language describing interlinked REST resources, and thus the service
that can be accessed by interacting with those resources. A service provides one or more resources, with
human readable names, descriptions and a URI. URIs are opaque and are only described as patterns (e.g.,
regular expressions), but even those are optional. Resources may have representations, that is, the serial-
ization of the resource in some syntax (e.g., HTML, Atom, etc.) and can be associated with schemas for
possible validation (of retrieved resources).

Representations may contain links, relating the represented resource to a target resource. A link may
have a link type defining the semantics of the link, a name, and a description. Links can be extracted
from resources by using a selector, which in case of XML-based representations is an XML Path Language
(XPath) expression that allows structured selections within XML document trees. Links can also provide
additional information on how to use a specific protocol when following the link. ReLL does not restrict
the use of protocols to Hypertext Transfer Protocol (HTTP) [15], but for HTTP, it supports additional
information about the method to be used in the request, and optionally the request payload if additional
information such as query parameters or a request entity is required. Methods depend on the protocol, and
thus additional methods provided by HTTP extensions such as WebDAV [12], CalDAV [11] or PATCH [13]
can also be used.

Links that do specify a URI pattern might use URIs that do not match the pattern, indicating that it
leads to a resource that is outside the scope of the service description. This means, that an application
such as the crawler described in Section 8 shall not dereference that link. This highlights the fact that it is
possible to have more than one description of a service, depending on the specific interests when using that
service. Thus, a ReLL description often serves a specific purpose when using a service, and thus different
users of a service might want to use different ReLL descriptions of that service, excluding or constraining
the service with regard to representations or links they are not interested in.

Well-known linking patterns such as collections (e.g., “paged” representations) are modeled as collection
links. These links represent sets of representations that correspond to a collection of resources. Collection
links are not allowed to specify a target, since the target of a collection link is the same resource that contains
the collection link.

June 2010 5 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

Figure 2: A snippet of a ReLL Description for the School of Information Web Site

5 Describing Services with ReLL

ReLL descriptions are XML documents created according to the ReLL schema. Figure 3 shows part of the
description of the service that publishes interlinked HTML pages on the Web site of the School of Information
at UC Berkeley. This service is a Web Content Management System (CMS) publishing interlinked Web pages.
Even though we have no control over that CMS, we can describe the set of paged made available my it as a
set of interlinked resources. Figure 2 shows only one resource, a person’s page that links to the courses taught
by that person and the person’s personal home page, and in general, we did not strive for completeness in
that demonstration scenario.

Rectangles in Figure 3, which is a graphic representation of the ReLL model, represent resources, and
rounded rectangles their representations. Arrows between representations and resources are links. Collections
are sets of resources of the same type (e.g., courseList). The collection itself is a conceptual resource with
no representation or URI. The rectangle labeled as “Website” corresponds to a resource that is out of the
scope of the service, it thus has no representation. The link that leads to this resource from a “person-html”
representation does not include the target as show in Figure 2.

6 Harvesting RDF from Resources

Figure 4 shows the ReLL metamodel mapped to a RDF/OWL semantic model. We consider four layers
in the semantic model. Layer 1 corresponds to the upper ontology that describes general REST semantics,
layer 2 corresponds to a domain ontology describing a specific RESTful service (e.g., the Web site of the
School of Information). Layer 3 contains the data discovered when crawling the service, that is, the REST
resources. Layer 4 contains information about concrete representations that have been used for establishing
the resource relationships of Layer 3.

The elements with dashed outlines in Figure 4 correspond to the following strategy: The resource,
representation and collection elements in the ReLL metamodel correspond to classes of the upper ontology
in layer 1. Selector is not considered since it is a medium for selecting elements embedded in the Web
representation content. We have made a difference between how links work in the realm of the Web, and

June 2010 6 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

course-
person

person

person-html

peopleList

peopleList-html

course

course-html

course-page

course-page-html

publication

publication-html

publication-page

publication-page-html

Website

person-
course

course-page-list
CourseList

person-
website

peopleList-
member

course-page-
course

publication-page-first
publication-page-next

publication-page-previous
publication-page-last

publication-page-page

Publication
List

publication-page-
publicationt

Figure 3: A ReLL based model for the School of Information Web site

what links assert in the realm of the Semantic Web. In the former case, links are contained in representations
and thus relate representations to resources; in the latter case, representations are considered as provenance,
merely indicating the source of the crawled information. Hence, in our model, representations represent
resources, and links relate resources to resources. Figure 5a presents the upper ontology in N3 format.

Layer 2 corresponds to the domain ontology describing a REST service. REST resources do not have
types, only their representations have media types. In the Semantic web, resource types allow a more
expressive model that facilitates tasks such as querying and inferencing. ReLL resources and representations
are translated into subclasses of the upper ontology1 and link types become subproperties of the rell:link
property. Figure 5 presents a subset of the generated classes (c) and properties (d). Labels and comments are
omitted and the subset is limited to the example shown in Figure 4. Collections are classes (e.g., courselist)
and their members are explicitly linked by means of the link type.

Layer 3 contains REST resources modeled as individuals of the domain classes (rdf:type). Since REST
resources have unique identifiers, we maintain them for identifying the individuals. We create subproperties
of the domain relationships for relating actual individuals and use the link identifiers for naming them.
Figure 5e describes the case for person-course and course-page-course properties. We also restrict their
domain and range. Figure 5f presents the triples asserted for the individuals shown in Figure 4 as well as
their relationships. The REST resources themselves are transformed to RDF following a GRDDL approach.
Figure 6 shows the attributes obtained for individuals of type person. Notice that it is possible to annotate
the relationships between the REST resource (erikwilde) and its attributes. In the figure these relationships
are annotated with vCard, but other information models can be used.

Layer 4 represents provenance. Triples obtained in layer 3 are produced when crawling a REST service,
that is, a REST resource URI was dereferenced and its representation obtained, and the links to related
resources were retrieved from the representation by evaluating the XPath expressions indicated by ReLL
selectors. This process generates a number of triples that are tied together as a named graph [9], where
the name is a generated ID (e.g., school:r391588838). The ID identifies a representation which is also
asserted as an instance of a media type (and hence an instance of a rell:representation). A relationship
between the representation and the resource (rell:represents) is also asserted (Figure 5g). We have
modeled concrete representations as classes that derive from abstract representations, which correspond to
media types. Figure 5b presents an example of the media type classes describing text/html, image/jpeg,
application/atom+xml, and application/xml media types.

1For representations, the upper ontology contains all standardized media types from the IANA registry as classes.

June 2010 7 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

rell:resource

rell:representation

rell:collection

school:person school:course school:course-page

ischool:people/faculty/erikwilde

ischool:programs/courses/242

ischool:programs/courses/2009/Fall

school:r391588838

io io io

subClass

io rell:represents

iana:text/html

iana:text

subClass

subClass

subClass

subClass

subClass
1

2

3

4

personcourse

person-course

school:person-html

subClass

coursesrell:represents

course-page-course

rell:link

rell:represents

school:courselist

courses-page-list

Figure 4: Semantic model for the REST Services Metamodel

Media types are annotated in the ReLL descriptions (Figure 2). Abstract representations are supported
as classes that serve as the basis for other abstract or concrete representations. In Figure 4, the text media
type is an abstract representation that serves as the basis for the text/html media type, which is also
an abstract representation and serves as the basis for a concrete representation, that is an HTML page
describing a person.

7 Composition as a Service

Three other REST services besides the School of Information Web site have been described using ReLL: a
service that publishes Atom feeds through a REST API corresponding to Twitter, a service that publishes
interlinked HTML pages corresponding to the Web site of Flickr, and a service that publishes an XML doc-
ument listing the identities of the users of these applications (this service provides the “glue” for associating
different user identities in the other services). Figure 7 presents ReLL models for each of these applications
labeled as 1 (School), 2 (Twitter), 3 (Flickr) and 4 (UserMap) respectively.

The UserMap service publishes an XML document that groups together user identities for all three
services (School, Twitter, and Flickr), and thus the composition accomplished by the UserMap service is
simply another service, one that provides the “glue” that is required to connect the aggregated services into
a connected composition of resources. For the RDF mapping, an XSLT transforms the XML document into
triples that establish the equivalences between these resources through owl:sameAs assertions. Figure 8a
presents the triples for one user. Notice that for the Twitter case, two URIs are considered, the URI of
the resource as obtained from the REST API, and the URI of the resource as obtained from the Twitter
Web site. The proposed approach allowed us to perform SPARQL queries that cover many REST services,
as shown in Figure 8b. The query retrieves the list of distinct flickr:cameras for all Flickr photos of a

June 2010 8 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

person. Figure 8c presents a snippet of the results for the user erikwilde.
Figure 8c can serve as a demonstration of the overall value of our approach. The fact that a particular

URI identifies a person is established by using the information available on the School of Information Web
site. The fact that this person is the owl:sameAs some Flickr user has been established by the UserMap
service, where a table of associated user identities has been transformed into RDF by a GRDDL XSLT
transform. That Flickr user’s photos have been crawled by using the ReLL description of the Flickr service
and transforming this information into RDF. Finally, the metadata about the particular camera used for each
photo has been extracted from each photo’s information page, again through GRDDL XSLT. This means
that the only information required to get to a connected graph that can be queried as shown in Figure 8b
are ReLL descriptions, XSLT transforms for some resource types, and a composition service.

8 Implementation and Results

Figure 9 shows the components for harvesting triples from RESTful services. Services are described by
ReLL generating XML documents that direct the actions of a Web crawler. Since REST services do not
have “endpoints”, a list of seed URIs is required. There is no guarantee that the whole resource graph will be
covered since this depends on how well the resources of a service are connected. While crawling, a translator
component is invoked for generating RDF triples. Translation is optional, a property file gives the translator
the mappings between the resource’s type (e.g., person) that is required to translate to RDF, and XSLT
code. XSLT transforms are defined for ReLL description in order to generate domain triples (Layer 2), and
for the representation contents in order to generate attributes (Layer 3). Resource URIs, resource types and
link types are passed to the translator in order to assert individuals and properties. We use Sesame 2.0 as
triple store and the system is implemented in Java.

Sesame supports named graphs as context, which is a fourth component that can be added to a triple,
and it is possible to treat that fourth component as a semantic resource (rdf:Resource). There is no need to
modify the triples, since context is manipulated trough Sesame’s Java interface. Triples corresponding to the
“upper” ontology and media types taxonomy are asserted into the triple store directly. Figure 10 presents
the results of querying the triple store for ischool:people/faculty/erikwilde through the Sesame export
functionality. In the first row the representation element is shown and is presented as the context element
(quad) in the following items. For the triples in Layer 3 (such as those with school:course-person) a new
triple is inferred, since the property is a subproperty of rell:link, and in this case there are not a context
elements.

9 Conclusions

In this paper we propose a method and implementation for harvesting triples from services and service
compositions that follow the REST architectural principles. Most Web sites fall into that category, which
implies that a large dataset may be available to be translated to RDF. We propose a lightweight approach
that places a strong emphasis on flexibility by decoupling the main components. That is, REST services
do not require modifications and do not depend on existing ReLL descriptions for our approach, and ReLL
descriptions do not contain information for the translation to RDF, they can be used independently for other
purposes such as documentation or as the starting point for a service contract. Mapping is isolated in one
layer and as far as possible can be configured by dynamic files. We believe that this approach is sufficiently
generalized to be applied to various data sources provided that they follow the REST architectural principle.

Currently, we are not providing information about the representations in the RDF data, but we intend to
continue this work in that direction. We consider that they may include time stamps indicating the last time

June 2010 9 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

when the resource was crawled, entity tags (ETags) served by Web servers indicating whether the resource
has changed since the last retrieval, or other HTTP metadata.

The two most challenging research questions we are facing is whether we can extend the architecture to
support incremental harvesting, so that large services do not need to be completely recrawled for getting
updates, and whether we can further extend this direction by supporting “on-demand service access”, so that
queries into the triple store are actually mapped to live services instead of using harvested triples. In that
latter case, the triple store would essentially become a cache instead of a separate dataset, and the problem
of deciding whether to serve harvested RDF or whether to selectively recrawl the underlying services might
nicely translate into the more general problem of how to efficiently describe and use cacheable services on
the Web.

References

[1] Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton. RDFa in XHTML:
Syntax and Processing — A Collection of Attributes and Processing Rules for Extending XHTML to
Support RDF. World Wide Web Consortium, Recommendation REC-rdfa-syntax-20081014, October
2008.

[2] Areeb Alowisheq, David E. Millard, and Thanassis Tiropanis. EXPRESS: EXPressing REst-
ful Semantic Services Using Domain Ontologies. In Bernstein et al. [7], pages 941–948.

[3] José Luis Ambite, Sirish Darbha, Aman Goel, Craig A. Knoblock, Kristina Lerman,
Rahul Parundekar, and Thomas Russ. Automatically Constructing Semantic Web Services from
Online Sources. In Bernstein et al. [7], pages 17–32.

[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. DBpedia: A Nucleus for a Web of Open Data. In Karl Aberer, Key-
Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, Lyndon J. B. Nixon,
Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber,
and Philippe Cudré-Mauroux, editors, 6th International Semantic Web Conference (ISWC 2007),
volume 4825 of Lecture Notes in Computer Science, pages 722–735, Busan, Korea, November 2007.

[5] Robert Battle and Edward Benson. Bridging the Semantic Web and Web 2.0 with Representa-
tional State Transfer (REST). Journal of Web Semantics, 6(1), 2008.

[6] Tim Berners-Lee, James A. Hendler, and Ora Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):34–43, May 2001.

[7] Abraham Bernstein, David R. Karger, Tom Heath, Lee Feigenbaum, Diana Maynard,
Enrico Motta, Krishnaprasad, and Thirunarayan, editors. 8th International Semantic Web
Conference, volume 5823 of Lecture Notes in Computer Science, Chantilly, Virginia, October 2009.
Springer-Verlag.

[8] Uldis Bojārs, John G. Breslin, Vassilios Peristeras, Giovanni Tummarello, and Stefan
Decker. Interlinking the Social Web with Semantics. IEEE Intelligent Systems, 23(3):29–40, May
2008.

[9] Jeremy J. Carroll, Christian Bizer, Patrick Hayes, and Patrick Stickler. Named Graphs,
Provenance and Trust. In Allan Ellis and Tatsuya Hagino, editors, 14th International World
Wide Web Conference, pages 613–622, Chiba, Japan, May 2005. ACM Press.

June 2010 10 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

[10] Dan Connolly. Gleaning Resource Descriptions from Dialects of Languages (GRDDL). World Wide
Web Consortium, Recommendation REC-grddl-20070911, September 2007.

[11] Cyrus Daboo, Bernard Desruisseaux, and Lisa Dusseault. Calendaring Extensions to Web-
DAV (CalDAV). Internet RFC 4791, March 2007.

[12] Lisa Dusseault. HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV).
Internet RFC 4918, June 2007.

[13] Lisa Dusseault and James M. Snell. PATCH Method for HTTP. Internet Draft draft-dusseault-
http-patch-15, October 2009.

[14] Joel Farrell and Holger Lausen. Semantic Annotations for WSDL and XML Schema. World
Wide Web Consortium, Recommendation REC-sawsdl-20070828, August 2007.

[15] Roy Thomas Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry
Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1.
Internet RFC 2616, June 1999.

[16] Roy Thomas Fielding and Richard N. Taylor. Principled Design of the Modern Web Archi-
tecture. ACM Transactions on Internet Technology, 2(2):115–150, May 2002.

[17] Joe Futrelle. Harvesting RDF Triples. In Luc Moreau and Ian Foster, editors, International
Provenance and Annotation Workshop (IPAW 2006), volume 4145 of Lecture Notes in Computer
Science, pages 64–72, Chicago, Illinois, May 2006. Springer-Verlag.

[18] Marc Hadley. Web Application Description Language (WADL). Technical Report TR-2006-153,
Sun Microsystems, April 2006.

[19] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Concepts
and Abstract Syntax. World Wide Web Consortium, Recommendation REC-rdf-concepts-20040210,
February 2004.

[20] Jacek Kopecký, Karthik Gomadam, and Tomas Vitvar. hRESTS: An HTML Microformat
for Describing RESTful Web Services. In 2008 IEEE/WIC/ACM International Conference on Web
Intelligence, pages 619–625, Sydney, Australia, December 2008.

[21] Jon Lathem, Karthik Gomadam, and Amit P. Sheth. SA-REST and (S)mashups: Adding
Semantics to RESTful Services. In First IEEE International Conference on Semantic Computing
(ICSC 2007), pages 469–476, Irvine, California, September 2007.

[22] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,
S. Narayanan, M. Paolucci, B. Parsia, T. R. Payne, E. Sirin, N. Srinivasan, and K. Sycara.
OWL-S: Semantic Markup for Web Services. Member Submission, W3C, 2004.

[23] Cesare Pautasso. Composing RESTful services with JOpera. In Alexandre Bergel and Johan
Fabry, editors, International Conference on Software Composition 2009, volume 5634 of Lecture
Notes in Computer Science, pages 142–159, Zürich, Switzerland, July 2009. Springer-Verlag.

[24] Cesare Pautasso and Erik Wilde. Why is the Web Loosely Coupled? A Multi-Faceted Metric
for Service Design. In Quemada et al. [27], pages 911–920.

June 2010 11 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

[25] Nicoleta Preda, Fabian M. Suchanek, Gjergji Kasneci, Thomas Neumann, Maya Ra-
manath, and Gerhard Weikum. ANGIE: Active Knowledge for Interactive Exploration. In 35th
International Conference on Very Large Data Bases (VLDB 2009), pages 1570–1573, Lyon, France,
August 2009. ACM Press.

[26] Eric Prud’Hommeaux and Andy Seaborne. SPARQL Query Language for RDF. World Wide
Web Consortium, Recommendation REC-rdf-sparql-query-20080115, January 2008.

[27] Juan Quemada, Gonzalo León, Yoëlle S. Maarek, and Wolfgang Nejdl, editors. 18th
International World Wide Web Conference, Madrid, Spain, April 2009. ACM Press.

[28] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler, and Dieter Fensel. Web
Service Modeling Ontology. Applied Ontology, 1(1):77–106, January 2005.

[29] Fabian M. Suchanek, Mauro Sozio, and Gerhard Weikum. SOFIE: A Self-Organizing Frame-
work for Information Extraction. In Quemada et al. [27], pages 911–920.

[30] Erik Wilde and Yiming Liu. Lightweight Linked Data. In 2008 IEEE International Conference
on Information Reuse and Integration, Las Vegas, Nevada, July 2008.

June 2010 12 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

 @prefix rell: <http://rell.org/rell/> .

 rell:representation a rdfs:Class .
 rell:resource a rdfs:Class .
 rell:collection rdfs:subClassOf rell:resource .

 rell:link a owl:ObjectProperty ;
rdfs:domain rell:resource ;
rdfs:range rell:resource .

 rell:represents a owl:ObjectProperty ;
rdfs:domain rell:representation ;
rdfs:range rell:resource .

 @prefix iana: <http://www.iana.org/assignments/media-types/> .

 <iana:text/html> rdfs:subClassOf rell:representation , <iana:text> ;
rdfs:label "The \"text/html\" Media Type" .

 <iana:image/jpeg> rdfs:subClassOf rell:representation , <iana:image> ;
rdfs:label "The \"image/jpeg\" Media Type" .

 <iana:application/atom+xml> rdfs:subClassOf rell:representation ,
 <iana:application> ;

rdfs:label "The \"application/atom+xml\" Media Type" .
 <iana:application/xml> rdfs:subClassOf rell:representation ,
 <iana:application> ;

rdfs:label "The \"application/xml\" Media Type" .

(a) (b)

 school:r391588838 a school:person-html ;
rell:represents <http://www.ischool.berkeley.edu/people/faculty/erikwilde> .

 school:person-course a owl:ObjectProperty ; school:course-page-course a owl:ObjectProperty ;
rdfs:domain school:person ; rdfs:domain school:course-page ;
rdfs:range school:course ; rdfs:range school:course ;
rdfs:subPropertyOf school:personcourse . rdfs:subPropertyOf school:courses .

 <http://www.ischool.berkeley.edu/people/faculty/erikwilde> a school:person ;
school:person-website <http://dret.net/netdret/> ;
school:person-course <http://www.ischool.berkeley.edu/programs/courses/242> .

 <http://www.ischool.berkeley.edu/programs/courses/242> a school:course ;
school:course-person <http://www.ischool.berkeley.edu/people/faculty/erikwilde> .

(e)

(f)

 @prefix school: <http://rell.org/school/> .
 @prefix iana: <http://www.iana.org/assignments/media-types/> .
 school:person a rdfs:Class ;

rdfs:subClassOf rell:resource ;
 school:course a rdfs:Class ;

rdfs:subClassOf rell:resource ;
 school:course-page a rdfs:Class ;

rdfs:subClassOf rell:resource ;
 school:courselist a rdfs:Class ;

rdfs:subClassOf rell:collection ;
 school:person-html a rdfs:Class ;

rdfs:subClassOf <iana:text/html> ;
rell:represents school:person .

 school:course-page-list a owl:ObjectProperty ;
rdfs:domain school:course-page ;
rdfs:range school:courselist ;
rdfs:subPropertyOf school:page .

 school:personcourse a owl:ObjectProperty ;

rdfs:subPropertyOf rell:link ;

 school:courses a owl:ObjectProperty ;
rdfs:subPropertyOf rell:link ;

(c) (d)

(g)

Figure 5: N3 notation snippets of RDF triples generated for REST services

June 2010 13 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

 <http://www.ischool.berkeley.edu/people/faculty/erikwilde> a school:person ;
vCard:FN "Erik Wilde" ;
vCard:ADR _:node14m5kienpx1603 ;
vCard:TITLE "Adjunct Professor" ;
vCard:ORG _:node14m5kienpx1604 ;
vCard:EMAIL _:node14m5kienpx1606 ;
vCard:TEL _:node14m5kienpx1607 ;
vCard:URL <http://dret.net/netdret/> ;
vCard:PHOTO <http://www.ischool.berkeley.edu/files/imagecache/profile-pic/DSC_0176.JPG> ;
school:person-website <http://dret.net/netdret/> ;
school:person-course <http://www.ischool.berkeley.edu/programs/courses/242> ,

 <http://www.ischool.berkeley.edu/programs/courses/152> ,
 <http://www.ischool.berkeley.edu/programs/courses/190-waim> ,
 <http://www.ischool.berkeley.edu/programs/courses/290-wa> .

Figure 6: An individual’s properties in N3 notation

course-
person person

person-html

peopleList

peopleList-html

course

course-html

course-page
course-page-html

publication

publication-html

publication-page

publication-page-html

Website

person-
course

course-
page-listCourseList

person-
website

peopleList-
member

course-page-
course

publication-page-first
publication-page-next

publication-page-previous
publication-page-last

publication-page-page

public-timeline

public-timeline-xml

public-timeline-user-
timeline

user-timeline

user-timeline-xml

paged-
user-timeline

timeline-page2
timeline-page3

status

status-xml

timeline-
 statuses

user timeline-
user

status-
reply

userFlickr

user-html

photostream

user-first
user-next

photo

photo-html
user-photo

camera

photo-
taken

user-previous
user-last

user-page

photosizes

photosizes-html

photosizes-
 page

photo-
sizes

size-
collection

image

photosizes-
 image

camera-htmlimage-jpeg

Usermap1 2

3

4

Publication
List

publication-page-
publicationt

Figure 7: Composing four REST services, School, Twitter, Flickr and UserMap

June 2010 14 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

 PREFIX dcterms:<http://purl.org/dc/terms/>
 PREFIX flickr:<http://rell.org/flickr/>

 SELECT DISTINCT ?person ?camera
 WHERE
 {?person owl:sameAs ?flickruser .
 ?picture dcterms:creator ?flickruser .
 ?picture flickr:photo-taken ?camera}

 <http://www.ischool.berkeley.edu/people/faculty/erikwilde> a school:person ;
owl:sameAs <http://www.flickr.com/photos/dret/> , <http://twitter.com/dret> ,

 <http://twitter.com/users/show/dret.xml> ;

 <school:people/faculty/erikwilde> <flickr:cameras/apple/iphone_3g/>
 <school:people/faculty/erikwilde> <flickr:cameras/panasonic/dmc-tz5/>
 <school:people/faculty/erikwilde> <flickr:cameras/panasonic/dmc-tz1/>
 <school:people/faculty/erikwilde> <flickr:cameras/nikon/d80/>

(a)

(b)

(c)

Figure 8: N3 notation snippets for the composition scenario

RESTful service

REST
resource ReLL description

.xml file .xslt

.xslt

mapping

REST
Crawler Translator

Triplestore

representation

ReLL
classes

media
types

RDF/OWL

seeds

Figure 9: Implementation

June 2010 15 of 16

UC Berkeley School of Information Report 2010-041 From RESTful Services to RDF

Figure 10: Description for one User in the Composite Service

June 2010 16 of 16

	Introduction
	Related Work
	Semantic Web Services
	Harvesting RDF data from Web resources

	REST Semantics
	REST Semantics in ReLL
	Describing Services with ReLL
	Harvesting RDF from Resources
	Composition as a Service
	Implementation and Results
	Conclusions

