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Abstract

Routine applications of electronic structure theory to molecules and peri-
odic systems need to compute the electron density from given Hamiltonian
and, in case of non-orthogonal basis sets, overlap matrices. System sizes
can range from few to thousands or, in some examples, millions of atoms.
Different discretization schemes (basis sets) and different system geometries
(finite non-periodic vs. infinite periodic boundary conditions) yield matrices
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with different structures. The ELectronic Structure Infrastructure (ELSI)
project provides an open-source software interface to facilitate the imple-
mentation and optimal use of high-performance solver libraries covering cu-
bic scaling eigensolvers, linear scaling density-matrix-based algorithms, and
other reduced scaling methods in between. In this paper, we present recent
improvements and developments inside ELSI, mainly covering (1) new solvers
connected to the interface, (2) matrix layout and communication adapted for
parallel calculations of periodic and/or spin-polarized systems, (3) routines
for density matrix extrapolation in geometry optimization and molecular dy-
namics calculations, and (4) general utilities such as parallel matrix I/O and
JSON output. The ELSI interface has been integrated into four electronic
structure code projects (DFTB+, DGDFT, FHI-aims, SIESTA), allowing us
to rigorously benchmark the performance of the solvers on an equal footing.
Based on results of a systematic set of large-scale benchmarks performed with
Kohn–Sham density-functional theory and density-functional tight-binding
theory, we identify factors that strongly affect the efficiency of the solvers,
and propose a decision layer that assists with the solver selection process.
Finally, we describe a reverse communication interface encoding matrix-free
iterative solver strategies that are amenable, e.g., for use with planewave
basis sets.

Keywords: Electronic structure theory, density-functional theory,
density-functional tight-binding, parallel computing, eigensolver, density
matrix

PROGRAM SUMMARY
Program title: ELSI Interface

Licensing provisions: BSD 3-clause

Distribution format: .tar.gz, git repository

Programming language: Fortran 2003, with interface to C/C++

External routines/libraries: BLACS, BLAS, BSEPACK (optional), EigenExa (op-

tional), ELPA, FortJSON, LAPACK, libOMM, MPI, MAGMA (optional), MUMPS

(optional), NTPoly, ParMETIS (optional), PETSc (optional), PEXSI, PT-SCOTCH

(optional), ScaLAPACK, SLEPc (optional), SuperLU DIST

Operating system: Unix-like (Linux, macOS, Windows Subsystem for Linux)

Nature of problem: Solving the electronic structure from given Hamiltonian and

overlap matrices in electronic structure calculations.

Solution method: ELSI provides a unified software interface to facilitate the use
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of various electronic structure solvers including cubic scaling dense eigensolvers,

linear scaling density matrix methods, and other approaches.

1. Introduction

Computer simulations based on electronic structure theory, particularly
Kohn–Sham density-functional theory (KS-DFT) [1, 2], are facilitating scien-
tific discoveries across a broad range of disciplines such as chemistry, physics,
and materials science. In KS-DFT, the many-electron problem for the Born–
Oppenheimer electronic ground state is reduced to a system of single particle
equations known as the Kohn–Sham equations,

ĥKSψl = εlψl, (1)

where ĥKS denotes the Kohn–Sham Hamiltonian, and ψl and εl are the Kohn–
Sham orbitals and their associated eigenenergies. In most computer real-
izations of KS-DFT, Eq. 1 is discretized by expanding ψl with Nbasis basis
functions φj:

ψl(r) =

Nbasis∑
j=1

cjlφj(r), (2)

which converts Eq. 1 into a generalized eigenproblem in a matrix form

HC = SCε. (3)

Here H and S are the Hamiltonian matrix and the overlap matrix, respec-
tively. ε and C contain eigenvalues and eigenvectors of the eigensystem of
H and S. Solving Eq. 3 by diagonalization yields the Kohn–Sham orbitals
(through Eq. 2) and their eigenenergies, from which the electron density can
be computed. Despite its success in a variety of traditional KS-DFT imple-
mentations, this approach has a computational cost that scales as O(N3),
with N being some measure of the system size. When handling complex sys-
tems consisting of many thousands of atoms, it often becomes prohibitively
expensive even on today’s most powerful supercomputers.

An alternative avenue to the electron density is available through the
density matrix P :

pij =

Nbasis∑
l=1

flcilc
∗
jl, (4)

3



where fl is the occupation number of the lth orbital, cil and cjl are elements
of the eigenvector matrix C in Eq. 3, corresponding to coefficients of the ith

and jth basis functions for the lth orbital, respectively, in Eq. 2. The density
matrix P may be computed directly fromH and S without explicitly solving
the eigenproblem in Eq. 3. Since the early 1990s, density-matrix-based linear
scaling algorithms [3, 4, 5], particularly for spatially localized basis functions,
have been developed to overcome the scaling bottleneck of diagonalization.
Even millions of atoms can be simulated with advanced implementations of
linear scaling KS-DFT [6, 7]. However, the larger computational prefactor
associated with algorithms that target the density matrix without the di-
agonalization in Eq. 3 hinders their application in anything but very large
systems. The diagonalization-based approach, in contrast, is generally ap-
plicable and highly efficient for systems comprised of up to several hundred
atoms and can remain competitive up to several thousand atoms (see Sec. 3).

In the last decade, a number of new algorithms targeting the Kohn–Sham
eigenproblem have emerged as software libraries, such as PEXSI (pole expan-
sion and selected inversion) [8, 9, 10, 11], CheSS (Fermi operator expansion
by Chebyshev polynomials) [12], and iterative eigensolvers powered by spec-
trum slicing [13, 14, 15, 16] or Chebyshev filtering [17, 18, 19]. Each of these
algorithms has quite unique features, performance characteristics, and ex-
pert regimes. The crossover point between direct diagonalization and these
alternative methods depends on the specifics of the simulation. It is thus
a difficult task to select the optimal numerical method for a given system
under study.

The ELectronic Structure Infrastructure (ELSI) project [20] provides an
open-source, integrated software interface connecting electronic structure
code packages to various high-performance eigensolvers and density matrix
solvers. Encouragingly, the ELSI interface has attracted great interest from
the community. To date, it supports five eigensolvers (ELPA [21, 22, 23],
SLEPc-SIPs [13, 14, 24, 25], EigenExa [26], LAPACK [27], MAGMA [28, 29]),
three density matrix solvers (libOMM [30], PEXSI [8, 9, 10, 11], NTPoly [31]),
and a special purpose eigensolver targeting the Bethe–Salpeter equation
(BSEPACK [32]). ELSI has been integrated with four electronic structure
packages (DFTB+ [33], DGDFT [34], FHI-aims [35], SIESTA [36]). It is open
for adoption and modification by any other electronic structure code. In addi-
tion, ELSI is included in the Electronic Structure Library (ESL) project [37],
a distribution of shared open-source libraries in the electronic structure com-
munity. In this paper, we present an update of the ELSI software from its
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1.0.0 release (May 2017) [20] to the current 2.5.0 release (February 2020),
covering newly added solvers, support of periodic and spin-polarized cal-
culations, density matrix extrapolation routines for geometry optimization
and molecular dynamics (MD) calculations, parallel matrix I/O, and a na-
tive Fortran library for JSON output. The ELSI interface and its integration
into existing electronic structure codes enable us to rigorously benchmark the
performance of multiple solvers on an equal footing. We report a systematic
set of large-scale benchmarks performed with Kohn–Sham density-functional
theory and density-functional tight-binding theory. Factors that strongly af-
fect the efficiency of the solvers are identified and analyzed, based on which
we propose a “decision layer” that assists users in selecting an appropriate
solver for an arbitrary problem. Finally, we outline a reverse communica-
tion interface (RCI) encoding matrix-free iterative solver strategies, currently
including the Davidson method [38, 39], the orbital minimization method
(OMM) [30, 40], the projected preconditioned conjugate gradient (PPCG)
method [41], and the Chebyshev filtering method [17, 42]. This feature would
benefit especially planewave-based DFT, but also other applications where
only a few eigenvectors of a high-dimensional matrix are needed.

2. Upgraded and New Features in ELSI (from 2017 to 2019)

In this section, we first briefly review the basic idea behind the ELSI
software interface and its design, fundamentals of which were described in
Ref. [20]. We then elaborate on new features added to ELSI since our previous
publication, including support for new solvers and new matrix formats, API
extension for managing multiple eigenproblems simultaneously across a given
number of MPI tasks, new functions needed for routine electronic structure
simulations such as the extrapolation of normalized density matrices between
different underlying system geometries, and general utilities such as parallel
matrix I/O and a native Fortran library for JSON output. An RCI framework
for iterative eigensolvers will be discussed in Sec. 4.2 and will be published
in more detail separately. A new CMake-based build system for ELSI will
additionally be discussed in Appendix A.

2.1. Review of ELSI API

The ELSI infrastructure is intended for the rapid integration of a variety
of eigensolvers and density matrix solvers into existing electronic structure
codes. The API of ELSI is designed to be compatible with the workflow of an
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electronic structure code. There are three key steps to use ELSI in a code im-
plementing the self-consistent field (SCF) method: (1) At the beginning of an
SCF cycle, the electronic structure code initializes ELSI by calling the subrou-
tine elsi init, which returns an “ELSI handle” storing all runtime parameters
of the ELSI interface and the solvers. “ELSI handle” is a derived data type
defined in Fortran. C/C++ code can also access it via the iso c binding mod-
ule of Fortran 2003. (2) Within the SCF cycle, the electronic structure code
uses one of the ELSI solver interfaces to solve the Kohn–Sham eigenprob-
lem by an eigensolver, or to compute the density matrix by a density matrix
solver. This is done by calling elsi {ev|dm} {real|complex}{ sparse} for
real or complex, dense or sparse matrices. (3) After the SCF cycle converges,
the electronic structure code finalizes ELSI by calling elsi finalize. At any
point after the initialization of an ELSI handle and before its finalization, the
electronic structure code can tune the parameters of the interface and the
solvers. A detailed explanation of the ELSI workflow is available in Ref. [20]
(see Fig. 3 and Algorithm 1 of that reference). Algorithms 1 and 2 in Sec. 2.7
also give a brief overview.

2.2. Solver Updates

As of its 2.5.0 release, ELSI supports shared-memory eigensolvers LA-
PACK [27] and MAGMA [28, 29], distributed-memory eigensolvers ELPA [21,
22, 23], SLEPc-SIPs [13, 14, 24, 25], and EigenExa [26], distributed-memory
density matrix solvers PEXSI [8, 9, 10, 11], libOMM [30], and NTPoly [31],
and the distributed-memory Bethe–Salpeter equation solver BSEPACK [32].
In the following sections, we cover a few algorithmic and technical aspects of
the upgraded PEXSI solver and the newly added NTPoly and SLEPc-SIPs
solvers. The reader is referred to the publications cited above for more details
of the solvers supported in ELSI.

2.2.1. PEXSI (upgraded)

The pole expansion and selected inversion (PEXSI) algorithm [8, 9] be-
longs to the category of Fermi operator expansion (FOE) methods. PEXSI
expands the density matrix P as a sum of rational matrix functions:

P =
∑
l

Im
(

ωl
H − (zl + µ)S

)
, (5)

where µ is the chemical potential of the system, {zl} and {ωl} are com-
plex shifts (“poles”) and weights of the expansion terms. Here we assume
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matrices H and S to be real symmetric for simplicity. The formulation be-
comes slightly but not fundamentally different when H and S are complex
Hermitian matrices.

For spatially localized basis functions and KS-DFT, only a subset of the
elements of H and S (the set for which two basis functions overlap) will be
non-zero and thus only a subset of the elements of the object (H−(zl+µ)S)−1

in Eq. 5, i.e. those corresponding to non-zero elements of H and S, need
to be computed for PEXSI. This is done using the parallel selected inversion
method [43, 44]. The computational complexity of Eq. 5 depends on the
dimensionality of the system: O(N), O(N1.5), and O(N2) for 1D, 2D, and
3D systems, respectively, with N being the size of the system. This favorable
scaling relies on the sparsity of the matrices which may be achieved with
localized basis functions, but does not rely on the existence of an energy gap.

With PEXSI version 0.10, which was used in ELSI 1.0.0 [20], 40 to 100
poles are sufficient for the result obtained from PEXSI to be fully compara-
ble (within 10−5 eV/atom [20]) to that obtained from diagonalization. The
chemical potential is obtained by a Newton type method that may need
several iterations to converge at the beginning of an SCF cycle. Eq. 5 is
evaluated once in each of the iterations. As the SCF cycle proceeds and the
electron density stabilizes, the quasi-Newton search can usually converge in
one iteration.

The recently released PEXSI version 1.2 incorporates significant improve-
ments over previous versions. First, the minimax rational approximation
of the Fermi–Dirac distribution [45] becomes the default pole expansion
method, reducing the number of terms needed in Eq. 5 to around 10 ∼
30. Second, the Newton type method for finding the chemical potential is
replaced by an algorithm, summarized below, that simultaneously improves
the efficiency and robustness [11]. Instead of computing the exact chemical
potential µ in every SCF iteration, the new algorithm tracks the upper and
lower bounds of µ, denoted as µmax and µmin. Then, an interpolation is car-
ried out to estimate µ from µmax and µmin. As the SCF cycle converges, µmax

and µmin are guaranteed to converge from both sides towards the final, exact
µ. Owing to the reduced number of poles and the elimination of the Newton
iterations, PEXSI 1.2 shows a significant speed-up over previous versions.

2.2.2. NTPoly (new)

Density matrix purification is an established way to achieve linear scaling
in electronic structure theory [4, 5]. Assuming an orthogonal basis set, the
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density matrix P at zero temperature is known to satisfy three conditions:

Hermitian : P = P ∗,

Normalized : Tr(P ) = Nelectron,

Idempotent : P = P 2.

(6)

Since an eigenproblem in a non-orthogonal basis can be transformed to an
orthogonal basis by a decomposition of the overlap matrix S, e.g. the Löwdin
decomposition:

H̃C = Cε,

H̃ = S−1/2HS−1/2,
(7)

we will stick to the assumption of an orthogonal basis set throughout this
subsection.

Starting from an initial guess of the density matrix P 0, density matrix
purification methods iteratively update the density matrix by applying

P n+1 = f(P n), (8)

where P n is the density matrix in the nth purification iteration, P n+1 is
the density matrix in the (n+1)th iteration, and f(P ) is usually a matrix
polynomial, chosen to guarantee that P n rapidly and stably converges to a
matrix satisfying Eq. 6.

For a matrix to satisfy the idempotent condition in Eq. 6, its eigenvalues
can only be 0 and 1. The initial guess P 0 that enters Eq. 8 is usually obtained
by scaling the Hamiltonian matrix to make its eigenvalues lie in between 0
and 1 [46]:

P 0 =
εmaxI −H
εmax − εmin

, (9)

where εmax and εmin are the (estimated) maximum and minimum eigenvalues
of H . Then, a number of choices for f(P ) are able to drive all eigenvalues
towards 0 or 1. We refer the reader to Refs. [4, 5] and references therein for
a review of density matrix purification algorithms.

For systems with a significant energy gap, the magnitude of the density
matrix elements pij in Eq. 4 decreases exponentially with respect to the dis-
tance between the ith and jth basis functions, |ri − rj| [3]. A cutoff distance
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rcutoff is often used with linear scaling methods to truncate the density ma-
trix, such that when |ri − rj| > rcutoff, the corresponding matrix element
pij is forced to be zero. This truncation leads to a highly sparse density
matrix for large systems. Alternatively, the sparsity of the density matrix
may be enforced by dynamically filtering out matrix elements smaller than
a predefined threshold. Given sufficiently large systems with a proper gap,
the density matrix will be highly sparse, and the computational complexity
of density matrix purification is O(N).

Exploiting its sparse, massively parallel matrix-matrix multiplication ker-
nel, the NTPoly library [31] implements the canonical purification algo-
rithm [47] that preserves the number of electrons throughout the purification
iterations, the trace resetting purification methods [46] that successively re-
fine the number of electrons to the target value, and the generalized canonical
purification method [48] that relies on the relationship between the electron
density matrix and the hole density matrix to accelerate convergence. A
comparison of these methods is given in Ref. [31]. In NTPoly, the sparsity
of {P n} is ensured by setting any matrix element smaller than a predefined
threshold to zero. This approach allows for an easier integration with elec-
tronic structure codes, as it does not require any knowledge on the physical
system or the basis functions.

2.2.3. SLEPc-SIPs (new)

The shift-and-invert spectral transformation method, implemented in the
SLEPc library [13, 25], transforms the eigenproblem in Eq. 3 by shifting the
eigenspectrum:

(H − σS)C = SC(ε− σI), (10)

where σ is a shift and I is the identity matrix. This shifted eigenproblem is
converted to the standard form by inverting (H − σS) and (ε− σI):

(H − σS)−1SC = C(ε− σI)−1, (11)

which is a standard eigenproblem

H̃C = Cε̃,

H̃ = (H − σS)−1S,

ε̃ = (ε− σI)−1.

(12)
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The transformed standard eigenproblem in Eq. 12 is solved by an iterative
Krylov–Schur algorithm in SLEPc [13]. If a shift can be chosen to be close
to the target eigenvalue, the shift-and-invert transformation augments the
magnitude of the eigenvalue, accelerating the solution of the standard eigen-
problem in Eq. 12.

The shift-and-invert transformation becomes less effective when many
eigenvalues need to be computed, because not all of them are close to the
shift. The spectrum slicing technique is an advanced modification that em-
ploys multiple shifts to compute all eigenvalues contained in an interval. A
large interval can be partitioned into independent slices and solved in parallel.
The parallel spectrum slicing method implemented in SLEPc-SIPs [13, 14]
partitions the eigenspectrum of an eigenproblem into Nslice slices. Corre-
spondingly, the computer processes involved in the calculation are split into
Nslice groups, so that each slice is handled by one group. Thanks to this
additional layer of parallelism, this approach has the potential to exhibit en-
hanced scalability over the direct diagonalization method, which has been
demonstrated in calculations on the density-functional-based tight-binding
(DFTB) level [14] as well as on the KS-DFT level [24]. Additionally, SLEPc-
SIPs should greatly outperform direct diagonalization methods in cases where
only a small fraction of the eigenspectrum is wanted.

2.3. Matrix Format Updates

In software implementations of electronic structure theory, matrices can
be stored in any form. ELSI, as a unified solver interface, must be able
to handle matrices stored in commonly used formats, and must be able
to convert between these formats. Two matrix formats were implemented
in the previous version of ELSI, namely the 2D block-cyclic distributed
dense format (BLACS DENSE) and the 1D block distributed compressed
sparse column (CSC) sparse format (PEXSI CSC) [20]. They have en-
abled the use of the ELPA, libOMM, and PEXSI solvers in the electronic
structure codes FHI-aims and DGDFT. In the present version of ELSI,
two additional matrix formats are available, namely the 1D block-cyclic
distributed CSC sparse format (SIESTA CSC) and the generic coordinate
sparse format (GENERIC COO). The 1D and 2D block-cyclic distribution
schemes BLACS DENSE and SIESTA CSC essentially cover all variants of
block/cyclic/block-cyclic distributions, as pure cyclic and pure block distri-
butions can be viewed as special cases of the general block-cyclic distribution.
The GENERIC COO format is designed to support any data distribution
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scheme that might be employed to store matrices in an electronic structure
code. On each process, a list of triplets is constructed, containing local ma-
trix elements and their global row and column indices. Based on the indices,
ELSI then redistributes the matrix to the format needed by the chosen solver.
The triplet list can be arbitrarily distributed, sorted or unsorted.

Conversions between any two of the supported matrix formats are im-
plemented with MPI. In order to avoid unnecessary data communication, all
zeros in a matrix are always ignored in the redistribution process. As re-
ported in Ref. [20], time spent on the conversion is negligible relative to the
actual computation time.

2.4. Interface Extension for Spin-Polarized and Periodic Systems

The parallelization strategy behind the ELSI interface depends on the
physical system being simulated. The base case is an isolated system in
vacuum, e.g. free atoms, molecules, clusters, without spin-polarization. In
this case, there is one eigenproblem (Eq. 3) in each iteration of an SCF cycle.
The strategy to tackle this single eigenproblem has been detailed in Ref. [20].
We here introduce how spin-polarized and periodic systems are supported in
ELSI.

When a spin-polarized periodic system is considered, Eq. 3 will have
an index α denoting the spin channel, and an index k denoting points in
reciprocal space:

Hα
kC

α
k = SkC

α
kε

α
k. (13)

Because of the periodicity, it is sufficient to study k within a single primitive
unit cell in reciprocal space, usually the first Brillouin zone (1BZ). The phys-
ical quantities are represented by integrals in 1BZ. Take the electron density
n(r) as an example:

n(r) =

Nspin∑
α=1

Nbasis∑
l=1

∫
1BZ

fαlkψ
α∗
lk (r)ψαlk(r)d3k, (14)

which is approximated by using a finite mesh of k -points in 1BZ:

n(r) ≈
Nspin∑
α=1

Nkpt∑
n=1

wkn

Nbasis∑
l=1

fαlkn
ψα∗lkn

(r)ψαlkn
(r). (15)
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Here, ψαlkn
and fαlkn

are the lth band at the nth k -point in the α spin channel
and its occupation number, wkn is the weight of the nth k -point, Nspin, Nkpt,
and Nbasis are the number of spin channels, k -points, and basis functions, re-
spectively. The weights of all k -points add up to 1. A denser grid of k -points
leads to a more accurate description of 1BZ, at the price of higher computa-
tional cost. If the unit cell in real space is small, an accurate description of the
electronic structure requires thousands of k -points or even more. If the unit
cell in real space is large, the Brillouin zone may already be well-represented
by the origin of the reciprocal space, known as the Γ point. The Hamiltonian
and overlap matrices for multiple k -points have a block-diagonal structure.
Each block on the diagonal corresponds to an eigenproblem of one k -point.

In total, there are Nkpt × Nspin eigenproblems in Eq. 13. They can be
solved in an embarrassingly parallel fashion. In ELSI, eigenproblems in
Eq. 13 are considered as equivalent “unit tasks”, which are set up by the
electronic structure code. The available computer processes are divided into
Nkpt × Nspin groups, each of which is responsible for one unit task. An ex-
ample with two spin channels (α and β) and four k -points (1, 2, 3, 4) solved
by 32 parallel processes (0, 1, ..., 31) is given in Fig. 1. There are eight unit
tasks in this example. Each unit task is handled by four processes in a “solve”
phase followed by a “reduction” phase, which are further explained below.
In an actual calculation, the total number of processes is not restricted to
be a multiple of the number of eigenproblems Nkpt × Nspin. Process groups
can have different numbers of processes, although a uniform partition usually
leads to the optimal load balance.

Computational steps carried out in the “solve” phase include:

• ELPA, SLEPc-SIPs, and EigenExa: Solve the eigenproblems in Eq. 13.

• PEXSI: Perform the pole expansion for each unit task at a chemical
potential uniform across all tasks. Compute the number of electrons
for each unit task.

• libOMM and NTPoly: Perform orbital minimization or density matrix
purification for each unit task to obtain density matrices.

Computational steps carried out in the “reduction” phase include:

• ELPA, SLEPc-SIPs, and EigenExa: Eigensolutions for the unit tasks
are coupled by the normalization condition of the number of electrons:
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Figure 1: Parallel calculation of spin-polarized and periodic systems in ELSI exemplified
with a fictitious system of two spin channels and four k -points, solved by 32 parallel
processes. Each square box represents one process, with its index (0, 1, ..., 31) labelled
inside. The 32 processes are divided into eight process groups, with four processes in
each. Spin channel α and β are indicated by boxes with solid and chessboard background,
respectively. k -points 1, 2, 3, and 4 are indicated by green, red, blue, and yellow boxes,
respectively.

Nelectron =

Nkpt∑
n=1

Nspin∑
α=1

Nbasis∑
l=1

wknf
α
lkn
, (16)

The eigenvalues solved for by each unit task are collected across all the
tasks, for the determination of the chemical potential and occupation
numbers.

• PEXSI: The total number of electrons is computed as a weighted sum-
mation over the number of electrons solved for all unit tasks.

• libOMM and NTPoly: None.

To use the ELSI interface in a spin-polarized and/or periodic calculation,
two MPI communicators should be passed into ELSI, for data communication
within a unit task in the “solve” phase and communication between all unit
tasks in the “reduction” phase, respectively. We note that the parallelization
strategy described in this subsection can only be applied when there are
more processes than unit tasks. When the number of processes is small, the
ELSI interface can be set up in such a way that each process invokes the
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eigensolver in LAPACK or MAGMA to solve a few unit tasks sequentially.
This is referred to as the “SINGLE PROC” parallelization mode in Ref. [20].

2.5. Calculation of the Energy-Weighted Density Matrix

In the context of geometry optimization or molecular dynamics (collec-
tively referred to as “geometry calculations” hereafter), forces (derivatives of
the total energy) are needed to evaluate the movement of atoms. There is a
so-called “Pulay” force term that originates as localized basis functions move
with the atoms [49]. One ingredient needed to compute the “Pulay” force is
the energy-weighted density matrix Q:

qij =

Nbasis∑
l=1

εlflcilc
∗
jl, (17)

which is the density matrix P in Eq. 4 weighted by eigenvalues of the orbitals.
Density matrix solvers compute Q directly from H , S, and P . In ELSI,
Q is not computed at the time when a density matrix solver is invoked
through elsi dm {real|complex}{ sparse}. Since forces are typically only
needed near or after the end of an SCF cycle, always computing Q together
with P is unnecessary. Instead, elsi get edm {real|complex}{ sparse}
is dedicated to retrieving Q whenever it is needed.

2.6. Calculation of the Electronic Entropy

At zero temperature, the occupation number {fαlk} of an orbital in a
metallic system drops abruptly from 1 (omitting spin degeneracy) to 0 at
the Fermi energy. This is undesired in two aspects. First, to accurately
integrate this discontinuous function in, e.g, Eq. 15, a very fine grid of k -
points is required to sample the Brillouin zone. More k -points lead to a
more accurate description of the Brillouin zone, at the price of proportionally
increasing computational cost. Second, when an orbital suddenly changes
from unoccupied to occupied, or vice versa, its contribution to the electron
density (Eq. 15) suddenly appears or disappears, leading to instabilities in
the convergence of an SCF cycle.

In practical calculations, a metallic system is usually treated at a higher
electronic temperature by means of “smearing” of the density of states, which
makes the occupation function decrease smoothly from 1 to 0 around the
Fermi level. This continuous function can be integrated more accurately with
a relatively coarse grid of k -points. In addition, using a smearing function
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helps stabilize the SCF convergence for any system with a zero or small energy
gap [50, 51]. A side effect is that the energy functional being minimized no
longer corresponds to the total energy Etot at zero temperature, but the free
energy Efree = Etot − TS, where T and S are the electronic temperature
and the electronic entropy, respectively [52, 53]. Correspondingly, “forces”
needed for geometry calculations should be computed as gradients of the
free energy, instead of the regular total energy. In fact, in the analytical
gradient of the free energy, the term involving the derivative of the fractional
occupation numbers with respect to the atomic displacement exactly cancels
with the corresponding term originating from the derivative of the electronic
entropy [53].

In ELSI, we have implemented the Fermi–Dirac [54], Gaussian [55], Methfessel–
Paxton [56], and Marzari–Vanderbilt [57] smearing functions. Given the ex-
act number of electrons and the eigenenergies of the orbitals (computed by
the ELPA, SLEPc-SIPs, EigenExa, LAPACK, or MAGMA eigensolver), the
occupation numbers, chemical potential, and electronic entropy can be cal-
culated with any one of the four smearing functions. The electronic entropy
term is currently unavailable from ELSI when using a density matrix solver.
The PEXSI solver is capable of directly computing the free energy density
matrix [9], from which the free energy and Fermi–Dirac entropy can be de-
duced.

2.7. Reinitialization of ELSI

When the atomic positions get updated in geometry optimization or
molecular dynamics calculations, localized basis functions move together with
atoms, leading to a new overlap matrix S1, and a sparsity pattern different
from that of the previous overlap matrix S0. In the previous version of ELSI,
the user was responsible for finalizing ELSI and reinitializing it for an up-
dated geometry, as shown in Algorithm 1. This guarantees that outdated
information is not carried over to the updated geometry. However, this also
discards information that can be reused, such as the MPI setup and most of
the solver-specific settings. To maximize the reuse of information between
geometry steps, and to minimize the coding effort on the electronic struc-
ture code side, we have introduced the elsi reinit subroutine to reinitialize
an instance of ELSI. The usage of elsi reinit in geometry calculations is
demonstrated in Algorithm 2. Compared to ELSI OLD, the initialization
and finalization of ELSI are moved out of the geometry loop, avoiding the
repeated re-creation of ELSI instances. A new geometry step is indicated by
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calling elsi reinit, which instructs ELSI to flush geometry-related variables
and arrays that cannot be safely reused in the new geometry step, mainly
the overlap matrix and its sparsity pattern. Other information is kept within
the ELSI instance and reused throughout multiple geometry steps.

Algorithm 1 Usage of the previous version of the ELSI interface [20] in
geometry optimization and molecular dynamics calculations. For simplicity,
tasks belonging to the electronic structure code, e.g., the construction of
electron density and the integration of Hamiltonian, are not shown.

procedure ELSI OLD
while (geometry not converged) do

call elsi init
call elsi set *
while (SCF not converged) do

call elsi {ev|dm}
end while
call elsi finalize

end while

Algorithm 2 Usage of the present version of the ELSI interface in geom-
etry optimization and molecular dynamics calculations. Compared to the
ELSI OLD procedure in 1, repeated re-creation of ELSI instances is avoided
by using elsi reinit.

procedure ELSI NEW
call elsi init
call elsi set *
while (geometry not converged) do

while (SCF not converged) do
call elsi {ev|dm}

end while
call elsi reinit

end while
call elsi finalize

2.8. Extrapolation of Wavefunctions and the Density Matrix

In a single point total energy calculation, a simple way to construct an
initial guess for the electron density is to use a superposition of free atom
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densities. In geometry calculations, the initial guess in the (n+1)th geom-
etry step can be improved by reusing the wavefunctions or density matrix
calculated in the nth geometry step. However, due to the movement of atoms
and localized basis functions around them, wavefunctions obtained in the nth

geometry step are no longer orthonormalized in the (n+1)th geometry step.
Similarly, the density matrix from the nth geometry step P 0 is no longer nor-
malized with respect to the new overlap matrix S1, i.e., Tr(P 0S1) 6= Nelectron

and P 0 6= P 0S1P 0.
The wavefunction coefficients, i.e., eigenvectors in Eq. 3, can be reorthonor-

malized with respect to S1. This is implemented in ELSI with the Gram–
Schmidt algorithm. For the density matrix, we decompose the previous and
current overlap matrices S0 and S1, then extrapolate the previous density
matrix P 0 to a new density matrix P 1 [58, 59, 60]. With a Cholesky decom-
position of the overlap matrices, the process is:

S0 = L0L
∗
0,

S1 = L1L
∗
1,

P 1 = (L−1
1 )∗L∗

0P 0L0L
−1
1 ,

(18)

An equivalent extrapolation formula exists when using the Löwdin decom-
position. The common idea is transforming P 0 to an orthogonal basis, then
to the new non-orthogonal basis. Both algorithms are implemented for real
and complex, dense and sparse matrices.

2.9. Parallel Matrix I/O

Matrices from a given electronic structure calculation are often reusable in
further computational steps – e.g., in the simplest case, to restart a particular
calculation that could not be completed within a single run, or that needed
to be revisited for future data extraction tasks. In such cases, it is helpful
to write some information (e.g. the current atomic structure and density
matrix) to file, which serves as a checkpoint to restart a calculation. When
ELSI runs in parallel with multiple MPI tasks, matrices are distributed across
tasks. The idea of writing a distributed matrix into NMPI separate files, where
NMPI is the number of MPI tasks, is not promising due to the difficulty
of post-processing a large number of files. Therefore, parallel matrix I/O
(input/output) routines are preferred. Other use cases of this functionality
include, e.g., sharing matrices between collaborating teams and testing the
solvers with pre-generated matrices.
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In the past, we have encountered some difficulties in using existing parallel
I/O libraries [61, 62] with thousands of MPI tasks on various supercomput-
ers. This might be connected to overhead introduced by complex hierarchical
data structures implemented in high level I/O libraries. Therefore, the data
structure in ELSI is simply arrays that represent matrices, if necessary, ac-
companied by a few integers to define the dimensions of the matrices. It is
more straightforward to directly employ the parallel I/O functionality de-
fined in the MPI standard [63]. Our implementation of matrix I/O in ELSI
is built around MPI File {read|write} at all, which allows distributed data
to be written to (read from) a single file, as if the data was gathered onto a
single MPI task then written to one file (read from one file by one MPI task
then scattered to all). The optimal I/O performance, both with MPI I/O
and in general, is obtained by making large and contiguous requests to ac-
cess the file system, rather than small, non-contiguous, or random requests.
Therefore, before writing a matrix to file, we redistribute it to a 1D block
distribution. This guarantees that each task writes a contiguous chunk of
data to a contiguous piece of file. Similarly, a matrix read from file is in a 1D
block distribution. Whenever needed, it can be redistributed automatically
to one of the supported distributions.

2.10. JSON Output via the FortJSON Library

The workflow of benchmarking multiple solvers across different electronic
structure codes is greatly accelerated by using a consistent output format
that is easily processed by external scripting utilities. To aid in accelerating
this workflow when using ELSI, we provide JSON output from ELSI using
FortJSON, an open source JSON library written by ELSI developers for
Fortran 2003 code bases. All benchmarks presented in Sec. 3 were output
using FortJSON.

FortJSON is bundled as part of the ELSI package and is available to codes
linked against ELSI. Alternatively, it may be downloaded as a standalone
package from the ELSI GitLab server and installed using a CMake build
system. It uses a handle-based structure similar to ELSI’s, in which the user
initializes a FortJSON handle to open a JSON file, calls a consistent API to
write to the JSON file, and finalizes the handle to finish output. JSON files
written by FortJSON are fully compliant with the “ECMA-404 The JSON
Data Interchange” standard [64]. FortJSON is, in principle, a standalone
library that can be used to facilitate JSON output in any other context as
well.
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2.11. Summary of New Features in ELSI

As a summary of this section, all major changes of ELSI since Ref. [20]
are listed below.

• PEXSI v1.2: Default number of poles reduced to 20 without sacrificing
accuracy; efficient and robust strategy for finding the chemical poten-
tial. (Sec. 2.2.1)

• NTPoly: Linear scaling density matrix purification methods (canonical
purification, 2nd and 4th order trace resetting purification, generalized
hole-particle canonical purification) in the NTPoly library. (Sec. 2.2.2)

• SLEPc-SIPs: Shift-and-invert parallel spectrum slicing eigensolver in
the SLEPc library. (Sec. 2.2.3)

• EigenExa: Tridiagonalization and penta-diagonalization eigensolvers in
the EigenExa library.

• MAGMA: GPU-accelerated one-stage and two-stage tridiagonalization
eigensolvers in the MAGMA library.

• BSEPACK: Distributed-memory eigensolver in the BSEPACK library,
specifically targeting the Bethe–Salpeter equation.

• 1D block-cyclic distributed compressed sparse column matrix format
(SIESTA CSC). (Sec. 2.3)

• Arbitrarily distributed coordinate sparse matrix format (GENERIC COO).
(Sec. 2.3)

• Interface extension for spin-polarized and periodic systems. (Sec. 2.4)

• Energy-weighted density matrix available for all supported solvers and
matrix formats. (Sec. 2.5)

• Electronic entropy with Fermi–Dirac, Gaussian, Methfessel–Paxton,
and Marzari–Vanderbilt broadening schemes. (Sec. 2.6)

• Reinitialization of ELSI between geometry steps. (Sec. 2.7)

• Density matrix extrapolation between geometry steps. (Sec. 2.8)
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• Gram–Schmidt orthogonalization of eigenvectors between geometry steps.
(Sec. 2.8)

• MPI I/O based parallel matrix I/O for dense and sparse matrices.
(Sec. 2.9)

• JSON output via the FortJSON library. (Sec. 2.10)

• Iterative eigensolvers in a reverse communication interface (RCI) frame-
work. (Sec. 4.2)

• CMake build system. (Appendix A)

3. Benchmarks and Discussions

Since the previous version, we have successfully integrated the ELSI inter-
face into two additional electronic structure projects, DFTB+ and SIESTA.
It is now possible for the users of DFTB+, DGDFT, FHI-aims, and SIESTA
to easily switch between eigensolvers and density matrix solvers supported in
ELSI by specifying a single keyword in their package-specific input files. De-
pending on the needs and knowledge level of the users, ELSI can be used as a
black box solution, or can be fine-tuned to allow for optimal performance in
certain circumstances. Developments, enhancements, and fixes made in ELSI
and the solvers are immediately available for users of these electronic struc-
ture codes. Knowledge gained from ELSI usage in one code often benefits
users of other codes.

The ELSI interface and its integration with electronic structure codes
enable us to rigorously benchmark the performance of different solvers on
an equal footing. We present here a large set of cross-solver, cross-code
benchmarks as an essential step to settle the respective efficiency of differ-
ent solvers in different regimes. Testing Hamiltonian and overlap matrices
are constructed from actual electronic structure calculations, at the levels of
all-electron full-potential KS-DFT (with the FHI-aims code [35]), pseudopo-
tential KS-DFT (with the SIESTA code [36]), and DFTB (with the DFTB+
code [33]).

We select eight benchmark atomic structure models, which include small
and large models ranging from a hundred to tens of thousands of atoms, 1D,
2D, and 3D materials, light and heavy elements, and gapped and gapless sys-
tems. According to their composition and dimensionality, the structures are
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classified into three sets: the carbon set (Sec. 3.1), the heavy set (Sec. 3.2),
and the bulk set (Sec. 3.3). Our comparison of solver performance focuses
on key computational steps of the solvers that are repeated in every SCF
iteration. These repeated steps are: for ELPA, transforming the generalized
eigenproblem in Eq. 3 to the standard form, solving the standard eigenprob-
lem, back-transforming the eigenvectors, and constructing the density matrix
via Eq. 4; for PEXSI, computing the density matrix via Eq. 5; for NTPoly,
transforming the generalized eigenproblem in Eq. 3 to the standard form by
Eq. 7, computing the density matrix via Eq. 8, and back-transforming the
density matrix. There are other computationally expensive steps that are
needed only once for a fixed geometry, such as the Cholesky or LU factor-
ization of the overlap matrix. They have less significant effects on the total
time of an SCF cycle, thus are not discussed here.

As explained in Sec. 2.4, there are multiple eigenproblems in a spin-
polarized system and/or a periodic system with multiple k -points. Since
these eigenproblems can be solved fully in parallel, the total computational
cost can be roughly predicted from the cost of one eigenproblem. Therefore,
we stick to a spin-non-polarized, periodic setting with a 1 × 1 × 1 k -grid
(i.e., Γ point only) in all our benchmarks. Table 1 summarizes solver-specific
parameters used in our benchmarks. For ELPA, we use the two-stage diago-
nalization algorithm [22, 65]. A block size of 16 is chosen for the block-cyclic
matrix distribution, which usually leads to the optimal performance of the
two-stage ELPA solver [22, 66]. For PEXSI, we use 20 poles (zl in Eq. 5),
derived from the minimax rational approximation [45]. For NTPoly, we use
the 4th order trace-resetting purification method [46] with the truncation pa-
rameter (matrix elements below which are discarded in order to maintain
the sparsity of the matrices) being 10−5 and the convergence criterion 10−2.
With these settings, the maximum difference in total energy for a given ge-
ometry is 0.5 µeV/atom between results obtained with ELPA and PEXSI,
and 32.4 µeV/atom between results obtained with ELPA and NTPoly, indi-
cating excellent accuracy of the solvers. The rest of this section will mainly
focus on the performance of the solvers. Complete input files used in this
section are available at the ELSI GitLab server [67].

3.1. Benchmark Set I: Carbon Allotropes

In the carbon benchmark set, we construct models of three carbon al-
lotropes, namely (quasi) 1D carbon nanotube, 2D graphene, and 3D graphite,
as shown in Fig. 2 (a) (b) and (c), respectively. We run KS-DFT calculations
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Table 1: List of solver-specific parameters, including the diagonalization algorithm and
block size for ELPA, the pole expansion algorithm and number of poles for PEXSI, the
density matrix purification algorithm, truncation parameter, and convergence criterion for
NTPoly. The same settings are employed across all benchmarks reported in this paper.

solver parameter value
ELPA algorithm two-stage diagonalization
ELPA block size 16
PEXSI algorithm minimax rational approximation
PEXSI number of poles 20
NTPoly algorithm 4th order trace-resetting
NTPoly truncation 10−5

NTPoly convergence 10−2

with the PBE [68] semi-local exchange-correlation functional with two soft-
ware packages, namely FHI-aims and SIESTA. Input geometries are made
identical in FHI-aims and SIESTA calculations. Predefined “tier 1” and
“DZP” (double-zeta plus polarization) basis sets are used in FHI-aims and
SIESTA, respectively. Both basis sets contain the minimal sp functions and
an additional set of spd functions. The number of basis functions per atom
in SIESTA is one fewer than that in FHI-aims, because of the use of pseu-
dopotentials in SIESTA. The dimensions of the models, the number of basis
functions, and the sparsity factor of the corresponding matrices are summa-
rized in Table 2.

Figure 2: Atomic structures of (a) 1D carbon nanotube (CNT), (b) 2D graphene, and (c)
3D graphite.
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Table 2: Dimension of structures in the carbon benchmark set, and sparsity of the Hamil-
tonian matrix in the calculation. ñbasis is the average number of basis functions per atom.
Natom is the number of atoms. The global dimension of the Hamiltonian, overlap etc. ma-
trices is equal to the total number of basis functions Nbasis = ñbasis ×Natom. Sparsity is
defined as Nzero/N

2
basis, with Nzero being the number of zero matrix elements. A minimal

+ spd basis set is used to describe carbon atoms in FHI-aims and SIESTA.

code system ñbasis Natom sparsity (%)
FHI-aims CNT 14 800 – 6,400 91.3 – 98.9
FHI-aims graphene 14 800 – 7,200 90.5 – 99.4
FHI-aims graphite 14 864 – 6,912 75.1 – 96.6
SIESTA CNT 13 800 – 6,400 95.0 – 99.4
SIESTA graphene 13 800 – 7,200 94.5 – 99.5
SIESTA graphite 13 864 – 6,912 92.5 – 99.1

Calculations of the carbon set were performed on the Cray XC30 super-
computer Edison at National Energy Research Scientific Computing Center
(NERSC). Each node of Edison was equipped with two 12-core Intel Ivy
Bridge processors. 80 nodes were fully exploited by launching 24 MPI tasks
on each node, yielding 1,920 MPI tasks in total. No OpenMP parallelization
was employed.

In Fig. 3, we compare the performance of the ELPA and PEXSI solvers in
all-electron KS-DFT calculations with the FHI-aims code. Fig. 3 (a) shows
the wallclock time needed for ELPA to solve for 42.9% of the eigenspectrum,
versus the time needed for PEXSI to compute the density matrix, in calcula-
tions of 1D carbon nanotube models consisting of 800 to 6,400 atoms (11,200
to 89,600 basis functions). PEXSI consistently outperforms ELPA in these
calculations. The benefit of using PEXSI becomes more significant as the
size of the system increases, owing to the O(N) computational complexity
of PEXSI for 1D systems. Fig. 3 (b) shows the same comparison between
ELPA and PEXSI for 2D graphene models consisting of 800 to 7,200 atoms
(11,200 to 100,800 basis functions). These examples are identical to those
reported in Fig. 7 (a) of Ref. [20], except that newer versions of ELPA and
PEXSI are used here. In both Fig. 3 (b) and Ref. [20], there is a crossover
point between ELPA and PEXSI. The improvements of PEXSI discussed in
Sec. 2.2.1, especially the reduction in the number of poles [11, 45], contribute
to a speed-up of PEXSI by a factor of two, bringing down the crossover point
from 3,000 atoms to about 1,000 atoms. Again, it is increasingly beneficial
to use PEXSI beyond 1,000 atoms, which scales as O(N1.5) for 2D systems.
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The same comparison for 3D graphite models consisting of 864 to 6,912 atoms
(12,096 to 96,768 basis functions) is shown in Fig. 3 (c), where ELPA outper-
forms PEXSI. The performance of ELPA with fixed computational resources
should only depend on the size of the eigenproblem, hence the roughly con-
stant time to solution of ELPA for problems of similar size in Fig. 3 (a)
(b) and (c). In contrast, the performance of PEXSI heavily depends on the
dimensionality of the system, favoring low dimensional systems. This can
be attributed to the high sparsity of Hamiltonian matrices and generalized
Cholesky factors in such systems. As quantified in the last column of Table 2,
given the same number of atoms and basis functions, the Hamiltonian ma-
trix is more sparse in lower dimensional systems where the surface-to-volume
ratio is higher. Basis functions belonging to atoms on the surface have less
overlap with the other functions, yielding more zero elements in the overlap
and Hamiltonian matrices.

The same performance characteristics of ELPA and PEXSI are repro-
duced in pseudopotential KS-DFT calculations with the SIESTA code. Basis
sets, although constructed and tuned differently, are of similar size (SIESTA
has one fewer basis function per atom because the 1s state is treated by
a pseudopotential). The most notable difference is the width of the eigen-
spectrum of H and S. Timings measured from calculations of 1D carbon
nanotube, 2D graphene, and 3D graphite models are shown in Fig. 4 (a) (b)
and (c), respectively. Again, PEXSI is computationally more efficient than
ELPA in 1D and 2D calculations, but not in 3D calculations. For low dimen-
sional systems, PEXSI consistently outperforms ELPA due to the reduced
asymptotic complexity, and is particularly promising for very large systems.

Owing to the all-electron formalism implemented in FHI-aims and the
pseudopotential formalism implemented in SIESTA, the lowest energy level
in FHI-aims, -275.99 eV, is lower than the lowest level in SIESTA, -24.34
eV, by an order of magnitude. By comparing Fig. 3 with Fig. 4, we confirm
that the performance of PEXSI is only mildly affected by the eigenspectrum
width. In general, the runtime of PEXSI in Fig. 4 is lower than that in
Fig. 3 for any given system. This can be explained by the fact that SIESTA
matrices are slightly smaller and more sparse than FHI-aims matrices, as
detailed in Table 2. For instance, for the graphite model with 864 atoms,
the sparsity factor of the H matrix in SIESTA is 92.5%, i.e. 7.5% matrix
elements are non-zero. The H matrix in FHI-aims contains 24.9% non-zero
elements, which makes PEXSI slower in FHI-aims calculations.
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Figure 3: Performance of key steps in ELPA and PEXSI for (a) carbon nanotube models,
(b) graphene models, (c) graphite models, as a function of the number of atoms. For
ELPA, the key steps include transforming the eigenproblem from the generalized form to
the standard form, solving the standard eigenproblem, back-transforming the eigenvectors
to the generalized form, and constructing the density matrix; for PEXSI, evaluating the
pole expansion and selected inversion in Eq. 5 and assembling the density matrix. ELPA
computes all eigenvalues and 42.9% of the eigenvectors. Results in this figure are obtained
by running the FHI-aims code on the Edison supercomputer with 1,920 CPU cores (MPI
tasks).

3.2. Benchmark Set II: Heavy Elements

The heavy benchmark set is comprised of (quasi) 1D germanium nan-
otubes, 2D MoS2 monolayers, and 3D Cu2BaSnS4 supercells, as shown in
Fig. 5 (a) (b) and (c), respectively. Species in this set are intentionally cho-
sen to be heavier than carbon (atomic number: S 16, Cu 29, Ge 32, Mo 42, Sn
50, Ba 56). KS-DFT calculations with the PBE functional are carried out
using the all-electron full-potential FHI-aims code, yielding eigenproblems
with wide eigenspectra. For instance, the lowest eigenvalue in Cu2BaSnS4

calculations is -38877.57 eV, whereas the lowest value in carbon calculations
is only -275.99 eV. For all species, the predefined “tier 1” basis sets [35] are
employed, yielding approximately twice as many as basis functions per atom
compared to the carbon set. To keep the total number of basis functions
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Figure 4: Performance of key steps in ELPA and PEXSI for (a) carbon nanotube models,
(b) graphene models, (c) graphite models, as a function of the number of atoms. ELPA
computes all eigenvalues and 50% of the eigenvectors. Results in this figure are obtained
by running the SIESTA code on the Edison supercomputer with 1,920 CPU cores (MPI
tasks).

comparable to that in the carbon set, models in the heavy set contain fewer
atoms. Approximately, the size of matrices in the heavy set ranges from a
few thousand to over one hundred thousand, close to the size of matrices in
the carbon set. The dimensions of the models, the number of basis func-
tions, and the sparsity factor of the corresponding matrices are summarized
in Table 3.

Table 3: Dimension of structures in the heavy benchmark set, and sparsity of the Hamil-
tonian matrices in the calculations. See caption of Table 2 for definitions of ñbasis, Natom,
and sparsity. Minimal + spd basis sets are used to describe germanium and tin atoms.
Minimal + spdf basis sets are used to describe sulfur, copper, molybdenum, and barium
atoms. These basis sets are predefined as “tier 1” in FHI-aims. Please refer to Ref. [35]
for details on the rationale for basis set definition in FHI-aims.

code system ñbasis Natom sparsity (%)
FHI-aims Ge nanotube 27 400 – 3,200 93.6 – 99.2
FHI-aims MoS2 monolayer 25.3 300 – 4,800 83.9 – 99.4
FHI-aims Cu2BaSnS4 26.8 192 – 3,000 67.8 – 97.7
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Figure 5: Atomic structures of (a) 1D Ge nanotube, (b) 2D MoS2 monolayer, and (c) 3D
Cu2BaSnS4.

Calculations of the heavy set were performed on the Cray XC40 super-
computer Cori (Haswell partition) at NERSC. Each node of Cori is equipped
with two 16-core Intel Haswell processors. 80 nodes were fully exploited by
launching 32 MPI tasks on each node, yielding 2,560 MPI tasks in total. No
OpenMP parallelization was employed.

Fig. 6 (a) (b) and (c) show the performance of the ELPA and PEXSI
solvers in FHI-aims all-electron calculations of 1D Ge nanotube models (400
to 3,200 atoms; 10,800 to 86,400 basis functions), 2D MoS2 models (300 to
4,800 atoms; 7,600 to 121,600 basis functions), and 3D Cu2BaSnS4 mod-
els (192 to 3,000 atoms; 5,136 to 80,250 basis functions), respectively. The
wider eigenspectra and more basis functions per atom in the heavy set do
not appear to have a significant impact on the relative performance of the
ELPA and PEXSI solvers. The dimensionality and sparsity of the system,
as in the carbon set, can greatly influence the efficiency of PEXSI. In partic-
ular, PEXSI outperforms ELPA in all 1D Ge nanotube calculations and in
2D MoS2 calculations with 1,200 and more atoms. ELPA is still faster for
small and dense systems, including 2D MoS2 calculations with fewer than a
thousand atoms and all 3D Cu2BaSnS4 calculations.

3.3. Benchmark Set III: Bulk Materials

Finally, we explore the possibility to accelerate large, 3D calculations
using linear scaling density matrix purification methods implemented in the
NTPoly library. A series of non-self-consistent-charge DFTB calculations of
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Figure 6: Performance of key steps in ELPA and PEXSI for (a) Ge nanotube models, (b)
MoS2 monolayer models, (c) Cu2BaSnS4 models, as a function of the number of atoms.
ELPA computes all the eigenvalues, and 79.6%, 63.8%, and 69.2% of the eigenvectors for
the Ge nanotube models, MoS2 monolayer models, and Cu2BaSnS4 models, respectively.
Results in this figure are obtained by running the FHI-aims code on the Cori supercom-
puter (Haswell partition) with 2,560 CPU cores (MPI tasks).

water clusters and silicon supercells, shown in Fig. 7, are carried out with
the DFTB+ code. For hydrogen, oxygen, and silicon atoms, minimal s, sp,
and sp basis sets are employed, respectively. The dimensions of the models,
the number of basis functions, and the sparsity factor of the corresponding
matrices are summarized in Table 4.

Table 4: Dimension of structures in the bulk benchmark set, and sparsity of the Hamilto-
nian matrices in the calculations. See caption of Table 2 for definitions of ñbasis, Natom,
and sparsity. Minimal basis sets are used to describe hydrogen, oxygen, and silicon atoms.

code system ñbasis Natom sparsity (%)
DFTB+ H2O 2 5,184 – 41,472 87.6 – 98.5
DFTB+ Si 4 2,000 – 31,250 89.2 – 99.2

Calculations of the bulk set were performed on the Cray XC40 super-
computer Cori at NERSC. Architecture utilization is identical to those in
Sec. 3.2.
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Figure 7: Atomic structures of (a) water and (b) silicon.

Fig. 8 shows the performance of the ELPA, PEXSI, and NTPoly solvers
in DFTB+ calculations of water (5,184 to 41,472 atoms; 10,368 to 82,944
basis functions) and silicon (2,000 to 31,250 atoms; 8,000 to 125,000 basis
functions) models. Consistent with Figs. 3, 4, and 6, PEXSI is always slower
than ELPA for these 3D structures. The NTPoly solver is able to outper-
form ELPA by an order of magnitude in all calculations of water molecules,
as shown in Fig. 8 (a). For the silicon case, NTPoly starts outperforming
ELPA when the number of atoms becomes greater than 16,000 (64,000 basis
functions). A speed-up of 4 can be achieved for 31,250 atoms (125,000 basis
functions), and should be larger for more atoms.

It is worth noting that the density matrix purification parameters used
in this subsection, i.e., matrix truncation threshold 10−5 and purification
convergence criterion 10−2, are crucial to maintaining the sparsity of ma-
trices in intermediate steps in Eq. 8, and therefore achieving linear scaling
computational cost. Density matrices computed from these parameters are
sufficiently accurate for non-self-consistent calculations. The maximum dif-
ference in total energy is only 32.4 µeV/atom between results obtained with
NTPoly and ELPA. Nevertheless, slower SCF convergence may be observed
in self-consistent calculations, where tighter parameters need to be consid-
ered.

We note that the PEXSI algorithm is highly scalable, as the poles in Eq. 5
can be evaluated fully in parallel. For each pole, the object (H−(zl+µ)S)−1

is computed by the PSelInv (parallel selected inversion) technique, which is
able to make efficient use of thousands of CPU cores [43]. With only 20 CPU
cores assigned to each pole, PEXSI calculations in Figs. 3, 4, 6, and 8 are far
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Figure 8: Performance of key steps in ELPA, PEXSI, and NTPoly for (a) water models
and (b) silicon models. ELPA computes all eigenvalues and eigenvectors. Results in this
figure are obtained by running the DFTB+ code on the Cori supercomputer (Haswell
partition) with 2,560 CPU cores (MPI tasks).

away from the scalability limit of the algorithm [10, 20]. To test the parallel
performance of the solvers, we take the 41,472-atom water model and the
31,250-atom silicon model in Table 4 and solve them using ELPA, PEXSI,
and NTPoly with up to 40,960 CPU cores (MPI tasks). As shown in Fig. 9,
the PEXSI solver exhibits a strong scaling superior to ELPA and NTPoly
in both the water and silicon test cases. The ELPA solver is faster than
PEXSI when using fewer than 20 thousand CPU cores, but it ceases to scale
further and becomes slower than PEXSI when using more CPU cores. The
NTPoly solver, although its strong scaling is not as good as PEXSI, is still
the fastest solver for the two benchmark systems. The scalability of NTPoly
may be extended by activating the 3D process grid feature for sparse matrix
multiplications in NTPoly [31].
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Figure 9: Performance of key steps in ELPA, PEXSI, and NTPoly for (a) water 41,472-
atom model and (b) silicon 31,250-atom model. ELPA computes all eigenvalues and
eigenvectors. Results in this figure are obtained by running the DFTB+ code on the Cori
supercomputer (Haswell partition).

4. Outlook

4.1. Automatic Solver Selection

As an outcome of the benchmarks and analysis discussed in the previous
section, we propose a semi-empirical mechanism to automatically select a
solver for arbitrary problems. This mechanism is composed of two layers, a
quick decision layer and a direct comparison layer. The former is intended to
quickly estimate the solver performance using a few descriptors of a physical
system, whereas the latter performs a more rigorous check in case that no
quick decision can be made.

As Algorithm 3 shows, the quick decision layer takes four parameters of
a physical system as its input, namely the system dimensionality (Ndim), the
energy gap (Egap), the number of basis functions employed (Nbasis), and the
matrix sparsity factor (defined as Nzero/N

2
basis with Nzero being the number

of zero matrix elements). Three protocols are implemented in this layer:
(1) ELPA is chosen for systems with fewer than 20,000 basis functions, re-
gardless of the values of the other parameters. In benchmarks in Sec. 3,
ELPA has demonstrated its efficiency for small-to-medium-sized systems.
Although PEXSI or NTPoly could outperform ELPA for some system ge-
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ometries and/or potentially different MPI library environments and proces-
sor counts even when Nbasis < 20, 000, the performance difference should be
rather small and probably not critical. (2) When Nbasis > 20, 000, PEXSI
is chosen for 1D/2D systems whose matrix sparsity factor is higher than
95%. In our benchmarks, PEXSI consistently outperforms ELPA for large,
sparse, low-dimensional systems thanks to its O(N) and O(N1.5) scaling for
1D and 2D systems, respectively. Knowledge of the dimensionality of the
system currently relies on user’s input. (3) When Nbasis > 100, 000, NTPoly
is chosen for systems with an energy gap larger than 0.5 eV and a sparsity
factor higher than 99%. The linear scaling density matrix purification meth-
ods in NTPoly rely on a proper energy gap, which ensures that the density
matrix P is sufficiently sparse for large systems. The sparse matrix multi-
plication kernel in NTPoly efficiently utilizes this sparsity to maximize its
performance. At present, the user is responsible for providing an estimate of
the energy gap. When no estimate is available, the NTPoly solver will not
be considered by the decision layer. Future plans include implementing fast,
approximate algorithms to estimate the energy gap [69, 70], and integrating
more solvers into Algorithm 3.

Algorithm 3 Implementation of the quick decision layer for an automatic
solver selection based on the analysis in Sec. 3. Input: system dimensionality
Ndim (1, 2, or 3), energy gap Egap, number of basis functions Nbasis, and
matrix sparsity factor. Output: choice of solver.

function QUICK DECISION (Ndim, Egap, Nbasis, sparsity, solver)
if (Nbasis < 20, 000) then

solver = ELPA
else if (Ndim < 3 and sparsity > 95%) then

solver = PEXSI
else if (Nbasis > 100, 000 and sparsity > 99% and Egap > 0.5 eV) then

solver = NTPoly
else

solver = NOT DECIDED
end if
return solver

The conditions in the three protocols above are checked sequentially. If
the condition in the nth protocol has been satisfied, then a solver is chosen
accordingly, and the (n+1)th and subsequent protocols will never be tested at
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all. There are cases where a quick decision cannot be made. For instance, a
3D, metallic system with more than 20,000 basis functions does not fall into
any of the three protocols. In such cases, the direct comparison layer will
take over. In this layer, we test candidate solvers one by one in order to figure
out their performances relative to each other. Here, candidate solvers always
include ELPA, may include PEXSI if the system is not 3D, and may include
NTPoly if the system is highly sparse and not metallic. Suppose there are
Nsolver candidate solvers, we iterate over them in the first Nsolver SCF steps,
with different solvers being used in different SCF steps. Thus, after Nsolver

SCF steps the timings for candidate solvers are measured, from which the
optimal solver is identified. By incorporating the direct comparison layer into
the SCF cycle, the overhead associated with the solver selection procedure
is minimized.

4.2. Reverse Communication Interface

Iterative eigensolvers are widely used in density-functional theory imple-
mentations based on planewave discretization, where the Hamiltonian ma-
trix and the overlap matrix are applied as operators without being explicitly
formed, as the sizes of these matrices are too large. Such an operator rep-
resentation makes it less practical to design a single, universal interface of
iterative eigensolvers for a wide range of planewave-based DFT codes, es-
pecially for those codes with OpenMP/MPI parallelization. Different DFT
codes adopt different distribution patterns of wavefunctions. Implementing
iterative solvers supporting a large variety of distribution patterns could still
be considered, but such a design lacks extensibility. On the other hand, an
interface that sticks to a particular distribution pattern would require con-
versions between different distribution patterns used by the interface and the
user code, which might necessitate larger changes at the user code level and
could also become a bottleneck in terms of time and/or memory. Therefore,
iterative eigensolvers in ELSI are supported through a reverse communica-
tion interface (RCI) framework [71] within the ELSI-RCI subproject – i.e.,
as shown below, ELSI-RCI provides the algorithmic steps but allows a user
code to retain control over matrix and vector distributions as well as other
details of the linear algebra that is specific to the user code.

One observation that is common to many iterative eigensolvers is that
they only require a limited set of operations, mostly involving the appli-
cation of the Hamiltonian and overlap operators and basic linear algebra
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operations such as matrix-vector multiplications. Different iterative eigen-
solvers only differ in the ordering of these operations (the only exception is
the preconditioning step [72]). Since these operations are often already im-
plemented in a DFT code, arranging them in a particular sequence actually
yields an iterative eigensolver, and various solvers can be easily implemented
by only altering the sequence of the operations. Following this idea, the
current version of ELSI-RCI supports the Davidson method [38, 39], the or-
bital minimization method [30, 40], the projected preconditioned conjugate
gradient method [41], and the Chebyshev filtering method [17, 42]. For the
user-specified solver, ELSI-RCI provides a sequence of instructions, as shown
in Fig. 10. ELSI-RCI has a data type rci handle, which is initialized by the
user code. rci handle contains configurations of iterative eigensolvers, e.g.,
the solver type and the maximum number of iterations, and the status of an
execution, e.g., the number of iterations so far. After initialization, ELSI-
RCI conducts three stages of computations in a row: allocation stage, solver
stage, and deallocation stage. Since different iterative eigensolvers use differ-
ent numbers of temporary matrices of different sizes, the allocation stage and
the deallocation stage are responsible for the allocation and deallocation of
these temporary matrices. The allocation and deallocation instructions are
given through rci solve allocate and rci solve deallocate, respectively.
Each of these instructions should be implemented by the user code, i.e., the
technical details such as matrix layouts etc. are intended to be defined and
controlled by the user code.

The solver stage is the core of ELSI-RCI. It gives various instructions
through rci solve with the order depending on the choice of eigensolver.
Again, the technical details associated with each instruction should be im-
plemented and thus controlled by the user code. Details of the instructions
are encapsulated in a data type rci instr. Once an instruction is given, the
user code executes it and returns nothing or a vector to ELSI-RCI. For most
operations, no return from the user code is needed, while for some operations
related to deflation, a vector of estimated eigenvalues is needed for ELSI-RCI
to provide the next instruction. Such a two-step procedure is repeated until
the prescribed stopping criterion is satisfied.

Instructions in the solver stage can be classified into three groups: con-
trolling instructions, basic linear algebra instructions, and operator instruc-
tions. Controlling instructions include RCI NULL, RCI CONVERGE,
and RCI STOP, which indicate that no operation is needed, the chosen it-
erative eigensolver has converged, and the chosen solver has stopped without

34



Figure 10: Flow chart that describes the general workflow of ELSI-RCI. Yellow boxes:
Zone of matrices and parallel operations implemented in user’s driver. Red boxes: Zone
of scalars and sequential operations implemented in ELSI-RCI. Black text outside boxes:
Data structures being passed between functions. Depending on the user-specified runtime
choices, ELSI-RCI gives instructions on the execution of an iterative eigensolver as well
as the allocation/deallocation of matrices needed as workspace. The details of each RCI
instruction must be defined and controlled by the user code.

reaching convergence, respectively. Basic linear algebra instructions include
some of the basic BLAS-level and LAPACK-level operations. Operator in-
structions include RCI H MULTI for the application of the Hamiltonian
operator, RCI S MULTI for the application of the overlap operator, and
RCI P MULTI for the application of the preconditioner. Since different
preconditioners are preferred for different iterative eigensolvers, the user code
is currently expected to prepare and provide preconditioners for the chosen
solver to achieve optimal performance.

On the user side, a driver for ELSI-RCI is required, which performs alloca-
tion, deallocation, basic linear algebra operations, and operator applications
per the instruction from ELSI-RCI. Since almost all these operations are
standard parts of existing DFT codes, constructing an ELSI-RCI driver us-
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ing existing code should be rather straightforward. With this driver, users
are then able to call different iterative eigensolvers in ELSI-RCI with a sim-
ple change of the solver name in the initialization step of ELSI-RCI. This
provides a unified access to a variety of iterative solvers through a single
interface.

4.3. Towards GPU-Accelerated High-Performance Computing

The past ten years witnessed significant growth in the usage of GPU ac-
celerators in high-performance computing (HPC). According to the TOP500
list [73], the number of GPU-accelerated supercomputers skyrocketed from
two in 2010 to over a hundred in the most recent release of the list (Novem-
ber 2019). Representatives of state-of-the-art GPU supercomputers include
Summit at Oak Ridge National Laboratory [74] and Sierra at Lawrence Liv-
ermore National Laboratory [75]. Combining IBM POWER9 CPUs and
NVIDIA Volta GPUs, Summit and Sierra rank 1st and 2nd, respectively, on
the current TOP500 list. They, as well as many other supercomputers with
GPU accelerators, allow for a substantial boost in performance and power
efficiency compared to traditional CPU-only machines.

The computation power from GPUs has been utilized by the electronic
structure community for larger and faster simulations [76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88]. Various eigensolver and density matrix solver
implementations targeting hybrid CPU-GPU machines have been reported.
The GPU-enabled ELPA one-stage solver outperforms the CPU version on
a few compute nodes when the matrix size exceeds several thousands [23].
Other publicly available GPU-enabled eigensolvers [28, 29, 89], to our knowl-
edge, are currently limited to shared memory executions on a single compute
node. The 2nd order trace resetting density matrix purification method was
ported to GPUs [90] by using matrix multiplications provided in the cuBLAS
library [91]. Similarly, the GPU-accelerated sparse matrix linear algebra rou-
tines in the DBCSR library [92, 93] can be employed to compute the density
matrix on GPUs.

Several challenges are involved in developing full-fledged eigensolvers and
density matrix solvers running on distributed memory, massively parallel,
GPU-accelerated supercomputers. MPI communications involving GPUs are
more expensive than those between CPUs. GPUs implement a deep mem-
ory hierarchy which requires data to be copied out from GPU to CPU to
participate in MPI communications. Therefore, existing algorithms must be
redesigned to reduce CPU-GPU and GPU-GPU data communications, and
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to overlap communications with computations as much as possible. In the
context of dense eigensolvers, GPUs may perform large amounts of matrix-
matrix operations, especially in the two-stage tridiagonalization [22, 65], to
amortize the cost of data transfers. However, the back-transformation of
eigenvectors in the two-stage algorithm is not naturally suited for GPU ac-
celeration, as it lacks an explicit data-parallel computation pattern to be
executed on a large amount of GPU cores. On the other hand, several sparse
matrix computation techniques do not display large contiguous blocks of data
on which GPUs can efficiently operate. Sparse matrix algebra relies heav-
ily on indirect addressing to access data in the sparse matrix. This type
of memory access does not generally perform well on GPUs, which prefer
memory accesses to be organized in a very specific way, called coalescing, for
maximum performance.

The situation is changing with the arrival of new GPU supercomputers
such as Summit and Sierra. The new generation of NVIDIA Volta GPUs
provides unprecedented memory bandwidth and data transfer speed com-
pared to its predecessors. Intra-node data movements can take advantage of
the NVLink technology [94] for high-bandwidth interconnect between GPUs
and between GPUs and CPUs. Inter-node data movements can benefit from
CUDA-aware MPI, which is now supported by the hardware. In addition, the
large cache of Volta GPUs has the potential to substantially accelerate in-
direct addressing in sparse matrix computations. All of these features make
platforms like Summit and Sierra good candidates for accelerating eigen-
solvers and density matrix solvers. We are planning to leverage them within
ELSI. For eigenproblems on individual nodes, the MAGMA library [28, 29]
has long constituted the state of the art. Additionally, we plan to port and
optimize the distributed-parallel ELPA two-stage eigensolver (ELPA2) and
the PEXSI and NTPoly density matrix solvers to GPU platforms. In fact,
a separate benchmark paper for GPU acceleration in the ELPA one-stage
eigensolver already exists [23]. Development of GPU-accelerated ELPA2 [95]
and PEXSI is ongoing, and will be reported separately by some of the au-
thors.

5. Conclusions

In this paper, we summarize recent developments of the ELSI electronic
solver interface. Among all the upgraded and new features, the following are
highlighted:
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1. New solvers, namely the upgraded PEXSI density matrix solver, the
linear scaling density matrix solver in the NTPoly library, the parallel
spectrum slicing sparse eigensolver in the SLEPc library, the penta-
diagonalization-based dense eigensolver in the EigenExa library, and
the GPU-accelerated, shared-memory dense eigensolvers in the MAGMA
library.

2. Two new matrix formats. The SIESTA CSC format has greatly sim-
plified the integration of ELSI into the SIESTA and DFTB+ electronic
structure code packages. The GENERIC COO format offers maximal
flexibility of matrix distribution. It is expected to aid in the integration
of ELSI with packages using a custom matrix storage layout.

3. A backward-compatible extension of the interface that allows for par-
allel calculations of spin-polarized and/or periodic systems.

4. Several routines serving geometry optimization and molecular dynam-
ics calculations. This includes calculation of the energy-weighted den-
sity matrix, extrapolation of the density matrix and wavefunctions,
and a “smart” reinitialization of ELSI which reuses information across
geometry steps.

5. Efficient parallel matrix I/O routines based on MPI I/O.

6. Standardized JSON output via the FortJSON library.

Furthermore, we have assessed the performance of three electronic struc-
ture solvers, ELPA, PEXSI, and NTPoly, by running a systematic set of
benchmark calculations with both Kohn–Sham density-functional theory and
density-functional tight-binding theory. Unsurprisingly, the performance of
the solvers depends on the specifics of the problem. For small-to-medium-
sized structures up to several hundreds of atoms, the highly optimized dense
eigensolver ELPA is always a stable and efficient solution. As the system
size increases, the Hamiltonian, overlap, and density matrices become more
sparse, rendering lower scaling methods based on sparse linear algebra more
favorable. In particular, the pole expansion and selected inversion method
PEXSI is best-suited for low dimensional systems. It also exhibits a nearly
ideal parallel scalability for at least 40 thousand CPU cores. For large sys-
tems with an energy gap, a speed-up over ELPA can be achieved by using
the density matrix purification algorithms in NTPoly. These results clearly
identify the regimes where sparse density matrix solvers can beat diagonal-
ization, based on which we propose a semi-empirical mechanism to automate
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the selection of the optimal solver for a given problem. The O(N3) diagonal-
ization bottleneck in large-scale electronic structure simulations can thus be
alleviated to some extent.

On the other hand, our results imply that reaching the crossover point
between the diagonalization method and the state-of-the-art density matrix
methods would still require many hundreds of, or even thousands of atoms.
Nevertheless, the ELSI interface offers a platform for developing, validating,
and comparing algorithms, which has been a driving force of improvements
in eigensolvers and density matrix solvers. We expect this collaborative effort
to continue to lower the computational cost of large-scale electronic struc-
ture theory. Our ongoing construction of a reverse communication interface
(RCI) framework for iterative eigensolvers will hopefully facilitate the op-
timal use of eigensolvers in planewave-based density-functional theory im-
plementations. We also hope to support dedicated optimizations targeting
GPU architectures, which now seem critical for the realization of exascale
electronic structure calculations in the future.
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Appendix A. ELSI Build System

Building of the ELSI library is managed by the CMake build system gen-
erator. CMake is a cross-platform free and open-source software with support
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for several build systems (e.g., GNU Make). The build process consists of
largely two steps: the configuration step, which generates the build files (e.g.,
makefiles for GNU Make), and the compilation step.

The requirements for building ELSI are (as of its 2.5.0 release):

• CMake version ≥ 3.0

• Fortran compiler (Fortran 2003 compliant)

• C compiler (C99 compliant)

• MPI

• Linear algebra libraries (BLAS, LAPACK, ScaLAPACK)

Additionally, some optional requirements are:

• C++ compiler (C++11 compliant, for PEXSI support)

• SLEPc version 3.13 (for SLEPc-SIPs support)

• PETSc version 3.13 (for SLEPc-SIPs support)

• EigenExa version 2.4 (for EigenExa support)

• MAGMA version 2.5 (for MAGMA support)

• BSEPACK version 0.1 (for BSEPACK support)

During configuration, user-configurable settings for the project are stored
in the CMake cache. The cache variables are persistent between builds,
allowing the user to make changes to the build configuration with minimal
recompilation of the source files. One method of setting the cache variables is
to store them in a dedicated file. The command for configuring ELSI would
then look as follows:

cmake -C <initial_cache.cmake> <elsi>

where <initial_cache.cmake> is the location of the initial cache file and
<elsi> is the location of the ELSI source root directory. A template for an
ELSI initial cache file is given below, showing the common variables that
the user needs to set. Examples for different combinations of compilers and
external libraries are shipped with the ELSI package. The full list of cache
variables applicable to ELSI are detailed in the ELSI documentation. In
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order to ensure that the user is aware of all the performance-critical build
details, compilers and external libraries are not automatically detected. If
the user wants to link against, e.g., linear algebra libraries, then these need
to be explicitly specified among the cache variables.

# An example CMake initial cache file for ELSI

set(CMAKE_Fortran_COMPILER "mpifort" CACHE STRING "MPI Fortran compiler")

set(CMAKE_C_COMPILER "mpicc" CACHE STRING "MPI C compiler")

set(CMAKE_CXX_COMPILER "mpicxx" CACHE STRING "MPI C++ compiler")

set(CMAKE_Fortran_FLAGS "-O3" CACHE STRING "Fortran flags")

set(CMAKE_C_FLAGS "-O3" CACHE STRING "C flags")

set(CMAKE_CXX_FLAGS "-O3" CACHE STRING "C++ flags")

set(ENABLE_PEXSI ON CACHE BOOL "Enable PEXSI")

set(ENABLE_TESTS ON CACHE BOOL "Enable tests")

set(LIB_PATHS "/path/to/external/libraries" CACHE STRING "Library paths")

set(LIBS "scalapack lapack blas" CACHE STRING "External libraries")

By default, all the solver libraries that are redistributed with ELSI are
built. There is also the possibility of linking ELSI against any of those
libraries compiled externally. This can be beneficial, e.g., for testing the latest
upstream changes that are not yet present in a given version of ELSI. As an
example, for using ELPA externally, one could turn on USE_EXTERNAL_ELPA

in the initial cache file and adjust the INC_PATHS, LIB_PATHS, and LIBS

variables for including ELPA.
After the configuration step, ELSI may be built by

make

when using GNU Make, or a more generic command

cmake --build <build>

where <build> is the build directory.
One of the major benefits of using CMake is that ELSI can be easily

included in other CMake projects. Only two lines are necessary to link against
ELSI,

find_package(elsi <version> REQUIRED PATHS <elsi_install>)

target_link_libraries(my_project PRIVATE elsi::elsi)

All the necessary libraries and directories with header and modules files, in-
cluding the main ELSI library, propagate with the single elsi::elsi target.
The optional argument <version> specifies the minimum required version of
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ELSI. This helps to avoid potential API conflicts with earlier ELSI versions.
The arguments REQUIRED and PATHS specify whether to stop processing if the
package is not found and where to search for the ELSI installation, respec-
tively. If ELSI is installed in a standard system location, the PATHS argument
may be omitted. In order to ensure that ELSI is found only at the specified
location, the NO_DEFAULT_PATH option of find_package may be used.
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