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ABSTRACT 

 

The Design and Modeling of Periodic Materials with Novel Properties 

 

by 

 

Jonathan Bernard Berger 

 

 

Cellular materials are ubiquitous in our world being found in natural and 

engineered systems as structural materials, sound and energy absorbers, heat 

insulators and more. Stochastic foams made of polymers, metals and even ceramics 

find wide use due to their novel properties when compared to monolithic materials. 

Properties of these so called hybrid materials, those that combine materials or 

materials and space, are derived from the localization of thermomechanical stresses 

and strains on the mesoscale as a function of cell topology. The effects of 

localization can only be generalized in stochastic materials arising from their 

inherent potential complexity, possessing variations in local chemistry, 

microstructural inhomogeneity and topological variations. Ordered cellular materials 

on the other hand, such as lattices and honeycombs, make for much easier study, 

often requiring analysis of only a single unit-cell. Theoretical bounds predict that 

hybrid materials have the potential to push design envelopes offering lighter stiffer 
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and stronger materials. Hybrid materials can achieve very low and even negative 

coefficients of thermal expansion (CTE) while retaining a relatively high stiffness – 

properties completely unmatched by monolithic materials. In the first chapter of this 

thesis a two-dimensional lattice is detailed that possess near maximum stiffness, 

relative to the tightest theoretical bound, and low, zero and even appreciably 

negative thermal expansion. Its CTE and stiffness are given in closed form as a 

function of geometric parameters and the material properties. This result is 

confirmed with finite elements (FE) and experiment. In the second chapter the 

compressive stiffness of three-dimensional ordered foams, both closed and open cell, 

are predicted with FE and the results placed in property space in terms of stiffness 

and density. A novel structure is identified that effectively achieves theoretical 

bounds for Young’s, shear and bulk modulus simultaneously, over a wide range of 

relative densities, greatly expanding the property space of available materials with a 

pragmatic manufacturable structure. A variety of other novel and previously studied 

ordered foam topologies are also presented that are largely representative of the 

spectrum of performance of such materials, shedding insight into the behavior of all 

cellular materials.  
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density a degradation in performance is seen in all designs relative to the Hashin-

Shtrikman upper bound on bulk modulus (Hashin and Shtrikman, 1963) due to this 
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increasing the magnitude of this effect. (Negative strain energy levels indicated in 
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concentrated in cell walls aligned with the applied stress (top- and middle-left) which 
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the idealized stretch dominated material, having stiffness ~1/3 of the Voigt bound, 

that have       as ( ̅̅̅   )  , and a third, only including the OT, whose 

performance is less than the others. On the right the total stiffness is multiplied by 

the isotropy, a, as a measure of isotropic stiffness where an ideal isotropic material 

has      . A structure produced from topology optimization by (Radman et al., 

2012) to be isotropic and have maximum shear modulus has a total stiffness nearly 

identical to the OF+SC foam; it is slightly more anisotropic by equation (73) and 

therefor has lower Ψ (left). The scaling factor, a, is somewhat arbitrary in magnitude 

as the objective function is unbounded on one side. The OF+SC foam is found to 

have a stiffness,      as  ( ̅̅̅   )   and is nearly isotropic making it the only 

material with         as  ̅̅̅   , giving it ideal properties far in excess of 

theoretical stretch dominated lattices. Materials with maximum stiffness are plotted 

with thick lines. 
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all geometries with the exception of the QR foams, which are effectively isotropic 
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Octet-Foam (OF) (top), dodecahedral-pyramidal foam (DDPF) (2
nd

 row), X-Foam 

(XF) (third-row) and Octet+’Simple Cubic’ (OF+SC) foam (bottom). All strains are 

scaled 100X for clarity. Because the relative orientation of cell walls in the OF, 

being composed of regular tetrahedraons, the strain energy distributions in each wall 

are identical in the both axail and shear cases (top-left and –middle); in the shear 

case all walls are placed in a state of nearly pure compression or tension suggesting 

its shear stiffness is maximal, at least in the low density limit. (Negative strain 

energy levels indicated in legends are fictitious and do not actually occur in models.) 
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Figure 38 - Stiffness of X-Foam, Diamond (DF), dodecahedral pyramidal foam 

(DDPF) and Body+Face Centered (BFC) foams. The OF+SC foam has stiffness that 

is in excess of 99.9% of the H-S bound on Young’s modulus, 97.1% the bound on 

shear and 98.3% of the bound on bulk modulus, at the lowest density analyzed. The 

H-S bounds on Young’s and shear modulus do not limit the performance of some 

materials due to their anisotropy. The BFC foam is nearly isotropic with stiffness 

similar to the QR foams. The OF+SC, DDPF and XF all have bulk moduli that 

converge on the H-S bound at the low density limit (right). Topology optimization 

for an isotropic material with maximum shear modulus resulted in a design with 

similar performance to the OF+SC foam (black-square). 

 

Figure 39 - Normalized strain energy distributions in the diamond foam (DF) (top) 

and the Body+Face Centered (BFC) (bottom), both with   ⁄    , at macroscopic 

strains of       . Under axial loading cell walls aligned with the applied stress 

experience the highest strain energy density (left). Shear loading in the DF results in 

complementary buckling of neighboring antisymmetrically aligned cells at strains as 

low         ,  when no initial cell wall curvature is present. The sub-maximal 

bulk stiffness of the DF and BFC foams is evident in the non-uniformity of the strain 

energy distributions between cell walls under hydrostatic loading (right). Contours of 

strain energy density around the average are plotted at the expense of fidelity near 

strain energy concentrations, the magnitude of which are mesh dependent and do not 

contribute substantially to the total strain energy. (Negative strain energy levels 

indicated in legends are fictitious and do not actually occur in models.) 

 

 

Figure 43 - Strain energy distributions in cross-sections of DF with   ⁄     (top) 

and   ⁄     (bottom) from macroscopic shear loading; macroscopic strains of 

             are scaled 100x. Principle stress directions are horizontal and 

vertical. Cross-sections are taken at z=3/8, 1/2 and 5/8 (left to right respectively). As 

wall thickness increases the short ligaments thicken and shorten, decreasing in aspect 

ratio dramatically, increasing their bending stiffness and the overall shear stiffness of 

the design. Cell walls in the DF take on curvature at all shear strains,  ̅    , with 

zero initial wall curvature, yet the antisymmetric nature leaves some cross-sections 

with straight lines where antisymmetric buckling mechanisms converge (left and 

right columns). As relative density increases complementary buckling mechanisms 

are inhibited causing more energy to be stored through stretching. Contours of strain 

energy density around the average are plotted at the expense of fidelity near strain 

energy concentrations, the magnitude of which are mesh dependent and do not 

contribute substantially to the total strain energy. (Negative strain energy levels 

indicated in legends are fictitious and do not actually occur in models.) 
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Figure 44 – Ordered foams and lattices comprised of an Al-20%SiC composite 

outperform stochastic foams made from the same material. While the octet-truss has 

comparable shear stiffness to isotropic stretch dominated foams at low relative 

densities (~1/3 of the Voigt bound), it is anisotropic and has an axial stiffness that 

approaches that of stochastic foams at relative densities     . The stiffness of the 

OF+SC foam is almost directly proportional to   ⁄ , while the BFC foam, having 

stiffness similar to the Q-R foams (~1/3 of the Voigt bound at low relative densities), 

has the performance of theoretical stretch dominated lattices of (Ashby, 2011). 

 

Figure 42 – Finite element (FE) results for the OF+SC foam composed of an Al-SiC 

composite, and Beryllium, are placed in the universe of available isotropic, or nearly 

isotropic, materials; excluded from this are fibers, laminates and woods. Only the 

stiffest foams, made of ceramics, rival the stiffness of the Al-SiC OF+SC foam, and 

then only at densities above 600 (kg/m
3
). The OF+SC foam composed of Beryllium 

can potentially be more than one order of magnitude stiffer, at a given density, than 

currently available nearly isotropic materials; a system incorporating this material 

would realize a proportional and dramatic weight savings. As single crystal diamond 

is not a reasonable constituent material, and polycrystalline diamond has only half its 

stiffness, the maximally stiff OF+SC foam composed of beryllium represents the 

maximum performance achievable by any material system barring the development 

of new materials on the atomic scale. 
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I. General Introduction 

 

The ability to transmute a material, by altering some of its properties while 

retaining others, is one of the fundamental aims of materials science. And while the 

alchemical means of transforming lead into gold escapes us practically, it remains 

feasible to alter the properties of existing materials substantially by combining 

materials with contrasting properties into unique topologies. Porosity can be added to 

stiff, dense materials to create buoyancy and/or surface area, greatly altering its 

properties. Void space is routinely added to food, such as ice cream and bread, to 

modify and improve the mechanical properties while retaining the flavor and recipe.  

Lattice materials and foams are also examples of such meta-materials that derive 

their properties, in large part, from their topology.  

 

In these meta-materials, deformations on the mesoscale dictate the properties of 

the macroscopic structure. In stochastic foams, such as those made of polymers for 

example, these mechanisms vary spatially in their nature and orientation resulting in 

local variations in compliance and density. This random distribution results in 

homogeneous or nearly homogeneous effective properties on the macroscale. While 

stochastic foams already offer unique material properties when compared to 

monolithic materials,  in the form of metal and polymer foams, making excellent 

insulators, energy absorbers and structural materials, it is easy to envision how 
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ordering such local mechanisms, to work in tandem or in opposition, can alter 

substantially and improve certain properties such as stiffness and strength. In this 

thesis two such ordered systems are studied: a two-dimensional (2-D) lattice with 

tailorable coefficient of thermal expansion (CTE) and  a family of ordered foams that 

exhibit a wide and representative range of properties, including one topology that 

simultaneously achieves theoretical bounds for Young’s, shear and bulk modulus. 

These high-efficiency systems perform unlike any known bulk materials, and 

outperform all other known meta-materials, making them extremely interesting 

material systems of study. 

 

In the first system, thermal stresses and strains inherent to the  constituent 

materials are leveraged, through geometry, to primarily self-mitigate, resulting in a 

low, zero or even appreciably negative effective CTE. A near maximum amount of 

material is placed in tension in the process so that the material achieves a large 

fraction, greater than any other known topology, of theoretical bounds for stiffness. 

A variety of materials can be used as the only major thermomechanical requirement 

of the constituents is that they have an appreciable difference in CTEs,     ⁄     , 

where    are the CTE of the constituents. Metals can then be used in high-

temperature environments when previously thermal expansion prohibited their use. 

This is particularly useful for the application of hypersonic flight where thermal 

loading is the primary design constraint.  A combination of analytical modeling 

using beam theory, 3-D finite element representative volume element modeling and 
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experimental data are utilized to illustrate the behavior and performance of this 

lattice design. There are many considerations when positing lattices for use in such 

demanding high-temperature environments, however, only the stiffness 

characteristics are considered in this study. 

 

A different set of theoretical bounds limits the stiffness of foams and lattices; 

materials composed of a dense stiff phase and a void or gaseous phase. Stochastic 

foams and lattices have a history of study and application as structural materials, 

finding application in sandwich structures as stiff lightweight core materials. The 

currently burgeoning field of additive manufacturing--where material is placed 

selectively in space rather than removed from a dense one, as in machining--now 

allows for the production of arbitrary geometries with no penalty for complexity, 

making the design of closed cell foams with desirable properties, through the 

engineering of cell topology, now of practical consideration. In the aim of 

understanding the behavior and performance of various cell geometries, their 

performances are assessed with finite elements. Some historical geometries, such as 

the BCC Kelvin foam, a simple cubic/box foam, and others, shed light on the 

fundamental features that give rise to efficient designs. This insight is then used to 

design topologies that extend the performance range of available materials 

considerably, offering stiff lightweight meta-materials.  
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One unique topology in this group performs at the boundary of material property 

space in terms of isotropic stiffness, as it achieves theoretical bounds for Young’s, 

shear and bulk modulus simultaneously. This material outperforms stiff stochastic 

foams and the in-plane stiffness of honeycombs by more than an order of magnitude 

at low relative densities. In any transportation application where the design 

requirements are stiffness limited, as in non-load bearing aerodynamic surfaces like 

an engine cowl, a proportional weight savings can be realized offering obvious and 

substantial improvements in efficiency. These and other topologies, most based upon 

a spatial tessellation procedure, possess properties not achieved by any other known 

material system reveling a unique class of materials. 

  

Through studying theses periodic structures comes insight into the fundamental 

behavior of materials. The unique behavior of these two mostly disparate systems, 

both having stiffness that essentially achieve the respective appropriate theoretical 

bounds, shines light on the influential factors that lead to high-performance.  In their 

study there is tangible evidence, in the deformations and strain energy 

concentrations, of the features and mechanisms responsible for such extreme 

behavior.   

 

Contained in this work are not only designs of merit that may find direct use is 

engineered systems due to their unique properties, but also perhaps there are some 

lessons that will lead to the design of other unique material systems. Currently the 
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design and fabrication of topological materials is in its adolescence with ripe with 

bountiful opportunities do create novel materials that greatly improve design 

capabilities.  
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II. The Design of Bonded Bimaterial Lattices that Combine 

Low Thermal Expansion with High Stiffness 

 

 

In engineered systems where thermal strains and stresses are limiting, the 

ability to tailor the thermal expansion of the constituent materials 

independently from other properties is desirable. It is possible to combine two 

materials and space in such a way that the net coefficient of thermal expansion 

(CTE) of the structure is significantly different from the constituents, including 

the possibility of zero and negative thermal expansion. Bimaterial lattices that 

combine low, negative, or an otherwise tailored CTE with high stiffness, when 

carefully designed, have theoretical properties that are unmatched by other 

known material systems. Of known lattice configurations with tailorable CTE, 

only one geometry, a pin-jointed lattice, has been shown to be stretch dominated 

and thus capable of having stiffness that approaches its theoretical upper 

bound.  

 

A related lattice with bonded joints, more amenable to fabrication, is 

developed that has a stiffness and CTE similar to  the pinned structure. 

Analytical models for this rigid-jointed lattice’s CTE and stiffness are 

developed and compared successfully with numerical results. A near space-
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filling, negative thermal expansion version of this lattice is devised and 

fabricated from titanium and aluminum. CTE measurements on this lattice are 

made and are well predicted by the analytical and numerical models. These 

insights guide the design of a family of bonded lattices with low areal density, 

low or negative CTE, and high stiffness to density ratio. Such lattices are shown 

to have a thermomechanical response that converges on pin-jointed behavior 

when the lattice elements are long and slender. 

 

1.  Introduction 

 

Recent assessments have elucidated bimaterial, planar lattice concepts that 

attain zero (or low) thermal expansion coefficients (Figure 1) [1-5].  Among these, 

only the configuration depicted in Figure 1d is known to combine low thermal 

expansion with high stiffness and strength. The lattice in Figure 1b is the result of 

topology optimization and has biaxial stiffness near theoretical bounds, but has poor 

uniaxial stiffness, suffers from edge effects in lattices with limited periodicity, and 

has a complex geometry [2].  Furthermore, the lattice in Figure 1d, hereby known as 

the UCSB Lattice, has properties that are transversely isotropic. Other stiff, strong, 

planar lattices have been identified that have zero, negative or low thermal 

expansions in specific directions within its plane [6], but are anisotropic, with 

significant thermal expansions in other in plane orientations. 
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In the lattice of Figure 1d, the members that govern its response are defined 

within the unit cell depicted in Figure 2.  In this lattice, the outer, hexagonal (type I) 

members (length L
1
 and width w

1
) have the lower coefficient of thermal expansion 


1
, while the triangular, inner (type II) members (length L

2
 and width, w

2
) have 

relatively higher CTE, 
2
.  At the nodal points A, J, F in the lattice (Figure 2), the 

ratio of the effective thermal expansion   to the CTE of the type I material 
1 , is 

dictated by the constituent CTE-ratio,   
2
/ 

1
, and by the skewness angle, θ, 

depicted in Figure 2.  For a pin-jointed lattice, the expansion coefficient,   has been 

derived as [5]: 

 

 



1


1  (1 / 2 ) s in (2 )(1 / 3  tan  )

1  (1 / 2 ) s in (2 )(1 / 3  tan  )
 (1.1) 

 

For a representative material combination, Al alloy and Ti alloy, with λ ≈ 2.6, 

zero expansion prevails for a pin-loaded lattice at skewness θ ≈ 25° [5].  When the 

lattices are bonded, or otherwise mechanically-attached at the nodes to make them 

rigid joints, bending moments are introduced into the type I members and the 

thermal expansions are larger [5].  

 

To assess these predictions, lattices based on Ti and Al alloys have been made, 

and their thermal expansion characterized [7].  Measurements obtained for a pin-

jointed unit cell are in close agreement with the prediction of Eq. (1.1).  Those 
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measured for lattices assembled using mechanical (dovetail) attachments, i.e. with 

rigid joints, give larger thermal expansions.  A variety of features adversely affect 

the reliability and repeatability of the thermal expansion of such rigid-jointed 

lattices: (i) Local plastic strains induced by the thermal expansion difference 

between constituents at the bimaterial attachment.  (ii) Bending moments associated 

with the reduction in effective member lengths due to member overlap at the nodal 

points where six type-1 members from three neighboring unit cells converge (Type J 

Node, Figure 2). (iii) The reduction in effective length of type-1 members due to the 

intersection of struts at Type J and D nodes. (iv)  The reduction in effective length of 

type-1 members due to material added at the dovetail bimaterial interface.  A 

previous assessment has demonstrated that the detrimental effect of plasticity at the 

bimaterial attachment is minimal, because the plastic strains are highly localized, 

facilitating shakedown after the first few cycles [7].  Consequently, while the CTE 

mismatch at the attachment generates a non-linear, hysteretic contribution to the 

thermal strain during the first cycle, the thermal expansion remains repeatable 

during all subsequent cycles.  A pre-conditioning treatment is sufficient to initialize 

the system and stabilize the thermal expansion.  

 

The detrimental influence of the nodal geometry on the bending moments is 

more substantive.  The elevation in the bending stiffness of the type I members 

associated with nodes of Type J significantly increases the overall thermal expansion 

coefficient, as determined both experimentally and by finite element analysis [7]. 
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This detriment motivates a systematic study that seeks geometrically-straightforward 

configurations, amenable to manufacture, that impart thermal expansion closer to the 

pin-jointed prediction of Eq. (1.1), while retaining high stiffness and strength.  The 

objective of this article is to seek such configurations, but with a focus, for the time-

being, on stiffness.  

 

The thermal expansion characteristics to be pursued emphasize designs that 

reduce the bending moments in the slender type I members.  Analytic results are 

presented in section 2 for the original design and extended to an alternative, offset 

design (Figure 3).  The alternative design is comprehensively analyzed in section 3 

by the finite element method and specific designs discussed.  It will be demonstrated 

that bonded, offset configurations can be conceived that have thermal expansions 

essentially the same as the pin-jointed lattice.  Given the minimal member bending 

stiffness for these new lattices, basic elasticity results are derived for pin-jointed 

systems in section 4.  These specify the salient trends in elastic response.  Thereafter, 

a series of finite element (FE) results for rigid-jointed systems are generated to 

ascertain deviations in stiffness from the pin-joint predictions.  

 

2.  Design Principles for Low Thermal Expansion 

 

Predicated on the foregoing assessment that the thermal expansions in excess of 

the pin-jointed lattice are primarily affected by the bending moments in the type I 
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members, a beam theory methodology has been devised that identifies 

geometrically-straightforward designs that converge to pin-jointed behavior. Two 

design layouts are considered.  (i) One conforms to Figure 2, with the effective 

rigidity of the material around the joints taken into account.  (ii) The other allows the 

unit cells to be separated by spacers (Figure 3), both relaxing the joint rigidity 

limitation and permitting greater motions of type I members.  The latter feature 

allows the implementation of a unit cell with a negative thermal expansion, so that, 

when averaged with the positive expansion of the spacer, the lattice has a zero or 

extremely low CTE.  The joints are represented as circular flanges (Figure 2), having 

radius R1 (for Type A, F, J) and radius R2 (for Type B, C, D).  The radius R1 is 

defined as the convergence of struts of type AD and CJ, and R2 by the convergence 

of struts of type AD with type BD and CD. The rigidity of the flanges reduces the 

effective length of the adjacent struts.   

 

By considering the incremental changes in member length during thermal 

expansion, and eliminating the increment of  we find for the original design of 

Figure 2, 

  

 

1 2

1 2

3 s in c o s 3 s in

c o s 3 c o s s in

L L

L LL

L

  

  

 
 






, (2.1) 

 
  

where 
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1

2 c o s

L
L




              
(2.2)

                    
 2
1 3 tan

2

L
L    (2.3) 

 

and the symbol  followed by the letter L, with or without subscripts, indicates 

change of length.  Since type II struts do not bend, but sustain only an axial load T2, 

their strain is 

 

 
2 2 2 2

2 2

2 2 2 2 2

ˆ1 2 2
t tL T R R

L E A L L
 

   
      
   

, (2.4) 

 

where E2 is Young’s modulus for type II members, A2 is their cross-sectional area, 

2

t
  is the thermal strain in the struts and 

2
ˆ

t
  is the effective thermal strain of joints of 

type D.  Type 1 struts bend and stretch, and their axial strain is given by 

 

 
1 1 1 2 1 2

1 1 2

1 1 1 1 1 1

ˆ ˆ1
t t tL T R R R R

L E A L L L
  

    
       
   

, (2.5) 

 

where T1 is the tension in these members, E1 is Young’s modulus for type I 

members, A1 is their cross-sectional area, 
1

t
  their thermal strain and 

1
ˆ

t
  is the 

effective thermal strain of joints of type J.  

 

Type I struts sustain a uniform shear force V and a non-uniform bending moment 

M (Figure 4).  Equilibrium at joints A and D requires that, 



 

13 

 

 

1

c o s 3 s in

3 c o s s in

T V
 

 





, (2.6) 

and, 

 
2

2

3 co s s in

T V

 
 



. (2.7) 

   

Inspection of Figure 2 reveals that, by geometry, the transverse bending deflection 

of AD is given by 

 

  2 1

1

co s 3 s in

3 co s s in

L L

L

 

 
 

   

  



, (2.8) 

 

while Euler-Bernoulli beam theory gives 

 

 
 

3

1 1 2

1 1
1 2

V L R R

E I


 
 , (2.9) 

  

where I1, for type I members, is the 2
nd

 moment of area of the cross-section about the 

neutral axis, so that E1I1 is the bending stiffness of type I members, specified for 

bending in the plane of the lattice. Elimination of  and V among Eq. (2.6) – (2.9) 

provides 
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and  
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3
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E I L

L L
T

L R R

 

 

  
  

 
 

  

 (2.11) 

 

Use of Eq. (2.4) and (2.5) allows a solution for the strut tensions as 
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and  
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where the notation 
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and  

 

 
2 2 2

ˆ 2L L R   (2.15) 

  

has been introduced.  When these results are inserted into Eq. (2.4) and (2.5) and the 

outcome used in Eq. (2.3), the thermal expansion of the lattice becomes 
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(2.16) 

 

When the bending stiffness is negligible (I1 = 0), and the joint radii R1 and R2 are 

neglected, this result simplifies to Eq. (1.1).   
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The result in Eq. (2.16) highlights the two effects of bonded joints.  The first 

involves the finite extent of the joints (R1 and R2 are non-zero), implied by the first 

term on the right hand side. The second arises because the bending of type I struts 

adds strain to the thermal response, signified by the second term on the right hand 

side.  

 

Appropriate choices for the joint radii (Figure 2) are  

 

 
1

1

3

6

w
R
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
 (2.17) 

 

and  
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3 w
1
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 
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,

3 w
2




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


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The thermal expansion for nodes A, J, F is 

 

 
1 1

ˆ
t t

  . (2.19) 

 

An appropriate choice for nodes B, C, D is a weighted average of the expansion 

of type I and II materials,  
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(2.20) 

 

Results for the linear thermal expansion for various material combinations are 

plotted against  in Figure 5, with a range of values for the bending stiffness 

parameter 
2

1 1 1
/I A L  used for illustration. 

 

The above results affirm that the design of joints of Type A, J, F is critical to the 

realization of low thermal expansion behavior, because the low angle included 

between type I members from adjacent unit cells leads to excessively large R1.  This 

limitation is obviated by using an offset design wherein the centers of neighboring 

unit cells are displaced, allowing R1 to become small even when    /6 (

 1 1
/ tan / 6R w    ).  Such offset designs are achieved by insertion of a spacer 

made from type I material, as shown in Figure 3.  The spacer removes the coupling 

of  ̂  and  , for a fixed L, enabling the use of larger values of .  Offset designs can 

have negligible bending, whereupon, the thermal expansion can be closely 

approximated by the first term on the right hand side of Eq. (2.16), with R1 and R2 

neglected.  The CTE for the offset lattice is thus:  
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where   is the size of the spacer and  ( ) co s 3 s in s inF      .  When    is 

zero, Eq. (1.1) is recovered once more. The formula in Eq. (2.21) can been used to 

guide low thermal expansion lattice designs, specifically, Eq. (2.21) predicts that 

zero thermal expansion of the lattice occurs when 

 

  

 
 
  ( )  √ 

√   ( )
  (2.22) 

 

This design has unit cells that contract upon heating, compensating for the 

expansion of the spacers.  Such solutions are feasible when  3 / 3F    

(Note that, within this range, the unit cell has negative thermal expansion).  The 

upper limit of this range coincides with / 3  .  For illustration, when  = 2, the 

lower limit is / 6  .  Beyond these limits is the requirement that joints A, J, F 

remain physically small, requiring that   √         ( ): whereupon the type I 

elements from neighboring unit cells have no intersection.  From Eq. (2.22), this 

requirement provides 
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revealing that the slenderness of type I elements has to be respected.  Consequently, 

when / 6  , Eq. (2.23) gives  1
/ 2w L   , indicating that the design can be 

satisfied provided that 
2 1

/   > 2, ensuring that 
1

w  is positive.  Moreover, any 

material combination with  slightly in excess of 2 (say more than 2.1) is acceptable, 

since 
1

/w L  must be small to ensure low bending stiffness.  

 

Alternatively, Eq. (2.23) can be recast as a condition on  with  and 
1

/w L  

already selected.  The outcome is not transparent since it involves a combination of 

trigonometric functions of  without obvious simplification.  Nevertheless, 

inspection indicates that any  slightly above the lower limit (   3 /F   ) will 

satisfy Eq. (2.23).  Specific cases should be assessed numerically to ensure a 

satisfactory design, as elaborated below. 

 

A chosen design is limited in its range of temperature operation by the 

requirement that the triangle of type II elements has space into which material can 

expand when the lattice is heated.  The critical condition occurs when joint C (Figure 

2) touches its counterparts from the two adjacent unit cells.  It is straightforward to 

ascertain that the strain increment in type II bars that causes this critical condition is  
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      √      
  
     

     √     
 

(2.24) 

 

Consequently, the operating temperature range must be chosen to ensure that 

thermal straining of type II elements is smaller.  For  ~ /6 and greater a careful 

choice of          is needed, since cos 3 sin 0    for / 6  . 

 

3.  Specific, Low Expansion, Offset Designs 

 

3.1 FE Method 

 

Lattices are modeled using a representative volume element (RVE) FE 

technique. Three-dimensional models are subject to periodic boundary conditions for 

the two in plane dimensions in the form of uniform macroscopic strains.  The 

relative displacements  between pairs of boundary nodes are controlled by tying their 

displacements together consistent with the strains we wish to impose[8, 9]. The third, 

 -direction, is left free. A single node on the interior of the model is held fixed in 

space to prevent rigid-body translations. The commercial FE code ABAQUS [10] is 

used for mesh generation and to perform analysis. MATLAB [11] code is used 

extensively to manipulate meshes, apply boundary conditions, and for post 
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processing. Periodic boundary conditions were implemented in Cartesian 

coordinates. A typical RVE is pictured in Figure 6. Typical meshes consist of 

~20,000 to ~70,000 8-noded linear hexahedral elements (type C3D8R). The number 

of elements varies greatly with the relative density of the lattice geometry being 

analyzed, which ranged from 8% to 98% for slender to space-filling designs, 

respectively. Mesh sensitivity is studied to ascertain model resolution at which 

solutions converge. Because the average strains are small, there is no distinction 

between the macroscopic Cauchy stress and the macroscopic nominal stress, so that 

the macroscopic stress can be computed by simply dividing force resultants by 

section areas for the undeformed volume of the RVE 

 

3.2 Offset Lattices 

 

In stretch dominated structures, where loads are well distributed, stress contours 

are rather uniform, and consequently the structure is relatively efficient in its 

utilization of material.  On the other hand, FE calculated thermomechanical stress 

distributions in the original lattice design reveal large nonuniform bending stresses 

associated with rigidity and member intersection at the joints (Figure 7a).  The 

lattices analyzed to obtain these results are modeled with the temperature dependent 

properties of Ti and Al alloys listed in Table I-b and subject to a temperature 

excursion from 40C to 250C. The bimaterial interface, in reality press-fit, is 
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considered to be perfectly bonded for simplicity. Simulations that model the 

interface between sublattices with contact in compression, and a frictional coefficient 

of μ=1 give results that are negligibly different from welded models. The maximum 

tensile equivalent stress (also known as the von Mises stress) is located in the 

bimaterial joint region and results from CTE mismatch between constituents. In the 

temperature range analyzed, the maximum tensile equivalent stress is lower than the 

tensile yield stress in both materials.   

 

Constraints on the motion of the lattice’s components drive the macroscopic CTE 

towards that of the constituents. By placing a spacer (Figure 3), with characteristic 

dimension  , between unit cells and eliminating excess material around the 

bimaterial joint, the lattice geometry can be designed so that it behaves according to 

the original concept for low CTE, i.e. with negligible stress (Figure 7b). Contours for 

the revised design show greatly reduced bending stresses and the overall lattice 

behavior is in good agreement with new analytical predictions (Figure 8).  

 

3.3 Lattice Design  

  

For any pair of constituent materials and their associated properties there is a 

range of skew angles, θ, over which a desired lattice CTE can be achieved. 

Properties such as stiffness, Poisson’s ratio, and strength vary over this range so that 
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any one solution may be superior to others depending on design requirements. For a 

unit temperature change,       so that   
    , Eq. 2.16 gives the thermal 

expansion coefficient of the lattice and can be inserted into Eq. 3.1,  

 

 
 ̅  

      
   

 (3.1) 

 

to calculate the expansion of a spaced lattice. The macroscopic thermal strain in a 

spaced lattice is the weighted sum of the lattice and spacer strain, the latter having 

thermal expansion coefficient   . Eq. 3.1 can be used to identify regions of design 

parameter space where lattices with the desired thermomechanical response exist. 

Designs in this neighborhood can then be investigated through FE to address specific 

geometries and to investigate their thermomechanical response in comparison to the 

results in Section 2. 

 

The thermomechanical strain response of the bimaterial joints in Eq. 2.20 is 

assumed to be the average of the constituents. While this approximation is sufficient 

for exploratory investigations, specific mechanical bimaterial interface geometries 

must be considered when designing real structures, as their behavior may differ 

substantially from this idealization. The dovetail joint employed by Steeves et al. 

[5,7], and in the current effort, are examples of bimaterial attachments. Mechanical 

connections capable of carrying tensile loads are necessary for transmitting all 
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applied macroscopic loading situations except biaxial tension. The size of these 

joints, given by their characteristic dimension, R2, reduce the effective length of 

members ( ̂  and  ̂ , Eq. (2.14) and (2.15)).  

 

For fixed values of w1 and w2 the thermomechanical response of the system is a 

strong function of the member effective lengths, and therefore of R1 and R2. In many 

designs a single radius R2 does not exist by which both type I and II members are 

reduced equally at the Type D joints (Eq. (2.14) and (2.15)). The actual reduction in 

effective length of members at these nodes is a function of member width and the 

relative angle at which they are incident to the joint. To identify designs with a 

tailored and well predicted CTE which is amenable to fabrication more detailed 

modeling is necessary. 

 

The addition of the spacer (Figure 3) allows practical access to previously 

unachievable skew angles and corresponding higher relative densities. In previous 

designs without the spacer, at skew angles approaching 30°, members from adjacent 

unit cells intersect to an extent, and prevent the desired thermomechanical response, 

and the desired CTE cannot be realized.  A skew angle of 30°, without a spacer 

present, results in type 1 members in adjacent cells being parallel and a hexagonal 

unit cell appearance. If only the area bounded by the unit cell is considered, these 

designs can achieve near maximum areal density as an assembly of hexagonal cells 

with small gaps between them. The size of the gaps between unit cells is directly 
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related to the size of the spacer  . Upon temperature excursion from the reference 

state, type I members expand, distort and rotate, causing Type D nodes to translate 

away from the center of the unit cell. The size of the spacer and the corresponding 

gap is dictated by the maximum outward deflection of these nodes in the specified 

temperature range combined with the need to avoid adjacent unit cells impinging 

upon each other after thermal straining. For some designs with skew angles near or 

above 30° an upper use temperature exists at which initially nearly parallel type I 

members in adjacent cells deform to contact each other causing the lattice to densify. 

For these designs the upper use temperature can be increased by expanding the size 

of the spacer at the cost of driving the CTE of the system towards that of the type I 

material (Eq. (3.1)). Densification may also significantly influence the stiffness and 

strength of these lattices and may be a beneficial feature in some applications. If 

material continuity is beneficial, such as for aerodynamic surfaces, densified lattices 

can be useful. 

 

In some spaced lattice designs where the dimension of the spacer is on the order 

of w1, no additional material is need to achieve this offset.  In others designs with 

skew angles in the neighborhood of 30° unit cells may intersect minimally or not at 

all (Figure 3) and the strength and stiffness joint will suffer. A disk of material 

centered on the spacer, a stiffener with radius Sr can be added to the lattice to 

maintain continuity and transmit stresses between unit cells. If the disk of material is 

too small, stress concentrations in these regions can be design limiting. An 
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appropriate radius for this disk is one where axial loads in type 1 members can be 

directly transmitted to adjacent cells (Figure 3 c and d). This stiffener has a 

dimension independent of the spacer and may be useful in facilitating a connection 

between the lattice and a substructure. 

 

As type II members are not subject to thermally induced bending stresses, 

members with geometries other than truss or beam like forms can be considered 

without altering the mechanics of the system [5]. In Figure 10 the lattices pictured in 

the middle and on the right (b and c) are variations of the lattice on the left (a) 

incorporating type II members that are not simple prismatic beams. Stiffening of 

type II members drives the thermal expansion of the system to lower values. The 

increased stiffness of these members can be modeled by using an effective modulus 

E2* for E2 in Eq. (2.12) and Eq. (2.13). The only restriction in geometry is that the 

type II members not impinge on, and reduce the effective length of the slender type I 

members when thermomechanically strained. Previous fabricated designs have used 

truss and solid triangular inner type II members (Figure 9 a and b) [5,7].To explore 

the potential space-filling properties of this lattice a hexagonally shaped type II 

sublattice geometry was chosen for fabrication in this work.  

 

If in plane geometries of members are specified to have a finite width centered 

on the lines shown in Figure 2 the width the bimaterial joint is limited by the width 

of type II members, w2 (for the geometry considered in this work). Selecting a small 
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bimaterial joint resulted in a small value of w2 in Eq. (2.16). To account for the much 

larger cross-section of the hexagonal geometry used an effective modulus of 

  
        is utilized in the analytical model. The order of magnitude increase in 

stiffness is an estimate; further increases do not significantly influence results. By 

choosing a slightly skewed, but nearly hexagonal type II element, an upper use 

temperature densification event can be engineered between high and low CTE 

sublattices. When both adjacent unit cells and sublattices contact each other at the 

same   , a nearly or completely densified and continuous structure can be formed. 

 

The dovetail joint dimensions were chosen to maximize the effective length of 

type I members. Joint dimensions were minimized to reduce R2 with practical 

consideration for the interface size and the need to maintain a robust mechanical 

connection between sublattices. Lattices previously investigated [5, 7] used dovetail 

joints where the high CTE type II material composed the inner, male side of the 

connection. Additional material was added to the lattice at these locations to help 

facilitate a robust connection. This added material served to reduce the effective 

length of members resulting in a poorly predicted thermal response (Figure 8). In the 

current design the inner male component is now composed of the low CTE type I 

material, and the bimaterial joint is relocated to be enclosed in the inner type II 

member. Switching the low CTE material to the male side reduces thermal stresses 

resulting from the expansion of the high CTE material, which previously confined 
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the low CTE constituent. It is hoped that plasticity can be avoided altogether with 

this configuration, in contrast to the previous dovetail joint design. 

 

The test specimen designed and fabricated in this work was chosen to have a 

skew angle of 30° and nearly space filling inner type II member. By specifying the 

geometric parameters w1=3.0mm, w2=0.4mm,  =30°,  =2.0mm, Sr=3.80mm, and 

unit cell length L=50.0mm, the designs in Figure 10 are achieved. Finite element and 

analytical predictions for the geometries shown are listed in Table II. 

 

3.4 Lattice Fabrication 

 

A metallic lattice was fabricated for CTE measurement purposes. The type I 

lattice was electro discharge machined from 3mm thick sheets of Ti-6Al-4V. The 

type II members were machined from 7075-T6 aluminum alloy. Sublattices were 

press-fit together. Tolerances were such that assembly with hand pressure was 

possible; however a mechanical press was used to ensure proper assembly. The 

structure consists of 10 unit cells arranged so that two cells in the interior are 

separated from the edge by another unit to minimize edge effects (Figure 10). 

 

3.5 CTE Measurement Methodology 
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Thermal expansion measurements on the Ti and Al lattice were performed using 

a 2-D digital image correlation (DIC) system.  A high contrast black and white 

speckle pattern was applied using spray paint. Lattices were heated on a laboratory 

hot plate (Wensco, model# H1818RA4000) at a rate of 60C/hr from room 

temperature to 220C. A frame of common silica insulation, approximately 1.5in 

thick, was placed around the lattice with a glass plate on top. The temperature was 

recorded by four self-adhering K-type thermocouples (Omega, model# SA1XL-K-

SRTC) located on the upper face of the lattice, two each on Ti and Al. Acetone was 

used to remove the applied paint at the location of the thermocouple attachments to 

increase heat transfer. The temperature of the lattice was taken to be the average of 

the four. Digital images were captured by CCD camera (AVT Dolphin F-201B) with 

a zoom lens (Tamron AF 70-300 1:4-5.6) positioned approximately 2 m from the 

specimen. The focal length was maximized subject in the confines of the laboratory 

space to minimize the effect of out of plane deformations on in plane measurements. 

Images were taken every five seconds to record deformations.  Two 300W 

incandescent lights in hoods were positioned close above the glass plate for imaging 

purposes. Using the Vic-2D (Correlated Solutions) software, virtual extensometers 

placed on the reference image, and tracked through the images, measured the 

displacement between pairs of pixel subsets.  A typical area of interest consisted of 

one unit cell with three Type D nodes visible. Strains were calculated from the 

relative displacement between pairs of subsets which were typically 23
2
 pixels. 

Strains were measured in the Al and Ti and were calculated as the average of 6 
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virtual extensometers. Lattice strains were calculated as the average of three virtual 

extensometers placed between the three Type D nodes surrounding an interior unit 

cell. Temperature average CTE was measured by linear fitting to strain-temperature 

plots where the average CTE over the temperature range is the slope of the resulting 

straight line. Extensometers were placed upon relatively unstressed material regions 

to measure the CTE of the constituents. 

 

Image distortion from convective currents emanating from the specimen is a 

common problem when using DIC to record thermomechanical strains. A frame of 

silica fiber insulation was placed around the lattice and a glass plate on top to help 

thermally isolate the specimen from the camera.  A fan is used to mix the air directly 

above the glass plate and carry hot air away from the lights. 

 

3.6 CTE Results 

 

A typical experimental strain versus temperature plot is shown in Figure 11 along 

with FE prediction. Temperature average CTE for the lattice and the constituent 

materials is reported in Table III.  Although the DIC software is capable of 

measuring microstrains, scatter on the order of 1000 microstrain was present in the 

measurements due to image distortion. Convective currents emanating from the 

lighting were sufficient to cause visible inhomogeneous lensing in successive 
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images. Measurements on the Ti were limited to the Type D joints resulting in short 

gauge lengths and larger scatter.  

  

The average value of CTE for the constituent materials is measured to be ~4% 

higher than reported values (24.3 ppm/C for Al, and 9.4 ppm/C for Ti) (Table I-a), 

but are within experimental error.  The lattice has an average measured CTE of -0.9 

ppm/C that is well predicted by FE of -1.1 ppm/C, and close to the analytical 

prediction of -1.4 ppm/C.  

 

3.7 Discussion – Thermal Expansion 

 

Measured thermal expansions of the lattice agree well with analytical and FE 

predictions. Differences between measured and FE prediction are believed to be due 

to the reduced effective length of the type I members resulting from fabrication 

imperfections causing premature contact between sublattices.  The hexagonally 

shaped aluminum members had visible machining imperfections on some edges 

where they were cut from stock.  The small wing-shaped gap between high and low 

CTE members results in a structure that is more imperfection sensitive than a lattice 

with triangular or prismatic beam type members. Geometric imperfections in this gap 

can cause sublattices to impact each other before the predicted upper use 

temperature, reducing the effective length of type I members and driving up the 
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CTE. Space-filling lattices with these features, such as aerodynamic surfaces, may be 

adversely affected by debris in these small gaps. 

  

No plasticity is predicted in the revised dovetail geometry. The limited plasticity 

present in other designs [7] was a function of the bimaterial joint geometry employed 

and is not inherent to the functional mechanics of the lattice itself.  

 

Scatter in CTE measurements results from several sources.  Convective currents 

in the air column between the specimen and the camera distort images through their 

associated density gradients and lensing effects [12].  Efforts were made to mitigate 

convective currents coming from the specimen and hotplate, but the incandescent 

lighting used for imaging proved a sufficient source of interference.  A cold light 

source or a camera orientation that minimizes the effect of convective currents, by 

positioning it outside the affected area, would reduce the effect.  The large scatter in 

the CTE measurements for Ti is due to the lattice geometry studied, the size of the 

unit cells, and the short lengths of relatively unstressed material available for 

measurements taken in the Type D node region. 

 

The analytical model developed in Section 2 does a good job of predicting lattice 

thermal expansion. The model uses the simple assumption that the thermal expansion 

of the Type 2 joint region is a weighted average of the constituent materials (Eq. 

(2.20)). In reality a distinct material interface exists between the constituents, and the 
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thermal response is much more complicated. The analytical CTE prediction of -1.4 

ppm/C for the lattice is close to the FE predicted value of -1.1 ppm/C and 

sufficiently accurate to help  characterize the design space to locate geometries of 

interest. 

 

CTE measurements performed on a titanium and aluminum lattice using 2-D 

DIC were able to validate the analytical and FE predictive models used in its design. 

The metal lattice behaved elastically over a temperature range of 175C, exhibiting 

consistent negative thermal expansion. The design space identified through the 

analytical model suggests the ability to realize a family of structures with a wide 

range of stiffness and thermal expansion properties.  

 

4.  Stiffness 

 

4.1 Basic Stiffness Results for Pin-Jointed Lattices.  

 

Elastic properties. The unit cell of the design without spacers is shown in Figure 

12-a is loaded by a set of forces, parameterized by P, Q and S.  It is presumed that 

the lattice has been designed in the manner described above, such that the bending 

stiffness of struts of type I are very low, whereupon their behavior is stretch 

dominated.  In such a situation, the lattice can be analyzed as if it were pin-jointed.   
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The resulting behavior is isotropic in the plane of the lattice, and stated as 
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where E, , G and  are the in-plane Young’s modulus, Poisson ratio, shear modulus 

and coefficient of thermal expansion, respectively, of the lattice.   

 

The biaxial stiffness is the ratio of the biaxial stress to the in-plane strain under 

equibiaxial loading [5], and can be deduced as 
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[Note that this corrects a misprint in the previously published formula in [5] which is 

missing the leading 2 in the denominator]. The shear modulus is 
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In these expressions for Sb & G, L1 is used rather than L since L1/w1 is the aspect 

ratio of type I elements. 

 

The Poisson ratio for the lattice may be computed from 
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        (4.4) 

 

and the Young’s modulus is 

 

 2 1E G           (4.5) 

 

Note that, in certain circumstances, the Poisson ratio will be zero or negative. For 

example, when 
2 1

E E , the Poisson ratio reduces to 
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As a consequence, it is zero at / 1 2  , and negative for / 1 2  .    

 

The introduction of a stiff spacer, as in Figure 3, has no effect on the elastic 

properties of the lattice.  If the spacer is a stiff component (e.g. composed of a solid 

plate rather than a set of truss or beam elements), the elastic properties of the lattice 

are still given by the values in Eq. (4.2) & (4.3).  This situation arises because for a 

stiff spacer, when we neglect its deformation and treat it has rigid, both stress and 

elastic strain scale in the same way with the size of the spacer.  To show this for the 

case of equibiaxial stress, the loads in Figure 12 b are 
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where    is the applied biaxial stress. Because the spacers are rigid the forces 

experienced by the adjacent nodes are the same.  The stresses are 
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And the change in dimensions of the lattice are  
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The strains are  
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Using (4.4), (4.5) and (4.6), with (4.7), the strains become 

 

        
 

 
[      ]      (4.8) 

 

Showing that the strains are not a function of the size of the spacer. 

 

For the case of shear loading for a lattice with spacer with an applied shear stress 

τ, the forces in Figure 12 b are 
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Because the spacer is rigid, the resulting macroscopic strains are  
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This indicates that there is no stiffness penalty upon introduction of a stiff spacer. 

 

4.2 In-Plane Compression Measurements  

 

In-plane compression experiments have been used to generate stress/strain 

measurements.  The objectives are twofold.  (i) Allow calibration of the mechanical 

robustness and stiffness of representative lattices.  (ii) Provide validation data for the 

ensuing finite element calculations.  For these purposes, it suffices to fabricate 

lattices from 1mm thick plates by laser cutting.  To probe the yielding and strain 

hardening characteristics, one set of lattices has been generated from 304 Stainless 

Steel.  During testing, out of plane buckling was prevented by constraining the lattice 
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between two 12.7 mm thick tempered glass plates, bolted to an aluminum frame.  

The experiments were performed in an MTS
TM

 810 servo-hydraulic testing system 

under displacement control, using a displacement rate of 0.5 mm/min.  Images of the 

lattice were recording every 15 seconds during the tests using a CCD camera 

connected to an image correlation system.  

 

Two different type II member geometries were used.  The stress-strain behaviors, 

shown in Figure 14, reveal robust behavior, characterized by yielding followed by 

strain hardening.  In all cases, yielding occurs in the type I members at critical stress 

levels in the range, 15  
c
 18MPa .  The bright regions in the images (Figure 13) 

indicate the occurrence of out-of-plane plastic buckling.  Unload-reload 

measurements reveal hysteresis and decreasing stiffness with increase in plastic 

strain.  

4.3 Experimental and Finite Element Results 

 

Stress strain curves generated from finite element modeling (FEM) are plotted 

alongside experimental results in Figure 14. The 304 Stainless Steel was modeled by 

linear elastic response followed by yielding with isotropic hardening. Twenty node 

biquadratic elements (C3D20R) were used in these calculations. Homogeneous 

strains were applied to the RVE in the 2-direction. The influence of the glass plates 

used to confine specimens out of plane was not modeled.  
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Notable features of the experimental stress-strain curves include a reduction in 

elastic stiffness with increasing strain past initial yield as evident in the unload-

reload regions, and significant hysteresis in these regions. No reduction in stiffness is 

seen in models restricted to in plane deformations. Models seeded with imperfections 

to initiate buckling show the same reduction in stiffness with strain as experiments. 

Frictional interactions between the lattices and the glass plates used to constrain out 

of plane motion are attributed as the source of hysteresis observed in experiment. 

The collapse modes, plastic buckling of type I members oriented most obliquely to 

the loading direction, and out of plane plastic hinging in the same yielded members, 

are accurately captured by the FE results (Figure 15).  

 

4.4 Comparison of Pinned and Bonded Stiffness  

 

To compare pin-jointed analytical and FE bonded predictions for stiffness, the 

equations in Section 2 were used to identify lattice geometries with zero thermal 

expansion and maximum stiffness. For a given skew angle   and lattice unit cell 

length L, Eq. (2.16) can be used to identify values of w1 and w2 that produce 

maximum stiffness for a given pair of constituent materials. Using the temperature 

average properties of Ti and Al (Table I-a) a variety of zero CTE lattices as predicted 

by Eq. (2.16) are identified  (Figure 16). The associated aspect ratio of type I 
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members,  ̂   ⁄ , decreases with increasing skew angle from 20.4 to 5.0 (Figure 16 

a-d). The stiffness of the analogous pin-jointed structures, those having the same 

member dimensions, are plotted along with FEM results in Figure 17, where Vf,i is 

the fraction of solid material of type i. 

 

4.4 Discussion – Stiffness  

 

Experimental and FE results for 304 steel lattices in axial compression show that 

the geometries tested are prone to out of plane deformations, suggesting relatively 

good in plane properties. FE analysis of an RVE shows good agreement with 

experiments conducted on steel lattices. To avoid the complex loading interactions 

between glass plates used to confine test specimens thicker lattices not prone to out-

of-plane plane deformations should be tested. Lattices incorporated into other 

structures and attached at nodal locations will have reduced out of plane degrees of 

freedom, such as when they are used as the face-sheet in a sandwich panel, and will 

also be less prone to buckling in this manner. Additional boundary conditions or 

structural elements within the RVE technique can be used to model the behavior of 

more confined lattices. 

Analytical models for pin-jointed biaxial stiffness and CTE give results that are 

similar to those from FE analysis of bonded lattices with slender members. Bonded 

lattices have increased CTE and stiffness over analytical predictions at higher 
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relative densities. Decreasing member slenderness causes more overlap of members 

near joints leading to potentially larger deviations from the assumptions in Section 2 

regarding the thermomechanical response of the joint region. Beam theory cannot 

accurately predict the deformation of members with aspect ratios less than about 10; 

in this case Ti and Al lattices with θ greater than ~26°. However the associated 

geometries still have a CTE very close to the value predicted by Eq. (3.1). Stress 

distributions in lattices subject to equibiaxial tensile straining show greater 

uniformity at lower relative densities suggesting more efficient and stretch 

dominated behavior. The stiffness of the pin-jointed lattice is clearly recovered in 

bonded lattices with slender members as predicted in Section 2. 

 

When optimized for maximum biaxial stiffness this lattice geometry can achieve 

a large fraction of theoretical bounds (Figure 18). Theoretical bounds on stiffness for 

composites with a given effective thermal expansion coefficient [3] are plotted for 

twelve lattice geometries and their associated compositions. At effective CTEs near 

the rule of mixtures, a value of 1.0 in this plot, denser structures have a higher 

potential for stiffness as indicated by the yellow and light purple lines. At large 

deviations in effective CTE a substantial amount of bending is required to 

accommodate the local thermal strains, degrading the potential stiffness by more 

than a factor of ten relative to a bilayer of identical composition. In the case where 

the lower CTE constituent is more compliant than the higher CTE constituent the 

ability of the UCSB lattice to achieve theoretical bounds is reduced. When composed 
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of a high temperature nickel alloy, Haynes 188, and a niobium alloy, the theoretical 

bounds on stiffness are ~5% of that of a bilayer with identical composition when the 

effective CTE is near zero.  

 

5. Concluding remarks 

 

Modifications to the geometry and modeling assumptions of previous bonded 

lattice designs of the UCSB lattice have resulted in a design scheme capable of 

rapidly identifying geometries that inherit the CTE and stiffness properties of the 

parent pin-jointed structure. The pin-jointed structure has been shown to be near 

optimal in stiffness over a wide range of densities [4]. Similar bonded lattices have 

obvious advantages in terms of fabricability. The behavior of these lattices is elastic 

and amenable to fabrication on length scales ranging from aerospace structures to 

those relevant to nanotechnology. 

 

The behavior of the bonded structure tends towards that of the pin-jointed lattice 

at lower relative densities in maximum stiffness lattices having slender members. At 

higher densities lattice members have aspect ratios too low for beam-theory based 

models to accurately predict their behavior. CTEs in these structures are still 

significantly different from the mean of the constituents. Three-dimensional 

computer aided design (CAD) and FE can be used to identify and fabricate rigid-
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jointed lattices with a tailored thermal expansion coefficient that is well predicted by 

modeling. 

 

A lattice composed of Ti-6Al-4V and 7075-T6 Al was designed, fabricated and 

measured to have a negative thermal expansion coefficient. Design space illustrated 

by the analytical model developed in this work shows the possibility for realizing 

material systems with a wide range of CTE including significantly negative thermal 

expansions. Such negative CTE materials can be used in a limited capacity in 

systems composed mostly of more conventional positive CTE materials as space 

filler. The demonstrated ability of this design approach opens the door for the 

investigation and application of a wide family of materials with novel properties 

including high stiffness and low thermal expansion.  

 

Further extension of these analytical and numerical techniques can be used to 

investigate the introduction of anisotropy by allowing geometry to vary amongst 

members of the same type in a unit cell allowing properties to be tailored in two 

directions. Rapid prototyping and other direct fabrication techniques can be used to 

fabricate volumetric lattices with properties tailored in three dimensions. The 

analytical and FE techniques can be extended to consider these variations  

 

Possible combinations lattice constituent materials include ceramics, glasses, and 

glass ceramics.  In high temperature applications the thermal strains in these 
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materials can be tailored to match the thermal strains experienced in significantly 

cooler supporting substructures. A low CTE glass, such as Zerodur, used as the type 

1 material will offer a large CTE ratio,    , when paired with a wide range of other 

higher expansion materials making available a wide range of achievable CTE 

(Figure 5). 

 

Theoretical bounds on stiffness for these types of composites indicate a large 

tendency for bending when the effective CTE is a large deviation from the rule of 

mixtures of the constituents, being ten to twenty times more compliant than a bilayer 

of identical composition perhaps limiting the use of these structures in  critical 

structural applications.  

 

Other considerations exist in the design of these systems. These include: (i) 

Transient heating effects resulting from mismatches in thermal conductivity between 

constituents, and non-uniform heating (ii) The net CTE of the lattice is a function of 

the relative thermal strain between sublattices which may be varying due to 

transients and inhomogeneous thermal loading which can affect the response (iii) 

Aerodynamic surfaces are often curved surfaces so that non-flat shapes with a 

tailored thermal expansion coefficient may be desired. The techniques developed and 

exercised in this paper can be extended to address these issues, and the strength and 

failure modes of systems can also be addressed. 
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Chapter I Figures 

 

Figure 1 - Concepts for low thermal expansion lattices; (a) the Lakes lattice [1]; (b) the lattice 

obtained by topology optimization [2, 3]; (c) the AFRL design [4]; (d) the UCSB lattice [5]. 
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Figure 2 - Unit cell and joint geometry. 

 

 

 

Figure 3 - Spaced lattices with     ⁄ , with no additional material (a), undersized stiffener 

(b), and appropriately sized spacer (c and d) where axial member loads can be transmitted 

directly to adjacent unit cells. Spacer has characteristic dimension H while the stiffener has 

radius Sr. 
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Figure 4 – Type 1 members sustain an axial load, T, shear, V, and bending moment, M. 

 

Figure 5- Lattice CTE as a function of skew angle θ and type 1 member aspect ratios.  
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Figure 6 – (a) Perimeter of unit cell used for computations. (b) Representative finite element 

mesh that consisted of 50,000 to 70,000 3-D elements. (c) Detail of a bimaterial joint region. 
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Figure 7– Finite element thermomechanical stress distribution in Ti and Al lattices given the 

material properties listed in Table I and subject to a 175C temperature excursion – (a) original 

design, (b) new offset design.  
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Figure 8 - Comparison of results from finite element analysis for coefficient of thermal 

expansion and experiment. 
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Figure 9 – Thermal stress distributions in Ti and Al fabricated lattice geometry with thin type 1 

members (a), triangular type 2 member (b), and space filling design (c). 



 

56 

 

 

Figure 10 – Lattices of Ti alloy (struts) and Al alloy (hexagonal units) fabricated for 

measurement of the coefficient of thermal expansion. 
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Figure 11 - Thermal strains measured in Al alloy, Ti alloy, and the lattice. Significant scatter in 

Ti measurements is due to the relatively short gauge lengths that had to be used.  
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Figure 12 – Pin-jointed unit cell subject to loads P,Q and S used in stiffness calculation (a). 

Spaced lattice unit cell with applied loads P and Q (b). 
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Figure 13 – 304 stainless steel lattice compressed along the vertical axis. Bright areas indicate 

out of plane deformation associated with member buckling. 

 

 

Figure 14 – Uniaxial compression strain-stress behavior or 304 Steel lattices. (a) Triangular 

Type 2 element. (b) Thin Type 2 members.  
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Figure 15 – Finite element stress distributions in uniaxially compressed 303 stainless steel 

lattices. Yielding occurs in struts linking triangle vertices to 6-member joints a-d involves out of 

plane displacements. This behavior agrees well with experimental results. 
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Figure 16 –Stress distributions in lattices made from Ti alloy and Al alloy with maximum 

biaxial stiffness as predicted by pin-jointed analytical model, subject to 0.1% biaxial tensile 

strain. Skew angles range from 24.5°-30° and volume fractions of solid from 14-46% (a-g). 

Stress distributions become more uniform with increasing slenderness moving towards behavior 

similar to the pin-jointed response. 
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Figure 17 – Results for the coefficient of thermal expansion and biaxial stiffness for lattices 

shown in Figure 16. Analytical results derived from a pin-jointed model are shown as are results 

from finite element analysis of lattices having bonded joints.  
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Figure 18 – The biaxial stiffness,   , of seven lattice geometries composed of Ti6AlV4 and 7075-

T6 Aluminum and five composed of Haynes and a niobium alloy along with their respective 

theoretical bounds on stiffness, devised by Gibiansky and Torquato (1997), which is a function 

of constituent properties and volume fractions. At effective CTEs near the rule of mixtures 

structures with a higher relative density (yellow) have a greater potential for stiffness over those 

with lower density (orange). At large deviations from the rule of mixtures (approaching zero 

CTE) the potential stiffnesses (theoretical bounds) converge. Lattices with slender members 

have more uniform stress and strain energy distributions and perform closest to the theoretical 

bound (darkest orange). Normalized biaxial stiffness is a measure of stretching indicating that 

lattices achieve only a small fraction of the stiffness of a bilayer of identical composition. When 

the low CTE constituent is more compliant than the high CTE, as in the case of two high 

temperature alloys, Haynes 188 and a niobium alloy, the stiffness of this material system 

relative to the theoretical bounds is reduced when the effective CTE is near zero(purple).
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III.  The Compressive Response of Some Idealized  

Foams 

 

The compressive stiffness of a variety of ‘perfect’ foam topologies, most of 

which are based upon a spatial tessellation procedure, some described here for 

the first time, are calculated using three-dimensional (3D) continuum finite 

elements (FE) and representative volume element modeling. Using 3D models 

the relative density of the foams are calculated directly allowing for the results 

to be precisely placed in property space revealing a family of mostly stretch 

dominated structures, some of which achieve theoretically maximum stiffness. 

Novel topologies are based upon Voronoi-like tessellations producing closed-cell 

structures with plate-like members. A variety of foam topologies are found to 

have bulk moduli that are very near theoretical bounds over a range of volume 

fractions. One design in particular achieves, in essence, the theoretical bounds 

for Young’s, shear and bulk modulus simultaneously, in the low density limit, 

exhibiting maximum isotropic stiffness. The body-centered cubic, face-centered 

cubic, simple cubic, octet-truss-lattice, octet-foam, quasi-random foams, and 

other geometries are evaluated using a strain homogenization technique to 

calculate their effective elastic properties. Results for known structures 

compare favorably with reported empirical results and analytical models, 

where available. Structures composed of plate-like members have a 
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significantly higher potential for stiffness than open cell foams and lattices by 

supporting a multitude of loads through stretching where the others are 

composed of truss-like members which support only loads oriented along a 

single axis through stretching. Fabrication of geometries is achieved by additive 

manufacturing directly from CAD/FE models. 

 

Nomenclature: 

 

   Young’s modulus of solid constituent material 

    Shear modulus of solid constituent material 

   Bulk modulus of solid constituent material 

   Density of solid constituent material 

 ̅   Axial/Young’s modulus of foam/lattice in the i’th direction 

 ̅   Shear modulus of foam/lattice from an applied strain     

 ̅   Bulk modulus of foam/lattice calculated from     and     assuming isotropy 

 ̅ Density of foam/lattice 

 ̅   Poisson ratio of foam/lattice 

 ̅ Average relative Young’s modulus of foam/lattice 

 ̅ Average relative shear modulus of foam/lattice 

 ̅ Relative bulk modulus of foam/lattice 

V Initial volume of RVE 
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V0 Deformed volume of RVE 

 ̅ Macroscopic 1
st
 Piola-Kirchoff Stress Tensor 

 ̅ Macroscopic deformation gradient tensor 

 ̅ Macroscopic Cauchy stress tensor 

 ̅ Macroscopic strain tensor 

lij Wall thickness between cells i and j 

t Wall thickness 

Li RVE dimension in direction i 

gi Scale factor for seed i 

  Magnitude of the macroscopic strain 

 

1. Introduction  

 

Lightweight high-performance materials such as metal foams and lattice 

materials are so called hybrid materials, material systems that combine different 

materials and/or materials and space in the aim of achieving novel properties, are 

capable of filling ‘holes’ in property space (Ashby, 2011) expanding the design 

capabilities of engineers with stiffer, stronger and lighter materials. While stretch 

dominated lattices, such as the octet-truss (Ashby, 2011; Deshpande et al., 2001), 

have been identified as prototypical hybrid materials offering properties such as 

stiffness and strength that surpass metal foams considerably, their performance does 
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not achieve a large fraction of theoretical bounds. Topology optimization routines 

have been employed to identify structures with more optimal properties, (Radman et 

al., 2012; Sigmund, 2000) for example, in terms of individual parameters, yet it 

remains unclear if materials exist that achieve the theoretical bounds for Young’s, 

shear and bulk modulus simultaneously (a material with theoretically maximum 

performance). While stochastic foams have already proven to outperform monolithic 

materials, in this study, we identify ordered foams as a class of hybrid materials 

capable of outperforming stretch dominated lattices and achieving theoretical bounds 

for Young’s, shear and bulk modulus simultaneously having maximal properties, at 

least in the low density limit. 

 

The relationship between ordered foams and closed cell stochastic foams is 

analogous to that of lattices and open cell foams. Lattices have improved structural 

properties over stochastic open cell foams, by a large margin, due to more ideal 

uniform geometry.  The result is a relative homogenization of stress and strain 

energy distribution throughout the material from the uniformity of the structure. 

Ordered foams capitalize on the higher stiffness and strengths exhibited by closed 

cell foams over open cell stochastic foams, but have yet to be investigated to the 

same degree as lattices.  

  

With advances in direct fabrication methods in the early 21st century it is now 

possible to create complex micron-scale structures out of aerospace grade alloys with 
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relative ease and at low cost. Direct fabrication, or additive manufacturing, are terms 

used to describe the multitude of techniques that are antithetical to machining 

wherein material is placed selectively in space to construct a part rather than by the 

removal of material from a fully dense one. An attractive feature of additive 

manufacturing is that there is no cost associated with geometric complexity unlike 

machining and bonding methods. While these techniques currently have their 

limitations in terms of materials and geometries, posing problems when making 

some closed cell materials, these technical limitations will be overcome, with time, 

opening the possibility for new high-performance materials. 

 

In this study we use three-dimensional (3D) computer automated design (CAD) 

to construct solid models of material geometries allowing a wide range of relative 

densities to be modeled accurately. Previous efforts to model foams and lattices have 

generally relied on analytical models (Deshpande et al., 2001; Gibson and Ashby, 

2009; Grenestedt, 1999) and/or beam and shell finite elements (Daxner et al., 2006; 

Demiray et al., 2005; Deshpande et al., 2001; Fahlbusch and Becker, 2011; Fischer 

et al., 2009; Grenestedt and Bassinet, 2000; Grenestedt, 1999; Jang and Kyriakides, 

2009a) to reduce the cost, both of labor and computational, of reaching solutions. 

The high computational cost alone of analyzing these types of problems with 3D 

models has historically made them cumbersome and unattractive. Shell models do 

well when applied to structures with low relative density but do poorly when applied 

to structures with densities that are intermediate and higher. If experimental 
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verification of these models is desired, some interpretation must be done to construct 

a solid 3D design. Eventually a more accurate method is needed to guide in the 

development of high-performance materials. By using 3D FE the exact density of 

geometries is calculated allowing  a wide range of relative densities to be considered 

and the results placed accurately in property space. The CAD models used to 

generate the FE meshes can be imported into a program, such as (“Solidworks,” 

2012), to directly manufacture with an additive manufacturing machine. 

 

Foams can have very low relative densities, ( ̅   ⁄ )    in many cases, making 

them excellent insulators, cushions, energy absorbers, acoustic dampers and light 

weight structural materials, with myriad other applications. Ordered lattice structures 

can outperform stochastic foams in terms of stiffness and strength (Ashby, 2011; 

Deshpande et al., 2001; Fleck et al., 2010; Valdevit et al., 2011; Wadley, 2006) and 

can serve as multifunctional systems allowing for fluid transport between cells. 

Ordered foams can outperform lattice structures for the same reasons stochastic 

closed cell foams outperform open cell foams. The random nature of stochastic foam 

microstructures can vary greatly depending on the forming process and constituent 

material resulting in vast range of properties. Factors such as surface energy, gravity 

and rise direction influence attributes like cell-wall thickness, local density and cell 

geometry. Inhomogeneities lead to localizations of stress that under load ultimately 

lead to failure (Jang and Kyriakides, 2009b). By designing and manufacturing foams 

with uniform cell walls and ideal geometries that more uniformly distribute stresses, 
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postponing localization to higher loads, the strength and stiffness of foams can be 

increased dramatically. Understanding the features that lead to localization may 

make it possible to design geometries that have a hierarchy of ordered localization 

events that dictate the large strain behavior, offering improved energy absorption. 

Ordered foams have the potential to inherit many advantageous attributes of 

stochastic foams while offering increased performance in terms of stiffness and 

strength through more optimum material distribution. 

 

There is an extensive historical body of work studying the properties of foams an 

lattices. CELLULAR SOLIDS (Gibson and Ashby, 2009) is an extensive study of 

stochastic foams compiling models and data relevant to all general foam 

applications. In their analysis of the stiffness of foams they used beam theory and 

dimensional analysis to model the compressive stiffness of cellular materials based 

upon the stretching of cell faces and bending of edges; this model will be used later 

in this work as a performance metric. Grenestedt (1999) used a similar analysis but 

computed an additional  cubic term associated with the bending of plate like 

members that contributes to the stiffness. It will be shown later on in this paper that 

this cubic contribution is necessary to describe the stiffness of these foam topologies. 

Also compiled was a variety of  analytical models for some ‘perfect’ foam 

geometries and FE analysis (FEA) to assess the stiffness of some idealized foams 

composed of polyhedra, including the BCC Kelvin foam (also included in this 

study). Deshpande et al. (2001) calculated the stiffness of a fully triangulated lattice 
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known as the octet-truss (OT) using analytical and FE models.  The OT is a 

triangulated structure that has often been used as the prototypical stretch dominated 

material, however it will be shown later on that ordered foams have stiffnesses far 

greater. A foam related to the OT, described by drawing planes between its edges, is 

also analyzed in this paper. Vigliotti et al. (2012) calculated the stiffness and plastic 

buckling strength of a variety of open and closed cell geometries using an in house 

FE code, describing some novel geometries, using plate and beam elements and 

expressing output in terms of the eigenvalues of the constituent material. While this 

body of work and more has been accomplished to characterize the stiffness and 

strength of lattices and foams, a direct comparison of a variety of high-performance 

structures to empirical results, especially at intermediate densities, has yet to be 

assembled. In this paper we will calculate the stiffness of a variety of both known 

and novel cellular geometries from low to intermediate density, placing the results 

precisely in property space in terms of stiffness and density. 

 

Most foam models are based upon a spatial tessellation procedure. Voronoi 

tessellations can be used to form cellular structures that resemble stochastic 

materials. While they lack some features of real stochastic materials, such as curved 

cell faces, the effects of grain growth, gravity and processing, the approximation is 

often sufficient when modeling their behavior. The Voronoi tessellation of a space 

can be formed by growing spherical bubbles from a set of seed points that terminate 

their growth at every point that they meet. This procedure can be modified by 
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altering the relative rate at which the spheres grow. A single set of seed points can 

then be tessellated into a continuum of geometries. When the seeding is ordered, 

space can be tessellated by a variety of polyhedra. Included in this design space are 

geometries like the octet-foam (OF) body centered cubic (BCC) and simple cubic 

(SC) foams studied by (Grenestedt, 1999) and many others. This modified Voronoi 

tessellation technique will be used to generate a variety of structures that is 

representative of this family of ‘perfect’ foams. Instead of using these geometries as 

simplified models for stochastic foams we will explore their properties as 

engineering materials.  

 

The next section will discuss the methodology, including definition of some 

metrics as well as a description of the CAD and FE techniques employed. In section 

three the structures are illustrated and described. Section four contains the results for 

compressive stiffness. The final sections will discuss and then summarize the 

findings.  

 

2. Methods 

 

2.1 Finite element method 

 



 

 73 

A strain homogenization technique is used to calculate the effective mechanical 

properties of foam and lattice geometries using representative volume elements 

(RVE); this particular  method is adopted from (Danielsson et al., 2002). Unit cells 

experience uniform macroscopic strains as if part of a continuum in an infinite body. 

Macroscopic strins and stresses are localized as a function of the material 

arrangement in the RVE which give rise to the homogenized effective properties.  

Boundary conditions impose homogeneous macroscopic strains, defined by the 

macroscopic strain tensor  ̅  on a rectangular RVE with side lengths L1, L2  and L3 

(Figure 19-left). This technique can be applied to any model geometry, making no 

assumptions about symmetry, as long it is appropriately periodic as sets of periodic 

boundary nodes are required to impose the constraining equations.  

 

An example mesh is pictured in Figure 19, right, showing the labeling 

convention for the sets of boundary nodes. Sets of boundary nodes are denoted 

      , where               correspond to the base vectors. A value of   indicates 

that nodes in that set lie on a face with positive normal in the respective direction. 

For example, node set         has nodes with coordinates (      ), where     

  , because its nodes lie on planes with normal vectors that point in the negative x- 

and positive z-directions. In all there are 26 sets of boundary nodes corresponding to 

every permutation of x, y and z, with the exception of all zeros, whose displacements 

are tied together in an intuitive fashion to form the periodic boundary conditions. 
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The displacements of nodes located on faces are linked through Equations (1) – 

(9), 

 

   (      )     (       )    ̅    (1) 

   (      )     (       )    ̅    (2) 

   (      )     (       )    ̅    (3) 

   (      )     (       )    ̅    (4) 

   (      )     (       )    ̅    (5) 

   (      )     (       )    ̅    (6) 

   (      )     (       )    ̅    (7) 

   (      )     (       )    ̅    (8) 

   (      )     (       )    ̅    (9) 

 

The nodes on edges and corners must be treated separately to avoid over 

constraining the model. There are only three unique edges, as all opposing edges on 

a face are separated by the wavelengths of the displacements in the directions of 

periodicity (the Bloch wave vectors) and therefore model the same material points. 

For similar reasons there is only one unique corner node. If the edge and corner 

nodes were included with their respective faces in the previous set of equations they 

would be over counted and over constrained. 
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The displacements of the edge nodes,         ,          and         , are all tied 

to their counterparts on the basal planes, lying on along the x-, y- and z-axes 

respectively in Equations (10-37). 

   (      )     (        )    ̅      ̅   (10) 

   (      )     (        )    ̅      ̅   (11) 

   (      )     (        )    ̅      ̅   (12) 

   (       )     (        )    ̅   (13) 

   (       )     (        )    ̅   (14) 

   (       )     (        )    ̅   (15) 

   (       )     (        )    ̅   (16) 

   (       )     (        )    ̅   (17) 

   (       )     (        )    ̅   (18) 

   (      )     (        )    ̅      ̅   (19) 

   (      )     (        )    ̅      ̅   (20) 

   (      )     (        )    ̅      ̅   (21) 

   (       )     (        )    ̅   (22) 

   (       )     (        )    ̅   (23) 

   (       )     (        )    ̅   (24) 

   (       )     (        )    ̅   (25) 

   (       )     (        )    ̅   (26) 

   (       )     (        )    ̅   (27) 
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   (      )     (        )    ̅      ̅   (28) 

   (      )     (        )    ̅      ̅   (29) 

   (      )     (        )    ̅      ̅   (30) 

   (       )     (        )    ̅   (31) 

   (       )     (        )    ̅   (32) 

   (       )     (        )    ̅   (33) 

   (       )     (        )    ̅   (34) 

   (       )     (        )    ̅   (35) 

   (       )     (        )    ̅   (36) 

   (       )     (        )      ̅  (37) 

The displacements of the corner nodes are tied to the node at the origin, 

          in (38)-(58). 

   (      )     (         )    ̅      ̅      ̅   (38) 

   (      )     (         )    ̅      ̅      ̅   (39) 

   (      )     (         )    ̅     ̅      ̅   (40) 

   (       )     (         )    ̅      ̅   (41) 

   (       )     (         )    ̅      ̅   (42) 

   (       )     (         )    ̅      ̅   (43) 

   (         )     (         )    ̅   (44) 

   (        )     (         )    ̅   (45) 

   (         )     (         )    ̅   (46) 
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   (        )     (         )    ̅      ̅   (47) 

   (       )     (         )    ̅      ̅   (48) 

   (       )     (         )    ̅     ̅   (49) 

   (       )     (         )    ̅      ̅   (50) 

   (       )     (         )    ̅      ̅   (51) 

   (       )     (         )    ̅     ̅   (52) 

   (        )     (         )    ̅   (53) 

   (        )     (         )    ̅   (54) 

   (        )     (         )    ̅   (55) 

   (        )     (         )    ̅   (56) 

   (         )     (         )    ̅   (57) 

   (        )     (         )    ̅   (58) 

   

In the cases where models do not have corner or edge nodes the corresponding 

sets of equations are omitted. 

 

To prevent ridged body rotations the symmetry of the macroscopic strain tensor, 

 

  

 
(
  ̅ 
   

 
  ̅ 
   

)     (59) 
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is ensured by omitting the lower triangular components,   ̅     ̅  and   ̅  in 

equations (1)-(58) where they have been replaced by ,   ̅     ̅  and   ̅  respectively, 

effectively setting   ̅    ̅ . Ridged body translations are prevented by fixing the 

displacements,           , for one node in the model. 

 

The effective stresses are extracted using the principle of virtual work, 

 

              (60) 

 

The internal virtual work is calculated by noting that the macroscopic first Piola-

Kirchhoff stress tensor,  ̅, is work conjugate to the macroscopic deformation 

gradient tensor,  ̅. The internal virtual work is,  

 

          ̅    ̅  (61) 

 

where                  , is the initial volume of the RVE and      are the initial 

dimensions of the RVE. The relationship between  ̅ and  ̅ is 

 

  ̅   ̅     (62) 

 

with I being the 2
nd

 order identity tensor and  ̅ is the macroscopic strain tensor. 
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The macroscopic first Piola-Kirchhoff stress is calculated from the local stress 

by, 

 

 
 ̅  

 

  
∫     
  

  (63) 

 

were   is the local first Piola-Kirchhoff stress tensor. 

 

Components of  ̅ are accounted for computationally as the displacements of 

virtual nodes; nodes which are not otherwise attached to any part. The displacements 

of the virtual nodes and strains are related through 

 

  ̅     
    (64) 

 

where   
   is the displacement of virtual node i in the j

th
 direction.  

 

The external virtual work is calculated from the displacements of the virtual 

nodes and their work conjugate reaction forces,    , 

 

 

      ∑∑      
   

 

   

 

   

 (65) 
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By selectively prescribing components of  ̅ as displacement boundary conditions 

on the virtual nodes, all stress states compatible with uniform macroscopic strains 

can be modeled. The components of  ̅ are found by combinging equations (60)-(65) 

to get, 

  

  
 
  

  ̅    (66) 

 

The macroscopic Cauchy stress and the macroscopic first Piola-Kirchhoff stress 

is related through, 

 

 
 ̅  

 

  
 ̅     (67) 

 

where V is the deformed volume of the unit-cell and   ̅ is the macroscopic Cauchy 

stress. Because the strains at which the elastic properties are calculated are small, 

 ̅   ̅, and the components of  ̅ are used instead. 

 

The implementation of this method in practice has been done in the context of 

the commercial finite element analysis (FEA) and computer automated design 

(CAD) package (“ABAQUS,” 2013). This software has the capacity to execute 

scripts that allow for the automation of the majority of commands involved in 

creation of models that are generally accessible through the graphical user interface, 

Abaqus CAE. Unit-cell geometries are generated using the built in CAD module, 
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and in a few instances a dedicated commercial CAD package  (“Solidworks,” 2012). 

FE problems are described in text files that are typically generated by Abaqus CAE. 

It was necessary to pass information between the Abaqus script and a general 

purpose mathematics package, Matlab (“Matlab,” 2013), using text files, to 

overcome limitations in Abaqus scripting capabilities. Ordered sets of boundary 

nodes are required for the use of the equations functionality in Abaqus needed in the 

implementation of Equations (1)-(58), however  this requirement cannot be met with 

Abaqus scripting in the version that is current at the time this document was 

authored (“ABAQUS,” 2013). Matlab was used additionally to generate the various 

input files associate with the different loading conditions used to calculate the 

mechanical properties, as well as for post processing of some results. Model 

generation was largely automated taking a few seconds to generate the simplest 

geometries and a few minutes for the most complex.  

 

Stiffness calculations are found to be insensitive to the selection of unit cell for a 

given periodic geometry. It should be noted that in the case of calculating the 

strength and the large strain behavior of lattice and foam structures under 

compression, unit cell selection is of importance because of cell wall impingement 

associated with the onset of densification. In this study the effects of densification 

are not explored making unit cell selection somewhat arbitrary. As boundary node 

sets need to be sorted for the boundary conditions unit cells were usually selected to 

minimize the number of boundary nodes in order to reduce the computational time 
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taken to generate input files. The mesh generating algorithms in Abaqus do not 

number nodes in a manner amenable with the institution of the boundary conditions 

(BC) so an extra step must be taken to spatially sort the node sets. The algorithm 

employed to sort the node sets checks the distance between nodes so that the time 

required scales with the square of the number of nodes.  

 

Models are relatively large in size ranging from  ~5.0x10
3
 to ~6.5x10

5
 elements, 

and ~4.0 x10
4
 to ~1.2 x10

6
 nodes. Most models are composed of 10-noded quadratic 

tetrahedral elements, type C3D10 in Abaqus, while the remainder used 20-noded 

quadratic brick elements (C3D20R). Non-linear geometry is considered through the 

activation of the nlgeom flag in Abaqus allowing for bifurcation and other nonlinear 

events to be a captured. The memory requirements were ~50 Gb for large 

simulations, and ~70 Gb in the most extreme case. A simulation was typically run on 

4 ~3 GHz cpus and took on the order of hours to run. A large computing cluster was 

used to handle the majority of the work. 

 

 2.1 Stiffness and Isotropy 

 

To characterize and quantify the stiffness of these materials the effective elastic 

properties  ̅  ̅,  ̅ and  ̅ are calculated. These are calculated from the macroscopic 

stresses and strains by 
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 ̅   
 ̅  
 ̅  
  under applied strain  ̅      (68) 

 ̅   
 ̅    ̅  
  ̅  

 
 ̅    ̅  
    

  under applied strain  ̅   
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    (69) 

 ̅  
 ̅  
  ̅  

  under applied strains  ̅    ̅    ̅      (70) 

 ̅    
 ̅  
 ̅  
  under applied strain  ̅      (71) 

 

where   is the magnitude of the applied strain; all with no summation. The need to 

average the stresses in equation (69) arises from the manner in which FE method 

computes the solution. For the case of pure shear the boundary conditions are 

  
     

  
    however the means by which the displacements are tied results in only 

one virtual node experiencing a reaction force. In reality equilibrium requires 

  ̅    ̅ . For materials with cubic symmetry there are only three independent elastic 

constants E, G and  . Almost all the structures studied in this paper possess cubic 

symmetry and further, are nearly isotropic. 

The bulk modulus can also be calculated from the axial modulus and Poisson 

ratio, assuming isotropy, as 

 

 
 ̅   

 ̅  
 (    ̅

  
)
  

 

(72) 
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with no summation. This is done as a check on the direct bulk calculations. 

 

To quantify the isotropy of these materials a metric based upon the effective 

elastic properties is developed. While isotropy has a clear definition in the case of 

materials with cubic symmetry, not every material in this study has this property. 

Materials with cubic symmetry have three independent components of the stiffness 

matrix,              and      , when the axes of symmetry are parallel to the base 

vectors. Such a material is isotropic if the ratio of  (            )         ⁄ . To 

devise a metric for isotropy that does not rely on any symmetry an equation that 

relies upon a ratio of the normalized average effective moduli is used, 

 

     |  ( ̅     ⁄ ) ( ̅     ⁄ )⁄  |, (73) 
 

where     for an isotropic material and    .  Although the Poisson ratio is not a 

factor in Equation (73) for materials with cubic material symmetry, the ratio 

( ̅     ⁄ ) ( ̅     ⁄ )⁄  is qualitatively the same as (            )       ⁄  and are 

nearly equivalent when      . Equation (73) gives slight preference to, that is, a is 

greater for, materials that are stiffer in shear than axially for a given ratio of 

( ̅     ⁄ ) ( ̅     ⁄ ). 

 

2.2 Theoretical bounds and modeling 
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To help quantify the stiffness two sets of theoretical bounds are employed. The 

tightest bounds on stiffness of isotropic multiphase materials were derived by 

(Hashin and Shtrikman, 1963). The bounds on bulk and shear moduli are 

respectively, 

 

     
  

 
   ( ̅   ⁄ )

       (   ̅   ⁄ )
  

 

(74) 

     
  

 
(       )( ̅   ⁄ )

           (      )( ̅   ⁄ )
  (75) 

 

 

where the subscripts s denotes properties of the solid and  ̅ is the density of the 

lattice/foam material. An upper bound on Young’s modulus can be found from (74) 

and (75) by assuming isotropic linear elasticity. In a more general case where one 

phase is empty space the bounds reduce to, 

 

  ̅

  
 
 ̅

  
  (76) 

  ̅

  
 
 ̅

  
  (77) 

 

which are identical to the Voigt bounds. 

 

Using beam theory and dimensional analysis (Gibson and Ashby, 2009), and 

similarly by (Grenestedt, 1999), postulated that the stiffness of closed cell foams is 
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dependent upon the local modes of deformation in the mesostructure; more 

specifically the bending of cell edges and stretching of cell faces. In the Gibson and 

Ashby model (G-A) material is partitioned between edges and faces so that material 

is either bent or stretched but not both.  The formulas derived for Young’s and shear 

moduli are, 

  ̅

  
 (

 ̅

  
)

 

   
 ̅

  
(   )  

 

(78) 

  ̅
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 ̅

  
)

 

   
 ̅

  
(   )  (79) 

 

 

where (   ) is the fraction of the material located in cell faces and   is the 

remaining fraction residing in the edges. The contribution to the stiffness from the 

bending of edges is of second order illustrating the importance of stretching behavior 

in high performance structures.  

Grenestedt’s analysis, also using beam theory and dimensional analysis, derived 

the following relationship between Young’s modulus and density for a foam,  

 

  ̅

  
 (

 ̅

  
)

 

  (80) 

 

where m=1 for stretching controlled mesostructures, m=2 for bending or twisting 

controlled rod-like mesostructures and m=3 for bending controlled plate-like 

mesostructures (Grenestedt, 1999). The word mesostructures has been used in place 
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of the original microstructures. In this study we refer to microstructural features on 

the scale that includes grain boundaries, inclusions and twins, foam topologies are 

defined on the mesoscale while loads and part geometries on macroscale.  

 

In an effort to gauge the performance of foam topologies in a manner compatible 

with the work of (Ashby, 2011) and (Grenestedt, 1999)  data is fit to third order 

polynomial functions with positive coefficients, 
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  (81) 

 

 

with the constraints  ̅( )    and  ̅(  )    , similarly for  ̅. Here          

  and can perhaps be thought of in a way consistent with both the analysis of (Gibson and 

Ashby, 2009) and (Grenestedt, 1999) thinking of the coefficients in Equation (81) like those 

in Equations (78) and (79), partitioning the material by orientation and mode of deformation, 

the Ci being the relative fractions. 

 

2.2 Tessellation procedure 

 

Foam geometries are created using a modified Voronoi tessellation procedure, 

with two exceptions, the octet-truss and the dodecahedral-pyramidal foam (DDPF) 

which were generated using the CAD package (“Solidworks,” 2012). Seed points are 
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distributed in a finite 3-D space and lines are drawn between neighbors. These lines 

are then bisected by perpendicular planes. Each  seed is then enclosed by a cell 

whose edges are defined by the nearest  intersections of those planes. By varying the 

number and position of seed points and the position of the planes along the 

connecting lines a diverse range of geometries can be generated that in turn exhibit a 

wide range of behavior.  

 

A number of point seeds, n, are placed into a rectangular space that will become 

the representative volume element (RVE) with coordinates are   
 
           

          Periodic structures are generated by copying the point seeds 26 times into, 

what would be, every adjacent RVE sharing an edge and/or face and/or corner with 

the primary RVE. This process is done by creating 27 instances of each seed point 

by adding every permutation of a vector   (   ̂     ̂     ̂ ) ,where    

      , to the seed coordinates    where k is seed point index,          . If this 

seeding is done in a random fashion the result resembles real stochastic materials, to 

first order. If the seeding is done in an ordered fashion the result is analogous to the 

first brillouin zone of the crystal structure. Foams based upon the body centered 

cubic (BCC), face centered cubic (FCC) and diamond crystal structures are studied 

in later sections. 

  

Topologies are made by a subtraction process in the CAD environment where an 

initial volume of material is systematically eroded. Foams are created by first 
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constructing the reciprocal polyhedrons that define each cell. To construct the cell 

associated with seed i, the vector,  

 

             (82) 
 

 

that extends between seed points i and j is found. To model the growth of different 

seeds at different rates each seed is assigned a growth factor, gi, i=1,2,…,n, which is 

used to calculate the relative placement of the partitioning plane between seed pairs. 

The vector      is scaled by an amount determined by the growth factors, gi and gj, 

and then reduced in length again by half of the wall thickness.  
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 | 
   
|
)      (83) 

   

 

The resultant vector      and the perpendicular plane it describes define two half-

spaces. The half space not containing seed point    is removed creating a facet and 

the process is repeated for every seed point in the set Bi, that contains all the 

neighboring seed points to   . After repeating this for all the seeds in the primary 

RVE and adjacent RVEs the resulting cells are assembled and then subtracted from 

the fully dense RVE resulting in a closed cell material.  

The number of seed points in the set of neighbors, Bi,, must be chosen carefully 

in the case where the growth factors       for             . Seeds that are not 
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nearest neighbors by distance can interact in this scenario creating additional facets 

on the reciprocal polyhedron of a cell which increases the relative density of the 

resulting foam. Seed points in Bi are grouped by their distance, ‖    ‖, which 

corresponds to a type of  facet, and the number of facet types for cell k is the 

coordination number, bk. 

 

The wall thickness,     , associated with the partition between seeds i and j are 

set to a constant value,       , for all the seed points in each model.  

 

Randomly seeded geometries will serve as a benchmark for ordered foam 

performance and will be introduced in section 3.1. A “hard sphere” point seed 

algorithm is used to populate the RVE with seed points. A radius, r, is ascribed to 

each seed to enforce a minimum distance between seed points of 2r. The radius is 

calculated from the fractional volume of the seed point in the RVE (Equation 84) 

which is then scaled by an amount,  , which is the packing density. The radius, r, is 

then, 

 

   (
 

  

  
 
)

 
 
  (84) 

 

Seeds are placed sequentially into the RVE by a pseudo-random number 

generator. A seed attempt is retried if upon the addition of a seed, two spheres are 

found to impinge upon each other. After a prescribed number of attempts the 

algorithm restarts the entire seeding process; this value was set to be on the order of 
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10 based upon experience. The initial seed is always placed at the origin to avoid the 

creation of noncontiguous RVE geometries. 

 

3. Structures 

 

3.1 Quasi-random foams 

 

Random distributions of seeds, in cubic unit cells of unit dimension, are used to 

generate structures that appear similar to stochastic foams (Figure 19). Quasi-random 

(QR) foam RVEs resemble unit cells of stochastic materials however are 

characteristically different in that they possess uniform cell wall thicknesses, lack 

curvature and have inherent periodicity. The performance of these structures will 

serve as a benchmark for comparison with foams with significantly more order and 

to lattice structures. 

 

Two examples of quasi-random topologies are pictured in Figure 19 along with 

their associated meshes. The structures have wall thickness of 1% and 2% (left and 

right respectively), that is, they have   ⁄     and   . The mesh density, as seen 

in Figure 19, bottom, is dictated by the wall thickness, as the characteristic element 

dimension is the wall thickness in thin walled models. Typically the characteristic 

element dimension is ~0.01-0.02 in models with    ⁄     although no more than 

eight elements were used through the thickness of a cell wall. The computational 
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cost of analyzing models with thinner walls of lower relative density but higher mesh 

density was seen as too great for this investigation. The models in Figure 19 have 

2% wall thickness with 143,542 elements, 263,581 nodes and 790,740 total variable 

(degrees of freedom plus Lagrange multipliers)  and 1% wall thickness with 650,007 

elements, 1,206,305 nodes and 3,618,912 total variables.  

 

To achieve a narrow distribution of cell volumes and aspect ratios QR foams are 

based upon dense packings of spheres. The packing densities ranged from       

     (Table 1) which is in the range of jammed packings of spheres, ~0.49-0.64 

(Torquato and Stillinger, 2010). A jammed packing of spheres is one that is 

disordered but does not have any mechanisms when compressed, that is, no spheres 

slide upon another under a macroscopic load. The arrangement of seed points itself 

does not likely correspond to a jammed packing as the likelihood of randomly 

generating such a structure is extremely low. The relatively high density of the hard 

spheres however produces a reasonably uniform yet random distribution of seed 

points. The coordination number, b, for each seed was chosen to be large enough to 

account for all the necessary facets but does not necessarily represent the number of 

facets on each cell, typically        

 

3.2 BCC Foam 

 



 

 93 

The body centered cubic (BCC) foam, formed from the Voronoi tessellation of 

the BCC crystal structure (Figure 21, left), analogous to the first brillouin zone, has 

served as an idealization for real stochastic foams due to its relative simplicity and 

nearly isotropic properties, for example see (Daxner et al., 2006; De Giorgi et al., 

2010; Fahlbusch and Becker, 2011; Fischer et al., 2009). The reciprocal polyhedron 

is a truncated octahedron – a type of tetrakaidecahedron (14-sided polyhedron) -- 

This structure is also known as the Kelvin foam as it was devised by Lord Kelvin in 

1887 as the solution to the minimization of surface energy of an array of bubbles 

(Thomson, 1888). Lord Kelvin’s actual solution has curved walls but the curvature is 

so slight that it is not discernible to the naked eye. Using shell finite elements 

(Grenestedt, 1999) found that the BCC foam has a bulk modulus that is  more than 

99% of the Hashin-Shtrikman (H-S) upper bound at relative densities up to 10%. 

Table 1. – Quasi-random foam parameters 

Seed Parameters       

Model name RF20-1%-1 RF20-1%-2 RF12-2%-1 RF20-2%-1 RF20-2%-2 RF12-4%-1 

Number of seeds (n) 20 20 12 20 20 12 
Wall thickness (   ) (%) 1.0 1.0 2.0 2.0 2.0 4.0 

  (from Eqn. 84) 0.50 0.50 0.50 0.50 0.50 0.61 

Scale factors (g) 1.0 1.0 1.0 1.0 1.0 1.0 

Coordination (b) 30 30 30 30 30 30 

Poison’s ratio νs 0.3 0.3 0.3 0.3 0.3 0.3 

Density ( ̅   ⁄ ) (%) 7.65 7.67 12.53 14.69 14.70 24.25 

Ratio: biggest/ smallest 

grain 

2.43 2.63 1.94 2.36 2.89 3.08 
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3.3 Simple Cubic foam 

 

The simple cubic (SC) foam is formed by the tessellation of a seeding of a single 

point in a cubic unit-cell. The unit cell is chosen so that the vertex is located at the 

center of the RVE (Figure 21, right). The most characteristic feature of the SC lattice 

is the high degree of material alignment where 1/3 of the material lies in a plane 

aligned with each base vector. When stressed along these axes 2/3 of the material 

will be under uniform compressive or tensile stress resulting in highly stretch 

dominated behavior. The very simple arrangement of  material in the SC will 

provide insight into the role of material alignment in regards to stiffness and isotropy 

in a later section. In the low density limit the SC foam achieves the Hashin-

Shtrikman (H-S) upper bound for bulk modulus (Grenestedt, 1999).  

 

3.4 FCC 

 

The reciprocal polyhedron of the face centered cubic (FCC) foam is a rhombic 

dodecahedron (Figure 22, top-right) – a twelve sided polyhedron with identical 

rhombic faces. This structure was first identified by Plateau (1873). While it was 

mentioned by (Daxner, n.d.) as a model for closed cell foams, an investigation into 

its mechanical properties was not found. It has been referred to as a 3-D honeycomb 
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due cross-sections being characteristically hexagonal (Figure 22). The regularity of 

the geometry results in nearly isotropic stiffness. 

 

 

3.5 Diamond 

 

Using the diamond crystal structure as a seeding produces cells with four 

octagonal and 12 triangular faces (Figure 25, top-center). They are truncated 

tetrahedrons whose four vertices are each replaced by three triangular faces arranged 

pyramidally. As will be seen from the results in section 4, the diamond foam (DF)  is 

characterized by portions that are highly aligned (Figure 25, middle-right, bottom-

left and bottom-center) and regions that are not (Figure 25, center and bottom-right).  

 

3.6 Octet-truss & -foam 

 

The octet-truss (OT) structure (Figure 24, top-left) is a fully triangulated truss 

structure shown to have stretch dominated shear stiffness (Deshpande et al., 2001). It 

consists of a central octahedron with corners that lie on the center faces of a cubic 

unit cell. Each face of the octahedron shares as a face with a tetrahedron whose 

opposite corner lies on a corner of the unit cell. Its stretch dominated behavior results 

in stiffness and strength that exceeds that of comparable metal foams by factors of 3-
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10 (Deshpande et al., 2001). It has been identified as an uniquely efficient material, 

as it is a triangulated and stretch dominated truss structure composed of members of 

a single length, and has been included in this study as benchmark for comparison 

with other designs.  

The octet-foam (OF) is an analogous closed cell foam to the OT. It shares the 

same edges and vertices as the OT but has walls that connect the edges of the 

tetrahedrons. Out of the structures investigated by (Vigliotti and Pasini, 2012) it was 

one of the highest performing in terms of stiffness and strength and deemed the 

highest performing overall due to its nearly isotropic properties. Our findings 

however, supported both quantitatively and qualitatively, discount the claim of near 

isotropy. 

 

The OF and the DF are related through their seeding pattern. If the four internal 

seeds of the DF, those that do not lie on an RVE face, are mirrored into the 

remaining four unoccupied octants the seeding pattern for the OF is formed.  The 

tessellation into the OF is done by ascribing a relative growth factor to the corner 

and face-centered octahedral cells of    .  

 

3.7 BFC foam 

 

By using the FCC seeding and adding a body centered seed point results in the 

geometry shown in Figure 23. This foam possess three types of cells – a cubic cell 
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that resides at the center of the chosen RVE, this is surrounded by six 14-sided 

polyhedra (Figure 23 - dark green & dark blue) each having  two square faces, four 

rhombohedral faces and eight triangular faces (this shape being a truncated rhombic 

dodecahedron), and a dodecahedral cell at the corners of the RVE. This structure can 

been seen as a hierarchical material having a SC unit cell surrounded by a matrix of 

different, more compliant, morphology. The SC foam is found to be stiff relative to 

the BCC and FCC foams, making for a distinct heterogeneity in properties between 

cells. This can be exploited to achieve a multiphase collapse mechanism where the 

first phase is the elastic or plastic collapse of the compliant phase/cells and partial 

densification followed by the interaction of the stiffer phase and an increase in 

stiffness and strength.  

 

3.9 Dodecahedral-pyramidal foam 

 

The dodecahedral-pyramidal foam (DDPF) gets its name from the reciprocal 

polyhedrons being a centrally located dodecahedron surrounded by, and sharing 

faces with, 12 four-sided pyramidal cells. This is similar to the  OF unit cell which 

consists of octahedrons who share faces with tetrahedrons arranged in a BCC 

pattern, where the dodecahedral triangulated foam consists of rhombic dodecahedra 

who share faces with rhombic pyramids, also arranged in a BCC pattern.  
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Despite any perceived geometric complexity, the DDPF geometry bears some 

simple relations born from its highly ordered nature. The aspect ratio of the base of 

the rhombic pyramids is √ . The faces are obtuse isosceles triangles whose ratio of 

edge lengths is √   . The long edge of the triangular faces forms the long ridge of 

the rhombic pyramids and has equal length to the short dimension of the pyramid 

base. The rhombic dodecahedron has 12 identical rhombohedral faces and stacks by 

itself to fill space in an FCC fashion. The reciprocal unit cell is analogous to the first 

stellation of the rhombic dodecahedron, also known as Escher’s Solid due to its 

appearance in many of the artist’s work, however the original cell walls of the 

dodecahedron are retained in this case.  

 

Another similarity between the OF and the DDPF is seen when examining an 

alternate unit cell of the OF (Figure-8, top-right). It is formed from two 

interpenetrating rhombohedral prisms whose aspect ratios are √    and serves as the 

inspiration for the DDPF. The dodecahedral triangulated foam is formed analogously 

by three interpenetrating square prisms (Figure 26, top-left). To our knowledge this 

geometry has not yet been investigated for its mechanical properties. This geometry 

was created manually with the ABAQUS CAD module.  
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3.9 X-Foam 

 

The X-Foam (XF) is a sister structure to the DDPF in that it also consists of three 

interpenetrating orthogonal prismatic members whose cross-sections are also 

composed of orthogonal members, but differ in the relative orientation of cross-

sections. This geometry tessellates space into skewed tetrahedrons whose adjacent 

edges differ in length by a factor of √  ⁄ . To our knowledge this is the first 

description and analysis of this structure. This geometry was created manually with 

the ABAQUS CAD module. 

 

3.10 OF+SC Foam 

 

The OF+SC foam is a combination of, what will be shown to be, the two 

most anisotropic materials; the OF being stiff in shear and the SC being stiff axially, 

tessellating space into regular and irregular tetrahedra. The result is a material with 

highly aligned and but well distributed material. The OF and SC parts were formed 

separately where the SC wall thickness is chosen to match the dimension of the OF 

on the edge on the unit cell, equal to √  , where t is the wall thickness of the OF 

foam. To our knowledge this is the first description of this material. 
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4. Results 

 

The results section is broken down in the following manner: A baseline result of 

sorts is formed by comparing the FE predictions for foams formed from the quasi-

random distribution of seed points to available data for the axial and shear stiffnesses 

of  polymer and metal foams as well as analytical models. Next, four previously 

studied  designs, the BCC, FCC, SC, and OF, are shown to compare favorably with 

historical results to further validate the modeling scheme. Through this investigation 

some insight is gained into the morphological features that give rise to higher 

performance designs. The following set of results then introduces five novel designs. 

Three of these foams, the XF, DDPF and OF+SC, are found to have maximal 

stiffness, that is, the sum of their Young’s, shear and bulk moduli approaches the 

sum of the respective Hashin-Shtrikman (H-S) upper bounds as the relative density 

(cell wall thickness) approaches zero.  

 

Three classes of materials are identified including two classes of high 

performance foams. High-performance foams have a stiffness approximately equal 

to the ideal isotropic stretch dominated foam or lattice, where one third of the 

material is stretched under an arbitrary load, as described in (Ashby, 2011). Foams 

with maximal-performance have a total stiffness that converges, at the low density 

limit, to that of an isotropic material that achieves the H-S upper bound for axial, 

shear and bulk modulus. The remaining group contains the materials that have 
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stiffness less than that of the high-performances materials; all closed cell foams were 

within ~5% of the high performance group while only truss structures and foams 

with walls removed (omitted for brevity) are in the lowest performance group. 

 

The simple cubic (SC), Octet-foam (OF),  X-foam (XF), dodecahedral-

pyramidal-foam (DDPF) and the OF+SC designs all have maximal stiffness. The 

quasi-random (QR), body centered cubic (BCC), face centered cubic (FCC) and 

Body+Face centered (BFC) are high-performance, having stiffnesses similar to that 

predicted for stretch dominated lattices. The diamond foam (DF), for reasons 

discussed in section 4.3, is the only material that is a hybrid of sorts between 

maximal- and high-performance foams. Only one material, the octet-truss (OT), was 

found to be in the low-performance class. 

 

The stiffness of QR foams are shown to be consistent with empirical results for 

stiff foams, analysis by (Gibson and Ashby, 2009), as well as FE results for similar 

foams studied by (Roberts and Garboczi, 2001). Results for the BCC and SC foams 

are consistent with results obtained by (Grenestedt, 1999). Results for the OT truss 

are consistent with those obtained by (Deshpande et al., 2001) at low densities. At 

higher relative densities results obtained in this study suggest the structure is stiffer 

than previously predicted. 
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4.1 Quasi-Random Foam Stiffness 

 

The axial, shear and hydrostatic stiffness of quasi-random (QR) foam geometries 

agree well with experimental results, analytical predictions for stretch dominated 

foams (Figure 29) and a FE study of similar structures (Figure 31). The stiffnesses 

reported are the tangent moduli at macroscopic stains of     ̅      . For the 

shear case the stiffness is measured at an applied shear strain is  ̅     ⁄  and for the 

hydrostatic case the volumetric strain is     . While absolute strains of 0.1% are 

not generally considered infinitesimally small the tangent moduli are found to be 

constant for macroscopic strains,       , in all cases. 

 

Quasi-random foam geometries were generated as a benchmark for more ordered 

geometries and not necessarily to be representative of stochastic foams. Seed points 

are based upon random dense packings of spheres using the hard sphere seeding 

algorithm detailed in Section 2.2. Unlike stochastic foams these structures have 

uniform wall thicknesses, a narrow distribution of cell sizes and aspect ratios, and no 

curved features. The structure of stochastic foams are heavily influenced by the 

chemistry and process of foaming and solidification resulting in local variations in 

cell wall thickness, cell size, aspect ratio, curvature and potentially material 

properties influenced by crosslinking or solidification upon cooling. Although there 

are many differences between the geometries of stochastic foams and these QR 

foams their stiffness are quantitatively consistent in the case of stiff stochastic foams.  
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Normalized axial stiffnesses for six quasi-random foam geometries are plotted 

along with aggregated empirical data for closed cell foams taken from (Gibson and 

Ashby, 2009) (Figure 29). Three axial moduli are calculated for each model 

corresponding to a compressive stress applied normal to three orthogonal faces of 

the RVE. Average values differ only slightly from         and     even though 

models consist of only either 12 or 20 unique cell geometries, and the uniformity of 

the cells is perhaps not so low (Table 2). There is more scatter in the various moduli 

for the geometries composed of 12 cells versus those composed of  20 cells but this 

difference is only significant at the highest relative density plotted, ( ̅   )  

      . Two curve fits are shown using Equations (78) and (79) using       and 

      (Figure 29), the former being the curve fit used in (Gibson and Ashby, 

2009) to match empirical data for stiff foams and the latter corresponding to open 

cell foams. FE results agree well with analytical models and are quantitatively 

consistent with the behavior of real stochastic foams. In an isotropic material the 

response from axial and shear loading cannot differ substantially due to the relatively 

small difference between principal stress states in the two cases which should not 

result in a dramatic change in behavior. It is unclear why the measured shear 

stiffnesses are so low.   

 

Normalized shear stiffnesses, ( ̅   ⁄ ), are nearly identical in value to the 

normalized axial stiffnesses, ( ̅   ) (Figure 31, left and center) making them nearly 
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isotropic by Equation (73) (Table 2). The normalized bulk moduli, ( ̅   ), is also 

nearly identical in magnitude, although the bulk modulus is not included in the 

isotropy calculation. The bulk moduli are very close to the Hashin-Shtrikman (H-S) 

upper bound for bulk modulus (Figure 29, right pane, heavy dashed lines) (Equation 

74). The moduli are calculated in two ways, 1) directly from the application of a 

volumetric stress, and 2) from the application of an axial stress and the assumption 

of isotropy. Two effective bulk moduli are calculated from the two Poisson ratios 

associated with the application of an axial stress for a total of six Poisson ratios and 

six bulk moduli which are then averaged. The average of the six bulk moduli yields a 

value nearly identical to that found from direct calculations involving a volumetric 

strain.  

 

Examples of stress distributions are shown in Figure 30. What are plotted are 

local stress normalized by the applied Von Mises (VM) stress, or the applied stress 

in the case of hydrostatic loading as the VM stress is zero (in either case a 

homogeneous material will have a normalized stress of unity), at macroscopic strains 

of       , scaled 100x for clarity. The distribution of stress between the 12-cell 

model with  ̅          (Figure 30, top) and the 20-cell model with  ̅         

(bottom) are qualitatively the same. The magnitude of stress concentrations are 

inversely proportional to the relative density due to the fact that local strain energy 

densities increase with decreasing relative density for a given macroscopic strain 

energy density.  
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Stress concentrations are lower under macroscopic hydrostatic loading (Figure 

30, left) than under axial or shear cases (left and middle respectively). Uniform stress 

distributions coupled with mostly affine strains are characteristic of stretch 

dominated behavior. In fact, the six QR foams listed in Table 2 have bulk moduli 

within 8% of the H-S upper bound.  Strain energy densities are fairly uniform in the 

hydrostatic case relative to axial and shear loading. 

 

Table 2. Quasi- Random Properties 

Name - RF20-1%-1 RF20-1%-2 RF12-2%-1 RF20-2%-1 RF20-2%-2 RF12-4%-1 

( ̅    ̅    ̅  )   ⁄  (%) 2.7, 2.8, 2.9 2.8, 2.9, 2.8 4.7, 4.9, 5.0 5.7, 5.7, 5.9 5.7, 5.7, 5.9 11.5, 10.3, 10.4 

( ̅    ̅    ̅  )   ⁄  (%) 2.8, 2.8, 2.8 2.8, 2.7, 2.8 4.6, 5.0, 4.7 5.8, 5.9, 5.8 5.7, 5.8, 5.8 10.9, 10.4, 10.5 

 ̅     ⁄  (%) 2.8 2.8 4.9 5.8 5.8 10.7 

 ̅     ⁄  (%) 2.8 2.8 4.8 5.8 5.8 10.6 

 ̅   ⁄  (%) 2.9 2.9 4.9 5.9 5.8 10.1 

 ̅     ⁄  (%) 94.4 95.3 95.6 95.4 94.5 92.9 

Poison’s ratio  ̅     0.306 0.304 0.303 0.303 0.303 0.288 

Isotropy ( ) 0.998 0.964 0.982 0.991 0.995 0.986 

Density  ̅ (%) 7.65 7.67 12.53 14.69 14.70 24.25 
 

The Poisson ratio of quasi-random foams is ~1/3 (Table 2) which matches the 

semi-empirical formula offered by (Gibson and Ashby, 2009), 

 
 ̅  

 

 
  (85) 

 

The average Poisson ratio of 0.301 is nearly that of the constituent,       . 

While the octet-truss was found to be insensitive to the Poisson ratio of the 

constituent material (Deshpande et al., 2001) the stiffness of the BCC foam varies by 
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~25% going from         to 0.0 (Grenestedt, 1999). In this study         and is 

not varied for the sake of brevity.  

 

In a remarkable result Equations (78) and (79) fit nearly perfectly with results for 

the average axial, shear and bulk moduli respectively when ( ̅   )     , using 

      (Figure 31).  The R
2 

values are  0.998, 0.997 and 0.987 for the axial, bulk 

and shear moduli respectively for relative densities below ~25%. Plotted for contrast 

are third-order polynomial curve fits for ( ̅   ) ( ̅   ⁄ ) and ( ̅   ) which only 

diverge from Equations (78) and (79) for ( ̅   )      for ( ̅   ) and ( ̅   ⁄ ). 

These third-order fit shows excellent agreement with the FE results for similar quasi-

random foams studied by (Roberts and Garboczi, 2001). The performance of the QR 

foams is consistent with the assumption that in stretch dominated isotropic materials 

in three-dimensional space one third of the material will be favorably oriented to 

support an applied compressive load. That is, one third of the material will be in 

nearly pure tension or compression while the remainder will be largely bent. For the 

QR foams with ( ̅   )      the axial and shear stiffnesses are nearly perfectly 

predicted by this assumption and the application of Equations (78) and (79).  
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4.2 BCC, FCC, SC, OF and OT Stiffness 

 

Having established the isotropic stretch dominated nature of foams generated 

from quasi-random arrangements of seed points using the hard sphere model we turn 

our attention to more ordered geometries. Shown in Figure 32 are the results for the 

BCC, FCC, simple cubic (SC), octet-foam (OF) and octet-truss (OT). Finite 

element results are plotted along with associated third-order polynomial curve fits 

and theoretical upper bounds. Plots of ( ̅   ) and ( ̅   ⁄ ) against ( ̅   ) indicate 

the performances of the SC and OF are not limited by the H-S upper bounds (Figure 

32, top row). The BCC, FCC, OF and SC foams all have bulk moduli very near the 

H-S upper bound (HSUB) on bulk modulus over the range of relative densities 

studied. 

 

The SC foam and the OF have stiffnesses in excess of the HSUB on axial and 

shear moduli respectively. The H-S bounds were developed for nearly isotropic 

materials while the OF and SC foams have a high degree of anisotropy, being the 

two most anisotropic of the geometries studied. However there remains a 

relationship with the performance of all materials as there is an apparent tradeoff 

between axial and shear stiffness relative to the HSUB. The SC foam as an example 

has the highest axial modulus and the lowest shear modulus. This tradeoff is 

quantified in Figure 35 and discussed later in section 4.3.  
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The bulk moduli of the BCC, FCC, SC and OF nearly all achieve, but never 

exceed, the HSUB (Figure 32, upper-right). To visually expand the tightly grouped 

results the effective bulk modulus is normalized by the HSUB (Figure 32, bottom-

right). The results for the bulk modulus of the SC and BCC foams agree with those 

obtained by (Grenestedt, 1999) in the low density limit, however our model predicts 

( ̅     ⁄ )         at  ( ̅   )      while their model predicts a slightly higher 

value of ( ̅     ⁄ )        at that density. Although these materials are not 

isotropic, the bound on bulk modulus is still applicable for these and all materials. 

The reason for this is discussed most appropriately while analyzing the SC foam 

later in this section, but stems from the fact that bulk stiffness does not depend on 

isotropy. Because the Voigt bound is rigorous for all materials it is used to further 

normalize results for axial and shear moduli (Figure 32, bottom-left and -center). 

 

Plots of ( ̅   ) ( ̅   ) and  ( ̅   ⁄ ) ( ̅   ) (Figure 32, bottom-left and –

center) are largely measure of the stretch dominated nature of a material and may be 

interpreted by considering the contours of Equations (78) and (79) for different 

values of ϕ (dashed lines, left and center respectively). When these equations are 

divided by the relative density, ( ̅   ), the result is linear with ( ̅   ) where the y-

intercept is the stretching component of the stiffness. For instance, ~1/3 of the 

material in the isotropic QR foams is stretched under load making the y-intercept in 

these plots for their shear and axial performance both ~1/3. Plots of ( ̅   ) ( ̅   ) 
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and  ( ̅   ⁄ ) ( ̅   ) represent the stiffness efficiency of a material as the 

achievement of the Voigt bound indicates uniform stretching. 

 

The isotropy, a, for all ten foam geometries are plotted in Figure 36, left. The 

definition of isotropy, Equation (73), allows for the consideration of materials 

without cubic symmetry. It is qualitatively and nearly quantitatively identical to the 

ratio (            )       ⁄ . If used in place of ( ̅    ̅   ⁄ ) in Equation (73) the 

results for the BCC foam differ by only ~1-2%. The boundary conditions used to 

calculate      ,        and       are detailed in (Grenestedt, 1999). The greater the 

degree of anisotropy the more the two ratios deviate but never to the degree that 

significantly influences this results of this study. 

 

To help quantify the behavior of these foams FE data is fit to third order 

polynomial curves. The coefficients are forced to be positive and pass through the 

real data points of (0,0) and (1,1), corresponding to empty space and a fully dense 

solid respectively (Equation 81). The positive coefficients were enforced to conform 

with analysis by (Gibson and Ashby, 2009; Grenestedt, 1999) who that found the 

stiffness of foams is the summation of contributions from material being bent and 

stretched. The accuracy of the curve fits is very good with the average R
2
 value 

being 0.9999 and RMSE values all fits are less than 0.0078; the average RMSE is 

0.00187. The same curve fits are plotted top and bottom (left and center) (Figure 32). 

Due to the scaling in the bottom row plots of ( ̅   ) ( ̅   ) and  ( ̅   ⁄ ) ( ̅   ) 
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the third order accuracy of the curves is apparent highlighting the discrepancies, 

notably in the axial stiffness of the OT and the shear stiffness of the SC. 

 

Table 3. Curve Fit Coefficients of Equation (81) – Young’s Modulus 

Name - C1 (%) ▼ C2 (%) C3 (%) R
2
 RMSE (10

-4
) 

OT 14.8 0 85.2 1.0000 13.62  

BCC 33.5 12.5 54.0 1.0000 2.22  

QR 33.8 36.4 29.8 0.9997 24.65  

DF 33.9 0 66.0 0.9999 24.83  

FCC 34.7 19.9 45.4 1.0000 1.79  

BFC 34.8 37.0 28.2 1.0000 26.33  

OF 35.5 0 64.5 1.0000 17.02  

XF 44.9 0 55.6 1.0000 25.05  

DDPF 45.3 0 54.7 1.0000 22.25  

OF+SC 51.6 0 48.4 1.0000 19.52  

SC 71.7 0 28.3 1.0000 1.04  

 

Table 4. Polynomial Curve Fit Coefficients –Shear Modulus 

Name - C1 (%) ▼ C2 (%) C3 (%) R
2
 RMSE (10

-4
) 

OT 24.4 30.0 45.6 1.0000 2.38  

QR 32.4 45.7 21.9 0.9995 77.63  

FCC 32.6 45.4 22.0 1.0000 1.20  

SC 33.0 0 66.7 1.0000 1.27  

BFC 33.6 30.1 36.2 1.0000 2.18  

BCC 34.1 49.3 16.5 1.0000 2.46  

DF 49.3 41.8 8.8 0.9999 37.17  

OF+SC 53.7 0 46.3 1.0000 6.24  

XF 58.8 0 41.2 1.0000 10.23  

DDPF 59.4 0.7 39.9 1.0000 7.08  

OF 65.2 0 34.6 1.0000 19.07  

 

 

The curve fit coefficients for all eleven foam geometries are listed in Table 3 and 

Table 4, results are ordered by the linear term. While the G-A models, Equations 

(78) and (79), define stiffness in terms of a linear and quadratic component many of 



 

 111 

the models (curve fits) do not, perhaps surprisingly, involve a quadratic term. Instead 

the curve fits have just a linear and cubic dependence. This is more consistent with 

(Grenestedt, 1999) who attributes a cubic contribution from the bending of plate-like 

members in closed cell foams.  

 

The SC foam has almost precisely the expected stretching components (C1): two 

thirds of the material under axial compression, plus an additional amount for the 

stretching of the remaining perpendicular plane from the Poisson effect, and one of 

three walls under shear (Table 3 & 4).  

 

The SC foam has the highest axial modulus of all foam geometries, and likely 

any material with cubic symmetry, but it is also the most anisotropic. All of the 

material is equally partitioned into orthogonal planes that are aligned with the base 

vectors. Under axial macroscopic loading two regions of relatively uniform stress 

develop (Figure 33, top-left). Two of three cell walls are placed in nearly pure 

compression with relatively high strain energy density while the remaining 

orthogonal wall is placed in tension, to accommodate the lateral Poisson expansion, 

and at a relatively low strain energy density. Under these conditions it can be 

expected that two-thirds of the material will contribute to the stiffness in a manner 

directly proportional to the relative density while the remaining bit of material will 

make a small contribution to the stiffness with no significant bending taking place 

anywhere. Plotted in Figure 32, bottom-left, is the axial stiffness for the SC foam 
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along with contours (light-dashed lines) of Equation (78) for different values of  . 

The linear term in Equation (81), also the y-intercept, is 0.71, which agrees well with 

this analysis in the low density limit where the cubic term makes a negligible 

contribution. 

 

The shear stiffness of the SC foam is also well predicted, having a linear 

stretching component of C1=0.33.  In both polynomial models for axial and shear 

stiffness there is no quadratic term indicating the stiffness is best predicted assuming 

only the stretching and bending of cell walls, contrary to the G-A model. The 

apparent third order behavior may be due, in part, to partitioning of strain energy and 

nonlinear changes in geometry. At higher relative densities relatively more material 

resides in edges and vertices than at lower densities. In the case of macroscopic shear 

the edge material in the highly stressed cell walls is constrained by unstrained 

material in the intersecting wall at low strain (Figure 33, bottom-right). The 

constrained material in the edge has a lower strain energy density than it would if it 

resided in the cell wall; material in vertices is further restrained by the other 

intersecting wall and possesses an even lower strain energy density. The relative 

strain energy densities in the vertices, edges and faces in the cell walls under 

maximum stress are ~1.0:2.2:4.7 for macroscopic shear loading at     20%. The 

result is a relative degradation in performance with increasing relative density 

proportional to the volumes of material in walls, edges and vertices and their strain 

states. This is certainly a competing factor with the proportional increase in stiffness 
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with relative density in Equation (81). In a more accurate model the components 

would themselves be a function of relative density,      ( ̅   ).  

 

Previous work has shown that the bulk modulus of the SC foam achieves the H-S 

upper bound in the low density limit (Grenestedt, 1999). At the lowest density FE 

calculation, ( ̅   )       , the effective bulk modulus is 99.4% of the HSUB 

with the performance approaching the bound as  ( ̅   )    (Figure 32, bottom-

right).  As relative density increases there is a monotonic decrease in performance 

relative to HSUB on bulk modulus, which is a characteristic of all geometries. As the 

wall thickness goes to zero the relatively inhomogeneous regions of strain energy 

density associated with the edges and vertices shrink to zero and the system 

approaches a state of uniform strain energy density. In this case where ( ̅   )   , 

(       ) ( ̅   )        which is low compared to (       ) ( ̅   )  

       and (       ) ( ̅   )       . This indicates that in a structure 

composed of plate-like members subject to macroscopic hydrostatic compression, 

such that all the walls are uniformly compressed in their plane, can at most have a 

strain energy density that achieves      of the stiffness of a uniform continuum 

having equivalent elastic properties and density,     ( ̅   ),    ̅ and    ̅. 

This is a substantially lower potential than the axial and shear moduli. It seems that 

hydrostatic straining/confinement of material on the local level is necessary to 

achieve macroscopic bulk stiffness. 
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The relationship between the performance of the SC foam and the Voigt and H-S 

upper bounds are made clearer through a simple thought experiment. For simplicity, 

consider the low density limit where the material fraction in edges and vertices is 

negligible. Under an axial load two thirds of the material experiences a uniform 

stress, while the remaining material is relatively unstressed. The majority of the 

strain energy is stored through stretching making the stiffness of this material is at 

least 2/3 of the Voigt bound, a value of at least 0.66 in Figure 32. Imagine then 

transferring the material from the unstressed region to the stressed region. The result 

is a material with uniform strain energy density that achieves the Voigt bound, well 

exceeding the HSUB. It is clear that  no further rearrangement of material will allow 

for a higher average strain energy density. If the axial load is then removed and a 

shear stress is applied on an orthogonal plane, the structure will provide no 

resistance as the rotational stiffness of  

 

the walls are zero. This can be envisioned by taking the stress state depicted in 

Figure 33, top-center, and transferring the highly stressed material under 

compression to the orthogonal planes being bent and at relatively low stress. The 

stiffness will be entirely determined by the bending of plate-like members that will 

provide no resistance in the low density limit, where the wall thicknesses go to zero. 

It is evident then that there is an inherent tradeoff between directional stiffness and 

isotropy. It is for this same reason that the bounds on bulk modulus still applies to 
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anisotropic materials as unlike the case of axial and shear loading, there is no 

opportunity to compromise stiffness in one direction for compliance in another.  

 

 The performance of the BCC and FCC foams are similar to that of the QR 

foams (Figure 32, bottom-left and -center). All three are based upon dense sphere 

packings and are all nearly isotropic. The FCC is more isotropic than the BCC, 

performing nearly identically to the QR foams, with which it shares the same shear 

stiffness qualitatively (Figure 32, center). While these curve fits seem to overlap the 

coefficients differ significantly (Table 4). Historically the BCC foam has been used 

as a simple model for stochastic foams however the FCC model is found to be closer 

in performance. The BCC foam has likely received more use because a slight 

variant, the Kelvin foam, a BCC foam with imperceptibly curved walls, was the long 

standing solution to the problem of minimizing surface energy in an array of bubbles 

(Thomson, 1888). Both the BCC and FCC have stretch dominated near isotropic 

performance where ~1/3 of the material is stretched irrespective of the loading 

direction. 

 

While the FCC and QR foams qualitatively share the same shear stiffness their 

coefficients in Equation (81) for shear modulus are quite different (Table 4). The 

stretching component of the FCC foam is nearly what is expected from the 

geometry,             . Under macroscopic shear loading the principal stress 

align with one third of the cell walls placing them primarily in tension or 



 

 116 

compression, while the remaining walls deform primarily through bending. The 

normalized strain energy densities in the center of a wall being stretched and being 

bent are however 1.3 and 0.5 respectively in the FCC foam with   ⁄     (Figure 

34, top-center) indicating that some stretching is taking place in all walls. This 

simple partitioning of material into static regions being bent and stretched, as in 

Equations (78) and (79), does not fully account for the more complex behavior seen 

the FCC and BCC foams. From the curve fit coefficients in Table 3 and Table 4 it 

seems clear that a combination of second and third order contributions are necessary 

to account for the stiffness of many of these foam geometries; and no model’s 

stiffness is well predicted by just first and second order contributions, as the data sets 

do not lie along contours of Equations (78) and (79) (Figure 32, bottom-left and –

center), with the exception of the QR foams, and those that share similar 

performance, at low densities, as discussed in the previous section.  

 

The apparent tradeoff between axial and shear performance in every material 

seen in Figure 32, relative to the HSUB, is seen in all materials. In the case of the 

FCC and BCC foams their performances parallel each other, with 

(| ̅     ̅   |   ⁄ )   (| ̅     ̅   |   ⁄ )   2-3%, with their bulk moduli being 

nearly identical. To help quantify the total stiffness of these materials their 

performance can be related to an ideal isotropic material having shear, axial and bulk 

moduli that are equal to the theoretical bounds derived by (Hashin and Shtrikman, 

1963).  
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In Figure 35 two measures of the total stiffness are plotted, 

 
  

 ̅   ̅   ̅

              
  

 

(86) 

 
  

 ( ̅   ̅   ̅)

              
  (87) 

 

On the right (Equation (86)) the summation of the axial, shear and bulk moduli are 

normalized by the sum of the moduli of the ideal material,(a material that achieves 

the H-S bounds for bulk, shear and Young’s modulus); this same quantity is plotted 

again multiplied by the isotropy, a (Figure 35, left) (Equation (87)). In both cases a 

material with maximum isotropic stiffness will have a value of unity. The scaling 

factor, a, is somewhat arbitrary in magnitude and may overly penalize anisotropic 

materials, but serves as a means of differentiating the tightly grouped performances 

plotted in Figure 35, right. 

 

The total stiffness of the BCC and FCC foams is found to be the same,      

    , differing by only ~0.5% at ( ̅   )     and converging as ( ̅   )   

(Figure 35, right). Not only are the total stiffness of the BCC and FCC nearly 

identical but are also nearly identical to that of the QR and BFC foams. The QR 

perform slightly better than the more ordered foams at ( ̅   )     which is 

likely due to poorer mesh quality at the two highest relative densities calculated for 

the QR foams as a result of limitations in the meshing scheme employed. Plots of   

appear to arrange the materials into distinct groups.  
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There are three regimes of material performance (Figure 35, right). Most notably 

there is a group of materials whose performance converges on unity,     , at the 

low density limit. Only one of these materials is isotropic yet they all have a total 

stiffness that is bounded by the H-S bounds. There is a monotonic decay in 

performance with increasing relative density in all designs suggesting a fundamental 

limit and laxity of the HSUB. A design created by topology optimization to be 

isotropic with have maximum shear modulus (Radman et al., 2012) has  ̅     ⁄  

     ,  ̅     ⁄        and has a total stiffness,         at ( ̅   )     , 

coincident with the performance of the OF+SC foam (Figure 35, right), discussed in 

the next section. All of the designs with maximal performance, which in this group 

includes only the SC  and OF, have cell walls that are continuous between 

neighboring cells, unlike other designs.  

 

The defining characteristic of the maximum performance designs is the 

continuous nature of the cell walls. This feature of the OF can be more clearly seen 

in an alternative unit cell constructed from two interpenetrating thin walled prismatic 

members with rhombohedral cross-sections (Figure 26, top-right). This unit cell is 

formed by truncating four parallel edges of the unit cell pictured in Figure 24, top-

center, so as to remove half the material. Both the SC and OF are very stiff in the 

directions aligned with their cell walls.  
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The OF may possess the highest shear stiffness possible for a material with cubic 

symmetry as all of the material is aligned with a principal stress direction resulting in 

a material that is nearly uniformly stressed through stretching (Figure 37, top-

center). Only the material in the edges and vertices experiences a variation in stress 

state. In the low density limit where the material in the edges and vertices goes to 

zero the structure would possess uniform strain energy density. Being that there is no 

other arrangement of material that can possess a higher average strain energy density 

under shear loading the OF must possess maximum shear stiffness in the low density 

limit. A similar argument can be made that the SC foam possessing the maximum 

axial stiffness of any material with cubic symmetry. In the next section it will be 

shown that a combination of the SC and OF produce foam with maximal isotropic 

stiffness. 

 

4.3 Dodecahedral-Pyramidal Foam, X-Foam, Body+Face Centered, 

Diamond and OF+SC Stiffness 

 

Having calculated the stiffness of some familiar structures and finding them to 

agree, where results are available, with empirical data and a variety of modeling 

approaches, some confidence is had in exploring the results for the novel geometries 

presented in this section. The Dodecahedral-Pyramidal Foam (DDPF) and X-Foam 

(XF) are cousin to the OF and also in the group with maximum stiffness, having 
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    as ( ̅   )   . The Body+Face Centered (BFC) foam possess near isotropic 

stiffness with a performance that mimics the more disordered QR foams, having 

stiffnesses ( ̅   ) ( ̅   ) and ( ̅   ) ( ̅   )     ⁄  as ( ̅   )   . The 

Diamond foam (DF) possess unique properties in that its shear stiffness, ( ̅   ), 

does not conform well to the polynomial model (Equation (81)). Its antisymmetric 

nature allows for complementary buckling at low relative densities. As     increases 

compliant mechanisms have members that both shorten and thicken, stiffening the 

system significantly, causing energy to be stored through stretching instead of 

bending. A combination of the two stiffest and most anisotropic foams, the SC and 

OF (OF+SC), results in an isotropic foam that also has maximal stiffness giving it 

very appealing properties. All of these designs have  ̅      ~1 as ( ̅   )   , 

identical to the high performance designs, with the slight exception of the DF having 

 ̅     ⁄      , this despite having a range of performances and geometric 

characteristics.  

  

The dodecahedral pyramidal foam (DDPF) and X-Foam (XF) have nearly 

identical elastic properties. They are both created by the extrusion of three 

orthogonal cross-sections that are themselves composed of orthogonal members 

(Figure 38, blue circles and squares); the OF is similarly composed of two 

orthogonal cross-sections. They are also in the maximal performance group having 

half the anisotropy of the OF, also being stiffer in shear than axially (Figure 38). 

Their bulk stiffness also approaches the HSUB as ( ̅   )   . Strain energy 
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distributions in the two materials are nearly identical (Figure 37, 2
nd

 and 3
rd

 rows), 

with the DDPF (2
nd

 row) having higher strain energy concentrations under axial and 

hydrostatic loading, suggesting a higher strength. 

 

A third novel material, also having maximal performance, is a combination 

of the simple cubic (SC) and the octet-foam (OF) (OF+SC). A superposition of the 

materials with the highest axial and shear moduli yield a material whose axial, shear 

and bulk modulus all approach the respective HSUB as the relative density 

approaches zero (Figure 38). At ( ̅   )       , the lowest relative density 

calculated, the OF+SC foam has  ̅     ⁄       ,  ̅     ⁄        and 

 ̅     ⁄        giving it a total stiffness,   98.4% and isotropic stiffness,  

     , having isotropy,        . The properties of the OF+SC foam make it an 

ideal core material for a sandwich panel. 

 

The wall thicknesses are not uniform as the OF+SC foam is formed from the 

superposition of two independently formed geometries. The thickness of the SC 

foam cell walls was chosen to match the edge length of OF on the boundary edges of 

the RVE, equal to √  , where t is the wall thickness of the OF.  When the wall 

thickness of the SC is only √  , so that all {1-0-0} cross-section members have the 

same apparent thickness, the isotropy drops to,         at ( ̅   )       . The 

SC wall thickness of √   is the most isotropic OF+SC foam and a maximum value 

in the sense of preserving the basic geometric features. When the SC walls exceed 
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this thickness they will impinge on the cells of the OF foam truncating the corners of 

the tetrahedrons. Scaling the relative wall thickness of the SC foam does not 

decrease the total stiffness,  , so that the anisotropy can be varied continuously 

between that of the OF+SC and OF foams to suit the application requirements while 

maintaining performance.  

 

The diamond foam (DF) is the only geometry with substantial asymmetry and 

whose behavior is not well predicted by the cubic polynomial model. In the low 

density limit the shear stiffness approaches that of the Q-R foams but increases 

rapidly approaching that of the stiffest material in shear, the OF, when ( ̅   )  

   . The R
2
 values of the curve fits (Table 3 & 4) are still very high but the different 

trends are seen when plotted in terms of ( ̅   ) ( ̅   ) and ( ̅   ) ( ̅   ) (Figure 

38). Cross-sections reveal that the majority of the material in the DF is aligned in 

two orthogonal directions with the exception of short ligaments oriented at 45 

degrees.  As the wall thickness increases these ligaments both thicken and shorten, 

decreasing their aspect ratio dramatically, which increases their bending stiffness 

(Figure 40). As these members stiffen, compliant mechanisms in the system stiffen 

considerably, causing the shear stiffness of the foam to increase substantially 

approaching that of the stiffest material in shear, the OF. The presence of compliant 

mechanisms in a structure like the DF can degrade the stiffness of an otherwise 

highly aligned and stiff structure. The asymmetry of the design results in 

complementary bending of cell walls degrading stiffness relative to the degree of 
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alignment similar to stochastic foams whose measured stiffness is often below 

theoretical values. This complementary buckling may result in uniform collapse and 

a constant collapse stress following yielding; preliminary results are in agreement 

with this hypothesis.  

 

The Body+Face Centered (BFC) has near isotropic stiffness similar to the Q-R 

foams (Figure 38). The performance mimics that of the QR foams over the range of 

relative densities plotted in Figure 38, only lagging slightly behind in shear at higher 

relative densities. The BFC is almost isotropic and stretch dominated as are the QR 

foams but possess a much simpler geometry with more uniform strain energy 

distribution suggesting much higher strengths. Systems that operate near an optimum 

are also often near the border of a regime so it may be that the BFC foam will fail 

less catastrophically than foams in the group with maximal performance. Stretch 

dominated foams that do not have maximal stiffness may be more stable in their 

response and less likely to fail by dynamic buckling. An interesting feature of the 

BFC foam is that it can be thought of as a hierarchical structure, or two-phase 

system, with a stiff cubic unit cell at the center of the RVE, surrounded by a matrix 

of relatively compliant cells. Its large strain behavior may prove interesting when the 

cubic sublattice interacts to stiffen and/or strengthening the structure, depending on 

whether the local strains are elastic or plastic. The near isotropic stretch dominated 

nature of the BFC foam along with its two phase nature make it an interesting 

candidate for further study.  
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5. Discussion 

 

The ten ordered foam geometries studied, along with the QR foams, can be 

placed into three groups based upon their performance: there is a group with 

maximal performance, that in the low density limit, has a total stiffness that 

approaches the H-S bounds showing that the upper bounds are simultaneously 

achievable. There is a group with suboptimal but still stretch dominated properties 

where about one third of the material is stretched regardless of loading direction, and 

a third group comprising the remainder of the materials whose performance is less 

than this. As relative density increases there is a decrease in performance relative to 

these bounds for materials with maximum stiffness; although still achieving ~95% at 

( ̅   )     . The deviation in performance from the theoretical bounds in 

maximal performance designs is due to reduced strain energy densities in the 

material in edges and vertices whose relative volume fractions increase with 

increasing wall thickness. This may represent a fundamental limit in performance 

not captured by the H-S bound on bulk modulus, but this remains unproven. 

 

The DF is an outlier, performing between the maximal and high performance 

groups. Its shear stiffness, ( ̅   ), and total stiffness,  , rise rapidly with ( ̅   ) at 

low densities. The total stiffness is above the high performance group at low 
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densities approaching the performance of the maximal group asymptotically, 

beginning to decrease with relative density when ( ̅   )      (Figure 35). The 

high performance group has a total stiffness greater than the DF when ( ̅   )  

    indicating that the antisymmetric nature of the DF results in an extremely low 

energetic barrier to buckling, seen by the suppression of bending at similar relative 

densities in the high performance foams.  

 

The OF was also identified by (Vigliotti and Pasini, 2012) to be extremely stiff, 

(and strong) being the stiffest of the materials they studied. They did however report 

that the properties did not vary much with orientation wherein our analysis found the 

OF to be the second most anisotropic. As they did not report a measure of isotropy 

no direct comparison has been done. The nearly uniform strain energy distributions 

in the OF (Figure 37, top-row) do suggest a high strength in agreement with their 

findings.  

 

All of the highest-performance designs share the common feature in that they are 

all composed of continuous sheets of material. In aerospace applications cellular 

materials are required to have pores that allow for gas transport during atmospheric 

pressure changes. It may still be the case that adding porosity selectively, such as 

small circular holes in the center of faces for example, may not compromise the 

stiffness significantly. The influence of such porosity will be left for another study. 
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In previous literature the OT has be used as a prototypical stretch dominated 

lattice yet its performance compares unfavorably against stretch dominated foams in 

terms of axial and bulk stiffness and, as a result, total stiffness as well. The high 

shear stiffness of the OT results from the alignment of principal stress with the axis 

of truss members when under a macroscopic shear load. Truss members undergo 

pure axial stretching only when macroscopic principal stress are aligned with the 

longitudinal axis, while comparatively, sheets of material can support the range of 

macroscopic stresses that resolve into principal stresses that lie in its plane by pure 

stretching. Therefore, in the space of possible macroscopic loads the number of  

loads supported through stretching is far greater for materials composed of plate-like 

members than for those composed of truss- or rod-like members. Members must be 

connected in a manner where no mechanisms are present, that is, no bending of cell 

faces takes place without stretching of similar magnitude, such as in auxetic foams 

for example. In closed cell materials the bending of edges is associated with the 

stretching of faces so that even in loading scenarios where principal stresses do not 

favorably align with edges and faces, significant stretching still takes place. As a 

result, stretch-dominated closed cell foams far outperform stretch dominated lattices 

in terms of isotropic stiffness, and likely strength.  

 

While the inherent bending dominated nature of truss structures explains the low 

axial stiffness of the OT it is unclear why the bulk modulus is low as it undergoes 

only affine straining, similar to the foams, yet has a bulk modulus that is only a small 
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fraction of the HSUB (Figure 32). The magnitude of its normalized bulk modulus, 

 ̅   ⁄ , is comparable to that of  ̅   ⁄  and  ̅   ⁄ , but axial and shear deformations 

involve significant bending while the hydrostatic deformations do not. The best 

explanation is that material in a closed cell foam is on average more constrained by 

neighboring material when compared to truss structures. Local principal strains then 

involve smaller lateral contractions or expansions from the Poisson effect, the net 

effect of which is a greater macroscopic stiffness. Because the dimensionality of the 

connectedness of truss members is lower that for plate-like members, and effective 

bulk stiffness depends on local hydrostatic constraint, it makes sense that the 

hydrostatic stiffness of all truss structures will  be relatively low. For a similar reason 

the axial and shear stiffness of truss structures is expected to be inherently lower 

than for closed cell materials.   

 

It is of note that the H-S bound on bulk, Young’s and shear modulus achieve 

significantly different fractions of the Voigt bounds at the low density limit, 

achieving 38.3%, 52.6% and 50.0% respectively. This indicates that at the low 

density limit an ideal material that achieves these bounds simultaneously will have 

half of the material being stretched under an axial load, 52.6% of it stretched under a 

shear load and only 38.3% of it stretched under a hydrostatic load. This is because a 

cellular material with vanishingly thin walls will store no energy through bending 

when macroscopically deformed, therefore all the strain energy stored must be 

through stretching. Compare this to the properties of the isotropic solid constituent 
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material that has properties  ̅   ̅   ̅    and the isotropic (by Equation 73) Q-R 

foams that have  ̅   ̅   ̅   ( ̅). It is reasonable to expect that all isotropic 

materials have this property yet clearly a material that achieves the H-S bounds, 

which were developed for “nearly” isotropic materials, does not have. And while 

         ,      is substantially smaller even though in designs that perform 

very near the HSUB no substantial bending occurs under hydrostatic compression. 

The bounds on Young’s modulus are not rigorously derived yet a higher or lower 

value would be inconsistent with this analysis and results in this study, specifically 

Figure 35, right. 

 

The effects of cell wall curvature have not been addressed as these structures 

have been qualified as “perfect” in this sense, possessing none. Cell wall curvature in 

ordered foams made through additive manufacturing will likely be minimal as the 

tolerances are small fractions of the resolution. It was shown in (Simone and Gibson, 

1998) that the BCC foam suffers a 10% reduction in stiffness at ( ̅   )      

when the midpoint deflection of a hexagonal wall is ~125% of the wall thickness. 

This effect decreases with increasing relative density and will unlikely be significant 

in designs produced through additive manufacturing. 

 

Many current additive manufacturing techniques have difficulty generating 

closed cell topologies due to the enclosing of precursor material, in the case of bath 

sintering and solidification processes, or support structures, in filament processes, as 
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cell topologies are generated. Combining a method of direct material placement, by 

sputtering of a slurry of precursor and binder or molten material, closely followed by 

sintering and densification, may allow for the inevitable realization of arbitrary 

closed cell materials. In aerospace applications where systems can undergo large 

pressure variations, venting of gasses must be accommodated by small ports in the 

cell walls of core materials, such as honeycombs, which can also be used to extract 

dissolvable support structures reducing significantly the barrier to production using 

some methods. The impact of porosity in cell walls will be left for a future study. 

Even with the relative infancy of  additive manufacturing at this time there is not a 

large barrier to producing these materials.  

 

When the stiffness of these ordered foams, as calculated with FE, are compared 

with existing stochastic foams and stretch dominated lattices an improvement of 

more than one order of magnitude can theoretically be realized (Figure 41). The 

OF+SC foam is isotropic and has Young’s modulus that nearly scales with    . 

When foams are composed of an aerospace grade aluminum alloy matrix composite, 

a currently utilized constituent material for aerospace structural honeycombs, and 

their stiffness is compared to the universe of available nearly isotropic materials 

(those that could theoretically serve as a constituent material for ordered foams and 

lattices) the OF+SC foam increases property space significantly in the direction of 

lightweight stiff materials (Figure 42). While additive manufacturing with Beryllium 

is not yet possible, and poses many significant challenges, the material properties of 
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the OF+SC foam, composed of beryllium, potentially push the boundaries of 

property space very far in the direction of lightweight stiff materials. With such 

outstanding motivation and opportunity to create such high performance materials, 

and the myriad other applications additive manufacturing techniques will benefit, the 

production of ordered foams will undoubtedly be realized. 

 

Additive manufacturing is not however the only  way to produce these materials. 

Structures can be parsed into non-closed cell sections and then bonded together to 

form a closed structure. Molding, stamping, and traditional machining can then be 

used to produce geometries using almost any material that can be subsequently 

bonded. On larger scales, such as in the hull of a large marine vehicle, cells can be 

assembled by bonding together (though welding, brazing or with adhesives) 

components sizes on the order of cell faces. This can be combined with mechanical 

interlocking features, such as dovetail joints, to enhance structural integrity. 

 

6. Conclusions 

 

An RVE FE scheme employing 3D continuum elements was used to model 

closed cell materials of low to intermediate densities, producing reliable and 

consistent results that can be precisely placed in property space, finding results to 

match well with historical findings. This scheme is limited at low densities by mesh 

resolutions that scale with the cell wall thickness in closed cell geometries, making 
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problems involving geometries with ( ̅   )     too large for this generalized 

study. The only limitation at higher relative densities is the creation of a periodic 

boundary mesh, which limited the resolution of the QR foams when ( ̅   )     , 

as this step was manual and inefficient in this context. In the case of more ordered 

geometries ensuring periodicity of the boundary mesh is more trivial. 

 

A variety of topologies were investigated showing the possibility for materials to 

simultaneously achieve theoretical upper bounds for Young’s, shear and bulk 

modulus, offering some novel materials with novel properties. Results agree well, in 

most cases, with cubic polynomial models indicating the stiffness of these hybrid 

materials comes from a complex combination of bending and stretching of material 

located in cell walls, edges and vertices. While the models developed by G-A 

(Gibson and Ashby, 2009) and (Grenestedt, 1999), through the application of 

Equations (78), (79) and (81), yield good predictions for the stiffness of foams based 

upon the partitioning of material by states of deformation and the associated strain 

energy density, FE models reveal large regions of unstressed material in some 

designs not contributing significantly to the stiffness and not accounted for by these 

approaches.  

 

While the OT has been a prototypical hybrid material its performance compares 

poorly against closed cell materials that actually achieve an isotropic stiffness where 

~1/3 of the material deforms through stretching. Lattice structures can serve as dual 
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function materials, accommodating gas or fluid storage as well as being structural, 

however their stiffness, and likely strength, has a much lower potential than ordered 

closed cell foams. Truss structures primarily support loads through bending, even in 

the most ideal cases, and have poor local hydrostatic confinement driving their total 

stiffness performance far below closed cell materials. Hybrid open cell materials 

composed of plate like members, for example the BFC foam with the cubic cell 

walls removed, can outperform truss structures by      at ( ̅   )  12%, offering 

mostly increase bulk stiffness (this was excluded from this paper for brevity); such 

structures are worthy of further investigation. 

 

Some of the geometries presented offer unique and interesting properties. The 

antisymmetric nature of the DF and the associated preferential buckling mechanism, 

that is independent of cell wall curvature, has the potential to offer a very consistent 

yielding and post yield behavior, making it a good candidate as an energy absorbing 

material. The BFC foam is nearly isotropic and stretch dominated giving it the 

properties of theoretical stretch dominated lattices and stretch dominated quasi-

random foams. The simple geometry relative to stochastic materials and hierarchical 

nature make the BFC foam an interesting candidate for further study. The OF+SC 

foam offers maximum isotropic stiffness making it an ideal hybrid material. As the 

core material in a sandwich panel it would surpass the performance of metal foams 

and theoretical stretch dominated lattices by more than a factor of ten in some cases. 

If design requirements favor an anisotropic material the relative cell wall thickness 
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can be scaled between the OF and SC substructures, modifying the degree of 

isotropy over a wide range without compromising total stiffness. Unlike designs 

produced through topology optimization, which do not surpass the performance of 

ordered foams, these ordered foams are scalable in relative density without affecting 

their properties substantially. Large stress concentrations are associated with edges 

and vertices can be mitigated by increasing the radius of curvature of corners and 

edges through manual manipulation of models or by using an ordered foam 

geometry as the seed for a topology optimization scheme.  

 

The three main groups of materials identified are diverse in topology yet are 

grouped by nearly identical total stiffness, characterized by their reliance on bending 

to support macroscopic loads (Figure 35). Materials exhibit a wide range of 

isotropies as a function of cell geometry yet the total resistance to deformation is 

determined by the relationship between neighboring cells and not the cell shape. In 

the case of strength and post yielding behavior the cell shape will play a strong role. 

All that remains to be done to fabricate and test these materials is the selection of a 

suitable direct fabrication method, as the CAD models used are directly amenable to 

additive manufacturing. There are currently many commercial solutions that have 

individual limitations that pose challenges in the creation of some geometries that 

still need to be overcome. As direct manufacturing becomes more common place in 

specialty and commercial manufacturing, ordered foam geometries will undoubtedly 
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find many engineering applications. In a coming study the strength will be 

investigated, including the large strain behavior. 
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Chapter II Figures 

 

 

Figure 19 - Representative volume element with dimensions (left) and example boundary mesh 

illustrating  node set labeling convention (right). All the results in this paper pertain to models 

with           . 
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Figure 20 - RVE of quasi-random foams and their associated meshes (RF20-1%-1, left & RF20-

2%-2, right). The structures have wall thicknesses,   ⁄     (left) and   ⁄     (right). The 

foam on the right has 143,542  10-noded tetrahedral elements with a total of 263,581 nodes 

while the model on the left has 650,007 elements and  1,206,305 nodes. 
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Figure 21 - RVEs of foams made from the BCC seeding pattern with t/L=2% wall thickness 

(left) and simple cubic (SC) foam with t/L=2%. 

 

 

 

 

 

 

 

 



 

 140 

 

 

  

 

  

Figure 22 - Face centered cubic (FCC) unit-cell (top-left) and the reciprocal polyhedron (top-

center), a rhombic dodecahedron. It has been called a 3-D honeycomb due to its cross section in 

the {1-1-0} directions being hexagonal (bottom-right) and some cross-sections in the {1-1-1} as 

well (bottom-center). Slices in the {1-0-0} directions reveal orthogonal members spaced at 

intervals of L/4 oriented at 45 degrees relative to each other (middle-center and –right).  As one 

steps through the material the cross-sections can be seen to morph between one another (top-

right). Likewise the {1-1-1} cross-sections morph between triangulated sections (bottom-left) 

and hexagonal ones (bottom-center). 
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Figure 23 – The BFC foam (left) is based upon an FCC seeding pattern with an added body 

centered seed. The result is a central cubic cell (light blue) and 6 other dodecahedra that have 2 

square, 8 triangular and 4 rhomboid faces (dark green and dark blue) and rhombohedral 

dodecahedra lying at the corners of the unit cell (light green, bottom-right).  
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Figure 24 - Octet-truss (top-left) and two different unit cells of the octet-foam (top-center and -

right). Cross-sections of the octet-truss foam are composed of orthogonal members in the {1-0-

0} directions (bottom row). Cuts in the {1-1-1} directions (not pictured) are triangulated.  
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Figure 25 – Unit cell of foam based upon a diamond crystal structure (top-left). The reciprocal 

polyhedron is a truncated tetrahedron (top-center). Cells are arranged so that the nearly 

hexagonal faces of adjacent cells are rotated relative to each other by 60 degrees so that cells 

stack in an alternating fashion (top-right). Select cross-sections in the {1-1-0} (bottom-left) and 

{1-1-1} directions (bottom-center and -right) are triangulated.  Cross-sections in the {1-0-0} 

direction at L/4 and 3L/4 are rectangular (middle-right); the short and long axis of the 

rectangles alternates with intervals of L/2. 
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Figure 26 – Unit cell of dodecahedral-pyramidal foam (DDPF) (top-left) is cousin to the Octet-

Foam (OF) (alternate unit cell pictured top-right). The OF consists of two orthogonal 

interpenetrating prismatic rhobohedral elements while the DDPF consists of three orthogonal 

interpenetrating square prismatic elements.  The reciprocal unit cells of the DDPF (bottom-

right)are a dodecahedron (green) that share faces with 12 pyramidal cells (blue). Cross-sections 

in the {1-1-1}, {1-1-0} and {1-1-1} directions are shown along the bottom (left to right 

respectively). Dodecahedral cells are arranged in BCC fashion sitting at the corners and center 

of the unit cell.  
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Figure 27 - X-Foam: Unit cell (top-left), packing of reciprocal polyhedrons (top-right) (12 

tetrahedral cells pack to form a dodecahedral shape), {1-1-1} slice through unit cell (bottom-

left), alternate unit cell that fills space with FCC packing (bottom-center) and slice of alternate 

unit cell (bottom-right). 
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Figure 28 - OF+SC foam unit cell (left) is formed from the superposition of the Octet-foam (OF) 

and the simple cubic (SC) foam. Cross-sections (right) show fairly uniform material alignment. 
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Figure 29 - Axial, shear and hydrostatic stiffness of Quasi-Random (QR) foams normalized by 

the properties of the bulk material. The Hashin-Shtrikman upper bounds (HSU) are plotted in 

heavy dashed lines, along with contours of Equations (78) and (79) for different values of ϕ (left 

and center). The axial stiffness of the QR foams is consistent with empirical data taken from 

(Gibson et al., 2010) and from the curve fit used for stiff foams (ϕ=0.6). Anisotropy was minimal 

in models with 20 cells and only significant in the model with 12 cells at the highest relative 

density ( ̅     ). The normalized shear moduli are nearly identical in value to the axial 

moduli making these structures nearly isotropic by equation (73). The limited empirical data 

available for the shear stiffness is inconsistent with analysis and FE results for foams which 

both predict higher stiffnesses (center). The average bulk modulus (diamonds), calculated from 

the 6 values obtained from the axial calculations (circles, boxes and triangles), only differ 

appreciably from the values obtained from direct calculations (stars) in the 12 cell model at the 

highest relative density.  

 

 

 

 



 

 148 

   

 

  

Figure 30 - Stress distributions in foams with 12 cells and   ⁄     (top) and 20 cells and 1% 

wall thickness (bottom) subjected to uniaxial compressive stress in the x-direction (left), a 

macroscopic shear stress     (center) and a compressive hydrostatic stress (right). Local stresses 

are normalized by the macroscopic Von Mises stress in the axail and shear case and the applied 

stress in the hydrostatic case.  
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Figure 31 - Normalized axial, shear and bulk moduli for quasi-random foams. Curve fits for 

( ̅   ) and ( ̅   ) for ( ̅   )      are nearly identical to Equation (78) and (79) with 

     . At higher relative densities a cubic term is necessary to describe the behavior. FE 

data from (Roberts and Garboczi, 2001) for similar quasi-random foams are in excellent 

agreement.  FE mesh quality was poorer above ( ̅   )      due to limitations in the meshing 

algorithm, artificially stiffening results only slightly. 
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Figure 32 - Normalized effective axial, shear and bulk moduli (left, center and right 

respectively). Effective moduli are normalized by the moduli of the bulk material (top), and by 

the moduli of the bulk material and the Voigt bound (bottom) for the cases of  ̅ and   ̅̅̅, and by 

the Hashin-Shtrickman (H-S) upper bound for the case of bulk modulus. Contours of Equation 

(78) and (79) are shown (bottom-left and –center) where the linear stretching coefficient,  

(   ), are the y-intercepts. The axial and shear stiffness of the QR foams are plotted for 

comparison (left and center). All these materials have cubic symmetry so only one axial and 

shear modulus is reported. In the case of bulk modulus the results for direct calculations are 

shown with a diamond; they agree with the remaining calculations done using the axial 

modulus, the effective Poisson ratio,  ̅  , and the assumption of isotropy. While the H-S bound 

on bulk modulus is rigorous (right) the bounds on Young’s and shear moduli are not due to the 

high degree of anisotropy of some designs.  
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Figure 33 - Normalized strain energy distributions in SC foams with wall thickness   ⁄     

and   ⁄      (top and bottom respectively) under macroscopic axial compressive stress (left), 

shear (center) and hydrostatic compression (right). In all cases        which have been 

magnified 100X. Local strain energy densities are normalized by the average local strain energy 

density. Low density foams have large regions of uniform strain energy compared with higher 

density foams. Material in edges and vertices in walls under high stress is confined by 

neighboring material in the intersecting walls at lower stress. As wall thickness increases with 

relative density a degradation in performance is seen in all designs relative to the Hashin-

Shtrikman upper bound on bulk modulus (Hashin and Shtrikman, 1963) due to this constrained 

material. Under shear loading two of three walls are relatively unstrained increasing the 

magnitude of this effect. (Negative strain energy levels indicated in legends are fictitious and do 

not actually occur in models.)  
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Figure 34 - Normalized strain energy distributions in FCC and BCC foams (top and middle) 

and Octet-truss (OT) (bottom) under axial, shear and hydrostatic loading (left, center and 

right). Strain energy contours of greatest interest and influence are plotted at the sacrifice of 

fidelity near strain energy concentrations; the magnitude of strain energy concentrations are of 

course mesh dependent and do not contribute substantially to the total strain energy. Under 

axial load strain energy is clearly concentrated in cell walls aligned with the applied stress (top- 

and middle-left) which form stiff chains of material. Strain energy is more clearly partitioned 

by the local mode of deformation in the BCC foam whose square cell walls can store almost no 

strain energy depending on their orientation in both axial and shear case.  The high shear 

stiffness of the OT results from the alignment of principle stresses with the longitudinal axis of 

truss members where strain energy is stored through stretching (bottom-center); under axial 

loading the OT undergoes mostly bending (bottom-left). (Negative strain energy levels indicated 

in legends are fictitious and do not actually occur in models.) 
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Figure 35 - Overall stiffness performance of ten ordered from geometries. The total stiffness 

(right) segregates the designs into three groups: a group with maximal performance whose total 

stiffness approaches the sum of the H-S bounds,     as ( ̅   )   (heavy dashed lines), 

another group whose properties are close to that of the idealized stretch dominated material, 

having stiffness ~1/3 of the Voigt bound, that have       as ( ̅   )  , and a third, only 

including the OT, whose performance is less than the others. On the right the total stiffness is 

multiplied by the isotropy, a, as a measure of isotropic stiffness where an ideal isotropic 

material has      . A structure produced from topology optimization by (Radman et al., 

2012) to be isotropic and have maximum shear modulus has a total stiffness nearly identical to 

the OF+SC foam; it is slightly more anisotropic by equation (73) and therefor has lower Ψ (left). 

The scaling factor, a, is somewhat arbitrary in magnitude as the objective function is 

unbounded on one side. The OF+SC foam is found to have a stiffness,      as  ( ̅   )   and 

is nearly isotropic making it the only material with         as  ̅   , giving it ideal 

properties far in excess of theoretical stretch dominated lattices. Materials with maximum 

stiffness are plotted with thick lines.  
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Figure 36 - Isotropy and effective Poisson ratios as a function of relative density for all 

geometries with the exception of the QR foams, which are effectively isotropic and have 

 ̅      . Materials with maximal stiffness are plotted with heavier lines.  
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Figure 37 - Normalized strain energy distributions under axial, shear and hydrostatic loading 

(left, center, and right respectively) at a macroscopic strain of  =0.1% in the Octet-Foam (OF) 

(top), dodecahedral-pyramidal foam (DDPF) (2
nd

 row), X-Foam (XF) (third-row) and 

Octet+’Simple Cubic’ (OF+SC) foam (bottom). All strains are scaled 100X for clarity. Because 

the relative orientation of cell walls in the OF, being composed of regular tetrahedraons, the 

strain energy distributions in each wall are identical in the both axail and shear cases (top-left 

and –middle); in the shear case all walls are placed in a state of nearly pure compression or 
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tension suggesting its shear stiffness is maximal, at least in the low density limit. (Negative 

strain energy levels indicated in legends are fictitious and do not actually occur in models.)  

 

 

Figure 38 - Stiffness of X-Foam, Diamond (DF), dodecahedral pyramidal foam (DDPF) and 

Body+Face Centered (BFC) foams. The OF+SC foam has stiffness that is in excess of 99.9% of 

the H-S bound on Young’s modulus, 97.1% the bound on shear and 98.3% of the bound on bulk 

modulus, at the lowest density analyzed. The H-S bounds on Young’s and shear modulus do not 

limit the performance of some materials due to their anisotropy. The BFC foam is nearly 

isotropic with stiffness similar to the QR foams. The OF+SC, DDPF and XF all have bulk 

moduli that converge on the H-S bound at the low density limit (right). Topology optimization 

for an isotropic material with maximum shear modulus resulted in a design with similar 

performance to the OF+SC foam (black-square).  
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Figure 39 - Normalized strain energy distributions in the diamond foam (DF) (top) and the 

Body+Face Centered (BFC) (bottom), both with   ⁄    , at macroscopic strains of       . 

Under axial loading cell walls aligned with the applied stress experience the highest strain 

energy density (left). Shear loading in the DF results in complementary buckling of neighboring 

antisymmetrically aligned cells at strains as low         ,  when no initial cell wall 

curvature is present. The sub-maximal bulk stiffness of the DF and BFC foams is evident in the 

non-uniformity of the strain energy distributions between cell walls under hydrostatic loading 

(right). Contours of strain energy density around the average are plotted at the expense of 

fidelity near strain energy concentrations, the magnitude of which are mesh dependent and do 

not contribute substantially to the total strain energy. (Negative strain energy levels indicated in 

legends are fictitious and do not actually occur in models.)  
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Figure 40 - Strain energy distributions in cross-sections of DF with   ⁄     (top) and   ⁄  
   (bottom) from macroscopic shear loading; macroscopic strains of              are 

scaled 100x. Principle stress directions are horizontal and vertical. Cross-sections are taken at 

z=3/8, 1/2 and 5/8 (left to right respectively). As wall thickness increases the short ligaments 

thicken and shorten, decreasing in aspect ratio dramatically, increasing their bending stiffness 

and the overall shear stiffness of the design. Cell walls in the DF take on curvature at all shear 

strains,  ̅    , with zero initial wall curvature, yet the antisymmetric nature leaves some 

cross-sections with straight lines where antisymmetric buckling mechanisms converge (left and 

right columns). As relative density increases complementary buckling mechanisms are inhibited 

causing more energy to be stored through stretching. Contours of strain energy density around 

the average are plotted at the expense of fidelity near strain energy concentrations, the 

magnitude of which are mesh dependent and do not contribute substantially to the total strain 

energy. (Negative strain energy levels indicated in legends are fictitious and do not actually 

occur in models.)  
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Figure 41 – Ordered foams and lattices comprised of an Al-20%SiC composite outperform 

stochastic foams made from the same material. While the octet-truss has comparable shear 

stiffness to isotropic stretch dominated foams at low relative densities (~1/3 of the Voigt bound), 

it is anisotropic and has an axial stiffness that approaches that of stochastic foams at relative 

densities     . The stiffness of the OF+SC foam is almost directly proportional to   ⁄ , while 

the BFC foam, having stiffness similar to the Q-R foams (~1/3 of the Voigt bound at low relative 

densities), has the performance of theoretical stretch dominated lattices of (Ashby, 2011).  
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Figure 42 – Finite element (FE) results for the OF+SC foam composed of an Al-SiC composite, 

and Beryllium, are placed in the universe of available isotropic, or nearly isotropic, materials; 

excluded from this are fibers, laminates and woods. Only the stiffest foams, made of ceramics, 

rival the stiffness of the Al-SiC OF+SC foam, and then only at densities above 600 (kg/m
3
). The 

OF+SC foam composed of Beryllium can potentially be more than one order of magnitude 

stiffer, at a given density, than currently available nearly isotropic materials; a system 

incorporating this material would realize a proportional and dramatic weight savings. As single 

crystal diamond is not a reasonable constituent material, and polycrystalline diamond has only 

half its stiffness, the maximally stiff OF+SC foam composed of beryllium represents the 

maximum performance achievable by any material system barring the development of new 

materials on the atomic scale. 

 

IV. Design Considerations for Ordered Foams 

 

The representative selection of foam topologies described in the previous 

chapter exhibit a wide range of properties however there remains the possibility to 

utilize some of the design lessons from this study to create materials with properties 

highly tailored for a specific application.  
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The isotropy of materials can be altered by the addition, or increasing the 

thickness, of certain cell walls with favorable orientations relative to the applied 

load. For example the OF+SC foam has the clear potential to possess any isotropy 

between being isotropic, as it is described in this study, to as anisotropic and stiff  in 

shear as the OF, the stiffest in shear, by altering the relative wall thickness of the OF 

and SC substructures.  

The continuity of cell-walls between neighboring cells is responsible for the 

stiffness of designs with maximal performance. The observation that this property is 

required for maximal stiffness is perhaps obvious in retrospect. For a member, be it a 

cell wall or edge, plate or beam, uniformly stretched, to impart such a uniform stress 

state on an adjacent member, those members must be aligned. One can imagine two 

beams welded together at their ends at an arbitrary angle. When force is applied to 

separate the bars the only configuration that produces a uniform stress state is the 

one where the beams are aligned and stretched axially. Any misalignment of forces 

or members results in bending, non-uniform stresses and a degradation in structural 

efficiency . The alignment of cell-walls and the efficient transmission of strain 

energy between them is of paramount importance in designing high-performance 

architectures. 

 

Closed cell foams gain significant additional stiffness over comparably aligned 

open cell structures from the interconnectedness of the material geometry. Every cell 

wall is constrained at its edges by neighboring cell walls thereby greatly reducing the 
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degrees of freedom of every material point in the body. The reduced entropy of 

closed cell foams drives their performance well in excess of open cell foams and 

lattice structures. This is evident in contrasting the performance of the OT, FCC 

foam, and the SC which exhibit the characteristics of an open cell, closed but non-

aligned and maximal stiffness closed cell foams respectively.  

 

Buckling of members is significantly mitigated by the constraint of neighboring 

material in closed cell foams. While this aspect is not directly studied in this work, 

the DF, for example, responds in buckling to all shear loads and all relative densities 

yet retains a high stiffness. Any local region that is oriented in a manner that 

produces significant bending from an applied load is always connected to an 

adjacent region that must stretch to accommodate this bending. The configurational 

entropy in closed cell foams is so low that even when cell walls become appreciably 

thin stretching is still likely to dominate the response.  

 

The strength of ordered foams is of great interest given their appreciable 

stiffness properties. The assessment of strength however brings with it many more 

considerations than does the characterization of stiffness. Clearly stress and strain 

concentrations are of interest, which can to some degree be ascertained from the 

results in this study, showing strain energy concentrations under some basic loading 

and boundary conditions. One must also consider to first order the failure 

mechanisms expected in the material of interest. Material selection is intimately tied 
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to the processing and manufacturing methods chosen, the properties of which will 

determine defect magnitudes, population and distribution. It is safe to assume that a 

single unit-cell is representative in the case of stiffness, but when considering failure 

the periodicity of deformations can easily extend beyond the characteristic 

dimension of the geometric unit cell. Tearing and other localized deformation in the 

regions neighboring the boundary of an applied load may be significant in the onset 

macroscopic failure. Considering a detailed multi-unit-cell model is not currently 

intractable but brings with it the need for considerable computational resources. 

These needs will only diminish relatively with the development of faster and cheaper 

hardware but currently large parametric studies are cumbersome, requiring a 

significant amount of resources to process and store the associated data.  

 

There is no singular structural feature that is found to give rise to higher stresses 

irrespective of the loading conditions. In some loading scenarios and topologies 

edges possess the highest strain energy concentrations, and are perhaps likely failure 

initiation zones, while in others cell faces become the focus.  While it is difficult to 

make specific predictions about the strength of ordered foams one can observe that 

stress and strain concentrations are detrimental to both strength and stiffness 

performance.  Maximal performance designs should have strength far in excess of 

stochastic foams and even lattices due to their ability to store strain energy relatively 

uniformly.  Although the specific strength performance must be interrogated it is 
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unlikely that the strength performance of ordered foams should suffer 

disproportionately when compared to stochastic foams and lattice structures. 

  

 

V. Concluding Remarks 

 

In the previous chapters two material systems are presented that possess novel 

properties, offering high stiffness combined with relatively low density. Chapter one 

details a material that expands the bounds of property space, pairing low, zero or 

even negative thermal expansion with near theoretically maximum stiffness. In the 

second chapter a family of ordered foams is found to include a geometry that 

achieves theoretical bounds for Young’s, shear and bulk modulus simultaneously. 

This material has the potential to achieve more than ten times the stiffness of other 

known comparable material systems, including stochastic foams, honeycombs and 

lattices, offering a revolutionary leap in achievable material performance. In the 

realm of aerospace and high-performance transportation, where vehicle mass is of 

primary importance, such materials will undoubtedly have a profound impact upon 

designs in the future. Contemporary computer automated design and finite element 

representative volume element modeling have proven to be the prime tool of merit in 

investigating the behavior of these types of cellular materials. Cellular materials are 
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difficult to characterize experimentally due to topological complexity and problems 

of scale. Assessing constituent properties and cell geometries are difficult as are the 

application of forces through appropriate boundary conditions. While some 

experimental work has been done in terms of fabricating and measuring the 

performance of tailorable thermal expansion lattices there remains almost a complete 

absence of work on ordered closed cell foams. It is our hope that this body of work 

will serve as a starting point for the realization of such lattices and foams with such 

notably unrivaled properties. The advantages of realizing these materials in a 

practical context is manifest in their superior properties. 

 




