Lawrence Berkeley National Laboratory

Recent Work

Title

Leverage your research dollars

Permalink

https://escholarship.org/uc/item/341254c9

Author

Weintraub, Silka

Publication Date

2000-11-08

LABORATORY ERKELEY NATIONAL $\overline{\mathbf{n}}$ LAWRENCE RLANDO ERNEST

LEVERAGE YOUR RESEARCH DOLLARS

LBNL/PUB-846

BERKELEY LAB

Berkeley Lab

Berkeley Lae

Berkeley Lae

BERKELEY LAR

Berkeley Lae

BERKELEY LAB

Berkeley Lae

Berkeley Lab

RERKELEY LAF

Berkeley Lae

Berkeley Lae

Berkeley Lae

BERKELEY LAE

BEDKELEV I AE

BERKELEY LAB

BERKELEY LAB

Berkeley Lae

SERKELEY L AE

Investigate the possibilities...

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

INVESTIGATE THE POSSIBILITIES

ap a great national resource — partner with Ernest Orlando Lawrence Berkeley National Laboratory and take advantage of our leading-edge capabilities and expertise. We are ready to help U.S. companies compete in a tough global marketplace. Overlooking the UC Berkeley campus, Berkeley Lab is a national laboratory managed by the University of California for the U.S. Department of Energy. Berkeley Lab's research produces innovative technologies in fields applicable to many industries, including:

- ACCELERATOR SYSTEMS Synchrotron radiation source for lithography, crystallography, bioscience and microelectronic characterization; simulation of cosmic rays for testing aerospace electronics
- ADVANCED MATERIALS Plasma processing, ion implantation, advanced ceramics, semiconductors, superconductors, high-performance metals, polymers, and catalysts; high-powered electron microscopy, xray optics, electrochemistry, and alloy theory
- **BIOTECHNOLOGY** Molecular and cellular biology, genetics, mutagenesis, carcinogenesis, diagnostic imaging, radiation biophysics, radiotherapy and radiosurgery, lipoprotein research, cardiovascular disease, hemopoiesis research, sequencing of human genome, x-ray crystallography for 'rational' drug design
- **COMPUTING** Advanced database technology, distributed computing systems, high-speed networking, advanced computer imaging, expert systems for advanced manufacturing
- **ENERGY** Fossil energy conversion, electrochemical energy storage, energy use analysis, high-efficiency insulators, computer simulations of building energy use and lighting, windows and daylighting, building energy efficiency, enhanced petroleum discovery and recovery, geothermal technology development, long-term study of photon-energy storage and photosynthetic energy systems
- **ENVIRONMENT** Atmospheric effects of combustion and air quality, radon studies and abatement, high-resolution wellbore imaging, site remediation, indoor air quality
- **MANUFACTURING** Advanced equipment development, micro-precision fabrication (micro electrome-chanical systems), laboratory and systems automation
- **SENSORS AND CONTROLS** Reactive control systems, sensor development and fabrication, diagnostics and computer algorithms, custom integrated circuits and systems
- TRANSPORTATION Batteries, advanced insulations, electrochromic windows, reflective coatings

For More Information Contact:

Licensing

All Other Information

Viviana Wolinsky Licensing Manager Bruce Davies Marketing Manager

Lawrence Berkeley National Laboratory
Technology Transfer Department
1 Cyclotron Road, Mail Stop 90-1070
Berkeley, CA 94720

Voice (510) 486-6467 • FAX (510) 486-6457 and visit our website at

http://www.lbl.gov

PARTNERSHIP MECHANISMS

Mechanism	Definition	Best Used	PROTECTION OF GENERATED INFORMATION	RIGHTS IN INTELLECTUAL PROPERTY	DOE Approval Required
Information Exchange	The informal and free exchange of information through publications, presentations, briefings, workshops, and visits designed to inform potential industry partners about the R&D activities and capabilities of Berkeley Lab, and/or determine their needs.	When potential industry parters need to obtain initial information on Berkeley Lab activities and capabilities	N/A	N/A	N/A
TECHNICAL ASSISTANCE	Short-duration (5 working days) effort focused on timely assistance to small business partners with specific technical problems. Generally, Berkeley Lab covers salary and payroll burdens of Laboratory personnel that participate. Simple, one-page contract.	To assist small businesses that need technical assistance with unique problems. Subject to available funding from DOE.	No	No	No
Personnel Exchange	Exchanges of personnel between industry and Berkeley Lab for less than one year. Berkeley Lab personnel are assigned to industry facilities and/or industry assigns personnel to Berkeley Lab.	When Berkeley Lab and industrial partner have an interest in learning about each other and sharing specific skills and expertise. The level of effort and contractual obligations associated with staff exchanges are typically less than those associated with CRADAs.	No	Subject to negotiation	No
USER FACILITY AGREEMENT	Allows industry and university partners to conduct proprietary or nonproprietary research at the Laboratory's unique experimental facilities.	When partner needs are best met through use of specialized equipment or facilities designated as "National User Facilities" available at Berkeley Lab.	Proprietary data must be marked for protection	User may take title to inventions	No
COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT (CRADA)	Research and development projects that are supported by resource contributions from both Berkeley Lab and industry, and have a specific technical development focus with planned outcomes. Multi-year CRADAs generally use long form CRADA contract. Shorter term/smaller scope CRADAs (that are less than \$150,000) may use 5-page contract.	When Berkeley Lab, DOE, and industry have mutual interest in the development of a technology area, and cost sharing by the partners is appropriate.	Commercially valuable information generated under a CRADA may be protected for up to 5 years.	Industry-created intellectual property retained by industry. Rights to Berkeley Lab intellectual property created under a CRADA, negotiated separately.	Yes
WORK FOR OTHERS (SPONSORED RESEARCH)	Research and development projects and technical assistance efforts that are fully funded by private industry. Work must use a unique capability of the Laboratory and not place the Laboratory in direct competition with the private sector.	When industry has an immediate need for services, desires a high degree of control over the scope of services and information provided, and is willing and able to pay for the cost of services.	Proprietary data must be marked for protection	Subject to negotiation	Yes
Licensing	Transfer of rights to patented inventions, copyrighted software, maskworks or tangible research products. May be exclusive or nonexclusive, for broad or limited field of use, to be negotiated on a case-by-case basis.	When Berkeley Lab has legal rights to a technology or software that fits an industrial partner's business strategy, and the partner wants to develop and commercialize the product/process.	N/A	Grants rights under patents, copyrights, and maskworks to use Laboratory inventions and software	Rarely required

TECHNOLOGY TRANSFER MEANS BUSINESS

Lawrence Berkeley National Laboratory invites you to take a closer look at the many R&D approaches and opportunities available to private industry

Berkeley Lab Welcomes Your Inquiries

Berkeley Lab's unique interdisciplinary science approach offers many technology transfer options. U. S. Department of Energy policy encourages private sector use of government-developed technologies. We welcome your inquiries to explore areas of research, technology, and collaboration.

Forging Stronger Ties

As a national laboratory, one of our missions is to make research results available to the nation's private sector for rapid commercialization. Private industrialists and entrepreneurs broaden the potential benefit and commercial value of laboratory research. They help translate new discoveries into commercially usable products and processes. Working together, the national laboratories and U.S. industry can help strengthen

America's competitiveness in the world marketplace. Together, we mean business.

Making Technology Transfer Simple

We have streamlined our technology transfer operations to help industry move technologies, ideas, and services from Berkeley Lab to the marketplace.

Technology Transfer Department

Technology transfer depends on communication between those generating knowledge and those able to put it to use. The Technology Transfer Department is a focal point to foster productive relationships between scientists in research programs at Berkeley Lab, and individuals in the private sector. If you have questions regarding research areas of interest, or would like answers about the types of working

relationships we form with industry, start with the Technology Transfer Department. Contact the Technology Transfer Department to:

- Pinpoint research areas of common interest
- Negotiate rights to Berkeley Labs intellectual property
- Discuss current patent and copyright licensing opportunities
- Explore sponsorships, collaborative projects and staff exchange programs
- Set up meetings with specific investigators
- Arrange site tours

LICENSE NEW TECHNOLOGIES

Berkeley Lab licenses a broad array of cutting-edge technologies to private industry

- ♦ Terms of each Berkeley Lab license vary commensurately with the market value of that technology and the common licensing practices of the relevant industrial sector.
- Licenses typically have three monetary terms:
 - License issue fee, which is nonrefundable and due upon execution of the agreement;
 - · Running royalty, which is most commonly based on a percentage of sales, and
 - Minimum annual royalties.
- Licenses also contain performance requirements for the licensee. These are milestones that Berkeley Lab and the licensee agree reflect diligent progress in the development of the technology. These performance requirements reflect our commitment to ensure that technologies developed at Berkeley Lab are commercialized, and that the public ultimately enjoys the benefit.
- Licenses may be exclusive or non-exclusive for a particular field of use or geographic region.
- When an agreement grants an exclusive license for the U.S. market, the licensee must substantially manufacture the technology in the U.S.
- ◆ The U.S. government is granted a fully paid-up, nontransferable, non-exclusive license to use the invention for government purposes only, as is the case with other federally funded inventions.

Berkeley Lab's Technology Transfer Department looks forward to working with industry to develop commercially reasonable and fair license terms and conditions. Qualified, small, women-owned, minority-owned, and disadvantaged businesses are especially encouraged to inquire.

For further information regarding a specific technology, contact

Viviana Wolinsky, Licensing Manager

VIWolinsky@lbl.gov

SAMPLE BERKELEY LAB TECHNOLOGIES

Batteries

Batteries with orthorhombic sodium manganese oxide cathode Electrochemical Nanolithography

Ion implantation to extend battery life

Overcharge protection for rechargeable lithium batteries

Solid state sodium cobalt bronze batteries

Zinc-air battery

Zinc-nickel oxide battery

Biotechnology and Medicine

Aligned crystal growth at polymerized membranes

Amorphous silicon array for medical imaging

Anthrax detection kit

Biomarker for cell senescence

Breast cancer therapy for unresponsive metastatic tumors

Cancer treatment: neutron source for BNCT

Capcall: superior basecalling software package

Direct quantum detection digital x-ray imaging

Electron crystallography of membrane proteins

Engineering cell surfaces and cellular products

Erythropoietin (EPO) binding protein

Factors that neutralize radiation damage caused by TGF-β

Fluorescent biosensor

Genes encoding telomere-associated proteins

Heat shock proteins

Integrated framework for analysis of molecular profile data

Intracellular sodium detection using multiple quantum NMR

Microdissection of DNA molecules for genomic studies

Negative ion beam injection apparatus

Neural network algorithm for predicting protein structures

Physical mapping of DNA yields high resolution image

PINTA: automated MRI visualization software

Polymerized nanoparticle therapeutics

PrepTrack: assembly line automation of microtiter plate

Prototype therapeutic agent for pathogenic *E. coli*

Restoration of normal function in cancer cells

Rf-driven plasma source for ion implantation

Scanning tip microwave near field microscope

Semiconducting thin film for microstrip gas radiation detectors

Substituted 6-nitroquipazines

Tendon repair factor

Thermal cycler for rapid processing of polymerase chain reaction assays

Transgenic mice: atherosclerosis portfolio

Transgenic mice model breast cancer and leukemia

Transgenic mice model learning disorder in Down syndrome

Transgenic mice model male infertility

Tritium-labeled, high specific activity compounds

Chemical & Manufacturing Processes

Carbon nanotubes with heterojunctions for nanoscale electronics

Carboxylic acids recovery

Catalytically treated graphite

Compound refractive X-ray lens

Chemical & Manufacturing Processes (cont'd)

Electrochemical nanolithography

Coplanar electrode configuration for radiation detectors

Direct quantum detection digital X-ray imaging

Fluorination of unstable nickel fluorides using NiF₂² salts

High quantum efficiency charge coupled device

High resolution EUV monochromater/spectrometer

Mini pulsed metal plasma gun

Nanomachining of high aspect ratio structures

Optical metrology: superior x-ray mirrors

Phase shifting interferometer

PhoSNOX: yellow phosphorous for flue gas scrubbing

Pigments for coatings that reflect infrared radiation from fire

Pozone

Rf-driven metallic ion beam source

Rf-driven plasma source for ion beam implantation applications

Sapphire and nitride semiconductor device manufacturing

Selective ion source for semiconductor devices

Selective photochemical oxidation of hydrocarbons

Superconducting multilayer interconnect technology

Widely tunable semiconductor THz (infrared) laser

Energy Efficient Technologies

Aerogels

Aerogels: reduction of inorganic oxides with reactive plasma

Combination table lap/torchiere

Electromagnetic field imaging — high resolution, low frequency

Energy efficient laboratory fume hood

Energy efficient lighting

Gas filled insulating panels

High efficiency coupling for fiber optic and solid light guides

Pozone

Selective photochemical oxidation of hydrocarbons

Solid oxide fuel cell technologies

Environmental Technologies

Adsorbing media for carbon mass balance in airborne particles Aerogels

Coplanar electrode configuration for radiation detectors

Direct-measure water flux meter and omni-depth tensiomenter

Disposable diffusion denuder

Electrical resistivity monitoring borehole array

Electromagnetic field imaging — high resolution, low frequency

Energy efficient laboratory fume hood

Exhaust hood airvest

Ferrofluids for subsurface flow control and imaging

Gas filled insulating panels

In situ optical sensor for particulate inorganic carbon in seawater

In vitro model for bioavailability of chemicals in humans

Lean flame stabilization ring converts natural gas burners

Low NO_x swirl burner

Organic pollutant sampler

SAMPLE BERKELEY LAB TECHNOLOGIES

Environmental Technologies (cont'd)

PhoSNOX: yellow phosphorous for flue gas scrubbing
Photoluminescent aerogel oxygen sensor
Recyclable sorbent coating for organic pollutant sampler
Selective photochemical oxidation of hydrocarbons
Subsurface barriers to contain hazardous wastes
Wellbore procedure characterizes groundwater contamination

Ion Sources

Cancer treatment: neutron source for BNCT Cathodic arc plasma system with twist filter

Compact high flux rf-neutron source

Compact rf-matching network for ion beam applications

Constricted plasma source Focused ion beam source

Intense multiply charged ion source

Ion implantation to extend battery life

Low energy spread ion source

Mini pulsed metal plasma gun

Molecular ion source

Negative ion beam injection apparatus

Porcelain-coated rf antenna

Quartz antenna with hollow conductor

Quartz antenna for rf sources

Rf-driven metallic ion beam source

Rf-driven plasma source for ion implantation applications

Selective ion source for semiconductor devices

Materials Sciences

Aerogels

Aerogels: reduction of inorganic oxides using reactive plasma Aerosol remote duct sealing system

Aligned crystal growth at polymerized membranes

Amorphous silicon array for medical imaging

Carbon nanotechnology:

Boron and nitrogen doped carbon nanotubes as insulators

C₃₆ fullerenes for designing new materials

Carbon nanotubes with heterojuctions for nanoscale electronics

Carbon nanotube field emission devices

Carbon nanotube computer

Engineering of nanotube geometry

Metallic carbon materials

Nanotube bearing and spring

Nanotube chemical gas sensor

Nanotubes — simple method for continuous production Coplanar electrode configuration for radiation detectors Corrosion-resistant titanium for highly oxidizing environments GaN in blue-light semiconductor lasers and LEDs

Giant magnetoresistant (GMR) materials

Materials Sciences (cont'd)

Multimetal oxide thin films

Phase shifting interferometer

Photoluminescent aerogel oxygen sensor

Pigments for coatings that reflect infrared radiation from fire

Polymerized nanoparticle therapeutics

Precision optical slit

Sapphire and nitride semiconductor device manufacturing

Scanning polarization microscope

Scanning tip microwave near field microscope

Selective ion source for semiconductor devices

Semiconducting thin film for microstrip gas radiation detectors

Subsurface barriers to contain hazardous waste

Superconducting films on metal substrates carry commercial level current

Tamper-proof "smart adhesives" cannot be duplicated

Ultrafast scanning probe microscopy

Sensors

Amorphous silicon array for medical imaging

Coplanar electrode configuration for radiation detectors

Direct measure water flux meter and omnidepth tensiomenter

Direct quantum detection digital x-ray imaging

Electrical resistivity monitoring borehole array

EUV monochromator/spectrometer with high resolution

Fiber optic paper sensor

In situ optical sensor for particulate inorganic carbon in seawater

Mass spectrometer for high MW ions and charged particles

Moisture-resistant columnar cesium iodide for digital radiography

Novel electrochromic device controlled by sunlight

Phase shifting interferometer

Photoluminescent aerogel oxygen sensor

Physical mapping of DNA yields high resolution image

PINTA: automated MRI visualization software

Preamplifier printed circuit layout for the GRETA detector

Recyclable sorbent coating for organic pollutant sampler

Safe automated laser alignment device (SALAD)

Scanning tip microwave near field microscope

Semiconducting thin film for microstrip gas radiation detectors

Solid state optical switching device

SQUIDS:

High Tc squid circuits suppress intrinsic magnetic field noise squid based planar gradiometer supresses ambient field noise Superconducting multilayer interconnect technology

Substituted 6-nitroquipazines

Thin film for stabilizing the microstrip gas radiation detector Wellbore procedure characterizes groundwater contamination

October 17,2000

TECHNOLOGY TRANSFER PERSONNEL DIRECTORY

The personnel listed here and on the reverse side are direct contacts to divisions, centers, user facilities and technology transfer officials. Call or write today.

RESEARCH DIVISIONS

Accelerator and Fusion Research

Alan Jackson 510.486.7384 AJackson@lbl.gov

Advanced Light Source

Gary Krebs 510.486.7727 GFKrebs@lbl.gov

Chemical Sciences

Daniel Neumark 510.486.6382 DMNeumark@lbl.gov

Earth Sciences

Norm Goldstein 510.486.5961 NEGoldstein@lbl.gov

Engineering

Deb Hopkins 510.486.4922 DLHopkins@lbl.gov

Environment, Health & Safety

Robin Wendt 510.486.6012 RAWendt@lbl.gov

Environmental Energy Technologies

Don Grether 510.486.6283 DFGrether@lbl.gov

Genomics

David Gilbert 510.486.6096 DEGilbert@lbl.gov

Information and Computing Sciences

Jon Bashor 510.486.5849 JBashor@lbl.gov

RESEARCH DIVISIONS (cont'd)

Life Sciences

David Gilbert 510.486.6096 DEGilbert@lbl.gov

Materials Sciences

Mark Alper 510.486.6581 MDAlper@lbl.gov

National Energy Research Scientific Computing (NERSC)

Jon Bashor 510.486.5849 JBashor@lbl.gov

Nuclear Science

Gordon Wozniak 510.486.5071 GJWozniak@lbl.gov

Physical Biosciences

Kristin Balder-Froid 510.486.6060 KHBalder-Froid@lbl.gov

Physics

Ronald Madaras 510.486.4410 RJMadaras@lbl.gov

TECHNOLOGY TRANSFER

Technology Transfer Department

Cheryl Fragiadakis 510.486.6467 CAFragiadakis@lbl.gov

Sponsored Projects Office/ Contracts

Jeff Weiner 510.486.7143 Jeff_Weiner@lbl.gov

RESEARCH CENTERS

Berkeley Center for Structural Biology

Thomas Earnest 510.486-4603 TNEarnest@lbl.gov

Berkeley Structural Genomics Center

Sung-Hou Kim 510.486.4333 SHKim@lbl.gov

Center for Advanced Materials

Mark Alper 510.486.6581 MDAlper@lbl.gov

Center for Computational Seismology

Tom McEvilly 510.486.7347 TVMcEvilly@lbl.gov

Center for Environmental Biotechnology

Terry Hazen 510.486.6223 TCHazen@lbl.gov

Center for Functional Imaging

Thomas Budinger 510.486.5435 TFBudinger@lbl.gov

NASA Specialized Center of Research & Training (NSCORT)

Aloke Chatterjee 510.486.5414 A_Chatterjee@lbl.gov

Center for Isotope Geochemistry

Don DePaolo 510.486.4975 DJDePaolo@lbl.gov

TECHNOLOGY TRANSFER PERSONNEL DIRECTORY

RESEARCH CENTERS (cont'd)

Center for Research and Education in Aging (CREA)

Judith Campisi 510.486.4416 JCampisi@lbl.gov

Center for X-Ray Optics

David Attwood 510.486.4463 DTAtwood@lbl.gov

High Aspect Ratio-Microfabrication Laboratory (LIGA)

Keith Jackson 510.486.6894 KRJackson@lbl.gov

Geosciences Measurement Facility

Norman Goldstein 510.486.5961 NEGoldstein@lbl.gov

The Glenn T. Seaborg Center (for Actinide Science)

Heino Nitsche 510.486.5615 HNitsche@lbl.gov

NATIONAL USER FACILITIES

Advanced Light Source

Neville Smith
Scientific Program Coordinator
510.486.5423
NVSmith@lbl.gov

Glen Dahlbacka Industrial Program Development 510.486.5358 GHDahlbacka@lbl.gov

ALS Molecular Environmental Science Facility

David Shuh 510.486.6937 DKShuh@lbl.gov

Chemical Dynamics Beamline at the ALS

Tomas Baer 510.486.4754 TBaer@lbl.gov

National Center for Electron Microscopy(NCEM)

Uli Dahmen 510.486.4627 UDahmen@lbl.gov

National Energy Research Scientific Computing Center (NERSC)

Jon Bashor 510.486.5849 JBashor@lbl.gov

88-Inch Cyclotron

Claude Lyneis 510.486.7815 CMLyneis@lbl.gov

OTHER USER FACILITIES

Bidirectional Radiometric Scanner

Joseph Klems 510.486.5564 JHKlems@lbl.gov

Energy Efficient Fixtures Laboratory

Michael Siminovitch 510.486.5863 MJSiminovitch@lbl.gov

Environmental Chamber

AI Hodgson 510.486.5301 ATHodgson@lbl.gov

High Aspect Ratio-Microfabrication Laboratory (LIGA)

Keith Jackson 510.486.6894 KHJackson@lbl.gov

Infrared Thermography Laboratory

Dariush Arasteh 510.486.6844 D_Arasteh@lbl.gov

Low Background Counting Facility

Dick McDonald 510.486.6204 RJMcDonald@lbl.gov

MoWitt: Mobile Window Thermal Test Facility

Joseph Klems 510.486.5564 JHKlems@lbl.gov

National Tritium Labeling Facility (NTLF)

Philip Williams 510.486.7336 PGWilliams@lbl.gov

Sky Simulator for Architectural Daylighting Design

Joseph Klems 510.486.5564 JHKlems@lbl.gov

31 October, 2000

For more information return to us by mail or fax to 510.486.6457

General remarks

Lawrence Berkeley National Laboratory Technology Transfer Department INQUIRY FORM

Date of Inquiry ____/__/

Name							
Position							
Company							
Address							
Phone # FAX #							
Email							
Technology(s) of interest (Please be specific; include names of investigators if possible)							
•							
•							
•							
•							
What does your company do?							
•							
•							
•							
Small Business? Y N Woman-owned? Y N Minority-owned? Y N Referred by							
(For TTD Use Only)							
Date of Action/ Inquiry Handled by							
Action to be taken							

Ernest Orlando Lawrence Berkeley National Laboratory Technology Transfer Department 1 Cyclotron Road, MS 90-1070 Berkeley, CA 94720

FIRST CLASS MAIL

TO: Bruce Davies Marketing Manager Lawrence Berkeley National Laboratory Technology Transfer Department 1 Cyclotron Road, Mailstop 90-1070 Berkeley, CA 94720

(Fold here, staple or tape closed, affix stamp, and mail to LBNL Technology Transfer Department)