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ABSTRACT OF THE THESIS

NormCo: Deep Disease Normalization for
Biomedical Knowledge Base Construction

by

Dustin Wright

Master of Science in Computer Science

University of California San Diego 2019

Professor Chun-Nan Hsu, Chair

Biomedical knowledge bases are crucial in modern data-driven biomedical sciences,

but automated biomedical knowledge base construction remains challenging. In this paper,

we consider the problem of disease entity normalization, an essential task in constructing a

biomedical knowledge base. We present NormCo, a deep coherence model which considers

the semantics of an entity mention, as well as the topical coherence of the mentions within

a single document. NormCo models entity mentions using a simple semantic model which

composes phrase representations from word embeddings, and treats coherence as a disease

concept co-mention sequence using an RNN rather than modeling the joint probability of all
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concepts in a document, which requires NP-hard inference. To overcome the issue of data

sparsity, we used distantly supervised data and synthetic data generated from priors derived from

the BioASQ dataset. Our experimental results show that NormCo outperforms state-of-the-art

baseline methods on two disease normalization corpora in terms of (1) prediction quality and (2)

efficiency, and is at least as performant in terms of accuracy and F1 score on tagged documents.
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Chapter 1

Introduction

Modern biomedical sciences are data-driven and depend on reliable databases of biomed-

ical knowledge. These knowledge bases are particularly crucial in domains such as precision

medicine [4], where the idea is to treat patients with the same condition differently according

to their genetic profiles. Because the number of possible genetic profiles is huge, knowledge

bases are essential for clinicians to discover what treatment is known to be effective for their

patients. [11]. Examples of widely-used knowledge bases for precision medicine in the public

domain include ClinVar [22], COSMIC [14], Catalog of GWAS [33], MyCancerGenome [46], etc.

Knowledge bases for precision medicine contain known associations between genetic variants,

disease conditions, treatments, and reported outcomes (see, e.g., [22, 14]).

In the past decade, natural language processing has advanced in the biomedical domain

and has been utilized to automatically extract knowledge from research publications in order to

construct knowledge bases. For certain biomedical entities, algorithms are available to provide

reliable extraction, for example genes and their protein products [41, 18, 48], diseases [25, 6],

and chemicals [28]. However, current NLP algorithms are far from practically useful to cope

with the rapid growth of new publications. Meanwhile, AI, NLP, and machine learning in other

domains are advancing quickly. It is therefore important to translate these advancements into the
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biomedical domain.

This thesis focuses on the problem of disease normalization, an essential step in the

construction of a biomedical knowledge base as diseases are central to biomedicine.The problem

has been studied with promising solutions, such as DNorm [26] and TaggerOne [27]; however

these approaches are based on surface-form feature engineering and shallow learning methods.

The closest problems for which deep learning has been successfully used are entity linking and

word sense disambiguation, with deep models that consider context and coherence. However, to

the best of our knowledge the problem of how to apply deep learning to solve the problem of

disease normalization has not been successfully addressed. Given this, we are concerned with

the following questions in this work: How can one design a deep learning model for disease

normalization that has high accuracy? How can one train this model given the relative lack of

training data and the notorious need for large datasets when training deep models? How efficiently

can such a model be trained compared to existing shallow learning approaches?

To address these questions we present NormCo, a deep model designed to tackle issues

unique to disease normalization. NormCo makes the following contributions:

• A combination of two sub-models which leverage both semantic features and topical

coherence to perform disease normalization.

• Addressing the data sparsity problem by augmenting the relatively small existing disease

normalization datasets with two corpora of distantly supervised data, extracted through two

different methods from readily available biomedical datasets created for non-normalization-

related purposes.

• Outperforming state-of-the-art disease normalization methods in prediction quality when

taking into account the severity of errors, while being at least as performant or better in

terms of accuracy and F1 score on tagged documents.

• Significantly faster training than existing state-of-the-art approaches (by 2 orders of mag-
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nitude faster than the next-best baseline approach, depending on the size of the training

dataset).

The paper is structured as follows: We start by describing the problem of disease nor-

malization in Chapter 2 and surveying related work in disease normalization and entity linking,

explaining why disease normalization is unique compared to generic entity linking in Chapter 3.

Chapters 4 and 5 present the architecture of our model and its implementation details, respectively.

Finally, Chapter 6 presents the experimental evaluation of NormCo and Chapter 7 concludes

the paper with a discussion of the results and future work toward a fully automated approach to

biomedical knowledge base construction.
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Figure 2.1: Disease normalization.

Chapter 2

Disease Normalization

The primary problem in entity normalization is to map ambiguous spans of text to a

unique concept defined in an ontology. The problem can be decomposed into: 1) disambiguating

pieces of text which are similar morphologically but should be mapped to different concepts and

2) correctly mapping pieces of text which are different morphologically but refer to the same

concept. For example, in Figure 2.1, a disease mention “Regional enteritis” in an article (left

pane) is mapped to a disease concept defined in a given ontology, in this case, the CTD Medic

disease dictionary [7] (right pane) as “Crohn Disease,” with a standard MeSH ID “D003424”.
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The ontology defines a standard vocabulary of a domain. In addition to concept name and

ID, an ontology also provides for each concept a definition and a list of synonyms. Disease

normalization can be solved by matching a mention to these synonyms, in this case, “Enteritis,

Regional” (enlarged pane). Disease normalization can also be solved by looking at the context

where a mention appears, and other diseases co-mentioned in the same article (“Crohn’s disease”

in the abstract, left pane). Co-mentioned diseases are usually related to form a coherence topic

that disease normalization may potentially leverage. In summary, disease normalization may

consider:

• Similarity of the mention text with a known synonym of the target concept,

• Context where the mention appears, and

• Coherence with other co-mentioned diseases.
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Chapter 3

Related Work

3.1 Disease Normalization

Disease normalization is uniquely challenging due to the evolving conceptualization and

nomenclature of diseases. What constitutes a disease may depend on medical, legal, and cultural

criteria. [40]. A disease concept is intrinsically composite, in the sense that it can be divided

into components, e.g., disease site in the body, differentiating signs and symptoms, pathogens

that cause the disease, etc. Authors may name a disease by combinations of these components.

Previous work in disease normalization, therefore, focused mostly on how to search from an

incomplete list of synonyms the best match of an input disease mention.

DNorm [26] is a disease normalization method which uses pairwise learning to rank

(pLTR) to solve the normalization problem. They first model entity mentions and concept names

as TF-IDF vectors. They then learn a similarity matrix which determines a similarity score for a

pair of TF-IDF vectors. The model is trained using a margin ranking loss, where mentions from a

corpus are matched with associated concept names in the ontology. In addition, they preprocess

their text by lowercasing, stemming, and removing all punctuation, in addition to performing

abbreviation expansion.
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TaggerOne [27] jointly learns named-entity recognition (NER) and entity normalization

using semi-Markov models. TaggerOne considers context during NER and yields better perfor-

mance than DNorm. The model takes a supervised semantic indexing approach which relies on

rich features of the surface forms of input text for NER and TF-IDF weighting for normalization.

Similar to DNorm, a similarity matrix is trained to measure the similarity between mention

features and concept name features.

More recently, attempts were made to develop deep models to solve the problem of

disease normalization. [29] describes a convolutional neural network model to rank candidate

concepts based on word embeddings providing semantic information. The model, however, relies

on handcrafted rules to generate candidate concepts. [2] describes another method that uses word

embeddings as the input to the model. Neither of them considers context or coherence to improve

model performance.

3.2 Entity Linking

Proposed deep models for disease normalization do not consider mention, context and

coherence simultaneously as in recent work on entity linking [42]. The entity linking problem is

as follows: given a text mention and an ontology of unique entities, determine the entity in the

knowledge base to which the text mention refers. Entity linking has applications in numerous

downstream tasks including information extraction and retrieval, knowledge base completion, and

question answering. Recent methods in entity linking include the use of expectation maximization

to train a selective context model [23], knowledge graph densification [38], and deep neural

networks [10, 44, 45, 15, 24]. Context information has been well-studied as a means to improve

normalization performance, where the context can come from the surrounding text in a document

or from the knowledge base itself. In addition, the concept of “global” context has been studied in

entity linking as a way to induce a coherent set of concepts [10, 24, 39, 17, 9, 5, 34]. In [23], the
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Figure 3.1: NormCo architecture which utilizes coherence and semantic features for disease
normalization.

authors use surrounding referring phrases as context features and selectively pick a single feature

for a given mention. They accomplish this by modeling the selected feature as a latent variable

conditioned on the mention being linked, drawing all other context features from a background

probability distribution. [10] propose a model which learns to embed both words and entities

in a shared space. They exploit local context by scoring words in a context window around the

mention text with a set of candidate entities, using the top scoring words and prior probability of

an entity given a mention as features in a scoring neural network. Additionally, they use document

level context by ensuring coherence among entities using a conditional random field and loopy

belief propagation. The model in [24] seeks to exploit latent relationships between n mentions

that form a O(n2)-sized clique in order to induce coherence among entities within a document.

3.3 Dense Representations of Text

Current methods for representing textual components tend to rely on dense vector rep-

resentations of the text for performing downstream tasks. These representations can be used to

model various aspects of language, such as semantics [32, 36, 37] or morphology [30]. Semantic

modeling follows the distributional hypothesis [13], which proposes that the meaning of a word

can be derived from the context in which it occurs. The models of [32] and [37] achieve this by

training a neural network to predict context words, while [36] use word co-occurrence statistics

as a means to train their word representations. These approaches have been generalized to larger
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textual components i.e. sentences. [20] use a Gated Recurrent Unit (GRU) network to encode a

sentence and train it by using the final hidden state as the conditioning vector to two conditional

GRUs which are used to decode the surrounding sentences. [16] implement a simple bag of words

model summing up the word embeddings in a sentence to predict the words in the surrounding

sentences. Our entity phrase model is inspired by the simple and effective model of [16].
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Chapter 4

Methods

4.1 Model Overview

Figure 3.1 shows an overview of the architecture of NormCo, our deep model for disease

normalization. Given a document containing a sequence of mentions of disease entities, the

model aims at mapping the mention entities to a disease concept space, such that the vector

representations of the mentions are close to the vector representations of the disease concepts to

which they refer.

In creating this mapping, NormCo utilizes two sub-models; an entity phrase model and

a coherence model, each exploiting different aspects of the mentions. The entity phrase model

leverages the morphological and semantic pattern of a mention, while the coherence model

exploits other diseases mentioned in the same document. The final model combines both sub-

models, which are trained jointly. We will describe each of the two sub-models and explain how

they are trained.

To this end, let us first formally define the normalization problem and introduce the

notation we will be using in the following sections: Let D be a set of documents, each consisting of

a set of entity mentions M = {m0, . . . ,mK}, as well as an ontology C = {c0, . . . ,cT} of T concepts,

10



Figure 4.1: Joint entity-coherence model. (a) The entity phrase model is a simple summation
of word embeddings followed by a linear projection. (b) The coherence model takes the entity
phrase representation as input and passes a single document of mentions through a bidirectional
GRU network.

where each concept c j is associated with one or more known names S j. Entity normalization

is the problem of determining how to map each mention mi ∈M within a document to a single

concept c j ∈C in the ontology (i.e., how to determine the mapping M→C, for each document

di ∈ D).

4.2 Entity Phrase Model

Figure 4.1a shows the entity phrase model of NormCo. The purpose of this model is to

leverage the semantic features of an individual mention in order to map it to a concept. This is

accomplished by creating a composite embedding of a mention through summation of the word

embeddings of the tokens comprising the mention. Consider a mention mi→ c j consisting of

tokens {w0, . . . ,wl}. The entity phrase model first embeds the tokens appearing in m into dense

vector representations {e0, . . . ,el},ei ∈ Rd . For example, the mention “Crohn disease” is initially

tokenized into “Crohn” and “disease”, and then the word embedding of both tokens is obtained.

11



The phrase representation is the summation of the word embeddings of the individual tokens.

e(m)
i =

l

∑
k=0

ek (4.1)

This simple but powerful model has been shown to be useful for learning sentence representations

[16]. Finally, the composite embedding is passed through a linear projection to obtain the entity

phrase representation given in Equation 4.2.

Φ(mi) = Ae(m)
i +b (4.2)

where A ∈ Rd×d and b ∈ Rd .

4.3 Coherence Model

To model coherence (Figure 4.1b), we use a bidirectional gated recurrent unit (BiGRU)

[3] network acting on the conceptual representations of the mentions. The goal of the coherence

model is to predict a set of diseases within one document which are likely to appear together.

Coherence has been a topic of recent interest in the entity linking community, for example

in [10, 24], and has been shown to improve performance on entity linking tasks. Consider a

document containing the mentions “irritable bowel syndrome”, “ulcerative colitis”, and “Crohn

disease.” The entities surrounding “ulcerative colitis” should influence its output concept mapping

such that the set of selected concepts are likely to appear together, thus deterring the model from

mapping the entity to nonsensical concepts, such as “Neoplasms”.

The purpose of modeling coherence as a sequence is two-fold: 1) the concept repre-

sentation of a particular phrase becomes a function of the current phrase representation and

the surrounding phrase representations and 2) by using a sequence model we can ensure the

computational complexity is not NP-hard, which would be the case when modeling the joint

12



probability of the entire set of concepts. Moreover, we used a GRU instead of the commonly

used LSTM for sequence modeling based on our initial testing, showing that a GRU yields better

performance than an LSTM in our setting. As an additional benefit, a GRU has only a hidden state,

unlike an LSTM which has both a hidden state and memory, and thus requires less computation.

In this, we obtain a forward representation Ψ f (mi), and a backward representation Ψb(mi),

where

Ψ f (mi) = GRU(Φ(mi)|Φ(mi−1), ...,Φ(m0)) (4.3)

and

Ψb(mi) = GRU(Φ(mi)|Φ(mi+1), ...,Φ(mK)) (4.4)

After obtaining this representation for each concept, we concatenate the forward and backward

activations of the GRU, yielding the following:

Ψ(mi) = Ψ f (mi)||Ψb(mi) (4.5)

where || is the concatenation operation and Ψ(mi) ∈ Rd . We chose to concatenate the forward

and backward activations of the BiGRU so that the output representation includes features learned

from both past and future concepts in the sequence; concatenation is common practice for entity

recognition and linking, for example see [21].

4.4 Training

For each concept c j ∈C, we seek to jointly train concept embeddings c j ∈Rd, j ∈ 0, . . . ,T

and models Φ(mi) and Ψ(mi) such that the points induced by the phrase and coherence model are

closest to their ground truth concept embedding. The reason for jointly training the two models,

as opposed to training each model separately, is to ensure that the entity phrase model can learn

a good mapping from tokens to concepts, and the coherence model can alter any of the phrase

13



representations as necessary based on the surrounding concepts. Our experimental results, which

we discuss in Section 6.4.3, verify that joint training leads to superior performance than separate

training of each model.

To train the model, we first define the distance metric used to measure the similarity

between c j and the vectors Φ(mi) and Ψ(mi) as the Euclidean distance.

d(x,y) = ‖x− y‖2 (4.6)

We then combine the distances d(Φ(mi),c j) and d(Ψ(mi),c j) weighted by a learned parameter β.

d̂(mi,c j) = β ·d(Φ(mi),c j)+(1−β) ·d(Ψ(mi),c j) (4.7)

The purpose of β is to automatically learn how to combine the score for each model. When a

particular mention mi maps to a concept c j, we wish to train the model to minimize d̂(mi,c j). We

accomplish this by using a max-margin ranking loss with negative sampling. The max margin

loss we use is defined in Equation 4.9.

L =
1
|N| ∑k∈N

P+ d̂(mi,c j)− d̂(mi,ck) (4.8)

where ck is a negative example of a concept, P is the margin, and N is the set of negative examples.

In this, the model is encouraged to minimize the distance between the ground truth concept and

the combined phrase distances, while maximizing its distance to negative examples. In practice,

we found it useful to first pass Φ(mi) and Ψ(mi) through the logistic sigmoid function before

calculating the distance and setting the margin P to
√

d, yielding the following1.

L =
1
|N| ∑k∈N

√
d + d̂(σ(mi),σ(c j))− d̂(σ(mi),σ(ck)) (4.9)

1https://towardsdatascience.com/lossless-triplet-loss-7e932f990b24
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We utilize both the entity phrase model and coherence model by jointly training both

networks. The entity phrase model is trained using both the mentions M from the training corpus

as well as all of the known names S j ∈C from the given ontology. In this, we train the model to

map each mi ∈M and sk ∈ S j to its corresponding concept c j. The coherence model makes use of

the supervised training data as well as distantly supervised data.

4.5 Inference

We process annotations one document at a time, passing each annotation mi through the

entity phrase and coherence models. We then match each vector Φ(mi) and Ψ(mi) to one of the

concept vectors in the ontology using the distance metric defined in Equation 4.6. The selected

concept ĉi for mention mi is then determined using Equation 4.10.

ĉi = argmin
c j∈C

{d̂(mi,c j)} (4.10)

4.6 Data Augmentation

Datasets for biomedical entity normalization [8, 49] tend to be relatively small in terms of

the number of training examples (i.e. 500 abstracts in [8]), while training deep neural networks

usually requires substantial amounts of training examples in order to be effective. In order to

compensate for a lack of examples of co-occurring diseases, which is necessary to train our

models, we generated two corpora of additional training data by leveraging existing labeled

datasets created for other non-normalization-related tasks.

The first corpus is a corpus of distantly supervised data, obtained by leveraging the

BioASQ dataset [47], a large scale biomedical semantic indexing corpus. BioASQ contains over

23GB of PubMed abstracts labeled by humans with MeSH terms, corresponding to the main

biomedical entities (including diseases) mentioned in the paper. While readily available, MeSH

15



term annotations are provided at the paper level and not associated with any disease mention in

the abstract. As a result, they cannot be directly used as ground truth labels. To generate high

quality labels for disease mentions out of the MeSH terms we use the following criteria:

• A disease mention exists in the text which matches one of the associated names of the

MeSH terms listed with the paper.

• Less than 20 and more than 4 disease mentions are found in the given abstract.

• At least 80% of the MeSH terms listed with the paper have a corresponding disease mention

which can be found using the ontology.

The second corpus is a corpus of synthetic data generated by using data driven co-

occurrence probabilities derived from the BioASQ dataset. We estimate these probabilities by

counting the co-occurrences of concepts based on the list of MeSH terms given with each abstract.

Since the dataset covers approximately 40% of the concepts in the ontology, we estimate the

unseen concepts by replacing their count with that of the nearest parent in the concept poly-

hierarchy with the lowest unary occurrence. The reason for choosing concepts with the lowest

occurrence is that such concepts tend to be more specifically related to the target concept. For

example, consider “Teeth injury” as our target with zero observations. “Teeth injury” has two

parents, “Teeth disorders” and “Wounds and injuries.” They are equally close to “Teeth injury”

but we chose the less-observed “Teeth disorders” rather than “Wounds and injuries.” Conceptually,

“Teeth disorders” is more specifically related to “Teeth injury” than “Wounds and injuries”. Using

the co-occurence probabilites calculated from the BioASQ dataset, we randomly sample sets

of concepts. For each set of concepts, we then randomly sample an associated synonym for

each concept during each batch of training. As we will discuss in our experimental evaluation in

Section 6.4.4, the data augmentation described above is crucial for the high predictive accuracy

of our model.
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Chapter 5

Implementation

For our experiments, we used the Comparative Toxicogenomics Database (CTD) MEDIC

dictionary [7] as the concept ontology. This ontology maps disease concepts to a particular MeSH

(Medical Subject Headings) [31] or OMIM (Online Mendelian Inheritance in Man) [12] identifier.

Each concept is equipped with a preferred name, identifier, and zero or more synonyms. In order

to utilize the concept names listed in the ontology, we start each epoch by passing batches of

mention only examples through the entity phrase model and directly optimizing L with β set to

1.0. This yields an additional 79,248 training examples for the entity phrase model, and allows

the model to learn about concepts which are rarely or never seen in the training corpus.

All of the models were implemented using PyTorch. We used d = 200 dimensional

word2vec embeddings pre-trained on PubMed abstracts and PubMed Central articles to initialize

our word embeddings [32, 35]. Additionally, we initialized the concept embeddings by taking a

summation of word embeddings of the tokens in the preferred name for each concept. For text

preprocessing, we remove all punctuation from the mention, lowercase, and tokenize using the

NLTK [1] Treebank word tokenizer. Following previous work [26, 27] we resolve abbreviations

found in the text, mapping them to their long form, as a preprocessing step [43]. All token

sequences are truncated to a length of at most 20. We train in batches of 10 when training only
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mentions, and single batches containing the mentions of one abstract when training the full model.

Negative samples are randomly selected among all of the concepts in the ontology, with the

number of samples set to N = 30. To optimize the network we use the PyTorch implementation

of the Adam optimizer [19] with the initial learning rate set to 0.0005. We use a validation set in

order to benchmark the generalization performance of the model during training, as well as to

perform early stopping. Our models tend to converge within 10-30 epochs.
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Chapter 6

Experimental Evaluation

6.1 Datasets

We evaluate the system using two entity normalization corpora from the biomedical

domain: the NCBI disease corpus and the BioCreative V Chemical/Disease Relation corpus. The

NCBI disease corpus [8] consists of scientific abstracts available on PubMed labeled with disease

mentions. It is split into a training set of 500 abstracts and a development and test set of 100

abstracts each. Each disease mention is labeled with either its MeSH or OMIM identifier, defined

in the MEDIC Disease Dictionary [7]. Additionally, some mentions (e.g., “breast and ovary

cancers”) are labeled as composite mentions and can refer to two or more different concepts in

the ontology. We treat these examples as multiple training examples, training the same mention

to map to each of the possible concepts. We only map to a single concept during inference. The

BioCreative V Chemical/Disease Relation (BC5CDR) corpus [49] consists of 1500 abstracts

(1000 train, 500 test) gathered from PubMed, and similarly contains disease mentions labeled

with their MeSH/OMIM identifiers with some composite mentions. More details on the datasets

are given in Table 6.1.

We split the BioCreative V training set into a train and validation set of 950 and 50
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Table 6.1: Annotations, unique mentions, and unique concepts present in each dataset.

Corpus Annotations Mentions Concepts
NCBI Disease 6892 2135 753
BC5CDR (Disease) 12864 3271 1082

abstracts respectively. Using our training data collection method, we obtain an additional 13,665

labeled abstracts. For the NCBI disease corpus, we use the original train/test/dev split and obtain

an additional 13,193 abstracts for distant supervision. Additionally, for the BioCreative V task

we add a unique concept to the ontology labeled “〈unk〉” for mentions that should return a NIL

result.

6.2 Baseline Methods and Models

As baseline methods, we used DNorm [26] and TaggerOne [27] which correspond to the

current state-of-the art for disease normalization on both the NCBI disease corpus and BioCreative

V datasets. To study the effects of various aspects of NormCo, we created and compared the

following versions of our model.

• Mention only (MO): Includes only the entity phrase model (Φ(mi)) trained on the mentions

in the corpus and the synonyms in the ontology.

• Mention + Coherence (MC): Includes both the phrase model and coherence model trained

on the mentions in the corpus and the synonyms in the ontology.

• Distantly supervised data (*-distant): The given model trained using the dataset, dictio-

nary data, and distantly supervised data.

• Synthetic data (*-synthetic): The given model trained on synthetically generated data

using the prior probability described in the previous section, as well as distantly supervised

data, dictionary data, and the dataset.
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We also experimented with training the model completely void of additional supervision in order

to compare with our data augmentation method. Finally, we experimented with training the two

models both jointly (combining their scores with β) and separately, where we fix β to 0.5 in order

to understand the effect of joint training.

We also note that both of the state of the art baseline methods require training a large

similarity matrix, the size of which is dependent on the size of the vocabulary due to the use

of TF-IDF vectors. In contrast, our model leverages dense word embeddings, which allow it

to capture more compact representations of the text and require 2 orders of magnitude less

parameters (Table 6.2).

Table 6.2: Number of trainable parameters in each model.

Model DNorm TaggerOne NormCo
# Parameters 397,444,096 500,392,260 9,151,801

6.3 Experimental Metrics

6.3.1 Mirco-F1 and Accuracy

We first evaluated the performance of our approach using micro-F1 and perfect tagger

accuracy. For micro-F1 experiments we used the NER tags output by TaggerOne. Following

the approach in [26] and [27], our micro-F1 score is calculated at the instance level. That is, an

annotation is considered a true positive if a correct concept is found within a particular abstract,

ignoring span boundaries. For example, if the concept for “Crohn disease” appears in abstract

A and the model determines that a mention in abstract A maps to Crohn disease, regardless of

where the mention appears, it is considered a true positive. In the micro-F1 setting, our results

are averaged across the entire set of documents considered. The reason for using micro-F1 (in

contrast to macro-F1) is to allow comparison to evaluation metrics reported by recent literature in
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Figure 6.1: Example of hierarchy for the disease “Copper-Overload Cirrhosis”

the area. The calculations for precision, recall, and F1 are given as follows:

p =
t p

t p+ f p
r =

t p
t p+ f n

F1 = 2
p · r

p+ r

where t p is true positives, f p is false positives, and f n is false negatives.

For perfect tagger accuracy, we tested the ability of each system to normalize the exact

mention text from the gold standard test set. For the results labeled “AwA.” we disabled abbre-

viation resolution for each method during testing in order to understand which normalization

method performs better for a predetermined set of mentions, as well as the contribution of the

abbreviation resolution module. For Acc@1, we tested the full pipeline for each method using a

perfect tagger and obtained top 1 normalization accuracy.

6.3.2 Normalized Lowest Common Ancestor Distance

While accuracy gives a strong indicator of basic performance, it does not take into account

the overall quality of the predictions made by a normalization system. In particular, accuracy
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treats every error equally regardless of the severity of the error (i.e., how far it is from the ground

truth). To understand prediction quality, we evaluated each model using normalized lowest

common ancestor (LCA) distance, a metric which utilizes the concept ontology to determine

how close each prediction is to the ground truth. For example, as seen in Figure 6.1, it is a less

egregious error to misclassify the disease “Movement Disorders” as “Brain Diseases,” which

have a common ancestor of “Central Nervous System Diseases” than to misclassify it as “Liver

Diseases,” whose common ancestor is the root node “Diseases.” To this end, we first define

an operator LCA(c1,c2) = d(c1,c)+d(c2,c) which quantifies the distance between a predicted

concept c1 and a ground truth concept c2 as the sum of the path distances of c1 and c2, respectively

from their lowest common ancestor c. Then we leverage this operator to compute the average

LCA distance between each pair of predicted and ground truth concepts as follows:

d̄LCA =
∑i∈I LCA(ĉi,cgt)

|I|

where I is the set of all mentions across all documents. This provides a measure which takes

into account both accuracy (the predictions which have a distance of 0) and severity of error (the

distance of errors to the ground truth), normalizing over both.

6.3.3 Training Time

Finally, we use training time as a way to compare the performance of each model. For

these experiments, we observe the total time per epoch required to train the model.
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Table 6.3: Comparison of results for (a) NCBI and (b) BC5CDR Disease datasets. AwA is
accuracy with abbreviation resolution disabled for all models. Acc@1 is perfect tagger accuracy.
d̄LCA is the normalized LCA distance (lower is better). Bold numbers indicate best performance.

(a) NCBI Disease Corpus
Model P R F1 AwA Acc@1 d̄LCA
DNorm 0.803 0.763 0.782 0.778 0.872 0.408
TaggerOne 0.822 0.792 0.807 0.811 0.877 0.389
MO 0.846 0.801 0.823 0.817 0.860 0.389
MC 0.843 0.799 0.820 0.818 0.865 0.381
MO-distant 0.855 0.811 0.833 0.827 0.870 0.388
MO-synthetic 0.843 0.800 0.821 0.807 0.855 0.443
MC-distant 0.839 0.796 0.817 0.819 0.856 0.465
MC-synthetic 0.863 0.818 0.840 0.828 0.878 0.387

(b) BC5CDR Disease Dataset
Model P R F1 AwA Acc@1 d̄LCA
DNorm 0.812 0.801 0.806 0.838 0.879 0.444
TaggerOne 0.846 0.827 0.837 0.852 0.889 0.450
MO 0.854 0.794 0.823 0.840 0.860 0.451
MC 0.861 0.800 0.830 0.850 0.868 0.431
MO-distant 0.861 0.800 0.830 0.851 0.875 0.449
ls MO-synthetic 0.862 0.802 0.831 0.854 0.876 0.412
MC-distant 0.866 0.805 0.834 0.857 0.880 0.434
MC-synthetic 0.862 0.801 0.830 0.853 0.874 0.420

6.4 Results and Discussion

6.4.1 Micro-F1, Accuracy, and Normalized LCA Distance

Our results on each dataset are given in Table 6.3. For micro-F1, our models were able to

consistently improve over the precision of the baseline methods while maintaining good recall.

On the NCBI disease corpus, our coherence model with distantly supervised and synthetic data

outperformed [27] in terms of F1 by 0.033. The largest gain was in terms of precision, which

improved by 0.041 for NCBI diseases and 0.02 for BioCreative diseases. In terms of accuracy,

NormCo maintains good performance when the abbreviation resolution module is removed,

suggesting that it is better able to understand abbreviations than the baseline methods. Our overall

accuracy with the entire pipeline outperforms the baselines on the NCBI disease corpus and
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Table 6.4: Examples where the coherence model correctly identifies a disease but mention only
fails.

PubMed ID Mention Text MO MC (Correct) Disease Context
18189308 cystitis Hemorrhage Cystitis bladder inflammation; urinary

bladder inflammation
23433219 psychotic

symptoms
Psychotic dis-
orders

Psychoses,
Substance-
induced

depressive disorder, bipolar disor-
der

10390729 hypoactivity Dyskinesia Movement disor-
ders

hyperactivity

is highly competitive at only 0.9% under the strongest baseline for BioCreative diseases. The

slightly lower F1 of the model on the BC5CDR dataset is most likely due to the model prioritizing

precision over recall, thus performing better on the NCBI dataset that has a smaller set of diseases

compared to the more diverse set of concepts appearing in BC5DR (753 vs 1082).

Additionally, our models consistently produce higher quality predictions than the baseline

methods in terms of the average distance to common ancestors. This indicates that when a

mention is mislabelled according to the ground truth, our predictions tend to be more related

to the original concept than the baseline methods. For example, on the NCBI disease corpus

85.5% of the errors made by our best model (MC-synthetic) are either a parent or child concept

of the ground truth concept (compared to 72.9% for DNorm and 81% for TaggerOne). This is

evident in behavior such as the mention “congenital eye malformations,” which has a ground truth

label of “Eye Abnormalities” (MESH:D005124), being mapped to “Congenital Abnormalities”

(MESH:D000013), a parent concept of the ground truth. This is a less egregious error than, say, if

it were mapped to “Crohn Disease” (MESH:D003424).

6.4.2 Effect of Coherence

We noticed a slight improvement of the model when coherence was added. There are a

few cases we saw where the model appeared to be utilizing coherence to assist with normalization

(Table 6.4). In these cases, the coherence model appears to be using the surrounding diseases
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to find the correct concept, whereas the mention only model, having only the mention text to

use for normalization, incorrectly identifies the diseases. For example, the mention only model

incorrectly learns to normalize “cystitis” to “Hemorrhage” instead of “Cystitis”. This is likely

caused by several examples in the training data where the mention “hemorrhagic cystitis” has

a composite label containing both the concept for “Hemorrhage” and the concept for “Cystitis.”

The coherence model is able to utilize the surrounding mentions of “bladder inflammation” and

“urinary bladder inflammation” to correctly identify the concept as “Cystitis,” which is directly

related to the urinary tract.

6.4.3 Joint Training vs. Separate Training

We next observed the effects of joint vs separate training of the two models. The results

for training with the three different collection types on the two datasets are given in Tables 6.5.

Overall, the model tended to perform better when trained jointly, with the distance combined

using the learned parameter β. We noticed that the model tended to favor the mention only model,

with β approaching 1.0 as training progressed. This suggests that the mention only (MO) model

trained with a larger dataset provides strong baseline performance for this task. We plan to further

study the utility of coherence for normalization in our future work.

Table 6.5: Joint vs Separate training of coherence and mentions on NCBI and BC5CDR datasets.

NCBI BC5CDR
Joint Separate Joint Separate

Model F1 Acc@1 F1 Acc@1 F1 Acc@1 F1 Acc@1
MC 0.820 0.865 0.825 0.857 0.830 0.868 0.826 0.865
MC-distant 0.833 0.870 0.805 0.837 0.834 0.880 0.820 0.865
MC-synthetic 0.840 0.878 0.781 0.808 0.830 0.874 0.826 0.867
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6.4.4 Data Augmentation

We studied the effect of augmenting the dataset with terms derived from the ontology

(Table 6.6), as well as the impact of distantly supervised data (Figure 6.2). We first performed

an experiment in which we removed all of the dictionary mentions (Si) and distantly supervised

mentions from the training data. The effect of this was a drop in the performance of the model by

over 12%. We observed that is was critically important to train with both the supervised mentions

as well as the synonyms from the ontology. Without the larger training set the model is unable to

generalize well to unseen data.

We next investigated how distantly supervised data contributed to the overall performance

of the system. Figure 6.2 shows the accuracy of the MC model versus the amount of supervised

training data used. The model was evaluated on the BC5CDR dataset. At 0% we only presented

the model with distantly supervised data and the names from the ontology. The model with no

supervised training data already achieved over 76% accuracy, which was close to the model

trained with only supervised data. Then, as supervised training data were added, the accuracy

of the model improved in an approximately linear relationship to the amount of supervised

training data provided. This shows that the model was able to learn from both the supervised

and distantly supervised data, as it is the combination of these two datasets (as opposed to each

dataset individually) that allows the model to achieve high perfomance.

6.4.5 Runtime Performance

Finally, we looked at the runtime performance of each of the models. We measured

the total time per training epoch of each model using only the supervised training data. All

experiments were run on the same machine with 3.2GHz 6-core 8th-generation Intel Core i7 and

16GB 2666MHz DDR4 RAM. We scaled the number of training samples i.e. number of articles,

from 10% to 100% in intervals of 10% performing 5 runs at each setting and considering the
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Figure 6.2: Test set accuracy in relation to the amount of supervised training data used on the
BioCreative dataset. At 0%, the model was only presented with distantly supervised data and
dictionary synonyms. In this setting the model already achieved 76% accuracy on the test set.

average. All of the models scale linearly with the size of the training set. TaggerOne was the most

demanding model of all three, eventually saturating all of the memory. DNorm, while efficient and

less memory hungry than TaggerOne, still took about 6 minutes per epoch to train when using half

of the training set and about 10 minutes per epoch for the whole set. NormCo outperforms DNorm

by taking 40 seconds per epoch when using half of the training set and around 85 seconds per

epoch when using the whole set. Overall we observed a 7.88x-15x speedup compared to DNorm

and a 2-3 orders of magnitude improvement over TaggerOne, making NormCo significantly faster

to train than both baseline approaches.
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Figure 6.3: Time (seconds) per epoch of training using subsets of the training samples. Averaged
across 5 runs at each setting. Used original source code from authors.

Table 6.6: Results when only coherence data is used for training (no dictionary synonyms or
distant supervision).

Dataset P R F1 Acc@1
NCBI 0.743 0.705 0.723 0.723
BC5CDR 0.785 0.730 0.756 0.774
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Chapter 7

Conclusion

Though deep models perform well in many domains, there is less evidence of them being

utilized well in the acceleration and improvement of the construction of biomedical knowledge

bases. This is due to the unique challenges in the biomedical domain, including a lack of a

large training corpora. In this paper, we propose a deep model which considers semantics and

coherence simultaneously to solve the problem of disease normalization, an essential step in the

automated construction of biomedical knowledge bases. We demonstrate that the MeSH ontology

and BioASQ dataset can be used as a useful source of additional data to support the training of

a deep model to achieve good performance. Finally, we show that a model based on semantic

features and coherence provides higher quality predictions for the task of disease normalization

over state-of-the-art solutions. Still, many uniquely challenging AI problems await to be solved

before fully automated construction of biomedical knowledge bases is possible. These problems

deserve more attention and investment from the AI research community.

This thesis, in full, is a reprint of the material as it appears in Wright, D., Katsis, Y.,

Mehta, R., & Hsu, C. (2019). Normco: Deep disease normalization for biomedical knowledge

base construction. Automated Knowledge Base Construction.The thesis author was the primary

author and investigator of this paper.
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