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Abstract 21	

 22	
           SAR86 is an abundant and ubiquitous heterotroph in the surface ocean that plays a central 23	

role in the function of marine ecosystems. We hypothesized that despite its ubiquity, different 24	

SAR86 subgroups may be endemic to specific ocean regions and functionally specialized for 25	

unique marine environments. However, the global biogeographical distributions of SAR86 26	

genes, and the manner in which these distributions correlate with marine environments, have not 27	

been investigated. We quantified SAR86 gene content across globally-distributed metagenomic 28	

samples and modeled these gene distributions as a function of 51 environmental variables. We 29	

identified five distinct clusters of genes within the SAR86 pangenome, each with a unique 30	

geographic distribution associated with specific environmental characteristics. Gene clusters are 31	

characterized by strong taxonomic enrichment of distinct SAR86 genomes and partial 32	

assemblies, as well as differential enrichment of certain functional groups, suggesting differing 33	

functional and ecological roles of SAR86 ecotypes. We then leveraged our models and high-34	

resolution, remote sensing-derived environmental data to predict the distributions of SAR86 gene 35	

clusters across the world’s oceans, creating global maps of SAR86 ecotype distributions. Our 36	

results reveal that SAR86 exhibits previously unknown, complex biogeography, and provide a 37	

framework for exploring geographic distributions of genetic diversity from other microbial 38	

clades. 39	

  40	
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Introduction 41	

 Marine microbes are important drivers of biogeochemical cycling and ecological function 42	

[1, 2]. Many studies have demonstrated the link between microbial genetic diversity and 43	

functional capacities [e.g. 3–7], as well as the dependence of microbial community structure and 44	

function on environmental variables [5, 8, 9]. However, the complexity of microbial 45	

communities and of their interactions with their environment limit our ability to link microbial 46	

genetic and functional variation across environments [10]. Furthermore, we have only limited 47	

understanding of the geographic distributions of genetic diversity within key taxa, the 48	

relationship of gene distributions to environmental conditions, and the manner in which these 49	

distributions may result in distinct ecotypes across different environments and regions. Our 50	

limitations in mapping microbial genetic diversity to geographic distributions restrict our ability 51	

to predict microbial ecotypes across the environment. Accurate models linking environmental 52	

and microbial variables may improve our current ability to incorporate biological inputs into 53	

ecosystem models, which often rely on simplified biological systems utilizing incomplete 54	

environmental relationships or imprecise evaluations of the functional capabilities of microbial 55	

communities at different locations [11, 12].  56	

 In microbial ecology, an ecotype [13] is often identified in practice as a group of closely 57	

related lineages that co-occur on the same spatial or temporal scale and are associated with 58	

particular environmental conditions. This contrasts with the classical ecological definition, which 59	

additionally specifies that an ecotype must be genotypically adapted to the environmental 60	

conditions it is associated with [14]. In microbial ecology, where community members often lack 61	

cultured representatives and experiments directly measuring adaptive capacity to manipulated 62	

environmental conditions are challenging to conduct, adaptation is often difficult to demonstrate 63	
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conclusively. In this study, we define an ecotype to be a group of lineages within a clade whose 64	

genomes contain a similar set of genes with a common geographic distribution associated with 65	

distinct environmental conditions. This definition is consistent with previous studies of microbial 66	

ecotypes [15]. Additionally, we require an ecotype to be taxonomically and functionally 67	

differentiated from other ecotypes, which may indicate an adaptive strategy specific to that 68	

ecotype, although we do not explicitly test for genetic signatures of adaptation. 69	

 The biogeography of marine microbes has been observed at scales from single depth 70	

profiles [4] to global surveys [16, 17], revealing spatial and temporal patterns in microbial 71	

community structure [16, 18], function [8, 19], and diversity [17]. Many marine microbial clades 72	

exhibit population structure that correlates with their differential geographic distributions [20]. 73	

Because most microbes have large pangenomes and flexible gene content [20], there is 74	

significant interest in elucidating the differential functional capabilities of microbial ecotypes 75	

and mapping their biogeographical distributions. Associating geographic distributions of 76	

microbial ecotypes with environmental conditions could illuminate the links between microbial 77	

community structure, function, and ecosystem processes, enabling predictions of biological and 78	

chemical shifts in the world’s oceans as environmental conditions change. However, there have 79	

been very few efforts to predict biogeographic patterns of genetic and functional diversity of key 80	

microbial taxa at large spatial scales in the ocean [17, 21]. 81	

 SAR86 is a ubiquitous marine heterotroph frequently found in surface waters, classified 82	

by their 16S rRNA gene similarity as a clade within the Gammaproteobacteria [22–24]. SAR86 83	

is a very diverse group with at least three subclades [23, 24]. Despite its ubiquity in marine 84	

systems, SAR86 eludes cultivation, and therefore knowledge of the ecological role of SAR86 in 85	

marine microbial communities is limited to evidence from genomes curated from single-cell 86	
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sequencing or metagenomic assembly [25–27]. These genomes suggest that SAR86 gene sets, 87	

and hence functional capabilities, vary greatly across locations, even though the clade is very 88	

commonly detected in marine environments. However, little is known about the manner in which 89	

the distribution of subspecies and the vast genetic diversity within the SAR86 pangenome may 90	

vary across large spatial extents, and what environmental factors may affect the geographic 91	

distributions of different SAR86 gene families. 92	

 In this study, we build a custom pangenome of SAR86 genes from metagenomic co-93	

assemblies and five available reference genomes. We then quantify the presence of each gene in 94	

the pangenome across diverse marine epipelagic waters using hundreds of publicly available, 95	

globally-distributed shotgun metagenomes. We find that geographic distributions of SAR86 96	

genes are strongly associated with environmental variables, and we leverage these associations to 97	

build machine learning models that accurately predict the presence of SAR86 genes from 98	

environmental data. Using global-scale environmental measurements from satellite and 99	

shipboard sources, we use our models to predict the global distribution of each geographically 100	

variable gene in the SAR86 pangenome at a 9km2 resolution. Our machine learning approach 101	

enables patterns in the environmental variables that best predict the distributions of SAR86 genes 102	

to emerge from the global metagenomic dataset without explicitly assuming a priori 103	

relationships between inputs and outputs. Analysis of the resultant models reveals five clusters of 104	

genes with unique environmental and geographic distributions, defining five ecotypes within the 105	

SAR86 clade. We conclude that patterns of taxonomic and functional enrichment across these 106	

ecotypes reveal previously underappreciated complexity in the geographic distributions 107	

underlying the pangenome of this otherwise ubiquitous marine heterotroph, with great potential 108	

to illuminate structure-function relationships across the marine environment. 109	
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Materials & Methods 110	

 111	

Creation of the SAR86 pangenome and global SAR86 gene presence/absence dataset 112	

 A custom pangenome of 51 711 nonredundant SAR86 genes was created with the 113	

MIDAS tool [20], from a combination of  genomic sources [23, 24, 25] as well as a massive co-114	

assembly of metagenomic sequences (Supplemental Text 1.1-1.2).  115	

 A global dataset of SAR86 gene presence/absence for each gene in the SAR86 116	

pangenome was then created. Shotgun metagenomic sequencing reads from the TARA project 117	

[9] were mapped to the SAR86 pangenome, and the resulting normalized read coverage for each 118	

gene was used to determine SAR86 gene presence or absence for all SAR86 genes at 198 TARA 119	

sites (Supplemental Text 1.3).  120	

 121	

Environmental data curation and processing 122	

 In order to build models predicting SAR86 gene presence from environmental variables, 123	

environmental data available at resolution between 9km to 1-degree and at global scale were 124	

curated from a combination of contemporary satellite data and historical averages of satellite and 125	

interpolated in situ measurements. A total of 51 environmental features were compiled (SI Table 126	

1, Supplemental Text 1.4). Normalized environmental feature values closest to each TARA site’s 127	

latitude, longitude, and, where relevant, sampling depth and/or sampling date (SI Table 2) served 128	

as the input feature vectors for each TARA site during model training. 129	

 130	
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Gene presence/absence models & predictions 131	

 Classification models predicting SAR86 gene presence or absence as a function of the 132	

environmental feature vectors across TARA sites were built for each of 24 317 geographically 133	

variable SAR86 genes, using logistic regression with L1 regularization (Supplemental Text 1.5). 134	

Geographically variable genes were defined as genes present at between 20-80% of TARA sites. 135	

155 TARA sites for which SAR86 was present and environmental data was available were split 136	

into training, validation, and test sets of 111, 13, and 31 sites respectively. The final models 137	

trained independently for each of the 24 317 geographically variable genes can be reproduced 138	

with code available on the associated Github repository [29].  139	

 140	

Clustering, global maps of ecotypes, & enrichment analysis  141	

 To identify groups of SAR86 genes whose geographic distributions are best predicted by 142	

similar environmental variables, we clustered genes into 5 clusters on the logistic regression 143	

model coefficients for each environmental feature using a k-means algorithm (Supplemental 144	

Text 1.6). Clustering on environmental features associated with gene models enabled us to 145	

identify the environmental variables underlying geographic distributions of genes, and also 146	

enabled the projection of predicted cluster distributions at global scales. To produce global 147	

projections (i.e., maps) of each SAR86 gene cluster, we predicted the presence or absence of 148	

each cluster at 9km2 resolution and global scale from the available satellite and historical 149	

environmental data ([29], Supplemental Text 1.6). A Jupyter notebook and a python script for 150	

reproducing clusters and cluster projections are available ([29]).  151	

 The distribution and enrichment across clusters were evaluated at the genome, contig, and 152	

functional level for two SAR86 reference genomes SAR86A and SAR86E, for the contigs of the 153	
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SAR86 co-assembly, and for the functional annotations to Pfam [30] for the SAR86 pangenome 154	

(Supplemental Text 1.7). This produced a vector of taxonomic/functional enrichment values 155	

associated with each contig/annotation for each cluster, with which the statistical significance of 156	

cluster enrichment could be tested (Supplemental Text 1.7). 157	

 158	

Results 159	

 This study first modeled the relationships between SAR86 gene distributions and 160	

environmental variables. We used a regularized logistic regression approach to identify the 161	

subset of environmental variables that are most important for predicting the geographical 162	

distributions of each gene and to estimate the strength of these gene-environmental variable 163	

relationships. Using unsupervised clustering of these association profiles, we then identified 164	

clusters of genes with similar environmental distributions. Clustering enabled us to identify the 165	

structure underlying the environmental gene distributions without explicit prior knowledge of 166	

expected SAR86 ecotypes. By using environmental variables available at global scale, we 167	

leveraged our gene models to predict the geographic distribution of these emergent ecotypes in 168	

regions far beyond the sampling locations specific to the TARA study. 169	

 170	

Accurate prediction of SAR86 gene distributions from environmental variables  171	

 SAR86 gene content in TARA Oceans metagenomes is associated with environmental 172	

characteristics of the sampling locations. We built a regularized logistic regression model for 173	

each gene that accurately predicts the probability of the gene being present at a given location as 174	

a function of the most predictive subset of environmental variables (Methods, Supplemental Text 175	

1.5). 176	
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 The resulting 24 317 gene models predict SAR86 gene presence/absence with an average 177	

of 79.4% accuracy in the test set, and a median test accuracy of 80.6%. Precision and recall 178	

measures are roughly even (0.85 and 0.81, respectively; SI Fig 3a), with an F1 score of 0.83. For 179	

21 264 out of 24 317 genes (87.4%), the models have accuracies in the test set that are an 180	

improvement over the majority class accuracy – the accuracy of the model if it predicts ‘always 181	

absent’ or ‘always present’, whichever is in the majority (SI Fig 3b). 182	

 As an additional test of the robustness of the models, the accuracy of predictions at those 183	

TARA sites that were not included in model development, where SAR86 was not present or were 184	

in very low abundance, was also examined. There were 20 such sites for which environmental 185	

data was available for all features. These 20 sites were primarily mesopelagic samples, 186	

distributed across all ocean basins (Supplemental Text 1.5). Across these 20 sites, the average 187	

accuracy of the gene models is 68.5%, while the median accuracy is 70.0%. While this 188	

performance is below that achieved at sites where SAR86 was present, it suggests that our 189	

models are able to make fairly accurate predictions even when extrapolating outside of the 190	

distribution of gene presence used in training. 191	

 An average of 17 of 51 environmental features is significantly associated with each 192	

gene’s distribution across TARA Oceans sites. Across multiple gene models, the same 193	

environmental feature was frequently selected during model training (SI Fig 4). These frequently 194	

associated variables include latitude, longitude, distance from land, ocean depth, and other 195	

features that might describe the general ocean basin or region of a sample; as well as pH, sea 196	

surface temperature, pycnocline depth, nitrogen:phosphorous ratio, cloud fraction, and other 197	

environmental factors that describe regions of the ocean that experience particular environmental 198	

conditions. 199	
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 While the environmental features that best predict gene presence/absence vary by the 200	

individual gene model, and many of the 51 environmental variables covary with one another, 201	

training logistic regression multiple times on the same data with different random seeds resulted 202	

in the same sets of environmental features being chosen as the most predictive for each gene 203	

model (see Jupyter notebook in [29]). This consistency suggests that the environmental features 204	

selected in each model reflect a true difference in predictive power between the selected features 205	

and those that were not selected, rather than a random choice among features that are roughly 206	

equally predictive. 207	

 208	

Clustering of SAR86 genes into common environmental distributions & global projections of 209	

their biogeographic distributions  210	

 The environmental features that best predict individual genes, and the strength of the 211	

coefficients associated with any particular environmental feature, vary by the individual gene 212	

model. However, there are apparent patterns among genes, with some groups of genes appearing 213	

to be predicted by similar environmental variables, as well as similar magnitudes and signs of the 214	

coefficients associated with those variables. These patterns suggest that genes that are predicted 215	

by similar environmental features occupy similar geographic distributions characterized by 216	

unique environmental conditions. 217	

            K-means clustering of genes by their logistic regression environmental feature 218	

coefficients identified five clusters within the SAR86 pangenome characterized by similar 219	

environmental distributions (Fig 1). The average environmental feature coefficient across all 220	

genes in each cluster (the “centroid”) demonstrates the distinct pattern of association with 221	

environmental features of each cluster (SI Table 3). 222	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/635185doi: bioRxiv preprint first posted online May. 10, 2019; 

http://dx.doi.org/10.1101/635185
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11	

 Each TARA site contains genes from a mixture of clusters, but the dominant clusters and 223	

the evenness of the proportion of each cluster is variable across sites (Fig 2, SI Fig 5, SI Table 4). 224	

For example, cluster 2 is strongly associated with longitudes in the western hemisphere, and this 225	

is also reflected across TARA samples, for which cluster 2 is present in highest proportions for 226	

those TARA sites sampled in the Pacific Ocean (Fig 2, SI Fig 5b). In contrast, cluster 3 genes are 227	

found in higher proportions at TARA sites sampled in the eastern hemisphere, reflecting their 228	

predicted geographic distributions (Fig 2, SI Fig 5c). 229	

 A Shannon diversity metric was used to measure the relative evenness and proportion of 230	

the five clusters at each TARA site (SI Table 4, Supplemental Text 1.7). The TARA sites with 231	

the lowest Shannon diversity include TARA station 93 at 34°S and 73°W off the coast of Chile, 232	

which is dominated by cluster 5 genes, and TARA stations 38, 42, 45, and 36 in the Indian 233	

Ocean, which are dominated by cluster 4 genes. The TARA sites with the highest Shannon 234	

diversity include many of the mesopelagic depth samples in the Pacific Ocean, as well as station 235	

70 in the South Atlantic basin at 20.4°S and 3.2°W. 236	

We next used the cluster centroids and global-scale environmental data to predict the geographic 237	

distribution of each cluster beyond the TARA sampling locations (Fig 3). These global 238	

projections reveal the differential distributions of SAR86 gene clusters. These differential 239	

distributions are reflected in variation across longitude (e.g. cluster 2 versus clusters 3 and 4), 240	

latitude (e.g. clusters 1 and 5 versus clusters 2, 3, and 4), and season (e.g. cluster 1, Fig 3). In 241	

each case, the highest magnitude coefficients for each cluster are suggestive of their predicted 242	

geographic distributions (SI Table 3, Supplemental Text 2.1). 243	

  244	
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Taxonomic enrichment & functional differentiation across clusters define SAR86 ecotypes  245	

 The cluster assignments of genes from the SAR86 reference genomes SAR86A and 246	

SAR86E show clear partitioning on taxonomic lines. Genes from each genome are assigned 247	

primarily to two clusters, and each cluster is dominated by one genome. SAR86A genes are 248	

partitioned primarily into clusters 4 and 3, with 493 and 118 out of the 622 SAR86A genes 249	

assigned to cluster 4 and 3 respectively, while only 4 and 7 genes were assigned to clusters 2 and 250	

5, and 0 genes to cluster 1. The 157 SAR86E genes were partitioned into clusters 1 and 5, with 251	

76 and 78 genes respectively, while only 2 and 1 genes were assigned to clusters 2 and 4, 252	

respectively, and 0 genes to cluster 3. 253	

 Clusters also show clear taxonomic differentiation at the contig level. Those genes that do 254	

not originate from one of the five SAR86 genomes constitute a total length of 22 Mbp 255	

originating from 732 contigs from the SAR86 co-assembly. All clusters are significantly 256	

enriched in specific contigs (p<0.001, Fig 4c), with a unique set of contigs enriched on each 257	

cluster. Genes from the same contig are generally assigned to the same cluster, such that gene 258	

assignments of almost all contigs, 540 out of 732 contigs, are enriched on only one cluster, 183 259	

contigs are enriched on only two clusters, and the remaining 9 contigs are enriched on 3 clusters 260	

(Fig 4). Where a contig is enriched, the enrichment is strong, with an average enrichment of 3.03 261	

and a standard deviation of 0.43, and ranging from 1.41 in cluster 4 to 5.25 in cluster 2. 262	

 The taxonomic partitioning of clusters is also evident in their distribution across TARA 263	

sites. First, the cluster proportions and the relative abundances of SAR86 genomes at TARA sites 264	

reflect the taxonomic differentiation of genomes across clusters. The clusters associated with 265	

SAR86A (clusters 3 and 4) are in higher proportions relative to the clusters associated with 266	

SAR86E (clusters 1 and 5) at TARA sites where SAR86A abundances are higher relative to 267	
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SAR86E (SI Fig 6, Pearson R2 = 0.70, P=1.56x10-26). In addition to this genomic evidence, the 268	

normalized read coverage across TARA sites for genes from the same cluster are more highly 269	

correlated with one another than genes from different clusters (SI Fig 7), as would be expected if 270	

genes belonging to the same cluster share a common taxonomic origin. This indicates that genes 271	

from the same genome are assigned to the same cluster, although a single cluster may be made 272	

up of genes from multiple genomes. Indeed, the 22Mbp of genomic material in the SAR86 co-273	

assembly is enough for at least 11 genomes of size similar to that of known SAR86 reference 274	

genomes, so multiple genomes are expected to be contained within the 5 identified clusters. 275	

These clusters are thus composed of genes that co-occur with one another across similar 276	

environmental contexts, and are taxonomically differentiated, but do not necessarily represent 277	

individual SAR86 genomes. 278	

 In addition to taxonomic enrichment across clusters, there is also significant partitioning 279	

of genes at the functional level, with differential enrichment of Pfam annotated genes across 280	

clusters (Fig 5). Pfams are enriched by an average value of 0.25 and a standard deviation of 0.10, 281	

ranging from 0.13 in cluster 4 to 0.32 in cluster 2. This enrichment is significant (p<0.01) for 282	

most of the clusters (Fig 5c). This result suggests that clusters 1, 2, and 4 have significant 283	

functional enrichment, while functional enrichment on cluster 3 is marginally significant. Genes 284	

from a particular Pfam are most often assigned to only two or three clusters (Fig 5b). While 285	

functional enrichment in general is less strong than taxonomic enrichment, this may be due to the 286	

relative coarseness of functional annotation compared to taxonomic assignments, and our 287	

inability to annotate many genes with confidence. 288	

 Enrichment of specific Pfams corresponding to some ecologically important functions 289	

indicate possible differentiation in ecological function between clusters. For example, glycosyl 290	
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hydrolase family 3 (Pfams PF00933, PF01915), which corresponds to exo-acting glucosidases, is 291	

enriched across clusters 3, 4, and 5, and depleted in clusters 1 and 2, while glycosyl hydrolase 292	

family 16 (Pfam PF00722), which corresponds to endo-acting glucanases, is enriched strongly on 293	

cluster 3, depleted in clusters 1 and 2, and near the null value for clusters 4 and 5 (SI Fig 8). 294	

Proteorhodopsin, a photoactive transmembrane proton pump first identified in bacteria in SAR86 295	

[31] and used by SAR86 for photoheterotrophic ATP generation, is enriched in clusters 3 and 4, 296	

and depleted in clusters 1, 2, and 5 (SI Fig 9). 297	

 298	

Discussion 299	

 While SAR86 is generally considered to be a ubiquitous heterotroph in the ocean, this 300	

study demonstrates that SAR86 harbors immense within-species genetic diversity that is strongly 301	

associated with environmental variables. These distinct environmental distributions of gene 302	

clusters define a deeper geographic variability within the SAR86 clade than previously 303	

appreciated. The three near-complete and two partial genomes available for SAR86 [25, 26] 304	

show high diversity within this clade; average nucleotide identity between genomes is between 305	

70-80% (SI Table 5). In light of this high diversity, it is perhaps not surprising that the 306	

geographically variable genes in the SAR86 pangenome can be decomposed into five distinct 307	

clusters with different geographic distributions associated with unique environmental variables. 308	

These clusters are differentiated at the taxonomic and functional level, which has implications 309	

for our understanding of the biogeography of SAR86, as well as its ecological role within 310	

microbial communities in the marine environment. 311	

 Using a data intensive approach to build machine learning models of the relationship 312	

between SAR86 genes and environmental variables at a global scale, we demonstrate how such 313	
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an approach can be used to better understand the factors shaping the biogeography of microbial 314	

clades. This approach can reveal patterns that would likely be missed at the 16S OTU or 315	

community level, or using data from a smaller scale. Particularly as metagenomics data become 316	

increasingly available in the future, such an approach holds promise for illuminating the 317	

relationship between microbial community structure and ecological function across broad 318	

taxonomic and spatial scales. 319	

 The results of this study identify clusters of genes that, while their phylogenetic 320	

relatedness is unknown, are taxonomically and functionally differentiated and occupy distinct 321	

environmental distributions. While the functional traits that confer niche restriction within these 322	

distributions is not obvious from our results, functional differentiation across clusters of glycosyl 323	

hydrolases (SI Fig 8) – an important class of enzymes for heterotrophic metabolism of 324	

polysaccharides – and proteorhodopsin (SI Fig 9) – a light-driven means of energy generation 325	

and enhanced nutrient and organic carbon uptake – suggest that genes associated with different 326	

clusters define distinct functional roles filled by each cluster . Glycosyl hydrolase families 3 and 327	

16 target many of the same substrates – β-linked glucans, including the abundant marine 328	

plankton storage glucan laminarin – but using different enzymatic mechanisms [32]. The strong 329	

enrichment in cluster 3, and strong depletion in clusters 1 and 2, of both families, compared to 330	

the enrichment of only family 16 in clusters 4 and 5, may indicate distinct ecological functions of 331	

SAR86 across clusters that utilize differing metabolic strategies and have disparate impacts on 332	

carbon remineralization. Proteorhodopsin genes are only enriched in clusters 3 and 4, the two 333	

clusters associated with lower latitudes and more abundant sunlight, and are depleted in clusters 334	

1 and 5, which are associated with temperate latitudes. This latitudinal pattern may also indicate 335	

distinct energy generation and metabolic strategies that correspond with the environmental 336	
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distributions of the clusters. Given the clear taxonomic and functional partitioning of the SAR86 337	

pangenome across clusters with distinct geographic distributions associated with unique 338	

environmental conditions, we conclude that the clusters described here define previously 339	

unidentified ecotypes within the SAR86 clade. 340	

 The geographic distributions of SAR86 ecotypes are consistent with previous studies. An 341	

investigation of temporal and geographic patterns in SAR86 noted that while the phylogenetic 342	

substructure of the SAR86 clade implies that it may be made up of multiple ecotypes, these 343	

could not be identified at the limited geographic resolution of the study [24]. The potential 344	

existence of SAR86 ecotypes was also noted in the apparent geographic distributions of 345	

SAR86A, B, C, and D genomes [25], which differed in their distributions across coastal versus 346	

open ocean sampling sites and along temperature gradients. This general observation is 347	

supported by the predicted distributions of the clusters identified in our study, for which three 348	

clusters (clusters 2, 3, and 4) are partially defined by their warmer, open ocean distributions, and 349	

two (clusters 1 and 5) are associated with cooler temperatures. The difficulty of identifying 350	

ecotypes in SAR86 contrasts with SAR11, for which distinct ecotypes have been identified 351	

within a constrained geographic sample because they were strongly associated with differences 352	

in depth and salinity distributions [15]. This study was able to identify SAR86 ecotypes, despite 353	

their partially sympatric distributions that cause single sampling sites to be composed of genes 354	

from multiple clusters, because of the larger data size and geographic distribution of the TARA 355	

dataset, and our unique approach to defining ecotypes based on quantitative models of 356	

environmental associations with geographically variable genes. Whereas ecotypes are typically 357	

identified by building a phylogeny based on core genes and observing whether environmental 358	

variables map over the phylogeny [e.g. 23, 33], our approach is quantitative, objective and 359	
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independent of a priori knowledge of phylogeny, and results in sets of genes and functional 360	

features that define the ecotype. 361	

 The taxonomic and functional differentiation of genes across SAR86 ecotype clusters is 362	

significant in the context of interactions between microbial community structure, function, and 363	

ecology. Both community composition [16–18, 34] and functional traits [3, 4, 8, 19] vary 364	

geographically and can be predicted to some extent by environmental variables [8, 17]. 365	

Taxonomic variation can lead to functional differentiation of microbial communities [4, 35, 36], 366	

which ultimately shapes biogeochemical cycling and ecosystem function; conversely, functional 367	

redundancy across microbial taxa can complicate the relationship between structure and function 368	

[37], with taxonomically variable communities playing similar functional roles [38]. 369	

Disentangling the relationship between environment, biogeography, structure, and function is 370	

therefore a significant ongoing challenge in microbial ecology [5, 7, 8, 10]. By focusing on 371	

patterns at the individual gene level within a single clade, we are able to uncover patterns in 372	

environmental distributions of genetic diversity at a scale that would normally be obscured by 373	

the complexity inherent to microbial communities. For example, previous studies have found that 374	

functional classifications of taxa are better predicted by environmental parameters than 375	

taxonomic 16S-based classifications [8]; however, these functional classifications are broad – all 376	

of the SAR86 pangenome would be classified as ‘aerobic chemoheterotroph’ – in order to 377	

control for the vast genetic diversity of traits in mixed microbial communities. It is likely that 378	

within the SAR86 pangenome there is ecological differentiation within this category that, for 379	

example, could lead closely related phylotypes of SAR86 that belong to different ecotypes to 380	

utilize different substrates [33, 39, 40]. This hypothesis is supported by the functional enrichment 381	

across our clusters and the differential enrichment of carbohydrate utilizing enzymes (SI Fig 8). 382	
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Previous analyses of the genomic context of SAR86 genomes also suggest that much of the 383	

diversity among SAR86 genomes may be driven by fine scale diversification of catabolic 384	

enzymes on loci associated with TonB dependent receptors [25], which are responsible for 385	

transporting carbon compounds (as well as metals) into the cell [41]. 386	

 The accuracies of our gene models are better on average than previous studies (0.79 vs 387	

0.48, [8]), which may similarly be due in part to our focus on modeling individual genes rather 388	

than whole communities. This difference in model accuracy may also be due to our consideration 389	

of different, and a larger number, of input environmental features. Here, the environmental 390	

features were chosen for their availability at global resolution rather than their human-predicted 391	

importance in regulating microbial function. These environmental features may be more 392	

predictive of the distributions of SAR86 genes, even if they are less relevant to biological 393	

function. The environmental factors that influence whether an organism grows in a particular 394	

location or community may be different from those that drive their function within that 395	

community: for example, an organism may only grow in fresh or saline waters, while the 396	

maintenance of a nitrogen fixation pathway depends on nutrients or other factors. It is important 397	

to note that those environmental features that are selected as most predictive for each gene model 398	

do not necessarily drive the growth of SAR86 in a causal manner, but implies only that these 399	

environmental features are good predictive proxies for the presence of that gene. The 400	

interpretation of the most predictive environmental features may vary depending on the feature; 401	

some features may be a proxy for biological phenomena, while others simply define 402	

oceanographic regions, or are proxies for other factors that cannot be measured that are true 403	

causal drivers of variation. The features chosen by the L1 regularization procedure are also likely 404	

biased by the scope of the samples used as inputs to the model. For example, the cluster 405	
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associated with western hemisphere longitudes is overrepresented in sites from the Pacific Ocean 406	

in the TARA expedition dataset. However, there are longitudes both east and west of the 407	

antemeridian in the Pacific, represented as negative and positive longitudes in the models, and it 408	

is a limitation of the TARA dataset that only samples from the eastern part of the basin, in the 409	

western hemisphere, are represented. This limitation results in an unnaturally sharp transition in 410	

cluster projections on the antemeridian in the Pacific Ocean for those clusters for which 411	

longitude is a strong predictor. This observation also serves as a note of caution for the 412	

interpretation of the global projections, whose predicted distributions will likely break down 413	

most in locations for which representation of samples is most sparse, e.g. in polar regions. 414	

 We are able to make accurate predictions of geographic distributions of SAR86 genes, 415	

identifying previously unknown biogeographical complexity within an otherwise ubiquitous 416	

heterotrophic clade and making global projections of the distributions of SAR86 ecotypes 417	

associated with distinct environmental distributions. Our modeling approach leverages a large 418	

dataset across broad geographic regions, demonstrating the potential of machine learning and the 419	

use of broader scale integrated datasets for marine microbial ecology. The five global ecotypes 420	

underlying the highly diverse SAR86 clade, the taxonomic and functional differentiation across 421	

ecotypes, and the distinct environmental distributions of SAR86 genetic diversity highlight the 422	

importance of SAR86 within marine microbial communities and broadens the context for 423	

interpreting their ecological impact across the world’s oceans. 424	
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Figure Legends 554	
 555	
Fig. 1 – Heatmap of model coefficients for each environmental feature (rows) and gene 556	
(columns), ordered by cluster (x axis).  557	
 558	
Fig. 2 – Relative proportion of clusters at each TARA site (vertical bars). TARA sites are sorted 559	
by longitude (x axis; negative numbers correspond to longitude west of the prime meridian). 560	
Blue, cluster 1; green, cluster 2; yellow, cluster 3; purple, cluster 4; pink, cluster 5.  561	
 562	
Fig. 3 – Global predictions of SAR86 gene cluster distributions for each cluster (rows) in 563	
January, April, July, and October of 2009 (columns). Red indicates a high confidence of a gene 564	
cluster being present, blue a high confidence of a gene cluster being absent, and white a low 565	
confidence prediction.  566	
 567	
Fig. 4 – Contig enrichment in clusters. (a) Heatmap of enrichment (red) or depletion (blue) of 568	
each contig (columns) across each cluster (rows). (b) Pie chart of the number of clusters in which 569	
SAR86 contigs are enriched. (c) Mean positive enrichment value, standard deviation of positive 570	
enrichment values, and the Mann-Whitney P value for significance of cluster enrichment, for 571	
each cluster. 572	
 573	
Fig. 5 – Functional enrichment in clusters. (a) Heatmap of enrichment (red) or depletion (blue) 574	
of the 405 most abundant Pfam families (columns) across each cluster (rows). Pfams are ordered 575	
left to right by the number of genes annotated to it, from the most abundant Pfams to the Pfams 576	
with as few as 20 genes annotated to it. (b) Pie chart of the number of clusters in which Pfams 577	
are enriched. (c) Mean positive enrichment value, standard deviation of positive enrichment 578	
values, and the Mann-Whitney P value for significance of cluster enrichment, for each cluster. 579	
 580	
 581	
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