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ABSTRACT OF THE DISSERTATION

Challenges in Security and Traffic Management in EnterpMisesvorks

by

Dhiman Barman

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2008
Dr. Michalis Faloutsos, Chairperson

Management of enterprise networks is a challenging prolblecause of their continued
growth in size and functionality. In this thesis, we propasd evaluate a framewortgodali
which addresses the challenges in (i) setthing thresholédad host anomaly detectors, (ii)
hierarchical summarization in data and (iii) applicaticaffic classification.Godaienables
IT operators to identify the end hosts that have been englayan attacker to launch attacks
andGodaiachieves it by diversifying anomaly detector configuratidhe general policies in
Godaiframework are holistic and achieve two goals: (a) balanedrtide-offs between false
alarm and mis-detection rates and (b) show that the benéfitdl diversity can be attained
at reduced complexity, by clustering the end hosts andimiggatcluster homogeneously.

The underlying principle of attack detection is to identifye traffic samples that change

significantly from normal traffic.Godai generalizes the concept for data with hierarchical

Vi



identifiers, e.g., IP prefixes, URLs. The main motivationgifig a parsimonious hierarchical
summarization of the measure attributes (e.qg., total bytegebsite hits) is that it eases the
burden on IT operators to interprete analysis repd@sisdai proposes efficient and provable
algorithms to produce parsimonious explanations from tiput of any statistical model
that provides predictions and confidence intervals, makiwidely applicable.

Finally, Godaitakes a step towards associating applications to trafficsfenvd enable the
operators to understand the profile of the end hdstlaicritically re-visits the existing ad
hoc techniques of traffic classification approaches basddaasport layer port483], host
behavior[68], andflow feature4105] and analyzes the effectiveness of different appresch
The results allow us to answer questions about the bestablaitraffic classification ap-
proach, the conditions under which it performs well, and strengths and limitations of
each approach. The multifarious functionalities all@adaito be a viable solution in enter-

prise network management.
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Chapter 1

Introduction

Management of enterprise networks is a complex task. N&twanagement entails config-
uration, provisioning, monitoring, testing of differeneétaork entities and post-processing
of logs. This thesis is concerned with three thenoesifiguration change detection in traffic
andtraffic classification Regardingconfiguration our focus will be on configuring the end
host anomaly detectors. The underlying principle of at@efection is to detect deviation in
traffic profile. The component othange detection in traffiextends the idea of change de-
tection for hierarchical data. Finally, we emphasize omidging applications (e.g. HTTP,
P2P) to know the end host traffic profile.

One of the important goals of the IT operators is to keep therprise networks secure
through proper configuration of the network entities sucbrashosts, servers, routers, links
etc. In order to do the network configuration, the IT opeatme a variety of tools both from

the commercial and public domain [7, 6, 9, 1]. Such tools liegIT operators to certain



extent but despite such efforts, the IT operators find iteaasmgly difficult to manage the
enterprise networks. The online report [70] stated that 8%he IT budget in enterprise
is devoted to maintain just the status quo, but configuragioar still accounts for 62% of
network downtime. The IT operators manage a large numbeniitiess and often carry
out unplanned configuration tasks. With rising securitg#ts to network resources, the IT
operators need to manage all the end hosts in an enterprise wbeting enterprise wide

policies.

1.1 Configuration Management

In this thesis, our focus is on configuring the intrusion detam systems deployed at the end
hosts, so that the IT operators can effectively and effityatgtect if the end hosts have been
enslaved for a botnet by external attackers. Botnets areracig threat in the Internet
today [8, 12, 17, 55]. A botnet is a collection of compromisexsts under a commmon
command and contrdbotmaster. The aim of the botmaster is to recruit unsuspgend
hosts to form an array of hosts and then use their collectoveep to launch attacks and
commit other illegal activities [86]. The majority of botisdoday engage in spam generation
and Distributed Denial of Service(DDoS) activities. Deime and mitigation of botnet-based
attacks is a challenging task [50, 53, 52, 48, 65, 74, 49, A6¢ording to recent estimates,
the number of compromised hosts in a botnet range from 6amil[iL8] to 150 million [21].

In addition, the number of vulnerabilities in the operatsygtems keeps increasing which



enables the botmaster to find new recruits. The collectiveep@f the numerous recruited
hosts in an enterprise could be tremendous. In May 2006, Daga$hst Blue Security, an
anti-spam company was forced to shut down its services. hil 2p07, a sustained attack
on the goverment and business websites in Estonia alsoltirthgycountry on its knees.

This thesis proposes a design of a framework that enablesntieeprise IT operators de-
tect when its end-hosts participate in malicious actigiiech as DDoS. In modern enterprise
networks today, each employee is typically given a laptap ihconfigured by the enterprise
IT department. The IT departments employ a standard buileMeryone in order to simplify
the management of a large number of machines. One of theaeftapplications usually
installed on such laptops is a Host Intrusion Detection@ygiHIDS) and/or a personal fire-
wall [95, 90]. HIDS are used to control a variety of securitiaeks. In addition to signature
detection (that protects against known worms and viruseahy HIDS systems also have a
set of features (system parameters) they track on ongoingtonimg network traffic. The
effectiveness of these HIDS depends on how these HIDS anadndlly configured (e.g.,
how their threshold values are set) as these HIDS raisesaad send to the IT operators.
This thesis takes a first look at the issues on the implicatodmlifferent ways of configuring
the HIDS.

When the configuration of the end-hosts is a concern, ustiay\T operators go for
simplicity and set the same value for the triggering thrésifior any particular feature for
each user (“homogeneous” policy). In this thesis, we focuthe problem of setting thresh-

old values in the end-host anomaly detectors acrag®ap of employees when the choice



is guided by a global enterprise “policy”. The HIDS featuves examine in this thesis are
those that could reveal botnet behaviors such as DDoS, splated behaviors and scanning
activities. Such features (e.g., as used on Bro [90]) irekire number of TCP connections,
UDP connections, distinct connections, HTTP connecti8MTP connections etc.

In order to understand the impact of the homogeneous patieysa a population of em-
ployees, we study logs (i.e., tcpdump) from 350 employe®fapfrom a large enterprise.
The dataset is unique because the data is collected di@ttilye laptops themselves, thus
allowing us to capture all of the traffic generated by a usgardless of which network he
or she may be attached to. Using Bro [90], we process the log®hbtain the flow records
and their associated features (e.g., protocol, start &ame time etc). We uncover that there
is a great deal of user diversity in the “tail” (loosely speal of the distribution of HIDS’s
features. By this we mean that the boundary between “norarad™atypical” values of var-
ious features can differ by 3 to 4 orders of magnitude acrassisers. (We call this “fringe
diversity”.) Thefirst consequence of enforcing a homogeneous policy upon a seecf that
are inherently diverse (in terms of what matters for anondalgction), is that the individual
false positive and false negative rates differ dramagaatioss users. This is an unintended
ramification of a policy that focusses on ease of manageniérg.secondconsequence is
that the employees’ behaviors affect each others’ perfoomaFor example, when a single
threshold value is computed based upon looking at data fibemgoloyees simultaneously,
then clearly a small number of heavy users will bias the cdatmn, leading to thresholds

that are detrimental to light users. There is a need to desigeneral approach which can



address the above two consequences.

1.1.1 Diversity in Configuration

Our goal is to address the challenges arising due to homageneonfiguration, control
management complexity as well as balance between false @ad mis-detection rates.
Our proposed policies contain two components: First, arpater that explicitly states the
relative importance of false alarms and mis-detectiorsrateas to gain better control over
this balance. Second, a grouping component defines whéthersers are treated as a one
single homogeneous group, a fully-diverse group (each hmslengs to this own group), or
whether users are clustered into a small set of behaviompgrolihe grouping component
essentially states the level of granularity of diversitghwvhich an IT department views its
employees; none, full or partial diversity. We evaluatesthpolicies, and in doing so, we
raise an awareness of a variety of issues and trade-offsaitisat to affect the outcome of
such policies.

In a full diversity policy, each user gets a personalizedigonation of its trigger thresh-
old. We quantify the benefits of a diversity policy which indes a better balance between
false alarms and mis-detection rates for a vast majorith@tiisers. In addition, we illustrate
that even in the presense of attackers with full knowledgthefusers’ behaviors, a diver-
sity policy is more effective in weakening DDoS attacks thamomogeneous configuration

policy. Next we ask two questions:

1. How broad are the conditions under which the benefits ofiiversity arise ?
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2. Isitenough for there to be a great deal of diversity in disege behavior ?

We use simple utility functions to capture the trade-offsaeen false alarm and mis-
detection rates, and uncover that the choice of utility flumchas a strong impact on whether
or not a diversity policy actually generates substantialdhés. Most enterprise IT depart-
ments have a hard time articulating what they consider nmopartant, the reduction of false
alarms or mis-detection rates. This classic trade-off res@lusive to quantify in practice.
However we show that this choice is critical for the selattba policy when setting thresh-
olds for a group of employees. A diversity policy is most Hesal when reducing false
alarm rate is considerably more important than reducingdatsction rate.

As mentioned above, another pitfall of applying a homogesegmlicy to a set of diverse
users, is that the behavior of some employees can end uprinfhgethe configuration of
other employees. Trading off the performance of some enaglonat the expense of others is
an issue that should be brought to bear much more expliditig choice between a homo-
geneous policy and a full diversity one thus reveals a kejet@tf: the homogeneous policy
achieves simple management but the employees end up infigerach others performance,
whereas a diversity policy breaks the dependency acrostogegs but may lead to more
complex management.

Having understood the benefits of diversity, we then coretuet survey of a dozen IT
personnel across 5 organizations (4 corporations and ®isiy). All but one of them were
resistant to the idea of configuring the end-hosts with dbffié threshold values at which
alarms should trigger. The personnel in our survey expthiheir resistance originates from

6



a lack of: (a) human resouces to individually configure the leosts and (b) a lack of under-
standing as to how to interpret alarms coming from differaathines if they fire at different
values. We believe that these two concerns can be easilgawer. First, HIDS can clearly
be configured by automated algorithms. Moreover, when Bystiwday are evaluated in
greater depth after alarms fire, other data is collectedu® igformation about activities on
the machines at the time the alarm fired. This practice shiadiditate alarm interpreta-
tion. However, despite these seemingly simple fixes to tloé causes of their resistance,
the adamant sentiment about simplicity of management mibanshis industry practice is
unlikely to deviate in any large way from current practice.

Can we reconcile the benefits of diversity with the compiegitenterprise network se-
curity management? We propose an intermediate solutiongaet homogeneity and full di-
versity, namelypartial diversityin which employees are classified into a small set of groups
and within each group, all laptops are configured the same Waydesign an algorithm for
computing thresholds under this policy. We demonstratevita a small number of groups,
the partial diversity policy can achieve most of the benefita full diversity policy.

In our conversations with our IT staff, they admitted thatytkvere much more amenable
to the idea of working with a small set of configurations th@aild be distributed amongst the
employees. Therefore, this thesis addresses the metlgydolothreshold setting for HIDS
features in a new light, namely, in the context of entergrib@at must develop configuration
policies that lead to an appropriate set of group-depertieegholds. The thesis reveals the

issues and trade-offs that surface due to user diversity.



1.2 Hierarchical Change Detection

Currently, the enterprise IT operators monitor the traffding through a network and an-
alyze it to understand the underlying communication tresmis usage [83, 104, 103, 36].
The underlying principle of attack detection is to detecmalpes in traffic profile which is
significantly different from normal traffic. With this motion, we generalize the concept of
change detection in the context of data where the identdierdierarchical in nature. Data
with hierarchical identifiers occurs in different contesteh as URL, IP prefix, Geographical
locations, time etc. Our goal is to produce traffic explaoai(i.e., reports) that match the
underlying trends and changes. For example, instead oftregdeavy hitters, or hundreds
of smalls flows or the amount of traffic to TCP port 80, our metheports that most change
in traffic count has happened for certain group of clientsel servers. Dimension attributes
in IP traffic are typically hierarchical, and a variety of &épations call for summarizing the
measure attributes along the hierarchies of these aggb#or example, the total volume of
traffic (in bytes or packets) can be summarized hierardyitgl source IP or destination IP
prefixes (say of length 8 to 32), by time (e.g., year/montpituaur), or by port number (e.g.,
port number 80) or the set of all possible values(*). Welbwmn services are allocated port
numbers below 1024 and ephemeral port number above 1028@cated to new sessions
on-demand, we can define hierarchy on the set of high pert023) port numbers and the
set of low ports £ 1024) numbers.

Existing tools like FlowScan [4], Cisco’s FlowAnalyzer arsed by the IT managers to



construct a model of application usage by classifying taticording to the IP header fields.
Analysis using such tools could reveal that 90% traffic is@UECP and 75% of TCP traffic
is due to HTTP. In the context of datamining, existing to®8,[100] help to summarize and
navigate the data at different levels of aggregation (éogal traffic in each prefix during
July 2008) viadrill-down androll-up operators. These tools are also used to characterize
changes in the hierarchical summaries over time (e.g. réfiectin July 2008 compared to
their expectations over different prefixes), to detect aml@s and characterize trends. When
it comes to the summarizing the changes, there are conflicgsues of readability, com-
pactness of the reports, robustness and theoretical digsim&he current summarization
tools [83] have limitations that they report excessive tieta explaining traffic trends and
usage — such as TCP traffic contributes 90% flows or 153.3®1@sults in 30% of traffic
etc. However, when the data items or identifiers is large®ntimber of identifiers at which
changes happen is large, IT operators will need compacaeapbns. By “change” we mean
when the total measure values differ significantly from thgeeted values. Thus, the traffic
analysis involves two conflicting issues: the verbosityh& teports and human readability.
More explanations can provide better understanding butcale the reports harder to read
and interprete. One can make the explanations verbose biglprg a separete ad hoc expla-
nation for the observed change at each prefix. Explanatiansiso bgarsimoniouge.g.,

a single explanation for multiple observed changes suclitalsuding a drop in traffic at a
large number of prefixes to network outage). Parsimonioptaeations are obviously more

desirable and more effective than (ad hoc) verbose exptarsaiThus, the main challenge is



how to summarize the significant trends and report the sggmfichanges.

1.2.1 Effective Explanations of Change

In this thesis, we are interesteddarsimonious explanatiortd changes in measure attributes
(e.g., total bytes or website hits) aggregated along arcaged dimension attribute hierar-
chy (e.g., IP prefix or URL). Existing work has addressed #szi¢ of explaining change
between OLAP (Online Analytical Processing) aggregateteims of subaggregates [99]
but these changes are expressed as outliers of point-tb-gaddaggregate comparisons. We
seek a more holistic explanation. We propose a natural ntbdeimakes effective use of the
dimension hierarchy and describe changes at the leaf nddhs bierarchy (e.g., individ-
ual IP addresses) as a composition of “node weights” alonf eade’s root-to-leaf path in
the dimension hierarchy — each node weight constitutes plamxtory term. For example,

overall traffic volume in IP prefix /24 increased by a factotloke Figure 1.1 shows an ex-

1.2.3.4/29 1.2.3.4/29

1.2.3.4/30 1.2.3.10/30

1.2.3.4/31 1.2.3.4/31

1.2.34 1237 12310 12311 1.2.313 1.2.34 1237 12310 12311 1.2.313
(a) Long-term summary (b) Short-term summary

Figure 1.1: Measure counts in IP prefix hierarchy at two diffe rent snapshots

ample of IP prefix hierarchy where the number inside the&srcépresent the traffic counts.

10



The leaves of the tree represent prefix /32 and the root iesepted by (*). The child node
counts are aggregated and assigned to the parent. Formallssume that the dimension
hierarchy remains fixed over time, and each data item (eflpwadentified with an IP) has a
timestamp and is associated with a leaf node (e.g., an ohaaiP address) of the hierarchy.
A hierarchical summary or snapshot (over some time intgthiah associates with each node
in the dimension hierarchy the aggregated value of the meadtribute (e.g., total traffic in
bytes or packets) of all the data items (with a timestamp at tilme interval) in its subtree.
Figure 1.1(a)-(b) correspond to different snapshots oiffardnt intervals of time.

If we consider two snapshots, it is clear that the changesdsat the trees can be ex-
pressed over the different levels of the dimension hiesaicmumerous possible ways. For
example, the traffic volume at the prefix 1.2.3.10/31 inaegsfold, we can model this
change (among other possibilities) as (i) a Weigh§ @dr IP addresses, 1.2.3.10and 1.2.3.11,
or (i) a weight of 3 at IP prefix 1.2.3.10/31 and a Weight%o:ht the IP addresses, 1.2.3.10
and 1.2.3.11. The important question is, what are the nodénihierarchy that explain the

(most significant) changes parsimoniously.

Solution Approaches

Here we discuss different approaches to assign weights toaties in a hierarchy. A straight-
forward and intuitive attempt at identification of parsinmurs explanations is top-down
approach Starting from the roots of the two snapshots, compare ggtgevalues of the

measure attributes at corresponding nodes. If the diféerbetween the aggregates is com-

11



pletely “explained” by the composition of node weights @dhe path from the root to the
parent of that node, no additional node weight (or explanyatrm) is needed at that node.
Otherwise, the node weight is set appropriately to the whffgal value with respect to the
composition of weights along nodes for ancestor path froenrtot to that node. While

straightforward and intuitive, such an explanation can d&slg shown to not be optimally

parsimonious.

For example, the IP prefixes 1.2.3.10/31 and 1.2.3.13/3d tesbave the same traffic
count but now the IP prefix 1.2.3.13/31 exhibits double ttafbunt while the other IP prefix
exhibits no change. A top-down explanation would attritaule5-fold (3/2) increase at the IP
prefix 1.2.3.10/30, and then would have to have to additierplanations at each IP address
1.2.3.10/31 and 1.2.3.13/31 to explain the difference Wwith3.10/30 level explanation thus
needing 3 explanatory terms. An optimally parsimoniouslaxgtion, on the other hand,
needs only 1 explanatory term - a 3/2-fold increase at thenafamus prefix 1.2.3.13/31.
This explanation is parsimonious in the sense that changeaggregated with maximal
generalization along the dimension hierarchy.

We envision that in many practical cases the IT operatorg teesompare a hierarchical
snapshot with another snapshot whose values are outputtatistisal model. Such an op-
eration would be particularly useful, for example, whendating a forecasting model, or to
identify conditions that are not properly modeled or to pdevparsimonious explanation of
anomalies that are expected to be related through the tiecaf structure. In such scenarios,

the use of statistical modeling would provide an expectddevéor each leaf of the hierar-
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chy, with associated confidence intervals. Our proposethadetan provide parsimonious
explanation after incorporating uncertainty in the fostsaquantified through confidence in-

tervals. Our frameworkiodaimakes the following contributions towards change detactio

s We formalize the notion of parsimonious explanation of gewhen comparing two
hierarchical summaries, or when we compare a snapshothattesults of a forecast-
ing model. To account for confidence intervals provided bgradasting model, and
to deal with noise, our model allows for a maximum toleranegveen the observed

change and the root-to-leaf explanation.

s We prove that optimally parsimonious explanations of owbpgm can be computed
efficiently in polynomial time, proportional to the prodwdtthe number of leaves and

the depth of the dimension hierarchy.

s To complement our conceptual and algorithmic contribigjome conduct a statisti-
cally sound experimental evaluation to understand the®fEness and efficiency of
our approach on real hierarchical datasets. We use a pwediobdel based on an
exponentially weighted moving average (EWMA), which is alidused in time series
applications. Our experiments demonstrate the effeats®and robustness of our pro-
posed approach for explaining significant changes, and shaint is more efficient

than the worst-case bounds in practice.
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1.3 Application Traffic Classification

In order to understand the application footprint that the kasts generat€&odai proposes
to critically re-visit application traffic approaches. Tiraclassification can help the opera-
tors to study the breakdown of traffic volume (e.g., per protoport, subnet) as well as to
identify new traffic patterns such as network worms [84] cerp®-peer applications (e.g.,
BitTorrent, Skype). The goal ddodaiis to analyze the raw traces which contain IP head-
ers or TCP headers and discover the underlying applicatibinsh generate the traffic. The
knowledge of what application traffic is flowing through eptése network can empower
the IT operators to provision the network entities and s&wi For example, the operators
can limit the bandwidth allocated to the peer-to-peer @afilbns or access to YouTube site
during peak hours. Political, economic, and legal strugigheer appropriate use and pricing
of the Internet have brought the issue of traffic classificato mainstream media. Three
of the most important and acrimonious tussles are: (a) theshiring tussle, between the
file sharing community and intellectual property repreatmés RIAA (Recording Industry
Association of America) and MPAA (Motion Picture Assoctatiof America); (b) the battle
between malicious hackers, e.g. worm creators, and sgenahagement companies; and
(c) the network neutrality debate, between ISPs and cdstwmice providers.

In all cases the algorithmic playing field is traffic classfion: stopping or deprioritizing
traffic of a certain type, versus obfuscating a traffic prablavoid being thus classified. Traf-

fic classification is also relevant to the more mundane bugs®important task of optimizing
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current network operations and planning improvementsturéunetwork architectures. Ear-
lier the IT operators could rely on the use of transport Igget numbers, typically registered
with IANA [63] to represent a well-known application. Figut.2 shows the TCP header [13]
and UDP header [14] and the bit fields associated with thecsamd destination ports. More
recently, increasingly popular applications such as thleaesupport peer-to-peer (P2P) file
sharing, hide their identity by assigning ports dynamicaihd/or using well-known ports
of other applications, rendering port-based classificatss reliable [67, 81, 102]. A more
reliable approach adopted by commercial tools [3, 11, 1§peats the packet payloads for
specific string patterns of known applications [31, 62, 68, 82]. While this approach is
more accurate, it is resource-intensive, expensive, spalerly to high bandwidths, does not
work on encrypted traffic, and causes tremendous privacyeyad concerns. Two proposed
traffic classification approaches that avoid payload ingpeare: (1) host-behavior-based,
which takes advantage of information regarding “sociaraction” of hosts [68, 64], and (2)
flow features-based, which classifies the flows based on floatidon, number and size of
packets per flow, and inter-packet arrival time [80, 82, 95,40, 41, 37, 113, 44, 109, 77].
Despite many proposed algorithms for traffic classificatitre IT operators do not have

definitive answers to some pragmatic questions:

s What are the best available traffic classification approsiéhe

= Under what link characteristics and traffic conditions deytperform well ? Specifi-

cally, which approaches are well-suited for classifyinteeprise traffic ?
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s What are the fundamental contributions and limitationsheféxisting approaches ?

Rigorous comparison of algorithms remains a challengehiaet reasons [43] and has
been missing in the community. First, there is no publiclgikable trace data to use as a
benchmark, so every approach is evaluated using differaces, typically locally collected,
often without payload (ground truth). Second, differemht@iques track different features,
tune different parameters and even define flows and applicadifferently. Third, authors
usually do not make their tools or data available with thegults, so reproducing results is

essentially impossible.

1.3.1 Traffic Classification Demystified

In order to calibrate the existing approaches, we have adedwa comprehensive evaluation
of three traffic classification approachesrt-basedhost-behavior-base@ndflow-features-
based We evaluate each technique on a broad range of data se¢s jgayload traces col-
lected at two backbone and two edge links located in Japare&K@nd the US. Diverse
geographic locations, link characteristics, and appbecetraffic mix in these data allow us
to test the approaches under a wide variety of condition®rdier to avoid “tool-bias”, we
evaluate the performance of CoralReel [83](port-based)NB [68] (host-behavior-based)
and seven commonly used machine learning algorithms @efstvior-based). Our analysis
reveals the advantages and limitations of each approackvarmopose solutions to over-
come the limitations. Our study leads to insights and recendations for both research and
practical application of traffic classification.
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m Support Vector Machine (SVM) is accurate

One of the interesting results is that we find Support VectacMnes achieving highest
accuracy on every trace and for every application. On aegtthg accuracy is- 98.0

when SVM is trained with more than 5,000 flow (2.5% of the sizthe test datasets).

m Choice of features

Choice of the right features is important. We find a set of Isstlirectional dominant
key flow features that appear consistently within an appboaacross our traces; ports,
protocol, TCP flags, and packet size. A limitation of the pvag attempts based on
flow features [80, 82, 96, 26, 40, 37, 113, 44, 109, 77] is thay wse bi-directional
TCP connection statistics which are not applicable to URRitr(or traces collected in
backbone links). Backbone links (although not directlgvant to enterprise network)
see both directions of traffic under (atypical) symmetrigtiog conditions. However,
the links in an enterprise networks see bi-directional flowe observe thatort num-
ber information is one of the most important discriminatorstticalarly when used
in combination with other flow features such as packet sifmmmation, TCP header

flags and protocol.

m Host-behavior approach is effective in enterprise network s

We find that the accuracy of host-behavior-based methods asiBLINC strongly
depends on the location from which the trace is collectedodétion is the border

link of a singled-homed edge network, BLINC performs weltlas trace will contain
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bi-directional flow information of the enterprise end-teosHowever, BLINC is not
recommended, if a trace (i) contains a small portion of belral/information for each
host and (ii) misses one direction of traffic. To mitigate lingitation of BLINC on

backbone traffic classification, we extend BLINC to idensfyme application traffic
(e.g., Web, P2P) even when both directions of flows are natrebd. This process

significantly improves the accuracy on backbone traces Ionyuach as 45%.

1.4 An Overview of This Thesis

This thesis is logically divided into several chapters. édisrthe chapter-by-chapter break-
down of the text.
Chapter 2 Related Work

This chapter discusses the related work, the limitatiorts strengths of different ap-
proaches.
Chapter 3 Diversity in Configuration

This chapter discusses in details the concept of divergvy.also describe the network
setup and data collection process. Initially the chapteu$ses on the percentile detector
commonly used by the operators. Then, we propose new pokrid finally validates the
proposals through evaluation on real traces.
Chapter 4 Hierarchical Change Explanation

This chapter discusses in details the concept of hieraattiange and explanatory terms
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in hierarchical summary. The chapter describes sevenalisnlapproaches and presents an
optimal algorithm to compute changes in hierarchical sumymBhe chapter introduces the
application of Exponential Weighted Moving Average (EWMgoothing filter to predict
measure values at the leaves of a hierarchy along with alesarated confidence levels.
Chapter 5 Application Traffic Classification

This chapter critically re-visits three application traffiassification approaches. Through
a detailed evaluation on variety of traces, different intfigl conclusions are made which can
be useful for the operators. The evaluation can lead onederstand the limitations and
strengths of different approaches.
Chapter 6 Conclusion and Future Work

This chapter summarizes the contributions made in thegh@g discuss possible impli-
cations of different assumptions made in the thesis. Weudssgarious future avenues into

which this thesis can lead to.
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E 0x40 ECN Echo (ECE)
U 0x20 Urgent
A O0x10 Ack
P 0x08 Push
R 0x04 Reset
S 0x02 Syn
F 0x01 Fin

ECN (Explicit Congestion
Notification). See RFC
3168 for full details, valid

0 End of Options List
1 No Operation (NOP, Pad)
2 Maximum segment size

Number of 32-bit words in
TCP header, minimum
value of 5. Multiply by 4 to
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RFC 793

states below. 3 Window Scale
Packet State  DSB. ECN bits 4 Selective ACK ok
Syn 00 11 8 Timestamp
Syn-Ack 00 01
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Mo Congestion 01 oo
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Reciever Response
Sander Response
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(a) TCP header

Please refer to RFC 793 for
the complete Transmission
Control Protocol (TCP)
Specification.

Copyright 2004 - Matt Baxter - mjb@fatpipe.org

Jource Port (16 bits)

Destination Port (16 bits)

Length {16 bits)

Checksura (16 bits)

Diata....

(b) UDP header

Figure 1.2: Different fields in the (a) TCP header and (b) UDP h
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Chapter 2

Related Work

This chapter describes the background and current workioBez: 1 discusses existing work
on botnet attack prevention measures. Section 2.2 disstlgsescent work on change detec-
tion in (non)hierarchical data. Section 2.3 discusseséhent work on traffic classification

along with their advantages and disadvantages.

2.1 Botnet Protection

Different approaches have been suggested in the literadutetect and mitigate DDoS at-
tacks (due to botnets) [50, 51]. IT operators commonly uaeHbists to block connections.
However keeping the blacklists up to date is challengingrédweer, an attacker can exploit
a system if the white list information is compromised. Akson popular sites like Google
or Yahoo! will be hard to detect.

With the growth of encrypted traffic in a network, it becomef§icult for in-network
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analysis [107], calling for more research on HIDS. HIDS gy have two components,
signature detection and anomaly detection. Signaturet@beplays an important role, but it
is not useful in detecting previously unknown attacks. Aabnadetection tracks pre-defined
features of the end-host traffic, defines normal behaviorthed raises alerts when abnor-
mal behaviors are observed. In the context of a program #wecwone class of anomaly
detectors has been used where alerts are raised when ruéegected program behavior
are violated [107, 58, 47, 38]. In another class, anomalgalets build statistical models
of application layer or networking layer traffic[54, 65, 74flowever, the drawback of this
class of detectors is that they, routinely, generate fd®ens. However, it is important for
the enterprise to control the false alarm rate of the anonhetigctors and prevent IT security
operations center (SOC) from getting overwhelmed withefalgrms. In this thesis, we use
the example of statistical anomaly detectors at the netwgilyer that are intended to help
thwart Distributed Denial-of-Service (DDoS) attacks énftconducted through botnets).
According to [49], there are three approaches for stoppotgdis: (1) stopping systems
from being infected; (2) detecting tltmmmand and contrdIC&C) communication within
botnets; and (3) detecting the secondary features of battiohs such as the attack behavior
itself. Antivirus software addresses the infection problevhile other research activity (such
as [65]) studies how to detect the command and control chactieity. In [49], the authors
have called for more research to be done in the third appraadhour thesis falls into that
category. Several proposals exists which opt for appraathand 2). Our thesis orients in

the direction of detecting the secondary features of betindns. BotSniffer [50] falls under
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the second approach and it proposes a framework to detewtlicdffic within a network by
exploiting the spatio-temporal correlation and similastof responses to control commands
issued by botmaster on C&C Channels. The idea in the papbaidbts within a botnet
act in a synchronized fashion in that they execute the sammenemd (e.g., do scanning or
gather system information), and report the results to thimbster. The author observe the
responses the commands that bots take from a centralizeer serer HTTP or IRC and
find two invariants. The bots in a botnet remain connectedh¢oG&C servers to obtain
commands. Since the bots perform similar tasks, their resggto the server bear strong
similarities and the network traffic has crowd-like behavio

Several solution approaches address the botnet mitigdtrongh changes or additions
in network architecture or configuration. Authors in [55)Bastudied the characteristics
of Storm Worm botnet and have suggested that polluting tméeos in Storm P2P net-
work might deter botnet zombies from using P2P network. Heaiis that pollution in the
search content will deter the bots from searching (basedegs)kand therefore stop them
from propagating. In another approach [46], the authorpgse a network architecture in
which an end-host communicates with a destination anddrafforwarded through random
intermediate nodes such that an attacker can cause onlgtefraf a given flow to get lost.

Commercial vendors offer a number of anomaly detectors aitigation solutions[32,
7]. Comcast blocked port 25 for customers generating heaffyctto prevent its network
from being spam hub but it might lead to high false positived kegitimate mails from the

customers could be blocked. According to Comcast, portdahgaresulting in 35% reduction
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in spam in their network. However, Comcast is having haretdefending against botnets
which use open relays or tunneling through compromisedsiodtside network. While port
blocking is a conservative approach, it might lead to higbef@ositives and legitimate mails

from the customers could be blocked.

2.1.1 Diversity Approach in Detecting Stealthy Attacks

If a botmaster recruits an enormous number of zombies, themder to launch a DDoS
attack on a victim, each zombie need not create a blatantipob flood. Commanding each
zombie to send small amount of traffic to the victim could ewleelm the victim, i.e., stealthy
botnets. Since the attacker relies on the sum of the acbtvity zombies, it can try to evade
detection by commanding each zombie to send apparentlgmabke amounts of traffic to
the victim, i.e., stealthy botnets.

In this thesis, we see the effectiveness of our approachensutcess of a botmaster who
attempts to hide the attack inside normal user traffic. Bywe mean, that the attacker issues
commands to transmit an amount of traffic towards a victimhighaot dissimilar to the user’s
regular traffic patterns, termed agasionor mimicryattacks. In order to prevent an attacker
from evading mimicry attacks, many defensive mechanisynteliminate homogeneity in
the systems at different levels. Eliminating homogeneaitreases diversity in the systems
which forces attackers to do more work in launching attadRsersity as such has been
applied in different contexts of computer systems. Foresal proposes several methods of

achieving software diversity in [58]. They proposed thatd@amization can be introduced in
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the code generation process of compilers. They showed yhalldcating random padding
on stack frame size, several buffer overflow attacks coulddbterred. While such proposals
are promising, their work does not explore diversity at tyel of network traffic. Although
there is a large body of research work which propose to iniredliversity in the form of ran-
domization at different abstraction levels (such as ini@ppbns or compilers [58]), we feel
the concept of diversity has not been explored in anomalgatien systems formally [97].

We believe this takes a stride to explore the benefits ané-o#d in this domain.

2.2 Hierarchical Change

Hierarchies on data attributes have played a significaetirodata warehouses, for which
database operators such as the datacube have been develspsunarize and navigate the
data at the different levels of aggregation [30]. In the dataing literature, several tools
have been proposed for summarizing hierarchical data atghestime instance, including
GMDL regions [76], Icecubes [56], and Hierarchical Heavytétis (HHH) [45, 34].

With respect to detecting changes in data, recent appreanbkide velocity density
estimation [16] for visualizing change, windowed statigtitesting [71] for detecting dis-
tributional changes, and histogram differencing [35] fdentifying items which exhibit the
largest changes in frequencies. However, these papersvidbdlat (non-hierarchical) data.
There have been a few papers explicitly dealing with hidriaed data. Zhang et al. stud-

ied change detection of (aggregated) time series correspgpno HHH IP prefixes in the
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IP address hierarchy [114]. Chawathe et al. studied thelgmolof change detection on
semi-structured data, but for topological changes [10&lak et al. [36] studied the compu-
tation and change in hierarchical data however their amgbresabased on heuristics and their
approach does not address the issue when the count meastiresgaves are not exact.

The problem of path explorations of hierarchies was stuthefd00]. Here the user
defines a set of linear constraints and the values in the ula¢acells are predicted using
the Maximum Entropy Principle. Given a supplied model, #aghhique finds the cells that
are significantly different values from the expected valu@sir problem is essentially the
opposite: to find the best model that explains the changesreTis also some marginally
related work on identifying bursts in hierarchical timeiserdata, that is, the time intervals
tightly capturing high arrival frequencies [115, 73].

Most related to our work is the DIFF operator for explaininffedences in the dat-
acube [99]. In their problem, a user selects two aggregdtdseasame level in the dat-
acube which fixes some of the dimensions. The ratio betweersdlected aggregates is
then explained in terms of the free dimensions, and subggtge having deviating ratios
explained recursively. The aggregates in the subcubessmonding to the free dimensions
are examined to find those which deviate most from the ratid,the remaining pairs are
approximated with the ancestor ratio, recursively. Thissmonstraints on the intermediate
node ratios, whereas our solution has the freedom to exiglairaggregate changes in terms
of intermediate node ratios, and is thus more parsimonidnghe example (Figure 1.1)

involving the IP prefixes 1.2.3.10/31 and 1.2.3.13/31, thedtto additionally “explain” the
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ratio of 3 at the IP prefix 1.2.3.10/30 level internal node results irtbuse explanation using
the DIFF approach.

The problem of using compact hierarchical histograms f@raxmating leaf-level data
was studied in [94] which employed a predefined hierarchyijlar to our approach but
solved the dual problem: given a bound on the size of the siaqpe., the number of
explanations), find the synopsis that minimizes the errorther, the paper considered three
different partitioning functions and solved via dynamiogramming to reduce distributive
error metrics given a space bound. Their LPM variant is theesaroblem studied in [99] but
solved heuristically due to the expensive cost of distelaritor metrics; the other partitioning
functions find inferior solutions to LPM. Our work is basedtba initial problem formulation

presented in [24].

2.2.1 Connection to Wavelets

Recently [85] investigated a problem similar to our work.eTgroposed solution used the
Haar wavelet representation to construct dataset synagsamimum space. The use of
the wavelet representation restricts this approach todégsent (i.e., less parsimonious)
explanations than our hierarchical parsimonious expianst Another problem relevant to
ours (for the case of binary hierarchies) is Haar waveletpression with maximum-error
metrics, introduced in [79]. The best current solution iegg0(n?) time andO(n) space to
solve the dual problem [60] and, just as in [99], constraamesimposed at all nodes rather

than just at the leaves, leading to less parsimonious saolsiti [61] introduced the notion
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of unrestricted Haar wavelets and [69] defined the Haar+ase@n improvement, but these
exploit discretization of values and therefore are not caraple with our approach which
allows for any (potentially infinite sized) domain. HoweVé8] is equivalent to the model
given by [94] when the hierarchy is restricted to binary $t€9] presents provably good
approximate algorithms to solve this problem(qR*n log nlog® B) or O(R*nlog® B) time

(n is the size of the inputB the maximum number of coefficients in the synopsis &hd
the number of the examined values per coefficient), for gdregror metrics. Interestingly,
our problem (with binary hierarchies) offers an alternatte Haar wavelet compression,
yielding better answers with smaller complexit¢)(nlogn) for the primal problem and
O(nlognloge*) for the dual. An algorithm that solves the dual problem (a[®#] or [69])
can be modified to solve the primal problem using a binarycteprocedure orB. Thus,
these algorithms would need to run an additidnglB factor slower if modified to solve our

problem.

2.3 Traffic Classification

Here we will discuss about traffic classification using di#f® methods. We will discuss the

advantages and disadvantages of these methods.
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2.3.1 Port-based approach

Traffic classification based on port numbers [2] is a fast antple method, but several
studies have shown that it performs poorly, e.g., less til#86 dccuracy in classifying flows
in an enterprise data set [39, 81]. We acknowledge the coasseof assessing performance
over an entire trace rather than for the applications agtuaing well-known ports [43]. This
performance metric essentially indicates the amount fffdria the trace using well-known
ports, which can vary widely, and does not classify traffat ik mis-using well-known ports

assigned to a different application.

2.3.2 Payload-Based Approach

Payload-based classification algorithms inspect the packeents to identify the applica-
tion. Once a set of unique payload signatures is availablaricapplication, this approach
produces an extremely accurate classification. After eadsks showed the value of pay-
load signatures in traffic classification [31, 81, 102], athieave proposed automated ways
to identify such signatures [62, 78, 89]. However, [62, 78} evaluated these automated
schemes only on conventional applications such as FTP, SMTPP, HTTPS, SSH, DNS,
and NTP, not on newer applications such as P2P, games, aadtig, while [89] evaluated
their proposed scheme on a few P2P file sharing applicatigves.use the payload-based

classifier developed in earlier efforts [68, 40, 111] to bksk ground truth for our traces.
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2.3.3 Host-behavior-based approach

The host-behavior-based approach was developed to ceguai@ interaction observable
even with encrypted payload [67, 66, 68, 64]. For exampldNEL[68] captures the profile
of a host, in terms of the destinations and ports it commuescavith, identifies applica-
tions the host is engaged in by comparing the captured preitite(built-in to BLINC) host

behavior graphlets/signatures of application serverd then classifies traffic flows. While
BLINC's approach is promising on edge links, it assumes thseovation of both directions
of traffic, which limits its applicability. Recently llioftou, et al. proposed a network-wide
behavior-based traffic classification method, Traffic Disme Graphs (TDGs) [64], which

focuses on network-wide behavioral patterns of intergatosts.

2.3.4 Flow Features-based Approach

Substantial attention has been invested in data miningnteabs and machine learning algo-
rithms using flow features for traffic classification [80, 88, 26, 40, 41, 37, 113, 44, 109,
77]. Nguyenet al. surveys, categorizes and qualitatively reviews thesdestud terms of
their choice of machine learning strategies and primaryrdmrtions to the traffic classifica-
tion literature [88]. Their survey is complementary to owriy where we pursue guantita-
tive, measurement-based, performance evaluation of tlemseachine learning algorithms
using multiple datasets collected from Japan, Korea, amtU

Machine learning algorithms are generally categorized sajpervised learningndun-
supervised learningr clustering Supervised learning requires training data to be labeled i
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advance and produces a model that fits the training data. dMamtage of these algorithms is
that they can be tuned to detect subtle differences and tbagtyelabel the flows upon termi-
nation, unlike the unsupervised ones. Unsupervised legmessentially clusters flows with
similar characteristics together [40, 75]. The advantaghat it does not require training,
and new applications can be classified by examining knowhagions in the same cluster.
Ermanet al.[40] compared the performance of unsupervised machineitegaalgorithms in
traffic classification. Since our main focus is on evaluatheypredictive power of a trained
traffic classifier rather than on detecting new applicationflow clustering, we focus on

supervised machine learning algorithms in this thesis.
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Chapter 3

Diversity in Configuration

In this chapter, we will discuss the benefits of diversity lydying the traffic profile of

a population of employees in a large enterprise. In ordellustrate the effectiveness of
diversity, we propose a model in which the end hosts are reduo find thresholds for their
anomaly detectors so that malicious traffic are detectedilyed he chapter shows that the
problem of threshold computation comes with myriad of isshat need to be addressed but
are currently overlooked. Our approach proposes genatializtechniques including two
components - a way to combine false alarm rate and mis-dmtaette and a way to classify
the end hosts into groups that can be managed effectivelgiagle unit. Finally, the chapter

evaluates the proposals on real traces assuming a full{edge attacker strategy.
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3.1 Network Setup

The problem we study is the configuration of alert threshwld$IDS for agroupof employ-
ees in an enterprise setting, when a single IT policy is fedld. Given a set of featurelg“,
where: is the user index, andis the feature index, set the threshold for each feature such
that when it exceeds the threshold an alarm is raised. Omé&and, enterprise IT usually
approaches this problem by applying a single policy, suctsesthe thresholds the same
for all users”. On the other hand, as we will show, there iseagdeal of diversity in the
end-hosts’ traffic distribution. This diversity impliesathsuch a policy will have unintended
consequences, namely that the performance in terms of galsiéives and false negatives
differs dramatically across the end-hosts. Let each emstihperformance be measured by
the tuple( false positive rate, false negative ratedenoted by(FP;, FN;) for useri. The
problem we address is to determine a good enterprise paliag 0 achieve a better balance
across all the performance tuples of all end-hosts. We walVigle algorithms to carry out
different policies.

We focus on a set of features that are either in use today iastndl products, or
have been proposed in the literature. Our intent is not tonpte any particular feature,
but rather to develop a methodology for configuring cutoffetholds for features. To-
day’s systems use one set of features, however because dingtys¢hreat landscape is
continuously evolving, that set of features is likely to sha. We believe our methodol-

ogy will be useful to any set of features that are additive.aragles of additive features

33



include thenumber_of DNS_connections (used in Damballa’s botnet detection sys-
temt), number_of HTTP_connections , number_of TCP_SYN (used in BRO on
a per source basis[90]humber_of_TCP_connections (used in Cisco’s endhost CSA
product[32]), etc.

We consider an enterprise network in which end-hips&K i < n, has been enslaved by
a botmaster commanding either through an IRC C&C channeR#Rasystem. We assume
that thesen zombies could be simultaneously used to attack an exteosd| H. Let gﬁ
represent the normal value for end-hosif a specific featurg. This could represent any
of the features (i.e., detectors) mentioned above bechegeare all additive features. We
assume that when the attacker (a term we use interchangeitibipe termbotmasteyissues
a command, each zombie responds in a way that increasesltieso¥deaturej by b’. Thus
b{ captures the attack size for any particular feature. (Fee @ discussion, we drop the
index j, as the same reasoning applies to each feature, as longsaadtlitive. Similarly
we discuss, as an example, connection counters rather #tketpcounters to simplify the
presentation.) Each end-host has a probability distdouk(g; = G) that describes the
probability that the host will opetr connections in the next time window. Thus, the total
size of traffic corresponding to a particular feature, ertiagdrom end-host, is described
by a random variablg; + g;.

The IT operator configures th& host with a threshold paramet#} such that if the

outgoing traffic on host exceedsl;, the host raises an alert and sends it to the central IT

thttp://www.damballa.com/
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security operations center (SOC). The probability of nmgsan attack of sizé;, a false
negative EN;), is given byP(g; + b; < T;), and the probability of a false alarmiR;) for
that user is simplyP(g; > T;). The problem is to determine a set of thresholds valljes
for all users. We propose different policies for thresha@kkstion, and provide algorithms to
implement such policies. We compare the performance of iffereht policies from three
perspectives (using three metrics). First, we look at(fff&, FN;) performance tuple for a
group of users using scatter plots and compare which potibieses a good balance for the
majority of the users. Second, we compare the average nushifedse positives generated
at the centralized IT operations center under differenicpes. Third, we compare the sizes
of the attacks a full-knowledge attacker is able to succdlgdhunch (i.e. evade detection)

under the different policies.

3.1.1 Threat Model

We consider a strong threat model for the attacker. One casalan attacker strategy based
on the amount of information the attacker has about the zesrdnd the amount of extra work
the attacker is willing to do to acquire detailed informatabout its zombies. We consider an
attacker that has complete knowledge of each zombie’s ridrafic profile because he/she
installs monitoring code on the compromised host. Namaly, fall-knowledge attacker
knows the end-host’s probability density function, pdf &ach feature, P(gf), and their
respective cutoff thresholdgy. The attacker can use this knowledge to sebédailored

to each zombie, such that the probability of hiding inside tiser profile traffic, namely

35



P(g; + b; < T;), for any j, is fairly high (we set it to 90%). Although we have not used

but one can think of another strategy in which the attackeosbs); which maximizes the

damage given by_ b, P(g; + b; < T;).

3.2 Diversity in User Population
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connections can reveal address scanners; (d) # DNS connecti ons can detect scan-
ning, worm spread;
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In this section, we will present the characteristics of nalrtraffic from 350 end-hosts in

a large enterprise.

3.2.1 Data Collection

Our data consists of network packet traces collected at 886hests (95% of them are
laptops and all hosts were using Windows XP) in a large engarpetwork. The traces span
over 5 weeks in Q1 of 2007. Each end-host corresponds to anduodl user and all users
enrolled on a volunteer basis. Users from many differenggggahies participated: with 73%
of the users from the United States, 13% from Asia, 13% fronope, the Middle East
and Africa and 1% from South America. Most users were locatddrge office sites in
metropolitan areas. All end hosts were using the Microsofiddvs XP operating system.
The data collection was performed by a stand alone apmitdd wrapper around the

windump tool). In addition to collecting packet headers, our cdltat tool watched for
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changes in IP address, interfaces (e.g., wired/wireleg$)acation. Because the collection
was performed directly on the end-host, all packet actiwgs captured, even when the
mobile laptops changed environments (home,work, diffenereless interfaces, etc). This
dataset captures an unusually complete view of users’ li@isawdata collections that are
carried out at gateways and routers do not capture usertaactiien they leave work or

switch to another network. Note that in the organizatiocheamployee is given one laptop
and these laptops are not shared across employees. Weeltbvhis is common practice,
so unless employees share their laptops with family memédteh®me in the evening, the

laptops should correspond to one user.

3.2.2 User Traffic Characteristics

We processed the tcpdump traces from 350 end-hosts usingp8Ir§e0] and constructed
time-series for each of 5 anomaly detection features. Tatifes we studied are the num-
ber of TCP connections, HTTP connections, distinct conaest all connections and SYN
Flood connectiorfs aggregated the counts into 5 and 15 mins interval bins.isrpéper, we
present the results for the 15mins interval bins (havingnsnmterval bins does not change
the conclusions). We selected these features becauseréhagtaal features used on various
systems ([32, 5, 90}) We treat each bin count as a sample point of the distribu?ig) for
thei’® end-host. We assume that the time-series are stationacg @& obtain the distribu-

tions, P(g;), we computed9™ and99.9"* percentiles of each feature distribution as cut-off

2number of connections in which TCP SYN Flag is set
SFeatures chosen from [90] were only those that are computedp@r source basis.
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thresholds and plot the sorted thresholds in Fig. 3.1 and\®& consider this definition of
outlier here because it is adopted in practice due to itslgityp
If all hosts were to self select their cutoff thresholds todidger the99™* and 99.9%"

percentile values, then the threshold would be meaningft¢ims of their own behaviors
(all users would experience a common false positive ratefid. 3.1 and 3.2 we show the
tremendous diversity in choice of thresholds that wouldilteis this personalized policy
were adopted. Interestingly, the range of diversity vaoe8 to 4 orders of magnitude. This
demonstrates in a loose sense, that the “tail”, or fringéhefuser’'s behavior begins in very
different places for different users. Fig.3.1(a) illustsithat these “tails” can range from 7 to

7000 for a false positive rate of 1%

3.3 Basic Policy Comparison

We now compare the impact of homogeneous and diversityhbléspolicies on the end-
hosts and enterprise as a whole. We look at three metric& kheFP;) tuple for all users, the
false alarms received inside an enterprise operation cemtd the attack effectiveness. For
this initial policy comparison, we consider a simple petdemetector, a method commonly
used in practice. A percentile detector uses the distobuif a featureP(g;) and computes

a thresholdr; such thatP(g; > T;) equals desired pre-determined false positive rate. Such

aT; does not ensure any false negative rate since false negifpends on the attack size

4The end-host with a tail starting at 7 most likely comes fromnachine that is rarely used. The few
connections occurring could correspond to IT scanningsv&ome users might have installed our tracing code
on machines that they do not really use much. We cannot beasiak user identities have been anonymized.
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distribution. As an example, we work wiff9*" percentile detectors, a target many in our IT
survey confirmed was common.

Under the full-diversity policy, all the end-hosts targetatse positive rate of 1%. A
simple distributed solution for this policy is letting eaghd host compute its own histogram
for the relevant features and extract fi9¢" percentile value. For the homogeneous policy, we
assume a central solution that merges all the time serigstiie end-hosts into a composite
histogram and calculates the thresholds on this aggreégiese both simulated attack data
(so we can vary and test attacks of all possible sizes), alé@tack data from live malware
traces - both of which are replayed on the actual user tr&ghe simulations, we assume
the full knowledge attacker aims to evade detection with% 80ccess rate, and thus selects
a tailored attack sizé; for each user such thdt(g; + b < 7;) =0.9. We generalize this
definition of FN; astBr“'“ P(g; + b < T;) f(b)db where f(b) denotes a general distribution
of attack sizes. Because the size of DoS attacks is not wellrdented, and is forever
evolving, we study the full range of possible sizes - fromrre=ao to the largest number of
connections among all users B,,...]. Beyond this size, DoS attacks will easily stand out as
they no longer mimic user traffic patterns. We use a uniforsirithution on the attack size,
ie., f(b) = ﬁ for simulations (since no such distribution is known, and only goal
here is to try them all exhaustively).

To understand théFP;, FN;) trade-offs that each user incurs, under a particular policy
we use End-User Performance Characteristics Curves (E®PQ®) lgure 3.3. Each point

on the EPC corresponds to an end-hasaxis shows the detection rate EN;) and thez-
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axis shows the false positive rate. Figure 3.3 (a) illussatvhat happens to the ensemble
of enterprise hosts. Under the diversity approach, all titeleosts experience the saifie,
rate of 0.01, however the detection rate of the users aragdpheoughout the 0 and 1 range.
The bulk of the users (about 85%) achieve high detectios @ter 65%. The homogeneous
approach has the opposite effect: the end-hosts expereeifaiely similar detection rate
(between 60-70%), but the false positives are spread aalasge range. We believe that this
dramatic differentiation in FP performance across hosssramification that is unintended
by IT operators, and arises because of their ignorance efglty in user fringe behavior.

The IT operators are faced with a fundamental trade-off im$eof policy: would they
prefer the end-hosts to experience similar FP rates orairRiN rates? Neither of these
policies is ideal in that neither can benddit the end-hosts in the same way. Although
these policies will benefit different subsets of end-hasis,subset of end-hosts (45 out of
348) appearing inside the two boxes (low performance am@@asprimarily the heavy end-
hosts (high mean and variance). Given the choice betweese v effects on the user
population, we believe that IT operators should choose thersity approach. There is a
way to compensate for the end-hosts with poor performantieeidiversity scheme, namely
via collaboration. Enterprise end-hosts can collaborahlaring information like detectives
[52], in which the early-to-detect hosts inform others aladtacks they cannot see. However
there is no way to compensate for the poor performing entshosder the homogeneous
policy.

False Alarms : The diversity approach is also preferable from the pointiew of the
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mogeneous policy, more end-hosts enable attacker to pick la rger attack sizes; (b)-(c)
partial diversity leads to smaller attack sizes than homoge neous. z = y line indices
similar performance between two policies being compared.

enterprise, because it reduces the total number of falseslarriving to the SOC. Because
the nodes withFP; rates> 0.01 in the EPC curve under the homogeneous approach are the
“heavy” ones, they will result in an enormous number of falsems - can be approximated

by >, E[g:|FP;. For these test scenarios, the homogeneous approach tgsnemeaverage
1450 alerts whereas the diversity approach generates oagavenly 200, which is lesser by

a factor of 7!

Reduction of Attack Sizes : Fig. 3.4 (a) shows the attack values chosen by an attacker
under different policies when the attacker’s goal is to evéetection with 90% success rate.
Each point corresponds to one end-host and we observe mibs&t pbints are below = y
line implying that the attacker can choose larger attackssimder homogeneous approach.
This illustrates that the diversity approach limits thesefiveness of DDoS attacks, even for

full knowledge attackers. (We will explain the (b) and (cptglof these figures later on.)
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3.4 New Policies

In this section, we discuss more general policies for compguhe thresholds for the end-host
anomaly detectors. The IT operators have to decide upon t&wgponents: (1) a particular
utility function which explicitly states a balance betweed, and FP; and (2) a grouping

policy to batch the end-hosts with similar profiles and thusasing a level of diversity.

3.4.1 Utility Function

Ideally an end-host would like to experience no false pasiind 100% detection rate. How-
ever, in practice a statistical anomaly detector will haw®perating pointFP;, FN,) but an
end-host can explicitly combineP; and andFN; through utility functions. We assume that

all the end-hosts use the same form of utility function whggiven by:

Ui (T}, Bmax) = —[wWFN; (T}, Buax) + (1 — w)FP,(T})] (3.2)

where0 < w < 1 andU; is thei’® end-host’s utility function. The goal is to find the optimal
threshold,l;" = arg mTziX Ui(T;, Bmax)- Depending on the values @f and B,,,., the values
of U; can vary between 0 (most desired) to -1 (least desired). if very large and3,,.. is
small,FP; — 0 andFN; — 1. If T} is very small and3,,., is small,FP; — 1 andFN; — 0.
If Buax IS Very large, theirN; might be 0 and become insensitivefo

The IT operators will first choose a particular utility furost (determined bw) to be used

by the end-hosts. In one case, the end-hosts will optimize thility functions to compute
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T and the behavior of each will have no impact on the threshelecton of others. In

another case, IT operators will opt for a centralized solutwhere they will collect the data
from all the end-hosts at SOC and compute the thresholdbéogrid-hosts. We will discuss
in Section 3.4.2 the issue how many thresholds should th@é&Fators compute. Should the
IT operators want to compute one threshold for all the ergtdhohey will use one combined

utility function which is given by:

U(T, Buax) = — »_[wFN; + (1 — w)FP;] (3.2)

2

The goal for the IT operator is to optimize the utility furartiand find an optimal thresh-
old, T* = arg mTaX U(T, Biax) and configure the end-hosts with.
Behavior of Utility Functions : Having defined the utility functions, we will discuss the
characteristics of the utility functions for three diffateend-host groupsheaviestmedian
andlightest We group the end-hosts based on & percentile of a given feature distribu-
tion, P(g;). In deriving the false negative values, we chodgg,= 1000 which is compara-
ble to largest tail value, 7000. B,,., is too small, no scheme will be able to perform well,
and if B,,., Is blatantly large, any approach will be able to catch arcléta Therefore, the
challenge is to work with an intermediate valuei)j... In rest of the thesis, we work with
Brax= 1000 unless other values are specified andnuseber_of TCP_connections
as the feature fog;.

First, we study the variation of the utility values as a fumetof threshold,Z;. Fig. 3.5
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Figure 3.5: TCP Connections: Utility functions for three di fferent groups — Heavy,
Median and Light. Groups are formed based on 99t" percentile values. (d) Utility
values as a function of w and T; using number of TCP connections as feature (for
median group)

shows the utility valued/(T;, Bu.x) for the heaviest, median and lightest end-host groups,
respectively (forB,,., = 100, 1000). Here, we present results corresponding00.2 and
w = 0.8 as these two values capture the trends.

We make the following observations: (1) An end-host groupeeiences drastically dif-
ferent false positive and false negative rates for diffevatues ofw and B,,,.. This is ex-

pected as the end-hosts in different groups have diffeiistittalitions; (2) different end-hosts
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experience different false positive and false negativesrasing the same utility function; (3)
the utility values are not stable when the attack dizg. is around the value df;*. This
means if the computed threshold is not exactly equal to ttienapthreshold, an end-host
will experience drastically differerfiN; andFP;; (4) the utility functions in Fig. 3.5 attain
highest utility value for a certain threshold value which denote by7;. For the same
highest utility values, we select the smaller threshold.

We have compared the performance of median users and aveeai@gemance of the
median group. We observe that the performances under bettades are very similar. We
construct the median group using those users wh&$epercentile values are between 150
and 350 inclusive. The tail value of the median user is 22¢.3%(d) shows the utility values
for different values otv andT;. As expected, as shifts from 1 to O, the optimal threshold,
T increases. We observe that when the end-hosts haveZgdrgae thresholds tend to be

more diverse.

3.4.2 k-Level Diversity Policy

Although diversity has appealing benefits, we recognize¢sestance to this policy IT op-
erators exhibit. We now ask if there is a middle ground betwibe two extreme policies
of purely homogeneous and fulluser diversity (using: thresholds fom end-hosts). Can
using a small number of thresholds also be advantageousi? thii&t view, we consider a
hybrid approach denoted ldylevel diversity policy (alternatively denoted laylevel policy

in short).
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Combined Utility : In k-level policy, each end host anomaly detector will be comégu
with one of thek distinct threshold values. IT operators will batch the @&odts intok
distinct groups and compute one threshold for each group ndtivationis that IT operators
may want to group the end-hosts with similar profiles togedinel maintain one threshold for
that group. We use the notati@h; to denote the threshold computed for fifegroup when
k-level policy is used and lef; ;. be the set of end-hosts in th& group. The composite

utility function used for thg** group is given by:

Uj,k(ﬂ,k? Bmax) - Z Ui(Tyj,ka Bmax) (33)

1€5; 1

We denote the optimal threshold By, = arg maxU; ;. However, when we use percentile
detector instead of utility function, we compute a compmsiistribution of the end-hosts’
traffic within a group and then compu6' percentile threshold of the composite distribu-

tion.

Algorithm 1 Distributed algorithm executed in i** end-host

ComputeThresholdLocalifilityFunction , W, Q)
Ensure: T;
1: if utilityFunction is Percentile Detectdhen
2:  Find« percentile,T; of P(G;)
3: else
4:  Optimize utility function (specified by) to get optimal threshold;
5. end if

Grouping Policy : There are several ways to form groups. In this thesis, we hav
experimented two ways of grouping the end-hosts. In bothagi@oaches, we have used
99" percentile values as profile of the users. The motivationrioethe first approach is to
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group together the users which have similar tail values.AFer2, we put all the end-hosts
whose99" percentile values are in the bottom 85% in one group and thairéng form the
heavy end-hosts group. Fér= 3, we first find 2 groups (as above) and then find another
group which comprises of the bottom 15% of the end-hostssTite middle 70% form the
second group and upper 15% form the third group. or 3, we first find 3 groups as we
do for k = 3. Then, we sub-divide these three groups (with heavy uset} @intil £ groups

are formed. For example, fdér= 5, we create three groups first. Then, we bisect the heavy
and the middle groups.

We have also tried the-means clustering technique on #" percentile values ak-
means clustering is widely used in practice. However, we thad this clustering technique
does not perform as well as the above mentioned approach.

Algorithm for computing thresholds : Having described thé-level policy and
grouping policy, we summarize our approach in terms of twoathms: (i) ComputeThresh-
olds() is executed at the SOC to compute thresholds undeopeneous ok-level diversity
policies (see Algorithm); and (ii)) ComputeThresholdLdr#d executed by an end-host to
find its threshold (see Algorithm). An enterprise policy dgs the IT operators to decide
how to compute the thresholds. If IT operators opt for a dhisted approach, it informs the
end-hosts to compute their thresholds locally (Line 2).edthse, the centralized algorithm
at SOC computes the thresholds for the end-hosts and dosntba configuration on the
end-hosts. In this paper, we have used a specific groupingypalt one can define any

grouping policy through the function FormKGroups() (Ling)1
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Algorithm 2 Algorithm run centrally at Security Operations Center (SOC)

ComputeThresholdg0licy , utilityFunction , W, o, k)

Ensure: T; orT
1: if policyis diversity then
2:  Inform end-hosts to execut@mputeThresholdLocal()
3: else ifpolicyis Homogeneous then
4.  FetchP(G;) from the end-hosts
5. if utilityFunction is PercentileDetector then
6: Form a composite distributio® (G)
7 Find « percentile threshold,™ of P(G)
8: else
9 Form a composite utility,/=-[wFN; + (1 — w)FP;]
10: OptimizeU to get optimal threshold/™
11:  endif
12:  DistributeT™ to the end-hosts
13: else ifpolicy is k-level partial diversitythen
14:  FetchP(G;) from the end-hosts
15:  FormKGroups(utilityFunction)
16:  for group 1 tok do

17: if utilityFunction is PercentileDetector then
18: Form a composite distribution gf* group, P(G7)

19: Find o percentile threshold*, of P(G7)

20: else

21: Form a composite utility function, Eq. 3.3

22: Find 77, from Eq. 3.3

23: end if

24: Distribute7” to the end-hosts in thg" group

25:  end for

26: end if
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3.5 Evaluation

We first present the evaluation of our new policies using &ed attacks as that in Sec-
tion 3.3. In the second part, we use real attack traces to&ebnd demonstrate the effec-
tiveness of our new policies against real attacks. We cen#iie featurenumber_of TCP_connections

for P(g;) and the featurejumber_of_distinct_connections for attack traffic.
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3.5.1 Simulations

First, we evaluate the performancefoefevel partial diversity policy using percentile detec-
tors. Then, we consider utility functions rather than petite detectors.

Partial Diversity : First, we illustrate the performance bflevel policy. We have tried a
set of differentt values. Among them we find that< 10, gives the results which are suffi-
ciently close to full diversity case. We illustrate usihig= 8 here (We realize that the value
of k depends on the datasets ). We have already seen the EPCmplodriog homogeneous
and diversity policies in Figure 3.3 (a). Comparison betwéigersity and 2-level policies in
terms of EPC is shown in Figure 3.3 (b) where we observe tleati¢tection rate of the light
users increases to 0.8 whereas that of the heavy users dro®3t(as compared to homo-
geneous policy). The benefit of the 2-level policy is thallivas a reduction in the number
of users with severely highP;, without compromising high detections rates for the bulk of
users (unlike the homogeneous policy that induces thietdcdf). EPC plot for the 8-level
approach is shown in Figure 3.3 (c). We observe that excem few end-hosts in groups
6, 7 and 8, all other end-hosts experience safeandFN; as in diversity approach. As we
form more groups, the number of end-hosts in each group besdesser and the diversity
thresholds tends to become equal to the group thresholdageneous within a group). The
potential of 8-level policy shows that IT operators do nachéo compute individual thresh-
olds for all 350 end-hosts. However, we do realize that #ell of diversity depends on the
inherent clusters existing among the users’ behaviors.

Attack Sizes : Next, we evaluate the performance based on the attack &osen by the
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attacker (see Section 3.3). Figure 3.4 (b)-(c) show thelatt&es under diversity ankt
level policy. Under 2-level policy, most of the attack siz@s between 100-200 (compared
to 200-300 in Figure 3.4 (a)). However, under the 2-levelgylthe heavy end-hosts are
penalized as they have to set larger thresholds. In the{elicy, the end-hosts in different
groups do not interact in setting the thresholds and thexetbe heavy end-hosts are not
constrained in choosing large thresholds, unlike in thedgeneous policy. However, under
the 8-level policy, the end-hosts experience similar permnce as that in diversity policy.
The effectiveness of diversity and 8-level policies in redg the total malicious traffic can
be seen in Table 3.1.

The FP/FN Balance : Here, we illustrate the performance of the end-hosts when tise
the utility functions0.8FN; + 0.2FP; and0.2FN; + 0.8FP; whereFN; andFP; are computed
at the optimal threshold valuégs'.

The EPC plots corresponding to utility function8FN; + 0.2FP; in Figure 3.6 show
that most of the end-hosts experience high detection raderuall policies & 0.92 under
homogeneous and 8-level policies and0.86 under diversity). This is expected as false
negative component is considered costly, which tend to keemptimal thresholds small.
Improvement on detection rate, results in extremely hidgefaositive rate (between 0 and
1 range under homogeneous and 8-level policies). Spediadly'heavy” users tend to have
false positive rate close to 1. Although diversity policytmerforms others by boundirteP;
within 0.4 for most users, the majority of the users experdalse positive around 0.2 which

is still high for practical purpose. We believe that thiditytifunction can be useful if the IT
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operators have additional resource to handle the falsmalar

The EPC plots corresponding to utility functio2FN; + 0.8FP; in Figure 3.7 show
different trade-offs. As shown in Figure 3.7 (a), the detectate under the homogeneous
policy is more than 0.8 for most of the end-hosts, &M is restricted within 0.1 except
for some heavy end-hosts. We have seen similar trade-offggure 3.3 (a). For diversity
approach in Figure 3.7 (bl,P; of most of the end-hosts is less than 0.02 and detection rate
of them are above 0.7, which indicate that benefits of diediows up when the utility
function favors false positives. The effectiveness of tHev@l policy shows up in bounded
FP; (within 0.1), but the detection rate of some end-hosts resitie 0.4 (Figure 3.7 (c)).

Attack Sizes : Figure 3.9 (a)-(b) and (c)-(d) show the attack sizes chbyean attacker
(as that in Section 3.3) when the utility functions ar&FN; + 0.2FP; and0.2FN; + 0.8FP;,
respectively. In Figure 3.9 (a), more circles below the lirg indicates that more end-hosts
yield to higher attack sizes. The effectiveness of the dityers due to smaller thresholds for
bulk of the users. Figure 3.9 (b) shows that comparativelyenuircles are above the line
x = y, implying a similarity with diversity approach. Similar egarison with the utility
function0.2FN; + 0.8FP; are shown in Fig. 3.9 (c)-(d).

In order to compare the cumulative attack traffic, we computé, under different poli-
cies and summarize the results in Table 3.1. The damage thedéiversity policy is smaller
than that under the homogeneous policy. Although the diyepslicy outperforms others
consistently, the damage under 8-level policy can be wdrge the homogeneous policy as

some of the heavy end-hosts have very large thresholds timel&level policy resulting in
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Figure 3.7: EPC using the utility function,  0.2FN; + 0.8FP;; (a) high detection rate and
high FP; under homogeneous policy; (b) low and bounded FP; and high detection rate
under diversity policy; (c) improved  FP; performance (but low detection rate for some)

under 8-level policy.
large attack sizes. Both EPC and damage results show tresiiwbenefits are significant

when false positive component is favored.
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utility | Diversity | Homogeneous 8-level Policy

Percentile 69839 95456 61961
0.8FN,; + 0.2FP; | 242.2 1728.1 808.6
0.2FN; + 0.8FP; | 34243 39825 43365

Table 3.1: Damage = ), b;. The diversity policy outperforms the homogeneous policy.

3.5.2 Evaluation with Real Attack Traces

In this section, we show the evaluation of different pokcising real attack traces. In order
to collect malicious traces, we installed malicious biesf SDBot and Storm bot, each on
a separate laptop which did not have other applicationsingnimhus, all the traffic collected
originated from the corresponding malware. Due to lack aicepwe only show the results
using Storm Bot trace. In the Storm trace, we find 319891 TCGections and 12238 UDP
connections. The Storm bot is aggressive in opening newemtioms which are mostly
SMTP flows (port 25 SPAM). The typical number of connectiopsreed during a typical 5
minute period is in the range 1 to 2000. During a few interéils number increases to 5000.
Usingdistinct_IP_destination addresses as the feature, we obtain the time-
series of the malicious trace. Subsequently, we superienfh@smalicious time-series on the
normal traffic time-serieskEN; count denotes the fraction of time bins when traffic count is
below threshold and traffic count consists of malicious flows
Policy Comparison : First, we show the performance of percentile detector ah aé&
tack traces. Figure 3.8 (a) reveals similar trends as werebseith synthetic attacks (in
Figure 3.3, Section 3.3), but the numbers are shifted. Uttdediversity policy the best

detection rate is around 0.62. Under the homogeneous pdlieydetection rate of most
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end-hosts is slightly more than 0.4, witR; spreading between 0 and 1.

Figure 3.8 (c)-(d) show the attack sizes that are not detdayehe end-hosts when we
superimpose malicious traffic on normal traffic. Each pamEigure 3.8 (c)-(d) represents
an end-host’s average undetected attack size. Undeteitéelt aize,h; > 0 in an interval
is such that; + ¢g; < T;. For each end-host, we compute the average df, alarying the
locations of super impositions. Similar performance bevihe diversity and 8-level policy

shows the impact of grouping criteria on the results (pdrnesnused in clustering).
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The attack sizes under the 8-level policy are similar to thahe diversity policy and
almost all the attack sizes fall on the lime= y.
Utility Functions : Here, we present the performance using utility functidfigure 3.10
(a)-(b) show the EPC using8FN, + 0.2FP;. The false negative rate of most end-hosts have
an inversely proportional relationship with the false pigsirate. Heavy users experience
high detection rate at the cost of high false positive ratee minimum detection rate we
observe is 0.65 which is close to the highest detection rsitggpercentile detector. Here,
the thresholds are small and there is not much differenchdmperformance between ho-
mogeneous and diversity approach. Figure 3.10 (c)-(d) shewundetected attacks under

different approaches, and we see that the attack sizes aflesthan 3 under all approaches.

utility | diversity | homogeneous 8-level
Percentile 15949 27775 16351
0.8FN; + 0.2FP; | 414.03 | 238.19 224.12
0.2FN; + 0.8FP; | 3679.2 | 6600.4 10140

Table 3.2: Damage when real attack traces are used. Significa  nt reduction in damage
under diversity using the percentile detector and 0.2FN; 4+ 0.8FP;.

Figure 3.11 (a)-(b) show the EPC when the end-hosts use ilitg function 0.2FN; +
0.8FP;. The FP,; under all policies are bounded within 0.2 and the best detectte is
around 0.62. Comparing with the EPC of the percentile deteate find that detection rate
of most end-hosts under diversity approach has increasedf the cost of increasdd; by
a factor of 10 or 20. The 8-level approach helps some of theyhesers in improving their
false positive rate. Undetected attack size plots in Figuid (c)-(d) show similar trends

as in that previous experiments. Table 3.2 shows the totalda under different utility
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functions and policies.

3.5.3 Summary

In this chapter we investigate methods of configuring thoeshfor statistical anomaly de-
tectors deployed across all end hosts in an enterprise rletiWltDS usually have a statistical
component which keeps track of some traffic features and getahold to define normal

traffic profile. The feature values falling outside the the@ds are deemed to be suspicious.
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Figure 3.10: (a)-(b) EPC when the end-hosts use  0.8FN; + 0.2FP; and real attacks are
replayed; (c)-(d) undetected attack sizes ( < 3)

This chapter elucidates using real datasets that the erid tnafic is very diverse and the
goal of setting the thresholds needs to consider seved®-#s that are often overlooked.
The chapter concludes that have diversified configurationmogrove the detection rate of
the end hosts and can limit an attacker to launch only snaddsattacks. The chapter also
shows that the full benefits of diversified approach can bedssed even by incurring low
management complexity in the form of partial diversity. &y the framework offers the

flexibility of choosing different trade-offs by proposingogiping policy of the end hosts and
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utility function to combine false positive and false negatiates.
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Chapter 4

Hierarchical Change Explanation

In this chapter, we formulate the problem of change detedtidata with hierarchical identi-
fiers. We discuss several solution approaches and thenggepecefficient optimal algorithm.

We show the effectiveness of our approach using real dataset

4.1 Problem Statement

First, we define a natural change explanation model, whighesses the change between
the leaf nodes of two hierarchical summaries as a composfiohanges top-down from the
root to the leaves of the trdewe then discuss the model in the context of Occam’s Razor
to find a parsimonious explanation of change. Kebe a set of items from a domain
where the elements come from a well-defined hierarchy. Baahiic S has an associated

measure value € V. The ordered pair§i, v) could have been obtained by summing over

1Our method works for both multiplicative and additive corsiions by transforming the former to latter
using logarithms; we illustrate using the additive scale.
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the (projected) columns in a data warehouse fact table icomgga multiset of(itemlID,
value) pairs wheratemID is a dimension attribute anchlue is a measure attribute.
Or they could have been aggregated over some time serie®owi(eh, moving window
average). Lef" be a rooted tree obtained by inducing the dimension hieyavaht, where
the nodes correspond to different prefixes in the dimensieratchy. We do not assume a
total ordering over the dimension hierarchy, only that ipastially ordered with maximum
heighth. Let ¢ denote a leaf node and(¢) denote some value attached to the leaf node
Given values attached to leaf nodes that represent someireedchange, we define a class

of hierarchicalchange explanation models below.

Definition 4.1.1 Hierarchical Change Explanation : Given a hierarchyl’ and change
valuesm(¢) attached to leaves$, a hierarchical change explanation model is a complete,
top-down composition of changes (“weightsi)(n) between nodes along the root-to-leaf

path, for each leaf node.

More formally, for each leaf nodé

m(0) = W(f) (4.1)

where
W (root) = w(root) 4.2)
W(n) = w(n) + W(p(n)) (4.3)
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for tree nodes wherep(n) is the parent node of. A solution to this system gives weights
w(n) for eachn. In fact, if P(n) denotes the ancestor path from the root down to a tree node
n, then by unraveling Equations 4.1-4.3, our problem is to fieihhtsw(n) of each node:

in the tree subject to the constraimtgl) = >, 5, w(n). Since this system of equations

is under-specified, there are multiple solutions each otprovides a hierarchical change
explanation.

In general, the change values/) are obtained as some discrepancy measgurg (¢), mo({))
between two sets of values observed for the hierafichifor example, consider the Census
dataset [28] where we have population counts.) andms(.) for zip codes and a geograph-
ical hierarchy that defines aggregations at state, courttyity levels at two different snap-
shotsT; andT;, as exemplified in Figures 4.1(a) and (b). Her€l/) = d(my(¢), ma({))=
log(ms(¢)/m1(¢)). In general statistical anomaly detection problems(¢) is forecasted
value based on some statistical model that captures nammighavior andn,(¢) is the

actual observed value with higher discrepancy being iieeaf anomalous behavior.

4.1.1 Parsimonious Explanation

Definition 4.1.1 provides a rich class of hierarchical creagplanation models; we provide

a couple of examples that are trivial to compute but subrogdtand then provide a notion of
an optimal or parsimonious hierarchical change explanatiodel.

Non-Hierarchical Approach : One possible assignment of weights that is used in anomaly

detection applications is the one that completely igndresterarchical structure and assigns
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Figure 4.2: Weight assignment based on top-down and optimal assignments.

each leaf nodé in 7' a weight ofm(¢), and O to the non-leaf nodes. We call this the “non-
hierarchical” model, comparison w.r.t this model helps uaqtifying the gain achieved by
using the hierarchy. Figure 4.1(c) shows a non-hierartlissignment for the tre€s and

T, shown in Figures 4.1(a) and (b), respectively. The leadlleodes encircled boldly have
non-zero assigned weights. Using trégsind7s;, we construct a third tree as in Figure 4.1(c)
such that the value associated with a ledbgsof the ratio of the correspoding leaf counts.

Top-Down Hierarchical Approach : Assuming the existence of a rollup operator that ag-
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gregates values of children to the parent, another posagsgnment is top-down, which
recursively assigns weights from the root down such thet) = W(n) = >_,cp(,) w(u),
for all leavesand intermediate nodes. Figure 4.2(a) provides an example where values
at each snapshot are rolled up using the sum operator. Bdtiesé assignments satisfy
the equations of hierarchical change explanation but are@cessarily parsimonious: the
former ignores all opportunities to group leaves with eqgliierences in the same subtree
whereas the latter is too greedy in that it groups unequéati&arences.

Parsimonious Hierarchical Approach  : A node weightu(n) = 0 implies no change to node
n relative top(n) and does not need to be reported in an explanation. Thusxgianation
sizeis the number of non-zero weights in the explanation. ApgyOccam’s Razor, we
prefer an explanation of the smallest size. Therefore, Via@l@aparsimonious explanation
of hierarchical change as one with the smallest explanati&m) that is, the minimum number
of weights not equal to zero. Consider Figure 4.2(b), whgchhle to explain the changes
using only 2 non-zero weights compared to 3 for the non-htéreal strategy and 7 for the
top-down one; in fact, it is optimal. We describe the aldgors which lead to assignments in
Figure 4.2(b)-(c) in Section 4.2.

However, this explanation model has certain shortcomin@fen one wants to com-
pare a snapshot with expected values; large deviationstiese values can be reported as
anomalies. Statistical forecasting models (e.g., basesh@ring averages) typically yield
confidence intervals based on a supplied confidence leveimfortant shortcoming of the

current model is that it does not work with such a forecastimglel because its formulation
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does not deal with ranges of possible values. In additiapibdel is sensitive to noise. In-
tuitively, we would like to capture similar changes amonlgted leaves which may not have
exactly equal differences but are roughly the same. For plgnf two sibling leaves have

differences of 1.98 and 2.02, we may wish to describe thiseapairent using a difference of
2. Since the deviations from this description at the leavessmall (1%), we may tolerate
this error as being a good enough approximation to repost sighificant changes and to
avoid overfitting the data. Our original description abowvijch only allows exact matches,
does not allow this.

In order to ameliorate this, we extend the definition to albtolerance parameteron
the values of the leaves. We allow weights on the nodes thaltri@ differences of at most
between two leaves in the snapshots. We assume that inqerétus tolerance parameter will
be provided by the confidence interval of the prediction nhagkich can be different from
leaf to leaf, so the model allows different tolerane&d at each’. Specifically, we assign
weights such thatn(() — W (£)| < e(¢) for eachl, whereW (£) = >, cp ) w(u).

To see the connection with a forecasting model, we assufdg¢ = d(mq(¢), ms(f)) =
mo(€) —mq (). In fact, rewriting this equatioms () — (mq(£) + €(£)) < W (L) < my(f) —
(m1(€) — €(¢)) and denotingn,(¢) + ¢(¢) andm,(¢) — e(¢) by UB(¢) and LB(¢), respec-
tively, clearly shows how to use output from a forecastingleion our framework.LB(?)
andU B(¢) are lower and upper confidence bounds that are obtained fremstimated fore-
casting distribution. One possibility which works for syrmc distributions is to choose

m1(¢) as the predicted mean and) to be proportional to the predicted standard deviation,
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the constant of proportionality depending on the desiregi@ge of the confidence interval.
For instance, a choice df96 under a Gaussian assumption on the statistical distribatio
our node values guarante#g/ coverage. In general, our method is agnostic to the paaticul
choice of forecasting model; the only requirement is thelabdity of LB (¢) andUB(?).
This makes it a highly general purpose method with wide appility in anomaly detection
problems involving hierarchical data where changes area®p to be spatially clustered in
subregions of the hierarchy.

We now define our parsimonious explanation model, whichcalies a tolerance budget
along each path that can be distributed among the indiviglthl nodes in any fashion while

maintaining the constraimity, — >, p(,) w(n)| < €(0).

Definition 4.1.2 Hierarchical Parsimonious explanation:

Given a set of leaf changes(¢) and a tolerance budget/) > 0 on the total sum of weights
along the path td for all leavest, a hierarchical parsimonious explanatiohchange finds
the smallest explanation size, that is, minimum number démeeightsw(n) s.t. w(n) &

[—k, k]; k > 0.

In definition 4.1.2, for positive tolerances, orty= 0 is of interest to us in practice. How-
ever, to facilitate comparison with DIFF algorithm cite®aegi99, extended definition which

allows thresholding on positive values/ofs necessary as we shall see later in section 4.3.
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4.2 Algorithms

In this section, we describe an algorithm to compute optwelht assignments (that is,
minimizing the explanation size), for the problem defined®acttion 4.1 (Definition 4.1.2).
The algorithm presented here generalizes this problemlbyialg any supplied error toler-
ances for the leaves as well as intermediate nodes of ther b

The problem withe = 0 is a special case of the following proble@iven real matrixA
and vectom, findz such thatdz = b minimizing the number of non-zergs. That problem
is not only NP-hard, but is not approximable withike' ™" for anyo > 0 (in polynomial
time, assuming NP is not contained in quasi-polynomial }i[8, 23]. For the special case
studied here we give a fast, exact algorithm. We first deschbk algorithm intuitively, and
then present it formally.

The algorithm makes two passes over the tree: theldodbm-upand the secontbp-
down In the first pass the algorithm computes a tentative setest®incoming partial sums
for each node, using dynamic programming. We prove that ¢isé fpartial sums for a node
are those that allow the node to incur no cost for its own weggtd, simultaneously, to
provide best partial sums for the maximum number of childiiéns set of best partial sums
for a node is a union of closed intervals, at most one for eaah |

In the second pass the algorithm works down from the rootsmasveights. Each node
chooses its own weight so as to benefit the maximum numbes ofildren. If the incoming

partial sum for a node is one of the best for the node, it carhdoatithout incurring a cost
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at the node. Otherwise, the node incurs a cost of 1 for its oeight, which it chooses to

benefit the maximum number of its children. We illustrates §viocess in Figure 4.3 for the

cases = 1.
l
[7,8] 7
[7,8] [3,5]U[6,8] 0 0
/N VN VRN VN

[6,8] [7,9] [3,5] [6,8] 0 0 -3 0
I l I l | | | l
7 8 4 7 7 8 4 7

Figure 4.3: Computing an optimal node weighting (k=0,e=1).

Note that instead of taking > 0, one may add:|P(¢)| to eache(?), then takek = 0.
This expands the set of feasible weightings. We presentltfugitom for the general case

k > 0 for compatibility with [99], which we shall compare agaimstSection 4.3.

Definition 4.2.1 For any subtreé/” and real valuer, definecost(x,7”) to be the minimum
cost of any feasible labeling @f, given that the partial sum coming into the rootidffrom
above isz. (Formally, this is the minimum cost of any feasible labglof the tree7” in
isolation, where each leaf change(¢) has been decreased by)

Definebestcost(7”) = min, cost(z, T") andbestsums(7") = {z : cost(x,T") = bestcost(T")}.

We start with the observation that a bad incoming partial swreases the cost @Gt by

only 1. Let[z ¢ S| denote O (false) if: € S and 1 (true) otherwise.

Lemma 4.2.2 For any subtred” and realz, cost(x, T") = bestcost(T")+[x & bestsums(T")]
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Proof 4.2.3 Since the costs are integers, it's enough to provedbsttx, 7") < bestcost(7")+
[z & bestsums(T")].

Let 2’ be a partial sum achievingestcost(7”), and letw be a corresponding min-cost
weighting of7” for partial sumz’. Addingx — 2’ to the weight of the root of” gives a

feasible weighting fof” with partial sumz, and increases the cost ofby at most 1.

Next we prove a recurrence which will be the basis for therdigm. Let A & B denote

{a+b:a€ Abe B}.

Theorem 4.2.4 LetT” be any subtree with immediate subtr@&sTy, . . ., T.. Thenbestsums(7")
equals

[—k, k] ® {z : 2 minimizeg{i : z ¢ bestsums(7})}| }.

Proof 4.2.5 Letkiddiff(z,7") denote|{i : z & bestsums(7})}|. Letbestkiddiff(7") denote

min, kiddiff (z, T7"). Fix x andT". By definitioncost(z, T") equals
i —k, k st T!
min [y ¢ [~k k] +2Z:C% (x+y.T7)
(v is the weight given to the root @f'). By lemma 4.2.2, this is
(Z bestcost(77)) + min [y & [—k, k]] + kiddiff (z + y, T").
X Yy

The term on the left is independentagfwhile themin, . . . term on the right will equal
bestkiddiff (7”) for somer (e.g. wheny = 0 andx minimizeskiddiff (x, 7")).
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Thus,z € bestsums(7”) (that is,z minimizescost(z, 7")) iff

Jy € [k, k] : kiddiff (z + y, T") = bestkiddiff (T").

Takingz = = + y, this condition is equivalent to

x € [—k, k] ®{z: kiddiff (2, T") = bestkiddiff (T")}.

Theorem (4.2.4) gives a recurrence relationfertsums(). Using this recurrence, compute[@Sd)
uses dynamic programming to compute, for all subt@ebestsums(7") andkidopt(7”) =

{z : = minimizes|{i : © ¢ bestsums(77)}|}. The algorithm first calls compute5, d)

Algorithm 3 computeDS(subtreg’, leaf valuesn)
1: If T"is a leaf (a single nodé:
2:  letkidopt(T") « {m(0)} @ [—€(¥), (V)]
3: else:
4:  for each subtreg&? of 7": computeD$I}, m)
5
6

kidopt(7") « {z minimizing|{i : = & bestsums(7})}|}
. bestsums(7”) « kidopt(T") & [k, k]

to computekidopt(7”) andbestsums(7”) for all subtrees”. It then weightsI” by calling

weightTre€T’,0) .

Algorithm 4 weightTree(partial sum, subtre€l™)
1: if x € bestsums(7”):
2:  picky € [—k, k] s.t.x + y € kidopt(T”)
3: else: lety «— 2’ — z for anyx’ € kidopt(T”)
4: give the root ofl” weighty
5: for each subtre@&! of 7": weightTreéx + y, 7))
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Lemma 4.2.6 weightTreéz, T7") finds a feasible weighting df’ (assuming incoming partial

sumz) of optimal costost(x,T").

Proof 4.2.7 From Theorem 4.2.4, computeDS correctly compultespt and bestsums.
Theorem 4.2.4 assures thatexists in the second line of weightTree(). A standard proof
by induction shows that the weighting is feasible.

To finish we consider the cost. By inspection weightkr€E’) chooses a root weightso
x +y € kidopt(7”). Thus (assuming by induction that the subtrees are weighgéchally),
the total weight for nodes in the subtregE/} is bestcost(7”). In addition, at the root we
pay|y ¢ [—k, k|]. By inspection of weightTree(), this equéisZ bestsums(7”)]. Thus, the
total cost of our weighting i®estcost(7”) + [z & bestsums(7”)]. By Lemma 4.2.2, this is

best possible.

Lemma 4.2.8 The running time of the algorithm i9(hN log N), whereh is the height of

the tree andV is the number of leaves.

Proof 4.2.9 (Sketch) The running time of the algorithm is dominated leytitme it takes to
compute the optimal shift for each node. We note that thé $ate of the optimal shifts for a
node is bounded by the number of leaves in the subtree robtedtanode. Computing the
optimal shifts of a parent node from the labeling of its cteldnodes requires sorting and
merging of the children node labels.

For any tree, assume that at depthhere arec(d) nodes. A node; at depthd will have

lv(v;) leaves in its subtree, bLE‘j(d) lv(v;) = N whereN is the number of leaves. This

73



bounds the size of the labeling at that node. The cost ofrgpetind mergingV/ nodes is

M log M. So the total processing time at levils given by

c(d)
Zlv(vi) loglv(v;) < Nlog N
1

Hence, total time of processing over the entire tree is

h
ZNlogN = O(hNlog N)
d=0

4.3 Evaluation

In this section, we investigate both the effectiveness &edefficiency of the proposed al-
gorithms and the outputs they generate using real data. Waate the effectiveness of our
proposed change detection model according to its abiligafmure interesting hierarchical
changes as well as the robustness and stability of the outmidr small perturbations of

error tolerance.

4.3.1 Experimental Setup

We definestability to measure the sensitivity of the set of explanation weighta function
of confidence levet. Let S7 be the set of nodes at levielwvhere “explanations” occur. Then
the stability of the output at levé] given a change in tolerance parameter from Ac to ¢,

c—Ac
SEToeNSy|

is given byS,. = | S wherec — Ac refers to the previous value of
1
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Description of the datasets : We use the following two real data sets: Census, which gives
population counts for a geographical hierarchy given biestaunty/ city/zipcode [28]; and
WorldCup, which is a Web log over a duration of several momth&RL accesses to files
having a maximum path length of 7 [112]. Note that the hidrarmduced by the URL
file paths are not homogeneous, that is, the nodes havedatifflanouts and the paths have
different depths. The Census data has approximately 81g@@hodes and 130,000 total
nodes in the tree. The maximum height of the tree is 5 (inalgithe root which stands for
the whole country). The World Cup datasets have about 43fhledes and around 4500
total number of nodes. In the non-homogeneous World Cupsdttathe maximum height
of the tree is 8 including the root.

All experiments were run on a Pentium(R) machine with 4 CPtUadock speed 2.66GHz.

Table 4.1 summarizes some statistics of these data sets.

| Trace | # Leaves| # Nodes| Max Depth|
CensusAvg-2004 81174 130585 | 5
Census 2000 vs. 200481129 130477 | 5
Census 2001 vs. 200481093 130478 | 5
Census 2002 vs. 200481161 130522 | 5
Census 2003 vs. 200481182 130551 | 5

Table 4.1: Census dataset statistics

4.3.2 Forecasting Model

We provide a description of the models that we use in our éxy@tal evaluation on real
data. We do not claim any novelty here and use the populamexpi@ally weighted moving
average (EWMA) for both our datasets. In our analysis, weragsa Gaussian distribution
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EWMA EWMA with Cluster Harmonic
Mean of Variances
Node Weight | Node Weight
lllinois/Lake/LibertyVille/27923 | 1.101 | lllinois/Lake/66027/27923 1.066
Texas/Parker/FortWorth 1.005 | Texas/Parker/FortWorth 1.005
[llinois/St. Clair/47423/69550 | 0.870 | lllinois/Kankakee/Bourbonnais/465130.815
Minnesota/Le Seur/0/Mankato City/0.868 | Texas/Hays/Austin 0.655
Texas/Hays/Austin 0.655 | lllinois/Lake/LibertyVille/27923 | 0.565

Table 4.2: Top 5 explanation nodes in the Census data sets in t
relative error using the prediction model for 95% confidence

values

he descending order of

EWMA EWMA with Harmonic Mean
of Cluster Variances

Node Weight | Node Weight
limages/jerseyarg res.gif | 41.052 | /english/playing/download

/downloadmemo.html 42.925
limages/jerseyarg off.gif | 35.875| /images/f98dnldmemasc?2.gif| 40.236
limages/jerseyor off.gif | 32.286 | /images/f98dnldnemasc3.gif | 39.713
limages/jerseyor.res.gif | 32.262 | /images/f98dnldmemascl.gif| 39.396
/images/11189.jpg 10.019 | /images/f98dnldnemasc5.gif | 38.878

Table 4.3: Top 5 explanation nodes in the World cup datasets i
of relative error using the prediction model for 95% confiden

ce values
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Figure 4.4: The fraction of explanation nodes at level I which have ancestors and

descendants in the explanation, for Census and World Cup dat a. clHM refers to Har-
monic Mean of Cluster Variances; gIHM refers to Harmonic Mea  n of Global Variances;
subscripts denote the confidence values.

for the node values. Although this may not be a reasonabiergsson for count data on the
original scale, it is often a good approximation on a tramefed scale (log and squared-root
are widely used for count data). For our example datasets;onsider an exponentially
weighted moving average (EWMA) to model the transformed ¢eants. We use a single
smoothing parameter for all our leaf nodes, the value besterted to minimize the average
predictive squared-error I0ss on a tuning set across aési0d/e assume there is no season-
ality in our time series. This is the case for both the data.aealyzed in this paper. Consider

a single leaf node and let denote predicted value at timdoased on data until time— 1.

For EWMA, &, = m,;_,; and

mt = )\xt —+ (1 — )\)mt,l; (44)
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where) € (0, 1) is a smoothing constant with higher values giving less wietiglistorical
observations. Equation 4.4 can be shown to be a steady statel obtained form a simple

random walk model given by

Ty = my+ €& (45)

my = M1+ Y (4.6)

wherez, is observed value at timem,; may be thought of as the truth,and~; are uncorre-

lated random variables with zero means and variah@es and V() [92]. At steady state,

the optimal prediction obtained through Equation 4.5 reduo Equation 4.4 with an opti-
mal value of\ given by(,/(1 + 4R) — 1)/2R; R = V(¢)/V () and the predictive variance
at timet based on data up to time— 1 is given asl’ = V(e)/(1 — A). Thus, estimators
which give more weight to historical data achieve more smingtand have lower predictive
variance.

In our scenario, we are dealing wifti > 1 time series corresponding to the leaf nodes
giving rise to pairg \;, Vi(e)) to be estimated. For simplicity, we assurthe= X for all i
and estimate the optimal value by minimizing squared-quredictive loss on a tuning set
(see [106] for an example of such an estimator). Fo¢), we test the following variations:
a) separate parameter for each series; b) one parametesdéboéasibling leaf nodes (nodes

sharing same parent); c) one parameter for all the timesseWe select the best model as
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Figure 4.5: (a) Number of explanations; and (b) Stability as function of confidence
value for non-hierarchical and parsimonious algorithm on C ensus data

the one that minimizes average predictive log-likelihoadlee tuning set; this captures both
the mean and variance properties of the predictive digtabu

We analyze two datasets: Census and WorldCup. The Censusalet yearly population
numbers fron2000 — 2004. We used2000 — 2003 as our training period anzD04 as our test
period on which we detect anomalies. We have approximately® leaf nodes on the test
period (see Table 4.1). Since all number are positive (atcolubis interpreted as missing
data), we model the data using a EWMA4otime points on the log scale.

We consider daily counts for the World Cup data and &séme points. The31% time
point is used as a tuning set to select the smoothing pararheted the variances. The last
time point is used as our test set. The optimal valug of this case i$).8 and the model
with separate variances for each node also turns out to beetfteone for this data. Unlike
the Census data, the World Cup hierarchy is not homogeneeyshe nodes have different

fanouts and paths have different depths. Also, the strecfithe tree is dynamic with new

79



100000 ; — ; . ‘ 5500 — ‘ ‘ ‘
s Parsimonious, 2003-2004 —&— [ Parsimonious, May 26-27 —&—
DIFF, 2003-2004 —e— 5000 - DIFF, May 26-27 —e— |
4500 f
2 10000 F 2
2 S
s T 4000 f
c c u;
s s
L% L% 3500 f
1000 ~
HH* E\B #3000 f
—a
—4 2500 T
100 : : : : : : : 2000 : : : : : : :
1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1 101 1.02 1.03 1.04 105 1.06 1.07 1.08
k k
(a) Census Data (b) World Cup Data

Figure 4.6: Comparison with related work DIFF operator in te rms of number of ex-
planations on (a) Census data (b) World Cup data. k is per-node tolerance and is in
linear-scale (not log).

nodes appearing and some old nodes becoming inactive owerie restrict ourselves only
to nodes that occurred at least twice in the lastime points. This removes nodes that have
a small mean and are not of interest, providing a set of apmately 5.5 K leaf nodes to be
monitored. Since zero counts are common in these time serileg transform to achieve
symmetry is not an option here. Instead, we use a squaredressformation which, for

count data, is known to stabilize variance, achieve appraie symmetry and makes the

assumption of a Gaussian distribution reasonable.

4.3.3 Goodness of Explanation Model

For illustrative purposes, we present the top 5 nodes irtneglexplanations based on ab-
solute magnitude (difference of the weights from 0). Tah ghows the 5 nodes in the
Census datasets which are explanations and whose absglatieer error is among the Top

5. We show the lists for two different prediction models: @etior EWMA model, with
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a separate variance component for each leaf and an infevitM& model with a separate
but fixed variance for each leaf in a cluster (nodes under gaanent) which is set to the
harmonic mean of the individual leaf variances in the clustdote that some nodes are
common explanation nodes under both the models such asidllirake/Libertyville/27923,
Texas/Parker/ForthWorth and Texas/Hays/Austin. Simeleamples are shown for World
Cup datasets in Table 4.3.

Figure 4.4 considers hierarchical relationships amongettpanation nodes. If many
nodes in the explanation set have descendant nodes théd@paa of the explanation, then
this indicates the importance of hierarchical explanaj@s descendant nodes are needed to
explain trends that are different from the ancestors in Xipde@ation; these could be stronger
trends or counter-trends compared to the ancestor nodes, Tdrueach node in the expla-
nation set, we counted how many descendants below it argatsof the explanation. Let
V(1) be the number of explanation nodes at IévahdV/ (1)” be the number of explanations
nodes at level which have at least one explanation node as descendant.vilédheampute
V()2 /V(1). In these plots, level 0 indicates the root. We observe fgatficant number of
counties & 25%) have cities which have different trends in population uraleprediction

models.

4.3.4 Parsimony

In Figure 4.5 we compare the parsimonious explanationsagtiose obtained by the naive

non-hierarchical approach. We use three different priesiahodels in which the mean of
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prediction is given by the EWMA model but the variandég) are different — EWMA with

a separate variance per leaf, same variance for each el@meenluster, set to the harmonic
mean of cluster variances (leaves belonging to same pasargje variance for each leaf, set
to the harmonic mean of the global variances. Note that titer lavo estimates underesti-
mate variability for a large fraction of nodes; we chooserthie study the effect of inferior
prediction model on our algorithms.

As the confidence level increases, the precision decreasketharefore, all the curves
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show decreasing trends monotonically. In Figure 4.5(a) taseove that the parsimonious
model with EWMA offers the best parsimony with the smallestniber of explanations,
followed by non-hierarchical on EWMA model, thus showing #idvantage of parsimonious
algorithm. As expected, the performance of EWMA model wilibb@l harmonic mean of
the variances perform worst in terms of parsimony.

We show the parsimony of our algorithm by comparing with tH&Moperator [99].
Since the technique in [99] puts constraints on the interatedchodes, we have to modify
our algorithm so that we have a tolerance parantetereach node, and we use this model in
this comparison shown in Figure 4.6. We compare two diffesaapshots - year 2003 and
2004 from Census data; and May 26 and 27 from World Cup daatdtbe noted that x-axis
in Figure 4.6 is per-node tolerande> 0 and it is not in log-scale.

The improvement in the number of explanations when usingradel is significant, up
to two orders of magnitude. The improvement is more evidenhée Census data, which
exhibit hierarchical trends, compared to the World Cup data

Figure 4.5 (b) show the average stability across all lev@bth non-hierarchical and
parsimonious algorithms. We observe that with increaseoitfidence level, the stability
decreases since the set of nodes which are explanationgeha8ince Census data is ho-
mogeneous with 4 levels, we observe almost monotonic chiangiability with increase in
confidence level except for the parsimonious algorithm wh#hbest EWMA model at con-
fidence level 97. Similarly, we observe parsimony and stgtwin World Cup datasets in

Figure 4.7.
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4.3.5 Efficiency

In Figures 4.8 (a)-(b), we show the runtime of the parsimosimodel on Census data
(minimum time over 5 runs) as function of the number of leavésand confidence level
respectively (using all three models). First, the increasainning time with N follows
O(hN log(N)) growth. Second, we observe that all the algorithms showceedsing trends
(prominently in Census data) in running time with increaseonfidence level (increasing
error) leading to a small number of intervals in the non-feades. Third, we observe that the
parsimonious algorithm with EWMA model has least runnimggicomplexity. That means,
variances in individual leaves can summarize changes wadt@as the algorithm which uses
harmonic mean of variances cannot summarize the changasdhand thus leads to many
explanations (and intervals) up in the trees. To vary thebrrmmof leaves, we sample each
leaf with some probability to be included in the tree. We alsow it for two different values
of confidence levels.

In Figure 4.8(c), we show the space complexity of the 3 pawsious algorithms on
Census (similar trend on World Cup data but better), averager all nodes per level. We
observe that the average number of intervals per node iscolesg to 1 except for parsi-
monious algorithm using EWMA model with same variance paf f®ode (estimated by the
Harmonic Mean of the individual leaf Variances). Furtherejave observe that the same
parsimonious algorithm has higher running time and largeniver of average intervals at

different levels.
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4.4 Summary

Change detection is an underlying challenge for anomalgatieh and understanding of
trends in data. This chapter addresses the change detebatianges in hierarchical data
and proposes a natural model for explaining the changes.sttistical model is general
enough that it can handle the trade-offs between confidewvet¢dnd accuracy in finding the
explanations of the changes. The next chapter takes upabéepn of application classifica-

tion using different approaches.
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Chapter 5

Application Classification

In this chapter, we critically re-visit the problem of aggaition traffic classification. Accurate
classification of network traffic can enable the operatordd@ variety of operations such
as debugging, accounting, security configuration. In aoliditknowledge of the accurate
applications can help in service differentiation and exegenterprise policies.

Initially, we will discuss the performance metrics for coanimg different methodologies
in Section 5.1.1. Then, we will describe the datasets thatiseeto evaluate various ap-
proaches in Section 5.1.2. We introduce the candidate Madtearning Algorithms that we

use in our study in Section 5.1.3.

5.1 Comparison Methodology

Here we describe our comparison methodology, includindopmance metrics, dataset,

comparison benchmark, and experimental setup for mackeraihg algorithms. We use
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the definition of a flow based on its 5-tuple (source IP addasstination IP address, proto-

col, source port, destination port) with a timeout of 64 sel=0[33].

5.1.1 Performance metrics

To measure the performance of CoralReef, BLINC, and madbaraing algorithms, we use

four metrics:overall accuracyprecision recall, andF-Measure

» Overall accuracyof an algorithm is the ratio of the sum of all True Positiveshe p
sum of all the True Positives and False Positives for allselas We apply this metric
to measure the accuracy of a classifier on the whole databetother three metrics

are used to evaluate the quality of classification resuttedch application class.

= Precisionof an algorithm is the ratio of True Positives to the sum ofelRositives and
False Positives, i.e., the percentage of flows (or bytes)atteaproperly attributed to a

given application by this algorithm.

s Recallof an algorithm is the ratio of True Positives to the sum ofeTRositives and
False Negatives, i.e., the percentage of flows in an appicatass that are correctly

identified.

s Finally, F-Measure a widely-used metric in information retrieval and classifion [110],

considers botlPrecisionandRecallin a single metric by taking their harmonic mean:

True Positives is the number of correctly classified flowdsé&#®ositives is the number of flows falsely
ascribed to a given application, and False Negatives is tingoer of flows from a given application that are
falsely labeled as another application.
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Figure 5.1: Application breakdown. Note that some of the fill
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er-patterns are repeated.

Set Date Day | Start | Duration | Linktype | Src.IP | Dst.IP | Packets| Bytes | Avg. Util | Avg. Flows | Payload
(K) (K) (M) (G) Mbps (/5 min.) Bytes
PAIX-I 02/25/04 | Wed | 11:00 | 2h backbone | 410 7465 | 250 91 104 1055 K 16
PAIX-II 04/21/04 | Wed | 19:59 | 2h2m backbone | 2275 | 17748 | 1529 891 997 4651 K 16
WIDE 03/03/06 | Fri 22:45 | 55m backbone | 263 794 32 14 35 312K 40
Keio-I 08/06/06 | Tue | 19:43 | 30m edge 73 310 27 16 75 158 K 40
Keio-II 08/10/06 | Thu | 01:18 | 30m edge 54 110 25 16 75 92 K 40
KAIST-I 09/10/06 | Sun | 02:52 | 48h 12m | edge 148 227 711 506 24 19K 40
KAIST-Il | 09/14/06 | Thu | 16:37 | 21h 16m | edge 86 101 357 259 28 21K 40

Table 5.1: Characteristics of analyzed traces

2 X Precision x Recall/(Precision + Recall). F-measure can be expressed in terms

of True Positives, False Positives and False Negatives ague Positives /{x True

Positives + False Positives + False Negatives).

5.1.2 Data Set and Comparison Benchmark

Our dataset consists of seven payload traces were collattaed backbone and two edge

links located in the US, Japan, and Korea (see Table 5.1).PAh¢ backbone traces were

taken on a bidirectional OC48 trunk of an US Commercial Tibatkbone link connecting

San Jose and Seattle. The WIDE trace was captured at a 100Bgeet US-Japan Trans-

Pacific backbone link that carries commodity traffic for Wibtmber organizations. The
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Keio traces were collected on a 1 Gb/s Ethernet link in Keiavehsity Shonan-Fujisawa
campus. The KAIST traces were captured at one of four exténka connecting a 1 Gb/s
KAIST campus network and a national research network in &ore

To establish a reference point in evaluating the algorithwes use the payload-based
classifier developed in [68], which we augment with more paglisignatures from [102, 40,
111] and manual payload inspection. Our resulting classifdudes payload signatures of
various popular applications, summarized in Table 5.2. @dgdoad classification procedure
examines the payload contents of each packet against @y @frsignature strings, and in
case of a match, classifies the corresponding flow with ancgtign-specific tag. Previously
classified flows are not re-examined unless they have bessiftéal as HTTP, in which
case re-examination may enable identification of non-watid¢rrelayed over HTTP (e.g.,
streaming, p2p, etc.) [68].

After the payload-based classification process, we ideatiinning activities using scan
detection heuristics in [19]. Flows that could not be ciisdiduring the signature matching
and scanning detection processes are categorized as umkwbveh represents 4.7%-9.6%
of flows in the PAIX and Keio traces, 28.6% in the WIDE traced amound 60% in the
two KAIST traces. Approximately 90% of those unknown flowshe KAIST traces were
from/to three PlanetLab [57] machines. Our experience aaddianniset al’s study [67]
with payload classification suggest that the first 16 bytepayioad suffice for signature-
based classification for most legacy and P2P applicatioogpgxGnutella, particularly on

the PAIX and Keio traces where unknown flows represent less 580-10%. Gnutella (and
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its variants) uses variable length padding; Ernearal’s measurements indicate that 400
payload bytes of each packet is required to identify 90% efGnutella flows using payload
signatures [44]. We exclude attack and unknown flows fromemadysis.

Figure 5.1 shows payload classification results for ouresad he traces vary widely in
application mix, motivating our per-application analysg&canning traffic contributes 14%-

35% of flows in the WIDE, Keio, and PAIX traces in Figure 5.1.

Category Application/Protocol
web http, https
p2p FastTrack, eDonkey, BitTorrent, Ares, Gnutella, WinMX,

OpenNap, MP2P, SoulSeek, Direct Connect, GoBoogy
Soribada, PeerEnabler

ftp ftp

dns dns

mail/news smtp, pop, imap, identd, nntp

streaming mms(wmp), real, quicktime, shoutcast, vbrick streaming,

logitech Video IM
network operation netbios, smb, snmp, ntp, spamassassin, GoToMyPc

encryption ssh, ssl

games Quake, HalfLife, Age of Empires, Battle field Vietham
chat AIM, IRC, MSN Messenger, Yahoo messenger
attack address scans, port scans

unknown -

Table 5.2: Application categories

5.1.3 Machine Learning Approach

We address three main challenges of traffic classificatigragzhes that use supervised
machine learning algorithms and flow features to train thelel The challenges are as

follows:

1. Finding a set of key flow features that capture fundameatacteristics of different
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types of applications [82, 109].

2. Finding the most accurate classifier(s) with acceptameputational cost [109].

3. Obtaining representative datasets with ground trutiidaous applications, i.e., datasets
that contain correct and complete instances of applicdlioovs, in terms of their fun-

damental flow features [44].

Flow features

We use unidirectional flow features of TCP and UDP traffic tibdoa classifier that han-
dles both TCP and UDP as well as backbone and edge traffic. Wa&sinidirectional
flow features most of which are inspired from 248 bidirectibfeatures used in [82] and
22 bidirectional features in [108, 109]. The 37 features @metocol, source and destina-
tion ports, the number of packets, transferred bytes, timebeun of packets without Layer
4 (TCP/UDP) payload, start time, end time, duration, avenagcket throughput and byte
throughput, max/min/average/standard deviation of pasikes and inter-arrival times, num-
ber of TCP packets with FIN, SYN, RST, PUSH, ACK, URG (Urge@WR (Congestion
Window Reduced), and ECE (Explicit Congestion Notificatiecho) flags set (all zero for
UDP packets), and the size of the first ten packets. Figurg) shows different TCP header
flags. FIN flag indicates that the sending end will not sendranye data. SYN flag is set
for the initial packets of a TCP connection where both thesesfdthe connection have to
synchronize their TCP states. RST flag is set when the rexgpend of the connection needs

to be reset. This flag is also set when the sending side erexsuarty errorneous packet such
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as acknowledgment to a packet that was never sent. PUSH #ag)\when the sending side
of the connections wants to convey that the data in the recéiffer should be sent to the
application immediately. ACK flag establishes the validifthe acknowledgment number.
URG flag is set when the urgent pointer is valid and it indisaket the data should be han-
dled urgently, even before normal data is processed. CWRIstmr Congestion Window

Reduced and is applicable when ECN is enabled. The TCP sseiddhis flag when it wants

to inform the received that the congestion window has bedno&d in response to conges-
tion indication. ECE standars for Explicit Congestion No&tion Echo and is used when

ECN is enabled. The receiver sets this flag to inform the sgnldost know of congestion.

Feature Selection

Feature selection, as a preprocessing step to machinenigaisthe process of choosing a
subset of original features that will optimize for higheareing accuracy with lower com-
putational complexity. The process removes irrelevant §t redundant [22] features, i.e.,
those that can be excluded from the feature set without lbskassification accuracy, thus
improving algorithm performance.

There are two general approaches to feature selediltars andwrappers Filter meth-
ods are preprocessing steps performed independent of saficiaison algorithm. Wrapper
methods attempt to search through the space of featuretsulbsiag the criterion of the
classification algorithm to select an optimal feature stibSace wrapper methods involve

repeatedly executing an algorithm for each possible sulifsiatures, it is computation-
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ally expensive and impractical time-wise, particularlyemrevaluating several learning algo-
rithms on large data sets [108]. For this reason, we onlysinyate filter methods. We select
the Correlation-based Filter, which outperforms the offitar method (Consistency based
Filter) in terms of classification accuracy and efficienc@§1109]. The Correlation-based
Filter examines the relevance [27] of each feature, i.@semhighly correlated to a specific
class but with minimal correlation to each other [109]. We tis Best First search to gen-
erate candidate sets of features from the feature space, ispprovides higher classification
accuracy (percent of correctly classified instances) thae@y search [108, 109]. The Best
First search creates a new subset based on the addition ovakai features to the current
subset. Unlike Greedy search, it can also backtrack in tleets@n process when it observes

no improvement.

Supervised Machine Learning Algorithms

We use the WEKA machine learning software suite [15], oftseduin traffic classification
efforts [80, 42, 40, 87, 82, 109], to evaluate the seven masineconly used supervised ma-
chine learning algorithms: Naive Bayes [82, 109], Naive &al{ernel Estimation [82, 109],
Bayesian Network [109, 108], C4.5 Decision Trees [108Nearest Neighbors [96], Neu-
ral Networks [108] and Support Vector Machines [108, 25, ARk explore the following

guestions:

1. Which algorithms perform best in classifying traffic ?

2. How does training set and its size affect the classifinaperformance of learning
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algorithms ? In order words, how many training instance$ edgorithm requires to

achieve a certain level of accuracy and per-applicatiofopmance ?

3. How consistent are the results acrosss different dat@set

To this end, we conduct seven experiments for the compan$adine algorithms on each
trace, varying the size of the sampled training set whilegishe same, fixed number of
testing set. To separate the training and testing sets, 5@4ch trace is chosen randomly
to form a training dataset and the remaining flows form tgstiataset. The original datasets
contain more than millions or hundreds of thousands of fl@s. sampled training datasets
contain 100, 500,1000,5000,10,000,50,000 and 100,0b0rtgeflows (collected from train-
ing datasets). We randomly sample 200,000 flows from thintestatasets? We briefly
describe all the evaluated algorithms below:

Naive Bayess a simple probabilistic classifier based on Bayes’ theoweich analyzes
the relationship between each feature and the applicalams ¢or each instance to derive a
conditional probability for the relationships between thature values and the class. The
naive aspect is the assumption that all attribufés (. ., X,,) are conditionally independent
of one another, given the class This assumption dramatically simplifies the represeomati
of P(X|Y'), and the problem of estimating it from the training data.

Naive Bayes Kernel Estimationis a generalization of Naive Bayes which models fea-
tures using multiple Gaussian distributions, consideredenaccurate than using a single

Gaussian distibution for traffic classification [82, 109].

2The smallest trace of ours contains approximately 420,00&flabeled with payload classification results.
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Bayesian Networkis a directed acyclic graph model that represents a set tfrées or
classes, as its nodes and their probabilistic relationshigpdges. If the conditional indepen-
dence assumption is not valid, Bayesian Network learning oogperform Naive Bayes.

C4.5 Decision Treeconstructs a model based on a tree structure, in which eéamai
node represents a test on features, each branch represtaase of the test, and each leaf
node represents a class label. In order to use a decisiofotrelassification, a given tuple
(whose class we want to predict) corresponding to flow festuvalks through the decision
tree from the root to a leaf. The label of the leaf node is thesification result.

k-Nearest Neighborscomputes Euclidean distances from each test instance kot -
est neighbors in the-dimensional feature space. The classifier assigns therityaptass
label among thé nearest neighbors to the test tuple. This technique scatadypwith the
number of training and testing instances, since each néwi@s is compared to every tuple
in the training set. We ude= 1, by which we obtain the highest overall accuracy among the
experiments where we test wik= 1, 3,5, 7, 9, 11, 13, 15, 17, and 19.

Neural Networks is a highly interconnected network of units, neurons, whmsgut is
a combination of the multiple weighted inputs from othernogis. We use the simplest and
most common Neural Network classifier called the Multilalyerceptron, which consists of
a single input layer of neurons (features), a single outpyer of neurons (classes), and one
or more hidden layers between them. Following [108, 15], etelse learning rate (weight
change according to network error) to 0.3, the momentunp@temn of weight change from

the last training step used in the next step) to 0.2 and weheatraining for 500 epochs (an
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epoch is the number of times training data is shown to the ovédw

Support Vector Machines (SVM) refers to a learning system based on recent advances
in statistical learning theory. The basic principle of SV#4to construct the optimal sepa-
rating hyperplane, which maximizes the distance betweertltsest sample data points in
the (reduced) convex hulls for each class, imatimensional feature space [25]. Intuitively,
we would expect that this boundary to generalize better tdihar possible boundaries be-
tween classes. We use the Sequential Minimal Optimiza&dnd®@) [93], a faster algorithm
for training Support Vector Machines that uses pairwisesifecation to break a multi-class
problem into a set of 2-dimensional sub-problems, elinmgathe need for numerical op-
timization. The two most important parameters in SVM are ¢bhmplexity paramete€
and the polynomial exponept[77, 108]. Liet al.[77] showed that varying the complex-
ity parameterC influenced the overall accuracy of their SVM traffic classitig only a

little (around 1% at most). We use 1 for both parameters as(8,[15].

5.2 Performance Evaluation

We evaluate the performance of nine algorithms for Intemadfic classification: CoralReef,
BLINC, and the seven machine learning algorithms descrifecevaluate port-based clas-
sification, we compare the performance of CoralReef’s gadsification rules [2] with our

payload-based classifier, which we use to find ground truth.
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5.2.1 CoralReef
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Figure 5.2: Overall Accuracy of CoralReef
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Figure 5.4: Per-application precision & recall of CoralRee f(FTP,P2P,0Others)

The overall accuracy of any port-based classification resflaow much traffic in the
examined traces obeys the default ports usage. Figure psh@avs that the overall flow
accuracy of CoralReef on the traces ranges from 71.4% t&®%u®d Figure 5.2(b) show
that the overall byte accuracy ranges from 50% to 90%. Coimp&igure 5.2 with Figure
5.1 (a), we find that the overall accuracy of CoralReef is lyiglependent on the traffic mix,
e.g., inversely proportional to the fraction of P2P flows igien trace. The PAIX-Il and
KAIST traces with the highest fraction of P2P flows (4.0%2E8) have the lowest overall
accuracy with CoralReef classification. In contrast, theD®/Iland Keio traces on which
CoralReef achieves the highest overall accuracy cont&rsthallest portion of P2P flows
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(less than 1%) among all examined traces. These obsersatiotivate our detailed study of
per-application performance of CoralReef, which we sunirearext.
Per-application performance

Figure 5.3 and 5.4 show the per-application precision andllref CoralReef on eight
major applications: WWW, DNS, Mail, Chat, FTP, P2P, Streagnand Games, which com-
prise most (86.6%-95.7%) of the traffic flows whose grounthtmue know. As shown in
Figure 5.3 and 5.4, we find that each application consistesfithres one of three sets of
distinct characteristics across all traces — (i) high @ieai and high recall (WWW, DNS,
Mail, and Chat); (ii) high precision but lower recall (P2RJaRATP); and (iii) lower precision
but high recall (Streaming and Game). The high precisionpdr&based classifier such as
CoralReef on an application implies that its default poressseldom used by other applica-
tions whereas high recall implies that the correspondingiegtion mostly uses its default
ports.

Despite the common perception that ports are no longer (oergdy less) reliable and
useful, port-based application still identifies legacy laggpions and protocols quite accu-
rately, and often these constitute the majority of trafficaolink. For WWW, DNS, Mail,
News, SNMP, NTP, Chat, and SSH flows, CoralReef achievesrgtision and recall on
our traces (both- 90%). Flows belonging to DNS, Mail, SNMP, News, and NTP a&essi-
fied with more than 98.9% precision and recall on all examinacks.

Nonetheless, it is important to recognize that port-baseskdication fails to yield accu-

rate classification results in the following two cases: (ijem an application uses ephemeral
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non-default ports, e.g., P2P and passive FTP data transfgade the recall of CoralReef.
In our data set, 49.4%-96.1% of P2P flows use ephemeral gojtathen the default ports
of an application coincide with port masquerading P2P apfibns, e.g., Streaming and
Game ports were often used by P2P applications, which degtaé precision of CoralReef.
12.0%-75.0% of flows on the default ports of Streaming and &applications turned out to
be P2P traffic, according to payload inspection. Contrarg¢ent claims of P2P applications
masquerading on WWW ports to evade detection and blockiegiownd little evidence of
such masquerading in our traces: only 0.1%-0.5% of the flow&/@/W ports were deemed
P2P (We are not aware of any firewalling or filtering on the rtamed links that might moti-
vate such masquerading, so we cannot claim it is so rare oa heavily firewalled parts of
the Internet).

Finding 1 Port-based classification can accurately identify legapplacations (though
the two backbone traces were collected in 2004); its weakisei®m identifying applications
that use ephemeral ports or traffic masquerading behind & fymically used for another
application.

Although we did not apply our analysis to attack flows or thtiswewhich we did not
have any ground truth, this finding suggests that portsigkess significant discriminative

power in classifying certain types of traffic.
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Figure 5.5: Overall accuracy of BLINC

5.2.2 BLINC

The approach taken by BLINC does not depend upon solely aniformation, rather it
depends on the relationship between hosts. In order to uBe@bn each datasets, we per-
form about 25 trials to configure BLINC’s 28 threshold paréengfor the best performance
in precision and recall (precision takes precedence iretfisl since recall errors can be
mitigated by other methods [68]). Parameter values thatope the precision may differ
on different links, so separate (per-trace) tuning prevdegradation of overall accuracy by
10%-20%. Our experience also suggests that one shouldia&LiNC parameters related
to P2P applications first since almost every BLINC moduleesebn them.
Overall Accuracy

The original BLINC implementation generates graphletsafrse (IP, port pairs that
represent communication behavior, and then investigatether each source graphlet fol-
lows a typical server pattern, e.g., WWW, DNS, SMTP. OnceMBL ffinds a sourcelP, port

pair behaves like a specific type of application serveraisifies al(IP, por} pairs that have
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talked to this server as the same application clients. Tifiasnon-bidirectional backbone
trace contains client flows but misses response flows froradhresponding servers, BLINC
can not classify those client flows (classifies them in itskhown” class). To address this
critical limitation in classifying non-bidirectional bkbone traffic, we extend the BLINC
implementation to generate node profiles of not only sotigepory pairs but also of desti-
nation(IP, ports pairs, because we find that server ports of some applicdil@gVeb can
be identified by applying the same graphlet matching algorion destinatiorlP, port pairs
of client flows in the opposite direction.

Figure 5.5 shows the overall accuracy of the modified codeeRe BLINC, on our
traces. Reverse BLINC on destinatid®, port pairs improved the overall flow accuracy on
the PAIX and WIDE backbone traces by as much as 45%, sinceosettraces one of the
two directions of traffic is often missing due to asymmetaating. Most of the flows that
Reverse BLINC identified were of WWW and P2P clients.

Per-application performance

Figure 5.6 and 5.7 show BLINC’s per-application precisiom aecall. Once tuned,
BLINC classifies WWW, DNS, Mail, Chat, FTP, and Streaming #awith greater than 90%
precision. However, recall for these applications is wedkan precision, since all classifi-
cation is threshold-based: the number of application floasifa given source must exceed a
certain threshold in order to trigger classification. Ifrénare too few flows from this source,
its traffic remains unclassified. DNS, Mail and Chat have loreeall in backbone traces

than in edge traces, because even Reverse BLINC could nioireagpose application flows
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Figure 5.6: Per-application precision & recall of BLINC (WW W, DNS,Mail,Chat)

when server flows were missing from backbone traces. RexdTP, Streaming, and Game
is always lower than 25.8% across all traces, since hostimhsignatures of BLINC for
these applications do not cover the following cases: (i)mé&treaming or FTP server con-
currently provides any other application services; (ii)amha Game client sends any TCP
flows or talks to only a few destination hosts.

With proper tuning, BLINC reliably identifies P2P flows, padlarly when we first apply
port-based classification to filter out DNS server-to-sefuadeed essentially P2P) flows
which BLINC often misclassifies as P2P. When we filter out DN®/4l first and then apply
BLINC to the remaining flows, BLINC achieves85% precision for P2P application flows.

103



Precision Precisioin
Recall =3 Recall =3
q 100

Percentage of Flows (%)
Percentage of Flows (%)

b, . T G %G
o8 /Q/ /Q// /&,?/ ’\S‘,\\//
(H P2P
Precision Precision
Recall === Recall ===
1 100
g g 80
< <
w w
k] G 60 -
[ [
g g
[ [
a a
20
. . . 0 . — .
A £ £ 2 2 4, 'f:y "Q,
< < , , <, <, %
/Q’ /Q// /@):/ /&)‘// * 4{:// 2 {?&/ /@)3/
(g) Streaming (h) Game

Figure 5.7: Per-application precision & recall of BLINC (FT P,P2P,Streaming,Game)

However, recall of P2P traffic measured in bytes is signitigaf20.5%-61.9%) less than
that measured in flows. This difference in recall is due tddlcethat some P2P applications
usually assign different ephemeral ports for every singladransfer. If such transfers are
large, then they account for a large number of bytes, but tineber of flows remains below
our classification triggering threshold, so this traffic eens unclassified.

Finding 2 Since BLINC (i) classifies traffic based on the observed heha¥ server
hosts and (ii) adopts a threshold-based triggering mecémaniit depends on whether the
traffic containing enough behavioral information about lkedwst. Thus, the best place to
use BLINC is the border link of a single-homed edge networsavh can observe as much
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behavioral information of internal hosts as possible. Hoe tsame reason, BLINC is not
appropriate for backbone links, where (a) only a small pmmtof behavioral information is
collectible for each logged host and (b) we often miss onectlon of traffic due to asym-
metric routing.
Computational Performance

When running BLINC, the running time and memory usage degmsnthe number of
flows that need processing in a time interval. The BLINC cod€ft+) processed the Keio,
KAIST, WIDE, and PAIX-I traces in real-time using less thaGB of main memory. These
traces contain less than one million flows per five minuterviatieon average. However, it
took 16 hours to process the 2 hours of PAIX-II trace conteydi.7 million flows per interval
on average, consuming around 9-10 GB of memory. We used avé€r sath two 2.4 GHz
Zeon CPUs and 4 GB of memory to run BLINC on the Keio, KAIST, &tDE traces. For
the PAIX backbone traces, we used a SUN Fire 15000 system?28GB of memory and

72 UltraSPARC3 900 MHz CPUs (used only one CPU).
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Figure 5.8: Average overall flow accuracy of machine learnin g algorithms by training
set size
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5.2.3 Supervised Machine Learning Algorithms

We next evaluate the classification performance of the sevest well-known supervised
machine learning algorithms using the WEKA.
Key Flow Features

We first find key flow features for accurate traffic classifieatusing the Correlation-
based Filter (CFS) with Best First search. For every trdue QFS selected four categories
of features: protocol, ports, TCP flags and packet size mmébion, reducing the number of
features required from 37 to 6-10. Features such as inteehtimes, which vary greatly by
link, are not chosen as a key discriminator in any trace.

According to our analysis, using the selected feature sulesgades overall accuracy by
only 0.1-1.4% compared to using all 37 features, while drally reducing required training
time, which increases the model (classifier) building sp®ed factor of 3-10. The feature
selection process thus provides an excellent trade-offdest feature space reduction and
loss of accuracy, confirming findings in [109]. Henceforth wdl use the selected key
features to evaluate the performance of the learning dlgos.

Overall accuracy

Figure 5.8 shows the overall flow accuracy of the seven made@rning algorithms as
the training set size varies (from 100 to 100,000). Figu8ad®es not show the results of the
Neural Network method for larger training set sizes, sifeedlgorithm was prohibitively
slow in building a classifier with more than ten thousandiirag instances (Figure 5.9(a)).

For every trace, with any size training set, we always obtaimsistent results. In our
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Figure 5.9: Computational performance of ML algorithms by t raining set size

experimental set up, the Support Vector Machines (SVM) oektchieves the highest over-
all accuracy, followed by Neural Network (although it is guslow to train) andk-Nearest
Neighbors. The best performing algorithm, SVM, achievesanban 98.0% average accu-
racy on all traces with 5,000 training flows, which amounty @5% of the size of the testing
sets. SVM appears to need little training — around five tolbensand training instances suf-
ficed in our study — which makes it promising for practicakhmiet traffic classification since
training data is scarce [44]. The Neural Net method achiswvesar accuracy but is 10-1000
times slower than SVM in training and testing, when evaldate the same dataset.

Bayesian Network, Naive Bayes Kernel Estimation, Naivedsaynd C4.5 Decision Tree
follow the top three algorithms, requiring many more (amten to several hundred times)
number of training instances than those top three methode dohieve the same level of
overall accuracy.
Computational Performance

Figure 5.9 (a) and 5.9 (b) show the learning time and classidic time of the seven

algorithms with increasing training set sizéaive Bayes, Naive Bayes Kernel Estimation,

3Note that we have evaluated the performance of concreteimgitations in the Java-based (slow) WEKA
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Bayesian Networks, and C4.5 Decision Trees are the fourdtatgorithms in both learning
and classification followed bi¢-Nearest Neighbors, Support Vector Machines and Neural
Network. Sincek-Nearest Neighbors does not really involve any trainingufeé 5.9(a) does
not include plots for the algorithm. In general, it takesgento train an algorithm than
to perform actual classification except in case of Naive Bay&he fastest classification
algorithm is C4.5 Decision Tree. WhileNearest Neighbors learns and classifies quickly
with a smaller training set, its classification time curvewh the steepest increase as the
training set size grows, eventually becoming slower thaiMS¥hen trained with more than
ten thousand instances. While it takes longer to build an SNddsifier, its classification
time is ten to hundred times shorter than its learning timaking it more practical than
thek-Nearest Neighbors and Neural Network methods. The Newsahdrk method is the
slowest particularly in learning.

We run WEKA on two different platforms: SUN Fire 15000 systetth 228 GB memory
and seventy two 900 MHz UltraSPARC3 CPUs, and IBM DataStatesy with 256 GB
memory and thirty two 1.7 GHz IBM Power4+ CPUs (used only oRJI
Per-application performance

Figure 5.10 shows per-application performance, F-measifitee seven machine learn-
ing algorithms by training set size. The SVM performs the breerms of the per-application

F-measure as well, attains over 95% F-measure for any applcwith more than a few

software suite on our test platform, not the theoretical glexity of the algorithms because (i) traffic classifica-
tion efforts [80, 42, 40, 87, 82, 109] have often used WEKA] €i) this approach yields tangible performance
numbers for and comparisons [109]. Optimized implemeoativould likely yield faster learning and classi-
fication speeds for all algorithms.
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Figure 5.10: Per-application F-measure of machine learnin g algorithms by training set
size
thousand training flows. Figure 5.10 shows that the periegpdn F-measure of the SVM

significantly drops as the training set size decreases terfédvan 1000.k-Nearest Neigh-

bors achieves lower F-measures than those of SVM partlgdarP2P, FTP, Streaming, and
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Chat. The Neural Network method also underperforms on @ges, though we have only
limited results for per-application F-measure due to itsarely slow training.

All the algorithms classify Web and DNS traffic accuratelyatirdatasets. A few hundred
training flows are enough to identify them with more than 888846 F-measure. In contrast,
P2P and FTP applications require the most training, notsimg since each application cat-
egory itself contains multiple applications and/or comioation patterns, e.g., data channel
and control channel of FTP, etc. The F-measure of Naive B&8agesian Network, and C4.5
Decision Tree on P2P was at most 40%-80% even with more thahaesand training flows.
Other applications are in between those two groups of We/Bhd P2P/Streaming/FTP in
terms of F-measure.

Finding 3 Protocol, ports, packet size, and TCP flags are key flow featur accurate
classification of unidirectional traffic flows. Support M@cMachines using these key fea-
tures perform the best for every application studied and werebackbone and edge trace
examined, requiring the least number of training flows (ast@ound a few thousand) for

each application compared to other algorithms.

5.2.4 Comparative Analysis

Figure 5.12 compares the overall accuracy of the evaluatttiods: CoralReef, BLINC,
and the seven machine learning algorithms, on our datas®tsying the highest two, the
lowest two, and the median values we obtained from each rdetto general, machine

learning algorithms, and in particular, the SVM, k-Neafgstghbors, and Neural Net show
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higher and more consistent performance across all thestthaa other methods. The overall

accuracy of port-based classification such as CoralRefs/according to the proportion of

flows using officially designated ports, while BLINC’s acaay strongly depends on both

topological location (e.g.,

backbone vs. edge link, umidiional vs. bi-directional link,

international, domestic vs. local etc.) and traffic mix. M consistently outperformed

all other methods we evaluated. Although Neural Networkrset perform almost as well

as SVM (only slightly less; 0.4%-1.1% in terms of overall a@xry) performance to SVM,
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its computational cost is prohibitively high (see Figurg(g) and (b)).

5.3 Lessons learned

In this section, we summarize our findings and discuss olwaimplications of those find-
ings.

Lesson 1 (On ports as key features)One of the key findings of this thesis is that port
numbers are relevant to traffic classification. In partigydart lookup can reliably identify
many conventional applications, especially when used watbket size information, TCP
header flags and protocol. Excluding port information frosaébove key features in training
an SVM classifier reduced overall accuracy from 95%-99% 8-5®%. On the other hand,
conventional applications are not what have catapultdfictirelassification activities into
the popular press. The more interest there is in identifyiaffic in order to constrain or
charge users, the more incentive there will be to hindergassification methods. Indeed,
at any time, or on any link, traffic may use unrecognized portsnisuse recognized ports to
explicitly hide traffic. Thus, the real challenge (and fearhot in recognizing conventional
applications, but in detecting applications that are gyimhide, e.g., via port masquerading
or encryption.

Lesson 2 (On behavior based classification)Vhile port information and flow-features-
based approaches make classification decisions on a pelpdkig; host-behavior-based clas-

sification as implemented in BLINC aggregates flow informatfor an interval to derive
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behavioral patterns of observed hosts. The accuracy oftabebsvior-based classification
strongly depends on whether the observed link is locatedagd@ogically appropriate place
to collect enough behavioral information on hosts. Consatiy, BLINC is effective on links
that capture both directions of every flow to a host, sucha$&dnder link of a single-homed
edge network. Host-behavior analysis is less powerful aregated, e.g., backbone, links,
where often only a small portion of flows from/to an end-haat be observed, and where
asymmetric routing prevents observation of both direciohtraffic.

Lesson 3 (On byte accuracy):The other limitation of the aggregated-behavior-based
approach is, even at a topologically appropriate placesethechniques will fail to classify
traffic from/to entities whose flows seldom traverse thedtligk. As a result, they often mis-
classify as unknown a small number of large “elephant” flaws/to such entities, achieving
lower byte accuracy (or recall) than flow accuracy (or rgc&br example, the byte accuracy
of BLINC was significantly lower (13.1%-59.3%) than its flowcaracy (56.2%-86.7%) on
our traces. Karagiannist al. had similar results in [68]. This weakness is a serious flaw
for practical traffic classification, as elephant flows magoamt for over 70% of the bytes
transferred on typical networks [29]. A complementary fiew based classification process
on remaining unclassified flows is needed to overcome thigdimn.

Ermanet al. showed that a cost-sensitive sampling approach allowedhimadearning
algorithms to achieve high byte accuracy and flow accura8jy [Bhis approach trains a clas-
sifier with more of the rare but resource-intensive cases, elephant flows. They trained

their classifier with a training set that contained 50% of 8dvelow the 95% percentile of
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flow size and 50% of flows above the 95% percentile of flow sizeis Technique substan-

tially improved the byte accuracy for the classifier, witHyoa marginal reduction in flow

accuracy.

100 BLINC on <srclP, srcport> pairs - 100 BLINC on <srclP, srcport> pairs -
BLINC on <dstlIP, dstport> pairs === BLINC on <dstlIP, dstport> pairs ===

80 -

Percentage of Flows (%)
Percentage of Bytes (%)

(a) Flow accuracy (b) Byte accuracy

Figure 5.13: Overall flow and byte accuracy of BLINC

Lesson 4 (On single vs. bidirectional flow features for backbne traffic classifica-
tion): Accurate traffic classification is feasible only when a dfssrspossesses correct, com-
plete fingerprints for target applications. Previous e¢ffan flow-features-based classifica-
tion [80, 82, 96, 26, 40, 37, 113, 44, 109] have shown thatréational TCP flow statistics
provide such fingerprints for various applications. Howetleese methods are not appro-
priate for classifying backbone traffic where one directoba TCP flow is unobserved due
to routing asymmetries. Backbone traffic classificationhallenging because only partial
information about bidirectional TCP connections is ada#a Ermanet al. addressed this
limitation by proposing an algorithm that uses the packé&nounidirectional TCP flow to
estimate the flow statistics of the unobserved direction, [#hving UDP traffic classifica-

tion as future work. We address this problem by using portsegsfeatures in addition to
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TCP flags and packet size, based on (i) Lesson 1 and (ii) téised the Correlation-based
Feature Selection. The resulting classifiers show acasammparable to or higher than
those of previous work, on all our backbone and edge trasasy only single-direction flow

features. While port information does not seem necessaeywie train a learning algorithm
with bi-directional flow features to classify TCP traffic,istindispensable when using only

single-direction flow features to classify both TCP and UEH##it.

5.4 Summary

Traffic classification is a challenging problem in which thetwork flows (at the level of
transport layer) are associated with the higher layer egptins. Accurate classification en-
ables the IT operators to better provision and manage thveonletresources. This chapter
addresses the disadvantages and advantages of the ettatiicgclassification methods. In-
depth analysis of three different approaches (port-basest;-behavior-based and machine
learning methods) on seven different traces reveal iniagegesults which provide valuable
guidelines for the reseachers and engineers. The resolistblat the port-based classifica-
tion can still be accurate for traditional applications anachine learning approach can be
effective if a classifier is trained well with representatiatasets. Among machine learning
algorithms, we found that SVM attains highest accuracy amdtherefore be a viable solu-
tion. We also find that the host-behavior method (BLINC) veonkell when the datasets have

bi-directional flow information.
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Chapter 6

Conclusion

In this chapter, we summarize the contributions and linateg of this work, and discuss

directions for future research.

6.1 Contributions

This dissertation presents the designGuidai a new framework to manage the enterprise
networks. Godai aims to solve three problems in the curnetetrprise network management
system. First, the current enterprise end-hosts are npepgoconfigured when it comes to
securing them against botmaster recruitement processn8gthe IT operators need traffic
analysis tools which report to them important but compactrsaries as well as changes
among the summaries. Third, they need tools and propergusfitheir configuration to

analyze traffic and identify application breakdown.
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6.1.1 Configuration Management

Configuring the end-host IDS in an enterprise requiresrgg#tppropriate thresholds for dif-
ferent detection features. Setting right threshold vailiése end-host IDS systems can force
an attacker into an extremely stealthy mode or preventihflmunching attackssodaipro-
vides an approach to set thresholds igraup of end-host anomaly detectors. We challenge
the common practice of the IT operators who opt for a singlediold across the popula-
tion of end-hosts. We show that this IT practice can lead fotanded wild experience of
false positives and false negatives by the end-hosts. Iat@mpt to configure a group of
enterprise end-hosts, we observe that considering a groeipdehosts couple them and the
behaviors of the end-hosts influence the common threshablé vin our unified approach we
propose two components: (a) the choice of utility functiodalance the trade-off between
false positives and false negatives, and (b) the choicewefrsity level which decides the
number of different thresholds to be computed for the emstdhoBased on the evaluation

using real data, we find that:

1. the natural user diversity offers tremendous opporesfor an attacker to “hide”,

2. the choice of utility function can have huge impact on taksd positive and false

negative experienced by the end-hosts,

3. the diversity in the thresholds can be beneficial if falsgifives are more important in

an enterprise, and

4. a handful of thresholds seem to be capable of providingfsgnt benefits compared
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to homogeneous approach

The last observation is very promising as it argues thatrglityeis not an all-or-nothing
proposition: it may be able to strike a compromise betweereffectiveness and the opera-
tional simplicity. Our findings point to the need of a compekive re-evaluation of the way

how IT operators set IDS thresholds.

6.1.2 Hierarchical Summary

Godaiproposes a natural model for explaining the changes inoigical data and formu-
lates two problem variants for finding a parsimonious exgiiem in this model. Our model
makes an effective use of the hierarchy and describes chatdle leaf nodes as a compo-
sition of node weights along each path of each root-to-leéth g the hierarchy. We design
algorithms to minimize the explanation size for both thebpem variants. Despite the fact
that assigning node weights optimally is an under-constproblem, we have shown that it
is not NP-hard and that our algorithms require time propasl to the product of the number
of leaves and the depth of the dimension hierarchy.

We evaluate our approach on real data to demonstrate befficiency and effectiveness.
In practice, the performance and space usage of our algwi#iie much less than the worst-
case bounds. On population census data, the explanatsmovdred (counter) trends, mainly
at the city-level. We have made similar observations wheranedyze HTTP traffic logs
from the FIFA World Cup hosting site. Our approach can alsodesl to reveal “interesting”
anomalies in hierarchical data when used in conjunctioh wistatistically sound predictive
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model that forecasts values within confidence interval@séhanomalies are explained more
parsimoniously using our algorithm compared to the leagllanomalies that the predictive

model detects.

6.1.3 Application Classification

Godaiconducts a detailed comparison of three well-studied ambres to traffic classifica-
tion: ports-based, host-behavior-based, and flow-festbased. We believe this is the first
study to evaluate the three families of traffic classifiaatdgorithms on several data sets of
payload trace from different types of network links locateanultiple countries. Diversity
in the data sets allow us to test the approaches under a widémaf conditions, facilitating
our assessment of the strengths and weaknesses of eachapp@ur study yields several

insights:

1. The effectiveness of port-based classification in idgng legacy applications is still
impressive and is further strengthened by the use of patketasnd TCP flag. This
fact explains why research attention has shifted to detg@nd identifying new ap-
plications that use port-masquerading and encrytion,trafic deliberately trying to
evade traffic classification. Unfortunately, increasirtgmtion to classifying traffic for
purposes not necessarily approved by originator of th&drnaflikely to increase this
category of traffic, inducing an arms race between thosadrio classify traffic, and

those trying to avoid having their traffic classified
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2. Each approach has its own strengths and weaknesses, refid cambinations can
provide synergy. When an approach has a fundamental weakmetassifying par-
ticular types of traffic, integrating aspects of other tegbhes can help. For example,
host-behavior-based methods such as BLINC can be augmeitteger-flow based

classification process to increase byte accuracy.

3. The Support Vector Machines algorithm consistently el the highest accuracy.

Scientifically grounded traffic classification researchuresp that researchers share tools

and algorithms, and baseline data sets from a wide rangésshkt links to reproduce results.

6.2 Limitations

One of the motivations of our work is to come up with a manag@nfirmmework which
can be deployed by the enterprise IT operators. It is true teadily the IT operators will
adopt our solution is out of our control. We realize that aacwy of our traffic classification

methods depends on the accuracy of the availability of gieth information.

6.3 Future Work

Regarding the end-host configuration work, we would likenteestigate other methods for
clustering the end hosts into groups using multiple featsmultaneously. We believe that

our methodology will foster a new research direction in rekmanagement.
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As far as hierarchical change detection is concerned, gumoaph can be extended to
multiple dimensions but it presents several non-trivigldnges due to the existence of
multiple parents in the hierarchy. Another natural extensive have considered for future
work is where there is a global budget on error tolerancelferentire tree. Although we
have found a polynomial solution, its complexity appearbécignificantly higher than the
problems studied in this thesis, and its feasibility on nvesdata sets remains to be shown.

There could be several extensions to our traffic classifinatiork. Here we have treated
Machine Learning Algorithms more like black boxes but oned®eto understand thoroughly
the fundamental limitations of each algorithm. RegardindNBC, one needs to come up

with automatic tuning of BLINC parameters depending ondrac
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