
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Challenges in Security and Traffic Management in Enterprise Networks

Permalink
https://escholarship.org/uc/item/33z1292p

Author
Barman, Dhiman

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/33z1292p
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Challenges in Security and Traffic Management in EnterpriseNetworks

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Dhiman Barman

December 2008

Dissertation Committee:
Dr. Michalis Faloutsos, Chairperson
Dr. Mart Molle
Dr. Eamonn Keogh

Copyright by
Dhiman Barman

2008

The Dissertation of Dhiman Barman is approved:

Committee Chairperson

University of California, Riverside

Acknowledgements

I extend my gratefulness to my advisor Michalis Faloutsos without whose guidance I

might not have made it this far. His academic, moral and financial support helped me work

at my own pace and overcome many challenges. The most important thing that I learned

from him was to focus on one problem at a time and think throughdeeply and inquisitively.

His ability to question any idea and pay attention to detailshelped me improve my thought

processing. His teaching skills helped me improve my presentation skills. His approach to

treat students like peers makes him very approachable. He taught me to address a problem top

down, ask important questions, come up with systematic solutions, and face both technical

and non-technical challenges strategically. I will continue to benefit from his teachings and

guidance throughput my life.

I owe my gratitute to Mart Molle, my thesis committee member.Mart offered guidance

at different steps during my graduate studies. He offered meboth technical and non-technical

suggestions at times. His door was always open to whenever I faced problems. His insightful

comments during presentation, thesis writing or otherwisehelped me broaden by view and

improve my work. I owe gratitude to Eamonn Keogh for agreeingto serve on my thesis com-

mittee. I learned a lot on presentation skills from him and also from his data-mining course.

I owe gratitute to Nina Taft under whose mentorship, I learned to think clearly and big. Her

emphasis on writing and expressiveness helped my writing skills and be consistent. I also ex-

press my thankfulless to Dimitrios Gunopulos and Neal Youngwith whom I collaborated on

Hierarchical Change Detection problem. Their expertise onalgorithms and insightful com-

iv

ments helped me improve my skills. My gratitude extends to all my mentor and co-authors

namely Divesh Srivastava, Eitan Altman, Deepak Agarwal, Flip Korn, Kc Claffy etc who

taught me in every step how to solve problems. I am also thankful to Hyunchul Kim with

who I have been collaborating on the application traffic classification problem and without

his contributons I could not have completed the work on traffic classification.

My graduate studies would not have been funfilled had I not been in the company of my

friends, Anirban Banerjee, Nicholas Valler, Smruti Pariccha, Ece Gelal, Marios Illiofotou,

Satya Mohanti, Sandeep Gupta, Yordanos Beyene and many more. Anirban always inspired

me through his focus and efficiency in work. I learned from theMarios’s presentation and

thinking skills. Nicholas helped me in improving my writingskills. Smruti helped me in

reviewing many papers and discussing and bouncing many ideas.

Lastly, my gratitute goes to my parents, siblings and wife. My parents and siblings were

patient enough for me to finish the studies inspite of numerous challenges in our family

which I should have attended to. Thanks to my lovely wife, Sankalpita for bearing with me

when I used to steal time from her to finish work and supportingme with continued love and

motivation at every step.

v

ABSTRACT OF THE DISSERTATION

Challenges in Security and Traffic Management in EnterpriseNetworks

by

Dhiman Barman

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2008

Dr. Michalis Faloutsos, Chairperson

Management of enterprise networks is a challenging problembecause of their continued

growth in size and functionality. In this thesis, we proposeand evaluate a framework,Godai,

which addresses the challenges in (i) setthing thresholds in end host anomaly detectors, (ii)

hierarchical summarization in data and (iii) application traffic classification.Godaienables

IT operators to identify the end hosts that have been enslaved by an attacker to launch attacks

andGodaiachieves it by diversifying anomaly detector configuration. The general policies in

Godaiframework are holistic and achieve two goals: (a) balance the trade-offs between false

alarm and mis-detection rates and (b) show that the benefits of full diversity can be attained

at reduced complexity, by clustering the end hosts and treating a cluster homogeneously.

The underlying principle of attack detection is to identifythe traffic samples that change

significantly from normal traffic.Godai generalizes the concept for data with hierarchical

vi

identifiers, e.g., IP prefixes, URLs. The main motivation of using a parsimonious hierarchical

summarization of the measure attributes (e.g., total bytesor website hits) is that it eases the

burden on IT operators to interprete analysis reports.Godaiproposes efficient and provable

algorithms to produce parsimonious explanations from the output of any statistical model

that provides predictions and confidence intervals, makingit widely applicable.

Finally,Godaitakes a step towards associating applications to traffic flows and enable the

operators to understand the profile of the end hosts.Godaicritically re-visits the existing ad

hoc techniques of traffic classification approaches based ontransport layer ports[83], host

behavior[68], andflow features[105] and analyzes the effectiveness of different approaches.

The results allow us to answer questions about the best available traffic classification ap-

proach, the conditions under which it performs well, and thestrengths and limitations of

each approach. The multifarious functionalities allowGodaito be a viable solution in enter-

prise network management.

vii

Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Configuration Management . 2

1.1.1 Diversity in Configuration . 5

1.2 Hierarchical Change Detection . 8

1.2.1 Effective Explanations of Change 10

1.3 Application Traffic Classification . 14

1.3.1 Traffic Classification Demystified 16

1.4 An Overview of This Thesis . 18

2 Related Work 21

2.1 Botnet Protection . 21

2.1.1 Diversity Approach in Detecting Stealthy Attacks 24

viii

2.2 Hierarchical Change . 25

2.2.1 Connection to Wavelets . 27

2.3 Traffic Classification . 28

2.3.1 Port-based approach . 29

2.3.2 Payload-Based Approach . 29

2.3.3 Host-behavior-based approach 30

2.3.4 Flow Features-based Approach 30

3 Diversity in Configuration 32

3.1 Network Setup . 33

3.1.1 Threat Model . 35

3.2 Diversity in User Population . 36

3.2.1 Data Collection . 37

3.2.2 User Traffic Characteristics . 38

3.3 Basic Policy Comparison . 39

3.4 New Policies . 44

3.4.1 Utility Function . 44

3.4.2 k-Level Diversity Policy . 47

3.5 Evaluation . 51

3.5.1 Simulations . 52

3.5.2 Evaluation with Real Attack Traces 56

ix

3.5.3 Summary . 59

4 Hierarchical Change Explanation 62

4.1 Problem Statement . 62

4.1.1 Parsimonious Explanation . 64

4.2 Algorithms . 69

4.3 Evaluation . 74

4.3.1 Experimental Setup . 74

4.3.2 Forecasting Model . 75

4.3.3 Goodness of Explanation Model 80

4.3.4 Parsimony . 81

4.3.5 Efficiency . 84

4.4 Summary . 85

5 Application Classification 86

5.1 Comparison Methodology . 86

5.1.1 Performance metrics . 87

5.1.2 Data Set and Comparison Benchmark 88

5.1.3 Machine Learning Approach . 90

5.2 Performance Evaluation . 96

5.2.1 CoralReef . 97

5.2.2 BLINC . 101

x

5.2.3 Supervised Machine Learning Algorithms 106

5.2.4 Comparative Analysis . 110

5.3 Lessons learned . 112

5.4 Summary . 115

6 Conclusion 116

6.1 Contributions . 116

6.1.1 Configuration Management . 117

6.1.2 Hierarchical Summary . 118

6.1.3 Application Classification . 119

6.2 Limitations . 120

6.3 Future Work . 120

Bibliography 122

xi

List of Tables

3.1 Damage metric using synthetic attacks 56

3.2 Damage metric with real attacks . 58

4.1 Census dataset statistics . 75

4.2 Top 5 explanation nodes in the Census data 76

4.3 Top 5 explanation nodes in the World cup 76

5.1 Characteristics of analyzed traces . 88

5.2 Application categories . 90

xii

List of Figures

1.1 Measure counts in IP prefix hierarchy at two different snapshots 10

1.2 Different fields in the (a) TCP header and (b) UDP header 20

3.1 Tail Diversity using Different Traffic Features (TCP, HTTP, Distinct) . . . 36

3.2 Tail Diversity using Different Traffic Features (SYN Flood, UDP) 37

3.3 End User Performance Characteristics using Percentile Detector . . . 41

3.4 Attack sizes chosen by attacker under different policies 43

3.5 Behavior of Utility Functions with varying w and Ti 46

3.6 EPC using utility functions, 0.8FNi + 0.2FPi 51

3.7 EPC using utility functions, 0.2FNi + 0.8FPi 55

3.8 EPC with real attacks and percentile detector 57

3.9 Attack values chosen by attacker when utility functions are used 59

3.10 EPC using utility function (0.8FNi + 0.2FPi) and real attacks 60

3.11 EPC using utility function (0.2FNi + 0.8FPi) and real attacks 61

4.1 Hierarchical Summary using Population Data 65

xiii

4.2 Hierarchical Weight Assignment (Top-Down and Optimal) 65

4.3 Computing an optimal node weighting (k = 0, ε = 1). 70

4.4 The fraction of explanation nodes at level l 77

4.5 Explanations and Stability using Census Data 79

4.6 Comparison with related work . 80

4.7 Explanations and Stability using World Cup data 82

4.8 Time complexity . 82

5.1 Application Breakdown . 88

5.2 Overall Accuracy of CoralReef . 97

5.3 Per-application precision & recall of CoralReef (WWW,DNS,Mail,Chat) 97

5.4 Per-application precision & recall of CoralReef(FTP,P2P,Others) 98

5.5 Overall accuracy of BLINC . 101

5.6 Per-application precision & recall of BLINC (WWW, DNS,Mail,Chat) . . 103

5.7 Per-application precision & recall of BLINC (FTP,P2P,Streaming,Game) 104

5.8 Overall Accuracy of Machine Learning Algorithms 105

5.9 Computational performance of ML algorithms by training set size . . . 107

5.10 Per-application F-measure of ML algorithms 109

5.11 Per-application F-measure of the SVM by training set size 111

5.12 Overall accuracy of all methods . 111

5.13 Overall flow and byte accuracy of BLINC 114

xiv

Chapter 1

Introduction

Management of enterprise networks is a complex task. Network management entails config-

uration, provisioning, monitoring, testing of different network entities and post-processing

of logs. This thesis is concerned with three themes:configuration, change detection in traffic

andtraffic classification. Regardingconfiguration, our focus will be on configuring the end

host anomaly detectors. The underlying principle of attackdetection is to detect deviation in

traffic profile. The component onchange detection in trafficextends the idea of change de-

tection for hierarchical data. Finally, we emphasize on identifying applications (e.g. HTTP,

P2P) to know the end host traffic profile.

One of the important goals of the IT operators is to keep the enterprise networks secure

through proper configuration of the network entities such asend hosts, servers, routers, links

etc. In order to do the network configuration, the IT operators use a variety of tools both from

the commercial and public domain [7, 6, 9, 1]. Such tools helpthe IT operators to certain

1

extent but despite such efforts, the IT operators find it increasingly difficult to manage the

enterprise networks. The online report [70] stated that 80%of the IT budget in enterprise

is devoted to maintain just the status quo, but configurationerror still accounts for 62% of

network downtime. The IT operators manage a large number of entities and often carry

out unplanned configuration tasks. With rising security threats to network resources, the IT

operators need to manage all the end hosts in an enterprise while meeting enterprise wide

policies.

1.1 Configuration Management

In this thesis, our focus is on configuring the intrusion detection systems deployed at the end

hosts, so that the IT operators can effectively and efficiently detect if the end hosts have been

enslaved for a botnet by external attackers. Botnets are a menacing threat in the Internet

today [8, 12, 17, 55]. A botnet is a collection of compromisedhosts under a commmon

command and controlbotmaster. The aim of the botmaster is to recruit unsuspecting end

hosts to form an array of hosts and then use their collective power to launch attacks and

commit other illegal activities [86]. The majority of botnets today engage in spam generation

and Distributed Denial of Service(DDoS) activities. Detection and mitigation of botnet-based

attacks is a challenging task [50, 53, 52, 48, 65, 74, 49, 46].According to recent estimates,

the number of compromised hosts in a botnet range from 6 million [18] to 150 million [21].

In addition, the number of vulnerabilities in the operatingsystems keeps increasing which

2

enables the botmaster to find new recruits. The collective power of the numerous recruited

hosts in an enterprise could be tremendous. In May 2006, DDoSagainst Blue Security, an

anti-spam company was forced to shut down its services. In April 2007, a sustained attack

on the goverment and business websites in Estonia also brought the country on its knees.

This thesis proposes a design of a framework that enables theenterprise IT operators de-

tect when its end-hosts participate in malicious activities such as DDoS. In modern enterprise

networks today, each employee is typically given a laptop that is configured by the enterprise

IT department. The IT departments employ a standard build for everyone in order to simplify

the management of a large number of machines. One of the software applications usually

installed on such laptops is a Host Intrusion Detection System (HIDS) and/or a personal fire-

wall [95, 90]. HIDS are used to control a variety of security attacks. In addition to signature

detection (that protects against known worms and viruses),many HIDS systems also have a

set of features (system parameters) they track on ongoing monitoring network traffic. The

effectiveness of these HIDS depends on how these HIDS are individually configured (e.g.,

how their threshold values are set) as these HIDS raise alerts and send to the IT operators.

This thesis takes a first look at the issues on the implications of different ways of configuring

the HIDS.

When the configuration of the end-hosts is a concern, usuallythe IT operators go for

simplicity and set the same value for the triggering threshold for any particular feature for

each user (“homogeneous” policy). In this thesis, we focus on the problem of setting thresh-

old values in the end-host anomaly detectors across agroupof employees when the choice

3

is guided by a global enterprise “policy”. The HIDS featureswe examine in this thesis are

those that could reveal botnet behaviors such as DDoS, spam-related behaviors and scanning

activities. Such features (e.g., as used on Bro [90]) include the number of TCP connections,

UDP connections, distinct connections, HTTP connections,SMTP connections etc.

In order to understand the impact of the homogeneous policy across a population of em-

ployees, we study logs (i.e., tcpdump) from 350 employee laptops from a large enterprise.

The dataset is unique because the data is collected directlyon the laptops themselves, thus

allowing us to capture all of the traffic generated by a user, regardless of which network he

or she may be attached to. Using Bro [90], we process the logs and obtain the flow records

and their associated features (e.g., protocol, start time,end time etc). We uncover that there

is a great deal of user diversity in the “tail” (loosely speaking) of the distribution of HIDS’s

features. By this we mean that the boundary between “normal”and “atypical” values of var-

ious features can differ by 3 to 4 orders of magnitude across our users. (We call this “fringe

diversity”.) Thefirst consequence of enforcing a homogeneous policy upon a set of users that

are inherently diverse (in terms of what matters for anomalydetection), is that the individual

false positive and false negative rates differ dramatically across users. This is an unintended

ramification of a policy that focusses on ease of management.The secondconsequence is

that the employees’ behaviors affect each others’ performance. For example, when a single

threshold value is computed based upon looking at data from all employees simultaneously,

then clearly a small number of heavy users will bias the computation, leading to thresholds

that are detrimental to light users. There is a need to designa general approach which can

4

address the above two consequences.

1.1.1 Diversity in Configuration

Our goal is to address the challenges arising due to homogeneity in configuration, control

management complexity as well as balance between false alarm and mis-detection rates.

Our proposed policies contain two components: First, a parameter that explicitly states the

relative importance of false alarms and mis-detection rates so as to gain better control over

this balance. Second, a grouping component defines whether the users are treated as a one

single homogeneous group, a fully-diverse group (each userbelongs to this own group), or

whether users are clustered into a small set of behavior groups. The grouping component

essentially states the level of granularity of diversity with which an IT department views its

employees; none, full or partial diversity. We evaluate these policies, and in doing so, we

raise an awareness of a variety of issues and trade-offs thatarise to affect the outcome of

such policies.

In a full diversity policy, each user gets a personalized configuration of its trigger thresh-

old. We quantify the benefits of a diversity policy which includes a better balance between

false alarms and mis-detection rates for a vast majority of the users. In addition, we illustrate

that even in the presense of attackers with full knowledge ofthe users’ behaviors, a diver-

sity policy is more effective in weakening DDoS attacks thana homogeneous configuration

policy. Next we ask two questions:

1. How broad are the conditions under which the benefits of thediversity arise ?

5

2. Is it enough for there to be a great deal of diversity in userfringe behavior ?

We use simple utility functions to capture the trade-offs between false alarm and mis-

detection rates, and uncover that the choice of utility function has a strong impact on whether

or not a diversity policy actually generates substantial benefits. Most enterprise IT depart-

ments have a hard time articulating what they consider more important, the reduction of false

alarms or mis-detection rates. This classic trade-off remains elusive to quantify in practice.

However we show that this choice is critical for the selection of a policy when setting thresh-

olds for a group of employees. A diversity policy is most beneficial when reducing false

alarm rate is considerably more important than reducing mis-detection rate.

As mentioned above, another pitfall of applying a homogeneous policy to a set of diverse

users, is that the behavior of some employees can end up influencing the configuration of

other employees. Trading off the performance of some employees at the expense of others is

an issue that should be brought to bear much more explicitly.The choice between a homo-

geneous policy and a full diversity one thus reveals a key trade-off: the homogeneous policy

achieves simple management but the employees end up influencing each others performance,

whereas a diversity policy breaks the dependency across employees but may lead to more

complex management.

Having understood the benefits of diversity, we then conducted a survey of a dozen IT

personnel across 5 organizations (4 corporations and 1 university). All but one of them were

resistant to the idea of configuring the end-hosts with different threshold values at which

alarms should trigger. The personnel in our survey explained their resistance originates from

6

a lack of: (a) human resouces to individually configure the end hosts and (b) a lack of under-

standing as to how to interpret alarms coming from differentmachines if they fire at different

values. We believe that these two concerns can be easily overcome. First, HIDS can clearly

be configured by automated algorithms. Moreover, when systems today are evaluated in

greater depth after alarms fire, other data is collected to give information about activities on

the machines at the time the alarm fired. This practice shouldfacilitate alarm interpreta-

tion. However, despite these seemingly simple fixes to the root causes of their resistance,

the adamant sentiment about simplicity of management meansthat this industry practice is

unlikely to deviate in any large way from current practice.

Can we reconcile the benefits of diversity with the complexity of enterprise network se-

curity management? We propose an intermediate solution between homogeneity and full di-

versity, namelypartial diversityin which employees are classified into a small set of groups

and within each group, all laptops are configured the same way. We design an algorithm for

computing thresholds under this policy. We demonstrate that with a small number of groups,

the partial diversity policy can achieve most of the benefitsof a full diversity policy.

In our conversations with our IT staff, they admitted that they were much more amenable

to the idea of working with a small set of configurations that could be distributed amongst the

employees. Therefore, this thesis addresses the methodology for threshold setting for HIDS

features in a new light, namely, in the context of enterprises that must develop configuration

policies that lead to an appropriate set of group-dependentthresholds. The thesis reveals the

issues and trade-offs that surface due to user diversity.

7

1.2 Hierarchical Change Detection

Currently, the enterprise IT operators monitor the traffic going through a network and an-

alyze it to understand the underlying communication trendsand usage [83, 104, 103, 36].

The underlying principle of attack detection is to detect changes in traffic profile which is

significantly different from normal traffic. With this motivation, we generalize the concept of

change detection in the context of data where the identifiersare hierarchical in nature. Data

with hierarchical identifiers occurs in different contextssuch as URL, IP prefix, Geographical

locations, time etc. Our goal is to produce traffic explanations (i.e., reports) that match the

underlying trends and changes. For example, instead of reporting heavy hitters, or hundreds

of smalls flows or the amount of traffic to TCP port 80, our method reports that most change

in traffic count has happened for certain group of clients or web servers. Dimension attributes

in IP traffic are typically hierarchical, and a variety of applications call for summarizing the

measure attributes along the hierarchies of these attributes. For example, the total volume of

traffic (in bytes or packets) can be summarized hierarchically by source IP or destination IP

prefixes (say of length 8 to 32), by time (e.g., year/month/day/hour), or by port number (e.g.,

port number 80) or the set of all possible values(*). Well-known services are allocated port

numbers below 1024 and ephemeral port number above 1023 are allocated to new sessions

on-demand, we can define hierarchy on the set of high ports (> 1023) port numbers and the

set of low ports (< 1024) numbers.

Existing tools like FlowScan [4], Cisco’s FlowAnalyzer areused by the IT managers to

8

construct a model of application usage by classifying traffic according to the IP header fields.

Analysis using such tools could reveal that 90% traffic is dueto TCP and 75% of TCP traffic

is due to HTTP. In the context of datamining, existing tools [98, 100] help to summarize and

navigate the data at different levels of aggregation (e.g.,total traffic in each prefix during

July 2008) viadrill-down and roll-up operators. These tools are also used to characterize

changes in the hierarchical summaries over time (e.g., the traffic in July 2008 compared to

their expectations over different prefixes), to detect anomalies and characterize trends. When

it comes to the summarizing the changes, there are conflicting issues of readability, com-

pactness of the reports, robustness and theoretical optimality. The current summarization

tools [83] have limitations that they report excessive details in explaining traffic trends and

usage – such as TCP traffic contributes 90% flows or 153.3.0.0/16 results in 30% of traffic

etc. However, when the data items or identifiers is large or the number of identifiers at which

changes happen is large, IT operators will need compact explanations. By “change” we mean

when the total measure values differ significantly from the expected values. Thus, the traffic

analysis involves two conflicting issues: the verbosity of the reports and human readability.

More explanations can provide better understanding but canmake the reports harder to read

and interprete. One can make the explanations verbose by providing a separete ad hoc expla-

nation for the observed change at each prefix. Explanations can also beparsimonious(e.g.,

a single explanation for multiple observed changes such as attributing a drop in traffic at a

large number of prefixes to network outage). Parsimonious explanations are obviously more

desirable and more effective than (ad hoc) verbose explanations. Thus, the main challenge is

9

how to summarize the significant trends and report the significant changes.

1.2.1 Effective Explanations of Change

In this thesis, we are interested inparsimonious explanationsof changes in measure attributes

(e.g., total bytes or website hits) aggregated along an associated dimension attribute hierar-

chy (e.g., IP prefix or URL). Existing work has addressed the issue of explaining change

between OLAP (Online Analytical Processing) aggregates interms of subaggregates [99]

but these changes are expressed as outliers of point-to-point subaggregate comparisons. We

seek a more holistic explanation. We propose a natural modelthat makes effective use of the

dimension hierarchy and describe changes at the leaf nodes of the hierarchy (e.g., individ-

ual IP addresses) as a composition of “node weights” along each node’s root-to-leaf path in

the dimension hierarchy – each node weight constitutes an explanatory term. For example,

overall traffic volume in IP prefix /24 increased by a factor ofthree. Figure 1.1 shows an ex-

130

1.2.3.4

1.2.3.4/31 1.2.3.7/31

1.2.3.7 1.2.3.10 1.2.3.11

1.2.3.10/31

1.2.3.13

1.2.3.13/31

1.2.3.10/301.2.3.4/30

1.2.3.4/29

10 20

10 20

30

35 25

60

40

40

100

(a) Long-term summary

1.2.3.10/30

1.2.3.4

1.2.3.4/31 1.2.3.7/31

1.2.3.7 1.2.3.10 1.2.3.11

1.2.3.10/31

1.2.3.13

1.2.3.13/31

1.2.3.4/29

10

10

35 40

40

60

60

70

55

90

130

200

1.2.3.4/30

(b) Short-term summary

Figure 1.1: Measure counts in IP prefix hierarchy at two diffe rent snapshots

ample of IP prefix hierarchy where the number inside the circles represent the traffic counts.

10

The leaves of the tree represent prefix /32 and the root is represented by (*). The child node

counts are aggregated and assigned to the parent. Formally,we assume that the dimension

hierarchy remains fixed over time, and each data item (e.g., aflow identified with an IP) has a

timestamp and is associated with a leaf node (e.g., an individual IP address) of the hierarchy.

A hierarchical summary or snapshot (over some time interval) then associates with each node

in the dimension hierarchy the aggregated value of the measure attribute (e.g., total traffic in

bytes or packets) of all the data items (with a timestamp in that time interval) in its subtree.

Figure 1.1(a)-(b) correspond to different snapshots over different intervals of time.

If we consider two snapshots, it is clear that the changes between the trees can be ex-

pressed over the different levels of the dimension hierarchy in numerous possible ways. For

example, the traffic volume at the prefix 1.2.3.10/31 increases 3
2

fold, we can model this

change (among other possibilities) as (i) a weight of3
2

for IP addresses, 1.2.3.10 and 1.2.3.11,

or (ii) a weight of 3 at IP prefix 1.2.3.10/31 and a weight of1
2

at the IP addresses, 1.2.3.10

and 1.2.3.11. The important question is, what are the nodes in the hierarchy that explain the

(most significant) changes parsimoniously.

Solution Approaches

Here we discuss different approaches to assign weights to the nodes in a hierarchy. A straight-

forward and intuitive attempt at identification of parsimonious explanations is atop-down

approach. Starting from the roots of the two snapshots, compare aggregate values of the

measure attributes at corresponding nodes. If the difference between the aggregates is com-

11

pletely “explained” by the composition of node weights along the path from the root to the

parent of that node, no additional node weight (or explanatory term) is needed at that node.

Otherwise, the node weight is set appropriately to the differential value with respect to the

composition of weights along nodes for ancestor path from the root to that node. While

straightforward and intuitive, such an explanation can be easily shown to not be optimally

parsimonious.

For example, the IP prefixes 1.2.3.10/31 and 1.2.3.13/31 used to have the same traffic

count but now the IP prefix 1.2.3.13/31 exhibits double traffic count while the other IP prefix

exhibits no change. A top-down explanation would attributea 1.5-fold (3/2) increase at the IP

prefix 1.2.3.10/30, and then would have to have to additionalexplanations at each IP address

1.2.3.10/31 and 1.2.3.13/31 to explain the difference with1.2.3.10/30 level explanation thus

needing 3 explanatory terms. An optimally parsimonious explanation, on the other hand,

needs only 1 explanatory term - a 3/2-fold increase at the anomalous prefix 1.2.3.13/31.

This explanation is parsimonious in the sense that changes are aggregated with maximal

generalization along the dimension hierarchy.

We envision that in many practical cases the IT operators want to compare a hierarchical

snapshot with another snapshot whose values are output of a statistical model. Such an op-

eration would be particularly useful, for example, when validating a forecasting model, or to

identify conditions that are not properly modeled or to provide parsimonious explanation of

anomalies that are expected to be related through the hierarchical structure. In such scenarios,

the use of statistical modeling would provide an expected value for each leaf of the hierar-

12

chy, with associated confidence intervals. Our proposed method can provide parsimonious

explanation after incorporating uncertainty in the forecasts, quantified through confidence in-

tervals. Our framework,Godaimakes the following contributions towards change detection:

� We formalize the notion of parsimonious explanation of change when comparing two

hierarchical summaries, or when we compare a snapshot with the results of a forecast-

ing model. To account for confidence intervals provided by a forecasting model, and

to deal with noise, our model allows for a maximum tolerance between the observed

change and the root-to-leaf explanation.

� We prove that optimally parsimonious explanations of our problem can be computed

efficiently in polynomial time, proportional to the productof the number of leaves and

the depth of the dimension hierarchy.

� To complement our conceptual and algorithmic contributions, we conduct a statisti-

cally sound experimental evaluation to understand the effectiveness and efficiency of

our approach on real hierarchical datasets. We use a predictive model based on an

exponentially weighted moving average (EWMA), which is widely used in time series

applications. Our experiments demonstrate the effectiveness and robustness of our pro-

posed approach for explaining significant changes, and showthat it is more efficient

than the worst-case bounds in practice.

13

1.3 Application Traffic Classification

In order to understand the application footprint that the end hosts generate,Godaiproposes

to critically re-visit application traffic approaches. Traffic classification can help the opera-

tors to study the breakdown of traffic volume (e.g., per protocol, port, subnet) as well as to

identify new traffic patterns such as network worms [84] or peer-to-peer applications (e.g.,

BitTorrent, Skype). The goal ofGodai is to analyze the raw traces which contain IP head-

ers or TCP headers and discover the underlying applicationswhich generate the traffic. The

knowledge of what application traffic is flowing through enterprise network can empower

the IT operators to provision the network entities and services. For example, the operators

can limit the bandwidth allocated to the peer-to-peer applications or access to YouTube site

during peak hours. Political, economic, and legal struggles over appropriate use and pricing

of the Internet have brought the issue of traffic classification to mainstream media. Three

of the most important and acrimonious tussles are: (a) the file sharing tussle, between the

file sharing community and intellectual property representatives RIAA (Recording Industry

Association of America) and MPAA (Motion Picture Association of America); (b) the battle

between malicious hackers, e.g. worm creators, and security management companies; and

(c) the network neutrality debate, between ISPs and content/service providers.

In all cases the algorithmic playing field is traffic classification: stopping or deprioritizing

traffic of a certain type, versus obfuscating a traffic profileto avoid being thus classified. Traf-

fic classification is also relevant to the more mundane but no less important task of optimizing

14

current network operations and planning improvements in future network architectures. Ear-

lier the IT operators could rely on the use of transport layerport numbers, typically registered

with IANA [63] to represent a well-known application. Figure 1.2 shows the TCP header [13]

and UDP header [14] and the bit fields associated with the source and destination ports. More

recently, increasingly popular applications such as thosethat support peer-to-peer (P2P) file

sharing, hide their identity by assigning ports dynamically and/or using well-known ports

of other applications, rendering port-based classification less reliable [67, 81, 102]. A more

reliable approach adopted by commercial tools [3, 11, 10] inspects the packet payloads for

specific string patterns of known applications [31, 62, 68, 81, 102]. While this approach is

more accurate, it is resource-intensive, expensive, scales poorly to high bandwidths, does not

work on encrypted traffic, and causes tremendous privacy andlegal concerns. Two proposed

traffic classification approaches that avoid payload inspection are: (1) host-behavior-based,

which takes advantage of information regarding “social interaction” of hosts [68, 64], and (2)

flow features-based, which classifies the flows based on flow duration, number and size of

packets per flow, and inter-packet arrival time [80, 82, 96, 26, 40, 41, 37, 113, 44, 109, 77].

Despite many proposed algorithms for traffic classification, the IT operators do not have

definitive answers to some pragmatic questions:

� What are the best available traffic classification approaches ?

� Under what link characteristics and traffic conditions do they perform well ? Specifi-

cally, which approaches are well-suited for classifying enterprise traffic ?

15

� What are the fundamental contributions and limitations of the existing approaches ?

Rigorous comparison of algorithms remains a challenge for three reasons [43] and has

been missing in the community. First, there is no publicly available trace data to use as a

benchmark, so every approach is evaluated using different traces, typically locally collected,

often without payload (ground truth). Second, different techniques track different features,

tune different parameters and even define flows and applications differently. Third, authors

usually do not make their tools or data available with their results, so reproducing results is

essentially impossible.

1.3.1 Traffic Classification Demystified

In order to calibrate the existing approaches, we have conducted a comprehensive evaluation

of three traffic classification approaches:port-based, host-behavior-based, andflow-features-

based. We evaluate each technique on a broad range of data sets: seven payload traces col-

lected at two backbone and two edge links located in Japan, Korea, and the US. Diverse

geographic locations, link characteristics, and application traffic mix in these data allow us

to test the approaches under a wide variety of conditions. Inorder to avoid “tool-bias”, we

evaluate the performance of CoralReel [83](port-based), BLINC [68] (host-behavior-based)

and seven commonly used machine learning algorithms (host-behavior-based). Our analysis

reveals the advantages and limitations of each approach andwe propose solutions to over-

come the limitations. Our study leads to insights and recommendations for both research and

practical application of traffic classification.

16

� Support Vector Machine (SVM) is accurate

One of the interesting results is that we find Support Vector Machines achieving highest

accuracy on every trace and for every application. On average, the accuracy is> 98.0

when SVM is trained with more than 5,000 flow (2.5% of the size of the test datasets).

� Choice of features

Choice of the right features is important. We find a set of single-directional dominant

key flow features that appear consistently within an application across our traces; ports,

protocol, TCP flags, and packet size. A limitation of the previous attempts based on

flow features [80, 82, 96, 26, 40, 37, 113, 44, 109, 77] is that they use bi-directional

TCP connection statistics which are not applicable to UDP traffic (or traces collected in

backbone links). Backbone links (although not directly relevant to enterprise network)

see both directions of traffic under (atypical) symmetric routing conditions. However,

the links in an enterprise networks see bi-directional flows. We observe thatport num-

ber information is one of the most important discriminators, particularly when used

in combination with other flow features such as packet size information, TCP header

flags and protocol.

� Host-behavior approach is effective in enterprise network s

We find that the accuracy of host-behavior-based methods such as BLINC strongly

depends on the location from which the trace is collected. Iflocation is the border

link of a singled-homed edge network, BLINC performs well asthe trace will contain

17

bi-directional flow information of the enterprise end-hosts. However, BLINC is not

recommended, if a trace (i) contains a small portion of behavioral information for each

host and (ii) misses one direction of traffic. To mitigate thelimitation of BLINC on

backbone traffic classification, we extend BLINC to identifysome application traffic

(e.g., Web, P2P) even when both directions of flows are not observed. This process

significantly improves the accuracy on backbone traces by asmuch as 45%.

1.4 An Overview of This Thesis

This thesis is logically divided into several chapters. Here is the chapter-by-chapter break-

down of the text.

Chapter 2 Related Work

This chapter discusses the related work, the limitations and strengths of different ap-

proaches.

Chapter 3 Diversity in Configuration

This chapter discusses in details the concept of diversity.We also describe the network

setup and data collection process. Initially the chapter focusses on the percentile detector

commonly used by the operators. Then, we propose new policies and finally validates the

proposals through evaluation on real traces.

Chapter 4 Hierarchical Change Explanation

This chapter discusses in details the concept of hierarchical change and explanatory terms

18

in hierarchical summary. The chapter describes several solution approaches and presents an

optimal algorithm to compute changes in hierarchical summary. The chapter introduces the

application of Exponential Weighted Moving Average (EWMA)smoothing filter to predict

measure values at the leaves of a hierarchy along with along associated confidence levels.

Chapter 5 Application Traffic Classification

This chapter critically re-visits three application traffic classification approaches. Through

a detailed evaluation on variety of traces, different insightful conclusions are made which can

be useful for the operators. The evaluation can lead one to understand the limitations and

strengths of different approaches.

Chapter 6 Conclusion and Future Work

This chapter summarizes the contributions made in the thesis. We discuss possible impli-

cations of different assumptions made in the thesis. We discuss various future avenues into

which this thesis can lead to.

19

(a) TCP header

(b) UDP header

Figure 1.2: Different fields in the (a) TCP header and (b) UDP h eader

20

Chapter 2

Related Work

This chapter describes the background and current work. Section 2.1 discusses existing work

on botnet attack prevention measures. Section 2.2 discusses the recent work on change detec-

tion in (non)hierarchical data. Section 2.3 discusses the recent work on traffic classification

along with their advantages and disadvantages.

2.1 Botnet Protection

Different approaches have been suggested in the literatureto detect and mitigate DDoS at-

tacks (due to botnets) [50, 51]. IT operators commonly use blacklists to block connections.

However keeping the blacklists up to date is challenging. Moreover, an attacker can exploit

a system if the white list information is compromised. Attacks on popular sites like Google

or Yahoo! will be hard to detect.

With the growth of encrypted traffic in a network, it becomes difficult for in-network

21

analysis [107], calling for more research on HIDS. HIDS typically have two components,

signature detection and anomaly detection. Signature detection plays an important role, but it

is not useful in detecting previously unknown attacks. Anomaly detection tracks pre-defined

features of the end-host traffic, defines normal behavior andthen raises alerts when abnor-

mal behaviors are observed. In the context of a program execution, one class of anomaly

detectors has been used where alerts are raised when rules onexpected program behavior

are violated [107, 58, 47, 38]. In another class, anomaly detectors build statistical models

of application layer or networking layer traffic[54, 65, 74]. However, the drawback of this

class of detectors is that they, routinely, generate false alarms. However, it is important for

the enterprise to control the false alarm rate of the anomalydetectors and prevent IT security

operations center (SOC) from getting overwhelmed with false alarms. In this thesis, we use

the example of statistical anomaly detectors at the networking layer that are intended to help

thwart Distributed Denial-of-Service (DDoS) attacks (often conducted through botnets).

According to [49], there are three approaches for stopping botnets: (1) stopping systems

from being infected; (2) detecting thecommand and control(C&C) communication within

botnets; and (3) detecting the secondary features of bot infections such as the attack behavior

itself. Antivirus software addresses the infection problem, while other research activity (such

as [65]) studies how to detect the command and control channel activity. In [49], the authors

have called for more research to be done in the third approachand our thesis falls into that

category. Several proposals exists which opt for approaches 1) and 2). Our thesis orients in

the direction of detecting the secondary features of bot infections. BotSniffer [50] falls under

22

the second approach and it proposes a framework to detect botnet traffic within a network by

exploiting the spatio-temporal correlation and similarities of responses to control commands

issued by botmaster on C&C Channels. The idea in the paper is that bots within a botnet

act in a synchronized fashion in that they execute the same command (e.g., do scanning or

gather system information), and report the results to the botmaster. The author observe the

responses the commands that bots take from a centralized server over HTTP or IRC and

find two invariants. The bots in a botnet remain connected to the C&C servers to obtain

commands. Since the bots perform similar tasks, their responses to the server bear strong

similarities and the network traffic has crowd-like behavior.

Several solution approaches address the botnet mitigationthrough changes or additions

in network architecture or configuration. Authors in [55] have studied the characteristics

of Storm Worm botnet and have suggested that polluting the contents in Storm P2P net-

work might deter botnet zombies from using P2P network. The idea is that pollution in the

search content will deter the bots from searching (based on keys) and therefore stop them

from propagating. In another approach [46], the authors propose a network architecture in

which an end-host communicates with a destination and traffic is forwarded through random

intermediate nodes such that an attacker can cause only a fraction of a given flow to get lost.

Commercial vendors offer a number of anomaly detectors and mitigation solutions[32,

7]. Comcast blocked port 25 for customers generating heavy traffic to prevent its network

from being spam hub but it might lead to high false positives and legitimate mails from the

customers could be blocked. According to Comcast, port blocking resulting in 35% reduction

23

in spam in their network. However, Comcast is having hard time defending against botnets

which use open relays or tunneling through compromised nodes outside network. While port

blocking is a conservative approach, it might lead to high false positives and legitimate mails

from the customers could be blocked.

2.1.1 Diversity Approach in Detecting Stealthy Attacks

If a botmaster recruits an enormous number of zombies, then in order to launch a DDoS

attack on a victim, each zombie need not create a blatantly obvious flood. Commanding each

zombie to send small amount of traffic to the victim could overwhelm the victim, i.e., stealthy

botnets. Since the attacker relies on the sum of the activityof its zombies, it can try to evade

detection by commanding each zombie to send apparently reasonable amounts of traffic to

the victim, i.e., stealthy botnets.

In this thesis, we see the effectiveness of our approach on the success of a botmaster who

attempts to hide the attack inside normal user traffic. By this we mean, that the attacker issues

commands to transmit an amount of traffic towards a victim that is not dissimilar to the user’s

regular traffic patterns, termed asevasionor mimicryattacks. In order to prevent an attacker

from evading mimicry attacks, many defensive mechanisms try to eliminate homogeneity in

the systems at different levels. Eliminating homogeneity increases diversity in the systems

which forces attackers to do more work in launching attacks.Diversity as such has been

applied in different contexts of computer systems. Forrestet. al proposes several methods of

achieving software diversity in [58]. They proposed that randomization can be introduced in

24

the code generation process of compilers. They showed that by allocating random padding

on stack frame size, several buffer overflow attacks could bedeterred. While such proposals

are promising, their work does not explore diversity at the layer of network traffic. Although

there is a large body of research work which propose to introduce diversity in the form of ran-

domization at different abstraction levels (such as in applications or compilers [58]), we feel

the concept of diversity has not been explored in anomaly detection systems formally [97].

We believe this takes a stride to explore the benefits and trade-offs in this domain.

2.2 Hierarchical Change

Hierarchies on data attributes have played a significant role in data warehouses, for which

database operators such as the datacube have been developedto summarize and navigate the

data at the different levels of aggregation [30]. In the datamining literature, several tools

have been proposed for summarizing hierarchical data at a single time instance, including

GMDL regions [76], Icecubes [56], and Hierarchical Heavy Hitters (HHH) [45, 34].

With respect to detecting changes in data, recent approaches include velocity density

estimation [16] for visualizing change, windowed statistical testing [71] for detecting dis-

tributional changes, and histogram differencing [35] for identifying items which exhibit the

largest changes in frequencies. However, these papers dealwith flat (non-hierarchical) data.

There have been a few papers explicitly dealing with hierarchical data. Zhang et al. stud-

ied change detection of (aggregated) time series corresponding to HHH IP prefixes in the

25

IP address hierarchy [114]. Chawathe et al. studied the problem of change detection on

semi-structured data, but for topological changes [101]. Estan et al. [36] studied the compu-

tation and change in hierarchical data however their approach is based on heuristics and their

approach does not address the issue when the count measures in the leaves are not exact.

The problem of path explorations of hierarchies was studiedin [100]. Here the user

defines a set of linear constraints and the values in the datacube cells are predicted using

the Maximum Entropy Principle. Given a supplied model, the technique finds the cells that

are significantly different values from the expected values. Our problem is essentially the

opposite: to find the best model that explains the changes. There is also some marginally

related work on identifying bursts in hierarchical time series data, that is, the time intervals

tightly capturing high arrival frequencies [115, 73].

Most related to our work is the DIFF operator for explaining differences in the dat-

acube [99]. In their problem, a user selects two aggregates at the same level in the dat-

acube which fixes some of the dimensions. The ratio between the selected aggregates is

then explained in terms of the free dimensions, and subaggregates having deviating ratios

explained recursively. The aggregates in the subcubes corresponding to the free dimensions

are examined to find those which deviate most from the ratio, and the remaining pairs are

approximated with the ancestor ratio, recursively. This puts constraints on the intermediate

node ratios, whereas our solution has the freedom to explainleaf aggregate changes in terms

of intermediate node ratios, and is thus more parsimonious.In the example (Figure 1.1)

involving the IP prefixes 1.2.3.10/31 and 1.2.3.13/31, the need to additionally “explain” the

26

ratio of 3
2

at the IP prefix 1.2.3.10/30 level internal node results in a verbose explanation using

the DIFF approach.

The problem of using compact hierarchical histograms for approximating leaf-level data

was studied in [94] which employed a predefined hierarchy, similar to our approach but

solved the dual problem: given a bound on the size of the synopsis (i.e., the number of

explanations), find the synopsis that minimizes the error. Further, the paper considered three

different partitioning functions and solved via dynamic programming to reduce distributive

error metrics given a space bound. Their LPM variant is the same problem studied in [99] but

solved heuristically due to the expensive cost of distribute error metrics; the other partitioning

functions find inferior solutions to LPM. Our work is based onthe initial problem formulation

presented in [24].

2.2.1 Connection to Wavelets

Recently [85] investigated a problem similar to our work. The proposed solution used the

Haar wavelet representation to construct dataset synopsesof minimum space. The use of

the wavelet representation restricts this approach to lessefficient (i.e., less parsimonious)

explanations than our hierarchical parsimonious explanations. Another problem relevant to

ours (for the case of binary hierarchies) is Haar wavelet compression with maximum-error

metrics, introduced in [79]. The best current solution requiresO(n2) time andO(n) space to

solve the dual problem [60] and, just as in [99], constraintsare imposed at all nodes rather

than just at the leaves, leading to less parsimonious solutions. [61] introduced the notion

27

of unrestricted Haar wavelets and [69] defined the Haar+ treeas an improvement, but these

exploit discretization of values and therefore are not comparable with our approach which

allows for any (potentially infinite sized) domain. However[69] is equivalent to the model

given by [94] when the hierarchy is restricted to binary trees. [69] presents provably good

approximate algorithms to solve this problem inO(R2n log n log2 B) or O(R2n log2 B) time

(n is the size of the input,B the maximum number of coefficients in the synopsis andR

the number of the examined values per coefficient), for general error metrics. Interestingly,

our problem (with binary hierarchies) offers an alternative to Haar wavelet compression,

yielding better answers with smaller complexity:O(n logn) for the primal problem and

O(n log n log ε∗) for the dual. An algorithm that solves the dual problem (as in[94] or [69])

can be modified to solve the primal problem using a binary search procedure onB. Thus,

these algorithms would need to run an additionallog B factor slower if modified to solve our

problem.

2.3 Traffic Classification

Here we will discuss about traffic classification using different methods. We will discuss the

advantages and disadvantages of these methods.

28

2.3.1 Port-based approach

Traffic classification based on port numbers [2] is a fast and simple method, but several

studies have shown that it performs poorly, e.g., less than 70% accuracy in classifying flows

in an enterprise data set [39, 81]. We acknowledge the coarseness of assessing performance

over an entire trace rather than for the applications actually using well-known ports [43]. This

performance metric essentially indicates the amount of traffic in the trace using well-known

ports, which can vary widely, and does not classify traffic that is mis-using well-known ports

assigned to a different application.

2.3.2 Payload-Based Approach

Payload-based classification algorithms inspect the packet contents to identify the applica-

tion. Once a set of unique payload signatures is available for an application, this approach

produces an extremely accurate classification. After earlyworks showed the value of pay-

load signatures in traffic classification [31, 81, 102], others have proposed automated ways

to identify such signatures [62, 78, 89]. However, [62, 78] have evaluated these automated

schemes only on conventional applications such as FTP, SMTP, HTTP, HTTPS, SSH, DNS,

and NTP, not on newer applications such as P2P, games, and streaming, while [89] evaluated

their proposed scheme on a few P2P file sharing applications.We use the payload-based

classifier developed in earlier efforts [68, 40, 111] to establish ground truth for our traces.

29

2.3.3 Host-behavior-based approach

The host-behavior-based approach was developed to capturesocial interaction observable

even with encrypted payload [67, 66, 68, 64]. For example, BLINC [68] captures the profile

of a host, in terms of the destinations and ports it communicates with, identifies applica-

tions the host is engaged in by comparing the captured profilewith (built-in to BLINC) host

behavior graphlets/signatures of application servers, and then classifies traffic flows. While

BLINC’s approach is promising on edge links, it assumes the observation of both directions

of traffic, which limits its applicability. Recently Iliofotou, et al. proposed a network-wide

behavior-based traffic classification method, Traffic Dispersion Graphs (TDGs) [64], which

focuses on network-wide behavioral patterns of interacting hosts.

2.3.4 Flow Features-based Approach

Substantial attention has been invested in data mining techniques and machine learning algo-

rithms using flow features for traffic classification [80, 82,96, 26, 40, 41, 37, 113, 44, 109,

77]. Nguyenet al. surveys, categorizes and qualitatively reviews these studies in terms of

their choice of machine learning strategies and primary contributions to the traffic classifica-

tion literature [88]. Their survey is complementary to our work, where we pursue quantita-

tive, measurement-based, performance evaluation of the seven machine learning algorithms

using multiple datasets collected from Japan, Korea, and the US.

Machine learning algorithms are generally categorized into supervised learningandun-

supervised learningor clustering. Supervised learning requires training data to be labeled in

30

advance and produces a model that fits the training data. The advantage of these algorithms is

that they can be tuned to detect subtle differences and they clearly label the flows upon termi-

nation, unlike the unsupervised ones. Unsupervised learning essentially clusters flows with

similar characteristics together [40, 75]. The advantage is that it does not require training,

and new applications can be classified by examining known applications in the same cluster.

Ermanet al. [40] compared the performance of unsupervised machine learning algorithms in

traffic classification. Since our main focus is on evaluatingthe predictive power of a trained

traffic classifier rather than on detecting new applicationsor flow clustering, we focus on

supervised machine learning algorithms in this thesis.

31

Chapter 3

Diversity in Configuration

In this chapter, we will discuss the benefits of diversity by studying the traffic profile of

a population of employees in a large enterprise. In order to illustrate the effectiveness of

diversity, we propose a model in which the end hosts are required to find thresholds for their

anomaly detectors so that malicious traffic are detected readily. The chapter shows that the

problem of threshold computation comes with myriad of issues that need to be addressed but

are currently overlooked. Our approach proposes generalization techniques including two

components - a way to combine false alarm rate and mis-detection rate and a way to classify

the end hosts into groups that can be managed effectively as asingle unit. Finally, the chapter

evaluates the proposals on real traces assuming a full-knowledge attacker strategy.

32

3.1 Network Setup

The problem we study is the configuration of alert thresholdsin HIDS for agroupof employ-

ees in an enterprise setting, when a single IT policy is followed. Given a set of featuresF j
i ,

wherei is the user index, andj is the feature index, set the threshold for each feature such

that when it exceeds the threshold an alarm is raised. On the one hand, enterprise IT usually

approaches this problem by applying a single policy, such as“set the thresholds the same

for all users”. On the other hand, as we will show, there is a great deal of diversity in the

end-hosts’ traffic distribution. This diversity implies that such a policy will have unintended

consequences, namely that the performance in terms of falsepositives and false negatives

differs dramatically across the end-hosts. Let each end-host’s performance be measured by

the tuple〈 false positive rate, false negative rate〉, denoted by〈FPi, FNi〉 for useri. The

problem we address is to determine a good enterprise policy so as to achieve a better balance

across all the performance tuples of all end-hosts. We will provide algorithms to carry out

different policies.

We focus on a set of features that are either in use today in industrial products, or

have been proposed in the literature. Our intent is not to promote any particular feature,

but rather to develop a methodology for configuring cutoff thresholds for features. To-

day’s systems use one set of features, however because the security threat landscape is

continuously evolving, that set of features is likely to change. We believe our methodol-

ogy will be useful to any set of features that are additive. Examples of additive features

33

include thenumber_of_DNS_connections (used in Damballa’s botnet detection sys-

tem1), number_of_HTTP_connections , number_of_TCP_SYN (used in BRO on

a per source basis[90]) ,number_of_TCP_connections (used in Cisco’s endhost CSA

product[32]), etc.

We consider an enterprise network in which end-hosti, i ≤ i ≤ n, has been enslaved by

a botmaster commanding either through an IRC C&C channel or aP2P system. We assume

that thesen zombies could be simultaneously used to attack an external host, H. Let gj
i

represent the normal value for end-hosti of a specific featurej. This could represent any

of the features (i.e., detectors) mentioned above because they are all additive features. We

assume that when the attacker (a term we use interchangeablywith the termbotmaster) issues

a command, each zombie responds in a way that increases the value of featurej by bj
i . Thus

bj
i captures the attack size for any particular feature. (For ease of discussion, we drop the

index j, as the same reasoning applies to each feature, as long as it is additive. Similarly

we discuss, as an example, connection counters rather than packet counters to simplify the

presentation.) Each end-host has a probability distribution P (gi = G) that describes the

probability that the host will openG connections in the next time window. Thus, the total

size of traffic corresponding to a particular feature, emanating from end-hosti, is described

by a random variablebi + gi.

The IT operator configures theith host with a threshold parameterTi such that if the

outgoing traffic on hosti exceedsTi, the host raises an alert and sends it to the central IT

1http://www.damballa.com/

34

security operations center (SOC). The probability of missing an attack of sizebi, a false

negative (FNi), is given byP (gi + bi < Ti), and the probability of a false alarm (FPi) for

that user is simplyP (gi > Ti). The problem is to determine a set of thresholds valuesTi

for all users. We propose different policies for threshold selection, and provide algorithms to

implement such policies. We compare the performance of the different policies from three

perspectives (using three metrics). First, we look at the〈FPi, FNi〉 performance tuple for a

group of users using scatter plots and compare which policy achieves a good balance for the

majority of the users. Second, we compare the average numberof false positives generated

at the centralized IT operations center under different policies. Third, we compare the sizes

of the attacks a full-knowledge attacker is able to successfully launch (i.e. evade detection)

under the different policies.

3.1.1 Threat Model

We consider a strong threat model for the attacker. One can devise an attacker strategy based

on the amount of information the attacker has about the zombies and the amount of extra work

the attacker is willing to do to acquire detailed information about its zombies. We consider an

attacker that has complete knowledge of each zombie’s normal traffic profile because he/she

installs monitoring code on the compromised host. Namely, our full-knowledge attacker

knows the end-host’s probability density function, pdf foreach featurej, P (gj
i), and their

respective cutoff thresholds,T j
i . The attacker can use this knowledge to selectbj

i tailored

to each zombie, such that the probability of hiding inside the user profile traffic, namely

35

P (gi + bi < Ti), for any j, is fairly high (we set it to 90%). Although we have not used

but one can think of another strategy in which the attacker choosesbi which maximizes the

damage given by
∑

biP (gi + bi < Ti).

3.2 Diversity in User Population

0 50 100 150 200 250 300 350

1

1.5

2

2.5

3

3.5

4

4.5

User ID (arranged by tail diversity)

T
hr

es
ho

ld
 V

al
ue

 (
lo

g 10
 s

ca
le

)

TCP: 99th percentile

TCP: 99.9th percentile

(a) # TCP Connections

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

User ID (arranged by tail diversity)

T
hr

es
ho

ld
 V

al
ue

 (
lo

g 10
 s

ca
le

)

TCP (port 80): 99th percentile

TCP (port 80): 99.9th percentile

(b) # TCP Connections on port 80

0 100 200 300
10

0

10
1

10
2

10
3

10
4

User ID

T
hr

es
ho

ld
 v

al
ue

99th percentile

99.9th percentile

(c) # Distinct Connections

0 100 200 300
0

200

400

600

800

User ID

T
hr

es
ho

ld
 v

al
ue

99th percentile

99.9th percentile

(d) # DNS Connections

Figure 3.1: Tail Diversity: (a) # TCP connections can indica te TCP basic DDoS; (b) #
HTTP connections can indicate end-hosts participating in c lick-frauds; (c) # Distinct
connections can reveal address scanners; (d) # DNS connecti ons can detect scan-
ning, worm spread;

36

0 100 200 300
10

0

10
1

10
2

10
3

10
4

10
5

User ID

T
hr

es
ho

ld
 v

al
ue

99th percentile

99.9th percentile

(a) # TCP connections with SYN flag

0 100 200 300 400
10

0

10
1

10
2

10
3

10
4

User ID

T
hr

es
ho

ld
 v

al
ue

99th percentile

99.9th percentile

(b) # UDP connections

Figure 3.2: Tail Diversity: (a) # Connections with SYN flags s et can reveal end-hosts
participating in SYN flood; and (b) # Connections with UDP con nections

In this section, we will present the characteristics of normal traffic from 350 end-hosts in

a large enterprise.

3.2.1 Data Collection

Our data consists of network packet traces collected at 350 end-hosts (95% of them are

laptops and all hosts were using Windows XP) in a large enterprise network. The traces span

over 5 weeks in Q1 of 2007. Each end-host corresponds to an individual user and all users

enrolled on a volunteer basis. Users from many different geographies participated: with 73%

of the users from the United States, 13% from Asia, 13% from Europe, the Middle East

and Africa and 1% from South America. Most users were locatedin large office sites in

metropolitan areas. All end hosts were using the Microsoft Windows XP operating system.

The data collection was performed by a stand alone application (a wrapper around the

windump tool). In addition to collecting packet headers, our collection tool watched for

37

changes in IP address, interfaces (e.g., wired/wireless) and location. Because the collection

was performed directly on the end-host, all packet activitywas captured, even when the

mobile laptops changed environments (home,work, different wireless interfaces, etc). This

dataset captures an unusually complete view of users’ behaviors; data collections that are

carried out at gateways and routers do not capture user activity when they leave work or

switch to another network. Note that in the organization, each employee is given one laptop

and these laptops are not shared across employees. We believe that this is common practice,

so unless employees share their laptops with family membersat home in the evening, the

laptops should correspond to one user.

3.2.2 User Traffic Characteristics

We processed the tcpdump traces from 350 end-hosts using Brotool [90] and constructed

time-series for each of 5 anomaly detection features. The features we studied are the num-

ber of TCP connections, HTTP connections, distinct connections, all connections and SYN

Flood connections2, aggregated the counts into 5 and 15 mins interval bins. In this paper, we

present the results for the 15mins interval bins (having 5mins interval bins does not change

the conclusions). We selected these features because they are actual features used on various

systems ([32, 5, 90])3. We treat each bin count as a sample point of the distributionP (gi) for

theith end-host. We assume that the time-series are stationary. Once we obtain the distribu-

tions,P (gi), we compute99th and99.9th percentiles of each feature distribution as cut-off

2number of connections in which TCP SYN Flag is set
3Features chosen from [90] were only those that are computed on a per source basis.

38

thresholds and plot the sorted thresholds in Fig. 3.1 and 3.2. We consider this definition of

outlier here because it is adopted in practice due to its simplicity.

If all hosts were to self select their cutoff thresholds to beeither the99th and 99.9th

percentile values, then the threshold would be meaningful in terms of their own behaviors

(all users would experience a common false positive rate). In Fig. 3.1 and 3.2 we show the

tremendous diversity in choice of thresholds that would result in this personalized policy

were adopted. Interestingly, the range of diversity variesby 3 to 4 orders of magnitude. This

demonstrates in a loose sense, that the “tail”, or fringe, ofthe user’s behavior begins in very

different places for different users. Fig.3.1(a) illustrates that these “tails” can range from 7 to

7000 for a false positive rate of 1%4.

3.3 Basic Policy Comparison

We now compare the impact of homogeneous and diversity threshold policies on the end-

hosts and enterprise as a whole. We look at three metrics, the〈FNi, FPi〉 tuple for all users, the

false alarms received inside an enterprise operation center, and the attack effectiveness. For

this initial policy comparison, we consider a simple percentile detector, a method commonly

used in practice. A percentile detector uses the distribution of a feature,P (gi) and computes

a thresholdTi such thatP (gi > Ti) equals desired pre-determined false positive rate. Such

a Ti does not ensure any false negative rate since false negativedepends on the attack size

4The end-host with a tail starting at 7 most likely comes from amachine that is rarely used. The few
connections occurring could correspond to IT scanning events. Some users might have installed our tracing code
on machines that they do not really use much. We cannot be sureas all user identities have been anonymized.

39

distribution. As an example, we work with99th percentile detectors, a target many in our IT

survey confirmed was common.

Under the full-diversity policy, all the end-hosts target afalse positive rate of 1%. A

simple distributed solution for this policy is letting eachend host compute its own histogram

for the relevant features and extract the99th percentile value. For the homogeneous policy, we

assume a central solution that merges all the time series from the end-hosts into a composite

histogram and calculates the thresholds on this aggregate.We use both simulated attack data

(so we can vary and test attacks of all possible sizes), and real attack data from live malware

traces - both of which are replayed on the actual user traces.For the simulations, we assume

the full knowledge attacker aims to evade detection with a 90% success rate, and thus selects

a tailored attack sizebi for each user such thatP (gi + b < Ti) =0.9. We generalize this

definition ofFNi as
∫ Bmax

0
P (gi + b < Ti)f(b)db wheref(b) denotes a general distribution

of attack sizes. Because the size of DoS attacks is not well documented, and is forever

evolving, we study the full range of possible sizes - from near zero to the largest number of

connections among all users [1,Bmax]. Beyond this size, DoS attacks will easily stand out as

they no longer mimic user traffic patterns. We use a uniform distribution on the attack size,

i.e., f(b) = 1
Bmax

, for simulations (since no such distribution is known, and our only goal

here is to try them all exhaustively).

To understand the〈FPi, FNi〉 trade-offs that each user incurs, under a particular policy,

we use End-User Performance Characteristics Curves (EPC) as in Figure 3.3. Each point

on the EPC corresponds to an end-host.y-axis shows the detection rate (1-FNi) and thex-

40

10
−5

10
0

0

0.2

0.4

0.6

0.8

1

False Positive

1
−

 F
al

se
 N

eg
at

iv
e

Homogeneous
Diversity

(a) Target FP is 0.01,k=1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

1−
F

al
se

 N
eg

ag
tiv

e

Light users
Heavy Users
Diversity

(b) Target FP=0.01,k=2

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

1−
F

al
se

 N
eg

ag
tiv

e

Group 1
Group 2
Group 3
Group 4
Group 5
Diversity

(c) Target FP=0.01,k=5

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

1−
F

al
se

 N
eg

ag
tiv

e

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Diversity

(d) Target FP=0.01,k=8

Figure 3.3: End-User Performance Characteristics (EPC), e ach point corresponds to
(FP,1-FN) for that user, using 99th percentile detectors. (a) end-hosts using diversity
approach has better trade-offs; (b)-(d) performance under homogeneous approach
can be improved under 2-level, 5-level and 8-level approach es.

41

axis shows the false positive rate. Figure 3.3 (a) illustrates what happens to the ensemble

of enterprise hosts. Under the diversity approach, all the end-hosts experience the sameFPi

rate of 0.01, however the detection rate of the users are spread throughout the 0 and 1 range.

The bulk of the users (about 85%) achieve high detection rates over 65%. The homogeneous

approach has the opposite effect: the end-hosts experiencea fairly similar detection rate

(between 60-70%), but the false positives are spread acrossa large range. We believe that this

dramatic differentiation in FP performance across hosts isa ramification that is unintended

by IT operators, and arises because of their ignorance of diversity in user fringe behavior.

The IT operators are faced with a fundamental trade-off in terms of policy: would they

prefer the end-hosts to experience similar FP rates or similar FN rates? Neither of these

policies is ideal in that neither can benefitall the end-hosts in the same way. Although

these policies will benefit different subsets of end-hosts,the subset of end-hosts (45 out of

348) appearing inside the two boxes (low performance areas)are primarily the heavy end-

hosts (high mean and variance). Given the choice between these two effects on the user

population, we believe that IT operators should choose the diversity approach. There is a

way to compensate for the end-hosts with poor performance inthe diversity scheme, namely

via collaboration. Enterprise end-hosts can collaborate by sharing information like detectives

[52], in which the early-to-detect hosts inform others about attacks they cannot see. However

there is no way to compensate for the poor performing end-hosts under the homogeneous

policy.

False Alarms : The diversity approach is also preferable from the point ofview of the

42

0 100 200 300 400 500
0

200

400

600

800

1000

Attack Size Chosen in Homogenous

A
tta

ck
 S

iz
e

C
ho

se
n

in
 D

iv
er

si
ty

(a) FP=0.01, diversity

0 200 400 600 800
0

500

1000

1500

2000

Attack Sizen chosen in 2−level policy

A
tta

ck
 S

iz
e

C
ho

se
n

in
 D

iv
er

si
ty

Light users
Heavy Users

(b) FP=0.01, 2-level policy

0 200 400 600 800 1000
0

500

1000

1500

2000

Attack Sizen chosen in 8−level policy

A
tta

ck
 S

iz
e

C
ho

se
n

in
 D

iv
er

si
ty

Group 8
Group 7
Group 6
Group 5
Group 4
Group 3
Group 2
Group 1

(c) FP=0.01, 8-level policy

Figure 3.4: Attack sizes chosen by attacker under different policies. (a) under ho-
mogeneous policy, more end-hosts enable attacker to pick la rger attack sizes; (b)-(c)
partial diversity leads to smaller attack sizes than homoge neous. x = y line indices
similar performance between two policies being compared.

enterprise, because it reduces the total number of false alarms arriving to the SOC. Because

the nodes withFPi rates> 0.01 in the EPC curve under the homogeneous approach are the

“heavy” ones, they will result in an enormous number of falsealarms - can be approximated

by
∑

i E[gi]FPi. For these test scenarios, the homogeneous approach generates on average

1450 alerts whereas the diversity approach generates on average only 200, which is lesser by

a factor of 7!

Reduction of Attack Sizes : Fig. 3.4 (a) shows the attack values chosen by an attacker

under different policies when the attacker’s goal is to evade detection with 90% success rate.

Each point corresponds to one end-host and we observe most ofthe points are belowx = y

line implying that the attacker can choose larger attack sizes under homogeneous approach.

This illustrates that the diversity approach limits the effectiveness of DDoS attacks, even for

full knowledge attackers. (We will explain the (b) and (c) plots of these figures later on.)

43

3.4 New Policies

In this section, we discuss more general policies for computing the thresholds for the end-host

anomaly detectors. The IT operators have to decide upon two components: (1) a particular

utility function which explicitly states a balance betweenFNi andFPi and (2) a grouping

policy to batch the end-hosts with similar profiles and thus choosing a level of diversity.

3.4.1 Utility Function

Ideally an end-host would like to experience no false positive and 100% detection rate. How-

ever, in practice a statistical anomaly detector will have an operating point〈FPi, FNi〉 but an

end-host can explicitly combineFPi and andFNi through utility functions. We assume that

all the end-hosts use the same form of utility function whichis given by:

Ui(Ti, Bmax) = −[wFNi(Ti, Bmax) + (1− w)FPi(Ti)] (3.1)

where0 ≤ w ≤ 1 andUi is theith end-host’s utility function. The goal is to find the optimal

threshold,T ∗
i = arg max

Ti

Ui(Ti, Bmax). Depending on the values ofTi andBmax, the values

of Ui can vary between 0 (most desired) to -1 (least desired). IfTi is very large andBmax is

small,FPi → 0 andFNi → 1. If Ti is very small andBmax is small,FPi → 1 andFNi → 0.

If Bmax is very large, thenFNi might be 0 and become insensitive toTi.

The IT operators will first choose a particular utility function (determined byw) to be used

by the end-hosts. In one case, the end-hosts will optimize their utility functions to compute

44

T ∗
i and the behavior of each will have no impact on the threshold selection of others. In

another case, IT operators will opt for a centralized solution where they will collect the data

from all the end-hosts at SOC and compute the thresholds for the end-hosts. We will discuss

in Section 3.4.2 the issue how many thresholds should the IT operators compute. Should the

IT operators want to compute one threshold for all the end-hosts, they will use one combined

utility function which is given by:

U(T, Bmax) = −
∑

i

[wFNi + (1− w)FPi] (3.2)

The goal for the IT operator is to optimize the utility function and find an optimal thresh-

old, T ∗ = arg max
T

U(T, Bmax) and configure the end-hosts withT ∗.

Behavior of Utility Functions : Having defined the utility functions, we will discuss the

characteristics of the utility functions for three different end-host groups -heaviest, median

andlightest. We group the end-hosts based on the99th percentile of a given feature distribu-

tion, P (gi). In deriving the false negative values, we chooseBmax= 1000 which is compara-

ble to largest tail value, 7000. IfBmax is too small, no scheme will be able to perform well,

and if Bmax is blatantly large, any approach will be able to catch an attacker. Therefore, the

challenge is to work with an intermediate value ofBmax. In rest of the thesis, we work with

Bmax= 1000 unless other values are specified and usenumber_of_TCP_connections

as the feature forgi.

First, we study the variation of the utility values as a function of threshold,Ti. Fig. 3.5

45

10
0

10
1

10
2

10
3

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Threshold Value,T

U
til

ity

w=0.2, B
max

=100

w=0.8, B
max

=100

w=0.2, B
max

=1000

w=0.8, B
max

=1000

(a) Heavy group

10
0

10
1

10
2

10
3

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Threshold Value,T

U
til

ity

w=0.2, B
max

=100

w=0.8, B
max

=100

w=0.2, B
max

=1000

w=0.8, B
max

=1000

(b) Median group

10
0

10
1

10
2

10
3

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Threshold Value,T

U
til

ity

w=0.2, B

max
=100

w=0.8, B
max

=100

w=0.2, B
max

=1000

w=0.8, B
max

=1000

(c) Light group

10
0

10
1

10
2

10
3

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Threshold, T

−
(w

F
N

+
(1

−
w

)F
P

)

w=0.0
w=0.2
w=0.5
w=0.8
w=1.0

(d) Median Group

Figure 3.5: TCP Connections: Utility functions for three di fferent groups – Heavy,
Median and Light. Groups are formed based on 99th percentile values. (d) Utility
values as a function of w and Ti using number of TCP connections as feature (for
median group)

shows the utility values,U(Ti, Bmax) for the heaviest, median and lightest end-host groups,

respectively (forBmax = 100, 1000). Here, we present results corresponding tow = 0.2 and

w = 0.8 as these two values capture the trends.

We make the following observations: (1) An end-host group experiences drastically dif-

ferent false positive and false negative rates for different values ofw andBmax. This is ex-

pected as the end-hosts in different groups have different distributions; (2) different end-hosts

46

experience different false positive and false negative rates using the same utility function; (3)

the utility values are not stable when the attack sizeBmax is around the value ofT ∗
i . This

means if the computed threshold is not exactly equal to the optimal threshold, an end-host

will experience drastically differentFNi andFPi; (4) the utility functions in Fig. 3.5 attain

highest utility value for a certain threshold value which wedenote byT ∗
i . For the same

highest utility values, we select the smaller threshold.

We have compared the performance of median users and averageperformance of the

median group. We observe that the performances under both the cases are very similar. We

construct the median group using those users whose99th percentile values are between 150

and 350 inclusive. The tail value of the median user is 222. Fig.3.5(d) shows the utility values

for different values ofw andTi. As expected, asw shifts from 1 to 0, the optimal threshold,

T ∗
i increases. We observe that when the end-hosts have largeT ∗

i , the thresholds tend to be

more diverse.

3.4.2 k-Level Diversity Policy

Although diversity has appealing benefits, we recognize theresistance to this policy IT op-

erators exhibit. We now ask if there is a middle ground between the two extreme policies

of purely homogeneous and fulln-user diversity (usingn thresholds forn end-hosts). Can

using a small number of thresholds also be advantageous? With this view, we consider a

hybrid approach denoted byk-level diversity policy (alternatively denoted byk-level policy

in short).

47

Combined Utility : In k-level policy, each end host anomaly detector will be configured

with one of thek distinct threshold values. IT operators will batch the end-hosts intok

distinct groups and compute one threshold for each group. The motivation is that IT operators

may want to group the end-hosts with similar profiles together and maintain one threshold for

that group. We use the notationTj,k to denote the threshold computed for thejth group when

k-level policy is used and letSj,k be the set of end-hosts in thejth group. The composite

utility function used for thejth group is given by:

Uj,k(Tj,k, Bmax) =
∑

i∈Sj,k

Ui(Tj,k, Bmax) (3.3)

We denote the optimal threshold byT ∗
j,k = arg max Uj,k. However, when we use percentile

detector instead of utility function, we compute a composite distribution of the end-hosts’

traffic within a group and then compute99th percentile threshold of the composite distribu-

tion.

Algorithm 1 Distributed algorithm executed in ith end-host
ComputeThresholdLocal (utilityFunction , w, α)

Ensure: Ti

1: if utilityFunction is Percentile Detectorthen
2: Findα percentile,Ti of P (Gi)
3: else
4: Optimize utility function (specified byw) to get optimal threshold,Ti

5: end if

Grouping Policy : There are several ways to form groups. In this thesis, we have

experimented two ways of grouping the end-hosts. In both theapproaches, we have used

99th percentile values as profile of the users. The motivation behind the first approach is to

48

group together the users which have similar tail values. Fork = 2, we put all the end-hosts

whose99th percentile values are in the bottom 85% in one group and the remaining form the

heavy end-hosts group. Fork = 3, we first find 2 groups (as above) and then find another

group which comprises of the bottom 15% of the end-hosts. Thus, the middle 70% form the

second group and upper 15% form the third group. Fork > 3, we first find 3 groups as we

do for k = 3. Then, we sub-divide these three groups (with heavy users first) untilk groups

are formed. For example, fork = 5, we create three groups first. Then, we bisect the heavy

and the middle groups.

We have also tried thek-means clustering technique on the99th percentile values ask-

means clustering is widely used in practice. However, we findthat this clustering technique

does not perform as well as the above mentioned approach.

Algorithm for computing thresholds : Having described thek-level policy and

grouping policy, we summarize our approach in terms of two algorithms: (i) ComputeThresh-

olds() is executed at the SOC to compute thresholds under homogeneous ork-level diversity

policies (see Algorithm); and (ii) ComputeThresholdLocal() is executed by an end-host to

find its threshold (see Algorithm). An enterprise policy guides the IT operators to decide

how to compute the thresholds. If IT operators opt for a distributed approach, it informs the

end-hosts to compute their thresholds locally (Line 2). Otherwise, the centralized algorithm

at SOC computes the thresholds for the end-hosts and downloads the configuration on the

end-hosts. In this paper, we have used a specific grouping policy but one can define any

grouping policy through the function FormKGroups() (Line 15).

49

Algorithm 2 Algorithm run centrally at Security Operations Center (SOC)
ComputeThresholds (policy , utilityFunction , w, α, k)

Ensure: Ti or T
1: if policy is diversity then
2: Inform end-hosts to executeComputeThresholdLocal()
3: else ifpolicy is Homogeneous then
4: FetchP (Gi) from the end-hosts
5: if utilityFunction is PercentileDetector then
6: Form a composite distribution,P (G)
7: Findα percentile threshold,T ∗ of P (G)
8: else
9: Form a composite utility,U=-[wFNi + (1− w)FPi]

10: OptimizeU to get optimal threshold,T ∗

11: end if
12: DistributeT ∗ to the end-hosts
13: else ifpolicy is k-level partial diversitythen
14: FetchP (Gi) from the end-hosts
15: FormKGroups(utilityFunction)
16: for group 1 tok do
17: if utilityFunction is PercentileDetector then
18: Form a composite distribution ofjth group,P (Gj)
19: Findα percentile threshold,T ∗

j,k of P (Gj)
20: else
21: Form a composite utility function, Eq. 3.3
22: FindT ∗

j,k from Eq. 3.3
23: end if
24: DistributeT j to the end-hosts in thejth group
25: end for
26: end if

50

0 0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1

False Positive

1−
F

al
se

 N
eg

at
iv

e

0.8FN+0.2FP, homo

(a)0.8FNi + 0.2FPi, Homogeneous

0 0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1

False Positive

1−
F

al
se

 N
eg

at
iv

e

0.8FN+0.2FP, diversity

(b) 0.8FNi + 0.2FPi, Diversity

0 0.2 0.4 0.6 0.8 1
0.85

0.9

0.95

1

False Positive

1−
F

al
se

 N
eg

at
iv

e

0.8FN+0.2FP, 8−level diversity

(c) 0.8FNi + 0.2FPi, 8-level partial diversity

Figure 3.6: EPC using utility function, 0.8FNi + 0.2FPi; (a) high detection rate but high
FPi under homogeneous policy; (b) high detection rate but bound ed FPi under diver-
sity; (c) improved FPi compared to homogeneous policy

3.5 Evaluation

We first present the evaluation of our new policies using simulated attacks as that in Sec-

tion 3.3. In the second part, we use real attack traces to evaluate and demonstrate the effec-

tiveness of our new policies against real attacks. We consider the feature,number_of_TCP_connections

for P (gi) and the feature,number_of_distinct_connections for attack traffic.

51

3.5.1 Simulations

First, we evaluate the performance ofk-level partial diversity policy using percentile detec-

tors. Then, we consider utility functions rather than percentile detectors.

Partial Diversity : First, we illustrate the performance ofk-level policy. We have tried a

set of differentk values. Among them we find thatk < 10, gives the results which are suffi-

ciently close to full diversity case. We illustrate usingk = 8 here (We realize that the value

of k depends on the datasets). We have already seen the EPC plot comparing homogeneous

and diversity policies in Figure 3.3 (a). Comparison between diversity and 2-level policies in

terms of EPC is shown in Figure 3.3 (b) where we observe that the detection rate of the light

users increases to 0.8 whereas that of the heavy users drops to 0.33 (as compared to homo-

geneous policy). The benefit of the 2-level policy is that it allows a reduction in the number

of users with severely highFPi, without compromising high detections rates for the bulk of

users (unlike the homogeneous policy that induces this trade-off). EPC plot for the 8-level

approach is shown in Figure 3.3 (c). We observe that except for a few end-hosts in groups

6, 7 and 8, all other end-hosts experience sameFPi andFNi as in diversity approach. As we

form more groups, the number of end-hosts in each group becomes lesser and the diversity

thresholds tends to become equal to the group threshold (homogeneous within a group). The

potential of 8-level policy shows that IT operators do not need to compute individual thresh-

olds for all 350 end-hosts. However, we do realize that this level of diversity depends on the

inherent clusters existing among the users’ behaviors.

Attack Sizes : Next, we evaluate the performance based on the attack sizeschosen by the

52

attacker (see Section 3.3). Figure 3.4 (b)-(c) show the attack sizes under diversity andk-

level policy. Under 2-level policy, most of the attack sizesare between 100-200 (compared

to 200-300 in Figure 3.4 (a)). However, under the 2-level policy, the heavy end-hosts are

penalized as they have to set larger thresholds. In the 2-level policy, the end-hosts in different

groups do not interact in setting the thresholds and therefore, the heavy end-hosts are not

constrained in choosing large thresholds, unlike in the homogeneous policy. However, under

the 8-level policy, the end-hosts experience similar performance as that in diversity policy.

The effectiveness of diversity and 8-level policies in reducing the total malicious traffic can

be seen in Table 3.1.

The FP/FN Balance : Here, we illustrate the performance of the end-hosts when they use

the utility functions0.8FNi + 0.2FPi and0.2FNi + 0.8FPi whereFNi andFPi are computed

at the optimal threshold valuesT ∗
i .

The EPC plots corresponding to utility function0.8FNi + 0.2FPi in Figure 3.6 show

that most of the end-hosts experience high detection rate under all policies (> 0.92 under

homogeneous and 8-level policies and> 0.86 under diversity). This is expected as false

negative component is considered costly, which tend to keepthe optimal thresholds small.

Improvement on detection rate, results in extremely high false positive rate (between 0 and

1 range under homogeneous and 8-level policies). Specially, the “heavy” users tend to have

false positive rate close to 1. Although diversity policy outperforms others by boundingFPi

within 0.4 for most users, the majority of the users experience false positive around 0.2 which

is still high for practical purpose. We believe that this utility function can be useful if the IT

53

operators have additional resource to handle the false alarms.

The EPC plots corresponding to utility function0.2FNi + 0.8FPi in Figure 3.7 show

different trade-offs. As shown in Figure 3.7 (a), the detection rate under the homogeneous

policy is more than 0.8 for most of the end-hosts, andFPi is restricted within 0.1 except

for some heavy end-hosts. We have seen similar trade-offs inFigure 3.3 (a). For diversity

approach in Figure 3.7 (b),FPi of most of the end-hosts is less than 0.02 and detection rate

of them are above 0.7, which indicate that benefits of diversity shows up when the utility

function favors false positives. The effectiveness of the 8-level policy shows up in bounded

FPi (within 0.1), but the detection rate of some end-hosts reduces to 0.4 (Figure 3.7 (c)).

Attack Sizes : Figure 3.9 (a)-(b) and (c)-(d) show the attack sizes chosenby an attacker

(as that in Section 3.3) when the utility functions are0.8FNi + 0.2FPi and0.2FNi + 0.8FPi,

respectively. In Figure 3.9 (a), more circles below the linex=y indicates that more end-hosts

yield to higher attack sizes. The effectiveness of the diversity is due to smaller thresholds for

bulk of the users. Figure 3.9 (b) shows that comparatively more circles are above the line

x = y, implying a similarity with diversity approach. Similar comparison with the utility

function0.2FNi + 0.8FPi are shown in Fig. 3.9 (c)-(d).

In order to compare the cumulative attack traffic, we compute
∑

i bi under different poli-

cies and summarize the results in Table 3.1. The damage underthe diversity policy is smaller

than that under the homogeneous policy. Although the diversity policy outperforms others

consistently, the damage under 8-level policy can be worse than the homogeneous policy as

some of the heavy end-hosts have very large thresholds underthe 8-level policy resulting in

54

10
−4

10
−3

10
−2

10
−1

10
0

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

1−
F

al
se

 N
eg

at
iv

e

0.2FN+0.8FP, Homogeneous

(a)0.2FNi + 0.8FPi, Homo

10
−4

10
−3

10
−2

10
−1

10
0

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

1−
F

al
se

 N
eg

at
iv

e

0.2FN+0.8FP, diversity

(b) 0.2FNi + 0.8FPi, Diversity

10
−3

10
−2

10
−1

10
0

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

1−
F

al
se

 N
eg

at
iv

e

0.2FN+0.8FP, 8−level diversity policy

(c) 0.2FNi + 0.8FPi, 8-level partial diversity

Figure 3.7: EPC using the utility function, 0.2FNi + 0.8FPi; (a) high detection rate and
high FPi under homogeneous policy; (b) low and bounded FPi and high detection rate
under diversity policy; (c) improved FPi performance (but low detection rate for some)
under 8-level policy.

large attack sizes. Both EPC and damage results show that diversity benefits are significant

when false positive component is favored.

55

utility Diversity Homogeneous 8-level Policy
Percentile 69839 95456 61961
0.8FNi + 0.2FPi 242.2 1728.1 808.6
0.2FNi + 0.8FPi 34243 39825 43365

Table 3.1: Damage =
∑

i bi. The diversity policy outperforms the homogeneous policy.

3.5.2 Evaluation with Real Attack Traces

In this section, we show the evaluation of different policies using real attack traces. In order

to collect malicious traces, we installed malicious binaries of SDBot and Storm bot, each on

a separate laptop which did not have other applications running. Thus, all the traffic collected

originated from the corresponding malware. Due to lack of space, we only show the results

using Storm Bot trace. In the Storm trace, we find 319891 TCP connections and 12238 UDP

connections. The Storm bot is aggressive in opening new connections which are mostly

SMTP flows (port 25 SPAM). The typical number of connections opened during a typical 5

minute period is in the range 1 to 2000. During a few intervals, the number increases to 5000.

Usingdistinct_IP_destination addresses as the feature, we obtain the time-

series of the malicious trace. Subsequently, we superimpose the malicious time-series on the

normal traffic time-series.FNi count denotes the fraction of time bins when traffic count is

below threshold and traffic count consists of malicious flows.

Policy Comparison : First, we show the performance of percentile detector on real at-

tack traces. Figure 3.8 (a) reveals similar trends as we observe with synthetic attacks (in

Figure 3.3, Section 3.3), but the numbers are shifted. Underthe diversity policy the best

detection rate is around 0.62. Under the homogeneous policy, the detection rate of most

56

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

False Positive

1−
F

al
se

 N
eg

at
iv

e

Homogeneous
Diversity

(a) Homogeneous vs. Diversity

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

False Positive

1−
F

al
se

 N
eg

at
iv

e

8−level partial diversity
Diversity

(b) 8-level vs. Diversity

0 100 200 300
0

100

200

300

400

Undetected attack sizes in homogeneous

U
nd

et
ec

te
d

at
ta

ck
 s

iz
es

 in
 d

iv

(c) Homogeneous vs. Diversity

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

Undetected attack sizes in 8−level partial diversity

U
nd

et
ec

te
d

at
ta

ck
 s

iz
es

 in
 d

iv
er

si
ty

(d) 8-level vs. Diversity

Figure 3.8: (a)-(b) EPC with real attacks replayed on normal traffic using 99th percentile
detector. (a)-(b) bulk of users under homogeneous policy ha ve similar detection rate
and their false positive rate is improved under 8-level poli cy; (c) attack sizes under
homogeneous policy are larger; (d) 8-level policy is simila r to diversity

end-hosts is slightly more than 0.4, withFPi spreading between 0 and 1.

Figure 3.8 (c)-(d) show the attack sizes that are not detected by the end-hosts when we

superimpose malicious traffic on normal traffic. Each point in Figure 3.8 (c)-(d) represents

an end-host’s average undetected attack size. Undetected attack size,bi > 0 in an interval

is such thatbi + gi < Ti. For each end-host, we compute the average of allbi varying the

locations of super impositions. Similar performance between the diversity and 8-level policy

shows the impact of grouping criteria on the results (percentiles used in clustering).

57

The attack sizes under the 8-level policy are similar to thatin the diversity policy and

almost all the attack sizes fall on the linex = y.

Utility Functions : Here, we present the performance using utility functions.Figure 3.10

(a)-(b) show the EPC using0.8FNi + 0.2FPi. The false negative rate of most end-hosts have

an inversely proportional relationship with the false positive rate. Heavy users experience

high detection rate at the cost of high false positive rate. The minimum detection rate we

observe is 0.65 which is close to the highest detection rate using percentile detector. Here,

the thresholds are small and there is not much difference in the performance between ho-

mogeneous and diversity approach. Figure 3.10 (c)-(d) showthe undetected attacks under

different approaches, and we see that the attack sizes are smaller than 3 under all approaches.

utility diversity homogeneous 8-level
Percentile 15949 27775 16351
0.8FNi + 0.2FPi 414.03 238.19 224.12
0.2FNi + 0.8FPi 3679.2 6600.4 10140

Table 3.2: Damage when real attack traces are used. Significa nt reduction in damage
under diversity using the percentile detector and 0.2FNi + 0.8FPi.

Figure 3.11 (a)-(b) show the EPC when the end-hosts use the utility function 0.2FNi +

0.8FPi. The FPi under all policies are bounded within 0.2 and the best detection rate is

around 0.62. Comparing with the EPC of the percentile detector, we find that detection rate

of most end-hosts under diversity approach has increased, but at the cost of increasedFPi by

a factor of 10 or 20. The 8-level approach helps some of the heavy users in improving their

false positive rate. Undetected attack size plots in Figure3.11 (c)-(d) show similar trends

as in that previous experiments. Table 3.2 shows the total damage under different utility

58

0 20 40 60 80
0

5

10

15

Attack sizes chosen in homogeneous

A
tta

ck
 s

iz
es

 c
ho

se
n

in
 d

iv
er

si
ty

(a)0.8FNi + 0.2FPi, diversity

0 10 20 30 40 50
0

5

10

15

Attack sizes chosen in 8−level partial diversity

A
tta

ck
 s

iz
es

 c
ho

se
n

in
 d

iv
er

si
ty

(b) 0.8FNi + 0.2FPi, 8-level

0 50 100 150 200 250
0

50

100

150

200

250

Attack sizes chosen in homogeneous

A
tta

ck
 s

iz
es

 c
ho

se
n

in
 d

iv
er

si
ty

(c) 0.2FNi + 0.8FPi, diversity

0 200 400 600
0

50

100

150

200

250

Attack sizes chosen in 8−level partial diversity

A
tta

ck
 s

iz
es

 c
ho

se
n

in
 d

iv
er

si
ty

(d) 0.2FNi + 0.8FPi, 8-level

Figure 3.9: Attack values chosen by attacker: (a)-(b) attac k sizes under homogeneous
policy are larger than under diversity policy using 0.8FNi + 0.2FPi. 8-level policy im-
proves upon homogeneous policy. Similar observation in (c) -(d) using 0.2FNi +0.8FPi.

functions and policies.

3.5.3 Summary

In this chapter we investigate methods of configuring thresholds for statistical anomaly de-

tectors deployed across all end hosts in an enterprise network. HIDS usually have a statistical

component which keeps track of some traffic features and set athreshold to define normal

traffic profile. The feature values falling outside the thresholds are deemed to be suspicious.

59

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

False Positive

1−
F

al
se

 N
eg

at
iv

e

Homogeneous
Diversity

(a) Homogeneous vs. Diversity

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

False Positive

1−
F

al
se

 N
eg

at
iv

e

8−level partial
Diversity

(b) 8-level vs. Diversity

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Undetected attack sizes in homogeneous

U
nd

et
ec

te
d

at
ta

ck
 s

iz
es

 in
 d

iv

(c) Homogeneous vs. Diversity

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Undetected attack sizes in 8−level partial diversity

U
nd

et
ec

te
d

at
ta

ck
 s

iz
es

 in
 d

iv

(d) 8-level vs. Diversity

Figure 3.10: (a)-(b) EPC when the end-hosts use 0.8FNi + 0.2FPi and real attacks are
replayed; (c)-(d) undetected attack sizes (< 3)

This chapter elucidates using real datasets that the end hosts traffic is very diverse and the

goal of setting the thresholds needs to consider several trade-offs that are often overlooked.

The chapter concludes that have diversified configuration can improve the detection rate of

the end hosts and can limit an attacker to launch only small sized attacks. The chapter also

shows that the full benefits of diversified approach can be harnessed even by incurring low

management complexity in the form of partial diversity. Finally, the framework offers the

flexibility of choosing different trade-offs by proposing grouping policy of the end hosts and

60

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

False Positive

1−
F

al
se

 N
eg

at
iv

e

Homogeneous
Diversity

(a) Homogeneous vs. Diversity

0 0.1 0.2 0.3 0.4
0.2

0.4

0.6

0.8

1

False Positive

1−
F

al
se

 N
eg

at
iv

e

8−level partial
Diversity

(b) 8-level vs. Diversity

0 10 20 30 40
0

20

40

60

80

100

Undetected attack sizes in homogeneous

U
nd

et
ec

te
d

at
ta

ck
 s

iz
es

 in
 d

iv

(c) Homogeneous vs. Diversity

0 50 100 150 200
0

50

100

150

200

Undetected attack sizes in 8−level partial diversity

U
nd

et
ec

te
d

at
ta

ck
 s

iz
es

 in
 d

iv

(d) 8-level vs. Diversity

Figure 3.11: (a)-(b) EPC when the end-hosts use 0.2FNi + 0.8FPi and real attacks are
replayed; (c)-(d) undetected attack sizes and effectivene ss of diversity policy.

utility function to combine false positive and false negative rates.

61

Chapter 4

Hierarchical Change Explanation

In this chapter, we formulate the problem of change detection in data with hierarchical identi-

fiers. We discuss several solution approaches and then propose an efficient optimal algorithm.

We show the effectiveness of our approach using real datasets.

4.1 Problem Statement

First, we define a natural change explanation model, which expresses the change between

the leaf nodes of two hierarchical summaries as a composition of changes top-down from the

root to the leaves of the tree.1 We then discuss the model in the context of Occam’s Razor

to find a parsimonious explanation of change. LetS be a set of items from a domainD

where the elements come from a well-defined hierarchy. Each itemi ∈ S has an associated

measure valuev ∈ V . The ordered pairs(i, v) could have been obtained by summing over

1Our method works for both multiplicative and additive compositions by transforming the former to latter
using logarithms; we illustrate using the additive scale.

62

the (projected) columns in a data warehouse fact table containing a multiset of(itemID,

value) pairs whereitemID is a dimension attribute andvalue is a measure attribute.

Or they could have been aggregated over some time series window (eg, moving window

average). LetT be a rooted tree obtained by inducing the dimension hierarchy on S, where

the nodes correspond to different prefixes in the dimension hierarchy. We do not assume a

total ordering over the dimension hierarchy, only that it ispartially ordered with maximum

heighth. Let ` denote a leaf node andm(`) denote some value attached to the leaf node`.

Given values attached to leaf nodes that represent some measure of change, we define a class

of hierarchicalchange explanation models below.

Definition 4.1.1 Hierarchical Change Explanation : Given a hierarchyT and change

valuesm(`) attached to leaves̀, a hierarchical change explanation model is a complete,

top-down composition of changes (“weights”)w(n) between nodes along the root-to-leaf

path, for each leaf node.

More formally, for each leaf nodè,

m(`) = W (`) (4.1)

where

W (root) = w(root) (4.2)

W (n) = w(n) + W (p(n)) (4.3)

63

for tree nodesn wherep(n) is the parent node ofn. A solution to this system gives weights

w(n) for eachn. In fact, ifP(n) denotes the ancestor path from the root down to a tree node

n, then by unraveling Equations 4.1-4.3, our problem is to findweightsw(n) of each noden

in the tree subject to the constraintsm(`) =
∑

n∈P(`) w(n). Since this system of equations

is under-specified, there are multiple solutions each of which provides a hierarchical change

explanation.

In general, the change valuesm(`) are obtained as some discrepancy measured(m1(`), m2(`))

between two sets of values observed for the hierarchyT . For example, consider the Census

dataset [28] where we have population countsm1(.) andm2(.) for zip codes and a geograph-

ical hierarchy that defines aggregations at state, county and city levels at two different snap-

shotsT1 andT2 as exemplified in Figures 4.1(a) and (b). Here,m(`) = d(m1(`), m2(`))=

log(m2(`)/m1(`)). In general statistical anomaly detection problems,m1(`) is forecasted

value based on some statistical model that captures normative behavior andm2(`) is the

actual observed value with higher discrepancy being indicative of anomalous behavior.

4.1.1 Parsimonious Explanation

Definition 4.1.1 provides a rich class of hierarchical change explanation models; we provide

a couple of examples that are trivial to compute but sub-optimal and then provide a notion of

an optimal or parsimonious hierarchical change explanation model.

Non-Hierarchical Approach : One possible assignment of weights that is used in anomaly

detection applications is the one that completely ignores the hierarchical structure and assigns

64

2010 30 20 40

402010

30

120

90

50

California

Victorville
Los Angeles

Los Angeles

San Bernardino

Pasadena

91101900029000191729

Fontana

92334

(a)T1

30 40

40

6030 40

7030 60

90 110

200

California

San Bernardino

Los Angeles

Victorville
Los Angeles

Pasadena

91729 9110190001 90002

Fontana

92334

(b) T2

0 0

0log(2)0

0

0

0

0

0

log(3) log(3)

92334 91729 90001 90002 91101

California

Los Angeles

Los Angeles Pasadena
Fontana Victorville

San Bernardino

(c) non-hierarchical
assignment

Figure 4.1: Each distinct ZIP code appears as a leaf in the tre e along with its asso-
ciated population counts (shown inside the node). The popul ation count for internal
nodes is the sum of the population counts from the leaves in it s subtree. (a) and (b)
as trees represent two snapshots T1 and T2, of hierarchy T respectively; (c) shows a
non-hierarchical weight assignment

log(63/65)0 0

log(9/5)

log(5/3)

log(11/15)

0 log(5/7)0 log(10/7)

log(9/11)

0

California

San Bernardino Los Angeles

Los Angeles
Fontana

90002900019172992334 91101

Pasadena
Victorville

(a) top-down

0 0

0 0 0

log(3)

log(2)0

0

0

0

0

92334 91729 90001 90002 91101

California

San Bernardino Los Angeles

Los AngelesFontana Victorville Pasadena

(b) optimal (ε = 0)

0

0

0

0

0

0 0 0

0 0 0 0

California

San Bernardino Los Angeles

Fontana Victorville
PasadenaLos Angeles

92334 91729 90001 90002 91101

(c) optimal (ε ≥ log(3))

Figure 4.2: Weight assignment based on top-down and optimal assignments.

each leaf nodè in T a weight ofm(`), and 0 to the non-leaf nodes. We call this the “non-

hierarchical” model, comparison w.r.t this model helps in quantifying the gain achieved by

using the hierarchy. Figure 4.1(c) shows a non-hierarchical assignment for the treesT1 and

T2 shown in Figures 4.1(a) and (b), respectively. The leaf-level nodes encircled boldly have

non-zero assigned weights. Using treesT1 andT2, we construct a third tree as in Figure 4.1(c)

such that the value associated with a leaf islog of the ratio of the correspoding leaf counts.

Top-Down Hierarchical Approach : Assuming the existence of a rollup operator that ag-

65

gregates values of children to the parent, another possibleassignment is top-down, which

recursively assigns weights from the root down such thatm(`) = W (n) =
∑

u∈P(n) w(u),

for all leavesand intermediate nodesn. Figure 4.2(a) provides an example where values

at each snapshot are rolled up using the sum operator. Both ofthese assignments satisfy

the equations of hierarchical change explanation but are not necessarily parsimonious: the

former ignores all opportunities to group leaves with equaldifferences in the same subtree

whereas the latter is too greedy in that it groups unequal leaf differences.

Parsimonious Hierarchical Approach : A node weightw(n) = 0 implies no change to node

n relative top(n) and does not need to be reported in an explanation. Thus, theexplanation

size is the number of non-zero weights in the explanation. Applying Occam’s Razor, we

prefer an explanation of the smallest size. Therefore, we define aparsimonious explanation

of hierarchical change as one with the smallest explanationsize, that is, the minimum number

of weights not equal to zero. Consider Figure 4.2(b), which is able to explain the changes

using only 2 non-zero weights compared to 3 for the non-hierarchical strategy and 7 for the

top-down one; in fact, it is optimal. We describe the algorithms which lead to assignments in

Figure 4.2(b)-(c) in Section 4.2.

However, this explanation model has certain shortcomings.Often one wants to com-

pare a snapshot with expected values; large deviations fromthese values can be reported as

anomalies. Statistical forecasting models (e.g., based onmoving averages) typically yield

confidence intervals based on a supplied confidence level. Animportant shortcoming of the

current model is that it does not work with such a forecastingmodel because its formulation

66

does not deal with ranges of possible values. In addition, the model is sensitive to noise. In-

tuitively, we would like to capture similar changes among related leaves which may not have

exactly equal differences but are roughly the same. For example, if two sibling leaves have

differences of 1.98 and 2.02, we may wish to describe this at the parent using a difference of

2. Since the deviations from this description at the leaves are small (1%), we may tolerate

this error as being a good enough approximation to report only significant changes and to

avoid overfitting the data. Our original description above,which only allows exact matches,

does not allow this.

In order to ameliorate this, we extend the definition to allowa tolerance parameterε on

the values of the leaves. We allow weights on the nodes that result in differences of at mostε

between two leaves in the snapshots. We assume that in practice this tolerance parameter will

be provided by the confidence interval of the prediction model, which can be different from

leaf to leaf, so the model allows different tolerancesε(`) at each̀ . Specifically, we assign

weights such that|m(`)−W (`)| ≤ ε(`) for each`, whereW (`) =
∑

u∈P(`) w(u).

To see the connection with a forecasting model, we assumem(`) = d(m1(`), m2(`)) =

m2(`)−m1(`). In fact, rewriting this equationm2(`)− (m1(`) + ε(`)) ≤W (`) ≤ m2(`)−

(m1(`) − ε(`)) and denotingm1(`) + ε(`) andm1(`) − ε(`) by UB(`) andLB(`), respec-

tively, clearly shows how to use output from a forecasting model in our framework.LB(`)

andUB(`) are lower and upper confidence bounds that are obtained from the estimated fore-

casting distribution. One possibility which works for symmetric distributions is to choose

m1(`) as the predicted mean andε(`) to be proportional to the predicted standard deviation,

67

the constant of proportionality depending on the desired coverage of the confidence interval.

For instance, a choice of1.96 under a Gaussian assumption on the statistical distribution of

our node values guarantees95% coverage. In general, our method is agnostic to the particular

choice of forecasting model; the only requirement is the availability of LB(`) andUB(`).

This makes it a highly general purpose method with wide applicability in anomaly detection

problems involving hierarchical data where changes are expected to be spatially clustered in

subregions of the hierarchy.

We now define our parsimonious explanation model, which allocates a tolerance budget

along each path that can be distributed among the individualpath nodes in any fashion while

maintaining the constraint|m` −
∑

n∈P(`) w(n)| ≤ ε(`).

Definition 4.1.2 Hierarchical Parsimonious explanation:

Given a set of leaf changesm(`) and a tolerance budgetε(`) ≥ 0 on the total sum of weights

along the path tò for all leaves`, a hierarchical parsimonious explanationof change finds

the smallest explanation size, that is, minimum number of node weightsw(n) s.t. w(n) 6∈

[−k, k]; k ≥ 0.

In definition 4.1.2, for positive tolerances, onlyk = 0 is of interest to us in practice. How-

ever, to facilitate comparison with DIFF algorithm citeSarawagi99, extended definition which

allows thresholding on positive values ofk is necessary as we shall see later in section 4.3.

68

4.2 Algorithms

In this section, we describe an algorithm to compute optimalweight assignments (that is,

minimizing the explanation size), for the problem defined inSection 4.1 (Definition 4.1.2).

The algorithm presented here generalizes this problem by allowing any supplied error toler-

ances for the leaves as well as intermediate nodes of the hierarchy.

The problem withε = 0 is a special case of the following problem:Given real matrixA

and vectorb, findx such thatAx = b minimizing the number of non-zeroxi’s. That problem

is not only NP-hard, but is not approximable within2log1−δ n for any δ > 0 (in polynomial

time, assuming NP is not contained in quasi-polynomial time) [20, 23]. For the special case

studied here we give a fast, exact algorithm. We first describe the algorithm intuitively, and

then present it formally.

The algorithm makes two passes over the tree: the firstbottom-upand the secondtop-

down. In the first pass the algorithm computes a tentative set of “best” incoming partial sums

for each node, using dynamic programming. We prove that the best partial sums for a node

are those that allow the node to incur no cost for its own weight and, simultaneously, to

provide best partial sums for the maximum number of children. This set of best partial sums

for a node is a union of closed intervals, at most one for each leaf.

In the second pass the algorithm works down from the root to assign weights. Each node

chooses its own weight so as to benefit the maximum number of its children. If the incoming

partial sum for a node is one of the best for the node, it can do this without incurring a cost

69

at the node. Otherwise, the node incurs a cost of 1 for its own weight, which it chooses to

benefit the maximum number of its children. We illustrate this process in Figure 4.3 for the

caseε = 1.

Figure 4.3: Computing an optimal node weighting (k = 0, ε = 1).

Note that instead of takingk > 0, one may addk|P(`)| to eachε(`), then takek = 0.

This expands the set of feasible weightings. We present the algorithm for the general case

k > 0 for compatibility with [99], which we shall compare againstin Section 4.3.

Definition 4.2.1 For any subtreeT ′ and real valuex, definecost(x, T ′) to be the minimum

cost of any feasible labeling ofT ′, given that the partial sum coming into the root ofT ′ from

above isx. (Formally, this is the minimum cost of any feasible labeling of the treeT ′ in

isolation, where each leaf changem(`) has been decreased byx.)

Definebestcost(T ′) = minx cost(x, T ′) andbestsums(T ′) = {x : cost(x, T ′) = bestcost(T ′)}.

We start with the observation that a bad incoming partial sumincreases the cost ofT ′ by

only 1. Let[x 6∈ S] denote 0 (false) ifx ∈ S and 1 (true) otherwise.

Lemma 4.2.2 For any subtreeT ′ and realx, cost(x, T ′) = bestcost(T ′)+[x 6∈ bestsums(T ′)]

70

Proof 4.2.3 Since the costs are integers, it’s enough to prove thatcost(x, T ′) ≤ bestcost(T ′)+

[x 6∈ bestsums(T ′)].

Let x′ be a partial sum achievingbestcost(T ′), and letw be a corresponding min-cost

weighting ofT ′ for partial sumx′. Addingx − x′ to the weight of the root ofT ′ gives a

feasible weighting forT ′ with partial sumx, and increases the cost ofw by at most 1.

Next we prove a recurrence which will be the basis for the algorithm. LetA⊕ B denote

{a + b : a ∈ A, b ∈ B}.

Theorem 4.2.4 LetT ′ be any subtree with immediate subtreesT ′
1, T

′
2, . . . , T

′
c. Thenbestsums(T ′)

equals

[−k, k]⊕
{

z : z minimizes|{i : z 6∈ bestsums(T ′
i)}|

}

.

Proof 4.2.5 Let kiddiff(z, T ′) denote|{i : z 6∈ bestsums(T ′
i)}|. Letbestkiddiff(T ′) denote

minz kiddiff(z, T ′). Fix x andT ′. By definition,cost(x, T ′) equals

min
y

[y 6∈ [−k, k]] +
∑

i

cost(x + y, T ′
i)

(y is the weight given to the root ofT ′). By lemma 4.2.2, this is

(

∑

i

bestcost(T ′
i)

)

+ min
y

[y 6∈ [−k, k]] + kiddiff(x + y, T ′).

The term on the left is independent ofx, while theminy . . . term on the right will equal

bestkiddiff(T ′) for somex (e.g. wheny = 0 andx minimizeskiddiff(x, T ′)).

71

Thus,x ∈ bestsums(T ′) (that is,x minimizescost(x, T ′)) iff

∃y ∈ [−k, k] : kiddiff(x + y, T ′) = bestkiddiff(T ′).

Takingz = x + y, this condition is equivalent to

x ∈ [−k, k]⊕ {z : kiddiff(z, T ′) = bestkiddiff(T ′)}.

Theorem (4.2.4) gives a recurrence relation forbestsums(). Using this recurrence, computeDS(T, d)

uses dynamic programming to compute, for all subtreesT ′, bestsums(T ′) andkidopt(T ′) =

{

z : z minimizes|{i : x 6∈ bestsums(T ′
i)}|

}

. The algorithm first calls computeDS(T, d)

Algorithm 3 computeDS(subtreeT ′, leaf valuesm)
1: If T ′ is a leaf (a single nodè):
2: let kidopt(T ′)← {m(`)} ⊕ [−ε(`), ε(`)]
3: else:
4: for each subtreeT ′

i of T ′: computeDS(T ′
i , m)

5: kidopt(T ′)← {z minimizing |{i : x 6∈ bestsums(T ′
i)}|}

6: bestsums(T ′)← kidopt(T ′)⊕ [−k, k]

to computekidopt(T ′) andbestsums(T ′) for all subtreesT ′. It then weightsT by calling

weightTree(T, 0) .

Algorithm 4 weightTree(partial sumx, subtreeT ′)
1: if x ∈ bestsums(T ′):
2: pick y ∈ [−k, k] s.t.x + y ∈ kidopt(T ′)
3: else: lety ← x′ − x for anyx′ ∈ kidopt(T ′)
4: give the root ofT ′ weighty
5: for each subtreeT ′

i of T ′: weightTree(x + y, T ′
i)

72

Lemma 4.2.6 weightTree(x, T ′) finds a feasible weighting ofT ′ (assuming incoming partial

sumx) of optimal costcost(x, T ′).

Proof 4.2.7 From Theorem 4.2.4, computeDS correctly computeskidopt and bestsums.

Theorem 4.2.4 assures thaty exists in the second line of weightTree(). A standard proof

by induction shows that the weighting is feasible.

To finish we consider the cost. By inspection weightTree(x, T ′) chooses a root weighty so

x + y ∈ kidopt(T ′). Thus (assuming by induction that the subtrees are weightedoptimally),

the total weight for nodes in the subtrees{T ′
i} is bestcost(T ′). In addition, at the root we

pay [y 6∈ [−k, k]]. By inspection of weightTree(), this equals[x 6∈ bestsums(T ′)]. Thus, the

total cost of our weighting isbestcost(T ′) + [x 6∈ bestsums(T ′)]. By Lemma 4.2.2, this is

best possible.

Lemma 4.2.8 The running time of the algorithm isO(hN log N), whereh is the height of

the tree andN is the number of leaves.

Proof 4.2.9 (Sketch) The running time of the algorithm is dominated by the time it takes to

compute the optimal shift for each node. We note that the total size of the optimal shifts for a

node is bounded by the number of leaves in the subtree rooted at that node. Computing the

optimal shifts of a parent node from the labeling of its children nodes requires sorting and

merging of the children node labels.

For any tree, assume that at depthd there arec(d) nodes. A nodevi at depthd will have

lv(vi) leaves in its subtree, but
∑c(d)

1 lv(vi) = N whereN is the number of leaves. This

73

bounds the size of the labeling at that node. The cost of sorting and mergingM nodes is

M log M . So the total processing time at leveld is given by

c(d)
∑

1

lv(vi) log lv(vi) ≤ N log N

Hence, total time of processing over the entire tree is

h
∑

d=0

N log N = O(hN log N)

4.3 Evaluation

In this section, we investigate both the effectiveness and the efficiency of the proposed al-

gorithms and the outputs they generate using real data. We evaluate the effectiveness of our

proposed change detection model according to its ability tocapture interesting hierarchical

changes as well as the robustness and stability of the outputunder small perturbations of

error tolerance.

4.3.1 Experimental Setup

We definestability to measure the sensitivity of the set of explanation weightsas a function

of confidence levelc. Let Sc
l be the set of nodes at levell where “explanations” occur. Then

the stability of the output at levell, given a change in tolerance parameter fromc−∆c to c,

is given bySc =
|Sc−∆c

l
∩Sc

l
|

|Sc
l
|

, wherec−∆c refers to the previous value ofc.

74

Description of the datasets : We use the following two real data sets: Census, which gives

population counts for a geographical hierarchy given by state/county/ city/zipcode [28]; and

WorldCup, which is a Web log over a duration of several monthsof URL accesses to files

having a maximum path length of 7 [112]. Note that the hierarchy induced by the URL

file paths are not homogeneous, that is, the nodes have different fanouts and the paths have

different depths. The Census data has approximately 81,000leaf nodes and 130,000 total

nodes in the tree. The maximum height of the tree is 5 (including the root which stands for

the whole country). The World Cup datasets have about 4300 leaf nodes and around 4500

total number of nodes. In the non-homogeneous World Cup datasets, the maximum height

of the tree is 8 including the root.

All experiments were run on a Pentium(R) machine with 4 CPU and clock speed 2.66GHz.

Table 4.1 summarizes some statistics of these data sets.

Trace # Leaves # Nodes Max Depth

CensusAvg-2004 81174 130585 5
Census 2000 vs. 200481129 130477 5
Census 2001 vs. 200481093 130478 5
Census 2002 vs. 200481161 130522 5
Census 2003 vs. 200481182 130551 5

Table 4.1: Census dataset statistics

4.3.2 Forecasting Model

We provide a description of the models that we use in our experimental evaluation on real

data. We do not claim any novelty here and use the popular exponentially weighted moving

average (EWMA) for both our datasets. In our analysis, we assume a Gaussian distribution

75

EWMA EWMA with Cluster Harmonic
Mean of Variances

Node Weight Node Weight
Illinois/Lake/LibertyVille/27923 1.101 Illinois/Lake/66027/27923 1.066
Texas/Parker/FortWorth 1.005 Texas/Parker/FortWorth 1.005
Illinois/St. Clair/47423/69550 0.870 Illinois/Kankakee/Bourbonnais/465130.815
Minnesota/Le Seur/0/Mankato City/0.868 Texas/Hays/Austin 0.655
Texas/Hays/Austin 0.655 Illinois/Lake/LibertyVille/27923 0.565

Table 4.2: Top 5 explanation nodes in the Census data sets in t he descending order of
relative error using the prediction model for 95% confidence values

EWMA EWMA with Harmonic Mean
of Cluster Variances

Node Weight Node Weight
/images/jerseyarg res.gif 41.052 /english/playing/download

/downloadmemo.html 42.925
/images/jerseyarg off.gif 35.875 /images/f98dnldmemosc2.gif 40.236
/images/jerseynor off.gif 32.286 /images/f98dnldmemosc3.gif 39.713
/images/jerseynor res.gif 32.262 /images/f98dnldmemosc1.gif 39.396
/images/11189.jpg 10.019 /images/f98dnldmemosc5.gif 38.878

Table 4.3: Top 5 explanation nodes in the World cup datasets i n the descending order
of relative error using the prediction model for 95% confiden ce values

76

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

F
ra

ct
io

n
of

 e
xp

la
na

tio
ns

level

ewma95%
ewma99%

ewma,clHM95%
ewma,clHM99%
ewma,glHM95%
ewma,glHM99%

(a) Below, Census Data

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

F
ra

ct
io

n
of

 e
xp

la
na

tio
ns

level

ewma95%
ewma99%

ewma,clHM95%
ewma,clHM99%
ewma,glHM95%
ewma,glHM99%

(b) Below, World Cup Data

Figure 4.4: The fraction of explanation nodes at level l which have ancestors and
descendants in the explanation, for Census and World Cup dat a. clHM refers to Har-
monic Mean of Cluster Variances; glHM refers to Harmonic Mea n of Global Variances;
subscripts denote the confidence values.

for the node values. Although this may not be a reasonable assumption for count data on the

original scale, it is often a good approximation on a transformed scale (log and squared-root

are widely used for count data). For our example datasets, weconsider an exponentially

weighted moving average (EWMA) to model the transformed leaf counts. We use a single

smoothing parameter for all our leaf nodes, the value being selected to minimize the average

predictive squared-error loss on a tuning set across all nodes. We assume there is no season-

ality in our time series. This is the case for both the data sets analyzed in this paper. Consider

a single leaf node and let̂xt denote predicted value at timet based on data until timet − 1.

For EWMA, x̂t = mt−1; and

m̂t = λxt + (1− λ)mt−1; (4.4)

77

whereλ ∈ (0, 1) is a smoothing constant with higher values giving less weight to historical

observations. Equation 4.4 can be shown to be a steady state model obtained form a simple

random walk model given by

xt = mt + εt (4.5)

mt = mt−1 + γt (4.6)

wherext is observed value at timet, mt may be thought of as the truth,εt andγt are uncorre-

lated random variables with zero means and variancesV (ε) andV (γ) [92]. At steady state,

the optimal prediction obtained through Equation 4.5 reduces to Equation 4.4 with an opti-

mal value ofλ given by(
√

(1 + 4R)− 1)/2R; R = V (ε)/V (γ) and the predictive variance

at timet based on data up to timet − 1 is given asV = V (ε)/(1 − λ). Thus, estimators

which give more weight to historical data achieve more smoothing and have lower predictive

variance.

In our scenario, we are dealing withN > 1 time series corresponding to the leaf nodes

giving rise to pairs(λi, Vi(ε)) to be estimated. For simplicity, we assumeλi = λ for all i

and estimate the optimal value by minimizing squared-errorpredictive loss on a tuning set

(see [106] for an example of such an estimator). ForVi(ε), we test the following variations:

a) separate parameter for each series; b) one parameter for aset of sibling leaf nodes (nodes

sharing same parent); c) one parameter for all the time series. We select the best model as

78

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5

E

xp
la

na
tio

ns

Confidence Level

non-hierarchical, ewma
non-hierarchical,ewma (cluster harmonic mean)
non-hierarchical, ewma (global harmonic mean)

parsimonious, ewma
parsimonious, ewma (cluster harmonic mean)
parsimonious, ewma (global harmonic mean)

(a) Census Data, Parsimony

 0

 0.2

 0.4

 0.6

 0.8

 1

 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5

S
ta

bi
lit

y

Confidence Level

parsimonious, EWMA
parsimonious, EWMA, Cluster Harmonic Mean
parsimonious, EWMA, Global Harmonic Mean

(b) Census Data, Stability

Figure 4.5: (a) Number of explanations; and (b) Stability as function of confidence
value for non-hierarchical and parsimonious algorithm on C ensus data

the one that minimizes average predictive log-likelihood on the tuning set; this captures both

the mean and variance properties of the predictive distribution.

We analyze two datasets: Census and WorldCup. The Census data have yearly population

numbers from2000−2004. We used2000−2003 as our training period and2004 as our test

period on which we detect anomalies. We have approximately 81,000 leaf nodes on the test

period (see Table 4.1). Since all number are positive (a count of 0 is interpreted as missing

data), we model the data using a EWMA of4 time points on the log scale.

We consider daily counts for the World Cup data and use32 time points. The31st time

point is used as a tuning set to select the smoothing parameter λ and the variances. The last

time point is used as our test set. The optimal value ofλ in this case is0.8 and the model

with separate variances for each node also turns out to be thebest one for this data. Unlike

the Census data, the World Cup hierarchy is not homogeneous,i.e., the nodes have different

fanouts and paths have different depths. Also, the structure of the tree is dynamic with new

79

 100

 1000

 10000

 100000

 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

 #
 E

xp
la

na
tio

ns

k

Parsimonious, 2003-2004
DIFF, 2003-2004

(a) Census Data

2000

2500

3000

3500

4000

4500

5000

5500

 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

 #
 E

xp
la

na
tio

ns

k

Parsimonious, May 26-27
DIFF, May 26-27

(b) World Cup Data

Figure 4.6: Comparison with related work DIFF operator in te rms of number of ex-
planations on (a) Census data (b) World Cup data. k is per-node tolerance and is in
linear-scale (not log).

nodes appearing and some old nodes becoming inactive over time. We restrict ourselves only

to nodes that occurred at least twice in the last10 time points. This removes nodes that have

a small mean and are not of interest, providing a set of approximately5.5K leaf nodes to be

monitored. Since zero counts are common in these time series, a log transform to achieve

symmetry is not an option here. Instead, we use a squared-root transformation which, for

count data, is known to stabilize variance, achieve approximate symmetry and makes the

assumption of a Gaussian distribution reasonable.

4.3.3 Goodness of Explanation Model

For illustrative purposes, we present the top 5 nodes in resulting explanations based on ab-

solute magnitude (difference of the weights from 0). Table 4.2 shows the 5 nodes in the

Census datasets which are explanations and whose absolute relative error is among the Top

5. We show the lists for two different prediction models: a superior EWMA model, with

80

a separate variance component for each leaf and an inferior EWMA model with a separate

but fixed variance for each leaf in a cluster (nodes under sameparent) which is set to the

harmonic mean of the individual leaf variances in the cluster. Note that some nodes are

common explanation nodes under both the models such as Illinois/Lake/Libertyville/27923,

Texas/Parker/ForthWorth and Texas/Hays/Austin. Similarexamples are shown for World

Cup datasets in Table 4.3.

Figure 4.4 considers hierarchical relationships among theexplanation nodes. If many

nodes in the explanation set have descendant nodes that are also part of the explanation, then

this indicates the importance of hierarchical explanations, as descendant nodes are needed to

explain trends that are different from the ancestors in the explanation; these could be stronger

trends or counter-trends compared to the ancestor node. Thus, for each node in the expla-

nation set, we counted how many descendants below it are alsopart of the explanation. Let

V (l) be the number of explanation nodes at levell andV (l)B be the number of explanations

nodes at levell which have at least one explanation node as descendant. Thenwe compute

V (l)B/V (l). In these plots, level 0 indicates the root. We observe that significant number of

counties (> 25%) have cities which have different trends in population under all prediction

models.

4.3.4 Parsimony

In Figure 4.5 we compare the parsimonious explanations against those obtained by the naive

non-hierarchical approach. We use three different prediction models in which the mean of

81

 0

 200

 400

 600

 800

 1000

 1200

 1400

 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5

E

xp
la

na
tio

ns

Confidence Level

non-hierarchical, ewma
non-hierarchical, emwa (cluster harmonic mean)
non-hierarchical, ewma (global harmonic mean)

parsimonious, ewma
parsimonious, ewma (cluster harmonic mean)
parsimonious, ewma (global harmonic mean)

(a) World Cup, Parsimony

 0

 0.2

 0.4

 0.6

 0.8

 1

 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5

S
ta

bi
lit

y

Confidence Level

parsimonious, EWMA
parsimonious, EWMA, Cluster Harmonic Mean
parsimonious, EWMA, Global Harmonic Mean

(b) World Cup, Stability

Figure 4.7: (a) Number of explanations; and (b) Stability as function of confidence for
non-hierarchical and parsimonious algorithms World Cup da ta.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 70000 50000 30000 10000 0

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Leaves

parsimonious, ewma, 95%
parsimonious, ewma (cluster HM),95%
parsimonious, ewma (global HM), 95%

parsimonious, ewma,97.5%
parsimonious, ewma (cluster HM), 97.5%
parsimonious, ewma (global HM), 97.5%

(a) Time vs. N

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5

R
un

ni
ng

 T
im

e
(s

ec
)

Confidence Level

parsimonious, ewma
parsimonious, ewma (cluster harmonic mean)
parsimonious, ewma (global harmonic mean)

(b) Time vs. Confidence

 0

 1

 2

 3

 4

 5

 6

 7

US State
County

City
Zip

A
ve

ra
ge

 #
In

te
rv

al
s

pe
r

Le
ve

l

ewma
ewma,cluster harmonic mean
ewma,global harmonic mean

(c) Avg. # intervals per level

Figure 4.8: Running time (in sec) of parsimonious algorithm as a function of (a) num-
ber of leaves, N and (b) confidence levels on Census data. (c) shows the averag e
number of intervals per level on Census data.

prediction is given by the EWMA model but the variancesV (ε) are different – EWMA with

a separate variance per leaf, same variance for each elementin a cluster, set to the harmonic

mean of cluster variances (leaves belonging to same parent), single variance for each leaf, set

to the harmonic mean of the global variances. Note that the latter two estimates underesti-

mate variability for a large fraction of nodes; we choose them to study the effect of inferior

prediction model on our algorithms.

As the confidence level increases, the precision decreases and therefore, all the curves

82

show decreasing trends monotonically. In Figure 4.5(a) we observe that the parsimonious

model with EWMA offers the best parsimony with the smallest number of explanations,

followed by non-hierarchical on EWMA model, thus showing the advantage of parsimonious

algorithm. As expected, the performance of EWMA model with global harmonic mean of

the variances perform worst in terms of parsimony.

We show the parsimony of our algorithm by comparing with the DIFF operator [99].

Since the technique in [99] puts constraints on the intermediate nodes, we have to modify

our algorithm so that we have a tolerance parameterk in each node, and we use this model in

this comparison shown in Figure 4.6. We compare two different snapshots - year 2003 and

2004 from Census data; and May 26 and 27 from World Cup data. Itis to be noted that x-axis

in Figure 4.6 is per-node tolerance,k > 0 and it is not in log-scale.

The improvement in the number of explanations when using ourmodel is significant, up

to two orders of magnitude. The improvement is more evident in the Census data, which

exhibit hierarchical trends, compared to the World Cup data.

Figure 4.5 (b) show the average stability across all levels for both non-hierarchical and

parsimonious algorithms. We observe that with increase in confidence level, the stability

decreases since the set of nodes which are explanations changes. Since Census data is ho-

mogeneous with 4 levels, we observe almost monotonic changein stability with increase in

confidence level except for the parsimonious algorithm withthe best EWMA model at con-

fidence level 97. Similarly, we observe parsimony and stability on World Cup datasets in

Figure 4.7.

83

4.3.5 Efficiency

In Figures 4.8 (a)-(b), we show the runtime of the parsimonious model on Census data

(minimum time over 5 runs) as function of the number of leaves, N and confidence level

respectively (using all three models). First, the increasein running time withN follows

O(hN log(N)) growth. Second, we observe that all the algorithms show a decreasing trends

(prominently in Census data) in running time with increase in confidence level (increasing

error) leading to a small number of intervals in the non-leafnodes. Third, we observe that the

parsimonious algorithm with EWMA model has least running time complexity. That means,

variances in individual leaves can summarize changes well whereas the algorithm which uses

harmonic mean of variances cannot summarize the changes that well and thus leads to many

explanations (and intervals) up in the trees. To vary the number of leaves, we sample each

leaf with some probability to be included in the tree. We alsoshow it for two different values

of confidence levels.

In Figure 4.8(c), we show the space complexity of the 3 parsimonious algorithms on

Census (similar trend on World Cup data but better), averaged over all nodes per level. We

observe that the average number of intervals per node is veryclose to 1 except for parsi-

monious algorithm using EWMA model with same variance per leaf node (estimated by the

Harmonic Mean of the individual leaf Variances). Furthermore, we observe that the same

parsimonious algorithm has higher running time and larger number of average intervals at

different levels.

84

4.4 Summary

Change detection is an underlying challenge for anomaly detection and understanding of

trends in data. This chapter addresses the change detectionchallenges in hierarchical data

and proposes a natural model for explaining the changes. Thestatistical model is general

enough that it can handle the trade-offs between confidence level and accuracy in finding the

explanations of the changes. The next chapter takes up the problem of application classifica-

tion using different approaches.

85

Chapter 5

Application Classification

In this chapter, we critically re-visit the problem of application traffic classification. Accurate

classification of network traffic can enable the operators todo a variety of operations such

as debugging, accounting, security configuration. In addition, knowledge of the accurate

applications can help in service differentiation and executing enterprise policies.

Initially, we will discuss the performance metrics for comparing different methodologies

in Section 5.1.1. Then, we will describe the datasets that weuse to evaluate various ap-

proaches in Section 5.1.2. We introduce the candidate Machine Learning Algorithms that we

use in our study in Section 5.1.3.

5.1 Comparison Methodology

Here we describe our comparison methodology, including performance metrics, dataset,

comparison benchmark, and experimental setup for machine learning algorithms. We use

86

the definition of a flow based on its 5-tuple (source IP address, destination IP address, proto-

col, source port, destination port) with a timeout of 64 seconds [33].

5.1.1 Performance metrics

To measure the performance of CoralReef, BLINC, and machinelearning algorithms, we use

four metrics:overall accuracy, precision, recall, andF-Measure.

� Overall accuracyof an algorithm is the ratio of the sum of all True Positives tothe p

sum of all the True Positives and False Positives for all classes.1 We apply this metric

to measure the accuracy of a classifier on the whole dataset. The other three metrics

are used to evaluate the quality of classification results for each application class.

� Precisionof an algorithm is the ratio of True Positives to the sum of True Positives and

False Positives, i.e., the percentage of flows (or bytes) that are properly attributed to a

given application by this algorithm.

� Recallof an algorithm is the ratio of True Positives to the sum of True Positives and

False Negatives, i.e., the percentage of flows in an application class that are correctly

identified.

� Finally,F-Measure, a widely-used metric in information retrieval and classification [110],

considers bothPrecisionandRecallin a single metric by taking their harmonic mean:

1True Positives is the number of correctly classified flows, False Positives is the number of flows falsely
ascribed to a given application, and False Negatives is the number of flows from a given application that are
falsely labeled as another application.

87

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 fl

ow
s

(%
)

Unknown
Attack

Chat
Games

Encryption
Net. oper.
Streaming
Mail/News

DNS
FTP
P2P

WWW

(a)Percentage of flows

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 fl

ow
s

(%
)

Unknown
Attack

Chat
Games

Encryption
Net. oper.
Streaming
Mail/News

DNS
FTP
P2P

WWW

(b)Percentage of bytes

Figure 5.1: Application breakdown. Note that some of the fill er-patterns are repeated.

Set Date Day Start Duration Link type Src.IP Dst.IP Packets Bytes Avg. Util Avg. Flows Payload
(K) (K) (M) (G) Mbps (/5 min.) Bytes

PAIX-I 02/25/04 Wed 11:00 2h backbone 410 7465 250 91 104 1055 K 16
PAIX-II 04/21/04 Wed 19:59 2h 2m backbone 2275 17748 1529 891 997 4651 K 16
WIDE 03/03/06 Fri 22:45 55m backbone 263 794 32 14 35 312 K 40
Keio-I 08/06/06 Tue 19:43 30m edge 73 310 27 16 75 158 K 40
Keio-II 08/10/06 Thu 01:18 30m edge 54 110 25 16 75 92 K 40
KAIST-I 09/10/06 Sun 02:52 48h 12m edge 148 227 711 506 24 19 K 40
KAIST-II 09/14/06 Thu 16:37 21h 16m edge 86 101 357 259 28 21 K 40

Table 5.1: Characteristics of analyzed traces

2×Precision×Recall/(Precision + Recall). F-measure can be expressed in terms

of True Positives, False Positives and False Negatives as2× True Positives / (2× True

Positives + False Positives + False Negatives).

5.1.2 Data Set and Comparison Benchmark

Our dataset consists of seven payload traces were collectedat two backbone and two edge

links located in the US, Japan, and Korea (see Table 5.1). ThePAIX backbone traces were

taken on a bidirectional OC48 trunk of an US Commercial Tier 1backbone link connecting

San Jose and Seattle. The WIDE trace was captured at a 100 MbpsEthernet US-Japan Trans-

Pacific backbone link that carries commodity traffic for WIDEmember organizations. The

88

Keio traces were collected on a 1 Gb/s Ethernet link in Keio University Shonan-Fujisawa

campus. The KAIST traces were captured at one of four external links connecting a 1 Gb/s

KAIST campus network and a national research network in Korea.

To establish a reference point in evaluating the algorithms, we use the payload-based

classifier developed in [68], which we augment with more payload signatures from [102, 40,

111] and manual payload inspection. Our resulting classifier includes payload signatures of

various popular applications, summarized in Table 5.2. Thepayload classification procedure

examines the payload contents of each packet against our array of signature strings, and in

case of a match, classifies the corresponding flow with an application-specific tag. Previously

classified flows are not re-examined unless they have been classified as HTTP, in which

case re-examination may enable identification of non-web traffic relayed over HTTP (e.g.,

streaming, p2p, etc.) [68].

After the payload-based classification process, we identify scanning activities using scan

detection heuristics in [19]. Flows that could not be classified during the signature matching

and scanning detection processes are categorized as unknown, which represents 4.7%-9.6%

of flows in the PAIX and Keio traces, 28.6% in the WIDE trace, and around 60% in the

two KAIST traces. Approximately 90% of those unknown flows inthe KAIST traces were

from/to three PlanetLab [57] machines. Our experience and Karagianniset al.’s study [67]

with payload classification suggest that the first 16 bytes ofpayload suffice for signature-

based classification for most legacy and P2P applications except Gnutella, particularly on

the PAIX and Keio traces where unknown flows represent less than 5%-10%. Gnutella (and

89

its variants) uses variable length padding; Ermanet al.’s measurements indicate that 400

payload bytes of each packet is required to identify 90% of the Gnutella flows using payload

signatures [44]. We exclude attack and unknown flows from ouranalysis.

Figure 5.1 shows payload classification results for our traces. The traces vary widely in

application mix, motivating our per-application analysis. Scanning traffic contributes 14%-

35% of flows in the WIDE, Keio, and PAIX traces in Figure 5.1.

Category Application/Protocol
web http, https
p2p FastTrack, eDonkey, BitTorrent, Ares, Gnutella, WinMX,

OpenNap, MP2P, SoulSeek, Direct Connect, GoBoogy
Soribada, PeerEnabler

ftp ftp
dns dns
mail/news smtp, pop, imap, identd, nntp
streaming mms(wmp), real, quicktime, shoutcast, vbrick streaming,

logitech Video IM
network operation netbios, smb, snmp, ntp, spamassassin, GoToMyPc
encryption ssh, ssl
games Quake, HalfLife, Age of Empires, Battle field Vietnam
chat AIM, IRC, MSN Messenger, Yahoo messenger
attack address scans, port scans
unknown -

Table 5.2: Application categories

5.1.3 Machine Learning Approach

We address three main challenges of traffic classification approaches that use supervised

machine learning algorithms and flow features to train the models. The challenges are as

follows:

1. Finding a set of key flow features that capture fundamentalcharacteristics of different

90

types of applications [82, 109].

2. Finding the most accurate classifier(s) with acceptable computational cost [109].

3. Obtaining representative datasets with ground truth forvarious applications, i.e., datasets

that contain correct and complete instances of applicationflows, in terms of their fun-

damental flow features [44].

Flow features

We use unidirectional flow features of TCP and UDP traffic to build a classifier that han-

dles both TCP and UDP as well as backbone and edge traffic. We use 37 unidirectional

flow features most of which are inspired from 248 bidirectional features used in [82] and

22 bidirectional features in [108, 109]. The 37 features are: protocol, source and destina-

tion ports, the number of packets, transferred bytes, the number of packets without Layer

4 (TCP/UDP) payload, start time, end time, duration, average packet throughput and byte

throughput, max/min/average/standard deviation of packet sizes and inter-arrival times, num-

ber of TCP packets with FIN, SYN, RST, PUSH, ACK, URG (Urgent), CWR (Congestion

Window Reduced), and ECE (Explicit Congestion NotificationEcho) flags set (all zero for

UDP packets), and the size of the first ten packets. Figure 1.2(a) shows different TCP header

flags. FIN flag indicates that the sending end will not send anymore data. SYN flag is set

for the initial packets of a TCP connection where both the ends of the connection have to

synchronize their TCP states. RST flag is set when the receiving end of the connection needs

to be reset. This flag is also set when the sending side encounters any errorneous packet such

91

as acknowledgment to a packet that was never sent. PUSH flag isset when the sending side

of the connections wants to convey that the data in the receiver buffer should be sent to the

application immediately. ACK flag establishes the validityof the acknowledgment number.

URG flag is set when the urgent pointer is valid and it indicates that the data should be han-

dled urgently, even before normal data is processed. CWR stands for Congestion Window

Reduced and is applicable when ECN is enabled. The TCP sendersets this flag when it wants

to inform the received that the congestion window has been reduced in response to conges-

tion indication. ECE standars for Explicit Congestion Notification Echo and is used when

ECN is enabled. The receiver sets this flag to inform the sending host know of congestion.

Feature Selection

Feature selection, as a preprocessing step to machine learning, is the process of choosing a

subset of original features that will optimize for higher learning accuracy with lower com-

putational complexity. The process removes irrelevant [91] and redundant [22] features, i.e.,

those that can be excluded from the feature set without loss of classification accuracy, thus

improving algorithm performance.

There are two general approaches to feature selection:filters andwrappers. Filter meth-

ods are preprocessing steps performed independent of a classification algorithm. Wrapper

methods attempt to search through the space of feature subsets using the criterion of the

classification algorithm to select an optimal feature subset. Since wrapper methods involve

repeatedly executing an algorithm for each possible subsetof features, it is computation-

92

ally expensive and impractical time-wise, particularly when evaluating several learning algo-

rithms on large data sets [108]. For this reason, we only investigate filter methods. We select

the Correlation-based Filter, which outperforms the otherfilter method (Consistency based

Filter) in terms of classification accuracy and efficiency [108, 109]. The Correlation-based

Filter examines the relevance [27] of each feature, i.e., those highly correlated to a specific

class but with minimal correlation to each other [109]. We use the Best First search to gen-

erate candidate sets of features from the feature space, since it provides higher classification

accuracy (percent of correctly classified instances) than Greedy search [108, 109]. The Best

First search creates a new subset based on the addition or removal of features to the current

subset. Unlike Greedy search, it can also backtrack in the selection process when it observes

no improvement.

Supervised Machine Learning Algorithms

We use the WEKA machine learning software suite [15], often used in traffic classification

efforts [80, 42, 40, 87, 82, 109], to evaluate the seven most commonly used supervised ma-

chine learning algorithms: Naive Bayes [82, 109], Naive Bayes Kernel Estimation [82, 109],

Bayesian Network [109, 108], C4.5 Decision Trees [108],k-Nearest Neighbors [96], Neu-

ral Networks [108] and Support Vector Machines [108, 25, 77]. We explore the following

questions:

1. Which algorithms perform best in classifying traffic ?

2. How does training set and its size affect the classification performance of learning

93

algorithms ? In order words, how many training instances each algorithm requires to

achieve a certain level of accuracy and per-application performance ?

3. How consistent are the results acrosss different datasets ?

To this end, we conduct seven experiments for the comparisonof the algorithms on each

trace, varying the size of the sampled training set while using the same, fixed number of

testing set. To separate the training and testing sets, 50% of each trace is chosen randomly

to form a training dataset and the remaining flows form testing dataset. The original datasets

contain more than millions or hundreds of thousands of flows.Our sampled training datasets

contain 100, 500,1000,5000,10,000,50,000 and 100,000 training flows (collected from train-

ing datasets). We randomly sample 200,000 flows from the testing datasets.2 We briefly

describe all the evaluated algorithms below:

Naive Bayesis a simple probabilistic classifier based on Bayes’ theorem, which analyzes

the relationship between each feature and the application class for each instance to derive a

conditional probability for the relationships between thefeature values and the class. The

naive aspect is the assumption that all attributes (X1, . . . , Xn) are conditionally independent

of one another, given the classY . This assumption dramatically simplifies the representation

of P (X|Y), and the problem of estimating it from the training data.

Naive Bayes Kernel Estimationis a generalization of Naive Bayes which models fea-

tures using multiple Gaussian distributions, considered more accurate than using a single

Gaussian distibution for traffic classification [82, 109].

2The smallest trace of ours contains approximately 420,000 flows labeled with payload classification results.

94

Bayesian Networkis a directed acyclic graph model that represents a set of features, or

classes, as its nodes and their probabilistic relationshipas edges. If the conditional indepen-

dence assumption is not valid, Bayesian Network learning may outperform Naive Bayes.

C4.5 Decision Treeconstructs a model based on a tree structure, in which each internal

node represents a test on features, each branch represents outcome of the test, and each leaf

node represents a class label. In order to use a decision treefor classification, a given tuple

(whose class we want to predict) corresponding to flow features, walks through the decision

tree from the root to a leaf. The label of the leaf node is the classification result.

k-Nearest Neighborscomputes Euclidean distances from each test instance to thek near-

est neighbors in then-dimensional feature space. The classifier assigns the majority class

label among thek nearest neighbors to the test tuple. This technique scales poorly with the

number of training and testing instances, since each new test tuple is compared to every tuple

in the training set. We usek = 1, by which we obtain the highest overall accuracy among the

experiments where we test withk = 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19.

Neural Networks is a highly interconnected network of units, neurons, whoseoutput is

a combination of the multiple weighted inputs from other neurons. We use the simplest and

most common Neural Network classifier called the MultilayerPerceptron, which consists of

a single input layer of neurons (features), a single output layer of neurons (classes), and one

or more hidden layers between them. Following [108, 15], we set the learning rate (weight

change according to network error) to 0.3, the momentum (proportion of weight change from

the last training step used in the next step) to 0.2 and we ran the training for 500 epochs (an

95

epoch is the number of times training data is shown to the network).

Support Vector Machines (SVM) refers to a learning system based on recent advances

in statistical learning theory. The basic principle of SVM is to construct the optimal sepa-

rating hyperplane, which maximizes the distance between the closest sample data points in

the (reduced) convex hulls for each class, in ann-dimensional feature space [25]. Intuitively,

we would expect that this boundary to generalize better thanother possible boundaries be-

tween classes. We use the Sequential Minimal Optimization (SMO) [93], a faster algorithm

for training Support Vector Machines that uses pairwise classification to break a multi-class

problem into a set of 2-dimensional sub-problems, eliminating the need for numerical op-

timization. The two most important parameters in SVM are thecomplexity parameterC

and the polynomial exponentp [77, 108]. Li et al. [77] showed that varying the complex-

ity parameterC influenced the overall accuracy of their SVM traffic classifier by only a

little (around 1% at most). We use 1 for both parameters as in [108, 15].

5.2 Performance Evaluation

We evaluate the performance of nine algorithms for Internettraffic classification: CoralReef,

BLINC, and the seven machine learning algorithms described. To evaluate port-based clas-

sification, we compare the performance of CoralReef’s port classification rules [2] with our

payload-based classifier, which we use to find ground truth.

96

5.2.1 CoralReef

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

(a) Flow accuracy

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 B

yt
es

 (
%

)

Byte Accuracy

(b) Byte accuracy

Figure 5.2: Overall Accuracy of CoralReef

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(a) WWW

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(b) DNS

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(c) Mail

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(d) Chat

Figure 5.3: Per-application precision & recall of CoralRee f (WWW,DNS,Mail,Chat)

Overall Accuracy :

97

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(e) FTP

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(f) P2P

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(g) Streaming

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(h) Game

Figure 5.4: Per-application precision & recall of CoralRee f(FTP,P2P,Others)

The overall accuracy of any port-based classification reflects how much traffic in the

examined traces obeys the default ports usage. Figure 5.2 (a) shows that the overall flow

accuracy of CoralReef on the traces ranges from 71.4% to 95.9% and Figure 5.2(b) show

that the overall byte accuracy ranges from 50% to 90%. Comparing Figure 5.2 with Figure

5.1 (a), we find that the overall accuracy of CoralReef is highly dependent on the traffic mix,

e.g., inversely proportional to the fraction of P2P flows in agiven trace. The PAIX-II and

KAIST traces with the highest fraction of P2P flows (4.0%-13.2%) have the lowest overall

accuracy with CoralReef classification. In contrast, the WIDE and Keio traces on which

CoralReef achieves the highest overall accuracy contain the smallest portion of P2P flows

98

(less than 1%) among all examined traces. These observations motivate our detailed study of

per-application performance of CoralReef, which we summarize next.

Per-application performance

Figure 5.3 and 5.4 show the per-application precision and recall of CoralReef on eight

major applications: WWW, DNS, Mail, Chat, FTP, P2P, Streaming, and Games, which com-

prise most (86.6%-95.7%) of the traffic flows whose ground truth we know. As shown in

Figure 5.3 and 5.4, we find that each application consistently shares one of three sets of

distinct characteristics across all traces – (i) high precision and high recall (WWW, DNS,

Mail, and Chat); (ii) high precision but lower recall (P2P and FTP); and (iii) lower precision

but high recall (Streaming and Game). The high precision of aport-based classifier such as

CoralReef on an application implies that its default ports are seldom used by other applica-

tions whereas high recall implies that the corresponding application mostly uses its default

ports.

Despite the common perception that ports are no longer (or generally less) reliable and

useful, port-based application still identifies legacy applications and protocols quite accu-

rately, and often these constitute the majority of traffic ona link. For WWW, DNS, Mail,

News, SNMP, NTP, Chat, and SSH flows, CoralReef achieves highprecision and recall on

our traces (both> 90%). Flows belonging to DNS, Mail, SNMP, News, and NTP are classi-

fied with more than 98.9% precision and recall on all examinedtraces.

Nonetheless, it is important to recognize that port-based classification fails to yield accu-

rate classification results in the following two cases: (i) when an application uses ephemeral

99

non-default ports, e.g., P2P and passive FTP data transfer degrade the recall of CoralReef.

In our data set, 49.4%-96.1% of P2P flows use ephemeral ports.(ii) when the default ports

of an application coincide with port masquerading P2P applications, e.g., Streaming and

Game ports were often used by P2P applications, which degrades the precision of CoralReef.

12.0%-75.0% of flows on the default ports of Streaming and Game applications turned out to

be P2P traffic, according to payload inspection. Contrary torecent claims of P2P applications

masquerading on WWW ports to evade detection and blocking, we found little evidence of

such masquerading in our traces: only 0.1%-0.5% of the flows on WWW ports were deemed

P2P (We are not aware of any firewalling or filtering on the monitored links that might moti-

vate such masquerading, so we cannot claim it is so rare on more heavily firewalled parts of

the Internet).

Finding 1 Port-based classification can accurately identify legacy applications (though

the two backbone traces were collected in 2004); its weakness is in identifying applications

that use ephemeral ports or traffic masquerading behind a port typically used for another

application.

Although we did not apply our analysis to attack flows or thosefor which we did not

have any ground truth, this finding suggests that ports stillpossess significant discriminative

power in classifying certain types of traffic.

100

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

BLINC on <srcIP, srcport> pairs
BLINC on <dstIP, dstport> pairs

(a) Flow Accuracy

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 B

yt
es

 (
%

)

BLINC on <srcIP, srcport> pairs
BLINC on <dstIP, dstport> pairs

(b) Byte Accuracy

Figure 5.5: Overall accuracy of BLINC

5.2.2 BLINC

The approach taken by BLINC does not depend upon solely on port information, rather it

depends on the relationship between hosts. In order to use BLINC on each datasets, we per-

form about 25 trials to configure BLINC’s 28 threshold parameters for the best performance

in precision and recall (precision takes precedence in tradeoffs, since recall errors can be

mitigated by other methods [68]). Parameter values that optimize the precision may differ

on different links, so separate (per-trace) tuning prevents degradation of overall accuracy by

10%-20%. Our experience also suggests that one should tune the BLINC parameters related

to P2P applications first since almost every BLINC module relies on them.

Overall Accuracy

The original BLINC implementation generates graphlets of source〈IP, port〉 pairs that

represent communication behavior, and then investigates whether each source graphlet fol-

lows a typical server pattern, e.g., WWW, DNS, SMTP. Once BLINC finds a source〈IP, port〉

pair behaves like a specific type of application server, it classifies all〈IP, port〉 pairs that have

101

talked to this server as the same application clients. Thus,if a non-bidirectional backbone

trace contains client flows but misses response flows from thecorresponding servers, BLINC

can not classify those client flows (classifies them in its “unknown” class). To address this

critical limitation in classifying non-bidirectional backbone traffic, we extend the BLINC

implementation to generate node profiles of not only source〈IP, port〉 pairs but also of desti-

nation〈IP, ports〉 pairs, because we find that server ports of some applicationslike Web can

be identified by applying the same graphlet matching algorithm on destination〈IP, port〉 pairs

of client flows in the opposite direction.

Figure 5.5 shows the overall accuracy of the modified code, Reverse BLINC, on our

traces. Reverse BLINC on destination〈IP, port〉 pairs improved the overall flow accuracy on

the PAIX and WIDE backbone traces by as much as 45%, since in those traces one of the

two directions of traffic is often missing due to asymmetric routing. Most of the flows that

Reverse BLINC identified were of WWW and P2P clients.

Per-application performance

Figure 5.6 and 5.7 show BLINC’s per-application precision and recall. Once tuned,

BLINC classifies WWW, DNS, Mail, Chat, FTP, and Streaming flows with greater than 90%

precision. However, recall for these applications is weaker than precision, since all classifi-

cation is threshold-based: the number of application flows from a given source must exceed a

certain threshold in order to trigger classification. If there are too few flows from this source,

its traffic remains unclassified. DNS, Mail and Chat have lower recall in backbone traces

than in edge traces, because even Reverse BLINC could not capture those application flows

102

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(a) WWW

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(b) DNS

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(c) Mail

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(d) Chat

Figure 5.6: Per-application precision & recall of BLINC (WW W, DNS,Mail,Chat)

when server flows were missing from backbone traces. Recall for FTP, Streaming, and Game

is always lower than 25.8% across all traces, since host behavior signatures of BLINC for

these applications do not cover the following cases: (i) when a Streaming or FTP server con-

currently provides any other application services; (ii) when a Game client sends any TCP

flows or talks to only a few destination hosts.

With proper tuning, BLINC reliably identifies P2P flows, particularly when we first apply

port-based classification to filter out DNS server-to-server (indeed essentially P2P) flows

which BLINC often misclassifies as P2P. When we filter out DNS flows first and then apply

BLINC to the remaining flows, BLINC achieves>85% precision for P2P application flows.

103

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(e) FTP

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precisioin
Recall

(f) P2P

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(g) Streaming

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

Precision
Recall

(h) Game

Figure 5.7: Per-application precision & recall of BLINC (FT P,P2P,Streaming,Game)

However, recall of P2P traffic measured in bytes is significantly (20.5%-61.9%) less than

that measured in flows. This difference in recall is due to thefact that some P2P applications

usually assign different ephemeral ports for every single data transfer. If such transfers are

large, then they account for a large number of bytes, but the number of flows remains below

our classification triggering threshold, so this traffic remains unclassified.

Finding 2 Since BLINC (i) classifies traffic based on the observed behavior of server

hosts and (ii) adopts a threshold-based triggering mechanism, it depends on whether the

traffic containing enough behavioral information about each host. Thus, the best place to

use BLINC is the border link of a single-homed edge network where it can observe as much

104

behavioral information of internal hosts as possible. For the same reason, BLINC is not

appropriate for backbone links, where (a) only a small portion of behavioral information is

collectible for each logged host and (b) we often miss one direction of traffic due to asym-

metric routing.

Computational Performance

When running BLINC, the running time and memory usage dependon the number of

flows that need processing in a time interval. The BLINC code (in C++) processed the Keio,

KAIST, WIDE, and PAIX-I traces in real-time using less than 2GB of main memory. These

traces contain less than one million flows per five minute interval on average. However, it

took 16 hours to process the 2 hours of PAIX-II trace containing 4.7 million flows per interval

on average, consuming around 9-10 GB of memory. We used a PC server with two 2.4 GHz

Zeon CPUs and 4 GB of memory to run BLINC on the Keio, KAIST, andWIDE traces. For

the PAIX backbone traces, we used a SUN Fire 15000 system with228 GB of memory and

72 UltraSPARC3 900 MHz CPUs (used only one CPU).

 75

 80

 85

 90

 95

 100

 100 1000 10000 100000

A
ve

ra
ge

 o
ve

ra
ll

ac
cu

ra
cy

 (
%

)

The number of training flows

Naive Bayes
Naive Bayes Kernel Estimation

C4.5 Decision Tree
Bayesian Network

Support Vector Machines
K-Nearest Neighbors

Neural Nets

Figure 5.8: Average overall flow accuracy of machine learnin g algorithms by training
set size

105

5.2.3 Supervised Machine Learning Algorithms

We next evaluate the classification performance of the sevenmost well-known supervised

machine learning algorithms using the WEKA.

Key Flow Features

We first find key flow features for accurate traffic classification using the Correlation-

based Filter (CFS) with Best First search. For every trace, the CFS selected four categories

of features: protocol, ports, TCP flags and packet size information, reducing the number of

features required from 37 to 6-10. Features such as inter-arrival times, which vary greatly by

link, are not chosen as a key discriminator in any trace.

According to our analysis, using the selected feature subset degrades overall accuracy by

only 0.1-1.4% compared to using all 37 features, while drastically reducing required training

time, which increases the model (classifier) building speedby a factor of 3-10. The feature

selection process thus provides an excellent trade-off between feature space reduction and

loss of accuracy, confirming findings in [109]. Henceforth wewill use the selected key

features to evaluate the performance of the learning algorithms.

Overall accuracy

Figure 5.8 shows the overall flow accuracy of the seven machine learning algorithms as

the training set size varies (from 100 to 100,000). Figure 5.8 does not show the results of the

Neural Network method for larger training set sizes, since the algorithm was prohibitively

slow in building a classifier with more than ten thousand training instances (Figure 5.9(a)).

For every trace, with any size training set, we always obtainconsistent results. In our

106

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

T
im

e
to

 ta
ke

n
bu

ild
 m

od
el

 (
se

c.
)

Number of training flows

Naive Bayes
Naive Bayes Kernel Estimation

C4.5 Decision Tree
Bayesian Network

Support Vector Machines
Neural Net

(a) Learning time

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000 1e+06 1e+07

T
im

e
to

 ta
ke

n
te

st
 m

od
el

 (
se

c.
)

Number of training flows

Naive Bayes
Naive Bayes Kernel Estimation

C4.5 Decision Tree
Bayesian Network

Support Vector Machines
k-Nearest Neighbors

Neural Net

(b) Classification time

Figure 5.9: Computational performance of ML algorithms by t raining set size

experimental set up, the Support Vector Machines (SVM) method achieves the highest over-

all accuracy, followed by Neural Network (although it is quite slow to train) andk-Nearest

Neighbors. The best performing algorithm, SVM, achieves more than 98.0% average accu-

racy on all traces with 5,000 training flows, which amounts only 2.5% of the size of the testing

sets. SVM appears to need little training – around five to ten thousand training instances suf-

ficed in our study – which makes it promising for practical Internet traffic classification since

training data is scarce [44]. The Neural Net method achievessimilar accuracy but is 10-1000

times slower than SVM in training and testing, when evaluated on the same dataset.

Bayesian Network, Naive Bayes Kernel Estimation, Naive Bayes, and C4.5 Decision Tree

follow the top three algorithms, requiring many more (around ten to several hundred times)

number of training instances than those top three methods doto achieve the same level of

overall accuracy.

Computational Performance

Figure 5.9 (a) and 5.9 (b) show the learning time and classification time of the seven

algorithms with increasing training set size.3 Naive Bayes, Naive Bayes Kernel Estimation,

3Note that we have evaluated the performance of concrete implementations in the Java-based (slow) WEKA

107

Bayesian Networks, and C4.5 Decision Trees are the four fastest algorithms in both learning

and classification followed byk-Nearest Neighbors, Support Vector Machines and Neural

Network. Sincek-Nearest Neighbors does not really involve any training, Figure 5.9(a) does

not include plots for the algorithm. In general, it takes longer to train an algorithm than

to perform actual classification except in case of Naive Bayes. The fastest classification

algorithm is C4.5 Decision Tree. Whilek-Nearest Neighbors learns and classifies quickly

with a smaller training set, its classification time curve shows the steepest increase as the

training set size grows, eventually becoming slower than SVM when trained with more than

ten thousand instances. While it takes longer to build an SVMclassifier, its classification

time is ten to hundred times shorter than its learning time, making it more practical than

thek-Nearest Neighbors and Neural Network methods. The Neural Network method is the

slowest particularly in learning.

We run WEKA on two different platforms: SUN Fire 15000 systemwith 228 GB memory

and seventy two 900 MHz UltraSPARC3 CPUs, and IBM DataStar system with 256 GB

memory and thirty two 1.7 GHz IBM Power4+ CPUs (used only one CPU).

Per-application performance

Figure 5.10 shows per-application performance, F-measure, of the seven machine learn-

ing algorithms by training set size. The SVM performs the best in terms of the per-application

F-measure as well, attains over 95% F-measure for any application with more than a few

software suite on our test platform, not the theoretical complexity of the algorithms because (i) traffic classifica-
tion efforts [80, 42, 40, 87, 82, 109] have often used WEKA, and (ii) this approach yields tangible performance
numbers for and comparisons [109]. Optimized implementations would likely yield faster learning and classi-
fication speeds for all algorithms.

108

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

F
-M

ea
su

re
 (

%
)

Number of training flows

Naive Bayes
Naive Bayes Kernel Estimation

Bayesian Network
C4.5 Decision Tree

Support Vector Machines
k-Nearest Neighbors

Neural Network

(a) WWW

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

F
-M

ea
su

re
 (

%
)

Number of training flows

Naive Bayes
Naive Bayes Kernel Estimation

Bayesian Network
C4.5 Decision Tree

Support Vector Machines
k-Nearest Neighbors

Neural Network

(b) DNS

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

F
-M

ea
su

re
 (

%
)

Number of training flows

Naive Bayes
Naive Bayes Kernel Estimation

Bayesian Network
C4.5 Decision Tree

Support Vector Machines
k-Nearest Neighbors

Neural Network

(c) Mail

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

F
-M

ea
su

re
 (

%
)

Number of training flows

Naive Bayes
Naive Bayes Kernel Estimation

Bayesian Network
C4.5 Decision Tree

Support Vector Machines
k-Nearest Neighbors

Neural Network

(d) Chat

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

F
-M

ea
su

re
 (

%
)

Number of training flows

Naive Bayes
Naive Bayes Kernel Estimation

Bayesian Network
C4.5 Decision Tree

Support Vector Machines
k-Nearest Neighbors

Neural Network

(e) FTP

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

F
-M

ea
su

re
 (

%
)

Number of training flows

Naive Bayes
Naive Bayes Kernel Estimation

Bayesian Network
C4.5 Decision Tree

Support Vector Machines
k-Nearest Neighbors

Neural Network

(f) P2P

Figure 5.10: Per-application F-measure of machine learnin g algorithms by training set
size

thousand training flows. Figure 5.10 shows that the per-application F-measure of the SVM

significantly drops as the training set size decreases to fewer than 1000.k-Nearest Neigh-

bors achieves lower F-measures than those of SVM particularly on P2P, FTP, Streaming, and

109

Chat. The Neural Network method also underperforms on our traces, though we have only

limited results for per-application F-measure due to its extremely slow training.

All the algorithms classify Web and DNS traffic accurately onall datasets. A few hundred

training flows are enough to identify them with more than 88%-95% F-measure. In contrast,

P2P and FTP applications require the most training, not surprising since each application cat-

egory itself contains multiple applications and/or communication patterns, e.g., data channel

and control channel of FTP, etc. The F-measure of Naive Bayes, Bayesian Network, and C4.5

Decision Tree on P2P was at most 40%-80% even with more than ten thousand training flows.

Other applications are in between those two groups of Web/DNS and P2P/Streaming/FTP in

terms of F-measure.

Finding 3 Protocol, ports, packet size, and TCP flags are key flow features in accurate

classification of unidirectional traffic flows. Support Vector Machines using these key fea-

tures perform the best for every application studied and on every backbone and edge trace

examined, requiring the least number of training flows (at most around a few thousand) for

each application compared to other algorithms.

5.2.4 Comparative Analysis

Figure 5.12 compares the overall accuracy of the evaluated methods: CoralReef, BLINC,

and the seven machine learning algorithms, on our datasets,showing the highest two, the

lowest two, and the median values we obtained from each method. In general, machine

learning algorithms, and in particular, the SVM, k-NearestNeighbors, and Neural Net show

110

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

F
-M

ea
su

re
 (

%
)

Number of training flows

Web
P2P
DNS
FTP

Mail/News
Streaming

Chat
Games

Figure 5.11: Per-application F-measure of the SVM by traini ng set size

 0

 20

 40

 60

 80

 100

CoralReef

BLINC

Naive Bayes

Naive Bayes K.E.

Bayesian Net

C4.5
k-Nearest

Support Vector

Neural Net

O
ve

ra
ll

ac
cu

ra
cy

 (
%

)

Figure 5.12: Overall accuracy of all methods (With 1000 trai ning instances for machine
learning algorithms)

higher and more consistent performance across all the traces than other methods. The overall

accuracy of port-based classification such as CoralReef varies according to the proportion of

flows using officially designated ports, while BLINC’s accuracy strongly depends on both

topological location (e.g., backbone vs. edge link, unidirectional vs. bi-directional link,

international, domestic vs. local etc.) and traffic mix. TheSVM consistently outperformed

all other methods we evaluated. Although Neural Network seems to perform almost as well

as SVM (only slightly less; 0.4%-1.1% in terms of overall accuracy) performance to SVM,

111

its computational cost is prohibitively high (see Figure 5.9(a) and (b)).

5.3 Lessons learned

In this section, we summarize our findings and discuss on various implications of those find-

ings.

Lesson 1 (On ports as key features):One of the key findings of this thesis is that port

numbers are relevant to traffic classification. In particular, port lookup can reliably identify

many conventional applications, especially when used withpacket size information, TCP

header flags and protocol. Excluding port information from the above key features in training

an SVM classifier reduced overall accuracy from 95%-99% to 56%-70%. On the other hand,

conventional applications are not what have catapulted traffic classification activities into

the popular press. The more interest there is in identifyingtraffic in order to constrain or

charge users, the more incentive there will be to hinder port-classification methods. Indeed,

at any time, or on any link, traffic may use unrecognized ports, or misuse recognized ports to

explicitly hide traffic. Thus, the real challenge (and fear)is not in recognizing conventional

applications, but in detecting applications that are trying to hide, e.g., via port masquerading

or encryption.

Lesson 2 (On behavior based classification):While port information and flow-features-

based approaches make classification decisions on a per-flowbasis, host-behavior-based clas-

sification as implemented in BLINC aggregates flow information for an interval to derive

112

behavioral patterns of observed hosts. The accuracy of a host-behavior-based classification

strongly depends on whether the observed link is located at atopologically appropriate place

to collect enough behavioral information on hosts. Consequently, BLINC is effective on links

that capture both directions of every flow to a host, such as the border link of a single-homed

edge network. Host-behavior analysis is less powerful on aggregated, e.g., backbone, links,

where often only a small portion of flows from/to an end-host can be observed, and where

asymmetric routing prevents observation of both directions of traffic.

Lesson 3 (On byte accuracy):The other limitation of the aggregated-behavior-based

approach is, even at a topologically appropriate place, these techniques will fail to classify

traffic from/to entities whose flows seldom traverse the target link. As a result, they often mis-

classify as unknown a small number of large “elephant” flows from/to such entities, achieving

lower byte accuracy (or recall) than flow accuracy (or recall). For example, the byte accuracy

of BLINC was significantly lower (13.1%-59.3%) than its flow accuracy (56.2%-86.7%) on

our traces. Karagianniset al. had similar results in [68]. This weakness is a serious flaw

for practical traffic classification, as elephant flows may account for over 70% of the bytes

transferred on typical networks [29]. A complementary per-flow based classification process

on remaining unclassified flows is needed to overcome this limitation.

Ermanet al. showed that a cost-sensitive sampling approach allowed machine learning

algorithms to achieve high byte accuracy and flow accuracy [43]. This approach trains a clas-

sifier with more of the rare but resource-intensive cases, i.e., elephant flows. They trained

their classifier with a training set that contained 50% of flows below the 95% percentile of

113

flow size and 50% of flows above the 95% percentile of flow size. This technique substan-

tially improved the byte accuracy for the classifier, with only a marginal reduction in flow

accuracy.

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 F

lo
w

s
(%

)

BLINC on <srcIP, srcport> pairs
BLINC on <dstIP, dstport> pairs

(a) Flow accuracy

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e

of
 B

yt
es

 (
%

)

BLINC on <srcIP, srcport> pairs
BLINC on <dstIP, dstport> pairs

(b) Byte accuracy

Figure 5.13: Overall flow and byte accuracy of BLINC

Lesson 4 (On single vs. bidirectional flow features for backbone traffic classifica-

tion): Accurate traffic classification is feasible only when a classifier possesses correct, com-

plete fingerprints for target applications. Previous efforts on flow-features-based classifica-

tion [80, 82, 96, 26, 40, 37, 113, 44, 109] have shown that bidirectional TCP flow statistics

provide such fingerprints for various applications. However, these methods are not appro-

priate for classifying backbone traffic where one directionof a TCP flow is unobserved due

to routing asymmetries. Backbone traffic classification is challenging because only partial

information about bidirectional TCP connections is available. Ermanet al. addressed this

limitation by proposing an algorithm that uses the packets of an unidirectional TCP flow to

estimate the flow statistics of the unobserved direction [41], leaving UDP traffic classifica-

tion as future work. We address this problem by using ports askey features in addition to

114

TCP flags and packet size, based on (i) Lesson 1 and (ii) the results of the Correlation-based

Feature Selection. The resulting classifiers show accuracies comparable to or higher than

those of previous work, on all our backbone and edge traces, using only single-direction flow

features. While port information does not seem necessary when we train a learning algorithm

with bi-directional flow features to classify TCP traffic, itis indispensable when using only

single-direction flow features to classify both TCP and UDP traffic.

5.4 Summary

Traffic classification is a challenging problem in which the network flows (at the level of

transport layer) are associated with the higher layer applications. Accurate classification en-

ables the IT operators to better provision and manage the network resources. This chapter

addresses the disadvantages and advantages of the existingtraffic classification methods. In-

depth analysis of three different approaches (port-based,host-behavior-based and machine

learning methods) on seven different traces reveal interesting results which provide valuable

guidelines for the reseachers and engineers. The results show that the port-based classifica-

tion can still be accurate for traditional applications andmachine learning approach can be

effective if a classifier is trained well with representative datasets. Among machine learning

algorithms, we found that SVM attains highest accuracy and can therefore be a viable solu-

tion. We also find that the host-behavior method (BLINC) works well when the datasets have

bi-directional flow information.

115

Chapter 6

Conclusion

In this chapter, we summarize the contributions and limitations of this work, and discuss

directions for future research.

6.1 Contributions

This dissertation presents the design ofGodai, a new framework to manage the enterprise

networks. Godai aims to solve three problems in the current enterprise network management

system. First, the current enterprise end-hosts are not properly configured when it comes to

securing them against botmaster recruitement process. Second, the IT operators need traffic

analysis tools which report to them important but compact summaries as well as changes

among the summaries. Third, they need tools and proper tuning of their configuration to

analyze traffic and identify application breakdown.

116

6.1.1 Configuration Management

Configuring the end-host IDS in an enterprise requires setting appropriate thresholds for dif-

ferent detection features. Setting right threshold valuesin the end-host IDS systems can force

an attacker into an extremely stealthy mode or prevent it from launching attacks.Godaipro-

vides an approach to set thresholds in agroupof end-host anomaly detectors. We challenge

the common practice of the IT operators who opt for a single threshold across the popula-

tion of end-hosts. We show that this IT practice can lead to unintended wild experience of

false positives and false negatives by the end-hosts. In ourattempt to configure a group of

enterprise end-hosts, we observe that considering a group of end-hosts couple them and the

behaviors of the end-hosts influence the common threshold value. In our unified approach we

propose two components: (a) the choice of utility function to balance the trade-off between

false positives and false negatives, and (b) the choice of diversity level which decides the

number of different thresholds to be computed for the end-hosts. Based on the evaluation

using real data, we find that:

1. the natural user diversity offers tremendous opportunities for an attacker to “hide”,

2. the choice of utility function can have huge impact on the false positive and false

negative experienced by the end-hosts,

3. the diversity in the thresholds can be beneficial if false positives are more important in

an enterprise, and

4. a handful of thresholds seem to be capable of providing significant benefits compared

117

to homogeneous approach

The last observation is very promising as it argues that diversity is not an all-or-nothing

proposition: it may be able to strike a compromise between the effectiveness and the opera-

tional simplicity. Our findings point to the need of a comprehensive re-evaluation of the way

how IT operators set IDS thresholds.

6.1.2 Hierarchical Summary

Godaiproposes a natural model for explaining the changes in hierarchical data and formu-

lates two problem variants for finding a parsimonious explanation in this model. Our model

makes an effective use of the hierarchy and describes changes at the leaf nodes as a compo-

sition of node weights along each path of each root-to-leaf path in the hierarchy. We design

algorithms to minimize the explanation size for both the problem variants. Despite the fact

that assigning node weights optimally is an under-constrained problem, we have shown that it

is not NP-hard and that our algorithms require time proportional to the product of the number

of leaves and the depth of the dimension hierarchy.

We evaluate our approach on real data to demonstrate both itsefficiency and effectiveness.

In practice, the performance and space usage of our algorithms are much less than the worst-

case bounds. On population census data, the explanations discovered (counter) trends, mainly

at the city-level. We have made similar observations when weanalyze HTTP traffic logs

from the FIFA World Cup hosting site. Our approach can also beused to reveal “interesting”

anomalies in hierarchical data when used in conjunction with a statistically sound predictive

118

model that forecasts values within confidence intervals. These anomalies are explained more

parsimoniously using our algorithm compared to the leaf-level anomalies that the predictive

model detects.

6.1.3 Application Classification

Godaiconducts a detailed comparison of three well-studied approaches to traffic classifica-

tion: ports-based, host-behavior-based, and flow-features-based. We believe this is the first

study to evaluate the three families of traffic classification algorithms on several data sets of

payload trace from different types of network links locatedin multiple countries. Diversity

in the data sets allow us to test the approaches under a wide variety of conditions, facilitating

our assessment of the strengths and weaknesses of each approach. Our study yields several

insights:

1. The effectiveness of port-based classification in identifying legacy applications is still

impressive and is further strengthened by the use of packet size and TCP flag. This

fact explains why research attention has shifted to detecting and identifying new ap-

plications that use port-masquerading and encrytion, i.e., traffic deliberately trying to

evade traffic classification. Unfortunately, increasing attention to classifying traffic for

purposes not necessarily approved by originator of the traffic is likely to increase this

category of traffic, inducing an arms race between those trying to classify traffic, and

those trying to avoid having their traffic classified

119

2. Each approach has its own strengths and weaknesses, and careful combinations can

provide synergy. When an approach has a fundamental weakness in classifying par-

ticular types of traffic, integrating aspects of other techniques can help. For example,

host-behavior-based methods such as BLINC can be augmentedwith per-flow based

classification process to increase byte accuracy.

3. The Support Vector Machines algorithm consistently achieved the highest accuracy.

Scientifically grounded traffic classification research requires that researchers share tools

and algorithms, and baseline data sets from a wide range of Internet links to reproduce results.

6.2 Limitations

One of the motivations of our work is to come up with a management framework which

can be deployed by the enterprise IT operators. It is true howreadily the IT operators will

adopt our solution is out of our control. We realize that accuracy of our traffic classification

methods depends on the accuracy of the availability of ground-truth information.

6.3 Future Work

Regarding the end-host configuration work, we would like to investigate other methods for

clustering the end hosts into groups using multiple features simultaneously. We believe that

our methodology will foster a new research direction in network management.

120

As far as hierarchical change detection is concerned, our approach can be extended to

multiple dimensions but it presents several non-trivial challenges due to the existence of

multiple parents in the hierarchy. Another natural extension we have considered for future

work is where there is a global budget on error tolerance for the entire tree. Although we

have found a polynomial solution, its complexity appears tobe significantly higher than the

problems studied in this thesis, and its feasibility on massive data sets remains to be shown.

There could be several extensions to our traffic classification work. Here we have treated

Machine Learning Algorithms more like black boxes but one needs to understand thoroughly

the fundamental limitations of each algorithm. Regarding BLINC, one needs to come up

with automatic tuning of BLINC parameters depending on trace.

121

Bibliography

[1] AVG AntiVirus. http://www.avgantivirus.com .

[2] CoralReef. http://www.caida.org/tools/measurement/coralreef/ .

[3] Ellacoya.http://www.ellacoya.com .

[4] FlowScan - Network Traffic Flow Visualization and ReportingTool. http://www.
caida.org/tools/utilities/flowscan .

[5] Intel Active Management Technology. http://www.intel.com/
technology/platform-technology/intel-amt/,http://ww w3.
intel.com/cd/business/enterprise/emea/ENG/310547.ht m.

[6] McAfee AntiVirus. http://www.McAfee.com .

[7] Nagios. http://www.nagios.org .

[8] New Massive Botnet Twice the Size of Storm. http://www.darkreading.com/
document.asp?doc_id=150292&WT.svl=news1_1 .

[9] Norton AntiVirus. http://www.norton.com .

[10] Packeteer.http://www.packeteer.com .

[11] Qosmos.http://www.qosmos.com .

[12] Storm Worm DDoS Attack. http://www.secureworks.com/research/
threats/storm-worm .

[13] TCP Header. http://freebie.fatpipe.org/ ˜ mjb/Drawings/TCP\
_Header.png .

[14] UDP Header. http://goethe.ira.uka.de/seminare/rkt/tcp\
%2Budp/UDP-Header.png .

[15] WEKA: Data Mining Software in Java. http://www.cs.waikato.ac.nz/ml/
weka/ .

122

[16] On change diagnosis in evolving data streams.IEEE TKDE, 17(5):587–600, 2005.
Charu C. Aggarwal.

[17] Bot infections in the enterprise underestimated, bigger than thought. http://www.
darkreading.com/document.asp?doc_id=137602 , October 2007.

[18] ’surge’ in hijacked pc networks, March 2007.http://news.bbc.co.uk/2/hi/
technology/6465833.stm .

[19] Mark Allman, Vern Paxson, and Jeff Terrell. A brief history of scanning. InACM
IMC, April 2004.

[20] E. Amaldi and V. Kann. On the Approximability of Minimizing Nonzero Variables or
Unsatisfied Relations in Linear Systems.TCS, 209(1-2):237–260, 1998.

[21] N. Anderson. Vint cerf: one quarter for all computers part of a botnet. January 2007.
http://arstechnica.com/news.ars/post/20070125-8707. html .

[22] Annalisa Appice, Michenlangelo Ceci, Simon Rawles, and Peter Flach. Redundant
feature elimination for multi-class problems. InInternational Conference on Machine
Learning, July 2004.

[23] Sanjeev Arora, László; Babai, Jacques Stern, and Z. Sweedyk. The hardness of ap-
proximate optima in lattices, codes, and systems of linear equations.J. Comput. Syst.
Sci., 54(2):317–331, 1997.

[24] Dhiman Barman, Flip Korn, Divesh Srivastava, DimitrisGunopulos, Neal E. Young,
and Deepak Agarwal. Parsimonious Explanations of Change inHierarchical Data. In
Proc. of ICDE 2007.

[25] Kristin Bennett and Colin Campbell. Support vector machines: Hype or hallelujah?
ACM SIGKDD Explorations, 2(2):1–13, 2000.

[26] Laurent Bernaille, Renata Teixeira, and Kave Salamatian. Early application identifi-
cation. InCoNEXT, December 2006.

[27] Avrim Blum and Pat Langley. Selection of relevant features and examples in machine
learning.Artificial Intelligence, 97(1-2):245–271, 1997.

[28] Census (population vs. location), 2000-2004.http://www.census.gov/
popest/datasets.htm .

[29] Kun chan Lan and John Heidemann. A measurement study of correlation of Internet
flow characteristics.Computer Networks, 50(1):46–62, January 2006.

[30] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and olap
technology.SIGMOD Record, 26(1):65–74, 1997.

123

[31] Taesang Choi, Changhoon Kim, Seunghyun Yoon, Jeongsook Park, Byungjun Lee,
Hyunghan Kim, and Hyungseok Chung. Content-aware internetapplication traffic
measurement and analysis. InIEEE/IFIP NOMS, April 2004.

[32] Cisco. Always Vigilant Endpoint. http://www.cisco.com/en/US/
products/sw/secursw/ps5057/index.html .

[33] KC Claffy, Hans-Werner Braun, and George C. Polyzos. A parameterizable methodol-
ogy for internet traffic flow profiling.IEEE JSAC Special Issue on the Global Internet,
1995.

[34] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. Finding Hier-
archical Heavy Hitters in Data Streams. InInt. Conf. on Very Large Databases, pages
464–475, 2003.

[35] Graham Cormode and S. Muthukrishnan. What’s new: Finding significant differences
in network data streams. InProc. of IEEE INFOCOM, pages 1534–1545, 2004.

[36] Cristian Estan and Stefan Savage and George Varghese. Automatically Inferring Pat-
terns of Resource Consumption in Network Traffic. InACM SIGCOMM, 2003.

[37] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, andLuca Salgarelli. Traffic classi-
fication through simple statistical fingerprinting.ACM SIGCOMM CCR, 37(1):7–16,
January 2007.

[38] David Wagner et al. Mimicry Attacks on Host-BAsed Intrusion Detection Systems. In
Proc. of CCS’02, 2002.

[39] Holger Dreger, Anja Feldmann, Michael Mai, Vern Paxson, and Robin Robin Som-
mer. Dynamic application-layer protocol analysis for network intrusion detection. In
USENIX Security Symposium, July 2006.

[40] Jeffrey Erman, Martin Arlitt, and Anirban Mahanti. Traffic Classificaton Using Clus-
tering Algorithms. InACM SIGCOMM MineNet Workshop, September 2006.

[41] Jeffrey Erman, Martin Arlitt, Anirban Mahanti, and Carey Williamson. Identifying
and Discriminating Between Web and Peer-to-Peer Traffic in the Network Core. In
WWW, May 2007.

[42] Jeffrey Erman, Anirban Mahanti, and Martin Arlitt. Internet Traffic Identification
using Machine Learning. InGlobecom, November 2006.

[43] Jeffrey Erman, Anirban Mahanti, and Martin Arlitt. Byte Me: A Case for Byte Accu-
racy in Traffic Classification. InACM SIGMETRICS MineNet Workshop, June 2007.

[44] Jeffrey Erman, Anirban Mahanti, Martin Arlitt, Ira Cohen, and Carey Williamson.
Offline/Realtime Traffic Classification Using Semi-Supervised Learning. InIFIP Per-
formance, October 2007.

124

[45] Cristian Estan, Stefan Savage, and George Varghese. Automatically inferring patterns
of resource consumption in network traffic. InACM SIGCOMM, pages 137–148,
2003.

[46] Colin Dixon et al. Phalanx: Withstanding Multimillion-Node Botnets. InProc. of
USENIX NSDI, 2008.

[47] David Brumley et al. Towards Automatic Discovery of Deviations in Binary Imple-
mentations with Applications to Error Detection and Fingerprint Generation. InProc.
of USENIX Security Symposium, 2007.

[48] Denver Dash et al. When gossip is good: distributed probabilistic inference for detec-
tion of slow network intrusions. InProc. of AAAI, 2006.

[49] Evan Cooke et al. The Zombie roundup: understanding, detecting, and disrupting
botnets. InProc. of SRUTI, 2005.

[50] Guofei Gu et al. BotSniffer: Detecting Botnet Command and Control Channels in
Network Traffic. InProc. of NDSS’08.

[51] James Binkley et al. An algorithm for anomaly-based botnet detection.SRUTI Work-
shop, 2006.

[52] Mark Allman et al. Fighting Coordinated Attackers withCross-Organizational Infor-
mation Sharing. InProc. of ACM HotNets’05, 2005.

[53] Patrick McDaniel et al. Enterprise Security: A Community of Interest Based Ap-
proach. InProc. of NDSS, 2006.

[54] Thomas Karagiannis et al. Profiling the End Host. InProc. PAM, 2007.

[55] Thorsten Holz et al. Measurements and Mitigation of Peer-to-Peer based Botnets: A
Case Study on Storm Worm. InProc. of USENIX LEET, 2008.

[56] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jef-
frey D. Ullman. Computing iceberg queries efficiently. InProc. of VLDB, pages
299–310, NY, NY, August 24-27 1998.

[57] Marc E. Fiuczynski. Planetlab: overview, history, andfuture directions.ACM SIGOPS
Operating Systems Review, 40(1):6–10, January 2006.

[58] Stephanie Forrest, Anil Somayaji, and David. H. Ackley. Building diverse computer
systems. InProc. of HotOS, 1997.

[59] Terrence S. Furey, Nello Cristianni, Nigel Duffy, David W. Bednarski, Michel Schum-
mer, and David Haussler. Support vector machine classification and validation of can-
cer tissue samples using microarray expression data.Bioinformatics, 16(10):906–914,
2000.

125

[60] Sudipto Guha. Space Efficiency in Synopsis Construction Algorithms. InProc. of
VLDB, pages 409–420, 2005.

[61] Sudipto Guha and Boulos Harb. Approximation algorithms for wavelet transform
coding of data streams. InProc. of SODA, pages 273–279, 2006.

[62] Patrick Haffner, Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. Acas: Au-
tomataed construction of applicatin signatures. InSIGCOMM MineNet Workshop,
August 2005.

[63] IANA. IANA Port Numbers. http://www.iana.org/assignments/
port-numbers .

[64] Marios Iliofotou, Prashanth Pappu, Michalis Faloutsos, Michael Mitzenmacher,
Sumeet Singh, and George Varghese. Network monitoring using traffic dispersion
graphs (tdgs). InACM IMC, October 2007.

[65] James R. Binkley et al. An algorithm for anomaly-based botnet detection. InProc. of
USENIX SRUTI, 2006.

[66] T. Karagiannis, D. Papagiannaki, N. Taft, and M. Faloutsos. Profiling the end host. In
PAM, April 2007.

[67] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and kc claffy. Transport layer
identification of p2p traffic. InACM IMC, October 2004.

[68] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos. Blinc: Mul-
tilevel traffic classification in the dark. InACM SIGCOMM, August 2005.

[69] Panagiotis Karras and Nikos Mamoulis. The Haar+ Tree: aRefined Synopsis Data
Structure. InProc. of the IEEE 23rd ICDE, April 2007.

[70] Zeus Kerravala. Enterprise Networking and Computing:the Need for Configuration
Management. InYankee Group Report, January 2004.

[71] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting changes in data
streams. InProc. of VLDB, 2004.

[72] Hyunchul Kim, Marina Fomenkov, kc claffy, Nevil Brownlee, Dhiman Barman,
Michalis Faloutsos, and Kiyoung Lee. Internet traffic classification demystified:
Myths, caveats, and the best practices. Technical report, CAIDA, 2008.

[73] Jon Kleinberg. Bursty and hierarchical structure in streams. InProc. of the 8th ACM
SIGKDD, 2002.

[74] C. Kreibich, A. Warfield, J. Crowcroft, S. Hand, and I. Pratt. Using Packet Symmetry
to Curtail Malicious Traffic. 2005.

126

[75] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies using traffic
feature distributions. InACM SIGCOMM, pages 217–228, August 2005.

[76] Laks V. S. Lakshmanan, Raymond T. Ng, Christine Xing Wang, Xiaodong Zhou, and
Theodore Johnson. The generalized mdl approach for summarization. InVLDB, pages
766–777, 2002.

[77] Zhu Li, Ruixi Yuan, and Xiaohong Guan. Accurate Classification of the Internet Traf-
fic Based on the SVM Method. InICC, June 2007.

[78] Justin Ma, Kirill Levchenko, Christian Kreibich, Stefan Savage, and Geoffrey M.
Voelker. Unexpected means of protocol inference. InACM IMC, 2006.

[79] Yossi Matias, J.S. Vitter, and M. Wang. Wavelet-Based Histograms for Selectivity
Estimation. InProc. of ACM SIGMOD’98, 1998.

[80] Anothony McGregor, Mark Hall, Perry Lorier, and James Brunskill. Flow clustering
using machine learning techniques. InPAM, April 2004.

[81] Andrew Moore and Konstantina Papagiannaki. Toward theaccurate identification of
network applications. InPAM, April 2005.

[82] Andrew Moore and Denis Zuev. Internet traffic classification using bayesian analysis
techniques. InACM SIGMETRICS, June 2005.

[83] David Moore, Ken Keys, Ryan Koga, Edouard Lagache, and KC Claffy. CoralReef
software suite as a tool for system and network administrators. InUSENIX Lisa, 2001.

[84] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and
Nicholas Weaver. Inside the slammer worm.IEEE Security and Privacy, 1(4):33–39,
July 2003.

[85] S. Muthukrishnan. Subquadratic algorithms for workload-aware Haar wavelet syn-
opses. InProc. of FSTTCS, 2005.

[86] N. Ianelli and A. Hackworth. Botnets as a vehicle for online crime. InCERT RFC
1700, 2005.

[87] Thuy T.T. Nguyen and Grenville Armitage. Training on multiple sub-flows to opti-
mise the use of machine learning classifiers in real-world ipnetworks. InIEEE LCN,
November 2006.

[88] Thuy T.T. Nguyen and Grenville Armitage. A survey of techniques for internet traffic
classification using machine learning.IEEE Communications Surveys and Tutorials,
to appear, 2008.

[89] Byung-Chul Park, Young J. Won, Myung-Sup Kim, and JamesW. Hong. Towards
automated application signature generation for traffic identification. In IEEE NOMS,
April 2008.

127

[90] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-Time.Computer
Networks, 1999.

[91] Vladimir Pervouchine and Graham Leedham. Extraction and analysis of foren-
sic document examiner features used for writer identification. Pattern Recognition,
40(3):1004–1013, March 2007.

[92] P.J.Harrison. Exponential smoothing and short-term sales forecasting.Management
Science, 13(11):821–842, 1967.

[93] John C. Plat. Sequential minimal optimization: A fast algorithm for training support
vector machines. Technical Report MSR-TR-98-14, MicrosftResearch, April 1998.

[94] Frederick Reiss, Minos Garafalakis, and Joseph Hellerstein. Compact Histograms for
Hierarchical Identifiers. InProc. of VLDB, 2006.

[95] M. Roesch. Snort network intrusion detection system.http://www.snort.
org/ .

[96] Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, and Nick Duffield. Class-of-
service mapping for qos: a statistical signature-based approach to ip traffic classifica-
tion. In ACM IMC, October 2004.

[97] Roy A. Maxion.Use of Diversity as a Defense Mechanism, 2002.

[98] Sunita Sarawagi. Explaining differences in multidimensional aggregates. InProc. of
VLDB, pages 42–53, Scotland,UK, 1999.

[99] Sunita Sarawagi. Explaining differences in multidimensional aggregates. InThe VLDB
Journal, pages 42–53, 1999.

[100] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo.Discovery-driven explo-
ration of olap data cubes. InProc. of EDBT, pages 168–182, March 1998.

[101] Sudarshan S.Chawathe. Differencing data streams. InProc. of the Database Engi-
neering and Applications Symposium (IDEAS), Montreal,Canada, July 2005.

[102] Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang.Accurate, scalable in-
network identification of p2p traffic using application signatures. InWWW, May 2004.

[103] Stanislav Shalunov and Benjamin Teitelbaum.Internet2 NetFlow Statistics. http:
//netflow.internet2.edu .

[104] Stanislav Shalunov and Benjamin Teitelbaum.NFSTAT. http://netflow.
internet2.edu/weekly/nfstat.pdf .

[105] Jin-Qiao Shi, Bin xing Fang, Bin Li, and Fu liang Wang. Using support vector machine
in traffic analysis for website recognition. InInternational Conference on Machine
Learning and Cybernetics, August 2004.

128

[106] S.Hill, D.Agarwal, R.Bell, and C.Volinsky. Buildingan effective representation for
dynamic graphs.Journal of Computational and Graphical Statistics, 15:584–608,
2006.

[107] Suresh N. Chari et al. BlueBox: A policy-driven, host-based intrusion detection sys-
tem. 6:173–200, 2003.

[108] Nigel Williams, Sebastian Zander, and Grenville Armitage. Evaluating machine learn-
ing algorithms for automated network application identification. Technical Report
060401B, CAIA, April 2006.

[109] Nigel Williams, Sebastian Zander, and Grenville Armitage. A preliminary perfor-
mance comparison of five machine learning algorithms for practical ip traffic flow
classification.ACM SIGCOMM Computer Communication Review, 36(5):7–15, Oc-
tober 2006.

[110] I. H. Witten and E. Frank.Data Mining: Practical Machine Learning Tools and
Techniques, 2nd ed.Morgan Kaufmann, San Francisco, 2005.

[111] Young J. Won, Byung-Chul Park, Hong-Taek Ju, Myung-Sup Kim, and James W.
Hong. A hybrid approach for accurate application traffic idenficiation. InIEEE/IFIP
E2EMON, April 2006.

[112] WorldCup 1998. http://ita.ee.lbl.gov/html/contrib/WorldCup.
html .

[113] Sebastian Zander, Thuy Nguyen, and Grenville Armitage. Automated traffic classifi-
cation and application identification using machine learning. InIEEE LCN, November
2005.

[114] Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick Duffield, and Carsten Lund. Online
identification of hierarchical heavy hitters: Algorithms,evaluation and applications.
In Proc. of ACM IMC’04, October 2004.

[115] Yunyue Zhu and Dennis Shasha. Efficient elastic burst detection in data streams. In
Proc. of ACM SIGKDD’03, pages 336–345, New York, NY, 2003.

129

