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Technical Note: INS Noise Propagation

Paul F. Roysdon† Jay A. Farrell‡

Abstract— Due to space limitations in [1] and [2], this
Technical Note is supplied to explain the state and noise
propagation for an inertial navigation system (INS), between
two aiding measurement times. The temporal propagation of the
state error and noise is required for optimal state estimation.

I. INTRODUCTION

Let x ∈ Rns denote the rover state vector, where

x(t) = [pᵀ(t),vᵀ(t),qᵀ(t),bᵀ
a(t),b

ᵀ
g(t)]

ᵀ ∈ Rns ,

where p, v, ba, bg each in R3 represent the position, ve-
locity, accelerometer bias and gyro bias vectors, respectively,
q ∈ R4 represents the attitude quaternion (ns = 16).

Let xv(t) = [pᵀ(t),vᵀ(t),qᵀ(t)]ᵀ ∈ R10 represent the
vehicle state position, velocity and attitude. Let xc(t) =
[bᵀ
a(t),b

ᵀ
g(t)]

ᵀ ∈ R6 represent the IMU calibration terms:
accelerometer bias and gyro bias. Then x(t) can be repre-
sented as x(t) = [xᵀ

v(t),x
ᵀ
c (t)]

ᵀ.
Let τi denote the time instants of the ith IMU measure-

ments of u, as defined in Section II.A in [1] and [2]. Let
xi = x(τi) and ui = u(τi).

Let the state estimate time propagation be represented as

x̂i+1
.
= φ(x̂i, ũi),

where the vehicle state estimate is x̂v,i+1
.
= φv(x̂v,i, ũi).

Let the true state time propagation be represented as

xi+1 = φ(xi,ui),

and the true vehicle state as xv,i+1 = φv(xv,i,ui).
Define the state error as

δxi = xi 	 x̂i ∈ Rne ,

where the symbol ‘	’, which is discussed in [3], represents
the subtraction operation for position, velocity and bias
states, and the multiplication operation of the attitude states.
The fact that ns = 16 and ne = 15 is discussed in [3].
Let δxv,i ∈ R9 represent the vehicle state error for position,
velocity and attitude. Let δxc,i ∈ R6 represent the error in
the IMU calibration terms: accelerometer bias and gyro bias.
Then δxi can be represented as δxi = [δxᵀ

v,i, δx
ᵀ
c,i]

ᵀ.
Let the IMU measurement be defined as

ũ(τi) , u(τi)− b(τi)− ωu(τi) ∈ R6,

with additive stochastic errors ωu(τi) ∼ N (0,Qd) and
b = [bᵀ

a,b
ᵀ
g ]

ᵀ. The sensor bias b represents time correlated
measurement errors, and ωu(τi) represents the white mea-
surement errors. Let the estimate ûi , ũi + b̂i, where b̂i
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is the estimate of bi (i.e. x̂c,i). Let the measurements ũ(τi)
be defined for IMU measurement times i, between aiding
measurement times k, such that τi ∈ [tk−1, tk].

Define

δui , ui − ûi

= ui − ũi − b̂i

= ui − (ui − bi − ωu,i)− b̂i

= δbi + ωu,i,

where δbi , bi − b̂i, and δbi (i.e. δbi = δxc,i) is a state
calibration term.

Linearization of the state error, using Taylor series to first
order, yields

δxv,i+1 = φv(xv,i,ui)− φv(x̂v,i, ûi)

= φv(x̂v,i, ûi) +
∂φv
∂xv,i

∣∣∣∣
x̂v,i

δxv,i

+
∂φv
∂ui

∣∣∣∣
ûi

δui − φv(x̂v,i, ûi)

=
∂φv
∂xv,i

∣∣∣∣
x̂v,i

δxv,i +
∂φv
∂ui

∣∣∣∣
ûi

δui

= Aiδxv,i + Biδui

= Aiδxv,i + Biδbi + Biωu,i, (1)

where Ai =
∂φv

∂xv,i

∣∣
x̂v,i,ûi

∈ R9×9, and Bi =
∂φv

∂ui

∣∣
x̂v,i,ûi

∈
R9×6.

Let the model of the sensor bias be defined as a first-order
Gauss-Markov process

δbi+1 = Fbδbi + ν, (2)

where Fb ∈ R6×6 is selected such that the bias errors are
modeled as either random constants or random walk plus
constants (see eqns. 11.106 and 11.107 of [4]), and ν ∼
N (0, σνI).

Rewriting eqns. (1) and (2) in matrix form:[
δxv,i+1

δxc,i+1

]
=

[
Ai Bi

0 Fb

] [
δxv,i
δbi

]
+

[
Bi 0
0 I

] [
ωu,i
ν

]
. (3)

For analysis, in the following section let Fb = I.

II. PROPAGATION OF STATE ERROR

This section analyzes the error accumulation over the time
interval t ∈ [k − 1, k] using superposition.



A. Propagation of Initial State Error

Consider eqn. (3) over the interval t ∈ [k − 1, k], where
ωu,i−1 = 0 and ν = 0. Without loss of generality let k = 1,
such that t ∈ [0, 1]. For each time instant, eqn. (3) can be
represented in terms of Ai, and Bi, with initial condition
errors δxv,0, and δb0:

δx1 =

[
A0 B0

0 I

] [
δxv,0
δb0

]
δx2 =

[
A1 B1

0 I

] [
δxv,1
δb1

]
=

[
A1 B1

0 I

] [
A0 B0

0 I

] [
δxv,0
δb0

]
=

[
A1A0 A1B0 + B1

0 I

] [
δxv,0
δb0

]
δx3 =

[
A2 B2

0 I

] [
δxv,2
δb2

]
=

[
A2 B2

0 I

] [
A1A0 A1B0 + B1

0 I

] [
δxv,0
δb0

]
=

[
A2A1A0 A2A1B0+A2B1+B2

0 I

] [
δxv,0
δb0

]
. (4)

Define Fs as the sample frequency of the sensor (e.g. IMU).
As defined in Section II.A of both [1] and [2], let Uk =
{ũ(τi) for τi ∈ [tk−1, tk]}. As defined in Section III.A of
both [1] and [2], let Xk = [x(tk−L)

ᵀ, . . . ,x(tk)
ᵀ]

ᵀ ∈
Rns(L+1) denote the vehicle trajectory over a sliding time
window that contains L one second GPS measurement
epochs: [yk−L+1, . . . ,yk]. After Fs IMU time steps (i.e.
Fs,k=1)

δxFs
=

{
Fs∏
i=1

[
Ai Bi

0 I

]}[
δxv,0
δb0

]
(5)

= Υ(X̂k,Uk)[δxv,0, δb0]
ᵀ, (6)

where the operator Υ(X̂k,Uk) in eqn. (6) represents the
product operation in eqn. (5), and X̂k is the estimate of Xk.
The product operation in eqn. (5) must follow the order of
multiplications shown in eqn. (4).

B. Noise Propagation

Again consider eqn. (3) over the interval t ∈ [k − 1, k].
Here we will analyze the effect of the noise terms ωu and
ν, with δxv,0 and δb0 both zero.

To simplify notation, let

Ci ,

[
Ai Bi

0 I

]
, Di ,

[
Bi 0
0 I

]
,

and

δxi ,

[
δxv,i
δxc,i

]
, ni ,

[
ωu,i
ν

]
.

Defining eqn. (3) using the terms above, we have

δxi+1 = Ciδxi + Dini. (7)

Performing operations on eqn. (7) (similar to the opera-
tions leading up to eqn. (4)),

δx1 = C0δx0 + D0n0

δx2 = C1δx1 + D1n1

= C1(C0δx0 + D0n0) + D1n1

= C1C0δx0 + C1D0n0 + D1n1

δx3 = C2δx2 + D2n2

= C2(C1C0δx0 + C1D0n0 + D1n1) + D2n2

= C2C1C0δx0+C2C1D0n0+C2D1n1+D2n2. (8)

For i = Fs, and δx0 = 0, the terms in eqn. (8) can be
defined as

wk−1 =


Fs−2∑
i=0

 Fs−1∏
j=i+1

Cj

Dini

+ DFs−1nFs−1 (9)

= Γη.

Let the product of Cj in eqn. (9) be defined as

Cp
j ,

{ ∏p
j=q Cj = Cp · · ·Cq−1Cq for q 6= p

Cq for q = p
(10)

where product operation in eqn. (10) must follow the order
of operations shown in eqn. (8). Let Γ and η be defined as

Γ ,
[
CFs−1

1 D0,C
Fs−1
2 D1, . . . ,C

Fs−1
Fs−1DFs−2,DFs−1

]
η , [n0,n1, . . . ,nFs−1] .

C. Summary
Combining the results from Sections II-A and II-B, the

linear state transition error model over t ∈ [tk−1, tk] is

δxk = Υk−1δxk−1 + wk−1. (11)

with

QD = Cov(wk−1) ∈ Rne×ne

= E 〈ΓηηᵀΓᵀ〉

= E

〈
Γ


η0
η1
...

ηFs−1

 [η0 η1 · · · ηFs−1]Γ
ᵀ

〉

= Γ

 Qd,0

. . .
Qd,Fs−1

Γᵀ, (12)

where Qd,i = ηiη
ᵀ
i . The stochastic properties of eqn. (12)

are well understood, and can be found in Sections 4.7 and
7.2.5.2 of [4].
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