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A B S T R A C T   

Integrated source apportionment and risk assessment of metals is of great importance for contamination source 
control and remediation at the regional watershed scale. To identify metal sources and source-specific ecological 
risks, sediments were collected in the Wen-Rui Tang urban watershed for metal analysis. Risk assessment showed 
considerable and extremely high risk for Cu and Cd with large spatial variation. Positive matrix factorization 
model extracted three main sources with reasonable prediction efficacy for metal concentrations. Due to different 
toxicity coefficients for various metals, the low concentration contribution of source factor 2 (27.2%) contributed 
83.7% of total risk, while a high concentration loading for factor 3 (40.8%) only contributed 4.6% to total risk. 
Predicted source-specific risk was similar to determined risk level for Cr, Ni and Pb; however, Cu and Cd were 
predicted with decreased risk, while Zn had increased risk. Triangular fuzzy number (TFN) coupled with sto-
chastic simulation showed elevated trend in risk simulation for Cd and Cu when compared with determined risk. 
The uncertainties for risk evaluation appear to result from spatial variations in metal concentrations. Source 
apportionment and specific-risk assessment results suggest that different strategies may be required to address 
mitigation of elevated metal concentrations versus ecological risk.   

1. Introduction 

Metal contamination in urban aquatic ecosystems originates from 
various anthropogenic activities related to industrialization and urban-
ization, such as industrial/domestic wastewater, runoff/gas emissions 
and solid-waste disposal. Sediments receive metal contaminations from 
the overlying water column (dissolved and particulate forms) and act as 
a source/sink of metals in aquatic ecosystems (Fan et al., 2020; Ge et al., 
2021). Many studies have reported metal pollutions and sources in 
aquatic ecosystems worldwide, such as Dongting Lake in China (Long 
et al., 2020), Mediterranean coast in Egypt (Keshta et al., 2020) and 
Lake Wigry in Poland (Kostka & Leśniak, 2020). Due to the lack of 
effective removal pathways in riverine sediments, metals tend to accu-
mulate over time thereby increasing toxicological risks in aquatic sedi-
ments. Risks to benthic aquatic organisms and humans occur when 
sediment metals are released to the water column or transferred to food 

web where they are subject to bioaccumulation/biomagnification 
(Geffard et al., 2007). 

Metals are systemic toxicants known to induce multiple organ 
damage, even at low levels of exposure (Tchounwou et al., 2012). Long- 
term exposure to toxic metals causes cell injury and inflammation, 
which may lead to nervous system and brain trauma (Zhao et al., 2018). 
Adverse impacts of metal contamination have been reported worldwide 
and affect millions of humans (Wang et al., 2015). Several studies have 
demonstrated ecological and health risks of metal pollution in recent 
decades. For example, Santos et al. (2020) investigated long-term metal 
contamination in sediments of the Guadiamar River basin (Spain) and 
found decreasing risk due to lower total metal concentrations and an 
increasing incorporation into the residual metal fractions; Jafarabadi 
et al. (2020) investigated toxic metals in the sediment cores of Persian 
Gulf and found decreasing contamination and risk trend towards the 
bottom due to anthropogenic activities. Thus, to support aquatic 
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ecosystem risk management and pollution remediation, it is necessary to 
understand the spatial metal distribution, identify pollution sources and 
evaluate the associated risks of metals in aquatic sediment. 

Metal contamination mainly originates from anthropogenic activ-
ities and comprises various sources such as industry, mining/smelting, 
agriculture, coal burning and traffic (Men, et al., 2020). Multiple 
methods are applied to qualitatively investigate metal source appor-
tionment, which include correlation analysis, principal component 
analysis and regression (Yang et al., 2019; Zhao, et al., 2019). For 
example, Fei et al. (2019) employed a synthesis model using Bayesian 
Maximum Entropy theory and Geographically Weighted Regression to 
determine that Cd contamination in Shanghai soils was mainly derived 
from agricultural activities while Cr originated from natural sources; 
Principal component analysis-multiple linear regression extracted 4 
factors for soil heavy metals in a electroplate factory area (Duan et al., 
2020). These methods can capture common characteristics of potential 
sources; however, they cannot specifically quantify contributions orig-
inating from different sources. 

Positive matrix factorization (PMF), a typical quantitative receptor 
model, has distinct advantage of non-negative constraint in identifying 
source categories and apportioning corresponding contributions for 
priority contaminants and remediation strategies (Yang et al., 2019), 
which has been widely applied for source apportionment of metal 
contamination in the atmosphere, sediment and soil (Jorquera & Bar-
raza, 2013; Wang et al., 2020; Lv, 2019). contamination prevention For 
example, a modified PMF approach was used for source apportionment 
of metals in agricultural soil in Tianjin (China) where it identified irri-
gation and atmospheric deposition as the two main pollution sources 
having contributions of 26.6% and 19.6%, respectively (Wu et al., 
2020); Duan et al. (2020) showed better prediction of soil heavy metals 
by PMF model than that of principal component analysis-multiple linear 
regression (PCA-MLR) due to mathematical constraints in PCA-MLR 
method. Previous studies have addressed source apportionment and 
quantify contributions from various sources; however, few have 
attempted to evaluate contributions for related risks when carrying out 
metal source apportionment using receptor models like PMF, especially 
for integrated estimation for a link between source apportionment and 
risk assessment. An integrated evaluation incorporating source appor-
tionment and risk assessment using quantitative model is expected to 
address source-specific risk evaluation. This approach allows prioriti-
zation of source control and establishes effective risk mitigations based 
on the potential risk of each source. 

Risk assessment is widely applied to evaluate ecological/health risks 
for metal contamination (Deng et al., 2020; Liu et al., 2020). Potential 
ecological risk assessment model (PER) is commonly utilized to evaluate 
sediment ecological risk for metal pollution. For example, Zhang et al. 
(2019) demonstrated high spatial variability among metals, with most 
sampling sites displaying moderate ecological risk and four sites having 
extremely high risk for Cd in Subei Shoal (China) sediments. Risk 
evaluation in conventional PER is dependent on metal concentrations 
and serves as the basis for ecological risk categorization (Caballero- 
Gallardo, et al., 2020). However, metal concentrations show large 
spatial uncertainty, especially at the watershed/regional scale due to 
inherent spatial heterogeneity, sampling limitations and analytical error 
(Liu et al., 2006; Yan et al., 2019). This uncertainty can result in 
considerable bias (underestimation/overestimation) for risk evaluation 
based on limited sampling for metal concentrations at the watershed 
scale (Mukherjee et al. 2020). 

The objectives of this study are to: (i) develop an integrated source- 
specific risk approach incorporating source apportionment and ecolog-
ical risk estimation; (ii) quantify contributions from different source 
categories to metal concentration and source-specific risk; (iii) evaluate 
the uncertainty in risk assessment by comparison of calculated and 
simulated results. Our previous study focused on spatial distribution and 
quantitative source apportionment for metal content (Xia et al., 2018). 
This study emphasizes both the link and difference of contributions for 

specific sources in metal concentrations and related ecological risks. In 
addition, the integrated uncertainty assessment is expected to address 
the limitation, accuracy and further implication for risk assessment. 
Results of this study is expected to provide systematic and integrated 
information on metal contamination sources and source-specific risks to 
guide metal pollution remediation and risk management at the water-
shed/regional scale. 

2. Material and methods 

2.1. Study area and sampling sites 

This research was conducted in the urban Wen-Rui Tang River 
watershed, which is located in the rapidly industrializing city of 
Wenzhou, East China. The Wen-Rui Tang River has a drainage area of 
740 km2 and a river network of 1178.4 km. The river system plays an 
important role in irrigation, drainage, aquaculture, transportation and 
industrial water supply, thereby making an important contribution to 
the local economy. The industrial structure of small workshops in 
Wenzhou used to make essential contribution to local economy. How-
ever, distributed workshops produced a great deal of untreated waste 
water containing mass contaminants and have been discharged directly 
into native river system due to a lack of effective source control and 
legislative regulations, resulting in metal accumulation in sediments. 

We selected 39 sites within the river system for surface sediment 
collection (range: 120◦35′E ~ 120◦47′E, 27◦55′N ~ 28◦2′N) and these 
sites were coordinated with provincial and municipal sites for water 
quality monitoring (Fig. 1). Surface samples (0–15 cm) were collected 
from mid-channel in March 2017 using a clamshell bucket sampler; 
three samples were collected, mixed and subsampled to obtain a single 
composite sample for each site. The well-mixed samples were sealed in 
clean polyethylene bags, transferred to the laboratory and stored at 
− 80 ◦C. Samples were freeze-dried and ground to pass a 18-mesh nylon 
sieve in preparation for chemical analysis. 

2.2. Metal analysis 

Sediments were digested by a mixed acid (HNO3-HCl-HF-HClO4) for 
total metal determination (Jaworska et al., 2020). Total Cu and Zn 
contents in the digested extracts were determined by atomic absorption 
spectrometry (PinAAcle 900, Perkin-Elmer), while total Pb, Cd, Cr, Co, 
and Ni in the digested extracts were determined by inductively coupled 
plasma mass spectrometry (Agilent 8800 ICP-MS, Agilent Technologies). 
The GBW-07312 reference sediment was used (Chinese Academy of 
Geological Sciences) for quality control; recoveries for total metal were 
89 ~ 107%. Duplicate samples were analyzed for all samples and had a 
relative standard deviation of ± 5%. 

2.3. Positive matrix factorization 

Positive matrix factorization (PMF) is a typical receptor models that 
is widely applied for pollution source apportionment (Dash et al., 2020; 
Saggu & Mittal, 2020). The original pollution data array is factorized 
into two matrices using the PMF model (Norris et al., 2014): 

xnm =
∑p

k=1
gnkfkm + enm  

wherexnm is the total metal content matrix; n is nth sample; m is metal m; 
gnk is kth contribution to the sample; fkm is the factor profile matrix; and 
enm is residual error matrix. The PMF model sets non-negative con-
straints for contributions and factor profiles. 

To minimize the residual matrix and satisfy the optimal solution for 
obtaining the optimum number of source factors, object function Q was 
calculated to determine a minimum value (Capozzi et al., 2018): 

F. Xia et al.                                                                                                                                                                                                                                      
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Q =
∑i

n=1

∑j

m=1
(
enm

unm
)

2  

where unm is the uncertainty for metal m for sample n, calculated as: 

unm =

⎧
⎪⎪⎨

⎪⎪⎩

5
6
× MDL xnm ≤ MDL

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σm × xnm)
2
+ (0.5 × MDL)2

√

xnm > MDL  

where σm is the relative standard deviation for metal m. 
We used PMF software from USEPA (ver. 5.0) (http://www.epa.gov) 

to quantify metal sources in the Wen-Rui Tang watershed. 

2.4. Potential ecological risk assessment 

Potential ecological risk index (PER) is used to evaluate metal 
ecological risk and the nth metal is calculated as (Hankson, 1980): 

En =
cm

bm
× tm  

where cm and bm are the concentrations of metal m in sample and 
background; tm is the biological toxicity factor of metal m. Potential 
ecological risk is classified into five categories according to calculated En 
values (Negahban et al., 2021): low (En < 40), moderate (40 ≤En < 80), 
considerable (80 ≤En 〈160), high (160 ≤En 〈320), and very high (En ≥

320). 
In this study, PMF result is incorporated with PER to achieve source- 

specific ecological risk, as well as quantitative contribution for risk 
assessment from each source. 

2.5. Uncertainty analysis for risk assessment 

Due to insufficient information and inaccuracies in sampling/ 
analytical methods, there is inevitably uncertainty within risk assess-
ments (Liu et al., 2006). We used the triangular fuzzy number (TFN) 
method to determine uncertainty information for risk assessment. A 
fuzzy number A is within real number field R, and its membership 
function is defined as (Yang et al., 2018): 

A =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 x < a1orx > a 3
x − a1

a2 − a1
a1 ≤ x< a 2

a3 − x
a3 − a2

a2 ≤ x< a3 

a1, a2 and a3 are all real numbers and a1 ≤ a2 ≤ a3. a1, a2 and a3 are 
the lower, expected and upper value of the fuzzy number A. They are 
defined as follows: 

a1 = Max(x − 2σ,minx), a3 = x, a3 = Min(x+ 2σ,maxx),

where x and σ are the average and standard deviation of data x. 
Then the triangular fuzzy number function was transformed as fol-

lows to obtain the probability density function for simple calculation: 

fA(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 x < a1orx > a 3

2(x − a1)

(a2 − a1)(a3 − a1)
a1 ≤ x< a 2

2(a3− x)
(a3 − a2)(a3 − a1)

a2 ≤ x< a3 

An inverse transformation was used to provide stochastic simulation 
of × values, which were related to metal concentrations in this study. 
The possible values for metal concentration × were as follows: 

x =

⎧
⎪⎪⎨

⎪⎪⎩

a1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[u(a2 − a1)(a3 − a1)]

√
u ≤

a2 − a1

a3 − a1

a3 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[(1 − u)(a3 − a2)(a3 − a1)]

√
u >

a2 − a1

a3 − a1  

where u belongs to the uniform random number [0, 1]. In this study, a 
Monte Carlo method was used for stochastic simulation of uniform 
random numbers for [0, 1] by Crystal Ball software (Oracle Inc. USA, 
version 11.1). Then stochastic simulation of metal concentrations for ×
values can be obtained. Finally, simulated potential ecological risk was 
calculated according to En and compared to determined values to assess 
risk uncertainty in this study. 

Fig. 1. The location of sampling sites (n = 39) in the Wen-Rui Tang River watershed.  

F. Xia et al.                                                                                                                                                                                                                                      
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3. Results and discussion 

3.1. Metal concentrations and potential ecological risk (PER) assessment 
in sediments 

Mean and median concentrations of metals in riverine sediment all 
exceeded local soil background concentrations in this region (Table S1). 
Relative to background concentrations, mean and median concentra-
tions were highest for Cd (~100 × times and ~ 10 × times, respec-
tively), followed by Zn and Cu (~10 × times and ~ 5 × times, 
respectively) and Pb, Cr and Ni (both 2 ~ 3 × times). The coefficient of 
variation (CV), reflecting the spatial variations of metal concentrations 
was greater than 200% for Cd and Cu, indicating some extreme ‘hot 
spots’ for these metals in the study region. The summary indicates that 
riverine sediments in the Wen-Rui Tang watershed were heavily 
contaminated by metals. 

Based on total metal concentrations, potential ecological risks (PER) 
were assessed. The overall PER values for Cu, Zn, Pb, Cd, Cr and Ni in the 
riverine sediments ranged as 5–779, 2–70, 5–84, 60–55338, 2–10, and 
5–30, respectively (Fig. 2). ECr and ENi values were all<40, indicating 
low risks for these two metals. For EPb, 38 of the 39 samples were 
identified as low risk and a single sample showed moderate risk. Zn was 
similar Pb with only 2 samples showing moderate risk. Cu had 28 sites 
with low risk, 10 with moderate risk and 1 site with very high ecological 
risk. All site showed moderate to very high risk for Cd, and more than 
half were identified as very high risk. The mean values for PER ranked as 
follows: Cd (3121.0) > Cu (47.4) > Pb (15.0) > Zn (12.5) > Ni (11.9) >
Cr (4.4). 

The combined metal concentration statistics and risk assessment 
results identified Cd as severely contaminated rendering it a priority for 
risk management. Although Zn was detected with high concentrations in 
sediment, it was classified by PER as low risk due to its low biological 
toxicity coefficient. This is similar to the findings of Fang et al. (2019) 
that found high Zn concentrations showed low risk in an urban water-
shed. Cu was identified with high contamination and showed moderate 
risk in the study region. Although, Cu concentration was much lower 
than Zn, it was assigned a moderate toxicity coefficient of 5, which 
resulted in a higher risk than Zn. Combined with previous spatial 
investigation of metal distribution (Xia et al. 2018), the primary sources 
of metal pollution in the Wen-Rui Tang watershed were identified as 
industrial wastes and wastewater derived from electroplating, printing/ 
dyeing, and chemical and synthetic leather manufacturing. Research has 
demonstrated that industrial emissions are a dominant source of metal 
contaminations in riverine sediments worldwide (Tian et al., 2020; 
Lopes et al., 2014). The high CV value for metals, especially for Cd and 
Cu with high risk factors, strongly implicated anthropogenic activities as 

the source of metal contamination (Laribi et al., 2017). 

3.2. Source apportionment for metal concentrations and ecological risk by 
PMF model 

The PMF model was used to predicate metal concentrations and 
model efficacy was assessed by comparing predicted versus measured 
metal concentrations. The r2 coefficient between measured and pre-
dicted concentrations ranged from 0.521 to 0.999, indicating a reason-
able prediction ability of the PMF model (Table 1). Cd, as the most 
prominently contaminated metal in riverine sediments, was determined 
with an r2 coefficient of 0.999, which was followed by Cu (0.961), Zn 
(0.895), Pb (0.883), Ni (0.563), and Cr (0.521). These r2 coefficients are 
similar to the results from previous studies using PMF model for metal 
concentration prediction (Yang et al., 2019; Kolakkandi et al., 2020). 
Combined with the pollution levels and risk assessment results, metals 
identified with high pollution levels and risks had a stronger predict-
ability in the study region. This was similar with Hu et al. (2020), who 
found high Cd concentrations in sediments showed high r2 with pre-
dicted values by the PMF model. As a result, the PMF model was deemed 
applicable for metal contamination prediction in the Wen-Rui Tang 
watershed. 

We extracted three optimal factors with minimum Q value charac-
terizing the metal pollution sources by PMF and the factor contributions 
to each metal are summarized in Fig. 3. Overall, Factor 1, 2 and 3 
accounted for 32.0%, 27.2% and 40.8% of the metal contents in the 
riverine sediments (Table 2). Factor 1 was dominant for Cu (74.1%) 
along with an appreciably contribution for Zn (42.5%) and lower con-
tributions for Pb, Cr and Ni (~20.0%). Notably, only a 6.5% proportion 
of Factor 1 was identified for Cd concentration. Factor 2 was dominantly 
loaded by Cd and the contribution reached more than 90%. In contrast, 
Factor 2 showed only ~ 6% loading for Cr and Ni concentrations. Lead, 
Cr and Ni showed a predominant loading on factor 3 with proportions 
exceeding 50%. We interpret the metal source contributions for Factor 1 
as originating from agricultural sources, while Factor 2 showed a 
stronger relationship to industrial source, as our previous result showed 
similar spatial distribution between source factors and land use in this 
region (Xia et al., 2020). Due to the low contaminations and risk levels 
for Cr and Ni, we speculate that the Factor 3 related source is from a 
mixture of natural and traffic (Dong et al., 2019). More detailed infor-
mation about PMF input/output and source profiles in the study area is 
available in Xia et al. (2020). 

Factor contributions to potential ecological risk (PER) were different 
from contributions to metal concentrations by the PMF factors (Table 2). 
Factor 2 was the dominant contribution to risk comprising 83.7% of the 
total contribution, while it only contributed 27.2% to metal concen-
trations. In contrast, Factor 1 and Factor 3 contributed only 11.7% and 
4.6% to ecological risk, respectively. Notably, Factor 3 provided the 
largest contribution to metal concentration (40.8%), but the lowest 
contribution to ecological risk (4.6%). 

Based on PMF results, the predicted risk was calculated and 
compared to determined risks (Fig. 2 and Table S2). The determined 
versus predicted risks for Cr, Ni and Pb were consistent; Cu, Zn and Cd 
showed some difference. Predicted risk for Cu was reduced due to an 

Fig. 2. Potential ecological risk for metals in sediment.  

Table 1 
Linear regression results for concentrations of selected metals by Positive Matrix 
Factorization.  

Heavy metal r2 Intercept Slope 

Cu 0.961* − 0.176 0.984 
Zn 0.895 − 90.624 0.976 
Pb 0.883 21.354 0.654 
Cd 0.999 − 0.033 1.023 
Cr 0.521 79.837 0.505 
Ni 0.563 38.671 0.465  

* An outlier (~30 × mean value) was excluded in the regression. 

F. Xia et al.                                                                                                                                                                                                                                      
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appreciable underestimation for one site having very high risk. Simi-
larly, one site determined to have very high risk for Cd was predicted to 
have high risk based on the PMF model. The risk level for Zn was 
increased due to one site receiving an elevated risk level, from moderate 
to considerable. 

Spatial distribution of predicted PER values providing a useful tool 
for prioritizing metal pollution remediation (Fig. 4). Medium risk was 
predicted for Cu in the southwest portion of the watershed, while the 
remaining region displayed low risk. Notably, the spatial variation in 
PER values showed some differences compared to the spatial distribu-
tion in Cu concentration. An extremely high Cu concentration (5092 mg 
kg− 1) was identified at Site B18, but the model predicted concentration 
was reduced to 346.5 mg kg− 1, resulting in the difference between 
concentration and predicted risk distribution. Only a single site showed 
moderate/considerable predicted risk for Pb/Zn in the southwest 
portion, and the remaining showed low risks. There was low risk for Cr 
and Ni predicted across the entire study region. In contrast, a large 

portion of the watershed received high to very high predicted risk for Cd. 
The relatively high toxicity coefficient assigned to Cd was the primary 
basis for its high risk in the watershed. 

Due to the contrasting metal toxicity coefficients, the high propor-
tion of source Factor 1 (32%) and Factor 3 (40.8%) for metal concen-
trations showed a contrastingly low contribution to ecological risk 
(11.7% and 4.6% respectively). In contrast, while Factor 2 (27.2%) 
demonstrated a low contribution for metal concentration, it was the 
dominant contribution to ecological risk (83.7%). For example, Factor 2 
showed a predominant contribution to Cd, which was assigned a high 
toxicity coefficient (30), resulting in the high contribution for predicted 
ecological risk (Fig. 3). In contrast, Factor 3 made significant contribu-
tions to Pb, Cr and Ni concentrations, but the low toxicity coefficients for 
these metals lead to a low contribution of Factor 3 for the predicted 
ecological risk. These results were similar to Yang et al. (2020), who 
identified low contributions for metal concentration but high contribu-
tions to total cancer risk due to Cd. When combined with our previous 
work (Xia et al., 2018), Zn and Cu were determined to display severe 
contamination within the Wen-Rui Tang watershed, but only presented 
moderate risks in the western portion based on PMF prediction. As a 
result, special attention should focus on source control for reducing both 
metal concentrations and ecological/human risks from different metal 
sources. The PMF model results for source apportionment provide an 
effective tool to facilitate determination of appropriate predictive met-
rics at the watershed scale. 

Fig. 3. Contributions from three extracted factors by PMF model for various metals.  

Table 2 
Source contributions to metal concentrations and potential ecological risk in 
riverine sediments (%).   

Factor 1 Factor 2 Factor 3 

Metal concentrations 32.0 27.2 40.8 
Potential ecological risk 11.7 83.7 4.6  

F. Xia et al.                                                                                                                                                                                                                                      
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Our previous studies have quantitatively showed metal sources in the 
Wen-Rui Tang watershed and also evaluated the regional ecological 
risks. These studies revealed various metal origins and each contribution 
to metal pollutions in sediments. However, these results can provide 
little reference for reasonable risk assessment and management ac-
cording to the contribution to metal content. The integrated source-risk 
assessment in this study is a supplement for metal source apportionment 
in regional scale to better understand source originated ecological risks. 

3.3. Uncertainty analysis for ecological risk assessment 

Due to inevitable sampling and analytical limitations/errors, the 
measured metal concentrations were parsed into concentration intervals 
by TFN to reduce uncertainty in risk assessment (Table 3). The fuzzifi-
cation of metal concentrations were stochastically simulated by Oracle 
Crystal Ball software with 100,000 Monte Carlo simulation to acquire 
convergent results. The PER analysis using TFN-simulated ecological 
risk was compared with determined result (Table S3). Cr and Ni, which 
were identified with low risk, showed little difference between 

determined and TFN simulated results. The simulated and determined 
mean values for Zn all showed low risk; however, the simulated 
maximum value for Zn (39.2) indicated low risk while the determined 
maximum value implied moderate risk. A similar inconsistency occurred 
for Pb with the determined maximum value classified as considerable 
risk while the simulated risk was moderate. Although, determined and 
simulated showed similar extremely high ecological risk levels for Cd 
showed, the statistics showed some uncertainty for Cd. As showed in 
Table S3, mean and median values for ecological risk was highly 
elevated after TFN simulation. A considerable difference was identified 
for Cu, with the determined mean and median values identified as 
moderate and low risk, respectively, compared to considerable risk 
based on the simulated values. Similarly, the determined maximum Cu 
value was identified as very high risk compared to a simulated high risk. 

The frequency distribution for each risk level was further analyzed 
for each metal (Table 4 and Fig. 5). Overall, the integrated ecological 
risk level for investigated metals by TFN simulation followed: Cd > Cu 
> Pb ≈ Zn = Cr = Ni. Zn, Pb, Cr and Ni were simulated with low risk, due 
to their dominance of values falling in the low risk level. Cu was 

Fig. 4. Spatial distribution of predicted potential ecological risk (PER) for metals in riverine sediments from PMF model.  

Table 3 
Triangular fuzzy numbers for metal concentrations in riverine sediments of the 
Wen-Rui Tang River watershed (mg kg− 1).  

Metal Sample Background 

Cu (29.5, 310.1, 1899.3) 32.7 
Zn (263, 1362, 4285) 109 
Pb (34.5, 115.3, 326.3) 38.4 
Cd (0.34, 17.7, 123.8) 0.17 
Cr (94.2, 192.7, 345.3) 88.1 
Ni (38.1, 89.0, 167.8) 37.4  

Table 4 
Potential ecological risk evaluation results for TFN simulation.  

Metal Percentage for each risk level (%)(low, moderate 
considerable, high, very high) 

Category 

Cu (10.3, 26.1, 39.3, 24.3, 0) considerable 
Zn (100, 0, 0, 0, 0) low 
Pb (99.4, 0.6, 0, 0, 0) low 
Cd (0, 0, 0, 0.1, 99.9) very high 
Cr (100, 0, 0, 0, 0) low 
Ni (100, 0, 0, 0, 0) low  
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simulated with a 10.3%, 26.1%, 39.3%, and 24.3% distribution among 
the low, moderate, considerable and high risk categories. Based on a 
simple calculation (percentage × risk level threshold) for each metal risk 
category, Cu was categorized as considerable risk by TFN simulation. Cd 
was unique among metals showing 99.9% proportion at very high risk, 
leading to a very high risk level by TFN simulation. 

The ecological risk for Cu and Cd were elevated after TFN simulation, 
demonstrating some uncertainty in the risk assessment for these two 
metals. This uncertainty may be associated with the high spatial varia-
tion (CV) of Cd (300%) and Cu (257%). In contrast, the remaining 
metals had similar risk frequency distributions between determined and 
simulated risk, as well as much lower spatial variability in metal con-
centrations (CV = 44 ~ 107%). This indicates that the uncertainty for 
ecological risk assessment is primary related to the large spatial varia-
tion of metal concentrations within the watershed. Researchers have 
reported that the spatial variability can be affected by intrinsic and 
extrinsic factors, leading to uncertainty in risk assessment (Liu et al., 
2006; Zhao et al., 2020). Although, none to low ecological risk was 
simulated for Zn throughout the watershed, risk management for metal 
pollution hotspot is still needed, along with considerations for differ-
ences in metal fractions that affect metal bioavailability to organisms. 

3.4. Limitation and prospect 

Metal in sediments are complex due to its spatial and temporal 
migration process from various sources to sediments, which are both 
controlled by natural and anthropogenic activities. Based on metal 
contents in sampling sites, this study incorporated the PMF model and 
PER risk assessment to explore source specific ecological risk for 
watershed scale. These results help to understand the spatial variation of 
source originated risk, as the supplementary of source apportionment 
for metal concentrations. However, the limited observations seem 
inadequate for spatial source originated risk. Thus, regional emission 
inventory is of great importance to demonstrate the accuracy of spatial 
distribution from source-specific risk assessment by the PMF model. In 
addition, long-term monitoring is in need to have insight into temporal 
variation for source specific risk, which would prove efficiency of 
environmental policy and metal pollution management. 

4. Conclusions 

PER analysis for sediments in the Wen-Rui Tang watershed demon-
strated variable levels of metal contamination risk, with Cd identified as 

having extremely high ecological risk. The PMF model provided 
reasonable predictions for metal concentration and three main source 
factors were extracted as Factor 1 (32%, agricultural source), Factor 2 
(27.2%, industrial source) and Factor 3 (40.8%, a mixture source of 
nature and traffic). However, the source-specific risk evaluation results 
were inconsistent with the source contribution factors for metal con-
centration; risk contribution factors were Factor 1 (11.7%), Factor 2 
(83.7%) and Factor 3 (4.6%). Cd showed a 93.5% loading on Factor 2 for 
concentration and was assigned a high toxicity coefficient, resulting in 
an 83.7% contribution to total potential ecological risk. The predicted 
source-specific risk from the PMF model showed similar levels with 
determined risk for Cr, Ni, and Pb. However, Cu and Cd had decreased 
predicted risk, while Zn had increased predicted risk. Source-specific 
risk for Cr, Ni, Zn and Pb showed similar spatial distributions with 
low risk. In contrast, predicted results for Cd showed extremely high risk 
throughout most of the watershed. Cu was identified with moderate risk 
in the southwest portion of the watershed with the remaining region 
having a low risk. TFN simulated results for Cr and Ni were similar to 
determined risks, and were consistent with the PMF predicted result. In 
contrast, the large spatial variation associated with Cu and Cd resulted 
in TFN simulated risks showing some inconsistency with determined 
results. These differences highlight potential uncertainties with metal 
risk assessment at the watershed scale. Results from this integrated 
specific-risk analysis provide important information for prioritization of 
metal source control and remediation at the watershed scale. 
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