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ABSTRACT OF THE DISSERTATION

“Super-approximation” in Absolutely Almost Simple Groups Over the
Field of Rational Functions with Coefficients in a Finite Field

by

Brian M. Longo

Doctor of Philosophy in Mathematics

University of California, San Diego, 2016

Professor Alireza Salehi Golsefidy, Chair

Let p be a prime number greater than 5, and let q0 be a fixed power of p. Let

Fq0(t) be the field of rational functions with coefficients in the finite field Fq0 of order

q0. Let Ω ⊂ GLn(Fq0(t)) be a finite symmetric set and let Γ be the group generated

by Ω. Suppose the Zariski closure, G, of Γ is absolutely almost simple and simply

connected, and that the ring generated by the set Tr(Ad Γ) is all of Fq0 [t, 1/Q0] where

Q0 is a common denominator of the entries of the matrices in Ω. Then there exists a

xii



positive constant ε > 0 depending only on G such that the set of Cayley graphs,

{Cay(πQ(Γ), πQ(Ω))},

forms a family of ε-expander graphs as Q ranges through a suitable subset of the

square free polynomials that are coprime to Q0.
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Chapter 1

Introduction

Let k be a positive integer. Let G be a finite, undirected, k-regular graph with

vertex set V (G) and edge set E(G). For any two vertices v and w of G, we say w ∼ v

if and only if w is connected to v. For two subsets A and B of the vertices of G, let

E(A,B) = {e = {v1, v2} ∈ E(G)|v1 ∈ A, v2 ∈ B}

be the set of edges between A and B. Define the Cheeger constant, h(G), of G by

h(G) = min
∅6=X⊂V (G)

|E(X, V (G) \X)|
min{|X|, |V (G) \X|}

.

The Cheeger constant of a graph gives us a way to quantify the connectivity of

a regular graph.

Definition 1. Let ε be a positive real number. Then G is called an ε-expander

graph if h(G) > ε. A family of regular graphs, {Gi}i∈I , is called a family of ε-

expander graphs, or simply a family of ε-expanders, if infi∈I h(Gi) > ε. That is,

1
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if the Cheeger constants h(Gi) are uniformly bounded away from zero by ε.

The notion of an expander graph was originally defined by Pinsker [Pin73]

and who studied these graphs with applications in computer science. The notion of

expander graphs has since gained popularity due to its wide reaching applications in

both pure and applied mathematics. For an overview of expander graphs see [HLW06]

and [Lub12].

1.1 Expander graphs and random walks

For our purposes, it will be more convenient to interpret the notion of ε-

expander graphs in terms of random walks on the graphs. Let k be a fixed positive

integer and let G be a finite k-regular undirected graph on n vertices. Fix an ordering

{v1, . . . , vn} of the vertices of G and let AG = (ai,j) be the corresponding adjacency

matrix of G. That is, AG is the n×n-matrix whose entry in the (i, j) position is equal

to |E(vi, vj)|. We often view the matrix 1
|V (G)|AG as a linear operator AveG on the

space L2(V (G)) of real valued functions on the vertices of G by fixing the ordered basis

{δvi}ni=1 of L2(V (G)), where for each i = 1, . . . n, δvi is the Kronecker delta function

supported on vi,

δvi(v) =

 1 if v = vi

0 if v 6= vi.

The action of AveG can be described by the formula

AveG f(v) =
1

|V (G)|
∑
w∼v

f(w), ∀v ∈ V (G), f ∈ L2(V (G)).
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In other words, AveG f(v) is the average of f on the neighbors of v. For this reason, we

call AveG the averaging operator on L2(V (G)). Since G is undirected and k-regular,

one sees that AveG is a real, self adjoint operator. Therefore, AveG has real eigenvalues

−1 ≤ λn−1 ≤ λn2 ≤ · · · ≤ λ1 ≤ λ0 ≤ 1.

It is easy to see (see for example [Chu97, Lem. 1.7]) that

1. λ0 = 1 with corresponding eigenfunction 1V (G), where 1V (G)(v) = 1 for all

v ∈ V (G).

2. λ1 < 1 if and only if G is connected,

3. λn−1 = −1 if and only if G is bipartite.

Keeping in mind that h(G) quantifies the “connectedness” of G, property 2

indicates a relationship between the spectrum of AveG and h(G). To understand this

connection, we introduce the notion of a uniform random walk on G.

Definition 2. [Chu97, §1.5] An `-step walk w on G is a set of vertices {wi}`i=1 with

the property that wi ∼ wi+1 for each i = 1, . . . , `. A random walk on G is determined

by the transitional probabilities P(wi+1 = u|wi = v) = 1/k.

A random walk on G is a Markov chain with Markov transition matrix AveG.

In the special case that G is connected and nonbipartite, any random walk w with

initial probability distribution µ converges to the uniform distribution and the speed

of convergence is dictated by λG = maxi=0,...,n−1:|λi|6=1{|λi|}. Note, however, that

no random walk starting at a given vertex v on a bipartite graph can converge to

the uniform distribution since consecutive steps in any walk lie in opposite of the
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bipartition. Similary, no random walk starting at a given vertex v on a disconnected

graph converges to the uniform probability measure since any step of a random walk

on a disconnected graph is fully supported on only one connected component. For

this reason, we will mainly focus on connected, nonbipartite graphs.

It is intuitively clear that if the graph G is “highly connected”, then a random

walk on G should equidistribute quickly since there are many ways to get from any

one vertex to another. In other words, one should expect that if h(G) is large, then

λG is small. Figure 1.1 illustrates this principle. The diagram in Figure 1.1 shows

the first four steps of a uniform random walk starting at the top vertex. The number

in each vertex is the probability of landing on that vertex after a uniform random

walk of the indicated number of steps. The graph on the left is cyclic while the graph

on the right is complete. In this case, we see that after four steps the probability of

landing at any given vertex after a four step uniform random walk on the complete

graph is much closer to 1/5 than on the cyclic graph.

In either of the cases in Figures 1.2 and 1.3, the l-step of a random walk cannot

converge to equidistribution as l tends towards infinity.

In fact, the condition that G is an ε-expander graph is equivalent to the existence

of a gap is the spectrum of the averaging operator. More precisely, a k-regular graph

G is an ε-expander graph for some positive constant ε if and only if λG < 1− ε′ for

some positive constant ε′ (see [Dod84], [Alo86], [AM85]).
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Step 0

Step 1

Step 2

Step 3

Step 4

Figure 1.1: Connectivity and equidistribution of random walks
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Step 0 Step 1

Step 2 Step 3

Figure 1.2: Random walk on a bipartite graph

Step 0 Step 1

Step 2 Step 3

Figure 1.3: Random walk on a disconnected graph
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1.2 Examples of families of k-regular ε-expander

graphs

We consider the case where {Gi}i≥1 is a family of k-regular graphs where the

sequence of positive integers {V (Gi)}i≥1 tends to infinity. It seems counter intuitive

that any such family of graphs could be a family of expanders. On the one hand, we

require that each graph has a high degree of connectivity, but on the other hand we

are requiring the graph to be very sparse in the sense that each vertex has a bounded

number of neighbors. However, the work of Pinsker [Pin73] and of Barzdin-Kolmogorov

[BK67] provides a random model of k-regular graphs with the property that there

exists a positive constant ε such that these graph are asymptotically almost surely

ε-expanders. Historically, explicit examples of families of expander graphs have been

difficult to construct. The earliest constructions, which are due to Margulis, arose

as Cayley-Schreier graphs of lattices of Lie groups of higher rank. Let us state the

following definitions:

Definition 3 (Cayley-Schreier Graphs). Let G be a finite group, H a subgroup of G,

and Ω a symmetric subset of G. The Cayley-Schreier graph, Sch(G,H,Ω), of G

with respect to H and Ω is defined to be the graph whose vertices coincides with the

coset space G/H, where the vertices gH and g′H are connected exactly when there

exists an element ω ∈ Ω satisfying gH = ωg′H. The Cayley graph, Cay(G,Ω), of G

with respect to Ω is defined to be Sch(G, 〈id〉,Ω).

Definition 4 (Kazhdan’s Property (T) for discrete groups). Let Γ be a finitely

generated discrete group and Ω ⊂ Γ be a finite set of generators. Γ is said to have

Kazhdan Property (T) if there exists a constant ε > 0 with the following property:
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Let ρ : Γ → U(H) be a unitary representation of Γ on a Hilbert space H. Suppose

for any nonzero vector w ∈ H there exists γ ∈ Γ such that ρ(γ)w 6= w. Let v ∈ H be

nonzero. Then there exists ω ∈ Ω such that

‖ρ(ω)v − v‖ ≥ ε‖v‖.

In 1973 ([Mar88]), Margulis proved that if Γ = 〈Ω〉 is a group with Kazhdan

property (T), then the family of Cayley graphs

{Cay(Γ/Ni,ΩNi/Ni)}NiCΓ, [Γ:Ni]<∞

is a family of ε-expander graphs for some ε > 0. This, combined with Kazhdan’s 1967

result which states that any lattice Γ in a simple Lie group of real rank at least 2 has

property (T) ([Kaž67]), gave us a fairly rich source of examples.

The question then became: “What can we say about the rank 1 case?” It

turns out that for Γ = SL2(Z), we may only consider the “conguence quotients”,

SL2(Z)/Ker(πp) where

πp SL2(Z)→ SL2(Z/pZ)

denotes the “reduction modulo p” map. Indeed, Selberg’s 3/16th theorem ([Sel67])

implies that if Ω ⊂ SL2(Z) is a finite symmetric subset which generates a finite index

subgroup of SL2(Z), then there exists a positive number ε such that the family of

graphs

{Cay(SL2(Fp)), πp(Ω))}p prime

is a family of ε-expander graphs. Analogous results were proved for any arithmetic
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group. These results are due to a large number of mathematicians. Notably, Burger-

Sarnak proved a sort of reduction process that implies the above statement for any

arithmetic lattice of a simple algebraic Q-group that contains a copy of SL2 [BS91]

and Clozel proved the result for the remaining cases [Clo03].

Lubotzky questioned whether or not the result is true when Ω generates a thin

subgroup of SL2(Z), i.e., a subgroup of infinite index which is dense in the Zariski

topology. In particular, his famous “1-2-3” problem asks if families of graphs

{Cay(SL2(Fp), πp(Ωi))}p>3 prime

form a family of expanders where

Ωi :=


1 ±i

0 1

 ,

 1 0

±i 1


 , i = 1, 2, 3.

Here, Ω1 generates SL2(Z) while Ω2 generates a finite index subgroup. Ω3, however,

generates a thin subgroup of SL2(Z). The “1-2-3” problem was settled by the ground-

breaking work of Bourgain and Gamburd in 2008 [BG08b] where they showed that

for a subset Ω of SL2(Z), the family of graphs

{Cay(SL2(Fp), πp(Ω)}p prime

is a family of expanders if and only if 〈Ω〉 is has no finite index solvable subgroups.

Their method of proof, the so called “Bourgain-Gamburd Machine,” has proven to

be quite versitile and has since been used, for example, in [BG08a], [BG09], [BGS06],

[BGS10], [Var12], and in [SGV12] where the last pair of authors found necessary
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and sufficient conditions for such a contruction to yield a family of expander graphs.

Namely, they proved the following:

Theorem 5 (Thm. 1 [SGV12]). Let Γ ⊂ GLd(Z[1/q0]) be the group generated by a

symmetric set Ω. Then

{Cay(Γ/Γ(q),ΩΓ(q)/Γ(q)},

where Γ(q) := Ker(Γ→ Γ(mod q)) is the kernel of the reduction modulo q map, is a

family of expander graphs as q ranges over the square free integers coprime to q0 if

and only if the connected component of the Zariski-closure of Γ is perfect.

This type of result has come to be known as “super-approximation”1 as it is

a quantitative version of strong approximation in the sense of [PR94, Ch. 7]. Its

applications in mathematics have proven to be deep and diverse; including: Appolonian

circle packing, homogeneous dynamics, Zaremba’s conjecture, and affine sieving (see

[BO14] for an overview).

To date, not much has been shown for the analogous “super approximation”

question in positive characteristic (See [Bra15] for the case of SL2).

1.3 Statement of the main result

Let p > 5 be a fixed prime number and let q0 be a fixed power of p. Let Fq0

be a field of order q0, Fq0 [t] the polynomial ring with coefficients in Fq0 , and Fq0(t)

its field of fractions. For the remainder of this paper we fix a finite symmetric set

Ω ⊂ GLn0(Fq0(t)), i.e., |Ω| < ∞ and Ω = Ω−1. We set Γ to be the subgroup of

1In the literature, this result is called “superstrong-approximation”. Experts are trying to adopt
the term “super-approximation”.
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GLn0(Fq0(t)) generated by Ω and G the Zariski-closure of Γ. Since Ω is finite, there

exists a common denominator, Q0, of the entries of the matrices in Ω. Hence, Ω, and

Γ are contained in GLn0(Fq0 [t, 1/Q0]). If Q ∈ Fq0 [t] is coprime to Q0, we obtain the

“reduction modulo Q” homomorphism

πQ : Γ→ GLn0(Fq0 [t, 1/Q0]/(Q)) = GLn0(Fq0 [t]/(Q)).

By an abuse of notation, we will write π(−) to denote various reduction homomorphisms

whose meaning will be clear in context.

Let Σ be the set of polynomials Q in Fq0 [t] with the following properties:

1. Q = P1P2 . . . Pk is square free with irreducible factors P1, P2, . . . , Pk and,

2. deg(Pi) 6= deg(Pj) for i 6= j.

For any positive constant c, we define the set

Σc := {Q = P1P2 . . . Pk ∈ Σ | ∀1 ≤ i ≤ k, deg(Pi) has no divisor less than c}.

We will prove the following:

Theorem 6. Let Ω, Γ and G be as above. Assume G is absolutely almost simple

and simply connected. Assume further that the ring generated by the set Tr(Ad(Γ))

is all of Fq0 [t, 1/Q0]. Then there exist a square free multiple Q1 of Q0, and positive

constants c and ε such that

{Cay(πQ(Γ), πQ(Ω))}Q∈Σc, (Q,Q1)=1

forms a family of ε-expander graphs.
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1.4 Basic definitions

In this section we introduce the basic definitions that we will need in the paper.

1.4.1 Affine group schemes

Let R be a commutative Noetherian ring. Note that the definitions in this

section are actually for affine group schemes of finite type. Since these are the

only affine group schemes we will consider, we call them simple affine group schemes

without ambiguity.

Definition 7. A commutative Hopf algebra is a tuple (A,m, e,∆, ε, s) with the

following properties:

(I) (A,m, e) is a commutative associative algebra:

m : A⊗R A→ A, and e : R→ A

are R-linear maps such that the following diagrams commute:

(i) Associativity:

A⊗R A⊗R A A⊗R A

A⊗R A A

m⊗id

id⊗m m

m

(ii) Commutativity:
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A⊗R A A⊗R A

A

a1⊗a2 7→a2⊗a1

m
m

(iii) Existence of identity element:

A R⊗R A A⊗R A

A⊗R R

A⊗R A A

∼=

∼=

id

e⊗id

m

id⊗e

m

m is called multiplication and e is called the identity.

(II) (A,∆, ε) is a coassociative coalgebra:

∆ : A→ A⊗R A, and ε : A→ R

are R-linear maps such that the following diagrams commute.

(i) Coassociativity:

A A⊗R A

A⊗R A A⊗R A⊗R A

∆

∆ id⊗∆

∆⊗id

(ii) Existence of coidentity:
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A A⊗R A R⊗R A

A⊗R A

A⊗R R A

∆

∆

id

ε⊗id

∼

id⊗ε

∼

∆ is called comultiplication and ε is called the coidentity.

(III) ∆ and ε are homomorphisms of R-algberas.

(IV) Existence of an antipodal map:

s : A→ A

is an R-algebra homomorphism that makes the following diagram commute:

A A⊗R A A

R A R

m◦(s⊗id) m◦(id⊗s)

e

ε

∆

ε

e

s is called an antipodal map.

If A is a finitely generated commutative Hopf algebra over R, we consider the

affine scheme G = Spec(A) over Spec(R). The Hopf algbera structure of A gives G

the structure of a group object in the category of affine schemes. We will call G an

affine group scheme over R, or an affine R-group scheme.

Let m : G × G → G be the multiplication morphism on G . For any R-algebra

B, we set

G (B) = HomR−alg(A,B).



15

G (B) is called the set of B-points of G . G (B) has a group structure where multiplica-

tion is defined by

G (B)× G (B)→ G (B) : (f, g) 7→ (a 7→ mB((f ⊗ g)∆(a)).

The assignment B  G (B) defines a functor from the category of R-algebras to the

category of groups called the functor of points of G .

If S is a commutative ring containing R, we can consider the extension of

scalars of G to S,

GS = G ×Spec(R) Spec(S) = Spec(S ⊗R A).

Then GS is an affine group scheme over S. We will sometimes write G ⊗ S in place of

GS.

1.4.2 Affine algebraic groups

We focus on the special case where R = k is a field. Let A be a finitely

generated commutative Hopf algebra over k, and G = Spec(A). Then we say that G

is an affine algebraic group over k, or that G is an affine algebraic k-group, if A is

reduced and smooth. From now on, we will use blackboard bold characters to denote

algebraic groups. Suppose S is a commutative ring and k is an S-algebra. Suppose

there exists an affine group scheme G such that G ⊗S k = G. Then we say that G is a

model of G over S.

Since k is a field, Hilbert’s Basis Theorem implies A is finitely presented. There-

fore, A = k[x1, . . . , xn]/I for some finitely generated ideal I. G is called connected
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if the underlying variety is irreducible. That is, if I is a prime ideal. G is called

simple if it contains no nontrivial normal algebraic subgroup. If G is a simple group,

then G(k) is an almost simple group. I.e., Z(G(k)) is finite and G(k)/Z((G(k))

is simple as an abstract group. An algebraic k-group G is called absolutely almost

simple if G(A) is almost simple for any k-algebra A.

Let R(G) be the identity component of the maximal normal closed solvable

subgroup of G. R(G) is called the radical of G. If R(G) is trivial, G is said to be

semisimple.

Let Ru(G) be the maximal connected unipotent normal subgroup of G. Ru(G)

is called the unipotent radical of G, and G is said to be reductive if Ru(G) is

trivial.

1.4.3 Galois descent

Suppose k is a perfect field.2 Let G and H be two algebraic groups over k with

corresponding Hopf algebras AG, AH over k. Let

φ : G⊗ k → H⊗ k

be a morphism of k-groups. Then φ arises from a k-algebra homomorphism

φ∗ : AH ⊗ k → AG ⊗ k.
2The statements in this section can be generalized to nonperfect fields, but we will not need them

in this paper.
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It is not necessarily true that there exists a k-algebra homomorphism

φ∗k : AH → AG

such that φ∗k ⊗ id = φ∗. When such a k-algebra homomorphism exists, then we have a

homomorphism of affine k-schemes

φk : G→ H.

In this case, we say that φ is defined over k or that φ is a k-morphism and we call

φk a k-descent of φ. One can determine the field of definition of a morphism φ by

means of the absolute Galois group Gal(k/k).

Notice that we have a natural semilinear Galois action on AG ⊗ k given by the

semilinear extension of the map

σ.(a⊗ c) = a⊗ σ(c), ∀a ∈ AG, c ∈ k, and σ ∈ Gal(k/k).

Gal(k/k) acts on AH⊗k similarly. Then φ is defined over k if and only if φ∗ commutes

with the Galois actions on AG ⊗ k and AG ⊗ k. I.e., when σ(φ∗(a1)) = φ∗(σ(a1)) for

each a1 ∈ AG ⊗ k, and each σ ∈ Gal(k/k).
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1.5 Basic facts from algebraic group theory

1.5.1 The Lie algebra of an algebraic group and the Adjoint

action

Let G be an affine algebraic group over a field k. Let k[ε] = k(X)/(X2). k[ε] is

called the ring of dual numbers. Let π : G(k[ε])→ G(k) be the morphism induced

from the morphism k[ε]→ k that send ε to 0. Let Lie(G) = ker(π). Lie(G) is a Lie

algebra over k and is called the Lie algebra of G. For any field k′ containing k,

Lie(Gk′) = k′ ⊗k Lie(G). We will denote the Lie algebra of an algebraic group by the

corresponding Fraktur letter, and we will denote k′ ⊗k g by g(k′).

Notice that we have an exact sequence

0
i→ k → k[ε]

π→ k → 0.

This gives us an inclusion morphism ĩ : G(k)→ g. For any g ∈ G(k), let

Ad(g) : g→ g,

X 7→ ĩ(g)Xĩ(g)−1.

Ad(G(A)) can be defined similarly for any k-algebra A. The assignment g 7→ Ad(g)

for g ∈ G(A) defines an algebraic group homomorphism

Ad : G→ GL(g)

called the adjoint representation of G.
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1.5.2 Algebraic tori

Let Gm = GL1 = Spec(k[X,X−1]) be the multiplicative group. One sees

that Gm has a Z-scheme sctructure given by (Gm)Z = Spec(Z[X,X−1]). Let G be a

k-group. An affine algebraic k-subgroup T of Gk is called an algebraic torus if there

exists an isomorphism

φ : T ∼= (Gm)k × (Gm)k × · · · × (Gm)k.

If T is a torus defined over k, then we say that T is k-split, or that T splits over k if

there exists an isomorphism

φ : Tk ∼= (Gm)k × (Gm)k × · · · × (Gm)k.

Let T be a maximal torus of G. Since T(k) evidently consists of mutually

commuting semisimple elements, the Ad(T(k))-module g(k) has a basis of eigenvectors.

In fact there exists a set Ψ(G,T) of nontrivial algebraic characters α : T → (Gm)k,

α ∈ Φ(G,T) such that

g(k) = Lie(CG(T))(k)⊕
(
⊕α∈Φ(G,T)gα(k)

)

where for each α ∈ Φ(G,T),

gα(k) = {x ∈ g(k)|Ad(t)x = α(t)x ∀t ∈ T(k)}.

The set Φ(G,T) is called the set of roots of T. If G is reductive, then Φ(G,T) is an
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abstract root system in the vector space X(T)⊗Z R where

X(T) = {φ : T→ Gm}

is the group of all algebraic characters of T. Furthermore, if G is reductive, then for

each α ∈ Φ(G,T), dim gα = 1.

Assume G is semisimple. Let Λ1 be the Z-span of X(T) in X(T)⊗Z R, and Λ2

be the Z-span of Φ(G,T) ⊂ X(T) ⊗Z R. Then Λ1 and Λ2 are Abelian groups with

Λ1 ⊂ Λ2. The fundamental group, π1(G), of G is defined to be the quotient Λ2/Λ1.

G is said to be simply connected if π1(G) is trivial, and adjoint if πq(G) is “as

large as possible,” i.e., if Λ2 is equal to the lattice of fundamental dominant weights

of T.

1.6 Notation

Throughout this paper for any group H and a subgroup H, Z(G) is the center

of G, CG(H) is the centralizer of H in G, and NG(H) is the normalizer of H in G

as usual. If G and H are algebraic groups, then these notions are considered in the

category of algebraic groups.

For a subset S of a finite group G, we denote by χS the uniform probability

measure supported on S. I.e.

χS(g) =

 1/|S| : g ∈ S

0 : g /∈ S
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For any two measures µ, ν on G, µ ∗ ν denotes the convolution of µ and ν

(µ ∗ ν)(g) =
∑
h∈G

µ(h)ν(h−1g),

µ(l) denotes the l-fold convolution of µ with itself and µ̃ denotes the measure

µ̃(g) = µ(g−1).

For subsets A,A1, . . . , An of a group G, we write

Πn
i=1Ai := {a1a2 . . . an|ai ∈ Ai}

for the product set of A1, . . . , An and we write

ΠkA := {a1a2 . . . ak|ai ∈ A, 1 ≤ i ≤ k}

for the set consisting of products of k elements of A. We denote by

×ki=1Gi,

the cartesian product of the groups G1, . . . , Gk. We use Vinogradov’s notation x�A y

to mean |x| < Cy for some constant C depending on number the parameter A. For

any constant δ, K = ΘA(δ) means δ �A K �A δ. The subscript will be omitted

from the above notations if either the constant is universal, or if the dependencies are

clear from context. If G = ×iGi is a direct product of groups, we use pri to denote

the projection of G to the ith factor. If J ⊂ I, we identify the group ×i∈JGi with its
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natural inclusion in ×i∈IGi.

For any field k, we denote by k its algebraic closure. For any irreducible

polynomial P ∈ Fq0 [t], we set qP := q0
degP = |Fq0 [t]/(P )|. Throughout this paper

Q0 is a least common multiple of the entries of the matrices appearing in the set Ω

in the statement of Theorem 6, and Q1 is a square free polynomial divisible by Q0

which has the property that the irreducible factors P of Q1 are exactly the irreducible

polynomials P ∈ Fq0 [t] with degP �Ω 1. Throughout the paper, Q1 may be replaced

by a square free multiple at different occurences. Lastly, we note that the bound of

the degrees of the irreducible factors of Q1 is effective.



Chapter 2

Outline of the proof of the main

theorem

Let

χΩ(γ) =


1
|Ω| if γ ∈ Ω

0 if γ 6∈ Ω

be the uniform probability measure on Γ supported on Ω and for each square free

polynomial Q ∈ Fq0 [t] coprime to Q0 let πQ[χΩ] be the induced probability measure

on πQ(Γ). For any probability measure ν on a group G, we denote by ν(`) the `-fold

convolution of ν with itself. As mentioned in the introduction we follow the so called

“Bourgain-Gamburd machine” which was first used in the proof of the main theorem

in [BG08b]. The machine has three main components. First, one must show that a

random walk on Cay(πQ(Γ), πQ(Ω)) has an exponentially small chance of landing in

any coset of a proper subgroup of πQ(Γ). Applying this fact to the trivial subgroup

gives us a nice upper bound on the `2 norm of πQ[χΩ](l) for l ∼ log |πQ(Γ)|. Next, one

shows that we can convolve πQ[χΩ](l) with itself a finite number of times independent

23
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of Q so that the resulting measure is very close to equidistribution in the `2 norm.

Finally, one can use the technique of Sarnak and Xue which first appeared in [SX91] in

which one calculates a trace formula and exploits the fact that there exists a constant

c0 that does not depend on Q such that the groups πQ(Γ) are c0-quasirandom in the

sense of Gowers [Gow08] in order to achieve a uniform upper bound for the second

largest eigenvalue in the spectrum of the adjacency matrices of the Cayley graphs.

This was shown in [AM85] to be an equivalent condition for the family of graphs to

be a family of ε-expander graphs for some fixed ε > 0.

There are two key differences in our problem compared to the previous work

in characteristic zero: the subgroup structure of the groups πQ(Γ) and the fact that

representations of G are not necessarily completely reducible. By Weisfeiler’s Strong

Approximation Theorem the first problem comes down to understanding subgroups

of GP (Fq0 [t]/(P )) = GP (Fq0degP ) where GP is an absolutely almost simple algebraic

Fq0degP -group.

In the characteristic zero setting of [SGV12], one only needs to consider the

subgroup structure of the Fp = Z/pZ points of algebraic Fp-groups. The subgroup

structure of such groups is fully described by Madhav Nori in [Nor87] where it is

shown that every subgroup can be approximated by the Fp points of a proper algebraic

Fp-subgroup. For larger fields, the correct classification is given by Larsen and Pink in

[LP11]. As a corollary of their work we show that if G0 is an absolutely almost simple

group of adjoint type defined over a finite field Fq and if H ⊂ G0(Fq) is a maximal

proper subgroup then either there exists a proper algebraic subgroup H of G0 defined

over the algebraic closure of Fq with H ⊂ H, or there exists a subfield Fq′ and a model
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G1 of G0 defined over Fq′ (i.e., G1 ⊗Fq′ Fq = G0) with

[G1(Fq′) : G1(Fq′)] ⊂ H ⊂ G1(Fq′).

Subgroups of the former type are called structural subgroups while subgroups of the

latter type are called subfield type subgroups. In an attempt to establish the first

step of the “Bourgain-Gamburd Machine” we show that if Q is “nice” and H ⊂ πQ(Γ)

is a proper subgroup with the property that the image of H in πP (Γ) = GP (Fq0degP )

for each irreducible factor P of Q is a structural subgroup, then the set of “small lifts”

of H,

Lδ(H) := {h ∈ G(Fq0 [t, 1/Q0]) | πQ(h) ∈ H and ‖h‖ < [G : H]δ}

is contained in a proper algebraic subgroup of G. Then, we construct a finite set

of irreducible representations of G with the property that any algebraic subgroup

H of G fixes a line in at least one of these representations. It is clear that for any

algebraic subgroup H of G, the line spanned by ∧dimHh in ∧dimHg is stable under

∧dimH AdH but not all of ∧dimH AdG. Unfortunately the representation ∧dimH Ad

is not completely irreducible since G is defined over a field of positive characteristic.

Nevertheless, using the classification of irreducible representations of reductive groups

given in [Jan03] we show that one of the irreducible subquotients of a composition

series of ∧dimHg has the desired property. We then use a “ping-pong” argument to

show that the probability that a word of length l ∼ log |πQ(Γ)| has an exponentially

small chance of fixing a line in any of these representations and therefor the chance

of landing in a subfield type subgroup after a random walk on Cay(πP (Γ), πP (Ω)) is

exponentially small. Namely, we prove:
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Proposition 8 (Escape from proper subgroups). Let Ω, Γ, and G be as in the

hypotheses of Theorem 6. Then there is a symmetric set Ω′ ⊂ Γ, a square free

polynomial Q1 divisible by Q0, and a constant ε depending only on Ω such that the

following holds:

Let Q ∈ Σ and suppose (Q,Q1) = 1. Let H ≤ πQ(Γ) be a proper subgroup with

the property that πP (H) is a structural subgroup of πP (Γ) for every prime factor

P of Q with deg(P )� 1. Then for `� degQ we have

πQ[χ
(l)
Ω′ ](H)� [πQ(Γ) : H]−ε.

Since the trivial subgroup is of structural type, we already get a nice bound

on the `2-norm of πQ[χΩ]. By adapting the proof of Varjú in [Var12], we show that

second step of the “Bourgain-Gamburd machine” holds so long as the degrees of our

polynomials have no small divisors. Namely:

Proposition 9 (l2-flattening). Let Ω, Γ, and G be as in the hypotheses of Proposition

8. Then for any ε > 0 there exists positive constants δ and c depending on G, Ω, and

ε with the following property:

Let Q ∈ Σc and suppose (Q,Q1). Let Ω′ be the symmetric set given in Proposi-

tion 8. Suppose

|πQ(Γ)|−1/2+ε < ‖πQ[χ
(`)
Ω′ ]‖2, and πQ[χΩ′(`) ](gH) < [πQ(Γ) : H]−ε

for all g ∈ πQ(Γ) and any proper subgroup H < πQ(Γ) with the property that πP (H)
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is a structural subgroup of πP (Γ) for every irreducible factor P | Q with. Then

‖πQ[χ
(2`)
Ω′ ]‖2 < ‖πQ[χΩ′ ]‖1+δ

2 .

The idea is that if we cannot get the `2-norm of πQ[χΩ] to “flatten out” in

finitely many steps, then the results of [BGT12], [PS], and [BG08b] imply that the

measure must concentrate on a coset of a large proper subgroup. The measure cannot

concentrate on a coset of a proper structural subgroup since that contradicts what

we have already shown. Therefore it must concentrate on a coset of a large subgroup

whose image in πP (Γ) is of subfield type for some divisor P of Q. However, the

restrictions on the degrees of the divisors of Q guarantee that no such subgroup exists.

Finally, due to [LS04], we can use the trick of Sarnak and Xue to achieve a uniform

bound on the second largest eigenvalues of the linear operators

TπQ[µ] : L2(πQ(Γ))→ L2(πQ(Γ)),

f 7→ πQ[µ] ∗ f,

which shows that the Cayley graphs indeed form a family of expander graphs.



Chapter 3

Proof of Proposition 8

Let Ω ⊂ GLn0(Fq0(t)) be a finite symmetric set, and let Γ = 〈Ω〉. Since Ω is fi-

nite, there exists a square free polynomial Q0 ∈ Fq0 [t] such that Ω ⊂ GLn0(Fq0 [t, 1/Q0]).

The set of polynomials in n2
0 variables with coefficients in Fq0(t) which vanish on Γ

define a flat group scheme G of finite type over Fq0 [t, 1/Q0]. The Zariski closure G of

Γ in (GLn0)Fq0 (t) is defined to be the generic fibre

G ⊗Fq0 [t,1/Q0] Fq0(t). (3.1)

After possibly enlarging Q0, we may assume G is a smooth group scheme over

Fq0 [t, 1/Q0] and that all of its fibres are of constant type. For any polynomial

Q ∈ Fq0 [t] that is coprime to Q0, we obtain a “reduction modulo Q homomorphism”

πQ : G (Fq0 [t, 1/Q0])→ (G ⊗Fq0 [t,1/Q0] Fq0 [t]/(Q))(Fq0 [t]/(Q)).

On Γ, πQ is just the morphism that reduces the elements of the matrices in Γ

modulo Q.

28
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We will write GQ(Fq0 [t]/(Q)) in place of

(G ⊗Fq0 [t,1/Q0] Fq0 [t]/(Q))(Fq0 [t]/(Q)).

By Weisfeiler’s strong approximation theorem [Wei84], there exists a square

free polynomial Q1 divisible by Q0 such that if Q is a square free polynomial coprime

to Q1, then

πQ(Γ) = GQ(Fq0 [t]/(Q)) (3.2)

and

GQ(Fq0 [t]/(Q)) =
∏

Pirred.|Q

GP (Fq0 [t]/(P )). (3.3)

Throughout this paper, we may replace Q1 by

∏
Pirred.∈Fq0 [t]

deg(P )<C

P

where C �G 1 as necessary. For the remainder of this chapter, Q is a fixed square

free polynomial coprime to Q1.

In order to prove Proposition 8 we must understand proper subgroups of πQ(Γ).

In light of (3.3) and (3.2), we must study proper subgroups of GP (Fq0 [t]/(P )) as P

ranges through all irreducible factors of Q.
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3.1 Proper subgroups of πP (Γ)

Let T be a maximal torus of G and let L be a minimal splitting field of T. Then

L is a finite extension of Fq0(t) of degree say D′. Let G Che be the simple, connected

adjoint Chevalley Z-group scheme of type Φ (See [Ste61]). Then there exists an

L-isogeny

G⊗Fq0 (t) L→ G Che ⊗Z L.

If G is the Fq0 [t, 1/Q0]-group scheme (3.1), then we have an isogeny

(G ⊗Fq0 [t,1/Q0] Fq0(t))⊗Fq0 (t) L = G ⊗Fq0 [t,1/Q0] L→ G Che ⊗Z L.

Since G is finite dimensional, we may again enlarge Q0 to get an isogeny

φ : G ⊗Fq0 [t,1/Q0] OL[1/Q0]→ G Che ⊗Z OL[1/Q0]

where OL is the ring of integers of L.

For any irreducible polynomial P coprime to Q0, let p ⊂ OL[1/Q0] be a prime

ideal such that p ∩ Fq0 [t] = (P ). Then FqP = Fq0 [t]/(P ) embeds into the residue field

Fp of p and

[Fp : FqP ] < [L : Fq0(t)]�G 1.

Hence, we obtain an induced isogeny

φP : (G ⊗Fq0 [t,1/Q0] FqP )⊗ Fp = GP ⊗ Fp → G Che ⊗ Fp.

Notice that by construction φP is determined by polynomial functions with coefficients
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in a finite field Fp of FqP dimension � 1. Furthermore, the degrees of the polynomials

defining φP are bounded by a constant D �G 1.

With this preparation, we need the following theorem of Larsen and Pink:

Theorem 10. [LP11, Thm 0.5] Let G Che
0 be a split connected adjoint Chevalley

Z-group scheme with simple root system Φ0. Then there exists a representation

ρ : G Che
0 → GLn′0

with the following property: Let H be a finite subgroup of G Che
0,p (Fp) where G Che

0,p =

G0 ⊗Z Fp is the geometric fibre of G Che
0 over p. Then either there exists a proper

subspace W ⊂ (Fp)n0 that is stable under ρ(H) but not ρ(G Che
0,p (Fp)), or there exists

a finite field Fq ⊂ Fp and a model1 G0 of G Che
0,p over Fq such that the commutator

subgroup of G0(Fq) is simple and

[G0(Fq) : G0(Fq)] ⊂ H ⊂ G0(Fq). (3.4)

Definition 11. Subgroups that satisfy the first condition are said to be of structural

type while subgroups that satisfy the latter condition are said to be of subfield

type. If the H ⊂ πP (Γ) = GP (FqP ) is a subgroup such that φP (H) is a subfield type

subgroup (resp. structural type subgroup) of G Che
p (Fp), then we call H a subfield

(resp. structural) type subgroup of πP (Γ).

Since the isogeny φP is induced from a single global isogeny φ, we have the

immediate

1I.e. an Fq-group G0 such that G0 ⊗ Fp
∼= G Che

0,p .
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Corollary 12. Let H ⊂ πP (Γ) be a proper structural type subgroup. Then H is

contained in the FqP points a proper algebraic subgroup HP ⊂ GP of complexity2 at

most a constant D, where D depends only on G.

We wish to apply Theorem 10 to subgroups of πP (Γ) = GP (FqP ) to get a more

accurate description of its subgroup structure. Suppose G′ is a model of G Che
p over a

finite field Fq, and H is a proper subgroup of G′(Fq) which is of subfield type. Then

by the above theorem there exists a model GH of G Che
p over a finite field FqH such

that H ≈ GH(FqH ). The following proposition implies that in fact FqH is a subfield of

Fq and GH is a model of G′ over FqH .

Proposition 13 (The case of nested subfield subgroups). For i = 1, 2, let Gi be an

absolutely almost simple group defined over a finite field Fqi. Assume char(Fq1) =

char(Fq2) = p > 5, |Fq1| > 9, and that G2 is of adjoint type. Let

φ̃ : G1 ⊗ Fp → G2 ⊗ Fp

be an isogeny with the property that

φ̃(G1(Fq1)) ⊂ G2(Fq2).

Then Fq1 ⊂ Fq2 and there exists an isogeny

φ : G1 ⊗ Fq2 → G2

such that φ⊗ idFq1
= φ̃.

2The complexity of an algebraic group H is defined to be the maximum of the number of
polynomials defining H and their degrees.



33

Remark 14. If H ⊂ G ⊂ G Che
p (Fp) are two finite subgroups of subfield type, then

the proof of Theorem 10 produces a subfield FqH (resp. FqG) of Fp and a model G1

(resp. G2) such that equation 3.4 holds. By the construction given in the proof of

Theorem 10, one sees that FqH is a subfield of FqG and G1 is a model of G2 over FqH

as desired. The proof of Proposition 13 is independent of the proof of Theorem 10.

Remark 15. In the remainder of this paper it is only important that Fq1 divides Fq2 ,

but Proposition 13 might be of independent interest.

By a theorem of Lang [Hum78, Thm. 35.2], Gq1 is quasisplit. Hence, any

minimal Fq1-parabolic subgroup is a Borel subgroup. Let B1 be a Borel subgroup

defined over Fq1 . By [Bor66, §6.5 (3)], there is an Fq1-split torus S1 such that

B1 = CG1(S1) ·Ru(B1).

Since B1 is a Borel subgroup, T1 = CG1(S1) is a maximal Fq1-torus, and S1 is a

maximal Fq1-split torus.

Let G̃i = Gi ⊗ Fp for i = 1, 2, S̃2 = φ̃(S1 ⊗ Fp), T̃2 = φ̃(T1 ⊗ Fp), and

B̃2 = φ̃(B1 ⊗ Fp). Let gi = Lie(Gi) for i = 1, 2. Notice that since φ̃ is an isogeny, we

have an isomorphism

dφ̃ : g1(Fp)→ g2(Fp)

which satisfies the identity

dφ̃(Ad(g1)(x1)) = Ad(φ̃(g1))(dφ̃(x1)), (3.5)
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for all g1 ∈ G1(Fp) and x1 ∈ g1(Fp). To simplify notation, let G̃i = Gi⊗Fp for i = 1, 2.

By [Bor91, Cors. 9.2, 11.12] and [CGP15, A.2.8], we have φ̃(CG̃1
)(S1 ⊗ Fp) = CG̃2

(S̃2)

is an Fp-torus, T̃2 = CG̃2
(S2) is a maximal Fp-torus, and Lie(T1) = Cg1(S1).

We will first prove Fq1 ⊂ Fq2 .

Lemma 16. φ̃∗ induces bijections

Φ(G̃2, S̃2)→ Φ(G̃1, S̃1)

and

Φ(G̃2, T̃2)→ Φ(G̃1, T̃1).

Moreover, dφ̃ induces isomorphisms

g1,φ̃∗α(Fq1)→ g2,α(Fq2)

for α ∈ Φ(G̃2, S̃2) or Φ(G̃2, T̃2).

Proof. Let

g2(Fq2) = t2(Fq2)⊕
(
⊕φ∈Φ(G̃2,S̃2)g2,φ(Fq2)

)
be a root space decomposition of g2(Fq2). Let x2,α ∈ g2,α(Fq2), and let x1 ∈ g1(Fq1)

such that dφ̃(x1) = x2,α. By equation 3.5 we have for every s1 ∈ S̃1(Fq1), and

α ∈ Φ(G̃2, S̃2),

dφ̃(Ad(s)(x1)) = Ad(φ̃(s1))dφ̃(x1) = (φ̃∗α)(s1)dφ̃(x1) = dφ̃((φ̃∗α)(s1)x1)
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and hence φ̃∗(α)(s)x1 = Ad(s)x1 since dφ̃ is an isomorphism. Therefore, φ̃∗(α) ∈

Φ(G̃1, S̃1) and dφ̃(gq,φ̃∗(α)(Fq1)) ⊂ g2,α(Fq2). By comparing dimensions, we see that φ̃∗

induces a bijection from Φ(G̃2, S̃2) to Φ(G̃1, S̃1) and dφ̃ induces an isomorphism from

g1,φ̃∗(α)(Fq1) to g2,α(Fq2). The argument is similar for the second assertion.

Lemma 17. For every α ∈ Φ(G̃1, S̃1), dim g1,α ≤ 3.

Proof. By Lang’s theorem [Hum78, Thm 35.2], Gi is quasisplit over Fqi for i = 1, 2.

Let F′1 be a splitting field for a maximal Fq1 torus of G1. For an arbitrary field k,

the splitting field l of a quasisplit simple group over k is a Galois extension of k,

and Gal(l/k) is isomorphic to the automorphism group of the Dynkin diagram of

Φ(G̃1, T̃1). Hence Gal(l/k) is isomorphism to {1},Z/2Z,Z/3Z, or Sym(3). If k is a

finite field, then Gal(l/k) is cyclic, and hence the last choice is not possible. We have

for each α ∈ Φ(G̃1, S̃1),

dim g1,α = |{α̃ ∈ Φ(G̃1, T̃1)|α̃
∣∣
S̃1

= α}|

and Gal(F′1/Fq1) acts transitively on the set

{α̃ ∈ Φ(G̃1, T̃1)|α̃
∣∣
S̃1

= α}

which implies the lemma.

Proposition 18. With the notation as above, if q1 > 9, then Fq1 ⊂ Fq2.

Proof. Let {α1, α2, . . . , αr} be a set of simple roots of S1, and {α∨1 , . . . , α∨r } the

corresponding coroots. Then for any t1, t2, . . . , tr ∈ Fq1 ,

Tr(Ad(φ(Πr
i=1α

∨
i (ti))) ∈ Fq2
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since φ̃(G1(Fq1)) ⊂ G2(Fq2). Therefore,

∑
β∈Φ(G1,S1)

dim gq,βΠr
i=1t

〈α∨i ,β〉
1 ∈ Fq2 .

Notice that for each i = 1, 2, . . . , r, and any root β, 〈α∨i , β〉 is a Cartan integer and

hence is at most 3 in absolute value. By the discussion above, dim g1,β < 3. The

proposition will be proved with the following series of lemmas:

Lemma 19. Let P (t) ∈ Fp[t±] be a nonconstant polynomial. If P (Fq) ⊂ Fq′, and

(degt P + degt−1 P )2 < q, then Fq ⊂ Fq′.

Proof. For each a ∈ Fq′ , there are at most (degt P + degt−1 P ) elements b ∈ Fq such

that P (b) = a. Hence, |P (Fq)| ≥ q/(degt P + degt−1 P ). If F′ is the field generated by

P (Fq), then logp |F′| divides logp q and logp q ≤ logp |F′|+ logp((degt P + degt−1 P )). If

F′ 6= Fq, then the above argument implies logp q/2 ≤ logp((degt P + degt−1 P )). This

contradicts the assumption that q > ((degt P + degt−1 P ))2.

Lemma 20. Let P ∈ Fp[t±1
1 , . . . , t±1

r ] be a nonzero polynomial. If q > maxi(degti P +

degt−1
i

) + 1, then P (F×q , . . . ,F×q ) 6= 0.

Proof. This can easily be proved by induction on r.

Lemma 21. Let P ∈ Fp[t±1
1 , . . . , t±1

r ] be a nonzero polynomial such that P (F×q , . . . ,F×q )

is contained in Fq′, and maxi(degti P + degt−1
i
P )2 < q. Then Fq ⊂ Fq′.

Proof. Since P is nonconstant, there exists some index i0 where degt±1
i0

6= 0. By the

above lemma there is a choice of constants t1, . . . , tr−1 ∈ Fq such that P (t1, . . . , tr−1)

is a nonconstant polynomial in ti0 . By Lemma 19, we are done.
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We must now prove the existence of the isogeny φ.

Proposition 22. If q1 > 7 and p > 5, then dφ̃ induces an isomorphism between

g1(Fq2) and g2(Fq2).

We distinguish two cases depending on whether or not g1 has a nontrivial

center.

Lemma 23. Let p > 5. Suppose G is an absolutely almost simple Fq group and that

G is not of type Anp−1 for some positive integer n. Assume:

1. M ⊂ g(Fp) is an Fq′-subspace where Fq ⊂ Fq′,

2. dimFq′ M = dimFp g(Fp), and

3. M is G(Fq) invariant.

Then there exists 0 6= λ ∈ Fp such that M = λg(Fp).

Proof. Since G is not of type Anp−1, g(Fp) is a simple G(Fp)-module. By [Wei84, Cor.

4.6], g(Fp) is a simple G(Fq)-module. Let {αi} be an Fq′-basis of Fp so that

g(Fp) = ⊕i≥0αig(Fq′).

Let pri : M → αig(Fq′) be the projection morphism onto the ith component. Since M

and g(Fq′) are both G(Fq)-invariant, pri is an Fq′-linear G(Fq)-module homomorphism.

Again by [Wei84, Cor. 4.6], g(Fq′) is a simple Fq′ [Ad(G(Fq))]-module and hence pri is

either trivial or surjective for each i. Since dimFq′ M = dimFq′ g(Gq′), either pri = 0

or pri is an isomorphism.
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If pri and prj are isomorphisms, then pri ◦prj
−1 ∈ AutG(Fq)−Mod(g(Fq′)). Then

there exists a nonzero element αi,j ∈ Fq′ such that pri ◦prj
−1(x) = λi,jx for all

x ∈ g(Fq′). Hence if j0 is a fixed index for which prj0 is an isomorphism, we have

M =

(∑
i

αiλi,j0

)
g(Fq′).

In the case when G is of type Anp−1 we have the following:

Lemma 24. Suppose p > 5 and G is of type Anp−1 for some positive integer n.

Suppose Fq ⊂ Fq′ and suppose:

1. M ⊂ g(Fp) is an Fq′-subspace,

2. M is G(Fq)-invariant, and

3. dimFq′ (M + z(Fp))/z(Fp) = dimFp g(Fp)/z(Fp) where z is the center of g.

Then there exists 0 6= λ ∈ Fp, such that M + z(Fp) = λg(Fq′) + z(Fp).

Proof. In this case, g(Fp)/z(Fp) is a simple G(Fp)-module. Again by [Wei84, Cor.

4.6], g(Fp)/z(Fp) is a simple G(Fq)-module. An argument similar to the proof of the

previous lemma establishes the claim.

Proof of Proposition 22. Let M = dφ̃−1(g2(Fq2)) ⊂ g1(Fp). If G1 and G2 are not of

type Anp−1, then Lemma 23 finishes the proof. So assume G1 is of type Anp−1. Then

dimFq2 M = dimFp g1(Fp). Notice dφ̃ induces an isomorphism between z1(Fp) and

z2(Fp), and

dimFq2 g2(Fq2) + z2(Fp)/z2(Fp) = dimFp g1(Fp)− 1
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and hence

dimFq2 M + z1(Fp)/z1(Fp) = dimFp g1(Fp)/z1(Fp).

By the previous lemma, there exists 0 6= λ ∈ Fq2 such that M + z1(Fp) = λg1(Fq2) +

z1(Fp). Since [gi(Fq2), gi(Fq2)] = gi(Fq2) for i = 1, 2, we have [M,M ] = λ2g1(Fq2) and

[M,M ] = dφ̃
−1

([g2(Fq2), g2(Fq2)]) = dφ̃
−1

(g2(Fq2)) = M.

Hence M = [M,M ] = λ4g1(Fq2) = λ2g1(Fq2). This shows g1(Fq2) = λ2g1(Fq2) and

hence M = g1(Fq2).

Corollary 25. dφ̃ induces isomorphisms between

t1(Fq2) and g2(Fq2) ∩ t̃2(Fp),

and

g1,φ̃∗(β)(Fq2) and g2(Fq2) ∩ g̃2,β(Fp), ∀β ∈ Φ(G̃2, S̃2).

Proof. By Proposition 22 we have,

dφ̃(g1,φ̃∗(β)(Fq2)) ⊂ g2(Fq2) ∩ g̃2,β(Fp),

and similarly

dφ̃(t1(Fq2)) ⊂ g2(Fq2) ∩ t̃2(Fp).
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By comparing dimensions of g1(Fq2) and

(g2(Fq2) ∩ t̃2(Fp))⊕
(
⊕β∈Φ(G̃2,T̃2)(g2(Fq2) ∩ g̃2,β(Fp))

)

the result follows easily.

Proof of Proposition 13. Notice that the Galois group Gal(Fp/Fq2) acts naturally on

G1, G2, and their Lie algebras. The existence of such an isogeny

φ : G1 ⊗ Fq2 → F2

is equivalent to φ̃ commuting with the action of Gal(Fp/Fq2). More precisely, it suffices

to show that for any g1 ∈ G1(Fp) and σ ∈ Gal(Fp/Fq2), σ(φ̃(g1)) = φ̃(σ(g1)). Let

g1 ∈ Gq1(Fq1) and x1 ∈ g(Fq1). Recall that we have the identity (3.5),

dφ̃(Ad(g1)(x1)) = Ad(φ̃(g1))(dφ̃(x1))

for every x1 ∈ g1(Fp).

Since dφ̃ restricts to an isomorphism from g1(Fq2) to g2(Fq2) by Proposition

22, we have

σ(dφ̃(Ad(g1)(x1))) = dφ̃(σ(Ad(g1)(x1))).

Since the adjoint representation of G1 is defined over Fq1 ⊂ Fq2 , we have

σ(Ad(g1)(x1)) = Ad(σ(g1))(σ(x1)).
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The previous three equations imply

σ(dφ̃(Ad(g1)(x1)) = dφ̃(Ad(σ(g1))(σ(x1)))

= Ad(φ̃(σ(g1)))(dφ̃(σ(x1))),

and

σ(Ad(φ̃(g1))(dφ̃(x1))) = Ad(σ(φ̃(g1)))(dφ̃(σ(x1))).

Therefore we have

Ad(φ̃(σ(g1)))(dφ̃(σ(x1))) = Ad(σ(φ̃(g1)))(dφ̃(σ(x1)))

and hence

Ad(φ̃(σ(g1))) = Ad(σ(φ̃(g1))).

Since G2 = AdG2 is an adjoint group, φ̃(σ(g1)) = σ(φ̃(g1)) which proves the claim.

Now we can establish the following refinement of Theorem 10. Let P ∈ Fq0 [t]

be coprime to Q1 and let ρ′P be the composition of φP and the representation ρP

induced from the representation ρ (c.f., Theorem 10). Notice that by construction, ρ′P

is defined by polynomials of degree �G 1 with coefficients in a field F′qP of degree at

most [L : Fq0(t)]�G 1 over FqP . Then

ρ′P : GP (FqP )→ GLn′0(V )

is a representation from GP (FqP ) to the general linear group of an n0 dimensional

Fq′p-vector space V , and V has a basis B consisting of elements in (Fq′P )n
′
0 . Let Vq′p be

the Fq′P -linear span of the vectors in B. Then we have
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Proposition 26. Let P ∈ Fq0 [t] be an irreducible polynomial coprime to Q1 and let

H ⊂ πP (Γ) = GP (FqP ) be a proper subgroup of structural type. Then ρ′P (H) fixes a

proper Fq′P -subspace W ′ of V that is not fixed by ρ′P (GP (FqP )).

Proof. Let H ⊂ πP (Γ) be a proper subgroup of structural type. Then there exists a

proper FqP -subspace W ⊂ V that is stable under ρ′P (H) but not ρ′P (GP ). By [LP11,

Prop. 3.5], V is an absolutely irreducible ρ′P (GP (Fq′P ))-module if qP � 1. After

possibly enlarging Q1, we may assume W is not stable under ρ′P (GP (FqP )).

Since W is finite dimensional, any basis BW is contained in a finite field

extension of Fq′P . Therefore, there exist a finite field Fq′′P containing Fq′P and a ρ′P (H)-

stable Fq′′P -vector space Wq′′P
such that Wq′′P

⊗ FqP = W . Let W ′ ⊂ Wq′′P
be a simple

Fq′P [ρ′P (H)]-submodule. We may assume Vq′P has no ρ′P (H)-stable Fq′P -subspaces since

otherwise we are done. Let {αi}
[Fq′′

P
:Fq′

P
]

i=1 be an Fq′P -basis of Fq′′P with α1 = 1. Let

Vq′′P = Vq′P ⊗ Fq′′P . Then

W ′ ⊂ Vq′′P =

[Fq′′
P

:Fq′
P

]⊕
i=1

αi ⊗ Vq′P . (3.6)

Set Vi = αi ⊗ Vq′P . Then for each i0 ∈ {1, . . . , [Fq′′P : Fq′P ]}, pri : W → Vi is an

Fq′P -linear ρ′P (H)-module homomorphism. Since W ′ and Vi are simple Fq′P [ρ′P (H)]-

modules, each pri is either trivial or an isomorphism. We claim that there exists

λ ∈ Fq′′P such that W ′ = λVi for some i. Let I be the set of indices for which

πi(W
′) 6= 0.

If |I| = 1 then we are done. Fix an index i0 ∈ I. Then for each j ∈ I, we have

an isomorphism of Fq′P [ρ′P (H)]-modules

Vi0
prj ◦pr−1

i0−→ Vj
`αi0
◦`−1
αj−→ Vi0
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where `α is given by left multiplication by α. Since Vi0 is a simple Fq′P [ρ′P (H)]-module

by assumption, there exists λj ∈ Fq′P such that

`αi0 ◦ `
−1
αj
◦ prj ◦ pr−1

i0
= `λj .

This implies W ′ = λVq′P where λ = α−1
i0

∑
λjαj. Therefore, Wq′′P

contains an Fq′P

subspace λVq′P . Hence W = V , which is a contradiction. Therefore ρ′P (H) stabilizes

an Fq′P subspace of Vq′P .

Corollary 27. Let H ⊂ πP (Γ) be a proper subgroup of structural type. Then there

exists an Fq′P -subgroup HP of GP such that H is contained in HP (FqP ) ∩ GP (FqP ).

Moreover, HP is of complexity �G 1.

Proof. By Proposition 26, ρ′P (H) is contained in the stabilizer of an Fq′P subspace W of

V . Thus, ρ′P (H) is contained in the Fq′P -rational points of a proper algebraic Fq′P -group

H′ ⊂ ρ′P (GP ). H′ is of bounded complexity by construction. Then HP = ρ′−1
P (H′) is

the desired algebraic subgroup.

We will also need the following corollary in the next section.

Corollary 28. Let H ⊂ πP (Γ) be a proper subgroup of structural type. Then there

exist a constant D �G 1 and polynomial FP ∈ FqP [x11, . . . , xn0,n0 ] of degree at most D

such that H vanishes on FP but πP (Γ) does not.

Proof. Let Wq′P
be a proper Fq′P -subspace of V that is stable under ρ′P (H) but not

under ρ′P (GP (FqP )). Let w ∈ Wq′P
and v∗ ∈ V ∗q′P be a linear functional whose kernel

is Wq′P
. After identifying V ∗q′P

with (Fq′P )n
′
0 we may view ηv,w(g) = v∗(ρ′P (g)w) as a

polynomial with coefficients in Fq′P whose degree is bounded by a constant D �G 1.
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Moreover, since Wq′P
is stable under H, ηv,w(h) = 0 for every h ∈ H and yet there

exists ω ∈ Ω such that ηv,w(πP (ω)) 6= 0. Since the dimension of Fq′P as an FqP vector

space is at most [L : Fq0(t)]�G 1 the claim follows.

3.2 Escaping certain proper subgroups

The goal of this section is to show that there exists a symmetric set Ω′ ⊂ Γ with

the following property: For any square free polynomial Q ∈ Fq0 [t] that is coprime to Q1

and for any proper subgroup H ⊂ πQ(Γ) with the property that πP (H) is a structural

subgroup for each irreducible factor P of Q, the probability that an ` ∼ deg(Q)-step

random walk lands in H is small. Let S be the set of irreducible polynomials appearing

in the denominators of the matrices in Ω. For any P0 ∈ S, let ‖ · ‖P0 be the P0-adic

norm of Fq0(t) normalized so that ‖P0(t)‖P0 = (q
|S|maxP∈S{degP}
0 )−1 and let ‖ · ‖1/t be

the 1/t-adic norm of Fq0(t) normalized so that ‖t‖1/t = q0. For any rational polynomial

a(t), let

‖a(t)‖S∪{1/t} = max
P∈S∪{1/t}

‖a(t)‖P .

If H is a proper subgroup of πQ(Γ) with the property that πP (H) is a structural

subgroup of πP (Γ) for each irreducible factor P of Q, then we can lift the random

walk on πQ(Γ) to a random walk on Γ. There we can show that the set of “small lifts”

of H,

Lδ(H) := {h = (hi,j) ∈ Γ|πQ(h) ∈ H and ‖h‖ < [πQ(Γ) : H]δ},

where

‖h‖ := max
1≤i,j≤no

{‖hi,j‖S∪{1/t}}, (3.7)
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lies in a proper algebraic subgroup of G if δ �G 1. We then show that there is a

finite collection of irreducible representations of G with the property that any proper

algebraic subgroup of G fixes a line in one of these representations. Then we use

the “ping-pong” argument from [SGV12] to show that there exists a symmetric subset

Ω′ ⊂ Γ such that the probability that a reduced word of length ∼ degQ in the alphabet

Ω′ fixes a line in one of these representations is exponentially small. This in turn

implies that a random walk on the quotient graph has a small chance of landing in H.

Following the proof of [SGV12, Prop. 7], we first show that any subgroup H

of πQ(Γ) can be approximated by a subgroup in product form. Let us record the

following definition, which we will also need later on.

Definition 29 (Gowers [Gow08]). Let c be a positive constant and G be a finite

group. G is said to be c-quasirandom if for any irreducible representation ρ of G we

have dim ρ > |G|c.

Landazuri and Sietz proved in [LS74] that for any absolutely almost simple

group G′ over a finite field Fq, there exists a constant c′ > 0 depending only on G′

such that the groups G′(k) are c′-quasirandom for any field k containing Fq.

In this section, we again fix a square free polynomial Q coprime to Q1. In order

to use the subgroup dichotomy of πP (Γ) where P is an irreducible factor of Q, we will

first take a subgroup H ⊂ πQ(Γ) and replace it with the product of subgroups πP (H)

of πP (Γ) for irreducible P | Q. A priori, ×P |Q:Pirred.πP (H) could be much larger than

H. However, for us this is not the case.

Lemma 30. Let Gqi be a quasisimple group of Lie type over the field Fqi of charac-

teristic pi ≥ 5 for i = 1, . . . , k. Assume qi 6= qj for each i 6= j. Then there exists a
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positive constant δ such that

Πi[Gqi : pri(H)] ≥ [×iGqi : H]δ.

Furthermore, δ depends only on c where c is the minimum of the set

{c′ > 0|Gqi is c′-quasirandom ∀i = 1, . . . , k}.

Remark 31. By the classification theorem of finite simple groups of Lie type and the

result of Landazuri and Seitz mentioned above, the constant c in the statement of the

lemma is nonzero and depends only on the absolute root systems of the Gqi ’s.

Proof. We proceed by induction on the size of G := ×iGqi . Suppose pri(H) is a proper

subgroup of Gqi for each 1 ≤ i ≤ k. Then

Πi[Gqi : pri(H)] ≥ Πi|Gqi |c ≥ [G : H]c

and we are done. Partition the set I = {1, 2, . . . , k} into two sets I1 and I2 in such a

way that i ∈ I1 if and only if pri(H) = Gqi . By the above argument, we may assume

I1 is nonempty. For i ∈ I1, H ∩Gqi is a proper normal subgroup of Gqi = pri(H). Let

G′qi =

 Gqi/H ∩Gqi if i ∈ I1

Gqi if i ∈ I2,

H ′ = H/ (×i∈I1H ∩Gqi) ,
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and

G′ = ×iG′qi .

If H ∩Gqi is a nontrivial for any i ∈ I1, then |G′| < |G| and G′ clearly satisfies

the hypothesis of the lemma. By the induction hypothesis we have

Πi[G : pri(H)] = Πi[G
′ : pri(H

′)] ≥ [G′ : H ′]δ = [G : H]δ

and again we are done.

Therefore we may assume H ∩ Gqi is trivial for each index i ∈ I1. For

a fixed j0 ∈ I1, we have an isomorphism Gqj0
∼= H/Nj0 induced by prj0 where

Nj0 = H ∩ ×i 6=j0Gqi . For each i 6= j0, there exists a projection morphism

φj : Gqj0
∼= H/Nj0 → pri(H)/ pri(Nj0).

By the induction hypothesis applied to ×i 6=j0Gqi and Nj0 , we have

Πi[Gqi : pri(Nj0)] = Πi 6=j0 [Gqi : priNj0 ]

≥ [×i 6=j0Gqi : Nj0 ]
δ

= | ×i 6=j0 Gqi |δ
( |Gqj0 |
|H|

)δ
= [G : H]δ.

Therefore if pri(Nj0) = pri(H) for all i 6= j0, we are done. So we may assume there

exists i0 6= j0 such that pri0 Nj0 6= pri0 H.

Suppose i0 ∈ I1. Then we have a morphism Gqj0
→ Gqi0

/ pri0(Nj0). Since Gqi0

and Gqj0
are quasisimple groups over nonisomorphic fields of order at least 5, this

is impossible. Therefore i0 ∈ I2. By the above argument, we may assume for every
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j ∈ I1, there exists i ∈ I2 such that pri(Nj) 6= pri(H). After fixing such a choice of

i ∈ I2 for each j ∈ I1, we get a function F : I1 → I2 given by F (j) = i. We claim that

for each i ∈ F (I1), ∏
j∈F−1(i)

|Gqj |c ≤ |Gqi |.

For each j ∈ F−1(i), there exists a quotient morphism

pri(H) −−−→ pri(H)/ pri(Nj)
∼=−−−→ Gqj/ kerφj −−−→ Gqj/Z(Gqj).

Since the groups Gqj/Z(Gqj) 1 ≤ j ≤ n are simple and mutually nonisomorphic, the

Jordan-Hölder Theorem implies that pri(H) has a composition factor isomorphic to

Gqj/Z(Gqj) for each j ∈ F−1(i). In particular,

| pri(H)| ≥ πj∈F−1(i)|Gqj/Z(Gqj)|.

Therefore

|Gqi | ≥ | pri(H)| ≥
∏

j∈F−1(i)

|Gqj/Z(Gqj)| ≥
∏

j∈F−1(i)

|Gqj |c

as desired.

Since {F−1(i)}i∈I2 partitions the set I1, we have shown that

Πj∈I1|Gqj |c ≤ Πi∈I2|Gqi |,
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and hence

Πn
i=1[Gqi : pri(H)]c+1 ≥ Πi∈I2 |Gqi |1+ 1

c

≥
(
Πj∈I1|Gqj |

)
(Πi∈I2|Gqi |)

≥ [×ni=1Gqi : H]

which completes the proof.

Proposition 32. Fix an embedding of G into (GLn0)Fq0 (t). Let Q ∈ Σ be coprime to

Q1. Then there exists a constant δ such that the following holds: Let H ⊂ πQ(Γ) be a

proper subgroup with the property that πP (H) is a structural subgroup of πP (Γ) for

each irreducible factor P of Q. Then Lδ(H) lies in a proper algebraic subgroup H of

G.

Proof. Let H ( πQ(Γ) be as in the hypothesis of the proposition. By Lemma 30,

there exists a positive constant δ′ which depends only on G such that

[πQ(Γ) : ×
Pirred.|Q

πP (H)] ≥ [πQ(Γ) : H]δ
′
.

If Lδ(×Pired.|QπP (H)) lies in a proper algebraic subgroup of G, then so does Lδ/δ′(H).

Therefore we may replace H with ×P |QπP (H). Similarly, after replacing Q with the

product of those irreducible factors satisfying πP (H) 6= πP (Γ), we may assume πP (H)

is a proper subgroup for each irreducible factor P of Q. By Corollary 28, there exists

a constant D �G 1 and a polynomial of degree at most D that vanishes on πP (H).

Consider the degree D monomial map

Ψ : GLn0 → AD′ ,
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where

D′ =

 n2
0 +D

D

 .

Let d be the dimension of the linear span of Φ(G(Fq0(t))). It suffices to show that

Φ(Lδ(H)) spans a subspace of dimension less than d if δ is sufficiently small.

Assume for the sake of contradiction that the linear span of Φ(Lδ(H)) is d

dimensional. Pick a set of d linearly independent elements h1, h2, . . . , hd of Lδ(H).

Recall that we have the inequality ([Nor87, Lem 3.5])

|πQ(Γ)| =
∏
P |Q

|GP (FqP )| < q0
(dimG+1) degQ.

Since ‖h‖ < |πQ(Γ)|δ < q0
(dimG+1) degQ (c.f. (3.7)), the entries of the vectors h1, h2, . . . , hd

are of the form

F∏
P∈S P

eP

with F ∈ Fq0 [t] where

degF −
∑
P |Q

eP degP < δD(dimG + 1) degQ (3.8)

and for each P ∈ S

degP eP < δD(dimG + 1) degQ/|S|. (3.9)

By assumption, the matrix formed by the vectors h1,h2,. . . ,hd has a nonzero d × d

subdeterminant. For δ < 1/2Dd(dimG + 1), equations 3.8 and 3.9 imply that any
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subdeterminant, s(t), has the form

F ′∏
P∈S P

e′P

with degF < degQ. Therefore there exists an irreducible factor P0 of Q such that

s(t) 6= 0 ∈ Fq0 [t, 1/Q1]/(P ) (recall (Q,P ) = 1 for all P ∈ S.) This contradicts the

existence of the polynomial given by Corollary 28. Therefore Lδ(H) lies in the Fq0(t)

points of a proper subvariety X of G. By [EMO05, Proposition 3.2] if A ⊂ G(Fq0(t))

is a generating set, then there exists a positive integer N such that ΠNA 6= X(Fq0(t)).

We note that the statement of [EMO05, Proposition 3.2] is for algebraic varieties and

groups over C. However, one can replace the complex numbers in [EMO05, Thm.

3.1] with any algebraically closed field (See [Sch00, Pg. 519], [Ful98, Ex. 12.3.1],

and [Dan94, III. Thm 2.2]) and the proof of [EMO05, Proposition 3.2] is valid for

any algebraically closed field. In the proof of [EMO05, Proposition 3.2], N depends

only on the dimension, degree and number of irreducible components of X. These

parameters are bounded by the constant D, which is independent of Q. Therefore

since Lδ(H) ⊂ X(Fq0(t)), Lδ/N (H) does not generate G(Fq0(t)) and therefore it lies in

a proper algebraic subgroup of G.

3.3 Ping pong argument

Recall that the goal of this section is to show that if H ⊂ πQ(Γ) is a proper

subgroup with the property that πP (H) is structural for each irreducible factor P of

Q, then the probability of landing in H after a random walk of roughly deg(Q) steps

on Cay(πQ(Γ), πQ(Ω)) is small. By Proposition 32, we can translate this problem to
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random walks on Cay(Γ,Ω).

For any subset Ω0 ⊂ Γ let B`(Ω0) be the set of reduced words of length `

in the alphabet Ω0. Using results in [SGV12], we find a symmetric set Ω0 with the

property that a random walk on on the Cayley graph Cay(Γ,Ω0) has an exponentially

small chance of landing in a proper algebraic subgroup of G. A key ingredient is the

following proposition that holds more generally for any semisimple algebraic group

over a field of positive characteristic.

Proposition 33. Let G be a finite dimensional semisimple group over an algebraically

closed field k of positive characteristic. Then there exists finitely many irreducible

representations {ρi : G→ (GL)Vi}, i = 1 . . . , d such that for every closed subgroup H

of G, there exists an index i ∈ {1, 2, . . . k} and a vector v ∈ Vi(k) such that

ρi(H(k))[v] = [v]

but

ρi(G(k))[v] 6= [v]

where [v] denotes the line in Vi spanned by v.

Proof. Throughout this proof we let G = G(k), H = H(k), V = V(k), etc. It suffices

to consider only maximal closed subgroups of G. By Theorem 1 of [LS04], G has

finitely many conjugacy classes of maximal closed subgroups of positive dimension. If

H is a maximal closed subgroup, and if ρ(H)[v] = [v] for some vector v ∈ Vρ, then for

any g ∈ G, ρ(gHg−1)(ρ(g)[v]) = ρ(g)[v]. Therefore, given a full set of representatives

{Hi}di=1 of conjugacy classes of maximal closed subgroups of G, it suffices to find d

many representations {ρi}di=1 such that for every Hi there exists a representation ρj
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and a vector vj ∈ Vj such that vj is ρj(Hi)-invariant but not ρj(G)-invariant.

Let us recall some facts about irreducible representations of G. Fix a maximal

torus T of G. Let Φ = Φ(G, T ) be the system of roots of T and let ∆ be a system

of simple roots. Let B be the Borel subgroup containing T corresponding to ∆. Let

X(T ) be the set of algebraic characters of T and fix an inner product (−,−) on

X(T ) ⊗Z R that is invariant under the Weyl group, W = NG(T )/T . For any two

characters λ1, λ2 on T let < λ1, λ2 >= 2(λ1, λ2)/(λ2, λ2). Note that we can extend

any character λ ∈ X(T ) to a regular function on B. Let kλ = k be the B-module k

where the action of B on kλ is given by b.x = λ(b)x. Consider the G-module

IndGB(kλ) = {f : G→ k|f is regular, and | f(gb) = λ(b)−1f(g) ∀g ∈ G, b ∈ B},

where G acts on IndGB(kλ) by left translation. By Chevalley’s classification theorem of

irreducible G-modules [Jan03, II.2.4], IndGB(kλ) contains a unique simple submodule

L(λ) = SocG(kλ) and every simple module of G arises this way.

Since H is a maximal closed subgroup of G, either H is parabolic, or H◦ is

reductive ([Hum78, Thm. 30.4]). If H is maximal and parabolic then there exists a

simple root α such that H is conjugate to the maximal parabolic subgroup

P := P∆\{α} = BW∆\{α}B

where W∆\{α} is the group generated by {σβ}β∈∆\{α} and σβ is the reflection of

X(T ) ⊗Z R across the hyperplane orthogonal to α. Let λ = λα = 2α/(α, α) be the

fundamental dominant weight corresponding to α. As mentioned above, λ can be
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extended to a character on B. Consider the G-module

IndGP (kλ) = {f : G→ k | f is regular, and f(gp) = λ(p)−1f(g) ∀p ∈ P, g ∈ G}.

Let U− := Ru(B
−) be the unipotent radical of the Borel subgroup B− opposite of B.

Define the function fλ on U−B by fλ(u
−b) := λ(b)−1. By the calculation in [Jan03,

2.6], fλ can be extended to an element of IndBP λ. The set (P ∩U−)B is an open dense

subgroup of P and for any u− ∈ P ∩ U− and b ∈ B, we have

fλ(u
−b) = λ(b)−1 = λ(u−b)−1.

Therefore for any p ∈ P , fλ(p) = λ(p)−1. This implies that the line spanned by fλ in

the unique simple module L(λ) is invariant under P , which establishes the claim.

Now assume H◦ is reductive. Let g = g(k) (resp. h = h(k)) be the Lie algebra

of G (resp. H). Since G is semisimple and H is maximal, H is not a normal subgroup

and therefore h is not invariant under the adjoint action of G. G acts on ∧dim hg via

the representation ∧dim h Ad. By the above considerations the line lH = ∧dim hh is

H-invariant but not G-invariant. Let

0 =: V0 ⊂ V1 ⊂ V2 . . . Vm = ∧dim hg

be a composition series of G-modules. It suffices to show that the image of lH in one

of the nontrivial composition factors is H-invariant but not G-invariant.
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Let m′ be the smallest index such that lH ⊂ Vm′ . Then

(lH ⊕ Vm′−1)/Vm′−1 ⊂ Vm′/Vm′−1

is an H-invariant line. Assume for the sake of contradiction that Vm′ = lH ⊕ Vm′−1.

Let m′′ be the smallest integer such that lH ⊕ Vm′′ is G-invariant. Then the line

lH ⊕ Vm′′−1/Vm′′−1 is an H-invariant line inside the G-module (lH ⊕ Vm′′)/Vm′′ that is

not G-invariant.

By the classification theorem for simple G modules, there exists λ ∈ X(T ) such

that L(λ) ∼= Vm′′/Vm′′−1. We have an exact sequence of G-modules

0 −−−→ L(λ) = Vm′′/Vm′′−1 −−−→ M = (lH ⊕ Vm′′)/Vm′′−1 −−−→ k −−−→ 0

which splits as a sequence of H-modules. For any group G over k, the fixed point

functor from the category of left G-modules to the category of k-modules is left exact.

Its ith right derived functor, denoted by H i(G,−) is called the ith cohomology functor.

By [Jan03, Cor. 4.11] we have H0(G, k) = H0(H, k) = k. From the above short exact

sequence we obtain a commutative diagram of long exact sequences:

0 0 k∥∥∥ ∥∥∥ ∥∥∥
0 −−−→ L(λ)G −−−→ MG −−−→ kG −−−→ H1(G,L(λ)) −−−→ . . .

ResGH

y ResGH

y ResGH

y ResGH

y
0 −−−→ L(λ)H −−−→ MH −−−→ kH

0−−−→ H1(H,L(λ)) −−−→ . . .∥∥∥ ∥∥∥ ∥∥∥
0 k k
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We will arrive at a contradiction by showing that the restriction map

H1(G,L(λ))→ H1(H,L(λ))

is injective. Since H◦ is reductive, G/H is an affine variety and hence the functor

IndGH(−) is exact ([Jan03, Part I. Cor. 5.13]). By Shapiro’s Lemma ([Jan03, Part I.

Cor. 4.6]) H1(H,L(λ)) ∼= H1(G, IndGH L(λ)). Therefore it suffices to show that the

map H1(G,L(λ))→ H1(G, IndGH L(λ)) is injective. To complete the proof we establish

the following:

Lemma 34. Let G be a semisimple algebraic group over an algebraically closed field

k and let H be a maximal closed subgroup whose connected component is reductive.

Let M be an irreducible H-module. Then the map

H1(G,M)→ H1(G, IndGHM)

induced by the G-module monomorphism

M → IndGHM : m 7→ (g 7→ g−1m)

is injective.

Proof. The exact sequence of G-modules

0→M → IndGHM → (IndGHM)/M → 0
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gives rise to the long exact sequence of cohomologies

0 −−−→ MG −−−→ (IndGHM)G
φ−−−→ [(IndGHM)/M ]G −−−→ . . .

. . . −−−→ H1(G,M) −−−→ H1(G, IndGHM) −−−→ . . . .

It suffices to show that φ is surjective. Let f ∈ (IndGHM)G \MG and let [f ] denote

its image in [(IndGHM)/M ]G. After replacing [f ] by the function [f − f̃(1)], we may

assume f(1) = 0. For every g ∈ G, g.f = f − m̃g for some mg ∈MG. Then

0 = f(1)

= f(g−1.g)

= (g.f)(g)

= f(g)− g−1mg.

(3.10)

This implies mg = gf(g) for every g ∈ G. Therefore for every g, g′ ∈ G,

f(g−1g′) = (g.f)(g′)

= (f − g̃f(g))(g′)

= f(g′)− g′−1gf(g).

(3.11)

Let X := {g ∈ G | f(g) = 0}. For every h ∈ H, f(h) = h−1f(1) = 0 and hence

H ⊂ X. X is also a subgroup of G, since for any g, g′ ∈ X, f(g−1g′) = 0 by the

above calculation. If f(g) = 0 for all g ∈ G, then clearly f = 0̃M where 0M is the

zero element of M . Therefore X is a proper closed subgroup. By the maximality of

H, X = H. We claim that the codimension of H in G is at least 2, which yields the

desired contradiction.

Assume without loss of generality that H is connected. Let T1 be a maximal
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torus of H and T2 a maximal torus of G containing T1. Let ΦH = Φ(H,T1) (resp.

ΦG = Φ(G, T2)) be the root system of T1 (resp. T2). If |ΦH | < |ΦG|, then |ΦH | ≤

|ΦG| − 2 since the size of any abstract root system is divisible by 2. This implies

dimH = dimT1+|ΦH | has codimension at least 2 in G. So we may assume |ΦH | = |φG|.

Let

h = Lie(T1)
⊕(⊕

β∈ΦH

hβ

)
, g = Lie(T2)

⊕(⊕
α∈ΦG

gα

)

be the root space decompositions of h and g with respect to ΦH and ΦG respectively.

Let β0 ∈ ΦH and 0 6= Y ∈ hβ ⊂ g. Write

Y = Y0 +
∑
α∈ΦG

Yα

where Yα ∈ gα for each α ∈ ΦG. Then for any t1 ∈ T1 we have

Ad(t1)Y − Ad(t1)Y0 +
∑
α∈ΦG

Yα = (β0(t1)− 1)Y0 +
∑
α∈ΦG

(β0(t1)− α(t1))Yα = 0.

This implies Y0 = 0 and hence

⊕
β∈ΦH

hβ ⊂
⊕
α∈ΦG

gα.

Since |ΦH | = |ΦG| these vector spaces have the same dimension and therefore they

must be equal. Since
⊕
α∈ΦG

gα generates g as a Lie algebra and
⊕
α∈ΦG

gα ⊂ h, g = h

which contradicts the fact that H is proper.
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The remainder of the proof of Proposition 8 follows the “ping-pong” argument

given in [Var12] and [SGV12]. Parts of the proof their proof is included here for the

sake of completion.

Proposition 35. Let G,Γ and ρ1, . . . , ρm be as in the statement of Proposition 33.

Then there exists a subset Ω′ ⊂ Γ that freely generates a subgroup Γ′ with the following

property. For any i = 1, . . . ,m and for any nonzero vector v ∈ Vi

|{g ∈ B`(Ω
′)|ρi(g)([v]) = [v] where v ∈ Vi}| = |B`(Ω

′)|1−c′

where c′ is a constant depending only on Ω′ and the representations.

In order to prove 35, we will need the following [SGV12, Prop. 21]

Proposition 36. [SGV12, Prop. 21] Let G,Γ and ρ1, . . . , ρm be as above. Then there

exists a symmetric set Ω′ = Ω′0 t (Ω′)−1
0 ⊂ Γ such that Ω′0 freely generates a subgroup

Γ′ ⊂ Γ, and for every g ∈ Ω′ and i = 1, . . . ,m there exists sets K
(i)
g ⊂ U

(i)
g ⊂ Vi such

that for each i, the following properties hold:

1. For every g ∈ Ω′, ρi(g)(U
(i)
g ) ⊂ K

(i)
g ,

2. For every nonzero vector v ∈ Vi, v ∈ U (i)
g for at least two elements g ∈ Ω′,

3. For any g1, g2 ∈ Ω′, K
(i)
g1 ⊂ U

(i)
g2 unless g1 = g−1

2 ,

4. For any distinct g1, g2 ∈ Ω′, K
(i)
g1 ∩K

(i)
g2 = ∅.

The sets K
(i)
g and U

(i)
g are called the contracting and repelling sets of g with

respect to ρi. These sets give strong restrictions on which words can possibly fix a

given line in Vi which we exploit in the proof of Proposition 35.
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Proof of Proposition 35. Let Ω′ be the set given by Proposition 36 and for any g ∈ Ω′

let K
(i)
g and U

(i)
g be the corresponding contracting and repelling sets. We fix an index

i and omit the subscripts and superscripts for simplicity.

Fix a vector v ∈ V . For k < ` define Xk to be the set of words g` . . . g1 such

that ρ(gk . . . g1)v ∈ Ugk+1
and k is the minimal index with this property. Let X` be

the complement of the union of the Xk’s. Note that if g` . . . g1 is an element of Xk for

k < `, then

ρ(gk+1)(ρ(gk . . . g1)) ∈ Kgk+1
⊂ Ugk+2

.

By induction we see that

ρ(gj . . . g1)v ∈ Ugj+1

for j > k. Suppose that ρ(g` . . . g1)[v] = [v]. Assume that v ∈ Kg′ for some g′ ∈ Ω′.

Since ρ(g` . . . g1)v = v ∈ Kg` and since the contracting spaces for distinct elements of

Ω′ are disjoint, we see that g` = g′ is determined uniquely by v. Continuing this way,

we see that gj is uniquely determined by v for all j > k.

By the construction of Xk we know that ρ(gj−1 . . . g1)v /∈ Ugj for j ≤ k. Since

ρ(gj−1 . . . g1)v is in at least two different repelling sets Ug, there are only |Ω′| − 2

choices for gj. Therefore,

|{g ∈ B`(Ω
′)|ρ(g)[v] = [v]} ∩Xk| ≤ (|Ω′| − 2)k

for all k = 1, 2, . . . `. If v /∈ Kg for any g ∈ Ω′, then certainly no element of Xk for k < `

will fix the line spanned by [v] since ρ(g`g`−1 . . . g1)(v) ∈ Kg` for g`g`−1 . . . g1 ∈ Xk.
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By the same argument as above we have

|{g ∈ B`(Ω
′)|ρ(g)[v] = [v]}| = |{g ∈ B`(Ω

′)|ρ(g)[v] = [v]} ∩X`| ≤ (|Ω′| − 2)`

which proves the claim.

Proof of Proposition 8. Let Ω′ be the set of generators given by Prop. 35. Let Q ∈ Σ

be coprime to Q1. Let H ⊂ πQ(Γ) be a proper subgroup with the property that for

each P dividing Q, πP (H) is a proper structural subgroup of πP (Γ).

By Proposition 32 there exists a constant δ with the property that Lδ(H) lies

in a proper algebraic subgroup of G. Let ` ≤ c′ log[πQ(Γ) : H] for some constant c′. If

c′ �Ω′ 1, if h ∈ B`(Ω
′) and πQ(h) ∈ H, then ‖h‖ < [πQ(Γ) : H]δ. Then by definition

B`(Ω
′) ∩ {h ∈ Γ|πQ(h) ∈ H} ⊂ Lδ(H).

Combining Propositions 33 and 35, we have

|B`(Ω
′) ∩ Lδ(H)| < |B`(Ω

′)|1−c′′

where c′′ is the constant from 35.

Let |Ω′| = 2M , so that |B`(Ω
′)| = 2M(2M −1)`−1 for ` ≥ 1. Since Ω′ generates

a free group of Γ, for any k, χ
(k)
Ω′ (g) = χ

(k)
Ω′ (g

′) for any g, g′ ∈ B`(Ω
′). In particular,

χ(k)(B` ∩ Lδ(H)) ≤ |B`|−δ
′′
χ

(k)
Ω′ (B`) < (2M − 1)−δ

′′`χ
(k)
Ω′ (B`).
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Since the measure χΩ′ is symmetric, we have for any positive integer k,

χ
(k)
Ω′ (0) ≥ χ

(2k)
Ω′ (0) =

∑
g∈Γ

χ
(k)
Ω′ (g)2.

By the Cauchy-Schwarz inequality, χ
(k)
Ω′ (g) ≤ χ

(k)
Ω′ (0) for any g ∈ Γ.

By Kesten’s result on recurrence to the origin for random walks on trees [Kes59],

we have

lim sup
k→∞

(Pk(0))1/k = (2M − 1)/M2.

This implies χ
(k)
Ω′ (g) ≤ ((2M − 1)/M2)

k
for any positive integer k and any

g ∈ Γ. We have,

χ
(2k)
Ω′ (Lδ(H)) =

∑2k
`=1 χ

(2k)
Ω′ (Lδ(H) ∩B`)

=
∑

`≤k/10 χ
(2k)
Ω′ (Lδ(H) ∩B`) +

∑
`>k/10 χ

(2k)
Ω′ (Lδ(H) ∩B`)

<
∑

`≤k/10 |Lδ(H) ∩B`|χ(2k)
Ω′ (0) +

∑
`>k/10(2M − 1)−δ

′′`χ
(k)
Ω′ (B`)

< (2M)k/10
(

2M−1
M2

)k
+ (2M − 1)−δ

′′k/10

<
(

(2M)11k/10+1

M2k

)
+ (2M − 1)−δ

′′k/10,

(3.12)

as required.

Chapter 3 contains material coauthored by Professor Alireza Salehi Golsefidy

and is in preparation for publication under the title ““Super-approximation” in

Absolutely Almost Simple Groups Over Fq(t)”. The author of this dissertation is a

primary researcher and a primary author of the paper mentioned above.



Chapter 4

`2-Flattening

This section is dedicated to the proof of Proposition 9. Recall that if Q ∈ Fq0 [t]

is a square free polynomial coprime to Q1, then πQ(Γ) = ×Pirred.|QG(FqP ) (Eqn. 3.3).

We first prove a modified version of Varjú’s Product Theorem [Var12, Prop. 14] to

show that if each factor πP (Γ) exhibits a “triple product growth” phenomenon, then

so does πQ(Γ). Then, following the methods of Bourgain and Gamburd [BG08b], we

show that this implies Proposition 4.

4.1 A variation of Varjú’s Product Theorem

Let L be a positive integer and δ′ be a positive constant. We must introduce

the following assumptions for a finite group G which depend on L and δ′. In what

follows, H �L H ′ denotes the inequality [H ′ : H ′ ∩H] < L.

Assumptions (V1)L,δ′-(V4)L,δ′

(V1)L,δ′ : G is an almost simple group with |Z(G)| < L.

63
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(V2)L,δ′ : G is 1/L-quasirandom (c.f. Definition 29).

(V3)L,δ′ : There exists an integer m < L, and classes of subgroups H0, H2,. . . , Hm

with the following properties:

(i) For each i = 1, . . . ,m, Hi is closed under conjugation by elements in

G.

(ii) H0 = {Z(G)}.

(iii) For each subgroup H of G with |H| > |G|δ′ there exists an index

0 ≤ i ≤ m, and a subgroup H] ∈ Hi such that H �L H].

(iv) For each i = 0, . . . ,m, and for each pair of distinct subgroups H1,

H2 ∈ Hi, there exists j < i and a subgroup H] ∈ Hj such that

H1 ∩H2 �L H].

(V4)L,δ′ : There exists a constant C such that if S ⊂ Gi is a generating set, then one

of the following two statements holds:

(i) |S| � |Gi|1−C/L,

(ii) |Π3S| ≥ |S|1+1/L.

Proposition 37. Let L be a positive integer. Then for any ε > 0, there exists

δ, δ′ > 0 depending only on L and ε such that the following holds: Let G1, . . . , Gn be

mutually nonisomorphic groups that satisfy assumptions (V1)L,δ′-(V4)L,δ′. Then for

any symmetric set S ⊂ G = ×ni=1Gi satisfying

|S| < |G|1−ε and χS(gH) < [G : H]−ε|G|δ, (4.1)
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we have

|Π3S| �ε |S|1+δ.

Remark 38. More generally, in light of Inequality 4.5 below, we can replace the

condition that the groups G1, . . . , Gn are mutally nonisomorphic with the following:

There are at most M �v are1 groups amongst G1, . . . , Gn of size �ε 1. We do not

need this statement here, but it would be useful if we remove the condition that the

degrees of the irreducible factors of Q be distinct.

The key difference between Proposition 37 and [Var12, Prop. 14] is that we

have a family of assumptions depending on a constant ε rather than a single set of

assumptions. This will be sufficient for us since we need to apply Proposition 37

to a specific positive constant ε0 which depends only on G. Secondly, we use the

assumption (V4)L,δ′ in place of assumption (A4) in [Var12, Prop. 14]. Assumption

(V4)L,δ′ implies (A4) by the work of [BG08b]. To our knowledge, it is not known

whether or not these conditions are equivalent. Lastly, we note that the proof of

[Var12, Cor. 14] has a mistake which our proof corrects. Varjú has also communicated

to us a way to correct the proof without changing assumption (A4).

Crucial to the proofs of Propositions 9 and 37 is the following lemma, which

was implicitly proved by Bourgain and Gamburd in [BG08b] and is based on the

noncommutative version of a theorem of Balog, Gowers, and Szméredi proved by Tao

[Tao08]. The lemma in its current form is included in [Var12].

Lemma 39. Let µ and ν be two probability measures on an arbitrary finite group G,

and let K be a real number greater than 2. If

‖µ ∗ ν‖2 >
‖µ‖1/2

2 ‖ν‖
1/2
2

K
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then there is a symmetric set A ∈ G with the following properties:

1

KR‖µ‖2
2

� |S| � KR

‖µ‖2
2

(4.2)

|Π3S| � KR|S| (4.3)

K−R

|S|
� min

g∈S
(µ̃ ∗ µ)(g) (4.4)

where R and the implied constants are universal.

Proof of Proposition 37

The majority of this proof is due to Varjú [Var12, Prop. 14]. The necessary

changes are found in the proofs of Corollary 43 and Proposition 40 to account for our

modified assumptions. In particular, the proof of Proposition 44 remains unchanged.

The full proof is included here for completeness.

Fix a positive constant ε and let δ and δ′ be small constants. We will assume δ

and δ′ are sufficiently small in the sense that if K > 0 is a constant which only depends

on ε, L, and the constants in assumptions (V1)L,δ′-(V4)L,δ′ , then δ, δ′ < K. Suppose we

have n nonisomorphic groups G1, . . . , Gn which satisfy assumptions (V1)L,δ′-(V4)L,δ′

and a subset S ⊂ G = ×ni=1Gi as in the hypotheses of the proposition. We may

assume the groups |Gi| are sufficiently large in the sense that inequalities of the form

K log |Gi| < |G|δδ
′′

(4.5)

hold where K and δ′′ are constants depending only on ε and L. Indeed, let N be

the product of those factors for which such an inequality fails. Then since each
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group is distinct up to isomorphism, |N | is bounded in terms of δ. For any subgroup

H ⊂ G/N , [G/N : H] = [G : HN ]. Furthermore, if S ′ is the projection of S mod N ,

|Π3S| ≥ |Π3S
′| and |S ′| ≥ |S|/|N |. Therefore if the claim is true for G/N , we have

χS′(g
′H) = [G/N : H]−ε|G/N |δ < [G : HN ]−ε|G|δ

satisfies the hypotheses of the proposition and we have

|Π3S| ≥ |Π3S
′| �ε |S ′|1+δ ≥ (|S|/|N |)1+δ �ε |S|1+δ.

If the proposition is true for the group G/N , then it is true for the group G with a

worse implied constant depending on ε.

For 1 ≤ i ≤ n we set pr≤i to be the projection of G onto the first i factors

and we set π0(G) = 〈1〉. From the set S we obtain a tree with n + 1 levels in the

following way. The vertices on the ith level are the elements of pr≤i(S), and a vertex

(sj)
i−1
j=1 on the (i− 1)th level is connected to each vertex on the ith level of the form

((sj)
i−1
j=1, h) for each h ∈ pri(S). By [BGS10, Section 5] there exists a subset A ⊂ S

with the following property: For each 1 ≤ i ≤ n, there exists a positive integer Di

such that for each (aj)
i−1
j=1 ∈ pr≤i−1(A)

{h ∈ pri(A) | ((aj)i−1
j=1, h) ∈ pr≤i(A)} = Di

and

|A| > (Πn
i=1|Gi|δ log |Gi|)

−1|S| > |G|−2δ|S|.

The last inequality is an inequality of the form (4.5). Furthermore for each i, Di > |Gi|δ
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or Di = 1.

We partition the set {1, 2, . . . , n} into two sets Is and I`. Is is the set of indices

i with the property that Di < |Gi|1−1/3L, and I` = {1, 2, . . . ,M} \ Is. We set prs

and pr` to be the projections of G onto ×i∈IsGi and ×i∈I`Gi respectively and set

Gs = prs(G), G` = pr`(G). For i ∈ Is, we hope to apply assumption (V4)L,δ′ to the

fibres of A under the projection from the ith factor to the to the (i− 1)th factor to

show prs(A) grows after taking the product with itself three times. However, we have

little control over these sets. In particular we do not know if the fibres generate the

group Gi, i ∈ Is so we cannot apply assumption (V4)L,δ′ directly. To deal with this,

we multiply pri(A) by random elements in S and use assumption (V4)L,δ′ and Lemma

39 to obtain a probability measure λ supported on a bounded product of S which is

small in the `2-norm. This in turn will imply growth in a bounded product of prs(A).

For the indices i ∈ Il, the fibres are too large and so after taking a product of itself

three times, each fibre generates the group. Nevertheless, Varjú’s argument using

Farrah’s notion of “approximate homomorphisms” shows that the projection of S to

G` still contributes the growth of S after taking the product with itself three times.

We first prove the following version of proposition ([Var12, Prop. 16]) whose

proof must be altered slightly to fit our needs.

Proposition 40. There exists positive constants δs and Q depending only on ε and

L such that

|Π2m+1S| > |S||G|−QδΠi∈IsD
δs
i ,

where m is the constant in (V4)L,δ′.
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As mentioned in the previous section, the goal is to multiply the set

{(b ∈ pri(A) | ((aj)ij=1, b) ∈ pr≤i(A)}

by suitably chosen random elements of Gi so that the resulting set is nicely distributed

in Gi. In particular, we need to choose random elements from a subset B of S that

has the property that πi(B) does accumulate on proper cosets of Gi for i ∈ Is. The

following lemma provides the required probability distribution.

Lemma 41. There exists a subset B ⊂ S and a partition of the set {1, 2, . . . , n} =

Jg t Jb such that

Πi∈Jb|Gi| ≤ |G|δ/δ
′′
, (4.6)

and for any i ∈ Jg and for any proper coset gH ⊂ Gi,

χB({x ∈ G| pri(x) ∈ gH}) ≤ |Gi|−δ
′′
, (4.7)

where δ′′ > 0 is a constant which only depends on ε and L.

Proof. B is constructed by the following algorithm: InitializeB = S, Jg = {1, 2, . . . , n},

and Jb = ∅. If there exists an index i and a proper coset gH ⊂ Gi with

χB({x ∈ G| pri(x) ∈ gH} ≥ |Gi|−δ
′′
,

then put i into Jb and replace B by

{x ∈ B| pri(x) ∈ gH}.
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When this property terminates, (4.7) holds. Note that by assumption (V2)L,δ′ applied

to the induced representation, the index of any subgroup of Gi for any 1 ≤ i ≤ k is at

least |Gi|1/L. By construction B is contained in a coset of subgroup of G of index at

least Πi∈Jb|Gi|1/L and

χS(B) ≥ Πi∈Jb|Gi|δ
′′
.

By the second assumption on the set S in the hypotheses of Proposition 37,

Πi∈Jb|Gi|−δ
′′
<
(
Πi∈Jb |Gi|1/L

)−ε |G|δ.
The inequality (4.6) holds if δ′′ < ε/2L.

Choose elements xi, 1 ≤ j ≤ 2m− 1, independently at random according to the

distribution χB. For an index i ∈ Jg let yj := pri(xj) and let A1, A2, . . . , A2m ⊂ Gi be

arbitrary subsets of constant size D where |Gi|δ < D < |Gi|1−1/3L. Let

λm := χA1 ∗ 1y1 ∗ χA2 ∗ 1y2 ∗ · · · ∗ χA2m−1
∗ 1y2m−1

∗ χA2m
.

We will show that with high probability, λm does not accumulate on any proper

coset. We need the following:

Lemma 42 (Lemma 18 [Var12]). For every i ∈ Jg, there exists a constant δ′′ depending

only on ε and L such that the probability that

λk(gH) < D−δ
′′/10k (4.8)
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for any g ∈ Gi and H ∈ ∪l≤kHl is at least

1− (2k − 1)|Gi|−δ
′′

for any choice of sets A1, . . . , A2m.

Proof. Let δ′′ be twice the δ′′ from the previous lemma. We proceed by induction on

k. If k = 0, then

λ0(gZ(Gi)) = χA1(gZ(Gi)) ≤ L/Di < D−δ
′′

where the last inequality is an inequality of the form (4.5).

For the inductive step, assume the claim holds for k > 1. Write λk+1 =

λk ∗ 1y
2k
∗ νk where

νk = χA
2k+1
∗ 1y

2k+1
∗ · · · ∗ 1y

2k+1−1
∗ χA

2k+1
.

By the induction hypothesis, the probability that

λk(gH) < D−δ
′′/10k and νk(gH) < D−δ

′′/10k

for all H ∈ Hk and g ∈ Gi is at least 1 − (2k+1 − 2)|Gi|−δ
′′
. Assume that there

exists H ∈ Hk+1 and g ∈ Gi such that λk+1(gH) ≥ D−δ
′′/10k+1

. Fix a full set of coset

representatives {gj}[GP :H]
j=1 of H. Then

λk+1(gH) =

[GP :H]∑
j=1

λk(gHg
−1
j )νk(y

−1hjH) (4.9)
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where y := y2k .

Now for some index j, we have

λk(gHg
−1
j ) ≥ D−δ

′/10k/2 and νk(yg
−1
j H) ≥ D−δ

′/10k/2, (4.10)

for otherwise we have

[GP :H]∑
j=1

λk(gHg
−1
j )νk(y

−1hjH) =
∑

j:λk(gHg−1
j )<D−δ′/10k/2

λk(gHg
−1
j )νk(y

−1hjH)

+
∑

j:νk(yg−1
j H)<D−δ′/10k/2

λk(gHg
−1
j )νk(y

−1hjH)

< D−δ
′/10k+1

which is a contradiction.

Let j be an index satisfying (4.9). Then (gHg−1
j )−1gHg−1

j ⊂ gjHg
−1
j and

y−1hjH(y−1hjH)−1 ⊂ y−1gjHg
−1
j y. Let H1 := gjHg

−1
j and H2 := y−1gjHg

−1
j y =

y−1H1y. Since Hk+1 is closed under conjugation, we have subgroups H1, H2 ∈ Hk+1

such that

(λ̃k ∗ λk)(H1) ≥ D−2δ′10k+1

/4, (4.11)

and

(νk ∗ ν̃k)(H2) ≥ D−2δ′10k+1

/4. (4.12)

Note that in this case y is in a fixed coset of NGi(H2), which by (4.7) has χB

measure less than |Gi|δ
′′/2. We are done once we show the number of pairs H1, H2 for

which (4.11) holds is also less than |Gi|δ
′′/2.

Let M be the number of subgroups which satisfy (4.11) and let H1, H
′
1 ∈ Hk+1
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be two such subgroups. By assumption (V3)L,δ′(iv) and the inductive hypothesis,

λk(H1 ∩H ′1) < D−δ
′′/10k). By the inclusion exclusion principle

MD−2δ′′/10k+1

/4−M2LD−δ
′′/10k ≤ 1.

If we assume Dδ′′/2(10k+1) > 4(1 + L), which is an inequality of type (4.5), then

M < Dδ′′/4(10k). Similarly, there are at most Dδ′′/4(10k) subgroups which satisfy (4.12),

which completes the proof.

Now with our modified assumptions we can prove the following corollary which

is analogous to [Var12, Cor. 19].

Corollary 43. Let i ∈ Jg ∩ Is, λm be the measure defined above and A′ ⊂ Gi be an

arbitrary set of cardinality Di. There exists a positive constant δ′′ depending only on ε

and L such that the probability that

‖λm ∗ χA′‖2 � D
−1/2−δ′′
i

is at least 1/2.

Proof. By the previous lemma (and an inequality of the form (4.5)), there exists

δ′′ > 0 such that with probability at least 1/2 that λm(gH) < LD−δ3 for every g ∈ Gi

and every proper subset H such that |H| > |G|δ′ . We also have L < Dδ′′/2 which is

an inequality of the form (4.5). If ‖λm‖2 ≤ |Gi|−1/2+1/12L, then the claim is trivial

by Young’s inequality. So suppose ‖λm‖2 > |Gi|−1/2+1/12L and assume for the sake of

contradiction that

‖λm ∗ χA′‖ � D−1/2−δ3

= ‖λm‖1/2
2 ‖χA′‖

1/2
2 D−δ3
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for every positive constant δ3. Note that D−1/4 = ‖χA1‖2 ≥ ‖λm‖2 by Young’s

inequality. Then by Lemma 39, there exists a symmetric set X ⊂ Gi with the

following properties:

1

DΘ(δ3)‖λm‖2
2

� |X| � DΘ(δ3)

‖λm‖2
2

, (4.13)

|Π3X| � DΘ(δ3)|X|, (4.14)

(λ̃m ∗ λm)(X)� D−Θ(δ3). (4.15)

By (4.15)

(λ̃m ∗ λm)(X) =
∑
g∈Gi

λm(g)λm(g〈X〉) ≥ D−Θ(δ3) > D−δ
′′/2

where the last inequality holds if δ3 is sufficiently small. Therefore either |〈X〉| < |Gi|δ
′

or 〈X〉 = Gi. By (4.13),

|X| ≥ 1

‖λm‖2
2D

Θ(δ3)
≥ D1/2−Θ(δ) > |Gi|δ/4 > |Gi|δ

′

where the last inequality holds if δ3 is sufficiently small and δ′ < δ/4. Therefore, X

generates Gi. By assumption (V4)Lδ′ and (4.14)

|X| > |Gi|1−ε0

for some positive constant ε0 which depends on δ3.
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Again by (4.13),

|Gi|1−ε0 < |X|

< DΘ(δ3)‖λ2‖−2
2

< DΘ(δ3)|Gi|1−1/6L

⇒ DΘ(δ3)|Gi|ε0 > |Gi|1/6L.

Since ε0 → 0 as δ3 → 0, this is a contradiction and the corollary is proven.

Let

λ = χA ∗ 1x1 ∗ χA ∗ 1x2 ∗ · · · ∗ 1x2m+1 ∗ χAχA.

For each 1 ≤ i ≤ n, let

pri,i−1 : ×ij=1G→ ×i−1
j=1G.

For i ∈ Is ∩ Jg we will apply Corollary 43 to the sets Ai,g = pri,i−1
−1(g) ∩ A for each

g ∈ pr≤i−1(A) which are all sets of size Di by construction. This will give us an upper

bound on ‖λ‖2.

Proof of Proposition 40. For any collection of subsets X1, X2, . . . , Xk of a finite group

G, it is easy to see that for any g ∈ G,

(χX1 ∗ χX2 ∗ · · · ∗ χXk)(g) =
|{(xj)kj=1 ∈ Πk

j=1Xj | x1x2 . . . xk = g}|
|X1||X2| . . . |Xk|

.

For each 1 ≤ j ≤ n let λ≤j be the measure on G≤j defined by

λ≤j = χA≤j ∗ 1pr≤j(x1) ∗ χA≤j ∗ 1pr≤j(x2) ∗ · · · ∗ 1pr≤j(x2m+1) ∗ χA≤j ∗ χA≤j .
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For each g ∈ G≤j let λg,j be the measure on Gj defined by

λg,j = χAg,j ∗ 1prj(x1) ∗ χAg,j ∗ 1prj(x2) ∗ · · · ∗ 1prj(x2m+1) ∗ χAg,j ∗ χAg,j .

We prove by induction that for 1 ≤ j ≤ n, the expected value of the random variable

‖λ≤i‖2
2 is less than

 ∏
i≤j:i∈Is∩Jg

CD−1−δ′′
i

 ∏
i≤j:i/∈Is∩Jg

D−1
i


where C is the implied constant from Corollary 43.

The case when i = 1 follows directly from Corollary 43 and the inequality

‖λ1G,1‖2 ≤ ‖χpr1(A)‖2 = D
−1/2
1 which follows from Young’s inequality. Now assume

the claim is true for 1 < j < n.

Then by computing the expected value of the random variable ‖λ‖2
2 we have,

E (‖λ‖2
2) = E

(∑
g∈G

(g)2

)

= E

( ∑
g1∈prj−1(G)

∑
g2∈Gj

λ((g1, g2))2

)

= E

( ∑
g1∈prj−1(G)

∑
g2∈Gj

λ≤n−1(g1)2λn,g1(g2)2

)

= E

( ∑
g1∈prj−1(G)

λ≤j−1(g1)2

( ∑
g2∈Gn

λn,g1(g2)2

))

= E

( ∑
g1∈prj−1(G)

λ≤j−1(g1)2‖λj,g‖2
2

)

<

 CD−1−δ′′
j E (‖λ≤j−1‖2) if j ∈ Is ∩ Jg

D−1
j )E (‖λ≤j−1‖2) if j /∈ Is ∩ Jg

<

( ∏
i≤j:i∈Is∩Jg

CD−1−δ′′
i

)( ∏
i≤j:i/∈Is∩Jg

D−1
i

)
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which proves the claim.

This implies that for some choice of x1, x2, . . . , x2m+1, we have

|Ax1Ax2 . . . Ax2m+1AA| = | Suppλ| > ‖λ‖−2
2

>

( ∏
i∈Is∩Jg

C−1D1+2δ′′

i

)( ∏
i/∈Is∩Jg

Di

)

= |A|C−n
( ∏
i∈Is∩Jg

D2δ′′
i

)
> |A|C−n|G|−δ/2

(∏
i∈Is

D2δ′′
i

)
> |S||G|−Qδ

(∏
i∈Is

D2δ′′
i

)
(4.16)

where we used the inequalities |A| > |S||G|−2δ, Cn|G|δ which is of type (4.5), and

Inequality (4.6).

In order to deal with the indices of large degree, we use the following proposition

whose proof, due to Varjú, is included here for the sake of completeness:

Proposition 44 (Proposition 20 [Var12]). There exists a positive constant δl depending

only on ε and L such that

|Π9S| > |G|δl−δΠi∈IlDi.

Recall that Gs = ×i∈IsGi, Gl = ×i∈IlGi and let prs, prl be the projections

to these subgroups. Nikolov and Pyber [NP11, Cor. 1] showed that a result of

Gowers [Gow08, Thm. 3.3] implies that if A,B,C ⊂ Gi are subsets that satisfy

|A||B||C| > |Gi|3−1/L then ABC = Gi where |Gi|1/L is a lower bound for the dimension

of any nontrivial representation of Gi (assumption (V2)L,δ′ .

Let i1, i2, . . . in′ be the indices in Il and for 1 ≤ k ≤ n′ let G{1,2,...ik} =

Gi1 ×Gi2 ×Gik and let pr{1,2,...,ik} be the projection to this subgroup. We claim that
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pr{1,2,...ik}(Π3A) = G{i1,i2,...,ik}.

The base case k = 1 has already been mentioned. Assume the claim is true for

k > 1 and let g ∈ G{i1,...,ik}. By the induction hypothesis, there exist a1, a2, a3 ∈ A

such that pr{1,2,...,ik}(a1a2a3) = pr{1,2,...,ik}(g). Let

Bi = {x ∈ A| pr{1,2,...,ik}(x) = pr{1,2,...,ik}(ai)}

and note that

pr{1,2,...,ik+1}(Bi) ⊃ pr{1,2,...,ik+1}({x ∈ A| pr≤ik+1
(x) = pr≤ik+1

(ai)})

and hence | pr{1,2,...,ik+1}(Bi)| ≥ Dik+1
≥ |Gik+1

|1−1/3L. Now apply [NP11, Cor. 1] to

the sets pr{1,2,...,ik+1}(Bi) to establish the claim.

Define a distance function on Gs by

d(g, h) =
∑

i∈Is|pri(g) 6=pri(h)

log |Gi|.

Lemma 45. If |Π3S| ≤ |G|1−ε+δ then there exists an element g ∈ Π6S such that

prl(g) = 1 and

d(prs(g), 1) > δ′′ log |G|,

where δ′′ > 0 is a constant depending on ε and L.

We introduce the notion of an approximate homomorphism that was given by

Farah [Far00]. A function ψ : Gl → Gs is a δ′′-approximate homomorphism if

d(ψ(g)ψ(h), ψ(gh)) ≤ δ′′
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and

d(ψ(g), ψ(g−1)
−1

) ≤ δ′′

for all g, h ∈ Gl.

By [Far00, Thm 2.1], if ψ : Gl → Gs is a δ′′-approximate homomorphism, then

there exists a homomorphism φ : Gl → Gs such that

d(ψ(g), φ(g)) ≤ 24δ′′ (4.17)

for all g ∈ Gl.

Proof of Lemma 45. Assume for the sake of contradiction that for any g ∈ Π6S with

prl(g) = 1, d(prs(g), 1) ≤ δ′′ log |G|. For each g ∈ Gl, we can find h ∈ Π6S such that

prl(h) = g by the above argument. Set ψ(g) = prs(h). If h1, h2 ∈ Π6S such that

prl(h1) = pr2(h2), then by the assumption we have

d(prs(h1), prs(h2)) = d(prs(h1h
−1
2 , 1) < δ′′ log |G|.

If g1, g2 ∈ Gl, and if h1, h2, h3 ∈ Π3S satisfy ψ(g1) = prs(h1), ψ(g2) = prs(h2) and

ψ(g1g2) = prs(h3), then since prl(h1h2) = prl(h3) we have

d(ψ(g1g2), ψ(g1)ψ(g2)) = d(prs(h3), prs(h1h2)) < δ′′ log |G|.

Similarly if h4 ∈ Π3S satisfies ψ(g−1
1 ) = prs(h4), then prl(h

−1
1 ) = prl(h4),

whence

d(ψ(g−1
1 ), ψ(g1)−1) = d(prs(h4), prs(h

−1
1 )) < δ′′ log |G|.
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Therefore ψ is a δ′′ log |G|-approximate homomorphism.

By [Far00, Thm. 2.1], there exists a homomorphism φ : Gl → Gs such that

d(ψ(g), φ(g)) ≤ 24δ′′ log |G| for any g ∈ Gl. Let H be the subgroup of G defined by

H = {g ∈ G | prs(g) = φ(prl(g))}.

If g ∈ G, h ∈ H, we have

prs(g)φ(prl(g))−1 = prs(g) prs(h)φ(prl(h))−1φ(prl(g))−1

= prs(gh)φ(prl(gh))−1.

(4.18)

Clearly for gs ∈ Gs, prs(gs)φ(prl(gs))
−1 = gs. Therefore the cosets of H are in bijective

correspondence with the elements of Gs and hence H has index |Gs|.

For any h1 ∈ Π3S, the coset h1H containing h1 is represented by the element

g1 = prs(h1)φ(prl(h1))−1 ∈ Gs. Since

d(prs(h1)φ(prl(h1))−1, 1) = d(prs(h1), φ(prl(h1)))

≤ d(prs(h1), ψ(prl(h1))) + d(ψ(prl(h1)), φ(prl(h1)))

< 25δ′′ log |G|
(4.19)

there is a set of indices Ih1 ⊂ Is such that g1 ∈ ×i∈Ih1Gi and | ×i∈Ih1 Gi| < |G|25δ′′ .

Hence, there are at most |G|25δ′′ choices for g1. Since there are at most 2n possibilities

for Ih1 , Π3S is contained in 2n|G|25δ′′ < |G|26δ′′ cosets of H.

By the hypotheses on the set S, we have

1 =
∑

gH⊃S.S.S⊃S

χS(gH) < |Gs|−ε|G|26δ′′+δ.
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Since |Gl| ≤ |Π3S| ≤ |G|1−ε−δ, |Gs| ≥ |G|ε−δ. Therefore,

|Gs|−ε|G|26δ′′+δ < |G|26δ′′+δ+εδ−ε2 .

This is a contradiction if δ < ε2/4 and δ′′ < ε2/26 · 4.

Proof of Proposition 44. Let g be the element found in Lemma 45. An element h ∈ G

commutes with g if and only if pri(h) ∈ CGi(pri(gi)) for 1 ≤ i ≤ n. If i is an index

with pri(g) 6= 1, then by assumption (V2)L,δ′ applied to the induced representation,

we have [Gi : CGi(g))] > |Gi|1/L. Recall that we assumed each Gi is simple, and hence

CGi(pri(g)) 6= Gi since Z(Gi) is trivial. This implies [G : CG(g)] > |G|δ′′/L where δ′′

is the constant found in Lemma 45. Let M be the number of cosets of CG(g) which

have nontrivial intersection with S. Then by the hypotheses on S,

1 = M
∑

h:hCG(g)∩S 6=0 χS(hCG(g))

< M [G : CG(g)]ε|G|δ

< M |G|−εδ′′/L−δ

⇒ M > |G|εδ′′/L−δ.

This implies that the set

{sgs−1|s ∈ S} ⊂ Π8S

contains at least |G|εδ′′/L−δ distinct elements h with prl(h) = 1, which implies

|Π9S| ≥ |G|εδ
′′/L−δΠi∈IlDi.
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Proof of Proposition 37. By propositions 40 and 44 there exist constants δs, δl, and

Q that are independent of δ such that

|Π2m+1S| > |S||G|−QδsΠi∈IsD
δs
i

and

|Π9S| > |G|δl−δΠi∈IlDi.

Combining these equations we have

|Π2m+1S||Π9S|δs > |S||G|−δs(Q+δ)|G|δsδlΠk
i=1D

δs
i .

Since |G| > |S| and Πn
i=1Di = |A| > |S||G|−2δ we get

|Π2m+1S||Π9S|δs > |S|1+δs+δsδl |G|−Qδ.

By [Hel08, Lemma 2.2]

|ΠkS|
|S|

≤
(
|Π3S|
|S|

)k−2

and by the second hypothesis on the set S applied to the trivial subgroup we have

|S| > |G|ε−δ. Therefore the claim is proven if δ is sufficiently small.
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4.1.1 Proof of Proposition 9

Proof of Proposition 9. We proceed in a similar manner as in the proof of Corollary

43. Let Q ∈ Fq0 [t] be a square free polynomial coprime to Q1. Let GQ = πQ(Γ).

Assume that for each irreducible factor P of Q, deg(P ) has no divisors smaller than a

constant c which we will determine later. We will show in the next section that the

groups GP = πP (Γ) satisfy assumptions (V4)L,δ′ for some L that is independent of Q

as long as c < δ′. Let Ω′ ⊂ Γ be the subset given by Proposition 8. Let µ = χΩ′ and

let µQ = πQ[µ]. For any real number ε, let δ′ε and δε be the constants corresponding

to ε in the statement of Proposition (37).

Assume for the sake of contradiction that there exists a positive constant ε

such that for any positive real number δ,

‖µQ‖2 > |πQ(Γ)|−1/2+ε and µQ(gH) < [G : H]−ε (4.20)

for each g ∈ GQ and each proper subgroup H with the property that πP (H) is a

structural subgroup of πP (Γ) for each irreducible factor P of Q. and yet

‖µQ ∗ µQ‖2 ≥ ‖µQ‖1+δ.

Note that we may replace ε with another positive constant ε′ � ε freely. For if

the claim is true for ε′ � ε, and the inequalities (4.20) hold, then we also have

‖µQ‖2 > |πQ(Γ)|−1/2+ε′ and µQ(gH) < [G : H]−ε
′

(4.21)

and the proposition implies itself. By Lemma 39 applied to µ = ν = µ
(`)
Q , where
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`� deg(Q) and K = ‖µQ‖−δ2 , there exists a symmetric set S ⊂ G with the following

properties:

‖µ(`)
Q ‖
−2+Θ(δ)
2 � |S| � ‖µ(`)

Q ‖
−2−Θ(δ)
2 , (4.22)

|Π3S| � ‖µ(`)
Q ‖
−Θ(δ)
2 |S|, (4.23)

min
s∈S

(µ̃
(`)
Q ∗ µ

(`)
Q )(s)� ‖µQ‖

Θ(δ)
2

|S|
. (4.24)

Note that the implied constants in these equations are universal. We will show that

the set S satisfies the hypotheses of Proposition 37 for the constant ε as long as c and

δ are sufficiently small depending on ε. By Property (4.22), |S| < |G|1−ε.

Let g ∈ πQ(Γ) and H ⊂ πQ(Γ) be a proper subgroup. Set

H ′ = ×Pirred.|QπP (H).

Let Gs be the product of the factors GP where P is an irreducible factor of Q and

either πP (H) = GP or πP (H) is a proper structural type subgroup of GP , and let

prs be the projection of GQ to Gs. Let Gf be the product of the factors GP where

P is an irreducible factor of Q and πP (H) is a proper subfield type subgroup of GP ,

and let prf be the projection of GQ to Gf . Let H ′s = prs(H
′) and H ′f = prf(H

′) so

that H ′ = H ′s × H ′f and | prf(H)| ≤ |H ′f | < |Gf |. We distinguish two cases. First

assume prs(H) 6= Gs. Then prs(H) × 〈1〉 is a proper subgroup of GQ such that for

each irreducible factor P of Q, πP (H) is a structural subgroup.
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Then we have,

χS(gH) ≤ χS(g(prs(H)× prf (H)))

=
∑

hf∈prf (H) χS((prs(g), prf (g)hf )(prs(H)× 〈1〉))

≤ | prf (H)|maxg′∈GQ χS(g′(prs(H)× 〈1〉)).

(4.25)

By (4.24) and the second assumption in (4.20), we have for any g′ ∈ GQ

χS(g′(prs(H)× 〈1〉)) � ‖µQ‖−Θ(δ)
2 (µ̃Q

(`) ∗ µ(`)
Q )(g′(prs(H)× 〈1〉))

≤ ‖µ(`)
Q ‖
−Θ(δ)
2 maxh∈GQ µ

(`)
Q (h(prs(H)× 〈1〉))

� |GQ|Θ(δ)[GQ : prs(H)× 〈1〉]−ε.

. (4.26)

Combining equations (4.25) and (4.26), we have

χS(gH) ≤ | prf (H)||GQ|Θ(δ)[GQ : prs(H)× 〈1〉]−ε

< |Gf |c|GQ|Θ(δ)[GQ : prs(H)× 〈1〉]−ε

≤ |Gf |c|GQ|Θ(δ)[GQ : H]−ε

≤ |GQ|δε [GQ : H]−ε

(4.27)

Where the last inequality holds if say c < δε/2 and δ � δε/2.

For the second case, we assume prs(H) = Gs. Recall from Lemma 30, there

exists a constant δ′′ > 0, depending only on G such that

[GQ : H ′] ≥ [GQ : H]δ
′′
.
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Therefore, in order to show

χS(gH) < [GQ : H]−ε|GQ|δε ,

it suffices to show

χS(gH ′) < [GQ : H ′]−ε/δ
′′|GQ|δε .

Note that if `0 < `, then for any subset X of G and any constant M , χ
(`0)
Ω′ (X) < M

implies µ
(`)
Q (X) < M . Let Q′ = ΠP |Q:πP (H)6=GPP . Since Ω′ generates a free subgroup

of Γ we have an upper bound on the probability of recurrence to the origin given by

Kesten [Kes59, Thm. 3]:

πQ′ [µ
(`0)](1) < |GQ′ |−Θ(1)

where GQ′ = πQ′(Γ), and the implied constant depends only on the size of Ω′. If `0 is

even, then by the Cauchy-Schwarz inequality and since Ω′ is symmetric, we have

πQ′ [µ
(`0)(g′) ≤ πQ′ [µ

(`0)(1)

for any g′ ∈ GQ′ .

Then on one hand we have for any g′ ∈ GQ,

πQ′ [µ
`0
Q ](prf (g

′)H ′f ) ≤ |H ′f |πQ′ [µ
`0
Q ](1)

< |H ′f ||Gf |−Θ(1)

< |Gf |c−Θ(1)

< |Gf |−Θ(1),

(4.28)
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where the last inequality holds if c� 1. Therefore,

πQ′ [µ
(`)
Q ](pr(f)H ′f ) < |Gf |−Θ(1).

On the other hand, we have

πQ′ [µ
(`)
Q ](prf (g

′)H ′f ) = µ
(`)
Q (g′(Gs ×H ′f )) . (4.29)

By the calculation in equation (4.26) and by (4.28), we have

χS(gH ′) ≤ χS(g(Gs ×H ′f )

� ‖µ(`)
Q ‖
−Θ(δ)
2 maxh∈GQ µ

(`)
Q (h(Gs ×H ′f ))

< |GQ|Θ(δ)|Gf |−Θ(1)

< |GQ|Θ(δ)|Gf |−ε/δ
′′

< |GQ|Θ(δ)|Gf |−ε/δ
′′ |H ′f |ε/δ

′′

= |GQ|Θ(δ)[GQ : H ′]−ε/δ
′′

< |GQ|δε [GQ : H ′]−ε/δ
′′

(4.30)

where the fourth inequality holds if ε�Ω′,G 1 and the last inequality holds if δ � ε.

Now as long as c < δ′ε, πQ(Γ), S, and µ
(`)
Q satisfy the hypotheses of Proposition

37. Therefore the conclusion of Proposition 37 contradicts (4.23) if δ is sufficiently

small.
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4.2 Satisfying assumptions (V1)L,δ′-(V4)L,δ′

Recall that if Q = P1P2 . . . Pk ∈ Σ is a square free polynomial coprime to

Q1, then πQ(Γ) = GQ(Fp[t]/(Q)) = ×Pirred.|QGP (FqP ). We claim that the groups

GP = GP (FqP ) satisfy assumptions (V1)L,δ′-(V1)L,δ′ for some L if Q ∈ Σc for c� δ′.

Assumptions (V1)L,δ′ and (V2)L,δ′

Since G is absolutely almost simple, GP is almost simple and the center of GP

is bounded in terms of the absolute root system of G. By the main theorem of [LS74]

the groups GP are known to be c-quasirandom for some constant c depending only on

G. Therefore assumptions (V1)L,δ′ and (V2)L,δ′ hold.

Assumption (V3)L,δ′

Let H ⊂ GP be a proper subgroup of GP . Then by Proposition 26 either:

1. H is of subfield type. Then there exists a proper subfield Fq′ ⊂ FqP and model

GH of GP over Fq′ such that [GH(Fq′),GH(Fq′)] is simple and

[GH(Fq′),GH(Fq′)] ⊂ Ad(H) ⊂ GH(Fq′),

or,

2. H is of structural type. Then H lies in a proper algebraic subgroup H ⊂ GP of

complexity � 1. I.e., H is defined by at most D polynomials of degree at most

D (c.f., Proposition 26). Moreover, H is defined over a field Fq′P of degree �G 1

over FqP .
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If deg(P ) has no divisors smaller than a constant δ′, then any subfield Fq′ of

FqP has order less than qδ
′
P . Therefore for any model G0 of G over a subfield Fq′ ⊂ FqP ,

|G0(Fq′)| < |GP |Θ(δ′). Hence, if P ∈ Pc where c� δ′ and H ⊂ GP is a subgroup such

that |H| > |GP |δ
′
, then H must be a subgroup of structural type.

It remains to describe the classes of subgroups H1, . . . ,Hm. For 1 ≤ i ≤ m, let

H′i := {H = Stabρ′P (GP )(W )(Fq′P )◦ | W is an Fq′P -subspace of Vq′P , dimH = i}

(c.f., §3.1) and let

Hi := {ρ′−1
P (H)(Fp) ∩GP (Fq′P ) | H ∈ H′i}.

Then we claim that the classes Hi, 1 ≤ i ≤ dim(G), satisfy the assumptions.

Recall that by the construction of ρ′P , H has complexity bounded by a constant D �G 1.

By a refinement of Bézout’s Theorem ([Ful98, Thm. 12.3]) the bound on the complexity

of H yields a uniform bound on the number of irreducible components of H. Therefore,

[H : H◦] < L if L is large enough. This implies that for any structural subgroup H of

GqP , there exists an index i0 ∈ {1, . . . , dim(G) and a subgroup H# ∈ Hi0 such that

H is contained in at most L many cosets of H#.

For any index i0 ∈ {1, . . . , dim(G)}, and any two subgroups H1, H2 ∈ Hi0 with

say,

ρ′P (H1) ⊂ StabρP ′ (GP )(W1)(Fq′P )◦, and ρ′P (H2) ⊂ StabρP ′ (GP )(W2)(Fq′P )◦,
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we see that ρ′P (H1 ∩H2) ⊂ StabρP ′ (GP )(W1 ∩W2)(Fq′P ). Hence, ρ′P (H1 ∩H2) lies in at

most L many cosets of StabρP ′ (GP )(W1 ∩W2)◦(Fq′P ), and the last assumption is clear.

Assumption (V4)L,δ′

Assumption (V4)L,δ′ for the groups GP is exactly the content of the following

theorem that was proved independently by Breuillard-Green-Tao [BGT11, Cor. 2.4]

and Pyber-Szabo [PS, Thm. 4]:

Theorem 46. Let G be a simple group of Lie type of rank r, and X a set which

generates G. Then either |Π3X| � |X|1+ε0 or |X| � |G|1−ε0 where ε0 and the implied

constant are universal.

Chapter 4 contains material coauthored by Professor Alireza Salehi Golsefidy

and is in preparation for publication under the title ““Super-approximation” in

Absolutely Almost Simple Groups Over Fq(t)”. The author of this dissertation is a

primary researcher and a primary author of the paper mentioned above.



Chapter 5

Proof of the main theorem

Proof of Theorem 6. The proof presented here is essentially identical to the proof of

Theorem 1 of [SGV12] and is included for the sake of completeness. Let Ω′ ⊂ Γ be

the finite symmetric set given in Proposition 8. We will first show that there exists

positive constants ε and c such that the family of graphs

{Cay(πQ(Γ), πQ(Ω′))}Q∈Σc

is a family of ε-expander graphs.

For any polynomial Q ∈ Σ with deg(Q)� 1, let µQ := πQ[χΩ′ ]. Consider the

“convolution by µQ” linear operator

∗µQ : L2(πQ(Γ)) → L2(πQ(Γ))

f 7→ f ∗ µQ.

Note that if we fix an ordering of the elements of πQ(Γ), the matrix AQ that

represents ∗µQ in the basis of Dirac functions {δγ}γ∈πQ(Γ), where
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δγ(g) =


1/|Ω′| g = γ

0 g 6= γ,

is equal to the normalized adjacency matrix of Cay(πQ(Γ), πQ(Ω′)). Since Ω′ is a

symmetric generating set of πQ(Γ) which contains the identity, we see that AQ is a

real, symmetric matrix with |Ω′| eigenvalues

1 = λQ,0 > λQ,1 ≥ λQ,2 ≥ · · · ≥ λQ,|Ω′|−2 ≥ λQ,|Ω′|−1 > −1.

It is well known (see [Dod84], [Alo86], [AM85]) that {Cay(πQ(Γ), πQ(Ω′))}Q∈Σc

is a family of ε-expander graphs if and only if for each Q, we can bound the constants

λQ := max{|λQ,1|, |λQ,|Ω′|−2|}

uniformly away from 1.

In order to get the desired bound, we use the trick of Sarnak and Xue of

bounding the multiplicity of the eigenvalues of AQ in terms of the dimension of

the irreducible representations of πQ(Γ). Let λ be an eigenvalue of ∗µQ and let

f ∈ L2(πQ(Γ)) be an eigenfunction corresponding to λ. Note that the irreducible

representations of πQ(Γ) are irreducible subspaces of L2(πQ(Γ)) that are stable under

conjugation by µQ. Let ρ be the irreducible representation that contains f . We may

assume that πP (Γ) is not contained in the kernel of ρ for any P |Q, since otherwise we

can take the quotient πQ(Γ)/πP (Γ) and replace Q by Q/P . Since πQ(Γ) = ×P |QπP (Γ),

ρ is a tensor product of irreducible representations of πP (Γ) for P |Q. By [LS74], the

dimension of any irreducible representation of πP (Γ) is at least |ΠP (Γ)|c0 for some
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constant c0 which depends only on G. Therefore the dimension of ρ, and hence the

multiplicity of the eigenvalue λ, is at least |πQ(Γ)|c0 .

Let a positive integer ` be given. We compute the trace of ∗µ(2`)
Q in two different

ways.

On one hand,

Tr(∗µ(2`)
Q ) =

|Ω′|−2∑
i=0

λ2`
Q,i

> max{mult(λQ,1),mult(λQ,|Ω′|−2)}λ2`
Q

> |πQ(Γ)|c0λ2`
Q .

(5.1)

On the other hand, if we compute Tr(∗µ(2`)
Q ) in the basis of Dirac functions we

have

Tr(∗µ(2`)
Q ) = |πQ(Γ)|µ(2`)

Q (1)

= |πQ(Γ)|
∑

g∈πQ(Γ)

µ
(`)
Q (g)2 (since µQ is symmetric)

= |πQ(Γ)|‖µ(`)
Q ‖

2
2.

(5.2)

Combining Equations (5.1) and (5.2), we see that it suffices to show

‖µ(`)
Q ‖2 � |πQ(Γ)|−1/2+c0/4 (5.3)

for some `� deg(Q).

By Proposition 8 there exists a positive constant ε1 such that if deg(Q)� 1

and if H ⊂ πQ(Γ) has the property that πP (H) is structural for all irreducible factors
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P of Q, then for `� degQ we have

πQ[µ
(l)
Ω′ ](H)� [πQ(Γ) : H]−ε1 . (5.4)

By the Cauchy-Schwarz inequality and the fact that µ
(2`)
Q is symmetric, for any

g ∈ πQ(Γ)

µ
(2`)
Q (g) =

∑
h∈πQ(Γ)

µ
(`)
Q (h)µ

(`)
Q (hg)

< ‖µ(`)
Q ‖

2
2

= µ
(2`)
Q (1)

.

Since the trivial subgroup is clearly a structural subgroup of πP (Γ) for all irreducible

polynomials P , we can apply Equation (5.4) to get

‖µ(2`)
Q ‖2 < |πQ(Γ)|1/2µ(2`)

Q (1)� |πQ(Γ)|−ε1/2.

Now if we assume Q ∈ Σc where c is the constant appearing in Proposition 9,

we can apply Proposition 9 a finite number of times to the measures µ = ν = µ
(2k`)
Q to

obtain the desired inequality, which proves the first claim.

We now prove that the Cheeger constants of the Cayley graphs of πQ(Γ) with

respect to Ω are uniformly bounded away from zero. Since Ω and Ω′ are both finite

generating sets of Γ, there exists a constant m such that Ω′ ⊂ ΠmΩ. For a subset X

of πQ(Γ), let ∂Ω(X), ∂Ω′(X) by the boundaries of X in the Cayley graphs of πQ(Γ)

with respect to Ω and Ω′ respectively. Suppose |X| < |πQ(Γ)|/2. Recall that since
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{Cay(πQ(Γ), πQ(Ω′)}Q∈Σ′ is a family of expander graphs, we have the inequality

|∂Ω′(X)|
|X|

> hΩ′

where hΩ′ is the Cheeger constant of the Cayley graph of πQ(Γ) with respect to Ω′ (1).

Then

|ΠmΩ.X| ≥ |Ω′.X|

= |∂Ω′(X)|+ |X|

> |X|hΩ′ + |X|.

(5.5)

On the other hand we have the obvious inequality

|ΠmΩ.X| ≤ |Πm−1Ω.∂Ω(X)|+ |X| ≤ |Ω′|m−1||∂Ω(X)|+ |X|. (5.6)

Combining (5.5) and (5.6), we have

|∂Ω(X)| ≥ |X|
(

hΩ′

|Ω|m−1

)
.

Therefore,

{Cay(πQ(Γ), πQ(Ω′)}Q∈Σc

is a family of expander graphs with a smaller Cheeger constant.

Chapter 5 contains material coauthored by Professor Alireza Salehi Golsefidy

and is in preparation for publication under the title ““Super-approximation” in

Absolutely Almost Simple Groups Over Fq(t)”. The author of this dissertation is a

primary researcher and a primary author of the paper mentioned above.



Chapter 6

Questions

Theorem 6 naturally lends itself to several questions. The most crucial question

is if we can prove expansion without the conditions on the irreducible factors of the

square free polynomials in Σ. Namely,

Question 1 (Expansion without condition). If Ω, Γ, G, and Q1 are as in the hypothesis

of Theorem 6, then is the family of graphs

{Cay(πQ(Γ), πQ(Ω))}
Q square free, (Q,Q1)=1

a family of ε-expander graphs for some ε > 0?

We put the condition that irreducible factors of the polynomials in Σc be

distinct in order to eliminate the possibility of subgroups of the form

H = {g, φ1(g), . . . , φk(g)) ∈ GQ(Fq0 [t]/(Q)) = ×ki=0GPi(FqPi )}
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where

φi : GP0(FqP0 )→ GPi(FqPi )

is a group isomorphism arising from a field isomorphism from FqP0 to FqPi for each

i = 1, . . . , k. For subgroups of this form, we cannot make use of Larsen and Pink’s

description of subgroups of GP (FqP ) since the projection to each factor is onto. Since

the morphisms φi, i = 1, . . . , k are isomorphisms of abstract groups and not of an

algebraic nature, it is not clear if the “small lifts” of the elements H lie in an algebraic

subgroup of G.

Seemingly related is the problem of getting rid of the assumption that the

divisors of the irreducible factors of Q are large. In order to do this, one must prove

that there is an exponentially small chance that a random walk on the Cayley graph

lands in a subgroup H of πQ(Γ) that may have nontrivial subfield type projections.

Again since those subgroups are not of an algebraic nature, a new idea is needed.

Question 2. Let p ≥ 5 be a prime number, Ω ⊂ GLn(Fq0 [t, 1/Q0]) be a finite

symmetric set, Γ = 〈Ω〉, and G be the Zariski-closure of Γ. Suppose G is semisimple

and simply connected and let pri : G→ Gi be the projection of G onto its ith almost

simple factor. Assume that pri(Γ) is Zariski dense for all i and that the ring generated

by Tr(pri(Ad Γ))) is all of Fq0 [t, 1/Q0]. Then does there exist a positive constant c > 0

and a square free multiple Q1 of Q0 such that the family of graphs

{Cay(πQ(Γ), πQ(Ω))}Q∈Σc, (Q,Q1)=1

is a family of ε-expanders for some ε > 0?

A large portion of our proof still works in this setting so I suspect this question
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of reasonable.

Aside from these questions, it may also be reasonable to answer the analogous

positive characteristic version of the work of [BGS10]. Namely, can we take the

reduction mod P n map where P is a fixed irreducible polynomial in Fq0 [t] and n ranges

through the positive integers? A modest start would be the following:

Question 3. Let Ω be a finite symmetric set of SL2(Fp[t]) which generates a Zariski-

dense subgroup Γ. Then is the family of graphs

{Cay(πtn(Γ), πtn(Ω))}n≥1

a family of ε-expander graphs for some ε > 0?
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