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Analyzing and Synthesizing Images by Evolving 
Curves with the Osher-Sethian Method 

Ron Kimmel* Nahum Kiryati, Alfred M. Bruckstein§ 

Abstract 

Numerical analysis of conservation laws plays an important role in the implementa­
tion of curve evolution equations. This paper reviews the relevant concepts in numerical 
analysis and the relation between curve evolution, Hamilton-Jacoby partial differential 
equations, and differential conservation laws. This close relation enables us to intro­
duce finite difference approximations, based on the theory of conservation laws, into 
curve evolution. It is shown how curve evolution serves as a powerful tool for image 
analysis, and how these mathematical relations enable us to construct efficient and 
accurate numerical schemes. Some examples demonstrate the importance ofthe CFL 
condition as a necessary condition for the stability of the numerical schemes. 

1 Introduction 

Recently, researchers in the field of image processing and computer vision started to pay 
attention to new ways of analyzing and representing two-dimensional, stationary or moving 
images, via planar curve evolution. In fact, any image can be viewed as a set of level curves 
"evolving" with the height parameter. Even such a simple description is quite useful in a 
variety of situations. 

Several image analysis algorithms nowadays are based on propagating planar curves in 
the image plane according to local variations in the grey-level of the image [5, 16). Those 
planar contours might be, for example, the level sets on the surface of an object whose 
shaded image we are trying to interpret so as to recover its three-dimensional structure. The 
Shape-from-Shading field is indeed a good example illustrating the way curve propagation 
algorithms found a very interesting application [4). Their usefulness in this and other appli­
cations was further enhanced by the recent development, in the field of numerical analysis, of 
a "miraculous" algorithm for the stable propagation of planar curves according to a variety 
of rules [31). This algorithm together with some recent results in the theory of curve evo­
lution resulted in the 'affine curvature flow' that was found to be a powerful tool for image 
smoothing and deblurring [35). 
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2 Analyzing and Synthesizing Images by Evolving Curves with the Osher-Sethian Method 

Other fields in which there were immediate consequences of having a stable and effi­
cient way to propagate curves, are Computer Aided Design, Robotics , Shape Analysis and 
Computer Graphics. 

In CAD there is a need to find offset curves and surfaces, implying fixed-speed curve 
propagation. Geodesic deformable models where introduced for shape modeling and analysis. 
In Computer Graphics , Pnueli and Bruckstein found an interesting application in the design 
of a clever half-toning method they named Diginurer, that aims to emulate the work of 
classical engravers [32, 33, 36], see Figure 1 (taken from [32]) . 

Figure 1: Propagating a planar curve with a velocity proportional to the image gray levels 
results in an artistic approach for halftoning. 

In Robotics , where one often needs to find a path for robots that need to move from a 
source to a certain destination, one could determine shortest routes by propagating a wave 
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of possibilities, and finding out the way its wavefront reaches the destination point. This 
is like Feynman's particles sniffing all possible paths before deciding on the trajectory of 
minimal action [13]. This, by the way, can be done even in the presence of moving obstacles. 
Last, but not least, we shall mention the field of Mathematical Morphology, where there is a 
need to precisely compute various types of distance functions, to enable erosion or dilation 
of shapes . . 

The solution for some of the problems that we will describe is based on the ability 
to find a new curve-evolution-based formulation to the problem. This new formulation is 
of the form of a differential equation that describes the propagation of a planar curve in 
time, under the constraints imposed by the problem. While propagating a planar curve one 
must often overcome various problems such as topological changes, e.g. a single curve that 
splits into two separate curves, and numerical problems that may be caused by the type of 
curve representation used, e.g. the problem of determining the offset curve to a polynomial 
parametric curve. 

The most general propagation rule for a planar curve in time along its normal direction 
JJ is 

C(O), 

where C(s, t) : 5 1 x [0, T] -+ JR? is the curve description and Vis a smooth scalar velocity 
function. The function V may depend on local properties of the curve or on some external 
control variable like for example the image gray level or terrain traversability. Let <f>(x, y, t) 
be an implicit representation of the curve so that C(s, t) = {(x, y)l<f>(x, y, t) = 0}, i.e. the 
zero level set of a time varying surface function <f>(x,y,t). Then, the propagation rule for</> 
that yields the correct curve propagation equation is given by [31] 

In some of the problems it is natural to use a given image I as initialization for the implicit 
function <f>(x, y, 0) =I. 

The implicit representation of the propagating curve solves numerical and topological 
problems of the propagation. Tracking the zero level set of the bivariate function </>( x, y) 
propagating in time, overcomes these problems in an elegant way, and leads to the desired 
numerical scheme. ·This new formulation for the implementation of propagating curves is 
due to Osher and Sethian [31], who called it the Eulerian formulation. 

In Section 2 some classical problems are presented, and the curve evolution solutions 
to these problems are shortly described. Section 3 presents guide lines for constructing 
numerical schemes for the curve evolution equations. The importance of the CFL condition 
is illustrated by several examples in Section 10. 
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2 Variations on a Theme 

2.1 Shape from shading 

A classical problem in the area of computer vision is how to reconstruct a 3D surface z(x , y) 
from a given gray- level picture I(x , y ) . In [4, 15, 25], it is shown that under reasonable 
assumptions about the light source and the object reflection properties, it is possible to solve 
this problem by using the image data to control the evolution of a planar curve so as to 
track the equal height contours of the object. Those equal height contours refer to equal 
heights with respect to the light source direction [20]. Some analytic manipulations on the 
relations between the contours and the data leads to an evolution rule for a planar curve. 
This evolution rule , in which the propagation time indicates the height with respect to the 

light source direction l = ( -p~, -% 1)/ )1 + Pf + q[, is determined by the gray-level image 
and the local nature of the curve. The planar evolution of the equal height (with respect to 
Z) is given by 

F(x , y))ni(1 + ql) + n~(l + pf)- nln22pzqz- (p1n1 + q1n2) _, 
Ct= J1 +p[+q[ ·N, 

where N = (n1 , n2 ) is the normal to the curve and F(x , y) = I(x , y)/)1- I(x,y)2, I( x ,y) 
being the shaded image. The implicit, Eulerian, formulation in this case is: 

F(x,y)J¢>;(1 + ql) + </>~(1 + pf)- </>x</>y2pzqz- (pz</>x + qz</>y) 

~= 0+~+~ . 
In [19] we have shown how to use "weighted distance transforms" implied by the shape 

from shading curve evolution for each of the singular points in the shading image to solve 
the global shape from shading problem for smooth surfaces (Morse functions). See Figure 2 
(taken from [19]). 

2.2 Continuous scale morphology 

In the field of shape theory, it is often required to analyze a shape by activating some 
"morphological" operations that make use of a "structuring element" with some given shape, 
see Figure 3. In [34] we explore the problem of morphological operators in which the element 
may be of any convex shape with variable sizes [3], see also [1] . This problem too may be 
reformulated as the problem of activating a propagation rule for the shape boundary. The 
evolution rule for the shape's boundary is determined by the structuring element's shape, 
and the time of evolution in this case represents the size of the element. The planar evolution 
of the boundary curve is 

Ct = sup(r(B),N)N, 
B 

and the Eulerian evolution is given by 

<!>t = sup(r(B), V¢>). 
B 
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Figure 2: A smooth synthetic surface on the upper left produces the shading image on the 
upper right frame. The reconstruction of the 3D shape from the shading image, based on 
Morse smoothness assumption is displayed on the lower left , and the error of subtracting the 
reconstruction from the original surface on the ' lower right. 
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Figure 3: A dilation and erosion operations with diamond and circle structuring elements of 
different scales. 
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2.3 Shape offsets or prairie fire propagation 

In CAD (computer aided design) one often encounters the need to find the offset of a given 
curve. A simple algorithm that solves this problem may be constructed by considering a 
curve that propagates with a constant velocity along its normal direction at each point 
[18, 2]. The propagation time represents the "offset distance" from the given curve, and the 
evolution rule is simply 

Ct = N, 

its implicit Eulerian formulation being 

This is, of course, also Blum's prairie fire propagation model for finding shape skeleton, 
i.e. the shock fronts of the propagation rule. 

2.4 Minimal geodesics on surfaces 

This important problem in the field of robotic navigation may be solved by considering an 
equal distance contour propagating from a point on a given surface. In [17], an analytic 
model that describes the propagating 3D curve, was introduced. Tracking such a 3D curve 
is quite a complicated task. However, it is also possible to follow its projection on the plane. 
Calculating the 3D distance maps by tracking the projected evolution from both source and 
dest ination points on the given surface, enables us to select the shortest path which is given 
by the minimal level set in the sum of the two distance maps, see Figure 4. The propagation 
time in this case, indicates distance on the surface, i.e., the geodesic distance. The planar 
evolution is 

(1 + q2)ni + (1 + p2 )n~ - (2pq)n1n2 JV 
1 + p2 + q2 ' 

where p = dz / dx and q = dz / dy are the gradient components of the surface z ( x , y) , and 
JV = ( n1, n 2 ) is the planar normal. The Eulerian (implicit) evolution in this case is 

(1 + q2)</J; + (1 + p2 )</J~- (2pq)</Jx</Jy 
1 + p2 + q2 . 

2.5 Shortening three dimensional curves via two dimensional flows 

Given a path connecting two points on a given surface, it is sometimes required to shorten 
its length locally and to find the closest geodesic to the given curve. In [23] it is shown 
that this operation too may be done by propagating a curve along the geodesic curvature. 
This 3D curve propagation may also be performed by tracking its planar projection, and 
may be used to refine minimal geodesics obtained by other methods , e.g. the minimal path 
estimation obtained by the Kiryati-Szekely algorithm [26]. 
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0 

Figure 4: Finding the paths of minimal length between the square and circle areas on a 
Gaussian mountain surface. 

2.6 Distance maps and weighted distance transforms 

As stated in [22] , some of the above results may in fact be grouped under the same title of 
'generalized distance maps'. While searching for offset curves, one constructs the distance 
transform. Reconstructing the shape from shading may be shown to be equivalent to calcu­
lating a weighted distance transform. Continuous scale morphology, may be shown to result 
in the distance transform under a given metric, where the the structuring element of the 
morphological operations defines the unit sphere of the given metric. 

2. 7 Using Multi- Valued distance maps in path planning on surfaces 
with moving obstacles 

In [21] the multi valued distance map concept is introduced. A multi valued distance map 
is defined and used as a tool for computing optimal path for a robot with limited velocity 
navigating on a surface and avoiding moving obstacles. The distance map on the given 
surface incorporates the constraints imposed by the moving obstacles and is produced by 
curve propagation techniques. The basic idea of our method is the use of Hiiygens principle 
leading to a wave front propagating in time and describing the farthest parts the robot could 
arrive to by moving in all possible ways away from the source region. Clearly, the minimal 
path to the destination will be determined when this wave front first meets the destination. In 
some sense, the method proposed searches over all possible spatio-temporal robot movements 
to determine the time-optimal navigation path and schedule to the required destination. 
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Although it may seein obvious that this process will discover the best navigation, course, it is 
far from trivial to realize how one could actually carry out this program in a computationally 
efficient way. The limit on the robot velocity is used to reduce the complexity of the problem 
from a search over a 3D configuration space to a search over a 2D multi valued array. The 
analytic analysis as well as efficient numerical algorithms for calculating the multi valued 
distance map and tracking an optimal path are introduced. 

2.8 Skeletons via level sets 

"Skeletons are thin, exact descriptors of shapes", [39]. Defining the distance of a point from 
a curve as the infimum of distances between the point to the set of curve points. The skeleton 
of a shape is the set of internal points whose distance to the boundary is realized in more 
than one boundary point. Each point of the skeleton is associated with a width descriptor 
corresponding to its distance from the boundary. 

Being a stick figure, or naive description of the shape, skeletons are perceptually appeal­
ing. From a pattern recognition point of view, skeletons provide a unique combination of 
boundary and area information. Although mathematically well defined (in the continuous 
plane), it has always been a problem to implement skeletons on computers. This situation 
has brought numerous suggestions of solutions referred to as skeletonization or thinning 
algorithms. 

Having a stable scheme describing distances in the digital plane, solves many of the in­
herent problems of skeletonization. As shown in [24], skeletons are located on zero crossing 
curves of differences of distance transforms from boundary segments. Applying simple differ­
ential geometry results to skeletons, it is possible to find a necessary and sufficient partition 
of the boundary to segments whose distance transforms participate in the specification of 
the skeleton location. See Figure 5 (taken from [24]). 

2.9 Geodesic active contours 

One of the main problems in image analysis is the segmentation problem. Given several 
objects in an image it is necessary to integrate their boundaries in order to achieve good 
model of the objects under inspection. This problem was addressed in many ways over the 
years, starting with simple thresholding, region growing, and deformable contours based on 
energy minimization along a given contour called 'snakes'. 

In [7, 8] a novel geometric model that starts form a user defined contour and segments 
objects in various type of images is introduced. The idea is to minimize a total 'non-edge' 
penalty function integrated along the curve. The relation to the classical snakes and to 
recent geometric models is explored, showing better behavior of the proposed method over 
its 'ancestors': The classical snakes and the recent geometric models . 

The tumor in the Figure 6 (taken from [8]) is an acousticus neurinoma, and includes the 
triangular shaped portion at the top left part. The detection process is presented on the 
zoom out part of the tumor on the right. For comparison, the same image was also applied 
to the model developed in [6, 29]. Due to the large variation of the gradient along the object 
boundaries and the high noise in the image, the curve did not stop at the correct position, 
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Figure 5: Finding the skeleton of the shape in the upper left frame is done by first locating 
the curvature positive maxima along the boundaries on the upper right. Then, by calculating 
the distance from each boundary segment, the skeleton may be determined with sub-pixel 
accuracy as shown in the lower right frame. 
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it shrinks to a point and the tumor was not detected. 

10 20 :!0 40 50 60 

Figure 6: An example of tumor detection in MRI via geodesic active contours. The tumor in 
the image on the left is an acousticus neurinoma, and includes the triangular shaped portion 
at the top left part. For this image, an inward deforming contour was used. The tumor 
portion on the right is shown after zoom out for better presentation. The gray contours 
are the positions of the evolving curve in time, while the white contour is the final result of 
segmenting the tumor. 

This way of finding local geodesics in a potential function defined by an edge detection 
operator requires an initial contour as initial conditions. In some other cases, it is desired to 
locate the minimal geodesic connecting two points along the boundary of an object. In [9] 
an approach of integrating edges by locating the minimal geodesic is explored. See Figure 7 
(taken from [9]). 

3 Numerical Schemes and the Eulerian Formulation 

The procedures required for in solving some of the classical problems we deal with are in 
fact procedures for solving partial differential equations (PDEs) . In the following sections we 
give a brief introduction to numerical analysis issues that were found relevant for approxima­
tion, when solving such PDE's. We present the basics of how to select the proper numerical 
scheme for approximating a given evolution equation. Planar curve evolutions are reformu­
lated as Hamilton-Jacobi (HJ) equations. Then, using the close relation between hyperbolic 
conservation laws and HJ equations, numerical schemes that make use of this relation are 
discussed. The purpose of this paper is to stress the practical usage of the numerical meth­
ods, therefore basic concepts and recipes are presented in a simple and often simplistic way 
that we hope will be of help for potential future implementers of such methods. 
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Figure 7: An MR heart image on the left. The white contour between the two black end 
points on the right is the segmentation result of the desired ventricle 

4 Helpful Literature 

The numerical analysis literature that best fits our needs , deals with numerical approxima­
t ions of Hamilton Jacobi equations. As shown in [31] these equations are closely related in 
nature to hyperbolic conservations laws. Therefore, numerical techniques that were devel­
oped for approximating the evolution of differential conservation laws may readily be adapted 
to the type of equations we encounter. 

The book of LeVeque [28] is a great help as an introduction to numerical methods for 
conservation laws. The interested reader could find more detailed information of the ba­
sic concepts and definitions in this book. Formal definitions and limitations of numerical 
methodologies as applied to conservation laws in :fluid dynamics may be found in [41] . More 
information about conservation laws and the theory of shock waves , is given by one of the 
founders of this theory, Peter D. Lax, in his lecture notes [27] . The theory of shock waves 
and its applications in the analysis of gas dynamics is given by Smoller in the third part of 
his book [40]. 

The relation between conservation laws and the evolution of curves was introduced by 
Osher and Sethian in their classic paper [31]. In this paper, Osher and Sethian present a 
new formulation for curve evolution by considering the evolution of a higher dimensional 
function in which the curve is embedded as a level set. The relation of this evolution process 
to conservation laws is explored, stable and efficient numerical schemes being proposed. 
Other numerical schemes approximating the same type of PDE's may be found in [30]. 

The search for better numerical schemes in this field is still an ongoing concern of many re­
searchers. Although several new techniques have been introduced since the book of LeVeque 
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was published, we still feel that "the mathematical theory is lagging behind the state-of-the­
art computational methods" [28]. 

5 Basic Definitions 

The continuous case analysis is of course very important when analyzing PDE's. However 
(although accurate analysis serves an important role in understanding the behavior of the 
equation) when implementing a numerical approximation of such an equation on a digital 
computer one must address several other topics as well. 

An example of a very simple, yet very important, question is how to approximate ux(x), 
the first derivative of the function u( x) : IR -+ IR in the x direction. Let us simplify the 
problem and assume that u(x) is sampled by taking uniform samples of its values at equal 
distances of ~X . Denote Ui to be its i-th sample, i.e. Ui = u(i~x) , and nxui as the finite 
difference approximation of the function u at the point x = i~x. In approximating Ux one 
should consider computation efficiency, accuracy and consistency with the continuous case. 
Using the samples it is possible to interpolate a smooth function passing through the function 
values at the sample points. A very simple approximation is the centered difference finite 
approximation, given by 

D
x _ Ui+1 - U i-1 

Ui = 2~x 

It is based on the Taylor series expansion, with a truncation error of O(~x2 ). 
The forward finite approximation is similarly defined as 

D x . = Ui+1- Ui 
+u, - . ~x ' 

and the backwards approximation: 

D
x - U ; - U i-1 
_Ui = ~X . 

In both cases above, the truncation error is of 0( ~x) . 

Taking ~x -+ 0 the approximation obviously converges to the continuous case for the 
case of smooth functions. Convergence to the continuous case is an important issue that is 
referred to as consistency with the continuous case. 

6 Conservation Laws and Hamilton-Jacobi Equations 

The curve evolution equations are differential rules describing the change of the curve, or 
its evolution, in 'time'. As we shall see in the next section there is a formulation that puts 
curve evolution equations into a closely related formulation having the flavor of conservation 
laws. Following [27] : A conservation law asserts that the rate of change of the total amount 
of substance contained in a fixed domain G is equal to the flux of that substance across 
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the boundary of G. Denoting the density of that substance by u, and the flux by j, the 
conservation law is 

d
d f udx = - { (!, n)dS, 
t la laa 

where n denotes the outwards normal to G and dS the surface element on oG, which is the 
boundary of G, so that the integral on the right measures the outflow-hence the minus sign. 
Applying the divergence theorem, taking d/ dt under the integral sign, dividing by the volume 
of G and shrinking G to a point where all partial derivatives of u and f are continuous we 
obtain the differential conservation law: 

Ut + \7 j = 0. 

Consider -the simple 1D case in which the integral (by x and t) version of a conservation 
law gets the explicit form of: 

1Xl 1t1 
(u(x , t1)- u(x, to))dx + (f(x1, t)- f(xo, t))dt = 0. 

xo to 

A solution u is called a generalized solution of the conservation law if it satisfies the above 
integral form for every interval (x 0 , xi) and every time interval (t0 , t 1 ) . Taking x1 ---+ x0 , 

t 1 ---+ t0 , and dividing by the volume dxdt = (x1 - xo)(t1- t0 ) , we obtain the 1D differential 
conservation law: 

Ut + fx = 0. 

For fx = (H(u))x, (i.e., assuming f is a function of u given by H(u)) a weak solution of 
the above equation is defined as u( x, t) that satisfies [38] 

d 1Xl -d u(x, t)dx = H(u(xo, t))- H(u(x1, t)). 
t xo 

Weak solutions are useful in handling non smooth data. Observe further that u need not be 
differentiable to satisfy the above form, and they are not unique. Thus, we are left with the 
problem of selecting a special 'physically correct' weak solution. 

The Hamilton-Jacobi (HJ) equation in IRd has the form 

<Pt + H( <Px1 , ... , <PxJ = 0, <P(x, 0) = <Po(x). 

Such equations appear in many applications. As pointed out in [31, 30], there is a close 
relation between HJ equations and hyperbolic conservation laws that in IRd take the form 

d 

Ut + Lfi(u)x; = 0, u(x,O) = uo(x). 
i=l 

Actually, for the one-dimensional case ( d = 1 ), the HJ equation is equivalent to the conserva­
tion law for u = <Px· This equivalence disappears when considering more than one dimension: 
H( ·) is often a non linear function of its arguments <Px; and obviously does not have to be 
separable, so that we can no longer use the integration relation between <P and u. However, 
numerical methodologies that were successfully used for solving hyperbolic conservation laws 
are still useful for HJ equations. 
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7 Entropy Condition and Vanishing Viscosity 

In general, the weak solution for a conservation law is not unique and an additional condition 
is needed to select the physically correct or vanishing viscosity solution. This additional 
condition is referred to as the entropy condition. 

Consider the 'viscous' conservation law: 

Ut + (H(u))x = EUxx· 

The effect of the viscosity c Uxx is to smear (or diffuse) the discontinuities , thereby, ensuring a 
unique smooth solution. Introducing the viscosity term turns the equation from a hyperbolic 
into a parabolic type, for which there always exists a unique smooth solution for t > 0. The 
limit of this solution as c -t 0 is known as the 'vanishing viscosity ' solution. The entropy 
condition selects the weak solution of the conservation law 

Ut + (H(u))x = 0 u(x , 0) = u0 (x), 

that is the vanishing viscosity solution for u0 . Therefore, the vanishing viscosity solution is 
sometimes referred to as the entropy solution. 

Satisfying the entropy condition guarantees meaningful and unique weak solutions. More­
over, there is a close duality between the entropy condition and the Eulerian formulation to 
curve evolution. Actually, the search for an entropy condition for the case of curve evolution 
[37] eventually led Osher and Sethian to the Eulerian formulation [31] that will be described 
in the following section. 

8 The Eulerian Formulation 

The Eulerian formulation for planar curve evolution first was proposed by Osher and Sethian 
in [31]. This formulation allows the developments of efficient and stable numerical schemes 
in which topological changes of the propagating curve are automatically handled. 

Consider the family of planar curves given by C(s,t): [O , L(t)] x [O,T) -t IR?, where s 
is the arclength of the curve C at time t. Let the curve evolution equation describing the 
differential change of the curve in time be given by 

Ct = V, C ( s, 0) = Co ( s), 

where V(s , t) [O , L] x [O,T) -t IR.Z, is some velocity vector field that .changes smoothly 
along the curve. The same evolution may be equivalently written by considering the normal 
fJ = Css/ICssl and tangential f = Cs components of the velocity V along the curv~: 

Ct = (V ,i!)f! + (V, T)T, C(s, 0) = Co(s). 

A basic result from the theory of curve evolution is that the geometric shape of the curve 
(often referred to as the trace or the image of the planar curve) is only affected by the normal 
component of the velocity. The tangential component affects only the parameterization, and 
not the geometric shape of the propagating curve: 
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Lemma 1 [Epstein-Gage [12]): The family of curves C(p, t) that solve the evolution rule 

ct = vNJJ + vTi, 

where VN does not depend on the parameterization of the curve1
, can be converted into the 

solution of 

Ct = vNJJ. 

Proof. Given C(p,t): S1 x [O,T)-+ lR? as the original family of curves, let p = p(w, T) 
and t = T with 8pj aw > 0 be a reparametrization. By the chain rule 

Cr CwWr + Cttr 

CwWr +Ct. 

For the arclength parameterization s we have that 

Using these two expressions we calculate 

Cr - CwWr + Ct 

f SwWr + VTT + vNJJ 
(VT + SwWr )T + vNJJ, 

Choosing the parameter w that solves the O.D.E.: 

and recalling the selection t = T we arrive at : 

Therefore, since our interest is the shape of the curve we can consider the 'Lagrangian' 
form of the curve evolution: 

Ct = (V ,N)N, 

and for VN = (V,N) , 

ct = vNJJ, 

C(s , O) = Co(s), 

C(s, 0) = Co(s). (1) 

While implementing the evolution given by the Lagrangian formulation one should handle 
topological changes in the evolving curve by external procedures. Such a procedure should 

1 VN is thus called an 'intrinsic' or 'geometric' quantity 
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monitor the process and detect possible mergings and splittings of the curve. It was also 
shown [37, 31, 38] that such implementations are very sensitive to the formation of high 
curvature and sharp corners. The problems appear due to a time varying coordinate system 
(s, t) of the direct curve representation (where s is the parameterization, and t- the time). 
An initial smooth curve can develop curvature singularities. The question is how to continue 
the evolution after singularities appear. The natural way is to choose the solution which 
agrees with the Huygens principle [37]. Viewing the curve as the front of a burning flame, 
this solution states that once a particle is burnt, it cannot be re-ignited [38]. It can also 
be proved that from all the weak solutions of the Lagrangian formulation , the one derived 
from the Huygens principle is unique, and can be obtained by a constraint denoted as the 
"entropy condition for curve evolution [31]". 

In order to overcome these difficulties the 'Eulerian formulation' was proposed in [31]. 
Let <f>(x, y, t) : lR? x [0, T)---+ lR be an implicit representation of the curve C(s, t), so that 

the zero level set </>( x, y, t) = 0 is the set of points constructing the curve C ( s, t). In other 
words, the trace of the curve C at time t is given by the zero level set of the function </> at 
timet: 

C(t) = </>-1 (0). 

The demand of C being the zero level set is arbitrary, and actually any other level set may 
serve the same purpose. The problem is how to evolve the </> function in time so that its zero 
level set tracks the time varying curve C(t). 

Denote by \7 (a I ox' a I oy) the gradient operator 0 Then, from basic calculus, we have 

Lemma 2 The planar unit normal of the curve C = </>-1 (c), where cis an arbitrary constant 

selecting the level set, is given by N = \7 </>I l\7 </>I. 

Proof. Let s be the arclength parameter of C. Then, along the equal height contour C 
the change of </> is zero: 

</>s = 0 = </>xXs + </>yYs· 

This expression (\7 </>, Cs) = 0, determines that \7 </> is orthogonal to Cs = T. 

According to the chain rule, 

Then, the above equation may be written as: 

<l>t (\7 </>, Ct) 

(\7¢>, VNN) 
\7¢> 

(\7¢>, VNI'V</>1) 
\7¢> 

VN(\7¢>, I'V</>1) 

VNI\7¢>1, 
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which is the Eulerian formulation for curve evolution. Given any smooth function cp0 ( x, y) 
such that cp01 (0) = C0 we can rewrite the last result 

cp(x,y,O) = c/Jo(x,y), (2) 

which is a Hamilton-Jacobi type of equation. This formulation of planar curve evolution 
processes frees us from the need to take care of the possible topological changes in the 
propagating curve. Sethian [38] named the above Eulerian formulation for front propagation, 
because it is written in terms of a fixed coordinate system. 

The normal component VN may be any smooth scalar function . An important obser­
vation is that any geometric property of the curve C may be computed from its implicit 
representation cp. The curvature, for example, plays an important role in many applications: 

Lemma 3 The curvature "' of the planar curve C = cp-1 ( c) is given by 

c/Jxxc/J; - 2c/Jxc/Jyc/Jxy + cPyyc/J?.: 
K, = - ( cp; + cp~)3/2 (3) 

Proof. Along C, the function ¢> does not change its values. 
any n. Particularly, for n = 2, 

Therefore, frcpjosn = 0, for 

[)2cp 
0 

os2 

[) 
OS ( c/JxXs + c/JyYs) 

c/JxxX; + 2c/JxyXsYs + c/>yyY; + c/JxXss + c/JyYss 
c/JxxX; + 2c/JxyXsYs + cPyyY; + (\lc/J ,Css)· (4) 

Recall that fJ = (-y 5 ,Xs) = Vc/J/IVc/JI, and that by definition Css = (xss,Yss) = KiJ. Or 
explicitly 

{ 

Ys 

Xs 
~' 

and 

{ 

Xss = K,~ 

K, r/>y 
Yss yl¢~+<1>~ · 

Introducing these two expressions into Equation ( 4) we conclude that 

O = c/Jxxc/J; - 2c/Jxc/Jyc/Jxy + c/Jyyc/J?.: + (\7 A-. C ) 
IVcfJ I2 'f'' ss 

c/Jxxc/J; - 2c/Jxc/Jyc/Jxy + c/Jyyc/J?.: + IV c/> l 
IV cfJI2 /'\,. 
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9 Numerical Methodologies 

We have seen that the curve evolution may be presented as a Hamilton-Jacobi equation. 
In one dimension, the HJ equation coincides with hyperbolic conservation laws. This close 
relation can be used to construct numerical schemes for our problems. Similarly to the 
continuous case, a finite difference method is in conservation form if it can be written in the 
form 

(gj+l/2 - gj_l/2) 

.6.x 
(5) 

where gj+I/Z = g( Uj-p+I, ... , Uj+q+I) is called a numerical flux, is Lipschitz2 and consistent 
(satisfies the consistency requirement) 

g(u, ... , u) = H(u) , 

i.e. setting all the p + q variables of the numerical flux function to u, the numerical flux 
becomes identical to the continuous flux. 

Theorem 1 Suppose that the solution u( x, n.6.t) of a finite difference method in conservation 
form converges to some function v(x, t) as .6.x and .6.t approach zero. Then v(x , t) is a weak 
solution of the continuous equation. 

The proof may be found in [41] page 286. 
A numerical scheme is monotone if the function F( uj_P, ... , uj+q+I) that defines the scheme 

or equivalently (for a conservation form): 

n+l _ F( n n ) _ n _ .6.t ( n _ n ) 
u j - ui-P' ... , uj+q+l - u j .6.x gj+l/2 gj-1/2 , 

is a non-decreasing function of all its (p + q + 1) arguments, that is , 

aF 
P.--->0 

J a n -Uj+i 
for -p~i~q+l. 

Theorem 2 [Harten-Hyman-Lax [14]] Assume that the solution of a monotone finite 
difference method uj that has a conservation form converges to some function v( x, t) as .6.x 
and .6.t approach zero with .6.t/.6.x fixed . Then v(x , t) is a weak solution and the entropy 
condition is satisfied at all discontinuities of v. 

20bserve that the numerical flux is a function g : JRP+q --> IR, and thus maybe restricted as such to be 
Lipschitz . 
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The local truncation error measures how well the finite difference method models the 
differential equation locally. It is defined by replacing the approximated solution in the 
difference method by the true solution u(j!:lx, n!:lt). Let us replace for example uj+1 by the 
Taylor series about u(x, t), i.e. u + !:liut + (1/2)/:lt2uu + .... We do the same for the spatial 
derivatives, and arrive at the error bound that is a function of !:lx and !:lt. A first order 
accurate scheme is a differential method with local truncation error (for !:ltj !:lx =constant) 
of 0 (/:lt) (as !:lt-+ 0). 

Satisfying the entropy condition is indeed a desired quality however these schemes are 
limited by the following theorem: 

Theorem 3 A monotone finite difference method in conservation form is first order accu­
rate. 

For proof see [41] page 299. 
Getting higher order accuracy for such equations by relaxing the monotonicity demand 

may be found in [31 , 30]. One idea leads to the essentially non-oscillating (ENO) schemes, 
in which an adaptive stencil is used between the discontinuities. Thereby, piecewise smooth 
data may be handled with high accuracy. 

The relation between the Hamilton-Jacobi equations and the conservation laws may be 
used to design first order finite difference methods for the HJ equations[31]. The relation 
between c/;(x, t), the solution of an HJ equation, and u(x, t), the solution of the corresponding 
differential conservation law that describes the change of u = 'the slope of ¢;', for the one 

dimensional case, is given by integration, i.e. ¢;(x, t) = [~ u(i, t)di. Thus by integrating 

over the monotone numerical scheme (and shifting form j + 1/2 to j) we arrive at 

<l>j+1 = <l>j - !:lt g(D_ <l>j_P+l , ... , D+<l>J+g)· 

Definition 1 An upwind finite difference scheme is defined so that 

{ 
j(uJ H'>O 

9]+1/2 = . J( Uj+l) H' < 0. 

An upwind numerical flux in a conservation form results in a monotone method. The 
upwind monotone HJ scheme for the special case where 

with h'(u) < 0, was introduced in [31]: 

9HJ(uj,uJ+1 ) = h((min(uj,O)? + (max(uj+1 ,0)) 2
). 

This scheme has the advantage of being easy to generalize to more than one dimension. 
Motivated by the theory of mathematical morphology [3] , we have found the following 

scheme to have same qualities (being upwind) as the HJ scheme under the same restrictions 
(h'(u) < 0) : 
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The only difference between the 9HJ and the 9M is that at points where u changes form 
negative to positive magnitude, 9M selects the maximum between (ui? and (uj+I) 2

, while 
9H J selects ( Uj ) 2 + ( Uj+t)

2
. We have found that the 9M numerical flux produces better results 

m some cases. 
Having the numerical flux, or numerical Hamiltonian in the HJ ·context, we can write the 

numerical approximation of the Hamilton-Jacobi formulation as 

(6) 

As we noted before, in some cases the requirements on the numerical scheme are relaxed 
to achieve higher order accuracy as well as handling more complicated flux functions. One 
useful example for our case is partial derivatives that are approximated by slope limiters. 
The idea is to keep the total variations of the evolving data under control, leading to the 
TVD (total variation diminishing) methods (28]. By selecting the smallest slope between 
the forward and backward derivatives , the estimated slope of the data is always limited by 
the continuous data. A simple example of a first order slope limiter is given by the minmod 
operation. Define the minmod selection function as 

· d{ b} { sign(a)min(lal, lbl) if ab > 0 
mznmo a, = 0 th . o erw1se 

This can be used to approximate <Px by the minmod finite derivative 

<Pxlx=iLlx ::::::: minmod(D~ ~i, nx_ ~i)· 

10 The CFL Condition 

One of the earliest observations in the field of finite difference schemes was made by Courant, 
Friedrichs, and Lewy in [10, 11]. They observed that a necessary stability condition for 
any numerical scheme is that the domain of dependence of each point in the domain of the 
numerical scheme should include the domain of dependence of the PDE itself. This condition 
is necessary, but not necessarily sufficient , for the stability of the scheme. For hyperbolic 
PDEs the domain of dependence is known to be bounded. 

Considering the 1D case, when refining the discretization grid by letting 6.x --+ 0 and 
6.t --+ 0, the ratio 6.tj 6.x should be limited. This limit, known as the CFL number or 
the Courant number, is determined by the maximal possible flow of information. The flow 
lines of the information obviously depend on the specific initial data and are known as the 
characteristics of the PDE. Collisions of characteristics form 'shocks' in the solution and 
therefore require additional conditions which determine how to handle the propagation of 
such a shock. A propagating shock in time may thus be defined as a sequence of colliding 
characteristics where the entropy condition defines the speed of this propagation. 

As a simple example consider the 1D conservation law in which the the point ( x = 
i, t = i) in the PDE domain can be influenced by the data bounded by the triangle 
(x 0 , 0), (i, t), (xi, 0) . This means that any informa.tion at the interval (x 0 , xi) of the ini­
tial condition u0 may influence the result at (i, i), namely u(i, i). Similarly, it may be 
asserted that the point ( i, i) is in the domain of influence of each point in the interval 
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( x 0 , x1 ). Therefore, any finite difference approximating the PDE should take this fact into 
consideration, by limiting the ratio fltl!:lx. Taking this to a limit, for Ut + (H(u))x = 0 the 
CFL restriction for a 3-point scheme can be shown to be 

1 > !:lt IH'I 
- !:lx ' 

and in our case, where we have actually integrated a 3-point of !:lx scheme of a conservation 
law into a 3-point HJ equation we arrive at the same CFL restriction. 

As pointed out, the 9HJ and the 9M numerical flows may be easily generalized to several 
dimensions. The generalization is straightforward and for the specific case of H( u, v) 
f( u 2

, v 2
) we get the following form 

9M( ui, u"/+1 , vj, vj+l) = h((max( -ui, ui+u 0)) 2
, (max( -vj, vj+1 , 0)) 2

). 

This yields an upwind monotone scheme with a CFL restriction of 

1 2: (~:IHul + ~~IHvl) . 
Consider the simple example of a planar curve propagating with constant velocity along 

its normal that obeys the following evolution law, 

Ct =N. 
It is easy to see that since VN = 1 the Eulerian formulation for this case is 

<Pt = IV <PI, 
thus, H(u,v) = v'u2 + v2 • For the simple selection of ~x = ~y = 1, we arrive at the CFL 
restriction: 

1 
!:lt < r.;· 

- v2 

The following example presents offsets produced by two schemes, one with !:lt < 11.J2, 
satisfying the CFL restriction, and another with ~t > 1 I .J2, violating the CFL restriction. 
The Eulerian formulation is implemented by the following numerical approximation: 

<I>ij+1 = <I>ij + !:lt (max(- D:. <I>ij, D+ <I>ij, 0) r + (max(-D~ <I>ij, D~ <I>ij, 0) r. 
Figure 8 is the data image I, given as initial condition to the evolution equation ( <I> 0 = I). 

The evolution of <I> in time for the scheme with !:lt = 0. 7 < 1 I .J2 is presented in Figure 
9. The offsetting results of the two schemes with !:lt = 0. 7 and !:lt = 0.8 are presented 
in Figure 10 on the left and right columns, respectively. The gray levels correspond to the 
height values of <I>ij on the grid. Histogram equalization is applied to the last evolution step 
in order to strengthen the fact that violating the CFL restriction results in perturbations 
of the <I> function. The bottom row in Figure 10 shows the unstable result on the right 
compared with the stable one on the left. The zero level sets (every two time steps) are 
drawn as white contours on the original image (upper row). Since we have chosen only few 
iterations and selected a time step that is close to the CFL condition, the zero level sets are 
only slightly affected. More iterations or a larger time step will amplify the noise and distort 
the smoothness of the zero level sets. 



R . Kimmel, N. Kiryati and A.M. Bruckstein November 3, 1995 23 

Figure 8: The original image which is an implicit representation of the contours describing 
the outline of the letters in the image 

. ..._···· 

Figure 9: The images of the iterations (every two time steps) <1> 2 to <1> 16 , left to right, upper 
to bottom, for the scheme with non-violating (satisfying the CFL restriction) time step 
t::.t = 0.7. 
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Figure 10: Left column: f::l.t = 0.7. Right column: i:l.t = 0.8, violating the CFL condition. 
Upper row: The offsets (zero' level sets, of the propagating <I> every two time steps) are 
shown as white contours on the original image. Middle row: The images of <I> at t = 11.2, 
in which the heights <J>ij are presented as gray levels. Bottom row: <I> images at t = 11.2 
after histogram equalization that stresses the instability effects caused by violating the CFL 
condition. 
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11 Concluding Remarks 

In this paper we reviewed the basic terminologies and methodologies in numerical analysis 
of conservation laws. Following Osher and Sethian, it was shown how planar curve evolution 
can be cast into the Eulerian formulation. This implicit formulation for curve evolution 
has the form of a Hamilton-Jacobi type of equation, for which there is a close relation to 
conservation laws. This relation was then explored and used to achieve efficient and stable 
numerical schemes. 

The numerical schemes and limitations introduced in this paper were used in the cited 
papers in the design of finite difference approximations to the relevant PDEs. One important 
property of all the proposed numerical schemes is that when taking the discretization grid to 

, a limit following the required limitations, the numerical schemes converge to the continuous 
case (the consistency property). This important property is lost for example when imple­
menting graph search algorithms aimed at solving similar problems, since the metrics that, 
the specific graphs induce inevitably lead to metrication errors. 
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