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ABSTRACT OF THE DISSERTATION

Emittance preservation in a plasma wakefield accelerator

by

Yujian Zhao

Doctor of Philosophy in Physics

University of California, Los Angeles, 2023

Professor Warren B. Mori, Chair

Plasma-based acceleration (PBA) is being considered as the basis for a future linear collider,

where electrons and positron bunches must collide with extremely small spot sizes. In order

to be focused to such spot sizes the beams must have extremely small emittances. Thus one

challenge to a PBA collider is preserving the emittance of the accelerated beams.

In this dissertation, the evolution and preservation of the witness beam emittance in a

plasma-based accelerator in the nonlinear blowout regime is investigated using theory and

particle-in-cell simulations. It it found that the use of plasma density ramps as matching

sections are beneficial for emittance emittance growth mitigation and preservation even when

the witness beam is focused so tightly within the plasma that its space charge force pulls

ions inwards within the beam.

In order to study the evolution of a beam in the wakefield, details of the motion of

a single beam particle in the accelerating and focusing fields of a nonlinear wakefield are

presented. The exact solution to the transverse equation of motion of a single beam particle

under the assumption of adiabatic acceleration is derived. Approximate and thus simpler

solutions are provided under the assumptions that plasma density also changes adiabatically.
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Some important concepts, including the beam’s envelope equation, geometric emittance,

normalized emittance, single and beam C-S parameters, transport matrices, and matching

are reviewed and elaborated upon. Emittance evolution and the importance of matching are

discussed in the context of a uniform plasma.

Using the approximate solution (WKB solution) of a single particle’s motion, analytical

expressions for the evolution of the beam emittance and the C-S parameters in an arbi-

trary adiabatic plasma profile are provided neglecting the acceleration of the beam inside

the plasma. It is shown that the beam emittance can be preserved when the beams C-S

parameters are matched to the entrance of the density profile even when the beam has an

initial energy spread. It is also shown that the emittance growth for an unmatched beam is

minimized when it is focused to the same vacuum plane as for a matched beam. The emit-

tance evolution without ion motion is studied using 3D particle-in-cell QuickPIC simulation

and the results agree well with the theoretical predictions.

In some of the proposed experiments for the recently commissioned FACET II facility,

the matching condition may not be perfectly satisfied and the wake may not be perfectly

symmetric. It is shown that for a given set of beam parameters that are consistent with

FACET II capabilities, the emittance growth can still be minimized by choosing the optimal

focal plane even when the assumptions of the theory are not satisfied. Additional consider-

ations for FACET II experiments were investigated. The plasma source is a lithium plasma

confined by a helium buffer gas. The plasma is formed from field ionization which can lead

to a nonlinear focusing force inside the helium buffer gas due to its high ionization potential

leading to a nonuniform transverse profile for the plasma. It is found in simulations that

for an initial beam emittance of 20 µm, the helium ionization is found to be small and the

witness beam’s emittance can still be preserved.

Emittance evolution for beam and plasma parameters relevant to a single stage of a

multi-staged plasma-based linear collider (LC) is investigated. In some plasma-based LC

designs the transverse space charge forces for extreme accelerating beam parameters are

iii



expected to pull background ions into the beam which can lead to longitudinally varying

nonlinear focusing forces and result in emittance growth of the beam. To mitigate this, the

use of an adiabatic plasma density ramp as a matching section is proposed and examined

using theory and PIC simulations. The witness beam is matched to the low density plasma

entrance, where the beam initially has a large matched spot size so the ion motion effects

are relatively small. As the beam propagates in the plasma density upramp (downramp), it

is adiabatically focused (defocused) and its phase space distribution evolves slowly towards

an equilibrium distribution including the effects of the adiabatically changing ion motion.

Simulation results from QPAD, a new quasi-3D, quasi-static PIC code, show that within

a single acceleration stage, this concept can limit the projected emittance growth to only

∼2% for a 25 GeV, 100 nm emittance witness beam and ∼20% for a 100 GeV, 100 nm

emittance witness beam. The trade-off between the adiabaticity of the plasma density ramp

and the initial ion motion at the entrance for a given length of the plasma density ramp is

also discussed.

Additional issues for building a plasma based linear collider are discussed. Preliminary

particle-in-cell simulation results which examine and illustrate problems like staging, shaped

witness beam (for improved beam loading), emittance growth and hosing of a witness beam

with an initial offset, ion motion triggered by the driver, and asymmetric witness beams are

presented. The implications of these issues on a plasma based linear collider are discussed.

Simulation results for witness beams with initial energy of 500 GeV such as would exist in

a final stage of a PBA linear collider or an afterburner are presented.
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CHAPTER 1

Introduction

1.1 Background

Particle colliders are crucial in unveiling the detailed physics of the standard model of el-

ementary particles and fields, leading to a better understanding of the universe and the

laws that govern it. The energy frontier of particle physics is several trillion electron volts

(TeV) in the center of mass of the collision, but colliders capable of reaching this regime are

incredibly large and complex, and therefore are costly and time-consuming to build. The

largest particle collider in the world, the Large Hadron Collider (LHC), is 27 kilometers in

circumference and cost more than $10 billion to construct. Due to its size and complexity,

the operating costs can exceed $1 billion per year. Building this gigantic machine involved

10,000 scientists and engineers from over 100 countries, as well as hundreds of universities

and laboratories. As a result, there has been an active research effort to find new acceler-

ator paradigms to be used in next-generation colliders. The goal for advanced acceleration

methods is to reduce the footprint and cost by increasing the accelerating gradient by two

or more orders of magnitude and increasing its wall plug efficiency.

Plasma-based accelerators (PBA) are particularly attractive because they are capable of

producing accelerating fields that are orders of magnitude larger than those used in conven-

tional colliders. The acceleration field in a conventional accelerator is limited by breakdown

of the walls of the accelerating structure to 20 ∼ 100 MeV/m. A plasma is already broken

down so the accelerating field it can sustain can be much higher, and is limited by the plasma
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density.

The accelerating field of in a plasma wave moving near the speed of light can be estimated

by the scaling law [3][4]

E[GV/m] ∼ mecωp/e ≈ 100
√
np[1018cm−3] (1.1)

where np is the plasma density. This means if the plasma density is 1018cm−3, an accelerating

field of ∼100 GV/m can be achieved in a “relativistic” plasma wave. This is more than a

thousand times higher than the breakdown limit of RF-accelerators. As a result, the size

and cost of a high energy collider could be reduced substantially if plasma wave structures

could replace conventional accelerating structures.

In PBAs, a drive beam (either laser or particle) produces a plasma wave (wakefield)

that moves near the speed of light, c, and thus it can accelerate charged particles to very

high energies. In 1979, T. Tajima and J. Dawson [3] proposed a method for accelerating

electrons by exciting a plasma wave using a high power and short pulse length laser [5]. This

idea is now commonly referred to as Laser Wakefield Acceleration (LWFA) [6]. In LWFA,

the laser ponderomotive force pushes the plasma electrons forward and outward, leaving

behind background ions. Due to the resulting space-charge separation, the electrons are

then attracted back to the axis by the ions causing them to oscillate, thereby forming the

plasma wave wake. A few years later, in 1985, P. Chen et al. proposed the idea of using

a relativistic electron beam to drive a plasma wakefield instead of a laser [7]. This concept

is referred to as Plasma Wakefield Acceleration (PWFA). In PWFA, the space charge field

(electric field) from the drive electron beam plays the role of the ponderomotive force from

the laser in LWFA. In both LWFA and PWFA, a separate beam (sometimes referred to as the

trailing or witness beam) propagates behind the driver (laser / particle beam). If this beam

is sitting at the correct phase inside the plasma wave wake, it can be accelerated to very high

energy until the driver runs out of energy (pump depletion length) or the accelerated beam

outruns the wakefield (dephasing length). In order that the accelerator is efficient, pump

depletion should occur before dephasing. LWFA and PWFA have been actively investigated
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during the past four decades by an ever growing plasma based acceleration (PBA) community

[8].

Experiments on plasma-based acceleration, both LWFA and PWFA, have made tremen-

dous progress in the past several decades. In 2004 and 2005, high acceleration gradients and

acceleration in plasma wave wakefields generated by electron beams and lasers were demon-

strated [9, 10, 11, 12, 13]. In the LWFA experiments, the self-injected beams had 1% ∼ 10%

energy spread and 1 ∼ 10µm normalized emittances. Soon thereafter, in 2007, it was shown

experimentally at the Stanford Linear Accelerator Center (SLAC) that energy doubling of

42 GeV electrons can be achieved in a meter-scale plasma wakefield accelerator [14]. Thus,

stable acceleration over pump depletion distances was demonstrated. The experiment used

a single 42-giga electronvolt drive bunch, propagating in a Lithium plasma. While most of

the beam electrons lost energy as they created the wakefield, some electrons at the back of

the same beam were accelerated with an acceleration gradient of 52 GV/m−1. This was an

important milestone that demonstrated the viability of plasma accelerators for high-energy

physics applications. In 2014, Litos et al. reported high-efficiency acceleration of a discrete

trailing bunch of electrons that contained sufficient charge to extract a substantial amount

of energy from the high-gradient, nonlinear plasma wakefield accelerator. The experiment

showed the acceleration of about 74 picocoulombs of charge contained in the core of the

trailing bunch with an accelerating gradient of about 4.4 GeV/m [15]. In 2015, a new regime

of PWFAs where particles in the front of a single positron bunch transfer their energy to

a substantial number of those in the rear of the same bunch by exciting a wakefield in the

plasma was demonstrated experimentally [16]. About a billion positrons gained 5 GeV of

energy with a narrow energy spread over a distance of just 1.3 metres. In 2014, a multi-GeV

LWFA electron stage was demonstrated driven by a petawatt class laser propagating in a

capillary-discharge plasma [17]. In 2016, staging between two LWFA stages where the elec-

tron beam from one was refocused into another with an active plasma lens was demonstrated

[18]. More details on the status of theory, simulation, and experiment can be found in [8].
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The ultimate long term goal for PBA is to reduce the size and cost (construction and

operation) for a next generation linear collider at the energy frontier. Shorter term goals

include developing compact XFELs where the electron beam is generated by either LWFA or

PWFA [8]. After experiments confirmed that the theoretical predictions that plasma wave

wakes have very large accelerating fields and that these wakefields could be produced over

meaningful distances, thought was given to the conceptual design of a PBA based linear

collider (PBA-LC) [19] [1][20]. These concepts rely on a series of stages where a new driver

(laser or particle beam) creates a wake and a single witness beam (electrons or positrons)

gains 10s of GeV in each stage. For example, in Ref.[19], a PWFA-LC design was proposed

that uses a conventional accelerator to produce trains of 25 GeV drive bunches. They are

distributed into 20 one meter long PWFA cells which each give 25 GeV (same as the drive

beam) of energy to the witness bunch in each stage. There are arms for both the electron

and the positron witness beams where the final energy of each beam is 500+ GeV, so there

is a 1 TeV+ center of mass energy. Each cell provides 25 GeV of energy to the main beam

in about a meter of plasma. Another design was proposed in Ref. [1] with the same basic

concept but some changes in the drive beam and plasma parameters. A layout of a PWFA-

LC is shown in Fig.1.1 (taken from Ref.[1]). There have also been conceptual designs for a

LWFA-LC [20].

A related concept is the idea of an afterburner [2], where a single PWFA stage is added

at the end of an existing collider to double the energy of the output beam (both electrons

and positrons). This concept assumes that a linear collider already exists. When it became

clear that the construction of the International Linear Collider (ILC) – a 1 TeV center of

mass machine [21] based on conventional accelerators was put on hold, the community began

contemplating about designing a collider fully based on PBA. An afterburner could be placed

at the end of a PBA-LC as well, to double its energy in a single, longer, stage.

In order to understand the importance of the results in this dissertation it is useful to

discuss design issues for any future collider. Metrics to consider when designing any collider
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are the center of mass energy, luminosity, wall-plug efficiency, and size and construction cost.

The luminosity, L, is given by L(cm−2s−1) = frepN
2/(4πσxσy), where frep is the repetition

rate of the collisions, N is the number of particles in each bunch, and σx and σy are the

r.m.s. beam sizes at the collision point in the two transverse directions, respectively. The

desired L for a 1 TeV center of mass electron-positron (e−e+) linear collider is 1034cm−2s−1

within 1% of the center of mass (CM) energy [1, 19]. For such a luminosity, the beams have

an average power of ∼ 20 MW, e.g., there are N ≈ 1010 particles in the 500 GeV electron

and positron bunches and a repetition rate of 10 kHz . For a total efficiency of 10%, the

collider would require 200 MW/TeV of average power. It is important therefore that there

be a high energy transfer efficiency from the driver to the wakefield and from the wakefield

to the witness beam. The cost, which is assumed to be tied to the size of the accelerator,

must be significantly smaller than one built using existing technology. Thus, the average

acceleration gradient (energy/total length) must be large, which is why PBA is attractive.

The nonlinear blowout regime of PBA [22, 23, 24, 25] can simultaneously provide high

efficiency, high gradient, and beam characteristics for the electron arm that could lead to

high luminosity [8]. Recently, the blowout regime has also begun to show promise for the

positron arm [26, 27, 28]. A more detailed description of this regime is discussed below.

In the PBA-LC designs, the goal is to have beams with normalized emittances of
√
ϵNxϵNy ≈

100 nm in order to achieve the small
√
σxσy at the interaction point. The geometric emit-

tance of a beam is important as it is a measure of the tendency of a particle beam to diffract.

It is defined as ϵ ≡
√

⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2 , (′ means
1

c

d

dt
) where the beam’s rms spot size is

σx ≡
√

⟨x2⟩. The diffraction length of a laser in a vacuum is the Rayleigh length zR = πw2
0/λ

while for a particle beam it is, β∗ ≡ σ2
0/ϵ, where w0 is the

√
2 of the rms of the laser amplitude

and σ0 is the beam’s spot size at the vacuum focus.

The need for such small emittances places constraints on the how much emittance growth

can occur within and between stages. As shown in Chapter 2 it is the normalized emittance

that is the figure of merit for a beam as it is accelerated. The normalized emittance is
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roughly defined as ϵN ≡ γ̄ϵ where γ̄ is the average relativistic Lorentz factor of the beam.

This dissertation is focused on understanding how emittance grows and how to mitigate

this growth for realistic electron beams being accelerated in single and multiple nonlinear

PWFA stages. The results can also apply to LWFA stages that operated in the blowout

regime.

In the remainder of this chapter, we provide a quick introduction to some basic concepts

for PBA, challenges for a PBA-LC, and simulation tools used in PBA research; and then

provide an outline for the dissertation.

Figure 1.1: Layout of a PWFA-based 10 TeV Linear Collider [1]

1.2 Basic concepts

Next, some basic concepts for PBA are presented. These include introducing the co-moving

coordinates, the quasi-static approximation, linear and nonlinear wakefields regimes, and
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beam loading.

1.2.1 Maxwell’s equations in co-moving coordinates

A key physics assumption used in PBA research is the quasi-static approximation (QSA) [29].

Before we describe QSA, we first introduce the co-moving coordinates (x, y, ξ = (ct− z); s =

z) where the laser or particle beam is moving predominantly in the ẑ direction. We then

rewrite Maxwell’s equations in terms of the co-moving coordinates.

We start from Maxwell’s equations in MKS units written in terms of the (x, y, z; t) coor-

dinates and the scalar (ϕ) and vector (A) potentials in the Lorenz Gauge:

−
(
∇2 − 1

c2
∂2

∂t2

)ϕ

A

 =

ρ/ϵ0
µ0J

 (1.2)

where the Lorenz gauge condition is:

∇ ·A+
1

c2
∂ϕ

∂t
= 0 (1.3)

The fields can be calculated from the potentials as

B = ∇×A, E = −∇ϕ− ∂A

∂t
(1.4)

and the continuity equation is,

∇ · J+
∂ρ

∂t
= 0 (1.5)

In a typical PBA scenario, the drive beam is moving at near the speed of light c, and, thus,

so is the phase velocity of the wakefield generated by the driver. If we assume the driver is

not evolving, the wakefield generated by the driver only depends on the relative position to

the driver. Imagine you are standing at the tail of a boat traveling with a constant velocity.

You are looking at the beautiful wake behind the boat. Your eyes are always staring at a

white foam of a tall wave that is located behind the tail of the boat. When your friend asks

you what you are looking at, you might say “I am looking at the wave that is behind the
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tail of the boat”, rather than reporting the exact location on the earth (e.g. GPS location),

since this exact location is moving along with the boat, which is less convenient to use.

This exact same concept applies to PBA. Let’s say the driver is propagating in the ẑ

direction. It is thus preferable to describe the quantities (like charge density, electric field,

current density, etc) in the wakefield in terms of the position relative to the driver (more

precisely, relative to a fixed point of the driver, like the head of the driver). If the driver

is moving at vd then the relevant variable is vdt− z, instead of z, the coordinate in the lab

frame (the use of z − vdt is essentially equivalent, however we choose vdt − z to follow the

common convention of the community in the recent years). For a beam driver for which γd

is very large, then it is common to use ct− z instead.

As we discussed above, much of the physics is dominated by its dependence on the variable

ct−z, rather than on t or z alone. This motivates us to perform a coordinate transformation,

from our ‘lab’ coordinates (x, y, z; t), to the ‘co-moving’ coordinates (x, y, ξ = ct− z; s = z)

where ξ is a measure of the distance (actually a negative of the distance) behind the driver

(more precisely, the distance behind a fixed point on the driver). Note a transformation

based purely on a coordinate transformation is for mathematical convenience. It is not

the same as making a Lorentz transformation where the fields themselves need to also be

transformed.

According to this coordinate transformation, the derivatives transform as

∂

∂t
=

∂

∂ξ

∂ξ

∂t
+

∂

∂s

∂s

∂t
= c

∂

∂ξ
(1.6)

∂

∂z
=

∂

∂s

∂s

∂z
+

∂

∂ξ

∂ξ

∂z
=

∂

∂s
− ∂

∂ξ
(1.7)

Thus the equations for the potentials and the continuity equation are now,

(
−∇2 + 2

∂2

∂ξ∂s
− ∂2

∂s2

)ϕ

A

 =

ρ/ϵ0
µ0J

 (1.8)
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and

∇⊥ · J⊥ +
∂(cρ− Jz)

∂ξ
+
∂Jz
∂s

= 0 (1.9)

where ∇⊥ ≡ x̂ ∂
∂x

+ ŷ ∂
∂y

1.2.2 Quasi-static approximation

In plasma based acceleration, typically the drive beam evolves on a much longer time (or

distance) scale (∼
√
2γk−1

p for a particle beam drive and zR for a laser driver) compared with

the plasma wakefield wavelength (k−1
p ). Since the wakefield depends on the driver’s profile

(or the wakefield only changes if the driver evolves), the wakefield at a given point (a given

distance behind the driver) evolves very slowly as the driver propagates (it does not change

if the drivers shape does not change). Mathematically, this can be stated as,

∂

∂s
≪ ∂

∂ξ
(1.10)

which is called quasi-static approximation (QSA) [29]. Note that in the original work on the

QSA, the variables were (x, y, ξ; τ = t). It was recognized early on that it is better to use

s = z and not τ = t [30, 31].

A more intuitive way to understand the meaning of Eq. (1.8) is by considering the fol-

lowing scenario: Again you are standing at the tail of a boat, staring at the beautiful wake

behind it. Your eyes are always staring at a point that is 10 meters behind the tail of the

boat. While you are staring at that point, the boat has propagated for 100 meters. You may

not even notice a difference because the change of the wake at that point can be small. On

the contrary, at a given moment, if you take look at what is going on at 9 meters behind the

boat, the wake there should look very different from the wake at 10 meters behind the boat.

The change due to a different distance behind the boat (ξ = ct− z) is much more significant

than the change due to the propagation of the boat (s = z).
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After applying QSA, the derivatives transform as

∂

∂t
= c

∂

∂ξ
,
∂

∂z
= − ∂

∂ξ
(1.11)

which upon substituting into Eqs. (1.2),(1.3) and (1.9) leads to

−∇2
⊥

ϕ

A

 =

ρ/ϵ0
µ0J

 (1.12)

∇⊥ ·A⊥ +
1

c

∂ψ

∂ξ
= 0 (1.13)

∇⊥ · J⊥ +
∂

∂ξ
(cρ− Jz) = 0 (1.14)

where we define pseudo-potential ψ to be:

ψ = ϕ− cAz (1.15)

Note that Eqs (1.12) and (1.13) could also have been obtained by dropping all
∂

∂s
terms in

Eqs (1.8) and (1.9). From Eq. (1.4), the longitudinal electric field (accelerating field) can be

written as,

Ez = −∂ϕ
∂z

− ∂Az

∂t

=
∂ϕ

∂ξ
− c

∂Az

∂ξ

=
∂ψ

∂ξ

(1.16)

so that the accelerating force on an electron is

Fz = −e∂ψ
∂ξ

(1.17)

The transverse electric field can be rewritten as,

E⊥ = −∇⊥ϕ− ∂A⊥

∂t

= −∇⊥ϕ− c
∂A⊥

∂ξ

(1.18)
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This is the electric field components of the Lorentz force. To calculate the magnetic field

components, we need to calculate:

ẑ ×B = ẑ × (∇×A)

= ∇A · ẑ − (ẑ · ∇) ·A

= ∇Az −
∂A

∂z

= ∇⊥Az −
∂A⊥

∂z

= ∇⊥Az +
∂A⊥

∂ξ

(1.19)

For an electron in a high energy beam, vz ≈ cẑ. So the transverse (‘focusing’) field is,

K⊥ = E⊥ + cẑ ×B

= −∇⊥ϕ+ c∇⊥Az

= −∇⊥ψ

(1.20)

And the focusing force on an electron is

F⊥ = −eK⊥ = e∇⊥ψ (1.21)

Now we can see the importance of the pseudo-potential ψ. Once we solve for it, the lon-

gitudinal and transverse forces on a relativistic particle are simply the longitudinal and

transverse derivatives of ψ. Note that if F⊥ = e∇⊥ψ and Fz = −e∂ψ
∂ξ

then it follows that

−∇⊥Fz =
∂

∂ξ
F⊥, which is the Panofsky-Wenzel theorem for plasma wave wakefields [32, 33].

From Eq. (1.12), we can get the differential equation for ψ:

−∇2
⊥ψ = (ρ− Jz/c)/ϵ0 (1.22)

Therefore, if Eq. (1.22) can be solved then the full forces on the witness beam are known.

This equation is useful because based on Eq. (1.14), we can get∫
dx⊥(ρ−

Jz
c
) = 0 (1.23)
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for each ξ slice. Solving for ψ requires using Eq. (1.22). However, the source term depends

on the motion of the plasma particles and ψ also contributes to the force on the plasma

particles. Note that the source term from the beam essentially vanishes. Shortly, in sections

1.2.4 and 1.2.5 we analyze how the wakefield can be determined self-consistently for a beam

driver in both linear and nonlinear regimes. These derivations are simpler to follow when

using normalized units which are introduced next.

1.2.3 Normalized units

In this section, we introduce normalized units. In the study of plasma based acceleration,

it is convenient to normalize all the quantities by their corresponding ‘natural scale’. There

are several advantages of doing so. First, it allows us to understand the relative strength

of a parameter. Second, it makes the equations look cleaner and more compact. They

also look the same regardless of which system of units one starts from, e.g. cgs or MKS.

Last but not least, since all the quantities are dimensionless, it is easier to implement in a

computer program. Normalized units are used extensively in the description of plasma based

accelerators.

In the following, we list some commonly used quantities and their corresponding normal-

ization factors, for MKS units:
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Quantity Normalized by

Time 1/ωp

Length c/ωp

Velocity c

Mass me

Charge e

Electric field (E) mecωp/e

Magnetic field (B) meωp/e

Force mecωp

Scalar potential (ϕ) mec
2/e

Vector potential (A) mec/e

Vacuum permittivity (ϵ0) 1

Vacuum permeability (µ0) 1

density np

Table 1.1: Normalized units

We next rewrite some the quantities and equations in the previous section in terms of

the normalized units. The pseudo-potential 1.15 becomes:

ψ = ϕ− Az (1.24)

Eq. (1.22) becomes,

−∇2
⊥ψ = ρ− Jz (1.25)

and Eqs. 1.16 and (1.21) remain in the same form,

Ez =
∂ψ

∂ξ
(1.26)

F⊥ = ∇⊥ψ (1.27)
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1.2.4 Linear regime

In this section, we review the linear theory of PWFA. As we have seen, the forces from the

wakefield on a particle moving near the speed of light can be obtained from the pseudo-

potential ψ ≡ ϕ−Az . The accelerating field and the focusing force in the wakefield are the

longitudinal and transverse gradient of ψ, respectively. So the problem reduces to calculating

ψ, for a given beam’s density profile.

We start from Eq. (1.25). This is a 2D Poisson equation. In order to calculate ϕ, we need

to figure out the source term on the right hand side: ρ − Jz. First, we need to realize that

the beam’s contribution to this source term vanishes because the beam moves at (nearly)

speed of light. So the contribution to this source term only comes from the plasma particles.

Next, we need to linearize the equations. We assume a neutral plasma that starts at rest,

so ρ0 and J0 vanish. To lowest order the ion perturbations are m/M (mass ratio between

electrons and ions) times smaller than those of the electron, and can thus be neglected.

Therefore, the linearized version of 1.25 is,

∇⊥
2ψ = −ρ1 − vz1 (1.28)

We next use an important conservation law based on the QSA, γ− pz = 1+ψ [34] where

it is assumed that a plasma electron starts at rest (more details are given in Apppendix

A). In linear regime, we also assume the plasma electron velocity is much less than c, then

this equation can be linearized to 1 − vz1 = 1 + ψ, from which it follows that, vz1 = −ψ.

Substituting this into Eq. (1.28) leads to,

(
∇⊥

2 − 1
)
ψ = −ρ1 (1.29)

We still need to figure out ρ1. To do that, we start from the continuity equation for plasma

electrons,

∂ρ

∂t
+∇ · (ρv) = 0 (1.30)
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Upon linearizing it, we have,

∂ρ1
∂t

−∇ · v1 = 0 (1.31)

Applying ∂
∂t

to both sides gives,

∂2ρ1
∂t2

−∇ · ∂v1

∂t
= 0 (1.32)

The linearized Euler’s equation is

∂v1

∂t
= −E1 (1.33)

and upon substituting this into Eq. (1.32) leads to

∂2ρ1
∂t2

+∇ · E1 = 0 (1.34)

From the linearized Gauss’s law, it follows that

∇ · E1 = ρ1 + ρb (1.35)

Substituting this into the Eq. (1.34) gives

∂2ρ1
∂t2

+ ρ1 = −ρb (1.36)

which can be rewritten as,

∂2ρ1
∂ξ2

+ ρ1 = −ρb (1.37)

where ρb is the source term and ξ ≡ ct− z.

Therefore, the excitation of a wake, ψ, by a drive beam, ρb, is described by two coupled

equations: 
(
∇⊥

2 − 1
)
ψ = −ρ1(

∂2

∂ξ2
+ 1

)
ρ1 = −ρb

(1.38)
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Eliminating ρ1 leads to a single equation for ψ [35](
∂2

∂ξ2
+ 1

)(
∇⊥

2 − 1
)
ψ = ρb (1.39)

We look for a separable Greens function to this equation, i.e., we assumeG = G⊥(r)G∥(ξ),

which leads to (
∂2

∂ξ2
+ 1

)
G∥(ξ) = δ(ξ) (1.40)

and (
∇⊥

2 − 1
)
G⊥(r) = δ(r) (1.41)

Therefore, the final solution for ψ can be written as,

ψ = (G∥(ξ)G⊥(r)) ∗ ρ(ξ, r) (1.42)

where ∗ is the convolution. The relevant Greens functions for these operators are,

G∥(ξ) = Θ(ξ) sin(ξ) (1.43)

and

G⊥(r) = −K0(r)

2π
(1.44)

where Θ(ξ) is the Heaviside step function and K0(r) is modified Bessel function of the second

kind. We can therefore write the full expression for ψ as an integral of ρb over the Green’s

functions,

ψ(ξ, r) =
1

2π

∫ ∞

ξ

dξ′
∫ 2π

0

dθ′
∫ ∞

0

dr′r′ρb (r
′, ξ′) sin (ξ − ξ′)K0 (|r− r′|) (1.45)

Once we have ψ, we can calculate Ez and F⊥ by taking a longitudinal and transverse gradient

with respect to ψ. The linear problem is thus solved in principle. However, the form for

ψ obtained in the blowout regime has ideal properties for accelerating electrons. Next, we

discuss how to obtain ψ in this nonlinear regime and later discuss why the wakefields are

ideal in this regime.
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1.2.5 Nonlinear blowout regime

When the drive beam’s peak density is much larger than the plasma density, the plasma

electrons are completely expelled away by the space-charge force of the electron beam [22, 23].

The plasma ions are much more massive, so they essentially stay immobile during the time

when the drive beam passes by (unless the driver’s density is extremely high, nb/n0 ≫M/m,

and ion motion is triggered, but that’s a different topic, which is discussed below and whose

consequences are studied in Chapter 4). The electrons, which are initially blown outwards

(forwards and sideways) form a thin plasma electron sheath. The sheath electrons are

then pulled back to the axis at the rear of the wake. The sheath thus forms a roughly

spherical bubble that surrounds an ‘ion column’. This regime is called blowout or bubble

regime [22, 23, 25]. Typically the witness beam is loaded at the back of the bubble to be

simultaneously accelerated and focused. The goal of this section is to study the accelerating

and focusing fields on the witness (trailing) beam in PWFA. Note that a predictive nonlinear

theory for the blowout regime was proposed in 2006 [23]. Here we will only do some simple

analysis to derive the focusing force and show some properties of the accelerating field (first

recognized by Rosenzweig et al. [22]).

We start from Eq. (1.25). We are only interested in ψ inside the ion channel, since that is

where the witness beam is loaded. In order to solve for ψ, we need to know the source term

ρ − Jz. In the previous section, we have already shown that relativistically moving drive

or witness beams do not contribute to this source term because the forces from the radial

electric and azimuthal magnetic self-fields essentially cancel each other. Also, in the blowout

regime, the plasma electrons are completely blown out, so they make no contribution either

to the source term inside the ion column. Only the uniform ion background contributions to

ρ− Jz inside the bubble. The immobile ions have no Jz, and their density is ρ = en0, where

n0 is the plasma density. In normalized units, this is just 1. So Eq. (1.25) becomes

−∇2
⊥ψ = 1 (1.46)
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inside the ion column. This is a 2D Poisson equation. If we assume azimuthal symmetry,

then we can solve for ψ:

ψ(r, ξ) = ψ0(ξ)−
r2

4
(1.47)

where we used the boundary condition that ψ is finite at r = 0. So the focusing force is,

F⊥ = ∇⊥ψ = −r
2
r̂ = −xx̂+ yŷ

2
(1.48)

The equation of motion for an electron in the absence of energy gain is therefore

d2x

dt2
+

x

2γ
= 0 and

d2y

dt2
+

y

2γ
= 0 (1.49)

which are decoupled. The particle oscillates in the x and y planes with a frequency 1/
√
2γ

which is referred to as the betatron frequency. More detail will be given in chapter 2.

Substituting Eq. (1.47) into Eq. (1.26), gives the accelerating field,

Ez =
dψ0(ξ)

dξ
(1.50)

From Eq. (1.48) and Eq. (1.50) we can see two nice properties of wakefields in the blowout

regime:

1. The transverse focusing force F⊥ is linear (proportional to r), points radially inward,

and does not depend on the longitudinal position ξ = ct− z inside the bubble.

2. The accelerating field Ez does not depend on the transverse position r.

The first property ensures that the beam particles at different longitudinal positions will

oscillate at the same betatron frequency, if they have the same energy. The second property

ensures that the beam particles will not gain additional slice energy spread. If either of these

properties is satisfied, then the Panofsky Wenzel theorem [32, 33] guarantees that the other

is as well, if either ∇⊥Fz or − ∂

∂ξ
F⊥ vanishes then so does the other.

18



1.2.6 Beam loading

In this section, we are going to review the beam loading theory in the nonlinear blowout

regime [36]. The beam loading theory in linear regime was derived by Katsouleas et, al in

1987 [37]. However, as described in the previous section, the nonlinear blowout regime has

nice properties for accelerating and focusing, and is also the main focus in this dissertation,

therefore we will only review the nonlinear beam loading theory.

The nonlinear beam loading theory was developed based on the theory for nonlinear

blowout regime [23]. In the ultrarelativistic limit for azimuthally symmetric wakes, the

pseudo-potential inside the ion channel is [23]:

ψ(r, ξ) ≈ 1

4
(rb(ξ)

2 − r2) (1.51)

where rb(ξ) is the boundary of the ion channel, i.e., the blowout radius, which is described

by the differential equation [23]:

rbr
′′
b (ξ) + 2[r′b(ξ)]

2 + 1 =
4λ(ξ)

rb(ξ)2
(1.52)

where λ(ξ) =
∫∞
0
rnbdr, is the charge per unit length of an electron beam (drive or witness

beam) divided by 2π. Here we are only interested in the back half of the bubble because

that is where the witness beam is loaded, and we can interpret λ(ξ) as the charge per unit

length of the trailing beam divided by 2π.

In the beam loading problem, we are interested in the accelerating field, which can be

calculated by substituting Eq. (1.51) into Eq. (1.26),

Ez =
∂ψ

∂ξ
=

1

2
rbr

′
b(ξ) (1.53)

The goal is to solve for rb from equation Eq. (1.52), and then to substitute it into Eq. (1.53)

to obtain Ez. To accomplish this we change from parameterizing quantities in terms of ξ to

rb in Eq. (1.52), so r′′b (ξ) =
dr′b
dξ

=
dr′b
drb

drb
dξ

= r′b
dr′b
drb

. Equation (1.52) therefore becomes:
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rbr
′
b

dr′b
drb

+ 2r′2b + 1 =
4λ

r2b
(1.54)

The trick to solving this equation is realizing that r′b
dr′b
drb

= 1
2

d(r′2b )

drb
, so we can define u = r′2b

and then rewrite Eq. (1.54) as,

1

2
rb
du

drb
+ 2u+ 1 =

4λ

r2b
(1.55)

This is a first order differential equation. We can multiply Eq. (1.55) through by 2r3b leading

to

d

drb
(ur4b ) = 8rbλ− 2r3b (1.56)

which can be integrated to obtain,

r′2b = u =
8
∫ rb
Rb
λ(r′b)r

′
bdr

′
b − 1

2
(r4b −R4

b)

r4b
(1.57)

where we integrate from rbi = rb(ξ = 0) ≡ Rb to rb, thus ξ = 0 is defined where the bubble

radius is maximum. We denote the location of the head of the witness beam by ξs. In the

back half of the bubble (ξ ≥ 0), r′b = drb/dξ ≤ 0, and therefore,

r′b = −

√
8
∫ rb
Rb
λ(r′b)r

′
bdr

′
b − 1

2
(r4b −R4

b)

r4b
(1.58)

Finally, we can also solve for the accelerating field,

Ez =
1

2
rbr

′
b = − rb

2
√
2

√
16
∫ rb
Rb
λ(r′b)r

′
bdr

′
b

r4b
− 1 +

R4
b

r4b
(1.59)

When 0 ≤ ξ ≤ ξs (in front of the witness beam), λ = 0, therefore, the accelerating field

is

Ez = − rb

2
√
2

√
R4

b

r4b
− 1 (0 ≤ ξ ≤ ξs) (1.60)
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When ξ > ξs, Ez is modified by the λ of the witness beam. We want Ez to be a constant

inside the witness beam, so that the energy spread on the witness beam vanishes. We denote

this constant by −Es (so Es > 0), and define rb(ξs) ≡ rbs, leading to

−Es = − rb

2
√
2

√
16
∫ rb
rbs
λ(r′b)r

′
bdr

′
b +R4

b − r4b

r4b
(1.61)

Using Eq. (1.61) it can be inferred that the longitudinal current profile for the witness beam

as a function of rb that flattens the accelerating field is

λ(rb) = E2
s +

1

4
r2b (1.62)

where

Es =
rs

2
√
2

√
R4

b

r4s
− 1 (1.63)

In order to determine an expression for rb(ξ) when ξ ≥ ξs, we resort to Eq. (1.53)

−Es =
1

2
rb(ξ)r

′
b(ξ) =

1

4

d(r2b )

dξ
(1.64)

Using the initial condition that rb = rs when ξ = ξs, Eq. (1.64) can be integrated to obtain

r2b = r2s − 4Es(ξ − ξs) (1.65)

Upon setting rb = 0, we can infer the location of the rear of the loaded bubble, ξ = ξs +
r2s
4Es

.

Next, we can substitute Eq. (1.63) and Eq. (1.65) into Eq. (1.62) to determine the ex-

pression for the charge density of the witness beam (divided by 2π). To make the expression

simpler, we can express r2s in terms of Es first, using Eq. (1.63),

r2s =
√
R4

b + 16E4
s − 4E2

s (1.66)

Finally, we arrive at the longitudinal current profile of the witness beam that flattens the

accelerating field,

λ(ξ) =

√
E4

s +
R4

b

16
− Es(ξ − ξs) (1.67)
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This result is very important because it shows the longitudinal current profile that flattens

the accelerating field has a linear slope (or a trapezoidal shape).

The total charge in the trailing beam that flattens the wake can then be obtained by

integrating over the current profile,

Qs = 2π

∫ ξs+
r2s
4Es

ξs

λ(ξ)dξ = 2π
[√

E4
s +

R4
b

16
− Es

2

r2s
4Es

] r2s
4Es

(1.68)

which upon using Eq. (1.66) can be simplified to

QsEs =
πR4

b

16
(1.69)

This equations shows that the product of the charge and the accelerating field, i.e., the power

being extracted, is QsEs, which is fixed. Therefore, there is a trade-off between the strength

of the accelerating field and the amount of charge we can accelerate. Recently, Dalichaouch

et al. [38] have developed a more accurate beam loading model based on a more accurate

description of the sheath. The general results do not change significantly.

1.3 Challenges for a PBA-LC

In this section, we describe some of the major physics obstacles for designing a PBA-LC.

1.3.1 Emittance preservation

One of the biggest challenges for a PBA-LC is to preserve the witness beam’s emittance. In

Chapter 2 we give precise definitions of a beam’s emittance. Here, we define it as the area

of a beam in trace space (x, vx) ∼=
√

⟨x2⟩ ⟨v2x⟩ where ⟨⟩ refers to an average over a beam.

Small emittances are required in order to be able to focus the beam to small spot sizes at

the interaction point. As we will show in Chapter 2 and Chapter 3, the energy spread of

the beam can lead to projected emittance growth. This is because particles with different

energies oscillate at different betatron frequencies (wavenumbers)-kβ-, or equivalently, rotate
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at different angular frequencies in trace space, (x, vx) or (y, vy) space, resulting in a larger

projected trace space area (emittance). This is called the ‘chromatic effect’. If all parti-

cles have the same γ and it is not changing then trace space and phase space (x, px) are

straightforwardly related.

The solution to this problem is to match the beam into the plasma. A beam with a

given energy is matched if its tendency to diverge or diffract due to its emittance is balanced

by the attractive force due to ion channel (wakefield) focusing. These opposing effects are

balanced, i.e., the beam is matched, when kββ
∗ = 1 where β∗ ≡ σ2

0/ϵ and σ0 is the spot

size of the beam in vacuum. The resulting matched spot size of a beam slice is given by

Eq. (2.72). As we will show in Chapter 2, if a beam is matched, it will not oscillate in size.

More importantly, the distribution of the beam will not change as it propagates in a uniform

plasma (assuming no longitudinal acceleration). Therefore, the emittance does not change.

However, the ion channel of a PBA operating at densities of interest (typically 1016 ∼ 1017cm−3)

will have an extremely large focusing force, corresponding to a very small matched spot size.

This is particularly true for parameters in a PBA-LC, where the beam has both a high energy

and low emittance. Before we inject the beam into (or after we extract the beam out of) the

acceleration stage, the beam is focused by a conventional, external magnetic focusing optic,

which provides a much weaker focusing force compared with the focusing forces in the PBA

acceleration stage. Therefore, if we inject (extract) a beam with energy spread into (out of)

the acceleration stage directly, this huge mismatch in focusing strength (or matched spot

size) will lead to catastrophic emittance growth.

Fortunately, there has been recent progress in understanding this issue and developing

concepts to mitigate it. These rely on a tailored short plasma ramp or an adiabatic plasma

ramp at the entrance and exit of an acceleration stage [39] [40] [41] [42][43] [44] to transition

the beam from a large spot size to a small matched spot size in the acceleration stage, while

preserving the beam’s emittance. However, in a PBA-LC application, there will be ∼ 20

or more acceleration stages. It is important to achieve emittance preservation throughout
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the entire process, including inside each acceleration stage, transporting the beam in/out of

each stage, and between stages.

Another potential issue is if there are longitudinal variations in the betatron frequency

(wavelength) along the axial direction. This can occur if there are variations to the focusing

force or to the energy along the beam. Axial variations to the betatron frequency could lead

to different matched spot sizes along the beam. If the normalized emittance (area in phase

space) of each slice is the same, i.e.,
√
< x2 >< p2x >, then the projected emittance will be

dominated by the largest < x2 > and < p2x > for any slice and will thus be larger than the

slice emittance. Therefore, preserving the projected emittance is more challenging when we

take this into account, and this also shows the importance of obtaining nearly perfect beam

loading.

1.3.2 Ion motion

Ion motion induced by the drive particle beam and/or the witness beam is another significant

challenge for a PBA-LC if it is operating in the nonlinear blowout regime. In order to build

a PBA-LC, the luminosity must be large. This puts constraints on the charge and emittance

of the witness beam. For example, in LC designs the emittance is very low (∼ 0.1µm). For

the bunch lengths and charge per bunch needed for a LC [19], the transverse Coulomb field

for a matched spot size can pull the ions inward into the beam during the transit time of

the beam [45] [46].

For a matched beam (without ion motion) that is nearly Gaussian, nb/np = 1.4 ×

104(N/1010)(µm/
√
ϵNxϵNy)

√
(Energy/250GeV)/(kpσz) where nb = N/[(2π)3/2σ2

rσz] and np

is the plasma density. For large ratios, the ions can move appreciably within a transit time

for the short trailing bunch. This can be quantified and understood physically as ωbiσz/c > 1,

i.e., when nb/np > ZM/m where Z is the charge state of the ion, for kpσz ≈ 1. For collider

parameters this ratio can approach 105 which easily exceeds the mass ratio of Hydrogen and

Lithium. This can modify both the focusing (and accelerating fields) such that the trailing
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beam may be far from being matched leading to emittance growth. As there are 20 stages,

even ten percent growth per stage may not be tolerable. The resulting ion collapse on the

axis can also cause a longitudinally slice-dependent, transversely nonlinear focusing force.

Therefore, the nice properties of the fields in the blowout regime that we introduced in 1.2.5,

which are important for emittance preservation, may no longer exist.

Simulations have shown that matching the beam directly to a uniform plasma (assuming

no ion motion) causes ∼80% projected emittance growth for typical LC parameters [47].

This is actually much better than previously thought [46], and the main explanation for the

smaller than expected emittance growth is that the ion collapse happens in a narrower region

than the initial beam spot size. However, for a PWFA-LC application, 10 ∼ 20 stages will

be used, and 80% emittance growth per stage is not desirable. It was also found that if the

beam was focused with a spot size smaller than the matched spot there was less emittance

growth. This indicates that there may be a modified matching condition where the matched

spot size is smaller because of the enhanced focusing force of the ion collapse.

Several ideas have been proposed and studied to mitigate the ion induced emittance

growth even further. In Ref.[48] it was proposed to use a plasma matching section with an

adiabatically decreasing ion mass. In this concept, the idea is to adiabatically change the

amount of ion collapse and thus the effective focusing force. In this work the focus was on

the collapse triggered by the drive beam. However, it should also work when the collapse

is caused by the witness beam. Although interesting conceptually, it will be difficult to

construct a plasma profile that has an adiabatically decreasing ion mass.

In Ref.[49] it was proposed to match the transverse beam phase space distribution to the

nonlinear ion motion-perturbed plasma wakefields slice-by-slice. In this concept, the equilib-

rium profile of the witness beam is first calculated mathematically under some assumptions,

then the witness beam is injected into the plasma with this equilibrium profile. Conceptually,

this is no different than transporting a witness beam that already had an equilibrium profile

in the presence of ion motion into a ‘new’ plasma section. This idea is also challenging to
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implement in practice.

In Ref.[50] it was proposed to start with a witness beam with a low enough energy that

its matched spot size does not initially trigger ion motion. As the beam is accelerated, the

matched spot size adiabatically decreases, and ion motion is adiabatically triggered. It was

shown in simulations that this concept can preserve emittance. However, this idea will only

work at the initial stage of PWFA-LC. The problem of transporting the witness beam out of

the stage or into and out of later stages where the beam has a higher energy without much

emittance growth remains unsolved.

In Chapter 4 of this dissertation, we present a scheme that is able to achieve emittance

preservation in the presence of ion motion that is applicable to high energy, high-density

electron bunches required in a multi-stage plasma-based LC scenario. We use an adiabatic

plasma density upramp to match the witness beam into the uniform density (plateau) ac-

celeration stage, then using an adiabatic plasma density downramp to match the witness

beam out from the density plateau. We show this method can almost perfectly preserve the

witness beam emittance from start to end, even though there is a significant amount of ion

motion triggered in the uniform acceleration stage. We also show that by properly choosing

the beam’s Courant-Snyder parameters at the plasma entrance the emittance growth can be

mitigated even for more general density ramps which are not adiabatic at lower densities.

The development of a scheme to preserve emittance throughout an entire stage even in the

presence of ion motion is the most important result in this dissertation.

1.3.3 Hosing

Another challenge in PWFA is the hosing instability or even any residual offset between the

driver and the witness beam. The hosing instability was first studied using fluid theory [51]

[52] and later improved for the nonlinear blowout regime [53]. Hosing occurs if the drive

beam and the witness beam are misaligned or if either is tilted. Under these conditions the

witness beam centroid will oscillate and couple to the plasma channel, causing an instability.
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This results in large emittance growth of the witness beam as well as makes it difficult to

collide the electrons and positrons, and is thus detrimental for LC applications. Current

linear collider designs are based on using tens of stages. A new driver must be inserted in

front of the witness bunch in ease stage. Hosing and misalignment can occur in each stage,

and this can be exacerbated by the transverse offsets between the new driver and witness

bunch. This will eventually reduce the luminosity of the colliding bunches.

Fortunately, there are various methods to mitigate hosing instability. The first method

is using an energy chirp [54]. The variation of energy along the beam will cause the betatron

oscillations (resonances) between beam slices to become detuned and damped. The second

method is using an asymmetric drive beam to create an asymmetric ion bubble [55]. The

focusing force will then be longitudinally dependent and vary along the beam. Similar to

the energy chirp idea, this makes the beam particles at different slices oscillate at different

betatron frequencies thus mitigating the hosing instability. The third method is taking

advantage of the ion motion triggered by the drive beam [55] or witness beam [56]. Although

ion motion was initially thought to be detrimental for preserving the emittance of a beam,

as we will see later in this dissertation, it induces a head-to-tail variation in the focusing

force experienced by the witness beam. Finally, it was shown that tapered plasma profiles

can also be used to reduce hosing [54]. The topic of hosing and beam misalignments will be

outside the scope of this dissertation.

1.4 Simulation tools

Computer simulation plays an essential role in the study of plasma based acceleration. Sim-

ulation is one of the three pillars of the modern scientific methods , along with experiment

and theory. It can be used to verify the correctness of theories, provide crucial insights of

experimental results, help to design new experiments, and even test new ideas that may lead

to the discovery of new physics. In this section, we will introduce several different simulation
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tools for modeling PBA, and discuss their advantages and drawbacks.

1.4.1 Particle-in-Cell code

The particle-in-cell (PIC) [57] [58] is the method of choice for simulating plasma physics when

fluid descriptions are inappropriate. Although what happens in a plasma can be extremely

complicated, at its core is the interaction of particles with the electromagnetic fields that

their charges and currents generate. No matter how complicated a system is, each charged

particle will move according to the Lorentz force it experiences. The electric and magnetic

field in the Lorentz force are given by Maxwell’s equations whose source terms are the charge

density and current density contributed by the charged particles.

The PIC algorithm simply implements this idea based on discretized equations. Our

physical world is intrinsically continuous (time and space), while computer memories are

intrinsically discrete. Therefore, to simulate a physical domain, we need to use a grid. In a

PIC simulation, the field quantities (electric field, magnetic field, potentials, charge density,

current density, etc) are defined on a grid, and simulation particles (macroparticles) can

move within the grid. The smallest domain in the grid is the cell. The resolution of the

grid used in the simulation has to be high enough to capture the minimum length scales

of interest, otherwise, important physics may be lost. Each macroparticle may represent

many individual charged particles as long as the charge-to-mass ratio, which determines the

dynamics in the force equation, is kept the same. Interestingly, the number of particles

within a particle beam are sufficiently small and the memory of today’s computers is large

enough that it is possible to use one simulation particle for each real beam particle if accurate

statistics are needed. As the charge of a particle is distributed to locations within the cell

hence the particle has an effective size on the order of the grid. Hence, it is more accurate

to call a PIC particle a finite size particle and not a macroparticle.

Next we introduce the PIC algorithm. The basic iteration loop of the PIC algorithm for

each time step of the simulation has 4 components:
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1. Charge and current deposition: The charge and current densities of each particle species

are interpolated or deposited onto the grid.

2. Field solve: Given the charge and current densities on the grid points, we solve a

discretized version of Maxwell’s equations, and obtain electromagnetic fields on the

grid points.

3. Field interpolation: We interpolate the electromagnetic fields from the grid to the

locations of the particles, then calculate the Lorentz force on the particle from the

interpolated fields.

4. Particle push: The positions and momentum of particles are advanced using a finite

difference (leap frog) version of the relativistic equations of motion.

The PIC simulation keeps running in this loop until the desired time step is reached.

The PIC code is suitable for simulating a non-equilibrium and very nonlinear problems,

especially when the kinetic effects are important and the fluid models cannot be used. Based

on this algorithm, the full PIC code OSIRIS [59] was developed and is being used extensively

in plasma simulations. In OSIRIS, the full set of Maxwell’s equations are used and the time

step must be smaller than a grid size. For problems of interest in this dissertation it is

impractical to use OSIRIS.

1.4.2 QuickPIC

As discussed above the PIC code is a great tool for plasma simulations. However, because

the PIC algorithm makes few physics approximations, it is also very CPU intensive. Using

a full PIC code like OSIRIS to simulate plasma based acceleration problem is extremely

computationally expensive. Fortunately, the nature of of plasma based acceleration allows

us to make approximations without losing important physics. In plasma based acceleration,

the beam particles (or laser) are evolving on a much longer timescale (or length scale)
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compared with plasma particles. The beam evolves on the scale of the betatron wavelength:

k−1
β ∼

√
2γk−1

p , while the plasma evolves on the scale of the plasma skin depth: k−1
p . For a

10 GeV beam, this is a 200 times difference!

To take advantage of this disparity of scales and separate out the evolution of the driver

from the plasma wake generation, we apply the quasi-static approximation introduced in

1.2.2 to the PIC algorithm. The first quasi-static based PIC code, WAKE [34], is based on

the 2D r-z geometry (technically r-ξ geometry, since it is a quasi-static code). QuickPIC

[60][61] was the first 3D PIC code based on this idea and was originally developed at UCLA

by Chengkun Huang et al. [60], and maintained as well as improved by Weiming An et

al. [61]. QuickPIC is a three-dimensional (3D) quasi-static particle-in-cell (PIC) code for

efficiently simulating plasma wakefield acceleration. It is fully parallelized through MPI

and OpenMP. It has been an open source code since 2017 [62], with many feature modules

actively being developed.

In QuickPIC, instead of using the coordinates (x, y, z; t), we used co-moving coordinates

(x, y, ξ = ct − z, s = z). The simulation box (a co-moving window) is moving along with

the beams at the speed of light. The beam particles are ‘3D particles’: They are distributed

in the simulation box in the 3D (x, y, ξ) space, and are advanced along s. On the contrary,

the plasma particles are ‘2D’ particles. They only exist in a 2D ‘slice’ of the simulation

box, described by (x, y), and they are advanced along ξ, with an opposite direction to the

direction of the system’s propagation. It is assumed that the value for s is the same for every

plasma particle.

In each time step of the simulation (3D time step), the beam is frozen in the simulation

box. The plasma particles are initialized before the head of the drive bunch, ‘sweeping’ from

head to tail along ξ. They are advanced with a 2D time step ∆ξ, which is the longitudinal

resolution of the simulation box. After the ‘sweep’ is complete, the calculation of the plasma

response is finished. We then solve the fields within each ξ slice from the plasma particles,

stack them together to construct the 3D fields within the simulation box, and push the beam
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particles to the next 3D time step in s. By separating the advance of beam particles, in a

∆s, and the advance of plasma particles, in a ∆ξ, several orders of computation is saved,

since ∆s≫ ∆ξ. Meanwhile, the physics is still described very accurately because the beam

evolves much more slowly than the plasma, and within the length of a simulation box, the

evolution of the beams can be reasonably neglected. Importantly, results from QuickPIC

have been extensively compared against those in OSIRIS to verify the algorithm.

1.4.3 QPAD

We have found that QuickPIC is extremely accurate at simulating PWFA problems. How-

ever, it is still challenging for QuickPIC to carry out the high resolution simulations needed

to resolve the matched spot size of a witness beam and to study ion motion. For example,

for a typical PWFA-LC parameters [19][1], the witness beam’s matched spot size is very

small, while the radius of the ion bubble is three orders of magnitude larger. Including the

entire ion channel in the simulation box while resolving the small beam spot size requires

many cells. If we use 104 cells in the transverse direction, this leads to 108 cells transversely,

which is extremely computationally expensive and memory consuming.

However, it turns out that for a lot of simulations we are interested in, the problem is

nearly axisymmetric. Therefore, instead of using Cartesian geometry, we could use cylindrical

geometry that better matches the nature of the problem, and potentially saves a significant

amount of computation. This observation led to the development of QPAD [63], which was

initially developed by Fei Li and Weiming An et al. at UCLA.

QPAD is a quasi-static particle-in-cell (PIC) code based on the QuickPIC framework.

QPAD uses cylindrical geometry (as opposed to Cartesian geometry in QuickPIC) with a

PIC description in r-z (technically r-ξ, since QPAD is a quasi-static code) and a gridless

description in ϕ. This idea follows that used for full PIC algorithms that is now refereed to

as a quasi-3D geometry [64, 65, 66]. The fields, charge and current, defined on an r-ξ grid,

are expanded into azimuthal modes in the gridless ϕ direction. The expansion is truncated
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at a desired number. Particle data is deposited onto the r-ξ grid for each azimuthal mode

based on its ϕ position. The field amplitudes for each azimuthal mode are solved on the same

r-ξ grid and they are then added together to get the forces to push the particles. This so-

called Quasi-3D description is especially efficient for problems with approximate azimuthal

symmetry because we only need to keep a small number of modes. When run with only

the m=0 mode it reduces to a 2D quasi-static code such as WAKE [34]; however, it is fully

parallelized. Other related reduced model codes such as INF&RNO [67, 68, 69], LCODE,

and HiPACE are also used for PBA modeling. QPAD, WAKE, and INF&RNO also have

the ability to model laser drivers.

As we will see in Chapter 4, simulating a PWFA-LC stage is very challenging. QPAD

permits the use of very fine resolution in r so that the physics of ion motion can be resolved.

We note that another option for modeling very fine resolution near the witness beam is the

use of mesh refinement. This has been implemented into QuickPIC, HiPACE (another 3D

quasi-static PIC code) [70, 71], and INF&RNO [67, 68, 69].

1.4.4 Single particle simulations

We have described how the full PIC algorithm (e.g., OSIRIS) is a powerful tool for plasma

simulations. We have also described QuickPIC and QPAD which are more suitable for sim-

ulating plasma based acceleration (if self-trapping is not required). All these tools are based

on the PIC algorithm. However, under certain circumstances, PIC may not be necessary

to understand key physics. A good example can be, if we want to simulate the evolution

of a beam slice in the blowout regime, and the focusing and accelerating fields are static.

In this case, the beam slice simply feels a linear focusing force provided by the uniform ion

background (with some prescribed acceleration). Therefore, it’s probably more convenient

to track the motion of the beam particles directly under a given focusing force, rather than

carrying out a self-consistent simulation. Essentially, a reduced model can be used, and in

this model, there is no concept of a plasma any more. All we have is a externally given
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focusing force, and a collection of beam particles. The computation is thus much faster and

cheaper, which allows us to run many ‘small’ simulations very quickly. This is very useful

for parameter scan, or to just quickly testing new ideas.

Motivated by this, we developed a single particle code written in Python. This code is

used in this dissertation to study the evolution of a beam slice under a given focusing force.

Essentially, this single particle code numerically integrates the equations of motion in the

transverse direction for a collection of non-interacting particles in a prescribed force:



x′(z) = px(z)/γ

p′x(z) = Fx(x, y, z)

y′(z) = py(z)/γ

p′y(z) = Fy(x, y, z)

(1.70)

The focusing forces Fx, Fy are predetermined, and their form can be arbitrarily chosen,

depending on the problems we are interested in. In Eq. (1.70) we assume there is no lon-

gitudinal acceleration. The longitudinal acceleration can also be included by providing a

predetermined model for acceleration: γ(z).

The numerical integration is done using the solve ivp function from scipy library in

Python. The z steps that are used for solving Eq. (1.70) are internally determined by the

numerical solver solve ivp. We can only select the time steps where we want to evaluate the

solution (for dumping the output data). The code is also easily parallelized using mpi4py

library, since the particles are completely independent with each other. It is worth noting

that the idea behind the single particle code is almost identical to another code [72], which

was recently developed at DESY.
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1.5 Dissertation outline

This dissertation is aimed at understanding the emittance growth and methods to mitigate

it for the witness beam in the electron arm of PBA-LC designs. Issues related to the positron

arm are beyond the scope of this dissertation. The results utilize a combination of theory and

PIC simulation. The dissertation is outlined as follows. In Chapter 2, we start by reviewing

important concepts and previous results, as well as giving some new understanding about

the transverse dynamics of a witness beam in the focusing fields of a nonlinear wakefield. In

Chapter 3, we derive analytical expressions for the evolution of the beam emittance and the

C-S parameters in an arbitrary adiabatic plasma profile based on the WKB solution to a Hill

like equation (the acceleration of the beam and ion motion inside the plasma are neglected),

and give several important corollaries for these results. We confirm these results with 3D

QuicPIC simulation results. In Chapter 4, the method of using adiabatic plasma density

ramps to mitigate the emittance growth of the witness beam in the presence of ion motion,

energy spread, and acceleration in a PWFA-LC stage is proposed. Simulation results from

QPAD show that within a single acceleration stage, this concept can limit the projected

emittance growth to only ∼2% for a 25 GeV 100 nm and ∼20% for a 100 GeV, 100 nm

emittance witness beam respectively. The trade-off between the adiabaticity of the plasma

density ramp and the initial ion motion at the entrance for a given length of the plasma

density ramp is also discussed. In Chapter 5, additional issues for building a plasma based

linear collider are investigated using particle-in-cell simulations. Finally, in Chapter 6 we

provide a summary and some perspectives.
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CHAPTER 2

Single particle dynamics and emittance evolution in a

uniform plasma

2.1 Introduction

This dissertation is aimed at understanding and controlling emittance growth within a single

plasma based accelerator stage and from a series of stages. In this chapter, we provide the

foundation for studying emittance evolution by describing in detail the dynamics of single

particles and beam envelope parameters in perfectly linear and radial focusing forces. Such

forces arise in the ion channel of an azimuthally symmetric nonlinear wakefield. We then

review the ideas of geometrical and normalized emittances, and why both are important for

this research.

We start from a single particle or microscopic point of view. The transverse (x, y) equa-

tions of motion are derived for a single beam particle moving near the speed of light in the

ẑ direction in the ion channel. The description includes the situation where the energy is

changing (we refer to this as acceleration). We show that it is possible to approximately

separate out the effects of the focusing fields from the change in energy from the accelerat-

ing fields in a nonlinear wakefield. We then discuss exact and approximate solutions to the

transverse motion when there is no accelerating field. Following Courant and Snyder [73],

we show that the in the absence of acceleration, the exact solution leads to a parameterized

ellipse in trace space (x, x′) described by what are now referred to as the Courant-Synder

(C-S) parameters whose area is preserved. It is then shown that when there is acceleration
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that the area of an ellipse in phase space (x, px) is instead conserved. The concept of a

transport matrix is then described and examples are given.

We then pivot to a macroscopic view by introducing the beam’s geometric emittance and

its related Courant-Snyder parameters, which can be used to parameterize the state of the

beam. This is followed by a discussion of how the beam Courant-Snyder parameters and

the emittance can be used to describe the evolution of the beam in both vacuum and in a

uniform plasma. The concept of matching is introduced and it is shown how it is important

for preserving the beam’s emittance. Last, the normalized emittance is introduced and it is

shown that it is the quantity to be preserved when a particle is undergoing acceleration.

2.2 Equation of motion of a beam particle in a uniform plasma

In Chapter 1, we showed that in the blowout regime, the witness beam electrons feel a

focusing force that points in the radial direction and that varies linearly in r. The key

assumption is that the blowout is azimuthally symmetric so that the focusing force arises

purely from the uniform ion column (there is no net force from the sheath electrons). This

is shown in Eq. (1.48). Rewriting this equation back in unnormalized units gives,

F = −1

2
mω2

pr (2.1)

Since this focusing force is linear and points in r̂ it can be decomposed into Cartesian

coordinates as

Fx = −1

2
mω2

pr cosϕ = −1

2
mω2

px (2.2)

and

Fy = −1

2
mω2

pr sinϕ = −1

2
mω2

py (2.3)

36



where x = r cosϕ and y = r sinϕ. According to Newton’s second law,

Fx =
dpx
dt

(2.4)

Fy =
dpy
dt

(2.5)

from which it follows that

d(γmvx)

dt
= −1

2
mω2

px (2.6)

d(γmvy)

dt
= −1

2
mω2

py (2.7)

where px = γmvx and py = γmvy. We are interested in the situation where an electron is

moving in the ẑ direction with a speed extremely close to the speed of light, c. As described

in Chapter 1, we therefore transform from (x, y, z; t) to (x, y, ξ; s) where ξ = ct − z and

s = z. Therefore, the convention is to use the variable z (the propagation distance) rather

than t (time) to parameterize the motion of the particle (electron). For a particle at a fixed

ξ, dz = cdt, thus
d

dz
=

1

cdt
. The equation of motion in the x plane is therefore,

d(γx′)

dz
= −1

2

ω2
p

c2
x = −1

2
k2px (2.8)

where x′ =
dx

dz
(′≡ d

dz
) and kp =

ωp

c
is the plasma wave number.

Thus the differential equation for x can be written as

x′′ +
γ′

γ
x′ + k2βx = 0 (2.9)

where kβ =
kp√
2γ

is the betatron wavenumber. This is a homogeneous second order ordinary

differential equation (ODE) with non-constant coefficients of the general form x′′ + p(z)x′ +

q(z)x = 0. Similar arguments lead to an equation for y,

y′′ +
γ′

γ
y′ + k2βy = 0 (2.10)
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In the ion channel, the acceleration, γ′, does not depend on x or y [22, 23] (i.e., the accelerat-

ing field is flat in the transverse direction), thus the motion in the two planes are completely

decoupled. Therefore, without loss of generality, we henceforth only consider motion in the

x direction.

Furthermore, if there is no acceleration (γ′ = 0), then Eq. (2.9) becomes much simpler,

x′′ + k2βx = 0 (2.11)

where we note that kβ does depend on γ. This is referred to as the Hill equation [74] if kβ

is periodic in z which is true in a circular accelerator. For a linear collider and a PBA stage

this is not the case, so equation (2.11) is simply an ordinary homogeneous second order ODE

with p(z) = 0. We will henceforth refer to it as a Hill like equation.

Typically in PWFA, the energy changes very slowly on the scale of a betatron oscillation.

We next show that under this assumption (we will quantify it) the solution to Eq. (2.9)

can be straightforwardly obtained from a solution to the Hill like equation, Eq. (2.11), times

a scaling factor. We thus focus on exact solutions to Eq. (2.11). We then describe three

related approaches for getting approximate solutions to Eq. (2.11), the first is based on

approximating the process used to get the exact solution, the second is based on the WKB

method, while the third utilizes the concept of the conservation of adiabatic invariants. All

three approaches provide the same energy dependence in the solution to Eq. (2.9), which is

not surprising since they all rely on the assumption that k′β/k
2
β ≪ 1.

There is a standard procedure [75] to get rid of the first order (damping like) term in

Eq. (2.9). Let’s assume

x(z) = u(z)v(z) (2.12)

Substituting Eq (2.12) into Eq. (2.9) leads to

u′′v + 2u′v′ + uv′′ +
γ′

γ
(u′v + uv′) + k2βuv = 0 (2.13)
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which upon reordering terms can be rewritten as

uv′′ + (2u′ +
γ′

γ
u)v′ + (u′′ +

γ′

γ
u′ + k2βu)v = 0 (2.14)

(or regrouped with u → v and v → u). We choose u such that the coefficient of v′ is 0,

leading to

2u′ +
γ′

γ
u = 0 (2.15)

which can be integrated to obtain u(z) =
C√
γ(z)

. We can choose C such that

u(z) =

√
γ(z0)

γ(z)
(2.16)

which when substituted back into Eq. (2.14) provides,

v′′ +

(
γ′2

4γ2
− γ′′

2γ
+ k2β

)
v = 0 (2.17)

Henceforth, when any function of z is evaluated at some initial z0, we label it with a subscript

0, e.g., γ(z0) ≡ γ0. If the normalized acceleration occurs slowly and there is no phase slippage

(which is typically the case in PWFA), we can discard the γ′ and γ′′ terms in the parentheses.

This approximation can be quantified as,

γ′/γ ≪ kβ, γ′′/γ ≪ k2β (2.18)

For future reference, we note that
γ′

γkβ
≃ Ẽz

√
2

γ
where Ẽz ≡ eEz

mcωp

is the normalized

accelerating field and it is typically of order unity. Thus
γ′

γkβ
scales as γ−

1
2 which is very

small for γ’s of interest. Under these assumptions Eq. (2.17) reduces to the Hill like equation,

v′′ + k2βv = 0 (2.19)

Thus, the solution to Eq, (2.9) includes the explicit dependence in γ from Eq. (2.16), as well

as an implicit dependence embedded in kβ in Eq. (2.19).
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2.3 Exact solution to the Hill like equation

We have just shown that a solution to Eq. (2.9) can be obtained by multiplying a solution

to

x′′ + k2β(z)x = 0 (2.20)

by a factor
√
γ0/γ(z). Note that the factor

√
γ0/γ(z) = 1 if there is no acceleration.

Equation (2.20) has an exact solution for arbitrary expressions for k2β(z) so long as it is

positive (negative), i.e., the force is always focusing (defocusing) in some range of z. To see

this, we assume the following expression for x(z)

x(z) = A
√
β cos(ϕ+ ϕ0) (2.21)

where β and ϕ are functions of z and A and ϕ0 are constants. The first and second derivatives

with respect to z of x are therefore

x′ =
A

2

β′
√
β
cosψ − A

√
βϕ′ sinψ (2.22)

and

x′′ =
A

2

β′′
√
β
cosψ − 1

4

β′2

β3/2
cosψ − A

β′
√
β
ϕ′ sinψ − A

√
βϕ′′ sinψ − A

√
βϕ′2 cosψ (2.23)

where ψ = ϕ+ϕ0. Substituting these expressions into Eq. (2.20) and grouping the cosψ and

sinψ terms gives(
1

2

β′′
√
β
− 1

4

β′2

β3/2
−
√
βϕ′2 + k2β

√
β

)
cosψ −

(
β′
√
β
ϕ′ +

√
βϕ′′

)
sinψ = 0 (2.24)

where both terms in the brackets must vanish separately. The sinψ term leads to

ϕ′ =
C

β
=

1

β
(2.25)

such that

ϕ =

∫ z

z0

dz′

β(z′)
(2.26)
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where the constant C can be incorporated into A. Substituting Eq. (2.25) into the coefficient

of cosψ in Eq. (2.24) gives

1

2
ββ′′ − 1

4
β′2 + k2ββ

2 = 1 (2.27)

To make clear the units of x we henceforth write it as

x(z) = a

√
β

β0
cos

(∫ z

z0

dz′

β(z′)
+ ϕ0

)
(2.28)

where a = A
√
β0, β0 ≡ β(z0) and ϕ0 ≡ ψ(z0). Therefore, an exact solution to Eq. (2.20) can

be obtained, by first solving Eq. (2.27) to get β(z), and then using this result to obtain ϕ(z)

from Eq. (2.26).

A constant of ‘the motion’ can be obtained from Eqs. (2.21) and (2.22),

γcsx
2 + 2αxx′ + βx′2 = a2/β0 (2.29)

where α ≡ −β
′

2
and γcs ≡

1 + α2

β
. The parameters, β(z), α(z), and γcs(z) are referred to as

the Courant-Snyder parameters for a single particle. It is unfortunate that γ was chosen for

a C-S parameter as it is also used for the relativistic Lorentz factor. We therefore use γcs for

the corresponding C-S parameter. Note that Eq. (2.29) describes a rotated ellipse in trace

space (x, x′) and the area of the ellipse is πa2/β0. We show later that this area is related

to the geometric emittance. It is important to note that the points on the ellipse do not

correspond to x and x′ evolving in z (time), rather they correspond to scaled values as the

phase ϕ evolves. The real orbits in trace space do not close on themselves, because β, γ and

α also depend on z. In a real orbit, x is maximum when x′ = 0, however, this relationship

does not exist for a rotated ellipse when α ̸= 0. As can be seen from Eqs. (2.21) and (2.22),

x and x′ are not π/2 out of phase because β′ ̸= 0. The constant a2/β0 is an example of a

Poincare invariant [76].

Armed with this solution (Eq. (2.28)) to the Hill like equation Eq. (2.20), we can use

Eqs. (2.12) and 2.16 to write a solution to Eq. (2.9) which is valid with the adiabatic accel-

eration assumption in Eq. (2.18) (which is distinct from any adiabatic assumption regarding
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β(z)),

x = a

√
β(z)

β0

√
γ0
γ(z)

cos

(∫ z

z0

dz′

β(z′)
+ ϕ0

)
(2.30)

.

We define β̃ ≡ β/γ where β still satisfies Eq. (2.27), such that

x = a

√
β̃

β̃0
cosψ (2.31)

where ψ =
∫ z

z0

dz′

β(z′)
+ ϕ0, so ψ

′ =
1

β
, from which it follows that

x′ =
a

γ

√
β̃0β̃

(
γβ̃′

2
cosψ − sinψ) (2.32)

We define α̃ ≡ −γβ̃′/2 and then combine Eqs. (2.31) and (2.32) to obtain

γ̃csx
2 + 2γα̃xx′ + γ2β̃x′2 =

a2

β̃0
(2.33)

where γ̃cs ≡
1 + α̃2

β̃
. Notice that the area of this trace space ellipse described by Eq. (2.29) is

πa2

γβ̃0
. This scaling of the area with γ−1 also follows from general arguments for second order

ordinary differential equations (See Appendix B). However, if we introduce (x, px) phase

space where px = γx′, then Eq. (2.33) reduces to

γ̃csx
2 + 2α̃xpx + β̃p2x =

a2

β̃0
(2.34)

and the area of this ellipse remains π
a2

β̃0
for all z. For this ellipse, we thus have the C-S like

parameters

β̃ = β/γ, α̃ = −1

2
γβ̃′, γ̃cs =

1 + α̃2

β̃
(2.35)

We note that if γ′ = 0 then α̃ reduces to α. As we discuss later the area of a single particle’s

motion on the scaled ellipse of Eq. (2.34) is related to the normalized emittance of a beam.
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2.4 Approximate solution to the equation of motion

In 2.3 we found an exact solution to Eq. (2.20) and then used that to get a very accurate

(‘exact’) solution to Eq. (2.9). In this subsection, we describe approximate solutions to

Eq. (2.20) which rely on WKB type methods and the related concept of an adiabatic invari-

ant. We will find the same approximate solution from three different approaches where some

details can be found in Appendix C.

2.4.1 Approach 1: Adiabatic assumption

In this approach, we find an approximate solution to the Hill like Eq. (2.20) and then multiply

it by 1/
√
γ based on Eqs. (2.12) - (2.16) to get accurate solutions to Eq. (2.9).

Recall that an exact solution to Eq. (2.11) is of the form

x = A
√
β cos

(∫ z

0

dz′

β(z′)
+ ϕ0

)
= a

√
β

β0
cos

(∫ z

0

dz′

β(z′)
+ ϕ0

) (2.36)

where β satisfies

1

2
ββ′′ − 1

4
β′2 + k2ββ

2 = 1 (2.37)

An approximate solution can immediately be obtained if ββ′′ and β′2 ≪ k2ββ
2 or equivalently

if
β′

kββ
≪ 1, which is the adiabatic assumption for β. Under this assumption, Eq. (2.37)

gives β = 1/kβ, leading to the solution

x = a

√
kβ0
kβ

cos

(∫ z

0

dz′kβ(z
′) + ϕ0

)
(2.38)

To include acceleration, we simply multiply this by
√

γ0
γ
to obtain

x = a

√
γ0kβ0
γkβ

cos

(∫ z

0

dz′kβ(z
′) + ϕ0

)
(2.39)
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This is the form commonly used [77, 78, 79, 80] to describe solutions to Eq. (2.9). Note that

the solution of this form has appeared in class notes at UCLA for decades [81], but it was

never formally published. Due to the renewed interest in matching sections, it has recently

appeared in publications.

2.4.2 Approach 2: WKB

The second approach is to carry out a WKB analysis for Eq. (2.20). A rigorous analysis

that can be used to generate an asymptotic expansion to Eq. (2.20) to arbitrary order can

be found in Appendix C. Here we show that if only the lowest order terms are kept we get

a solution identical to Eq. (2.39). We assume

x = Aei(S0+ϵS1) (2.40)

and that S ′′
0/S

′
0 and S ′′

1/S
′
1 are O(ϵ). Upon substituting this into Eq. (2.20) we obtain

[−(S ′
0 + ϵS ′

1)
2 + i(ϵS ′′

0 + ϵ2S ′′
1 ) + k2β]Ae

i(S0+ϵS1) = 0 (2.41)

Grouping the ϵ0 and ϵ1 terms gives

−S ′2
0 + k2β = 0 (2.42)

and

−2S ′
0S

′
1 + iS ′′

0 = 0 (2.43)

leading to

S0 =

∫ z

0

dz′kβ(z
′) (2.44)

and

S1 =

√
kβ0
kβ(z)

(2.45)

such that x is of the same form as Eq. (2.38).
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2.4.3 Approach 3: Adiabatic invariant

A third approach to obtain the scaling of the amplitude for x with energy is to use the

concept of an adiabatic invariant [76, 82, 83]. This method can also be used to find how the

amplitude of the solution depends on a slowly varying plasma density as well. Eq. (2.9) has

exactly the same form as the differential equation that describes a simple harmonic oscillator

where a mass point m is moving under the restoring force provided by an ideal spring with

spring constant k. Imagine the mass m and/or the spring constant k varying slowly. The

energy γ in Eq. (2.9) plays the role of m, and the plasma density (contained in k2β) plays a

role of the spring constant k.

The concept of an adiabatic invariant assumes the motion in x is nearly periodic. During

one oscillation we assume kβ does not change. We use the solutions for x and px for a

constant kβ to calculate J =
∮
pxdx along a closed orbit to get the adiabatic invariant.

When γ and the plasma density are both constant (so kβ is also constant), the solution to

Eq. (2.9) is simply

x = A sin(kβz + ϕ) (2.46)

where the amplitude A and phase ϕ are to be determined by initial conditions. We can

determine the momentum if kβ and γ are constant,

px = γx′ = γAkβ cos(kβz + ϕ) (2.47)

The adiabatic invariant is therefore:

J =

∮
px dx = γA2kβ

∫ 2π
kβ

0

cos2(kβz + ϕ)kβdz = πγA2kβ (2.48)

Therefore, we have

A ∼ 1√
γkβ

(2.49)

We should keep in mind that kβ = ωp√
2γc

, leading to

A ∼ γ−
1
4ω

− 1
2

p (2.50)
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which is identical to the scaling in Eq. (2.39).

2.5 Transport matrices

If the solutions to Eq. (2.9) are known between z0 and some z, then for a second order

ordinary differential equation (ODE), a mapping exists between the initial values x(z0) ≡ x0

and x′(z0) ≡ x′0 to the values at any z, x(z) and x′(z). A general description of this

procedure is given in Appendix B.1. In this subsection, we show how it leads to what are

called transport matrices for tracking particles in the beam line of an accelerator.

2.5.1 Drift space

We start with the simplest case where the beam is propagating in drift space (vacuum). The

ODE is x′′ = 0 for which the coordinates of a single beam particle evolving in trace space

are,

x(z) = x(0) + x′(0)z, x′(z) = x′(0) (2.51)

where we use 0 to represent any z0. This can be rewritten as followsx(z)
x′(z)

 =

1 z

0 1

x(0)
x′(0)

 (2.52)

where 1 z

0 1

 (2.53)

is the transport matrix. We define the components of the general transport matrix as,M11 M12

M21 M22

 (2.54)
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2.5.2 Constant kβ (Uniform plasma, no acceleration)

Another illustrative case is for the motion described by Eq. (2.11) with a constant kβ. This

is simply a simple harmonic oscillator. Given the initial conditions x(0), x′(0), the solution

is,

x(z) = x(0) cos(kβz) +
x′(0)

kβ
sin(kβz) (2.55)

This gives the transport matrix,x(z)
x′(z)

 =

 cos(kβz)
1

kβ
sin(kβz)

−kβ sin(kβz) cos(kβz)


x(0)
x′(0)

 (2.56)

Note that if kβ varied in z as a step wise function where kβ = kβi between zi and zi + ∆z

that

x(z)
x′(z)

 =
∏
i

[kβi(∆z)]

x(0)
x′(0)

 (2.57)

2.5.3 Adiabatic acceleration but arbitrary variation of kβ

We can also obtain a general transport matrix starting from Eq. (2.30). Recall this is an

“exact” solution to Eq. (2.9) provided that the acceleration occurs adiabatically
γ′

γk2β
≪ 1.

To get the transport matrix, we start from Eq. (2.31) and Eq. (2.32) and evaluate them

at z = z0 to obtain

x0 = a cosϕ0 (2.58)

x′0 =
a

γ0β̃0
(
γ0β̃

′
0

2
cosϕ0 − sinϕ0) = − a

γ0β̃0
(α̃0 cosϕ0 + sinϕ0) (2.59)
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These can be used to eliminate a and ϕ0 from Eq. (2.31) to obtain

x =

√
β̃

β̃0
(cosϕ+ α̃0 sinϕ)x0 + γ0

√
β̃β̃0 sinϕx

′
0 (2.60)

where α̃0 = −γ0
β̃′
0

2
; and taking a derivative gives,

x′ =
1

γ

√
β̃0β̃

[(α̃0 − α̃) cosϕ− (1 + α̃0α̃) sinϕ]x0

+
γ0
γ

√
β̃0

β̃
(−α̃ sinϕ+ cosϕ)x′0

(2.61)

Equations (2.60) and (2.61) can then be used to generate the transport matrix,

√
β̃

β̃0
(cosϕ+ α̃0 sinϕ) γ0

√
β̃β̃0 sinϕ

1

γ

√
β̃0β̃

[(α̃0 − α̃) cosϕ− (1 + α̃0α̃) sinϕ]
γ0
γ

√
β̃0

β̃
(−α̃ sinϕ+ cosϕ)

 (2.62)

If we substitute β̃ = β/γ and β̃0 = β0/γ0 into this transport matrix, then it can be rewritten

as 
√
γ0β

γβ0
(cosϕ+ α̃0 sinϕ)

√
γ0
γ
ββ0 sinϕ√

γ0
γ

(α̃0 − α̃) cosϕ− (1 + α̃0α̃) sinϕ√
β̃0β̃

√
γ0
γ

β0
β
(cosϕ− α̃ sinϕ)

 (2.63)

where ϕ =
∫ z

0
dz′

β(z′)
, β satisfies Eq. (2.27), and α̃ = −γβ̃′/2 = −1

2
(β′ − γ′

γ
β). In the WKB or

adiabatic approximation, β = 1/kβ, which leads to a transport matrix
√
γ0kβ0
γkβ

(cosϕ+ α̃0 sinϕ)

√
γ0

γkβkβ0
sinϕ√

γ0
γ
kβkβ0

[
(α̃0 − α̃) cosϕ− (1 + α̃0α̃) sinϕ

] √
γ0
γ

kβ
kβ0

(cosϕ− α̃ sinϕ)

 (2.64)

where ϕ =
∫ z

0
kβ(z

′)dz′.
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Recently, a similar transport matrix to Eq. (2.64) was presented in Ref.[80] (Note that

Eq.(9) in Ref.[80] has a typo in M22: It should be αm rather than αm0). While there

are similarities between the transport matrices derived here and that in Ref.[80], there are

several important differences. First, we have obtained an ‘exact’ solution to Eq. (2.9) which

leads to the matrix (2.63). Second, we use a different definition for α which we define as

α̃ = −1
2
γβ̃′ = −1

2
γ(β

γ
)′, rather than the standard definition used in Ref.[80], α = −1

2
β′.

This is an important distinction because if affects the sign of α̃ when the plasma density

is constant. As we have seen, the amplitude, which is proportional to

√
β̃, has an energy

dependence of γ−1/4 (β̃ ∼ γ−1/2). As the beam accelerates, β̃ decreases, i.e., β̃′ < 0, and thus

α̃ > 0. On the other hand, α = −1
2
β′, where β = γβ̃ ∼ √

γ, has the opposite sign because

as the beam accelerates, β increases, so β′ > 0, and thus α < 0. It is thus important to use

α̃ = −1
2
γβ̃′ = −1

2
γ(β

γ
)′ in Eq. (2.63) when near a density plateau.

Conventional accelerator focusing and accelerating elements have their own well known

transport matrices. Thus, any beamline constructed from a combination of plasma and

conventional elements can be easily analyzed by multiplying out the pertinent transport

matrices. As we discuss in this section, transport matrices are also useful for analyzing how

ensembles of particles evolve.

2.6 Beam’s envelope equation & geometric emittance

In the previous sections of this chapter, we studied the transverse motion of a single beam

particle. This is a microscopic view. In the rest of this chapter, we will study a collection of

particles (beam) using a macroscopic view. We will also connect this with the single particle

point of view. We start by deriving the beam’s envelope equation. Our convention is to define

our coordinate system in such a way that the beam is propagating in the z direction (the

longitudinal direction), and x, y are the two transverse directions. As discussed previously,

the motion in the two transverse planes are decoupled in azimuthally symmetric nonlinear
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wakes, thus without loss of generality, we only need to study the beam’s motion in the x

direction, or more precisely, the x− z plane.

We start from the transverse spot size of the beam, which is defined to be the standard

deviation of all the beam particles’ transverse positions,

σ ≡
√

⟨(x− xc)2⟩ (2.65)

where ⟨⟩ means taking an ensemble average and xc = ⟨x⟩ is the centroid of the beam. For

convenience, we place the transverse centroid of the beam on the z axis, i.e., set xc = 0, in

which case,

σ ≡
√

⟨x2⟩ (2.66)

which is reasonable if xc did not vary with z. To study how the spot size evolves, we take

the first two derivatives of σ with respect to z, leading to,

σ′ =
⟨xx′⟩√
⟨x2⟩

(2.67)

and

σ′′ =
(⟨x′2⟩+ ⟨xx′′⟩) ⟨x2⟩ − ⟨xx′⟩2

⟨x2⟩
3
2

=
⟨x′2⟩ ⟨x2⟩ − ⟨xx′⟩2

⟨x2⟩
3
2

+
⟨xx′′⟩√
⟨x2⟩

(2.68)

We define the beam’s geometric emittance to be

ϵ =

√
⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2 (2.69)

In the absence of longitudinal acceleration, we can substitute Eq. (2.11) into ⟨xx′⟩ to obtain

σ′′ =
ϵ2

⟨x2⟩
3
2

−
⟨k2βx2⟩√
⟨x2⟩

(2.70)
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Assuming all the particles have the same energy γ (thus they have the same kβ), we find

σ′′ =
ϵ2

σ3
− k2βσ

=
ϵ2

σ3
(1−

k2βσ
4

ϵ2
)

(2.71)

This is referred to as the beam’s envelope equation. It describes the evolution of beam’s

spot size. When the beam’s transverse motion reaches an equilibrium state, the spot size is

a constant, so σ′′ = 0 (and σ′ = 0). From Eq. (2.71) we can find this constant spot size

σm =

√
ϵ

kβ
(2.72)

which is referred to as the beam’s matched spot size, σm. When the beam’s spot size is equal

to σm, the beam is matched to the plasma, and it does not oscillate in the plasma. Later,

we will show that the normalized emittance growth (geometrical emittance if there is no

energy spread) is minimized for matched beams. We will also properly define the normalized

emittance ϵn ∼= γ̄ϵ, where γ̄ ≡ ⟨γ⟩ is the average “energy” of the beam.

2.7 Courant-Snyder parameters for a beam

In 1958, E. D. Courant and H. S. Snyder introduced the Courant-Snyder (C-S) parameters

in their paper [73] to parametrize the transport matrices in circular accelerators which had

determinants equal to unity. The C-S parameters were defined based on the motion of a

single particle. However, they are also now commonly used to parametrize the state of a

beam,

α = −⟨xx′⟩
ϵ

, β =
⟨x2⟩
ϵ

, γ =
⟨x′2⟩
ϵ

(2.73)

Although defined from two different points of view, the equations that the C-S parameters

satisfy for a particle or beam are very similar. In fact, there are numerous connections

between these two view points. In the remaining chapters in this dissertation, we use the

definitions in Eq. (2.73), and not those for a single particle.
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Based on the definition in Eq. (2.73), the C-S parameters for a beam are also related by

βγ = 1 + α2 (2.74)

and

α = −1

2
β′ (2.75)

if ϵ is constant. From Eq. (2.71), if we assume ϵ is a constant (this is indeed a valid assumption

if the beam has no energy spread), we can derive the differential equation for beam’s beta

function [74],

1

2
ββ′′ − 1

4
β′2 + k2ββ

2 = 1 (2.76)

which is identical to the equation for the β function of a single particle.

2.8 Relationship between C-S parameters for single particles and

beams

In this section, we investigate the relationship between the C-S parameters for a single

particle (introduced in section 2.3) and the C-S parameters for a beam (introduced in section

2.7). Recall in section 2.3 we derived the ‘constant of motion’

γcsx
2 + 2αxx′ + βx′2 (2.77)

According to Jeans’s theorem [84], any distribution function constructed in terms of constants

of the motion satisfies the Vlasov equation,

∂f

∂t
+ v · ∇f +

F

m
· ∇vf = 0 (2.78)

where f is the distribution function and depends on (x,v, t). For a relativistic particle beam,

f depends on x, x′, z and the Vlasov equation is

∂f

∂z
+ x′ · ∇f + x′′ · ∇x′f = 0 (2.79)

52



where here x′′ comes from external forces, x′′ = −k2βx. While Jeans’s theorem indicates

that any function of the constant Eq. (2.77) is a solution to Eq. (2.79), it is informative to

consider a Gaussian function,

f(x, x′) =
1

2πϵ
exp

[
−γcsx

2 + 2αxx′ + βx′2

2ϵ

]
(2.80)

where ϵ is a constant, it satisfies the Vlasov equation, and is therefore a valid distribution

function for a beam. For such a beam’s distribution, we can calculate the moments for the

beam,

⟨x2⟩ =
∫ ∞

−∞

∫ ∞

−∞
x2

1

2πϵ
exp

(
−γcsx

2 + 2αxx′ + βx′2

2ϵ

)
dxdx′

=
1

2πϵ

∫ ∞

−∞

∫ ∞

−∞
x2 exp

−β (x
′ +

α

β
x)2 + (

γcs
β

− α2

β2
)x2

2ϵ

dxdx′

=
1

2πϵ

∫ ∞

−∞
x2 exp

(
− x2

2βϵ

)
dx

∫ ∞

−∞
exp

−β (x′ +
α

β
x)2

2ϵ

dx′
=

1

2πϵ
(

√
π

2
(2βϵ)

3
2 )(

√
2πϵ

β
)

= βϵ

(2.81)

Using analogous arguments, we can obtain

⟨x′2⟩ = γcsϵ (2.82)

We can also evaluate

⟨xx′⟩ =
∫ ∞

−∞

∫ ∞

−∞
xx′

1

2πϵ
exp

(
−γcsx

2 + 2αxx′ + βx′2

2ϵ

)
dxdx′

=
1

2πϵ

∫ ∞

−∞
x exp

(
− x2

2βϵ

)
dx

∫ ∞

−∞
x′ exp

−β (x′ +
α

β
x)2

2ϵ

dx′ (2.83)

53



which upon substituting u = x′ +
α

β
x leads to,

⟨xx′⟩ = 1

2πϵ

∫ ∞

−∞
x exp

(
− x2

2βϵ

)
dx

∫ ∞

−∞
(u− α

β
x) exp

[
−βu

2

2ϵ

]
du

=
1

2πϵ

∫ ∞

−∞
x exp

(
− x2

2βϵ

)
dx

∫ ∞

−∞
(−α
β
x) exp

[
−βu

2

2ϵ

]
du

= −α
β

1

2πϵ

∫ ∞

−∞
x2 exp

(
− x2

2βϵ

)
dx

∫ ∞

−∞
exp

[
−βu

2

2ϵ

]
du

= −α
β

1

2πϵ
(

√
π

2
(2βϵ)

3
2 )(

√
2πϵ

β
)

= −αϵ

(2.84)

Recall that γcs is defined to be (1 + α2)/β, therefore we can calculate

⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2 = (βϵ)(γcsϵ)− α2ϵ2 = ϵ2 (2.85)

So the constant ϵ in Eq. (2.80) is simply the geometric emittance of the beam, which is

defined in Eq. (2.69). From equations (2.81), (2.82) and (2.84), we can see that the C-S

parameters of a beam, as defined in Eq. (2.73), are exactly the same as the C-S parameters

of a single particle!

In summary, by using Jeans’s theorem and assuming the distribution of a beam is Gaus-

sian, Eq. (2.80), we proved that the C-S parameters for a single paricle and C-S parameters

for a beam are identical to each other. For other distributions, the relationship between the

single particle and beam C-S parameters will be more complex.

2.9 Geometrical interpretation of RMS emittance

The geometric emittance of the beam can be defined in different ways. The most common

definition is given by Eq. (2.69). The emittance defined in this way is also called RMS

emittance. Other definitions [74] are useful if the beam distribution is far from a Gaussian,

e.g., there are tails (halos) at large values of x or x′. In this dissertation, we will use the

RMS definition.
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Before investigating the evolution of the geometric emittance, let us try to examine the

meaning of it and get more intuition. Generally speaking, the geometric emittance is the

area occupied in trace space ((x, x′) space). But what does this mean exactly?

Consider a particle beam with N particles. According to Eq. (2.69), we have

ϵ2 =

N∑
i=1

x2i

N
×

N∑
j=1

x′j
2

N
−

N∑
i=1

xix
′
i

N
×

N∑
j=1

xjx
′
j

N
(2.86)

from which it follows that

N2ϵ2 =
1

2

(
N∑
i=1

x2i

N∑
j=1

x′j
2
+

N∑
j=1

x2j

N∑
i=1

x′i
2 − 2

N∑
i=1

xix
′
i

N∑
j=1

xjx
′
j

)

=
1

2

N∑
i=1

N∑
j=1

(xix
′
j − xjx

′
i)
2

=
1

2

N∑
i=1

N∑
j=1

∣∣∣∣∣∣xi x′i

xj x′j

∣∣∣∣∣∣
2

=
1

2

N∑
i=1

N∑
j=1

|ri × rj|2 (ri = (xi, x
′
i))

=
1

2

N∑
i=1

N∑
j=1

S2
ij

(2.87)

Before proceeding, we offer a few explanations for the derivation. The ith particle has a

position xi and velocity x′i, so it represents a point (xi, x
′
i) in the trace space. We can

also think of this point as a vector ri pointing from the origin to the point (xi, x
′
i). For

a pair of particles i and j, their corresponding ri = (xi, x
′
i) and rj = (xj, x

′
j) will form a

parallelogram, and we denote the area of this parallelogram, calculated by the cross product

between ri = (xi, x
′
i) and rj = (xj, x

′
j), as Sij.

The emittance can thus be defined as

ϵ =
1√
2
RMS(Sij) (2.88)
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where

RMS(Sij) =

√√√√√ N∑
i=1

N∑
j=1

S2
ij

N2
(2.89)

The geometric emittance is therefore just the RMS value of the area of all the parallelograms

formed by each pair of trace space vector ri = (xi, x
′
i) and rj = (xj, x

′
j), divided by

√
2. Note:

the total number of parallelograms is N ∗N = N2 (rather than C2
N = N(N − 1)/2) because

we include the case when i = j (the area of the parallelogram is 0).

It is straightforward to show that each Sij in Eq. (2.87) is invariant if the elements of the

transport matrix M are the same for each particle (no energy spread) and the determinant

of M is unity. From Eq. (2.87) we have

Sij = |

∣∣∣∣∣∣xi x′i

xj x′j

∣∣∣∣∣∣ |
= |det(

xi xj

x′i x′j

)|

= |det(M

xi0 xj0

x′i0 x′j0

)|

= |det(M)det(

xi0 xj0

x′i0 x′j0

)|

= |det(

xi0 xj0

x′i0 x′j0

)|

= |

∣∣∣∣∣∣xi0 x′i0

xj0 x′j0

∣∣∣∣∣∣ |
= Sij0

(2.90)

where the subscript 0 denotes the quantities evaluated at the initial position z = z0. As we

can see, if the a beam has no energy spread thus the transport matrices are the same for
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each particle and the determinant of the transport matrix is unity, then the area of each

parallelogram is invariant. Thus under these assumptions the emittance, which is the RMS

value of the area of all these parallelograms, is invariant.

2.10 Beam’s evolution in vacuum

Earlier, we defined the transport matrix for a beam propagating in vacuum (a drift space).

For this case the coordinates of a single beam particle evolve as,

x = xi + x′iz, x
′ = x′i (2.91)

from which it follows,

ϵ2 = ⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2

= ⟨(xi + x′iz)
2⟩ ⟨x′2i ⟩ − ⟨(xi + x′iz)x

′
i⟩

2

= ⟨x2i + 2xix
′
iz + x′2i z

2⟩ ⟨x′2i ⟩ − ⟨xix′i + x′2i z⟩
2

= (⟨x2i ⟩+ 2z ⟨xix′i⟩+ z2 ⟨x′2i ⟩) ⟨x′2i ⟩ − (⟨xix′i⟩+ z ⟨x′2i ⟩)2

= ⟨x2i ⟩ ⟨x′2i ⟩ − ⟨xix′i⟩
2

= ϵ2i

(2.92)

So in vacuum, the beam’s geometrical emittance is perfectly conserved, and this is true even

if there is energy spread!

As for the evolution of the C-S parameters, we have:

β =
⟨x2⟩
ϵ

=
⟨(xi + x′iz)

2⟩
ϵi

=
⟨x2i ⟩+ 2z ⟨xix′i⟩+ z2 ⟨x′2i ⟩

ϵi
= βi − 2zαi + z2γi (2.93)

α = −⟨xx′⟩
ϵ

= −⟨xi + x′iz)x
′
i⟩

ϵi
= −⟨xix′i⟩+ z ⟨x′2i ⟩

ϵi
= αi − zγi (2.94)

γ =
⟨x′2⟩
ϵ

=
⟨x′2i ⟩
ϵi

= γi (2.95)
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If the origin for z is defined where the beam is initially at the vacuum waist, in other words,

if

αi = 0, βi = β∗, γi = 1/β∗ (2.96)

at z = 0 where the superscript * denotes the quantities at the beam’s vacuum focus, then

β = β∗ +
z2

β∗ = β∗(1 +
z2

β∗2
) (2.97)

α = − z

β∗ (2.98)

γ =
1

β∗ (2.99)

We note that Eq. (2.97) is equivalent to σ = σ0

√
1 + z2/β∗2 where σ0 ≡ σ(z = 0) which also

follows from Eq. (2.71). Sometimes in a computer simulation, we want to initialize a particle

beam at a location z0 that is not at focus (α ̸= 0). In other words, we want to initialize a

beam parametrized by the geometric emittance ϵ and CS parameters β, α. One way to do

this is to follow the following steps:

1. Use Eq. (2.74) to calculate γ, then use Eq. (2.99) to calculate the beta function at the

vacuum focus β∗.

2. Calculate the beam’s spot size σ∗
x and the beam’s divergence σ∗

x′ at the vacuum focus:

σ∗
x =

√
β∗ϵ, σ∗

x′ =
√
ϵ/β∗. Then initialize particles’ x and x′ with normal distributions:

x∗ ∼ N (0, σ∗2
x ), x

′∗ ∼ N (0, σ∗2
x′ )

3. Use Eq. (2.98) and Eq. (2.99) to calculate the beam’s position relative to the vacuum

focus z = −α
γ
. Then translate the particles’ position using the mapping x = x∗+x

′∗z =

x∗ − α
γ
x′∗. The particles’ velocities x′ remain unchanged.
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If the beam is initially a Maxwellian, i.e., Gaussian, we can use this procedure to derive

the distribution function for the beam away from the focus. We assume that at the vacuum

focus, the beam’s distribution function in (x, x′) space (or trace space) is separable into the

product of two Gaussians,

f ∗(x∗, x′
∗
) =

1

2πσ∗
xσ

∗
x′
exp

[
− x∗2

2σ∗2
x

]
exp

[
− x′∗2

2σ∗2
x′

]
(2.100)

According to the Vlasov equation, the distribution function dos not change if you follow the

trajectory of a particle in trace space (assuming γ remains constant), therefore,

f(x, x′) = f ∗(x∗, x′
∗
) = f ∗(x∗(x, x′), x′

∗
(x, x′)) (2.101)

which leads to

f(x, x′) =
1

2πϵ
exp

[
−
(x+ α

γ
x′)2

2β∗ϵ

]
exp

[
− x′2

2ϵ/β∗

]

=
1

2πϵ
exp

[
−
γ(x+ α

γ
x′)2

2ϵ

]
exp

[
− x′2

2γϵ

]
=

1

2πϵ
exp

[
−γx

2 + 2αxx′ + βx′2

2ϵ

]
(2.102)

This is actually a multivariate normal distribution [85]

f(x) =
exp
(
−xTΣ−1x

2

)
√
(2π)2|Σ|

(2.103)

where x = (x, x′)T ,

Σ = ϵ

 β −α

−α γ

 (2.104)

and

Σ−1 =
1

ϵ

γ α

α β

 (2.105)
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The distribution function (2.102) could also have been immediately obtained from Jeans’s

theorem [84] which states that any distribution function constructed in terms of constants

of the motion satisfy the Vlasov equation. Therefore a Maxwellian using Eq. (2.29) as its

argument describes a particle beam in the absence of acceleration.

2.11 Emittance evolution in a uniform plasma in the blowout

regime

In this section, we consider the emittance evolution in a uniform plasma. In the blowout

regime, the witness beam feels a linear focusing force. If we assume the witness beam has

no longitudinal acceleration, then the transverse motion of a single beam particle is given by

the transport matrix in Eq. (2.56). This transport matrix is almost a rotation in trace space.

For particles with different energy γ, the kβ in the corresponding transport matrix will be

different. Therefore, based on the geometrical interpretation the geometrical emittance will

not be preserved if there is any energy spread.

2.11.1 Beam with no energy spread: Emittance is unchanged

We next show that if the beam has no energy spread and there is no acceleration, the beam’s

geometric emittance will be conserved in the linear focusing force provided by the blowout

regime. There are several ways to prove this, but here we will take a more intuitive argument

that takes advantage of the geometrical interpretation discussed in the previous section, and

save the more mathematical proof for later when we discuss the conservation of normalized

emittance.

If the beam has no energy spread, then the kβ in the transport matrix will be the same
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for all the particles in the beam. If we normalize x using x̂ = kβx, then x̂(z)
x′(z)

 =

 cos(kβz) sin(kβz)

− sin(kβz) cos(kβz)

 x̂(0)
x′(0)

 (2.106)

This transport matrix is exactly a rotation in the normalized trace space. Therefore its

determinant is unity and its elements are the same for every particle. Therefore, as noted

above in section 2.9, these are the conditions for preserving the geometrical emittance. For

the specific case of a rotation of ri ≡ (xi, x
′
i) in trace space, the geometrical interpretation of

ϵ in section 2.9 quickly shows that ϵ is preserved. The geometric emittance is just the RMS

value of the area of all the parallelograms formed by each pair of trace space vectors, and

a rotation in the (normalized) trace space will not change the area of these parallelograms.

Therefore, the geometric emittance of a beam with no energy spread is invariant in a linear

focusing force, since the transport matrices of all the particles represent the same rotation.

2.11.2 Beam with energy spread. Importance of matching

A real beam usually has some finite energy spread, and in general, this leads to emittance

growth. Here we ignore acceleration. We call this phenomenon ‘chromatic effects’ or ‘phase

mixing’. From Eq. (2.56) (or Eq. (2.106)) we can see that particles with different energy γ

will have different kβ, and that after propagating for the same longitudinal distance z, their

phase advance ϕ = kβz will be different. This may lead to a larger trace space area, hence

the emittance growth.

When the beam has energy spread, we can still preserve the beam’s emittance by match-

ing the beam to the plasma [86]. The matching condition is given in Eq. (2.72), also with

the requirement α = 0. We have already shown that when the beam is matched, its spot

size does not oscillate. Here we will prove that when the beam is matched, its geometric

emittance is preserved perfectly, even in the presence of energy spread.

Here we offer a simple way to derive an expression for the final emittance after phase
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mixing is complete in a uniform plasma. In the next chapter, we will provide a more rigorous

and sophisticated approach and derive the emittance evolution as a function of propagation

distance z when the plasma density is varying adiabatically, so the uniform plasma is simply

a special case of that result.

We start with the transport matrix in Eq. (2.56) (We change the notation slightly for

convenience):

x
x′

 =

 cosϕ
1

kβ
sinϕ

−kβ sinϕ cosϕ


xi
x′i

 (2.107)

where ϕ = kβz is the phase advance. We should keep in mind that for particles with different

energy γ, kβ and hence ϕ are different. Let’s calculate the moments for the beam:

⟨x2⟩ = ⟨(xi cosϕ+ x′i
sinϕ

kβ
)2⟩

= ⟨x2i ⟩ ⟨cos2 ϕ⟩+ ⟨x′2i ⟩ ⟨
sin2 ϕ

k2β
⟩+ ⟨xix′i⟩ ⟨

sin(2ϕ)

kβ
⟩

≈ ⟨x2i ⟩ ⟨cos2 ϕ⟩+ ⟨x′2i ⟩
⟨sin2 ϕ⟩
k̄2β

+ ⟨xix′i⟩
⟨sin(2ϕ)⟩

k̄β

(2.108)

where we assume that a particle’s initial position xi and velocity x′i are independent of the

energy γ in the second step. In the last step we make an approximation by taking the kβ

related terms out of the ensemble average and just use the kβ for the particle with an average

energy: k̄β = ωp√
2γ̄c

. This approximation is reasonable if the energy spread is small. On the

other hand we cannot use k̄β in the phase because it grows with z, ϕ = kβz. Therefore, only

the phase terms can deviate substantially between particles with small energy differences.

At equilibrium, the phase mixing is complete, the particles’ phase angles are uniformly

distributed. More precisely, we introduce the following notation:

ϕ = 2πN + ϕr (0 ≤ ϕr < 2π,N = 0, 1, 2...) (2.109)
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When phase mixing is complete, ϕr is uniformly distributed between 0 and 2π. Therefore:

⟨cos2 ϕ⟩ = ⟨cos2 ϕr⟩ =
1

2π

∫ 2π

0

cos2 ϕrdϕr =
1

2
(2.110)

Similarly we can get ⟨sin2 ϕ⟩ = 1/2, and ⟨sin(2ϕ)⟩ = 0, leading to,

⟨x2⟩ = 1

2

(
⟨x2i ⟩+

⟨x′2i ⟩
k̄2β

)
(2.111)

Using the same analysis for x′, we also have,

⟨x′2⟩ = 1

2

(
k̄2β ⟨x2i ⟩+ ⟨x′2i ⟩

)
(2.112)

and

⟨xx′⟩ = 0 (2.113)

Therefore, after phase mixing is complete, we have,

ϵ =

√
⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2 = 1

2

(
k̄β ⟨x2i ⟩+

⟨x′2i ⟩
k̄β

)
(2.114)

If we use the inequality of arithmetic and geometric means, we have:

ϵ ≥
√
⟨x2i ⟩ ⟨x′2i ⟩

≥
√

⟨x2i ⟩ ⟨x′2i ⟩ − ⟨xix′i⟩
2

= ϵi

(2.115)

We can see that the final geometric emittance is always greater or equal to the initial

emittance. The equal sign is taken when k̄β ⟨x2i ⟩ =
⟨x′2

i ⟩
k̄β

and ⟨xix′i⟩ = 0, or equivalently,

σxi
=
√

⟨x2i ⟩ =
√
ϵi
k̄β

, αi = 0 (2.116)

The equations above give the matching condition for a beam, which agrees with what we

obtained earlier in Eq. (2.72).

We have derived the matching condition, but what does it mean physically? Is there

any physical intuition behind it? To answer these questions, we start with the matching
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condition in Eq. (2.116). If the beam is initially matched, then the distribution function is

a bi-Gaussian function,

fi(xi, x
′
i) =

1

2πσxσx′
exp

[
− x2i
2σ2

xi

]
exp

[
− x′2i
2σ2

x′
i

]
(2.117)

The distribution function can be written this way because for a matched beam, αi = 0, and

thus xi and x′i are decoupled in the distribution function. Furthermore, if αi = 0 then it

follows that ϵi = σxi
σx′

i
, from which it follows that,

σx′
i

σxi

=
ϵi
σ2
xi

= k̄β (2.118)

Substituting Eq. (2.118) into Eq. (2.117) permits rewriting the Gaussian distribution function

of a matched beam as

fi(xi, x
′
i) =

1

2πσxi
σx′

i

exp

[
− x2i
2σ2

xi

]
exp

[
− x′2i
2k2βσ

2
xi

]
(2.119)

After the beam propagates for a distance z, the particle that was initially located at (xi, x
′
i)

will rotate to (x, x′), according to Eq. (2.107). If the initial distribution function is evaluated

at the new position (x, x′), it can be seen that it is the same as fi(xi, x
′
i),

fi(x, x
′) =

1

2πσxi
σx′

i

exp

−
(
xi cosϕ+ x′i

sinϕ

kβ

)2

2σ2
xi

 exp

[
−(−xikβ sinϕ+ x′i cosϕ)

2

2k2βσ
2
xi

]

=
1

2πσxi
σx′

i

exp

[
− x2i
2σ2

xi

]
exp

[
− x′2i
2k2βσ

2
xi

]
= fi(xi, x

′
i)

(2.120)

This demonstrates that a particle is rotating along the contour of the distribution function

fi ! This explains why the emittance of a matched beam can be preserved even if the beam

has energy spread. Although the particles with different energy are rotating with different

angular frequencies in the trace space, they are rotating along the contours of the distribution
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function, keeping the distribution function unchanged! To be more rigorous, along a particle

trajectory, from the Vlasov equation we have

f(x, x′) = fi(xi, x
′
i) (2.121)

where f is the distribution function of the beam after the beam propagates for a distance z.

Combined with Eq. (2.120), we have

f(x, x′) = fi(x, x
′) (2.122)

which demonstrates that after the propagation of the beam, the distribution function does

not change!

To summarize, if a beam with energy spread is matched to a uniform plasma, as the

beam propagates without acceleration, the particles will move along the contours of the dis-

tribution function, implying the distribution function does not change, hence the emittance

is invariant. From this we can see that matching is essential for preserving the emittance of

a beam.

2.12 Normalized emittance

In the previous section, we have shown that assuming there is no longitudinal acceleration,

the geometric emittance of a beam with no energy spread is conserved under a linear focusing

force. We also showed that if a beam is matched the emittance dos not grow even if there is

energy spread. However, when the beam is accelerated, its geometric emittance is no longer

conserved. One way to see this, is to note that the determinant of the transport matrix in

trace space ((x, x′) space) is equal to γ0/γ (See Appendix B), which is no longer equal to 1.

This leads to a smaller trace space area (smaller by a factor of γ0/γ), hence the geometric

emittance decreases if γ is increasing.

However, the determinant of the transport matrix in phase space ((x, px) space) is equal

to 1! Therefore, in order to describe a property of beam’s transverse motion that does not
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depend on the kinematic factors, we introduce the normalized emittance, which is defined as

ϵn =
1

mec

√
⟨x2⟩ ⟨p2x⟩ − ⟨xpx⟩2 (2.123)

For a beam with a small energy spread, the normalized emittance and the geometric emit-

tance are related by,

ϵn ≈ γ̄ϵ (2.124)

where γ̄ is the ensemble average of all the beam particles’ γ. In practice, in an accelerator,

e.g., a plasma based accelerator, we are more concerned about the preservation of normalized

emittance. On the other hand, the geometric emittance is often used together with the

Courant-Snyder parameters.

Next, we show an important result. For a beam with no energy spread, the normalized

emittance is conserved in a linear focusing force. Let us square Eq. (2.123) and take a

derivative with respect to the propagation distance

(m2
ec

2ϵ2n)
′ = 2[⟨xx′⟩ ⟨p2x⟩+ ⟨x2⟩ ⟨pxp′x⟩ − ⟨xpx⟩ (⟨x′px⟩+ ⟨xp′x⟩)]

= 2[⟨xpx/γ⟩ ⟨p2x⟩+ ⟨x2⟩ ⟨pxp′x⟩ − ⟨xpx⟩ (⟨p2x/γ⟩+ ⟨xp′x⟩)]

= 2[⟨xpx⟩ ⟨p2x⟩ /γ + ⟨x2⟩ ⟨pxp′x⟩ − ⟨xpx⟩ ⟨p2x⟩ /γ − ⟨xpx⟩ ⟨xp′x⟩]

= 2[⟨x2⟩ ⟨pxp′x⟩ − ⟨xpx⟩ ⟨xp′x⟩]

(2.125)

where we used x′ = px/γ, and we take γ out of the ensemble average in the third line because

the beam has no energy spread so all the particles have the same γ. If the beam is focused

by a linear focusing force, p′x = −Kx, then we have

(m2
ec

2ϵ2n)
′ = 2[−⟨x2⟩ ⟨pxKx⟩+ ⟨xpx⟩ ⟨xKx⟩]

= 2[−K ⟨x2⟩ ⟨pxx⟩+K ⟨xpx⟩ ⟨x2⟩]

= 0

(2.126)

This means ϵn is conserved. Therefore, we showed that if a beam has no energy spread, the

normalized emittance is unchanged under a linear focusing force.
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Another way to show this is to use the geometrical interpretation of RMS emittance

discussed in section 2.9. Although in section 2.9 we gave the geometrical interpretation of

geometric emittance in trace space (x, x′), the exact same idea applies to the geometrical

interpretation of normalized emittance in phase space (x, px) as well. In appendix B we

have already shown that when the beam has acceleration, the determinant of the transport

matrix in phase space (not trace space) is unity. Therefore, according to the conclusion we

found in section 2.9, the normalized emittance is invariant if the beam has no energy spread

(thus all the particles have the same transport matrices).

We provide a concrete example to show the determinant of the transport matrix is unity

in phase space. We substitute x′ = px/γ and x′0 = px0/γ0 into the ‘exact’ transport matrix

in trace space in Eq. (2.62) and get the transport matrix in phase space,

√
β̃

β̃0
(cosϕ+ α̃0 sinϕ)

√
β̃β̃0 sinϕ

1√
β̃0β̃

[(α̃0 − α̃) cosϕ− (1 + α̃0α̃) sinϕ]

√
β̃0

β̃
(−α̃ sinϕ+ cosϕ)

 (2.127)

It can be easily verified that the determinant of this matrix is unity.

However, a real beam always has some finite energy spread. Usually this leads to nor-

malized emittance growth. In the absence of acceleration, the evolution of the normalized

emittance for a beam with energy spread in a longitudinally uniform plasma will be [78] [41]

[44]

ϵn
ϵn0

=
γcs0βm + β0/βm

2

√
1− (γcs0βm + β0/βm)2 − 4

(γcs0βm + β0/βm)2
exp

[
−(
σγ
γ̄
ϕ̄)2
]

(2.128)

where β0, γcs0 ≡ (1 + α2
0)/β0 are the beam’s initial C-S parameters, βm ≡

√
2γ̄c/ωp, γ̄ is

the average relativistic Lorentz factors of the beam, σr/γ̄ is the energy spread, and ϕ̄ =∫ z

0
dz′/βm(z

′) is the phase advance. This is just a special case of what we will see in Chapter

3, so we will not show the derivation here. From Eq. (2.128), it is straightforward to see that
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if and only if the beam is matched, i.e., if

β0 = βm, α0 = 0 (2.129)

then ϵn = ϵn0, which means the normalized emittance is preserved. Otherwise, the normalized

emittance will grow first and eventually saturate at
γcs0βm + β0/βm

2
ϵn0. Therefore, it is clear

that matching is important to preserve the normalized emittance.

In the presence of acceleration, as pointed out in Ref. [78] it is hard to write the emittance

evolution in as a useful form as Eq. (2.128). But as we will see from the simulation results

in next Chapter, if the beam starts as matched, as the beam gets accelerated adiabatically,

the beam will stay matched, with essentially no emittance growth in the entire process.

Therefore, matching is essential to preserve the beam’s normalized emittance.

2.13 Summary

In this chapter, we started by solving the transverse equation of motion of a single beam

particle in a linear focusing force as exists in the nonlinear blowout regime of PWFA. As-

suming the acceleration happens adiabatically, we can factor out the explicit dependence of

energy and get an exact solution to the Hill like equation. In this process, we introduced the

C-S parameters for a single particle. We found constants of the motion which describe an

ellipse in trace and phase space. We then used three different methods (adiabatic assump-

tion, WKB, adiabatic invariant) to get an approximate solution if the plasma density also

changes adiabatically. Using the solution to the motion of a single particle, we defined and

constructed the transport matrices, which are useful to study the beam’s evolution as an

ensemble of particles.

In the second part of this chapter, we switched to a macroscopic view to study a beam.

We introduced the geometric emittance and C-S parameters for a beam, and showed the

connection between the C-S parameters for a single particle and the C-S parameters for a

beam. We also gave a geometrical interpretation of the emittance. We then studied the
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evolution of a beam in vacuum, and showed how to initialize a beam using C-S parameters

in a simulation when the beam is not at the vacuum focus. Finally, we studied the evolution

of the geometric & normalized emittance of a beam in a uniform plasma. We then discussed

the importance of matching for emittance preservation.
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CHAPTER 3

Emittance preservation through density ramp

matching sections in a plasma wakefield accelerator

3.1 Introduction

This chapter describes results that were published in Ref.[44]. In order that the Chapter

be self-contained the introduction repeats points described in Chapter 1 and 2. In Plasma

Wakefield Acceleration (PWFA), an ultra-relativistic electron beam (the drive beam) is used

to form a plasma wake that accelerates a second electron beam (the witness beam) that is

properly loaded inside the wake. In the so-called blowout regime, the drive beam density is

much higher than the plasma density. The electric field of the drive beam will expel all the

plasma electrons away and leave an ion channel (i.e. a bubble) behind it. As shown in Fig.

3.1 and discussed in Sec. 1.2.6, when the witness beam is located at a proper position inside

the wake, the accelerating field can be flattened in order to preserve the energy spread. At the

back of the bubble, where the witness beam is located, not only is there a longitudinal electric

field that provides a high acceleration gradient, but there is also a transverse focusing force.

In addition, when there is azimuthal symmetry, in these nonlinear wakes the longitudinal

electric field (the accelerating field) does not depend on r and the transverse focusing force

is linear (proportional to r), points radially inward, and does not depend on ξ = ct − z

inside the bubble [23]. The fact that the accelerating field does not depend on r ensures that

the beam particles will not gain additional slice energy spread when undergoing acceleration

and betatron oscillations inside the bubble. Furthermore, the fact that the transverse linear

70



Figure 3.1: A snapshot of the drive and witness beam of a sample simulation of a two bunch

PWFA. A data is in the x − ξ plane at y = 0. Both beams (blue) are propagating to the

left. The green area shows the unperturbed plasma electron density, the white area is the

uniform plasma ions (ion channel/bubble). The red curve is the lineout of the accelerating

field Ez on the axis (in arbitrary units).
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focusing force does not depend on ξ ensures that the beam particles at different longitudinal

positions will oscillate at the same betatron frequency, if they have the same energy. If one

of these properties is satisfied then the Panofsky Wenzel theorem [32, 33] guarantees that

the other is as well.

When the beam has no energy spread, its emittance is conserved under a linear focusing

force inside the symmetric bubble. When the beam has an energy spread, and/or there is

acceleration with imperfect beam loading (particles at different longitudinal positions in the

beam feel a different accelerating field, Ez), the beam’s emittance may increase during its

propagation in the plasma. The topic of emittance growth and preservation is very important

and is being actively studied [86, 40, 87, 88, 41, 78, 39, 42, 89].

Recently, expressions for emittance evolution in uniform plasma, both for cases when the

beam does [41] or does not have [78] longitudinal acceleration have been published. It has

also been shown that several plasma density profiles provide exact solutions to single particle

motion [41, 39], therefore the evolution of the beam’s C-S parameters can be calculated and

used to match the beam into a plasma. In this chapter, we investigate how the emittance

grows when a beam is not matched in an adiabatic plasma ramp. In complementary work,

R. Ariniello et al. [42] recently showed that if a beam is matched to an adiabatic plasma

profile, the emittance will oscillate around its initial value with a small amplitude (10−4

times the initial emittance) for a 2% energy spread (and the amplitude of oscillations scales

as σ2
γ).

In typical experiments (e.g. the FACET II experiments at SLAC [90]), the plasma density

profile is usually fixed with density ramps at the entrance and the exit. Therefore the beam

parameters need to be optimized to match the beam to the plasma. It has been shown that

if the witness beam is initially matched to the plasma, its emittance can be well preserved

[90]. However, if the witness beam parameters are fixed, it usually cannot be perfectly

matched to an arbitrary plasma density ramp. In this chapter, we investigate the witness

beam’s emittance evolution in this situation. We first derive an analytical expression for the
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beam’s emittance evolution in an arbitrary adiabatic plasma profile, assuming the beam has

no longitudinal acceleration. This analytical expression can be used to predict the emittance

growth when the beam has an energy spread and is not initially matched. This analysis is

complementary to that in [42] where it was assumed that the beam was nearly matched and

the emittance growth was small. We also discuss how to choose the relative focal plane by

either moving the plasma or the focal position of the beam to minimize the emittance growth

for an unmatched beam with fixed parameters. It is found that the beam emittance growth

can be minimized when choosing the focal plane to be the vacuum focus for a beam that

was matched. Another issue that may cause emittance growth in a proposed experiment to

double the energy of the witness beam at FACET II [14] is the ionization of helium buffer

gas when using a Lithium plasma source. Additional self-ionization [91] by the beam can

modify the focusing fields in the buffer region. In the last section, we show that under that

situation the emittance growth is due to the nonlinear focusing force felt by the beam, which

is caused by the nonuniform helium ion density in the plasma. The helium ionization can be

minimized by using a 20 µm initial emittance witness bunch. Therefore such a bunch can

be propagated while gaining energy without measurable emittance growth.

3.2 Theoretical analysis of emittance evolution in arbitrary adia-

batic plasma density profile

In the blowout regime of PWFA with the assumption of azimuthal symmetry (we will hence-

forth use this assumption), as shown in Chapter 1 and 2 the focusing force felt by an electron

in the witness beam is F⊥ = −meω
2
pr/2 (where me is the electron mass, ωp =

√
npe2

ϵ0me
is the

plasma frequency, np is the plasma density, ϵ0 is the vacuum permittivity, e is the elementary

charge), which is proportional to the radial distance r and independent of ξ = ct− z. There-

fore the motions of the beam particle in x and y directions are decoupled, and we will only

study the beam particle motion in the x direction. If we assume a beam particle’s energy is
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a constant, the equation of motion for this particle is the Hill like equation,

x′′(z) + kβ(z)
2x(z) = 0 (3.1)

where z is the coordinate along the direction of propagation, kβ(z) = ωp(z)√
2γc

, ωp(z) is the

plasma frequency at position z, γ is the relativistic factor of the beam particle, c is the speed

of light. In a uniform plasma, ωp(z) is a constant, so the solution to equation (3.1) is simple

harmonic oscillation. With a given initial phase space distribution for the beam, we can

obtain an analytical expression for the emittance evolution[41, 78]. As shown in Sec. 2.3,

for a nonuniform plasma, there is a general analytical solution to equation (3.1). For such a

solution it is not possible to construct transport matrices amenable to theoretical analysis.

However, as long as the plasma density is changing adiabatically, i.e.,

|k′β(z)| 2π
kβ(z)

kβ(z)
≪ 1 (3.2)

or

π

kβ(z)np(z)

∣∣∣∣dnp(z)

dz

∣∣∣∣≪ 1 (3.3)

we can use WKB method [92] to get an approximate solution to equation (3.1). This solution

can be incorporated into transport matrices which can be used to calculate the emittance

evolution with the WKB solution.

The WKB solution to equation (3.1) is (details of the derivation are shown in Sec. 2.3

and Appendix C):

x(z) = x(0)

√
βm(z)√
βm(0)

cos[ϕ(z)]

+
√
βm(z)βm(0)

[
x′(0) +

αm(0)

βm(0)
x(0)

]
sin[ϕ(z)]

(3.4)

where

βm(z) = 1/kβ(z), αm(z) = −1

2

dβm(z)

dz
(3.5)
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are the C-S parameters for a single particle in an adiabatically changing profile, and ϕ(z) =∫ z

0
kβ(s)ds is the phase advance. x(0) and x′(0) are the initial values for the beam particle.

Note that this solution can also be obtained from Eq. (2.38) after imposing the appropriate

initial conditions. The adiabatic condition (3.2) can be simplified to [42]

|αm(z)| ≪ 1 (3.6)

We note that if the plasma density profile is np(z) =
np0

(1+z/l)4
(where l is a constant), then

equation (3.1) has an exact solution [39], which is the same as its WKB solution described

in equation (3.4), i.e.,
1

2
ββ′′ − 1

4
β′2 = 0 when β = 1/kβ.

For brevity, we henceforth denote x(z) by x, x(0) by xi, βm(z) by βm, βm(0) by βmi,

αm(z) by αm, αm(0) by αmi, and ϕ(z) by ϕ. From (3.4) and its derivative, we can obtain

x
x′

 =M

xi
x′i

 =

M11 M12

M21 M22

xi
x′i

 (3.7)

where M is the transport matrix and

M11 =

√
βm
βmi

(cosϕ+ αmi sinϕ)

M12 =
√
βmβmi sinϕ

M21 =
(αmi − αm) cosϕ− (1 + αmiαm) sinϕ√

βmβmi

M22 =

√
βmi

βm
(cosϕ− αm sinϕ)

(3.8)

The geometric emittance is defined as

ϵ =

√
⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2 (3.9)

where ⟨⟩ is the ensemble average. It then follows that (see Appendix D.1 for details)

⟨x2⟩ = ⟨(M11xi +M12x
′
i)
2⟩

= ϵiβm(A+B1C +B2S),
(3.10)
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where:

A =
βiγmi + γiβmi − 2αiαmi

2
,

B1 =
βi
βmi

− A =
βi
βmi

− βiγmi + γiβmi − 2αiαmi

2
,

B2 =
βi
βmi

αmi − αi,

C =

∫
dϕfϕ(ϕ) cos 2ϕ,

S =

∫
dϕfϕ(ϕ) sin 2ϕ,

(3.11)

and ϵi =
√

⟨x2i ⟩ ⟨x′i
2⟩ − ⟨xix′i⟩

2, βi = ⟨xi2⟩ /ϵi, γi = ⟨x′i
2⟩ /ϵi, αi = −⟨xix′i⟩ /ϵi are the

beam’s initial geometric emittance and C-S parameters, γm = (1 + α2
m)/βm, and fϕ(ϕ) is

the distribution function for the beam particles’ phase advance. For a beam with no energy

spread, fϕ(ϕ) = δ(ϕ− ϕ0) where ϕ0 =
∫ z

0
kβ(s)ds =

∫ z

0

ωp(s)√
2γc
ds.

We can also obtain

⟨x′2⟩ = ϵi

[
Aγm +

−B1 − 2B2αm +B1α
2
m

βm
C

+
−B2 + 2B1αm +B2α

2
m

βm
S
] (3.12)

and

⟨xx′⟩ = −ϵi[Aαm + (B1αm −B2)C + (B2αm +B1)S] (3.13)

Using equations (3.10)-(3.13), and noting that A, B1 and B2 satisfy B2
1 + B2

2 = A2 − 1,

we can obtain an analytical expression of emittance growth for arbitrary fϕ(ϕ) with small

energy spread

ϵ =

√
⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2

= ϵi
√
A2 − (A2 − 1)(C2 + S2) (3.14)
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We denote the average relativistic factor of the beam as γ̄. When the relative energy

spread of the beam is very small (i.e. for every particle |∆γ| = |γ − γ̄| ≪ γ̄), the particle’s

phase advance in the plasma ϕ will become ϕ(γ) = ϕ̄− ϕ̄
2γ̄
∆γ, where ϕ̄ = ϕ(γ̄) (See Appendix

D.3 for details). Assuming a Gaussian energy distribution, for the beam particles we have:

fγ(γ) =
1√
2πσγ

exp

[
−(γ − γ̄)2

2σ2
γ

]
(3.15)

As a result, ϕ will also have a Gaussian distribution

fϕ(ϕ) =
1√
2πσϕ

exp

[
−(ϕ− ϕ̄)2

2σ2
ϕ

]
(3.16)

where

σϕ =
ϕ̄

2

σγ
γ̄

(3.17)

σγ

γ̄
is the relative energy spread of the beam. With this Gaussian distribution of ϕ, we can

obtain:

C = exp
(
−2σ2

ϕ

)
cos
(
2ϕ̄
)
, S = exp

(
−2σ2

ϕ

)
sin
(
2ϕ̄
)

(3.18)

Inserting (3.18) into (3.14) and using (3.17), we get an analytical expression of emittance

growth for a beam that has a Gaussian energy distribution with a small energy spread:

ϵ

ϵi
= A

√
1− A2 − 1

A2
exp

[
−(
σγ
γ̄
ϕ̄)2
]

(3.19)

where σγ

γ̄
is the normalized energy spread, and ϕ̄ = 1√

2γ̄c

∫ z

0
ωp(s)ds is the phase change of an

electron with energy γ̄ after it propagates for a longitudinal distance of z inside the plasma.

Note that for large ϕ̄, ϵ/ϵi → A. Under the assumption that the beam’s energy, γ̄, does not

change, it follows that

ϵ

ϵi
=

γ̄ϵ

γ̄ϵi
≈ ϵn
ϵni

(3.20)
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where ϵn = 1
mec

√
⟨x2⟩ ⟨p2x⟩ − ⟨xpx⟩2 is the normalized emittance and px is the transverse

momentum of the particle. This means the normalized emittance growth is approximately

the same as the geometric emittance growth. Note that in order to keep the analysis tractable

we have only kept the effects of the energy spread in the betatron phase advance and not

on the amplitude of the betatron oscillation in the elements of the transport matrix. The

amplitudes are functions of the local values of the C-S parameters while the phase is an

integral in z over 1/βm. Therefore, only the phase terms can deviate substantially between

particles with small energy differences. Thus, the small amplitude oscillation of the emittance

seen in Ref. [42] when a matched beam has finite energy spread is absent here.

In Fig. 3.2, we compare the theoretical results from (3.19) with QuickPIC [60, 61] sim-

ulation results. We choose a plasma density profile np(z) =
np0

(1+z/l)2
, for which the adiabatic

condition is independent of z. In the simulation, we turn off the longitudinal acceleration

for the beam particles (i.e. the energy of the beam particle essentially does not change), and

choose appropriate beam parameters to make the simulation in the blowout regime. Figure

3.2(a) shows that when the beam is initially matched, the beam’s emittance is a constant

during its propagation inside the plasma. As shown in Fig. 3.2(b)(c)(d), if the beam is

not initially matched, the theoretical results based on the WKB solution agree with the

simulation result very well.

Note that in Eq. (3.19), A ⩾ 1 is always true (see the Appendix D.2); therefore ϵ/ϵi ⩽ A.

When the beam propagates in the plasma for a very long distance, ϕ̄ will become very large,

and the beam will evolve to a saturated emittance:

ϵsat
ϵi

= A =
βiγmi + γiβmi − 2αiαmi

2
(3.21)

For the special case when the plasma is uniform along z, we have αm = αmi = 0, so

γm = γmi = 1/βmi, from which it follows,

78



0 50 100

z/βmi

0

0.5

1

1.5

2

ǫ/
ǫ i

Analytical expression

QuickPIC simulation

(a)

0 20 40 60 80 100

z/βmi

1

2

3

4

5

ǫ/
ǫ i

1%

5%

10%

(b)

0 20 40 60 80 100

z/βmi

1

2

3

4

5

6

7

8

ǫ/
ǫ i

αi = 100αmi

αi = −100αmi

αi = 2αmi

(c)

0 20 40 60 80 100

z/βmi

1

2

3

4

5

6

7

ǫ/
ǫ i

βi = 5βmi

βi = 10βmi

βi = 20βmi

(d)

Figure 3.2: Emittance evolution in plasma ramp: np(z) =
np0

(1+z/l)2
(l = 5, l and z are nor-

malized to βmi). For (a) the beam is initially matched: βi = βmi, αi = αmi = − 1
2l
= −0.1,

and the beam has a 5% energy spread. For (b) the beam is initially unmatched:

βi = 10βmi, αi = 2αmi, and the beam has 1%, 5%, 10% initial energy spreads respec-

tively. For (c) the beam is initially unmatched: βi = 10βmi, αi = 2αmi, 100αmi,−100αmi

respectively, and the beam has a 5% energy spread. For (d) the beam is initially unmatched:

αi = 2αmi, βi = 5βmi, 10βmi, 20βmi respectively, and the beam has a 5% energy spread. In

(b)(c)(d), the solid lines are from QuickPIC simulations, and the dashed lines are from the

analytical expression (3.19). In these three plots, the solid black lines correspond to the same

simulation result, and the dashed black lines correspond to the same analytical expression.
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A =
γiβmi + βi/βmi

2
(3.22)

Therefore, the emittance growth in a longitudinally uniform plasma will be

ϵ

ϵi
=
γiβmi + βi/βmi

2
×

√
1− (γiβmi + βi/βmi)2 − 4

(γiβmi + βi/βmi)2
exp

[
−(
σγ
γ̄
ϕ̄)2
]

(3.23)

which is mathematically equivalent to equation (7) in [78], and similar to equation (1) in

[41] (difference is due to the different assumptions for fϕ(ϕ)).

We define the beam to be initially matched when

αi = αmi, βi = βmi, γi = γmi (3.24)

for which A = 1, B1 = 0, B2 = 0. Therefore, from equations (3.10) - (3.13) and (3.19), we

have ⟨x2⟩ /ϵi = βm, ⟨x′2⟩ /ϵi = γm, −⟨xx′⟩ /ϵi = αm and ϵ = ϵi. Therefore, β = ⟨x2⟩ /ϵ = βm,

γ = ⟨x′2⟩ /ϵ = γmi, and α = −⟨xx′⟩ /ϵ = αm. Therefore, with an adiabatic plasma density

profile, when neglecting the beam’s energy change, if the beam is initially matched, the

beam’s C-S parameters along z will be βm, γm, αm, and the beam’s geometric emittance will

not change. We can therefore interpret βm, αm defined in (3.5) and γm as the matched C-S

parameters.

If the beam’s initial C-S parameters deviate from the matched ones, i.e.,

αi = αmi +∆α, βi = βmi +∆β (3.25)

where |∆α| ≪ 1 and |∆β|/βmi ≪ 1, then it follows that,

A ≈ 1 +
1

2
∆α2 +

γmi

2βmi

∆β2 − αmi

βmi

∆α∆β (3.26)
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Inserting this into (3.19) gives

ϵ

ϵi
≈ 1 + (

1

2
∆α2 +

γmi

2βmi

∆β2 − αmi

βmi

∆α∆β)[1− e−(
σγ
γ̄
ϕ̄)2 ] (3.27)

We can also get the expression for β from the above equations. Inserting (3.18) into

(3.10) and using (3.17) leads to

⟨x2⟩ = ϵiβm

{
A+

[
B1 cos

(
2ϕ̄
)
+B2 sin

(
2ϕ̄
)]
e−

1
2
(
σγ
γ̄
ϕ̄)2
}

(3.28)

Dividing both sides by ϵ and using (3.19) gives

β = βm
A+

[
B1 cos

(
2ϕ̄
)
+B2 sin

(
2ϕ̄
)]

exp
[
−1

2
(σγ

γ̄
ϕ̄)2
]

A

√
1− A2−1

A2 exp
[
−(σγ

γ̄
ϕ̄)2
] (3.29)

If there is no energy spread (σγ = 0), this equation can be simplified to

β = βm [A+B1 cos(2ϕ) +B2 sin(2ϕ)] (3.30)

which is similar in form to Eq. (11) in [42] but with different coefficients.

3.3 On minimizing the emittance growth for a fixed beam

In the previous section, it was shown that the beam emittance will be preserved as long

as the beam satisfies the matching condition (equation (3.24)). In this case β∗ = 1/γmi

(β∗ is β when α = 0) which we define as the matched β∗, i.e., β∗
m. It was also shown how

the emittance grows if the beam is slightly mismatched as might be the case if there are

shot to shot variations of the beam and/or plasma conditions. In addition, in a controlled

experiment that might for example be conducted at FACET II [90], the beam emittance and

optics are relatively fixed so that β∗ can be assume to be fixed. However, for a given plasma

profile the plasma conditions at the plasma entrance are such that it will not be possible to

match a beam with a given β∗ (i.e. β∗ ̸= β∗
m). It is therefore useful to determine the best

location to focus such a beam. This is defined to be the focal position in vacuum (z = s)
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that minimizes the emittance growth for a given beam and plasma profile, assuming the

plasma entrance is at z = 0. Therefore,

α(s) = 0, β(s) = β∗ (3.31)

where β∗ is β at the focal plane in vacuum. According to the evolution of C-S parameters

in a drift space [74], the beam’s initial C-S parameters at the plasma entrance (z = 0) are

αi = α(0) =
s

β∗ , βi = β(0) = β∗ +
s2

β∗ , γi = γ(0) =
1

β∗ (3.32)

Using equation (3.19), we can calculate the emittance growth using the above initial

condition, and find the optimal s defined to be when dϵ/ds = 0. For a fixed plasma density

profile, dϵ/ds = 0 reduces to dA/ds = 0, which gives us the optimal s,

so =
αmi

γmi

(3.33)

This optimal s = so is actually the focal position in vacuum for the matched beam (whose

initial C-S parameters at the plasma entrance are αmi, βmi and γmi). In other words, by

putting the unmatched beam’s focal plane at the same position as the matched beam’s

focal plane in vacuum, the unmatched beam will have minimal emittance growth in the

plasma. We can calculate this minimal emittance growth by evaluating A using the initial

C-S parameters from (3.32) and (3.33), giving A = Ao ≡ 1
2
(β∗γmi +

1
β∗γmi

). We then insert

this into (3.19) to get the minimal emittance growth, which approaches A for large ϕ̄.

If the witness beam’s focal plane in vacuum deviates from the the optimal position (3.33):

s = so +∆s, from (3.32) and (3.33) we can obtain:

A = Ao +
γmi

2β∗∆s
2 (3.34)

We can see that for s = so +∆s and s = so −∆s, the corresponding A are the same, so

according to (3.19), the emittance growth are the same as well. In other words, the emittance

growth as a function of s is symmetric about s = so.
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If we assume ∆s is a small quantity, then for a fixed z we get,

ϵ

ϵi
≈ ϵo
ϵi

+

{
1− exp

[
−(
σγ
γ̄
ϕ̄)2
]}

Ao

ϵo/ϵi

γmi

2β∗∆s
2 (3.35)

where ϵo ≡ ϵ(Ao) is the emittance when ∆s = 0 (or s = so).

This analysis also permits examining how the shot to shot variance of the plasma density

at the entrance of the profile affects the emittance growth (essentially A), assuming the beam

profile and the position of the plasma entrance (β∗ and s) are fixed. From equation (3.21)

and the relation γmi = (1 + α2
mi)/βmi, we have

A =
βi(1 + α2

mi)/βmi + γiβmi − 2αiαmi

2
(3.36)

Since we assume the beam profile and the position of the plasma entrance are fixed, from

equation (3.32) we know αi, βi, γi are fixed. The shot to shot changes to the plasma profile

lead to the variances of αmi and βmi, which leads to the first order variance of A:

δA1 =
∂A

∂αmi

δαmi +
∂A

∂βmi

δβmi

= (
βi
βmi

αmi − αi)δαmi +
1

2
(γi − γmi

βi
βmi

)δβmi

(3.37)

Importantly, we can see that at the matching point, the variance of αmi and βmi will not

cause the variance of A to the first order. The second order variation of A is

δA2 =
1

2
δα2

mi +
γmi

2βmi

δβ2
mi −

αmi

βmi

δαmiδβmi (3.38)

which is consistent with equation (3.26). Essentially, variations can arise from either the

plasma profile or beam profile at the plasma entrance.

Next we carry out some QuickPIC simulations using plasma and beam parameters that

are close to the ones in the proposed FACET II experiment, while satisfying all the theoretical

assumptions (adiabatic plasma profile, azimuthal symmetry in plasma wake, etc). More

details for the parameters are given in the next section. We turn off the longitudinal push in

the simulation so that the beam has no longitudinal acceleration. The plasma density profile
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Figure 3.3: Plasma density profile. The green dashed line is the entrance of the plasma, and

the red dashed line is the position of the witness beam’s focal plane in vacuum. The beams

propagate to the right in the plot. (a) The FACET II plasma density profile. (b) The profile

used for the simulation results in Fig. 3.4. Only the region between 5 cm and 75 cm of the

profile in (a) is used. In this region the adiabatic condition is always satisfied.

we use is shown in Fig. 3.3(b). This profile is the region between 5 cm (entrance) and 75 cm

(exit) of the full profile (Fig. 3.3(a)) which has a ramp, a plateau with n0 = 3.5× 1016cm−3

and a downramp. The adiabatic condition (|αm| < 1) is now satisfied throughout the entire

profile. At the entrance and exit |αm|= 0.24 and 0.56 respectively. In addition, αmi = 0.24,

βmi = 0.0194 m for the simulation. The theory could be easily modified to include a matching

section [41] or a perturbative section as in [42] in front of 5 cm and after 75 cm. We use

a non-evolving symmetric drive beam to create a well formed ion bubble, and the witness

beam is the same as the one in FACET II (See Table I and II). Fig. 3.4 shows the simulation

results and the good agreement between the simulations and the theory. It also shows that

the expression for emittance growth in a uniform plasma (Eq. (3.23)) cannot describe the

emittance growth in an adiabatic plasma precisely.
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Figure 3.4: Witness beam’s emittance growth for different focal planes, s, in the adiabatic

plasma in Fig. 3.3(b). (a) The ratio of final emittance (at the plasma exit) to the initial

emittance (at the plasma entrance) for different cases. (b) The evolution of ϵn inside the

plasma for 4 different cases, corresponding to the 4 orange spots for s− so ≤ 0 in (a). The

solid lines are from QuickPIC simulations, the dashed lines are from expression (3.19), and

the dotted lines are from expression (3.23).
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3.4 Emittance evolution in preformed plasma using FACET II

parameters

In this section we examine the emittance evolution in the full profile shown in Fig. 3.3(a).

We use a shows a possible set of beams parameters for the two-bunch FACET II experiments

described in Table 3.1 and 3.2.

Energy(GeV) Q(nC) σz(µm) ϵnx(µm) ϵny(µm)

Drive 10 1.6 6.4 3.4 3.0

Witness 10 0.5 5.0 3.15 3.15

Table 3.1: Possible beam parameters for two-bunch PWFA experiment at FACET II

αx αy βx(m) βy(m)

Drive Beam 59 12 127 27

Witness Beam 40 40 80 80

Table 3.2: The C-S parameters of both beams at the exit of the final focusing magnet.

Both beams are tri-Gaussian with nb = N

(2π)
3
2
e
− x2

2σ2
x e

− y2

2σ2
y e

− z2

2σ2
z . The σz is the rms pulse

length for the beam, and ϵnx and ϵny are the normalized emittance in x, y directions respec-

tively. The distance between the centers of the drive and witness beam is 150 µm. The initial

relative rms energy spread for both beams is 0.25%. Table 3.2 shows the C-S parameters for

both beams at the exit of the final focusing magnet. Note that in this setup the drive beam

is asymmetric and the witness beam is symmetric, so the wake felt by the witness beam is

not azimuthally symmetric and thus the two planes are coupled.

The plasma density profile in the simulation is shown in the Fig. 3.3(a), which is close

to the plasma density profile of the lithium source used in the FACET II experiment. This

density profile comes from experimental data, given by two long arrays (z and np(z)). It is not
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exactly symmetric, although it appears to be. The peak plasma density is 3.5× 1016cm−3,

which is chosen to ensure that the witness beam is located inside the bubble wake at a

position that flattens the accelerating field (as shown in Fig. 3.1).

With such a plasma density profile, the initial matched C-S parameters for the witness

beam at the plasma entrance are:

αmi = 0.916, βmi = 0.068m (3.39)

These parameters are not calculated directly from Eq. (3.5) at z = 0 because the plasma near

the entrance does not satisfy the adiabatic condition Eq. (3.6). Instead, they are obtained

by neglecting any energy spread, and integrating the following equation (See appendix D.4

for derivation) for β,

1

2
β(z)β′′(z)− 1

4
β′(z)2 + β(z)2kβ(z)

2 = 1 , α(z) = −1

2
β′(z) (3.40)

from the flat-topped region (plateau) of the plasma back to the entrance of the plasma with

initial C-S parameters β =
√
2γ̄ c

ωp
, α = 0 (where ωp is the plasma frequency for the flat-

topped plasma) [90]. According to the matched parameters given in Eq. (3.39), the optimal

s for the plasma density profile can be calculated from Eq. (3.33), s = so = 3.39 cm. Figure

3.5 shows the evolution of β for the real witness beam when its focal plane in vacuum is

located at a different s = so + ∆s. The solid red line is the case if the witness beam was

initially matched to the plasma profile. We can see that for a matched beam β evolves

smoothly and stays constant in the uniform plasma region while for an unmatched beam

the beam’s β will oscillate. We note that Eq. (3.40) could also be integrated to obtain the

matching conditions even if the density goes to 0 at the entrance (and exit) of the density

profile.

Next, we run QuickPIC simulations in which we vary s but with the same beams as

described in Table 3.1 and 3.2. This time we turn on the longitudinal push in the simulation

so the witness beam is gaining energy. Figure 3.6(a) shows the normalized emittance growth
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Figure 3.5: The evolution of β for the witness beam for different s from numerical calculation.

The plasma density profile is in arbitrary units.

at the exit of the plasma when the witness beam’s focal plane in vacuum is located at s = -10,

-5, 0, 3.39, 5, 10, 15, 20 cm (note that negative s means the focal plane of the witness beam

is outside the plasma). We can clearly see that the optimal s for minimizing the emittance

growth is at s = 3.39 cm. This illustrates that experiments can be performed at FACET

II that provide easily measurable differences in the emittance growth as the focal point is

changed.

We note that the different emittance growth in x and y directions is caused by the

asymmetry of the drive beam, which excites asymmetric wakefields that have different linear

focusing forces in x and y directions [55]. We note that even though the plasma and the

beam parameters used in these simulations do not satisfy the assumptions we made in the

previous sections (the drive beam is asymmetric and the plasma near the entrance and the

exit is not adiabatic), Eq. (3.33) still appears to predict the optimal focal position of the

witness beam very well, although the initial matched C-S parameters αmi, βmi are calculated

in a different manner. Figure 3.6(b) shows the evolution of witness beam’s ϵnx along z. We
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can see that when s = 3.39 cm, ϵnx is almost preserved although the beam is not initially

matched.
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Figure 3.6: The normalized emittance growth of the witness beam for different s. (a) The ra-

tio of final emittance (at the plasma exit) to the initial emittance (at the plasma entrance) for

different cases. (b) The evolution of ϵnx inside the plasma for different cases, corresponding

to the blue line in (a).

3.5 Emittance evolution in lithium plasma with helium buffer gas

In FACET II experiments, lithium will be one of the choices for the plasma source. The

hot lithium vapor will be confined and cooled at each end by the helium buffer gas [14, 15].

The plasma is generated by the intense electric field of the drive/witness beams when they

pass through and ionize the lithium vapor. In the previous section, we simulated the beams

evolving in a preformed and radially uniform plasma. In this section, we use QuickPIC

to simulate the emittance evolution when the plasma is self-formed by field ionization of a

neutral gas from the intense electric field of the drive and witness beams. Fig. 3.7 shows the

profile for the lithium gas and the helium buffer gas in our simulation.
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Figure 3.7: Helium and lithium gas density profile. The red dashed line is the position of

the witness beam’s focal plane: z = 3.39 cm

The blue line in Fig. 3.7 is the lithium gas density, which is the same as the profile shown

in Fig. 3.3(a) in the previous section. There are two linear helium ramps (orange line in

Fig. 3.7) at the entrance and exit of the lithium gas. The beam parameters are the same

as described in the previous section, and we choose the optimal value s = 3.39 cm for the

witness beam’s focal position in vacuum. Fig. 3.8(a) shows the witness beam’s emittance

evolution inside the plasma. We can see that in the beginning and the end of the simulation,

emittance growth occurs. In the middle of the lithium region where there is no helium, the

emittance essentially stays the same.

The reason for the large emittance growth is that the beams can ionize the helium buffer

gas which results in a nonlinear focusing force inside the bubble. Fig. 3.9(a) shows the

helium ion density snapshot when the beams propagate for 1 cm in the plasma. The drive

beam’s center is located at ξ = −5.27, and the witness beam’s center is located at ξ = 0.

Both beams are propagating from right to left. The drive beam enters the plasma with a

larger spot size than the witness beam, so it can only ionize a part of the neutral helium
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Figure 3.8: The evolution of normalized emittance of the witness beam: (a) We use the same

parameters as we used in the preformed plasma simulation in the previous section: Drive

beam: ϵnx = 3.4 µm, ϵny = 3.0 µm, witness beam: ϵnx = ϵny = 3.15 µm. (b) We increase the

initial emittance for both beams to 20 µm (in both x and y directions).

while the witness beam can ionize most of the neutral helium around it. Fig. 3.9(b) shows

the focusing fields felt by the witness beam at different ξ at the same propagation distance

as Fig. 3.9(a). The focusing fields felt by the witness beam is no longer linear when helium

is ionized by itself. Therefore, the witness beam has a large emittance growth in the region

where the helium gas is ionized. In the region where there is only lithium, the witness beam

will still feel a linear focusing force and its emittance only grows because the witness beam

is no longer matched in the uniform region of lithium plasma, which causes a much smaller

growth than that from the region where helium gas exists.

In order to avoid the emittance growth in the lithium plasma source, we can increase the

initial emittances for both the drive beam and witness beam. In Fig. 3.8(b), we show the

QuickPIC simulation results when using an initial beam emittance of 20 µm while keeping

the other parameters the same as the simulation shown in Fig. 3.8(a). When the initial beam

emittance becomes larger, the initial spot sizes of both beams will increase, and the Coulomb
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field around the beam will become smaller. Therefore, when the beams pass through the

helium buffer gas, the neutral helium is weakly ionized. However, the lithium can still be

ionized and form the plasma wake because lithium has a lower ionization energy than helium.

When there is no helium ionization, the focusing force felt by the witness beam is linear,

and its emittance barely grows, as shown in Fig. 3.8(b). The small emittance growth at the

exit of the plasma in Fig. 3.8(b) is still caused by the helium ionization because the witness

beam enters into the exit ramp of helium with a smaller spot size compared to its initial

spot size at the entrance of the plasma.
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Figure 3.9: (a) Helium ion charge density. The grey area is the helium ions produced by the

drive beam, and the red area is the helium ions produced by the witness beam. (b) The Fx

transverse lineouts at different longitudinal positions, ξ, and the initial beam density profiles

(in arbitrary units).

93



3.6 Conclusion

We have used theory and QuickPIC simulations to examine the evolution of the emittance

and the C-S parameters of particle beams in plasmas whose density is changing adiabatically.

We use the WKB solution for each particle and assume the energy of each particle in the

beam does not change to obtain an analytical expression for the beam’s emittance evolution

in an arbitrary adiabatic plasma density profile in a nonlinear PWFA. When the beam

has no initial energy spread, its emittance will remain nearly constant in the azimuthally

symmetric blowout regime. When there is an initial energy spread, the beam’s emittance can

be preserved as long as its initial C-S parameters are matched to the density profile of the

plasma ramp. We also use this expression to analyze the emittance growth when the position

of the witness beam’s focal plane in vacuum is changed while keeping the beam parameters

and the plasma density profile fixed. When the beam cannot be matched, the emittance

growth can be minimized by focusing the unmatched beam to the same vacuum focal plane

position as the matched beam. We used QuickPIC simulations for possible FACET II beam

parameters to show that the emittance can indeed be preserved very well when we choose

the focal plane position to be the same as for a matched beam, even when the assumptions

of symmetric blowout and adiabatic density evolution for the entire plasma region are not

satisfied. For other focal plane positions, the witness beam’s emittance is larger at the exit

of the plasma.

In addition, we also examined through simulations the effect of additional self-ionization

of the buffer gas by the drive beam. At FACET II a lithium gas is confined by a helium

buffer gas. When the drive and/or witness beam emittance is small (around 3 µm), they can

be focused to small enough spot sizes so that they can ionize the helium buffer gas. This

will lead to the focusing fields felt by the witness beam to be strongly nonlinear. We find

that this can potentially lead to the witness beam’s emittance growing by a factor of 3 and

5 in the x and y planes respectively for sample FACET II parameters. The different growth
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in x and y directions is caused by the asymmetry of the drive beam forming an asymmetric

plasma wake. By using an initial emittance of 20 µm, the helium buffer gas is weakly ionized

and the witness beam’s emittance can be preserved very well.
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CHAPTER 4

Emittance preservation in the presence of ion motion

in a single stage of a plasma based acceleration linear

collider

4.1 Introduction

As for Chapter 3, we offer an introduction for Chapter 4 that is repetitive but that makes the

chapter fully self-contained. In plasma based acceleration (PBA) an intense drive particle or

laser beam is used to form a plasma wake that accelerates a second electron/positron beam

(the witness beam) that is properly loaded inside the wake. When a particle beam or laser

beam creates the wake the process is referred to as plasma wakefield acceleration (PWFA) or

laser wakefield acceleration (LWFA) respectively. In the blowout regime of PWFA [22] [23],

where the drive beam is made of electrons, an azimuthally symmetric wakefield provides an

ideal focusing force that is linear in transverse position r and independent of the longitudinal

position ξ = ct − z, while the accelerating field is independent of r. For such conditions,

a trailing beam with even a slice dependent energy spread can be matched to the focusing

force thereby almost perfectly preserving the beam’s slice and projected emittance [86]. The

motion of a single particle in azimuthally symmetric ion column is given by the Hill like

equation (see sections 2.2 and 2.3),

x′′ + k2βx = 0 (4.1)
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where x′ ≡ dx/dz, kβ ≡ kp/
√
2γ is the betatron wave number, kp ≡ ωp/c, ωp is the plasma

frequency, and c is the speed of light. The rms spot size of the beam, σ ≡
√

⟨x2⟩ evolves as

(see section 2.6),

σ′′ =
ϵ2

σ3
(1− k2βσ

4/ϵ2) (4.2)

where ϵ ≡
√

⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2 is the beam’s geometrical emittance. Thus, the beam’s

matched spot size in a linear focusing force is [90]

σm =

√
ϵ

kβ
=

√√
2

γ
ϵn
c

ωp

(4.3)

where γ is the relativistic Lorentz factor of the beam and ϵn = γϵ is beam’s normalized

emittance (which we hereafter refer to as emittance unless otherwise noted).

However, the beam’s σm in the acceleration stage is typically much smaller than the

conventional focusing optics can provide. Such a mismatch can lead to large emittance

growth when there is any energy spread. To overcome this, it has been proposed to use a

tailored short plasma ramp or an adiabatic plasma ramp [39, 40, 41, 42, 43, 89, 44] (also see

Chapter 3) to transition the beam from a large spot size to a small matched spot size in the

acceleration stage, while preserving the beam’s emittance.

In order to build a TeV class linear collider, the luminosity L = fN2/4πσxσy must be

as large as ∼ 1034 cm−2s−1 (N is the number of particles in each colliding bunch, f is the

repetition rate of collisions, and σx,y is the spot size of the bunch at the interaction point).

In order to achieve such a luminosity, a beam with ∼ 1 nC charge and ∼ 100 nm emittance

is proposed [19]. For such a beam, the transverse Coulomb field for a matched spot size can

pull the ions inward during the transit time of the beam [45] [46]. The resulting ion collapse

on the axis can cause a longitudinally slice-dependent, transversely nonlinear focusing force,

that can potentially result in large emittance growth. Simulations have shown that matching

the beam directly to a uniform plasma causes ∼80% projected emittance growth for typical

LC parameters [47].

Several ideas have been proposed and studied to mitigate the emittance growth even
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further in the presence of ion motion. Ref.[48] proposed to use a plasma matching section

with an adiabatically decreasing ion mass. Ref.[49] proposed slice-by-slice matching the

transverse beam phase space distribution to the nonlinear ion motion-perturbed plasma

wakefields. But these ideas may be difficult to realize experimentally. Ref.[50] proposed an

adiabatic matching procedure where the beam is injected with a low enough energy that ion

motion effects are initially small. However, this idea will only work at the initial stage.

In this chapter, we present a scheme that is able to achieve emittance preservation in

the presence of ion motion that is applicable to high energy, high-density electron bunches

required in a multi-stage plasma-based LC scenario. We use an adiabatic plasma density

upramp to match the witness beam into the uniform density (plateau) acceleration stage,

then using an adiabatic plasma density downramp to match the witness beam out from

the density plateau. We show this method can almost perfectly preserve the witness beam

emittance from start to end, even though there is a significant amount of ion motion triggered

in the uniform acceleration stage. We also show that by properly choosing the beam’s

Courant-Snyder parameters at the plasma entrance, the emittance growth can be mitigated

even for more general density ramps which are not adiabatic at lower densities.

4.2 Ion motion parameter

For a plasma based linear collider, the witness beam typically has a very low emittance

and spot size, corresponding to a high density. The large space-charge field will induce the

motion of background ions significantly during the time the witness beam passes by. In order

to quantify how severe the ion motion is, we can introduce an ion motion parameter, which

is defined to be the phase advance of a single ion. To lowest order, we can estimate the

phase advance of an ion using a simple harmonic oscillation model [45] [46] . We assume

near the axis, the witness beam is simply a uniform density cylinder with density nb0. Since

nb0 ≫ n0 (n0 is the background plasma density) in the ion motion regime, we neglect the
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self-consistent repelling fields between the ions and only consider the electric field of the

witness beam. From Gauss’s law the equation of motion for a single plasma ion initially

located inside the beam is

r′′(z) + k2i r(z) = 0 (4.4)

where

ki =

√
Z

nb0e2

2ϵ0Mc2
=

√
Z
nb0/n0

2M/m
kp0 (4.5)

z = ct is the coordinate along the propagation direction, Z is the ion charge state, nb0 is the

witness beam’s peak density, ϵ0 is the permittivity of free space, M is the mass of a single

ion, kp0 = ωp0/c is the plasma wavenumber, ωp0 =
√

n0e2

ϵ0m
is the plasma frequency, n0 is the

plasma density, ϵ0 is the vacuum permittivity, and e is the electron charge.

In this work we always use a wide drive bunch with a low peak density to avoid perturbing

the background ions. Therefore, we only consider ion motion triggered by the witness beam.

For the slice of the witness beam at the very front, there is no ion motion and thus the

focusing force is linear. However, the space charge forces at the front will begin to pull the

ions in, which will affect the later part of the beam. Thus, as we move from head to tail

in the witness beam, the ion motion collapse is stronger. We can quantify the degree of ion

motion through the phase advance parameter Φ for a given slice of the witness beam:

Φ(ξ) = kiξ (4.6)

where ξ is the longitudinal distance between the beam slice and the beam head. We choose

ξ = 0 to be at the head of the beam). We can also define the ion motion parameter for the

entire witness beam to be the ion motion parameter at the tail of the witness beam:

Φb = Φ(Lb) = kiLb (4.7)

where Lb is the length of the witness beam. Qualitatively, ion motion is important when

Φb ≳ 1.
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It is worth noting that for a beam with a longitudinal Gaussian density profile, the

length of the beam Lb is not well defined. However, we can use the effective bunch length

Lb =
√
2πσz in the equation above to estimate the degree of ion motion.

It turns out Eq. (4.4) is fairly accurate when the phase advance of the ion is less than

π/2 (before the first ion collapses), and it can therefore be used to accurately predict the

location of the first ion density peak on the axis ( π
2ki

).

4.3 Gaussian phenomenological model

For linear collider parameters, kiLb ≫ 1, and the first ion density peak resides within the

bunch. Therefore, the exact transverse profile of ion density is complicated and longitudinally

slice-dependent. In order to study how a beam slice evolves in the nonlinear focusing force

from the ion collapse, we model the ion collapse as a Gaussian function [47] (other functions

can be used as well):

nion(r)/n0 = 1 + A0 exp
(
−r2/2σ2

ion

)
(4.8)

We note that this profile does not conserve charge, however, it is reasonable for radii within

the beam. This model is parametrized by A0 and σion. The corresponding focusing force is:

Fr(r) =

−r
2
− A0σ

2
ion

1− exp
(
− r2

2σ2
ion

)
r

meω
2
p0 (4.9)

In a later part of the paper, we will use this phenomenological model to gain insights for the

evolution of a beam slice in a given nonlinear focusing force.

4.4 Emittance evolution in a uniform plasma

We begin by investigating how the emittance evolves for an unmatched beam focused to a

density plateau.
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4.4.1 Immobile ions

To set the stage for matching sections including ion motion, we review the concept of match-

ing in a uniform plasma in the absence of ion motion (linear focusing force). From the beam’s

envelope equation (longitudinal acceleration is neglected):

σ′′
x =

ϵ2

σ3
x

(1− k̄2β
σ4
x

ϵ2
) (4.10)

where ϵ =
√

⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2 is the beam’s geometric emittance (⟨⟩ means the ensemble

average).

By setting σ′′
x = 0, we can get the matched beam spot size:

σm =

√
ϵ

k̄β
(4.11)

where k̄β =
kp√
2γ̄

, and γ̄ is the average relativistic factor among all the beam particles.

Henceforth we will refer to Eq. (4.11) as the linearly matched spot size, and matching the

beam’s spot size to this value is called ‘linearly matched’.

To explicitly see the dependence on density and energy, Eq. (4.11) can also be written

as:

σm = (
2

γ̄

ϵ2n
k2p0

n0

n
)
1
4 (4.12)

where ϵn = 1
mec

√
⟨x2⟩ ⟨p2x⟩ − ⟨xpx⟩2 is the beam’s normalized emittance. For a beam with

small energy spread, we have ϵn ≈ γ̄ϵ, and k−1
p0 is the plasma skin depth corresponding to

the reference density n0, and n is the local plasma density. We define a local plasma density,

n, to set the stage for considering density ramps. We can see that for small n, σm is large.

This means a matched beam’s peak density will be low, so the ion motion effects are small.

This motivates us to use a plasma density ramp with a low density at the entrance so that

the matched beam would trigger negligible ion motion, as we will see in Sec. 4.5.2.

We use the Courant–Snyder (C-S) parameters β and α to parametrize the beam, which
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are defined as:

β =
⟨x2⟩
ϵ

, α = −⟨xx′⟩
ϵ

(4.13)

and α = −1
2
β′. The matching condition in a uniform plasma in terms of CS parameters is:

β = βm, α = 0 (4.14)

where

βm =
σ2
m

ϵ
=

1

k̄β
(4.15)

is the matched beta function.

For an unmatched beam with energy spread, its emittance will grow due to a chromatic

effect, particles with different energies rotate at different angular frequencies in the phase

space, thus taking a larger phase space area (Fig. 4.1 (a)). If the beam is matched, the

normalized phase space looks like a circle (Fig. 4.1 (b)). The phase space area remains

the same even if there is phase mixing due to the energy spread, so the emittance is well

preserved. This was discussed in section 2.11.2.
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(a) (b)

Figure 4.1: (a) Unmatched (β = 2βm, α = 0) 10 GeV beam with 2% energy spread, emittance

grows due to phase mixing from the energy spread: particles with high energy (blue) and

low energy (orange) rotate at different angular frequencies in the phase space. (b) Matched

(β = βm, α = 0) 10 GeV beam with 2% energy spread. Normalized phase space is a circle.

4.4.2 Mobile ions

To study the witness beam’s emittance evolution in the presence of ion motion, we run self-

consistent QPAD simulations. We start with parameters not as severe as would be for a LC

design to illustrate some physics. These parameters also overlap somewhat with what might

be available at FACET II. The background plasma is pre-ionized hydrogen with a uniform

density n0 which we assume to be 1017cm−3 when switching to absolute units.

The drive beam’s density profile is tri-Gaussian, nb = nb0 exp
(
− x2

2σ2
x

)
exp
(
− y2

2σ2
y

)
exp
(
− z2

2σ2
z

)
,

with a symmetric transverse spot size σx = σy = 0.8k−1
p0 , longitudinal bunch length σz =

√
2k−1

p0 , and a peak density of nb0/n0 = 4. We assume the drive beam is moving at speed of

light and is non-evolving. We use a drive beam with a low ion motion parameter Φb so that
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the ion motion triggered by the drive beam is negligible.

The witness beam’s density profile is transversely bi-Gaussian and longitudinally trape-

zoidal, with Ihead = 27.2 kA at the head and Itail = 17.6 kA at the tail (this longitudinal

current profile is taken from Ref. [50] for convenience), so the accelerating field Ez is nearly

flattened across the witness beam (Ez ∼ −0.56mcωp0/e) [36][38]. The length of the wit-

ness beam is L = 2k−1
p0 , and its head is located 5k−1

p0 behind the center of the drive beam.

The witness beam has an initial energy of 10GeV, and an initial normalized emittance of

ϵni = 1µm = 0.06k−1
p0 for n0 = 1017cm−3.

The simulation is performed in 2D axisymmetric geometry, where we used a (r, ξ) sim-

ulation box (ξ = ct − z) with 7340 cells in r and 2640 cells in ξ. The resolution is

∆r = 1.36× 10−3k−1
p0 and ∆ξ = 5× 10−3k−1

p0 . The drive beam is non-evolving. The witness

beam is sampled with a million numerical particles. The witness beam particles are pushed

every 3D time step ∆t = 10ω−1
p0 . Both plasma electrons and plasma ions are initialized with

4 particles per cell. For every particle location in an r-ξ grid we initialize 16 particles in the

azimuthal direction. We only keep the lowest m = 0 azimuthal mode unless noted.

First, we consider cases where the witness beam is linearly matched (Eq. (4.11)) with

0 and 2% initial energy spread respectively. (We stress that conventional optics cannot

be used to provide such a small spot size or β function.) This means the witness beam

is unmatched to the nonlinear focusing force triggered by the ion motion, which leads to

emittance growth. This is shown in Fig. 4.2. We can see that only after a few betatron

oscillations, the emittance basically saturates, and the spot size stabilizes to a smaller value.

The slow emittance increase and spot size decrease that occurs after the rapid emittance

growth are due to the acceleration. The initial emittance growth is dominated by ion motion.

If the beam is linearly matched, having an initial energy spread does not lead to emittance

growth, as we can see from Fig. 4.2 (a).

A possible way to mitigate emittance growth is to focus the beam to a smaller spot size

than the linearly matched spot size[47], so that it is closer to some nonlinear equilibrium value
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after ion motion is triggered. We ran another QPAD simulation with the witness beam’s

initial spot size to be 85% the linearly matched spot size and no initial energy spread. In Fig.

4.2 we see a smaller emittance growth, but now the emittance and spot size are oscillating

with a larger amplitude. This is because the slices closer to the head of the witness beam

experience less ion motion (See Eq. (4.6)), so the focusing force is just slightly perturbed from

the linear focusing force corresponds to a fixed ion background. Since initially these slices are

not linearly matched and there is no energy spread, the corresponding phase space ellipses

will rotate for a long time before they reach equilibrium states, leading to an oscillatory

projected phase space area and the beam spot size. In particular, the very first slice of

the witness beam feels a completely linear focusing force (no ion motion at all). Since it is

initially unmatched and has no energy spread, the phase space ellipse will rotate forever and

never reach a steady state, contributing to an oscillatory projected emittance and spot size

(the green lines in Fig. 4.2).
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Figure 4.2: The emittance (a) and spot size (b) evolution for beams with different initial

parameters for QPAD simulations.

We also consider a case where the witness beam has LC parameters used in [47], except

here we simulate the entire transverse region of the wake. This is possible from the advent

of QPAD. The physical and simulation parameters are as follows: The pre-ionized hydrogen

plasma density is 1017cm−3, the drive beam has 3 × 1010 electrons, normalized emittance
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1 mm and bunch length σz = 30µm. The drive beam is still set to be moving at speed

of light and nonevolving, and its spot size is set to be linearly matched, so it has a peak

density of nb0/n0 ∼ 6, which triggers negligible ion motion. The witness beam has 1010

electrons, an initial energy of 25GeV, an initial energy spread of 2%, and an initial projected

emittance of ϵni = 0.1µm (0.006k−1
p0 ). It has a tri-Gaussian density profile with bunch length

σz = 10µm (0.6k−1
p0 ). The distance between the centers of the two beams is 115µm (6.8k−1

p0 ).

The (r, ξ) simulation box has 32768 by 1024 cells with a resolution of 3.6 × 10−4k−1
p0

by 1.8 × 10−2k−1
p0 . There are 16 particles initialized in the azimuthal direction for each

particle location in the r-ξ grid for both plasma and beam particles. Both plasma electrons

and plasma ions are initialized with 4 particle locations per r-ξ cell. The witness beam is

initialized with 8 particle locations per r-ξ cell. The beam particles are pushed every 3D

time step ∆t = 10ω−1
p0 . We only keep the lowest m = 0 azimuthal mode.

In Fig. 4.3(a) we observe an ∼ 80% projected emittance growth from linearly matching

the beam to the uniform plasma for these LC relevant parameters. Overfocusing the initial

witness beam’s spot size to 1/2 of the linearly matched spot size reduces the emittance

growth but causes an oscillation in the projected emittance. These results agree with the

results in [47] perfectly.
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Figure 4.3: The emittance (a) and spot size (b) evolution for beams with different initial

parameters for QPAD simulations. The witness beam has LC parameters.
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4.4.3 Phenomenological description for the ion collapse using a single particle

code

In general, the ion collapse near the axis and the corresponding focusing force is slice-

dependent and complicated. In this section, we will study the evolution of a beam slice by

modeling the ion collapse using Eq.(4.8). We choose A0 = 100 and σion = 0.005k−1
p0 to model

a Gaussian ion collapse. We will use single particle simulations (See Sec. 1.4.4) to study the

evolution of a beam slice. The beam slice has 10 GeV energy with ϵn = 0.0594k−1
p0 (1µm),

and no initial energy spread. The beam has no longitudinal acceleration in the simulation.

We use 105 numerical particles in the beam slice. For simplicity we assume the particles’

transverse motion is 1D, where they move under a 1D version of the focusing force in Eq.

(4.9). We simply replace r with x in Eq. (4.9) which is not strictly valid for a nonlinear

focusing force except if y = 0.

If we match the beam with spot size equal to Eq. (4.11) (the matched spot size for

A0 = 0), we can see that both the emittance and the spot size saturate very quickly within

a few betatron oscillations (solid curves in Fig. 4.4 (a)), which is qualitatively similar to

what we observed in Fig. 4.2. The rapid emittance growth at the beginning is due to the

nonlinear phase mixing, and Fig. 4.4 (b) shows the spiral phase space at an early time of

the simulation.

We also tried to nonlinearly match the beam’s spot size to the steady state spot size of

the Gaussian ion model. Appendix E.3 shows how to estimate the steady state spot size.

We can see that if the beam’s initial spot size is closer to the steady state spot size in the

nonlinear focusing force, emittance growth can be mitigated significantly.
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Figure 4.4: (a) Emittance and spot size evolution using a Gaussian phenomenological model

(b) Spiral phase space due to nonlinear phase mixing

To make connections to the self-consistent QPAD simulations, we take the simulation

result from Sec. 4.4.2 where the witness beam has LC parameters (blue curves in Fig.4.3).

We plot the steady-state transverse ion density lineout at the longitudinal centroid of the

witness beam (blue curve in Fig. 4.5 (a)) and the emittance growth of the beam slice at

the longitudinal centroid (blue curve in Fig. 4.5 (b)). To make comparisons, we run two

2D single particle simulations (the motion in x and y are coupled) with two different ion

collapse models. Both of them have the same on-axis ion density (1 + A0) as the QPAD

simulation, but their σion are different. The orange curve in Fig. (4.5)(a) has a small

108



σion = 4× 10−4k−1
p0 . While it captures the central part of the ion density lineout from from

the self-consistent QPAD simulation well, it fails to capture the long tails on both sides,

therefore underestimating the slice emittance growth (see orange curve in Fig. (4.5)(b)). If

we choose a wider σion = 10−3k−1
p0 (green curve in Fig. (4.5)(a)), our model is wider than the

self-consistent result, so the slice emittance growth is overestimated a little (see green curve

in Fig. (4.5)(b)).

Note that it is shown in [47] (although in 1D) that a larger A0 or a larger σion in the Gaus-

sian ion collapse model will lead to a larger slice emittance growth. Due to the complicated

nature of ion collapse, it is not accurately represented by a Gaussian function, especially the

“long tail” parts that are further away from the axis. However, we can still gain enough

qualitative insights from this model.
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Figure 4.5: Comparison of QPAD simulation and 2D single particle simulations with a

Gaussian ion collapse model. (a) Blue: The transverse ion density lineout at the centroid of

the witness beam (ξ = 0) from QPAD simulation. The dots correspond to the grid points

in the simulation. Orange and green: Gaussian ion collapse models with the same on-axis

density and different σion. (b) Blue: Emittance evolution of witness beam’s centroid slice

from QPAD simulation. Orange and green: Emittance of a beam evolving in a fixed focusing

force corresponding to the Gaussian ion collapse models shown in (a).

110



4.5 Matching using an adiabatic density ramp

In this section, we investigate if emittance growth can be mitigated through the use of an

adiabatic density upramp and downramp, placed on each side of a density plateau.

4.5.1 Without ion motion

In a non-uniform plasma, the matching condition is modified from Eq. (4.14) and becomes:

β = βm, α = αm (4.16)

where βm, αm are the matched Courant-Snyder (C-S) parameters [42][44][93], defined as

βm(z) =
√
2γc/ωp(z) (4.17)

and

αm(z) = −1

2
β′
m(z) (4.18)

where z is the propagation distance. Eq. (4.18) is analogous to the relationship between α

and β. An adiabaticity parameter can be defined as A = |αm| [42] [93], which describes

how adiabatic the plasma density is changing from the beam’s point of view. The adiabatic

condition is given by

A ≪ 1 (4.19)

If the adiabatic condition is satisfied, it means the betatron frequency kβ changes very little

within one betatron wavelength. Loosely speaking, the beam feels the plasma density is

changing very slowly.

For an adiabatic plasma ramp, it has been shown that if we match the beam to the plasma

entrance, the beam will stay matched as it propagates in the plasma, and the emittance can

be preserved perfectly even if the beam has a finite energy spread [39] [44] [80], and see

Chapter 3.
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Here we show results from a self-consistent QPAD simulation that illustrate this including

upramp and downramp matching sections. The beam parameters are identical to the ones

in Sec. 4.4.2. The plasma density profile is shown in Fig. 4.6(a): When discussing absolute

units, we assume the background plasma is pre-ionized hydrogen plasma with density n0 =

1017 cm−3 at the density plateau. The plasma ions are kept fixed. The length of the plateau

is 40000k−1
p0 (k−1

p0 = c/ωp0 is the plasma wavelength at the density plateau n0). Before the

density plateau, we use an adiabatic density upramp designed as follows: At the entrance of

the plasma upramp, the density is nentrance = 0.01n0. In the density upramp, αm (defined in

Eq. (4.18)) starts from αmi = 0.1 at the entrance and decreases linearly to 0 at the end of

the upramp. An upramp that satisfies this condition is shown in Fig. 4.6(a). The analytical

expression for this density profile is:

n(z)

n0

=
1(

1 +
αmi(z − L)2

βm0L

)2 (4.20)

where αmi = 0.1, βm0 =
√

2/γk−1
p0 = 200k−1

p0 for a 10 GeV beam, and L = 18000k−1
p0 is the

length of the upramp. We design the density profile this way so that the adiabatic condition

(Eq. (4.19)) is satisfied everywhere in the upramp, and A is continuous at the end of the

upramp. More details about the ramp design can be found in Appendix E.1. We use a

plasma density profile for the downramp which is completely symmetric to the upramp. The

entire plasma density profile is shown in Fig. 4.6(a). It is worth noting that after being

accelerated in the density plateau, the beam’s energy is higher in the downramp than in the

upramp, so it may be beneficial to carefully design a different downramp that accounts for

this energy gain. Here we just choose a symmetric downramp for simplicity. Also, when

designing the ramp, we assume there is no longitudinal acceleration and ion motion. In the

presence of ion motion(discussed later), the adiabatic condition is not well defined and may

not strictly hold due to the enhanced betatron frequency. But in principle, we can always

elongate the ramp to make it more adiabatic.

As for the simulation parameters, we used 4000 by 1200 cells in a (r, ξ) simulation box.
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The resolution is 2.5 × 10−3k−1
p0 by 10−2k−1

p0 . The drive beam is non-evolving. The witness

beam is sampled with a million numerical particles. The beam particles are pushed every

3D time step ∆t = 10ω−1
p0 . There are 16 particles distributed uniformly for each designated

location in the r-ξ cell. Both plasma electrons and plasma ions are initialized with 4 desig-

nated locations for particles in each r-ξ cell. We only keep the lowest 3 azimuthal modes:

m = 0, 1, 2. We did this to verify the azimuthal symmetry – lack of hosing growth. We

found that all the quantities for m = 1, 2 are indeed essentially vanish, verifying that our

simulation remains axisymmetric.

We match a witness beam with a 2% initial energy spread to the plasma entrance (Eq.

4.16). In Fig. 4.6 (b) we can see that as the witness beam propagates, its spot size evolution

strictly follows the locally matched spot size (Eq. 4.12), so the beam always stays matched,

and its emittance is preserved perfectly.
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Figure 4.6: (a) Plasma density ramp (blue) with αm (red). (b) Emittance (blue) and spot

size (red) evolution for a matched beam in the absence of ion motion.

4.5.2 With ion motion

In the previous section, we saw that in the absence of ion motion, the witness beam emittance

can be perfectly preserved using adiabatic plasma density ramps. In this section, we will

show that by using the same method, even in the presence of ion motion, the beam emittance

can still be almost perfectly preserved. We consider a simulation with identical parameters
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to the ones in Sec. 4.5.1, except that we allow the plasma ions to move this time. Fig.

4.8 (a) shows the evolution of the projected emittance and the slice emittance at 3 different

longitudinal positions. The witness beam (with a trapezoidal current profile) is located

within the range 0 ≤ ξ ≤ 2k−1
p0 , where ξ = 0 is at the beam head and ξ = 2k−1

p0 is at the

beam tail. We can see that the projected emittance (red dashed line) grows first, but then

decreases in the downramp, with only ∼ 1% emittance growth at the exit of the plasma

downramp.

For the beam slice at the head of the beam (blue, ξ = 0.05k−1
p0 ), the slice emittance

remains constant, and the slice spot size is just the linearly matched spot size. They are the

same as in Fig. 4.6(b), because the beam slice at the head experiences no ion motion.

For slices in the middle (orange, ξ = 1k−1
p0 ) and tail (green, ξ = 1.95k−1

p0 ) of the beam,

the emittance grows in the upramp due to the nonlinear focusing force from the ion motion.

But in the density downramp, the slice emittances decrease with there only being a 1% net

growth. In Fig. 4.7 we can see that the slice spot sizes are also smaller than the linearly

matched spot size due to ion motion.
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Figure 4.7: (a) Evolution of projected emittance (red dashed) and slice emittance (b) Evo-

lution of projected spot size (red dashed) and slice spot sizes
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Figure 4.8: (a)(c)(e) focusing force at different longitudinal positions (b)(d)(f) phase space

ellipses correspond to different longitudinal slices
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After having provided a high level description that the net emittance growth is limited

to ∼ 1%, we now give a detailed analysis of the whole process. At the entrance, we linearly

matched the witness beam. Since the plasma density is low, according to Eq.(4.12), the

matched spot size is large, leading to a low peak density. Hence the ion parameter is relatively

small, Φb ∼ 0.69 (estimated using equation (E.7)),so the ion motion effect is relatively small,

thus the focusing force is essentially linear (Fig. 4.8 (a)). At the entrance the normalized

phase space ellipses are shown in Fig.4.8(b)). The three phase space ellipses correspond to

ξ = 0.05 (head), ξ = 1.0 (middle), ξ = 1.95 (tail) overlap with each other. They are slightly

tilted to the left because the beam has an initial αi = 0.1 in order to be linearly matched at

the entrance. Note that x and px values are normalized to their matched values at a given

z in the absence of ion motion.

As the beam propagates in the density upramp, its spot size is adiabatically compressed,

so the peak density gets higher, and the ion motion is gradually triggered. The beam’s

distribution will slowly and continuously evolve to match the local nonlinear focusing force.

At the density plateau, the ion parameter has increased to Φb ∼ 2.2, so ion motion is

important. Due to the nonlinear focusing force induced by the ion motion, the distribution

of a beam slice is no longer Gaussian, and this deformation of the distribution leads to a

larger value in the emittance, as shown in Fig.4.8(a)). However, in contrast to the emittance

growth due to phase mixing, this emittance increase is reversible. We will analyze the slice

emittance evolution in greater detail later in Sec. 4.5.3 using the phenomenological model

described in Sec. 4.3. The projected emittance also grows in this process. This arises mainly

because the focusing force at different longitudinal slices are different (See Fig.4.8(c)), so

the phase space ellipses for different slices evolve differently and have different shapes, thus

they no longer overlap with each other (Fig.4.8(d)), leading to a larger projected phase space

area.

In the density plateau, each slice of the beam finds its own equilibrium state. The slow

increase in the projected emittance and the slow decrease in the spot size are due to beam’s

118



acceleration. In the density downramp, the beam’s spot size slowly expands, so the peak

density becomes lower, and ion motion gets weaker, the focusing force gradually evolves back

to being linear, as shown in Fig. 4.8(e). The distributions of different beam slices evolve

back to the same Gaussian distributions, and the phase space ellipses for the selected slices

overlap with each other again, leading to a small projected phase space area (Fig. 4.8(f)).

The final projected emittance decreases to nearly its original value.

4.5.3 Single particle simulation using Gaussian phenomenological model

In Sec. 4.5.2, we explained that the projected emittance first increases and then decreases

back to near its original value due to the independent evolution of each beam slice. However,

the evolution of the slice emittance is more subtle. In this section, we study the evolution

of a beam slice in a predetermined focusing force. To take into account the longitudinal

plasma density variation, we modify our model for the ion collapse in Eq. (4.8) and assume

the following for the ion density,

nion(r, z)/n0 = n(z)/n0 + A(z) exp
(
−r2/2σ2

ion

)
(4.21)

where A(z) = A0
n(z)−n(0)
n0−n(0)

, so that the nonlinear part of the ion density is exactly 0 at the

entrance, and has a peak density of A0 at the plasma density plateau.

The corresponding focusing force is

Fr(r, z) =

−r
2

n(z)

n0

− A(z)σ2
ion

1− exp
(
− r2

2σ2
ion

)
r

meω
2
p0 (4.22)

We choose A0 = 100, σion = 0.005k−1
p0 , n(z)/n0 to be same as in Fig. 4.6 (a). This predeter-

mined focusing force is used in Eq. (3.1) to solve for the phase space trajectories of a group

of particles. The beam slice still has 10 GeV energy with ϵn = 0.0594k−1
p0 (1µm), no initial

energy spread, and is initially linearly matched at the plasma entrance. The beam has no

longitudinal acceleration in the simulation. We use 105 particles in the beam.
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In Fig. 4.9 (a) we show the evolution of the emittance and spot size of the beam slice,

which are similar to the results from the self-consistent QPAD simulation. The emittance

grows in the upramp, remains relatively constant in the plateau, and decreases to near the

original value at the plasma exit. To understand this emittance evolution, we need to analyze

the beam’s dynamics in more detail.

At the entrance of the plasma upramp, the beam’s distributions in x and px are both

Gaussian, which remain matched distributions in a linear focusing force. As the beam prop-

agates in the density upramp, the nonlinear part of the focusing force adiabatically increases.

The beam will keep adjusting its profile to match to the local nonlinear focusing force, re-

sulting in non-Gaussian profiles in both x and px, (Fig. 4.10 (e)(f)), and a corresponding

non-elliptical phase space (Fig. 4.10 (b)), which looks like a rhombus. Particles at the ‘tips’

make a larger contribution to the ‘spread’ in x and px, leading to a larger value of the RMS

emittance as compared to a 90% or 95% value. In other words, this RMS measurement of

emittance is no longer an accurate reflection of the phase space area when the distribution is

not Gaussian. This ‘emittance increase’ is because the beam profile deviates from a Gaussian

profile, or the phase space deviates from an ellipse. It is purely a geometrical effect and is

reversible. This is different from the emittance growth caused by phase mixing within a slice

(Fig. 4.4(b)), which is difficult to reverse.

As the beam propagates in the density downramp, the nonlinear part of the focusing

force adiabatically decreases, and becomes zero at the exit. The evolution of the beam’s

profile in the downramp is essentially reversed from that in the upramp. Eventually at the

exit, the focusing force is back to linear, and the beam’s distribution is back to Gaussian

(Fig. 4.10(g)(h)), so the RMS emittance remains unchanged from its original value.
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Figure 4.9: (a) Emittance and spot size evolution using a Gaussian phenomenological model

(b) Normalized phase space at the density plateau.
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Figure 4.10: (a) ∼ (f) The distribution of beam particles’ x and px at the beginning, middle,

and end of the simulation
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4.6 LC parameters

In this section we consider the utility of adiabatic matching sections for LC design parameters

in the presence of ion motion.

4.6.1 Adiabatic ramps

For linear collider (LC) relevant witness beam parameters, adiabatic density ramps are still

beneficial for preserving emittance. To demonstrate this, we undertake a QPAD simulation:

With a preformed hydrogen plasma of density n0 = 1017cm−3 for the uniform acceleration

section. It is 4 × 104 k−1
p0 (67.3 cm) long. The drive beam has an initial energy of 25 GeV,

3.0× 1010 electrons (4.8 nC), a normalized emittance ϵn = 1mm, and a tri-Gaussian density

profile with σr = 10.4µm, σz = 30µm. It is thus matched to the uniform acceleration

section. The drive beam’s peak density nb0 = 5.89n0 is high enough to produce a fully

blown-out wake but not trigger any ion motion. The drive beam is set to be non-evolving

(it is represented by a specified current profile) in the simulation to isolate the physics.

The witness beam also has an initial energy of 25 GeV, but with a normalized emittance,

ϵn = 100 nm, and a trapezoidal longitudinal current profile ranging from Ib,head = 25.26 kA

at the head to Ib,tail = 6.42 kA at the tail. Its length is 1.8 k−1
p0 (30.3µm), so the total

charge is 1.0×1010 electrons (1.6 nC). The head of the witness beam is located at a distance

of 6.25 k−1
p0 (105.2µm) behind the center of the drive beam such that the blowout wake is

optimally loaded [36] [38], as shown in Fig. 4.11. The nearly constant accelerating field

along the witness beam is around Ez = −1.2mcωp0/e for all beam slices. The witness beam

is initialized with no energy spread to isolate physics.
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Figure 4.11: A snapshot of the wake and beams in the density plateau. The color bar shows

the charge density for the plasma electron, and drive and witness beams. The witness beam

has a trapezoidal longitudinal current profile (black) in order to flatten the accelerating field

Ez (on-axis lineout in red).

To smoothly match the witness beam into the uniform acceleration section (henceforth

referred as density plateau), we use a L = 3 × 104 k−1
p0 (50.5 cm) long adiabatic plasma

density upramp before the density plateau and a symmetric downramp after the density

plateau. The entire longitudinal plasma density profile is shown by the black solid curve in

Fig. 4.12(a).
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Figure 4.12: (a) The resulting adiabatic plasma density profile (solid black) based on a

linear ramp for αm. The profile assumes the witness beam energy remains constant, so the

downramp is symmetric to the upramp. The black dashed downramp takes into account the

energy doubling of the witness beam, thus it is
√
2 times as long as the solid black downramp.

(b) Evolution of the projected emittance (solid black) and selected slice emittances. The

witness beam’s head and tail are located at ξ = 0, 1.8k−1
p0 respectively. The red dashed curve

shows the evolution of the projected emittance when three azimuthal modes, m = 0, 1, 2, are

kept in a QPAD simulation. The black dashed curve shows the evolution of the projected

emittance for the case where the black dashed downramp in (a) is used.

In a density upramp (downramp) αm is positive (negative). Therefore, we design an
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adiabatic plasma density upramp with αm linearly decreasing to 0 (at the plateau), so that

the transition from the upramp to the plateau is smooth. Based on this assumed linear

dependence of αm, we can integrate to solve for the density dependence of the upramp (See

Appendix E.1),
n(z)

n0

=
1(

1 +
αmi(z − L)2

βm0L

)2 (4.23)

where βm0 =
√
2γc/ωp0 is βm evaluated at the density plateau, and the adiabaticity param-

eter at the entrance, αmi, is related to the choice of the plasma density at the entrance by

Eq. (4.23). We choose a small density at the entrance of the upramp ni = n(0) = 10−4n0,

such that the corresponding αmi ≈ 1. We match the witness beam to the plasma entrance

with σ = σmi and α = αmi where σmi is Eq. (4.12) evaluated using the density ni.
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Figure 4.13: (a)(c)(e): Focusing force in x̂ at different longitudinal ξ positions for different z

propagation distances. (b)(d)(f): Phase space ellipses corresponding to different longitudinal

slices. The colors of each particle correspond to colors of the ξ for the focusing force. The

distribution for px and x are shown for the ξ = 1.8 slice (green curve) and a Gaussian fits

that match the standard deviations of the distributions are shown as red dashed lines.
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In the QPAD simulation, we use a (r, ξ) simulation box with dimensions 12k−1
p0 × 15k−1

p0

(See Fig. 4.11), and cell size 5 × 10−4k−1
p0 × 10−2k−1

p0 . The witness beam consists of 107

numerical particles . The beam particles are pushed every 3D time step ∆t = 10ω−1
p0 . Both

plasma electrons and ions are initialized with 4 locations for particles per r, ξ cell with 16

particles distributed in the azimuthal direction at each cell location when initializing plasma

particles. Unless otherwise noted, we only keep the lowest m = 0 azimuthal mode because

we assume axisymmetric beam and plasmas distributions.

In Fig. 4.12(b) we show the evolution of the projected emittance (black solid) and the

slice emittance at the head (blue), middle (orange) and tail (green) of the witness beam. The

thickness of the slices is chosen to be ∆ξ = 0.1k−1
p0 . The projected emittance steadily grows

in the density upramp, then grows very slowly in the density plateau[50], but eventually

decreases in the density downramp, with only a ∼ 2% net emittance growth at the exit of

the plasma downramp!

To understand why the projected emittance evolves this way, we need to once again

investigate how the phase space evolves within individual slices. At the entrance of the

plasma upramp, the density is low. According to Eq. (4.12), σm is large. This means the

beam’s peak density (and self-electric field) is low. As a result, the ion motion effects are

initially small, and the beam is essentially matched to the unperturbed linear focusing force.

In Fig. 4.13 we present the the focusing force at the head (ξ = 0), middle (ξ = 0.9k−1
p0 ), and

tail (ξ = 1.8k−1
p0 ) of the witness beam for three propagation distances that correspond to

the entrance of upramp, middle of plateau, and exit of downramp. We also show the phase

space for slices centered at the same ξ locations (represented by different colored dots). In

the upramp region before there is any ion motion, it can be seen in Fig. 4.13 (a) that the

focusing force at each slice are all nearly the same as from the ion column. In Fig. 4.13 (b)

the phase space distributions for each slice all overlap as well.

As the beam propagates into the ramp the plasma density slowly increases, causing

the the beam to be adiabatically compressed. This leads to a higher peak density (thus
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a stronger self-electric field), so ion motion is adiabatically triggered. In this process, the

beam’s distribution will slowly and continuously evolve to match the local nonlinear focusing

force. Each slice of the beam experiences a different transverse focusing force and therefore

evolves differently. At the density plateau, we can see the focusing forces at different ξ are

different (Fig. 4.13 (c)), leading to different evolution for each phase space ellipse (Fig. 4.13

(d)).

Due to the nonlinear focusing force there is some emittance growth within each slice.

However, in contrast to the emittance growth due to the phase mixing that occurs for initially

unmatched beams, this growth here is reversible in the downramp [94]. Due to the nonlinear

focusing force, the distributions of the beam particles are no longer Gaussian. We can see

the green curves deviate from the red dashed curves in Fig. 4.13 (d). This non-Gaussian

profile, which is just a geometric effect, leads to a larger value in the slice emittance in the

density plateau, as shown in Fig. 4.12(b). In addition, slices at head, middle and tail of

the beam feel different focusing forces, so their corresponding phase space ellipses no longer

overlap with each other, resulting in a larger projected area. Thus the projected emittance

growth is much larger than for any given slice.

The evolution of the witness beam in the density downramp is essentially the reverse of

the process in the density upramp. The beam’s spot size slowly expands, so the peak density

becomes lower, the ion motion retreats, the focusing force eventually becomes roughly linear

and longitudinally independent again, see Fig. 4.13 (e). Therefore, the geometrical effect

that led to a slight increase in the emittance of each slice is reversed and the different phase

space ellipses that correspond to different longitudinal slices gradually overlap with each

other again at the exit (Fig. 4.13 (f)). After the entire acceleration stage, the witness beam

gained 25 GeV while maintaining a very small energy spread (σγ/γ̄ ∼ 0.1% at the exit), and

with only a 2% projected emittance growth.

The simulation above only includes m = 0 mode in azimuthal direction. We also ran

another simulation that includes m = 0, 1, 2 modes. The projected emittance is shown in red
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dashed curve in 4.12(b), which is similar to the m = 0 mode only result (solid black curve).

This indicates that there is no hosing growth from noise during the entire stage.

The downramp we used is symmetric to the upramp for simplicity. However, the wit-

ness beam’s energy doubled after being accelerated in the density plateau, so βm0 becomes√
γf/γi =

√
2 times, where γi and γf denote the witness beam’s energy at the entrance and

the exit of the density plateau, respectively. From Eq. (4.23) we can see that in order to keep

the same amount of adiabaticity, the length of the downramp should be
√
2 times that of the

upramp, shown by the black dashed curve in Fig. 4.12(a). Using this downramp instead, the

evolution of the projected emittance in the downramp is shown in Fig. 4.12(b). We can see

that the projected emittance growth at the exit of the downramp is even smaller. In general,

a longer ramp is more adiabatic, therefore is better at preserving the beam emittance. It is

also worth noting that the total length of the upramp, plateau, and downramp is 2.5 times

the plateau along. Thus, the effective gradient of the full stage is 15 GeV/m and not 37

GeV/m.

4.6.2 Realistic ramps

A fully adiabatic ramp is challenging to construct, therefore, we consider more general ramp

profiles. Specifically, we use the following fifth order polynomial

n(z) = n0

[
6(
z

L
)5 − 15(

z

L
)4 + 10(

z

L
)3
]
(0 ≤ z ≤ L) (4.24)

. This profile has the following properties: n(0) = n′(0) = 0, n(L) = n0, n
′(L) = 0,

n(L/2) = n0/2, n
′(z) is maximum at z = L/2. We choose the length of the ramp to be the

same as before, L = 3 × 104k−1
p0 . The density upramp is shown as the blue curve in Fig.

4.14. The density downramp is still chosen to be symmetric to that of the upramp. Unlike

the fully adiabatic ramp given by Eq. (4.23), the density of the the ramp given by Eq. (4.24)

vanishes at the entrance. As a result, both the matched spot size defined in Eq. (4.12), i.e.,

βm and the adiabaticity parameter αm diverge towards infinity as the density approaches 0.
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Despite the divergence of the adiabaticity at the beginning of the ramp, we find it is

still possible to roughly match the beam. In the absence of ion motion and any longitudinal

acceleration, the C-S parameters evolve according to [74]:

1

2
ββ′′ − 1

4
β′2 + β2k2β = 1 , α = −1

2
β′ (4.25)

Starting from the matched C-S parameters at the density plateau: βm =
√
2γk−1

p0 , αm = 0

as the initial conditions for β and α, we numerically integrate Eq. (4.25) backwards along

the upramp [90] (see dashed curves in Fig. 4.14), and get βi, αi at the plasma entrance.

This procedure was used in section 3.4 of chapter 3. It is worth noting that for an adiabatic

ramp (where the density does not vanish at the entrance), the C-S parameters calculated

using this numerical backward-propagation agree with the matched C-S parameters defined

in Eq. (4.17). We then initialize the witness beam’s C-S parameters using βi, αi in QPAD.

Besides that, the drive and witness beam parameters are the same as that used in section

4.6.1, so the initial emittance of the witness beam is still 100 nm.
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Figure 4.14: The density profile for the fifth order polynomial upramp (blue) and the evolu-

tion of the C-S parameters. The solid green and orange curves are the β and α of the witness

beam from the QPAD simulation; and the dashed curves are from numerical backward-prop-

agation. The red curve shows the projected emittance evolution in the entire plasma density

(upramp, plateau, and downramp) profile shown as the blue curve in Fig. 4.16 (a)

131



The solid green and orange curves in Fig. 4.14 show the actual evolution of the C-S

parameters. Initially they follow the backward-propagated β, α because the density is low

near the entrance such that the matched beam spot size is large. Therefore, ion motion effects

are small and Eq. (4.25) is valid. Ion motion starts to play a role when the solid curves and

the dashed curves deviate from each other where the beam has already entered the adiabatic

region. The solid red curve in Fig. 4.14 shows the emittance evolution from a QPAD

simulation for the entire plasma density profile shown (upramp, plateau, downramp) in the

blue curve in Fig. 4.16(a). As before, the emittance evolution reverses in the downramp,

and the overall emittance growth is around 13%.

In order to further justify that using numerical backward-propagation can indeed match

the beam into the plasma well, we performed a parameter scan with similar a setup, but a

shorter plasma profile to save computation. Here, we choose L = 2× 104k−1
p0 (33.7cm). The

density plateau has a length of 104k−1
p0 , followed by a density downramp which is symmetric

to the upramp. The plasma is still preformed hydrogen plasma. The overall plasma density

profile is shown in Fig. 4.15(a). The beam parameters are the same as Sec. 4.4.2, but now

the witness beam has a transverse normalized emittance ϵn = 0.1µm, and an initial energy of

25 GeV with no initial energy spread. The witness beam with the trapezoidal current profile

(see Sec. 4.4.2) has a perfect beam loading at the density plateau [36][38], so its energy spread

will be nearly 0 as it propagates. Therefore we can isolate the emittance growth due to ion

motion. The (r, ξ) simulation box has 10000 by 1000 cells with a resolution of 1×10−3k−1
p0 by

1.2× 10−2k−1
p0 . The witness beam is sampled with a million numerical particles. The beam

particles are pushed every 3D time step ∆t = 10ω−1
p0 . There are 16 particles distributed

uniformly in the azimuthal direction for each (r-ξ) location where particles are initialized.

Both plasma electrons and plasma ions are initialized with 4 particles per (r-ξ) cell. We only

keep the lowest m = 0 azimuthal mode.

To match the beam into the plasma through this non-adiabatic ramp, we numerically

integrate Eq. (4.25) backwards along the upramp, and get βi = 6087k−1
p0 , αi = 1.3 at the
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plasma entrance. This corresponds to σ∗ = 2.7σm0, s = 2940k−1
p0 , where σ

∗ is the beam’s

spot size at the vacuum waist, σm0 is the linearly matched spot size at the density plateau

n0, and s is the vacuum focal position inside the plasma entrance. The emittance grows by

only 18% in this case (green dot in Fig. 4.15).

We also performed a parameter scan to compare with the result above. This parameter

scan is similar to the one in section 3.4. We tried two different beam vacuum profiles with

σ∗ =
√
10σm0 and σ∗ = (10)

1
4σm0 respectively. These two spot sizes are linearly matched

to the density n = 0.01n0 (at z = 2120k−1
p0 ) and n = 0.1n0 (at z = 4940k−1

p0 ) respectively.

For each σ∗, we scanned the vacuum focal position s [44]. The result is shown in Fig 4.15

(b). All the parameter combinations for (σ∗, s) we have explored show a larger emittance

growth. This implies that the witness beam parameters suggested by numerically integrating

Eq. (4.25) gives a reasonably good estimate for obtaining the best results, even though it

ignores ion motion. A possible explanation is that this method ensures that in the absence

of ion motion, the beam transitions smoothly from the entrance to the density plateau, with

minimal oscillations in CS parameters (or spot size). So for the slice at the head of the

witness beam, it can go through this smooth transition because it hardly experiences any

ion motion.
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Figure 4.15: (a) Realistic plasma density profile (blue) with envelope of the witness beam

in vacuum (red) and the corresponding vacuum focus (orange). (b) Emittance growth for

different vacuum focusing. The green dot corresponds to numerically integrate Eq. (4.25)

4.7 100GeV witness beam simulation

In order to preserve the emittance well, there are 2 important factors. First, at the plasma

entrance, ideally the matched witness beam should trigger negligible ion motion, which

requires the density at the entrance ni to be low. Second, ideally the plasma density ramp

is adiabatic (a small αmi). However, for a given length of the ramp, improving one aspect

will deteriorate the other. This trade-off can be seen by substituting z = 0 in Eq. (4.23):

ni

n0

=
1(

1 +
αmiL

βm0

)2 (4.26)

From Eq. (4.26) we can see that for a given ramp length L, ni and αmi change in different

directions. If we want to have less initial ion motion by decreasing ni, we need to sacrifice

the adiabaticity of the plasma ramp, and vice versa. Another observation is that for a higher

energy beam (e.g. in later acceleration stages), βm0 is larger. The constraint from Eq. (4.26)
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tells us we have to either increase αmi (so the ramp becomes less adiabatic), or increase

ni (so initially more ion motion is triggered). This makes the emittance preservation for

progressively higher energy beams more challenging.

A PBA-LC will require limiting emittance growth over 20+ stages during which the

witness beam energy will be higher for the later stages. As can be seen from Eq. (3) the

matched spot size scales as γ−1/4. Therefore, ion motion and emittance growth will be more

severe in the later stages. To examine this scaling we carried out simulations with a 100

GeV witness beam. The longitudinal current profile of the witness beam is the same as that

used in 4.6.1 such that the beam loading is still optimized at the density plateau. We still

used preformed hydrogen plasma. We used the three different plasma density ramps shown

in Fig. 4.16(a). The blue upramp is for the same profile used in Fig. 4.14. We match the

witness beam through the numerical backward-propagation of Eq. (4.25). The black profile

is the same as the solid black curve in Fig. (4.12), with the expression of the upramp given

by Eq. (4.23). However, in this case αmi ∼ 2 since the witness beam’s energy is 100 GeV.

Furthermore, since the beam’s energy is higher, σmi is smaller, leading to more initial ion

motion. The orange upramp is also described by Eq. (4.23), but with ni/n0 = 2.5 × 10−5,

ensuring the same initial matched spot size, σmi, as the 25 GeV case. However, the use

of a lower density leads to a larger αmi ∼ 4, such that the adiabatic condition is severely

violated. For the black and orange profiles, we match the witness beam directly to the

entrance rather than back propagate Eq. (4.25). Fig. 4.16(b) shows the projected emittance

evolution corresponding to the profiles in Fig. 4.16(a). We can see that the emittance growth

of a 100 GeV witness beam can be limited within 20% if we appropriately choose the plasma

density ramp and match the beam.
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Figure 4.16: (a) Various plasma density profiles used for a 100 GeV witness beam. The

downramps are symmetric to the corresponding upramps. The upramp in blue is the same

as the upramp in Fig. 4.14. The density profile in black is that same as in Fig. 4.12(a).

The αmi is now 2 rather than 1 because the initial energy of the witness beam becomes 4

times higher (100 GeV compared to 25 GeV). The orange profile has an even lower density

at the entrance to such that the witness beam has the same initial σm as for the case in Fig.

4.12, but at the expense of a worse adiabatic condition (αmi = 4). (b) Projected emittance

evolution for a 100 GeV witness beam when matching to the corresponding ramps in (a)

4.8 Summary

In this chapter, we examined emittance growth in a PBA-LC that is induced by the ion

collapse caused by the intense space charge forces of matched witness beams. We first

introduced and reviewed the ion motion parameter that is used to quantify the degree of

ion motion caused by the witness beam. This parameter measures the phase advance of

an ion oscillation caused by the space charge of the beam. We also introduced a Gaussian

phenomenological model for the ion density profile, which is used in the single particle

simulation to gain insight on the evolution of a beam slice in a predetermined nonlinear

focusing force.
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Next, we studied the ion motion induced emittance growth in a uniform plasma includ-

ing ion collapse. Self-consistent QPAD simulation results showed that directly matching the

witness beam to a uniform plasma will cause ∼ 20% emittance growth for a beam with

what we refer to as FACET II like parameters (ϵn ∼ 1µm and 10 GeV) and ∼ 80% emit-

tance growth for a beam with what we refer to as LC like parameters (ϵn ∼ 0.1µm and 25

GeV). We also showed that the emittance growth can be mitigated by focusing the beam

to a smaller spot size than the linearly matched spot size such that it is closer to ‘some’

equilibrium state after ion motion is triggered. This agrees with the results we found from

single particle simulations, where we showed that nonlinearly matching the beam’s spot size

to the estimated steady state spot size of the Gaussian ion model can mitigate the emittance

growth significantly.

It is quite challenging to focus a beam to the matched spot size using conventional

optics. We proposed to use adiabatic plasma density ramps as matching sections where

ion collapse is negligible at the entrance of the ramp but significant at the plateau. These

matching sections further reduce the emittance growth. We used an adiabatic plasma density

upramp to match the witness beam into the uniform density (plateau) acceleration stage,

and an adiabatic plasma density downramp to match the witness beam out from the density

plateau. For witness beam parameters that are either close to FACET II like parameters

or to LC like parameters, we showed this method can almost perfectly preserve the witness

beam emittance from start to end, even though there is a significant amount of ion motion

triggered in the uniform acceleration stage. We also showed that by properly choosing the

beam’s Courant-Snyder parameters at the plasma entrance, the emittance growth can be

mitigated for general density ramps which are not adiabatic at lower densities. We closed

with a discussion on the trade-off between the adiabaticity of the plasma density ramp and

the initial ion motion at the entrance when designing plasma density ramps with a given

length.
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CHAPTER 5

Additional issues for a plasma based linear collider

5.1 Introduction

In the previous chapters, we investigated the emittance evolution of a trailing electron beam

in the blowout regime including the effects of ion motion triggered by matched witness

beams, and proposed ways to mitigate this emittance growth. These results provide hope

that maintaining high quality electron beams during the acceleration process is possible. Ul-

timately, we want to build a plasma based linear collider, and there are numerous additional

issues to be considered. In this chapter we discuss some of these and how the results in this

dissertation impact them. In some cases preliminary simulations results are presented. The

results in this chapter are far from definitive but illustrate areas for future work.

In a linear collider, an electron beam will be colliding with a positron beam. Positron

acceleration and the matching of positron beams are beyond the scope of this dissertation. It

is easy to see that the approaches of matching used in the previous chapters no longer work

for the positron beam case. When we use an electron driver (or laser) to drive a nonlinear

wake, the ion channel provides an ideal focusing for a trailing electron beam. However, a

positron is defocused in the ion channel. The region after the first ion bubble (before the

second ion bubble) is where the blown out electrons come back to the axis and form a high

electron density. Although this region does provide a focusing for a positron, the size of this

region is very small, thus introducing great challenges to load a positron beam. Furthermore,

in a ramp the location of the high density region moves relative to the positron bunch, this
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makes using density ramps as matching sections not straightforward. Several ideas have been

proposed to overcome the challenges of positron acceleration [26, 27, 28], and it is an active

research area in the recent years. However, addressing how to match positron beams has

not received any attention. In the remainder of this chapter, we will only address additional

issues related to matching sections for the electron arm of a PBA-LC. Also note that in the

entire chapter, the plasma we used in the simulations is pre-ionized hydrogen plasma.

5.2 Staging

In the previous chapter, we showed that energy doubling of a 25GeV witness beam can be

achieved within a single PWFA stage, which is about ∼ 1m long. The energy gain in a single

wakefield-based accelerator stage is ultimately limited by the energy stored in the driver

(either particle beam or laser). In order to build a TeV level linear collider, we need to

combine the energy of several individual drivers, by distributing these drivers across many

separately driven stages chained together – a concept known as staging [95]. A design for

a PBA-LC based on staging is shown [1, 19, 96]. For example, in the design of Ref.[19], 20

PWFA cells are used, where each cell provides 25 GeV of energy to the witness beam in

about a meter of plasma, so in the end, the witness beam acquires an energy of 500 GeV.

We start by summarizing the result for the first stage presented in the previous chapter.

In Fig. 5.1 the density profile of the ramp, evolution of ϵn, spot size,σ, α, γ and σγ/γ of

the witness beam are presented. We note that due to longitudinal acceleration, the spot size

and α of the witness beam are not symmetric between the upramp and downramp, while we

have used an upramp and downramp that are completely symmetric. Therefore, compared

with the beam parameters at the entrance, the beam at the exit has a smaller spot size

because the matched spot size scales as γ−1/4 which is smaller for a higher energy beam.

Furthermore, the matched β =
√
2γc/ωp scales as

√
γ which is higher for a higher energy

beam. As β ∝
√
γ/n, the magnitude of α at the exit also scales with

√
γ and is thus larger
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than α at the entrance, since α = −β′/2.
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Figure 5.1: Evolution of the witness beam in the first acceleration stage. (a) The plasma

density profile. (b) ∼ (d) The witness beam’s normalized emittance, spot size and α in x

direction. (e) and (f): The witness beam’s energy and energy spread.

After the witness beam exits the first acceleration stage, it has a negative α. This means

the beam is diverging. Before the beam enters the second acceleration stage, the beam

needs to be focused again. We assume that through a combination of conventional focusing

optics between the first stage and the second stage, the beam’s state can be changed from

diverging to converging, while having the same spot size, emittance and |α|. Essentially, we

assume that when the beam enters the second acceleration stage, it has the same spot size

as when it exits the first stage, while the α flips sign. In the simulation, we initialize the

beam at the entrance of the second stage by taking the raw beam particle data from the

last time step of the simulation for stage 1, keeping all the particle positions to be the same

while flipping the sign of all the particles’ transverse momentum. In other words, for each
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particle with coordinate (x, px, y, py, z, pz), at the end of the simulation for the first stage, we

initialize a corresponding particle with (x,−px, y,−py, z, pz) at the entrance of the second

stage. Ideally, we should probably use a different plasma density profile for the second stage,

since the beam has a higher energy and a larger α after being accelerated in the first stage.

However, for simplicity, we use the identical plasma density profile as we used for the first

stage.
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Figure 5.2: Evolution of the witness beam in the second acceleration stage. (a) The plasma

density profile. (b) ∼ (d) The witness beam’s normalized emittance, spot size and α in x

direction. (e) and (f): The witness beam’s energy and energy spread.

As seen in Fig. 5.2 the emittance is still well preserved. We can see that the beam’s

emittance growth in stage 2 is slightly larger than in stage 1, but still within 3%. The beam

gained another 25GeV, reaching ∼ 75 GeV. The energy spread is still very small at the end

of the second stage (less than 0.2%). These results taken together with the results shown in

Chapter 4 for a 25 GeV witness beam show that if we can somehow successfully construct the

141



conventional focusing optics between stages as desired, building a PWFA-LC with cascaded

stages while preserving the witness beam’s emittance is possible for round beams with no

offsets. These results are very promising.

5.3 Shaped witness beams

In a PWFA-LC, a high quality witness beam requires not only a low emittance, but also

a low energy spread. In order to maintain a low energy spread, ideally all the particles in

the beam should be accelerated at the same rate. In other words, they should experience

the same accelerating field Ez. It turns out that ion motion does not affect the accelerating

field Ez much, since ion motion hardly affects the boundary of the ion bubble, which is the

dominant contribution for Ez [23]. Therefore, we do not need to worry about ion motion

when analyzing the accelerating field Ez.

It is well known that in the blowout regime, inside the ion channel, Ez is independent

of the transverse position [22, 23]. This guarantees the beam will not acquire additional

slice energy spread. We also desire that Ez to be a constant along the longitudinal position

to ensure the beam will not acquire any energy chirp during acceleration. In 2008, M.

Tzoufras et al pointed out that using a trapezoidal longitudinal current profile can flatten

the longitudinal accelerating field Ez [36]. (This was reviewed in Chapter 2). Recently,

Dalichaouch et al. have refined this theory [38]. In the simulation results shown previously,

a trapezoidal current profile has been used, and the energy spread is indeed preserved very

well.

In reality, it may be hard to generate a beam with such a trapezoidal current profile.

Therefore, we also carried out a simulation using a witness beam that has a tri-Gaussian

charge density profile but with the same amount of total charge. We compare the simulation

results between a tri-Gaussian beam and a shaped (trapezoidal) beam in the Fig. 5.3 to

bracket the possibilities.
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Figure 5.3: Comparison of the tri-Gaussian beam and the trapezoidal beam

We can see from this preliminary simulation that even though the beam has a different

current profile, the beam emittance, spot size, α, and energy evolve in a very similar way.

We can also see that although the energy spread of the tri-Gaussian beam grows signifi-

cantly more than the energy spread of the shaped beam, due to the imperfect beam loading,

however, it is still less than 3% for the unshaped case.

5.4 Witness beam with an initial offset

So far we have assumed the centroid of the witness beam is on the axis defined by the centroid

of the driver and the propagation direction, i.e., there is perfect alignment. In reality, the

witness beam’s centroid may have a small offset relative to the axis and/or the drive beam

might have a head-tail tilt. This could lead to emittance growth and the hosing instability.

In this section, we discuss now a misalignment could lead to emittance growth. We consider
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cases where there is negligible ion motion, where only the witness beam causes ion motion,

and where the both the drive and witness beam cause ion motion.

5.4.1 Insight from no ion motion case

We start with calculating the saturated slice emittance for a witness beam with an initial

offset without ion motion using a simple model: We assume the beam slice feels a linear

and axisymmetric focusing force from the uniform ion background in the blowout regime.

We neglect the asymmetry of the focusing force caused by the perturbation to the plasma

electron sheath.

We start from the transport matrix derived from the WKB solution of Hill’s equation

(Eq.(2.64) or (3.8)). To calculate the beam’s emittance, we need to calculate some beam

moments ⟨x2⟩, ⟨x′2⟩ and ⟨xx′⟩.

Let us first calculate ⟨x2⟩,

⟨x2⟩ = ⟨

(√
βm
βmi

(cosϕ+ αmi sinϕ) xi +
√
βmβmi sinϕ x

′
i

)2

⟩

= ⟨ βm
βmi

(cosϕ+ αmi sinϕ)
2 x2i ⟩+ ⟨βmβmi sin

2 ϕ x′2i ⟩+ ⟨2βm(cosϕ+ αmi sinϕ) sinϕ xix
′
i⟩

≈ βm
βmi

⟨(cosϕ+ αmi sinϕ)
2⟩ ⟨x2i ⟩+ βmβmi ⟨sin2 ϕ⟩ ⟨x′2i ⟩+ 2βm ⟨(cosϕ+ αmi sinϕ) sinϕ⟩ ⟨xix′i⟩

(5.1)

In the last step, when βm, βmi are removed from the averaging procedure, we change their

definition slightly: They are now evaluated at γ̄ (while previously they depended on the γ

of a specific particle).

When the beam reaches a steady state, the phase mixing is complete and ϕ is evenly

distributed. This differs from Chapter 3 where we derived expressions for how the emittance

evolves. At the final equilibrium, we have ⟨cos2 ϕ⟩ = ⟨sin2 ϕ⟩ = 1
2
, ⟨cosϕ sinϕ⟩ = 0, leading

to,
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⟨x2⟩ = βm
2βmi

(1 + α2
mi) ⟨x2i ⟩+

1

2
βmβmi ⟨x′2i ⟩+ βmαmi ⟨xix′i⟩

=
βm
2
(γmi ⟨x2i ⟩+ βmi ⟨x′2i ⟩+ 2αmi ⟨xix′i⟩)

(5.2)

Similarly, we can evaluate the other moments,

⟨x′2⟩ = γm
2
(γmi ⟨x2i ⟩+ βmi ⟨x′2i ⟩+ 2αmi ⟨xix′i⟩) (5.3)

and

⟨xx′⟩ = −αm

2
(γmi ⟨x2i ⟩+ βmi ⟨x′2i ⟩+ 2αmi ⟨xix′i⟩) (5.4)

Finally, the three moments can be used to calculate the emittance,

ϵ =

√
⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2

=
1

2
(γmi ⟨x2i ⟩+ βmi ⟨x′2i ⟩+ 2αmi ⟨xix′i⟩)

(5.5)

Note, this is the same result as in Eq. (3.21). If the beam has an initial offset ∆x in position

and initial offset ∆x′ in velocity, then

xi = ∆x+ x̃i (5.6)

x′i = ∆x′ + x̃′i (5.7)

where ⟨x̃i⟩ = ⟨x̃′i⟩ = 0 and x̃i and x̃
′
i have normal distributions,

x̃i ∼ N (0, σi), x̃′i ∼ N (0, σ′
i) (5.8)

Therefore, the moments become

⟨x2i ⟩ = ⟨(∆x+ x̃i)
2⟩ = ∆x2 + σ2

i (5.9)

⟨x′2i ⟩ = ⟨(∆x′ + x̃′i)
2⟩ = ∆x′2 + σ′2

i (5.10)

⟨xix′i⟩ = ∆x∆x′ + ⟨x̃ix̃′i⟩ (5.11)
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and upon substitution into Eq. (5.5) we obtain,

ϵ =
1

2

(
γmi(∆x

2 + σ2
i ) + βmi(∆x

′2 + σ′2
i ) + 2αmi(∆x∆x

′ + ⟨x̃ix̃′i⟩)
)

(5.12)

which upon substituting σ2
i = ϵiβi, σ

′2
i = ϵi = γi and ⟨x̃i, x̃′i⟩ = −ϵiαi

ϵ

ϵi
=

1

2
(γmiβi + βmiγi − 2αmiαi) +

1

2ϵi

(
γmi∆x

2 + βmi∆x
′2 + 2αmi∆x∆x

′) (5.13)

The first term represents emittance growth due to the initial mismatch (same as Eq. (3.21)),

and the second term is emittance growth due to the initial offset (in ∆x and ∆x′). This

expression is similar to Eq. (20) derived in [80]. Note that in this final state the offsets, ⟨x⟩

and ⟨x′⟩ vanish.

For the special case when αmi = 0 (This can be achieved either by using a uniform plasma

or a carefully designed density ramp such that the density gradient vanishes at the entrance),

we have βmiγmi = 1, and the above expression simplifies to,

ϵ =
ϵi
2

(
βi
βmi

+ βmiγi

)
+

1

2

(
∆x2

βmi

+ βmi∆x
′2
)

(5.14)

If we go one step further and assume the beam is initially matched, then

ϵ = ϵi +
1

2

(
∆x2

βmi

+ βmi∆x
′2
)

(5.15)

The second term on the right hand side is the same as Eq. (2) in the proceeding [97]; however

no derivation was offered. If we then assume ∆x′ = 0, then the emittance growth only due

to the initial offset is
ϵ

ϵi
= 1 +

1

2

∆x2

σ2
mi

(5.16)

We can see that the saturated emittance only depends on the beam’s initial offset relative to

the matched spot size: ∆x/σmi. This makes intuitive sense because for the case where the

offset is large compared to the spot size then after phase mixing the spot size will be ∼ ∆x,

while if ∆x is small compared to the spot size, there will only be a small correction.

One piece of insight we can get from Eq. (5.16) is that for the same amount of transverse

offset ∆x, in order to decrease the saturated emittance, we could increase the beam’s initial
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matched spot size σmi. This can be achieved using an adiabatic plasma upramp, so that

the plasma has a smaller density at the entrance. In this way, we make the offset ∆x “less

severe” by matching the beam with a larger initial spot size. Although all the derivation

and analysis above is done in the context of linear focusing force (no ion motion), the same

idea may be applied to the ion motion case as well.

5.4.2 Uniform plasma

We next offer a brief discussion and some preliminary simulation results on how ion motion

effects a beam with an initial offset. To simplify the problem we only consider the case of a

density plateau and separate the discussion into the case where the drive beam does or does

not trigger ion motion.

5.4.2.1 Drive beam does not trigger ion motion

A witness beam with an initial offset may experience the hosing instability [51, 52, 53].

Fortunately, it was discovered that ion motion triggered by the witness beam itself can

suppress the hosing growth [55, 56]. Based on the simulation we carried out in Fig. 4.2 (we

use the same simulation parameters here, and the witness beam has no initial energy spread),

we shift the initial centroid of the witness beam in the x direction by one matched spot size,

∆x = σm, while the centroid in y is still on the axis. Although the witness beam starts

off-axis in the x direction, we can see in Fig.5.4 (a) that the centroid in x, xc, is essentially

doing a simple harmonic motion, and the amplitude of the oscillation is not amplified like

what we see in hosing. This confirms that the ion motion induced by the witness beam alone

can mitigate the hosing instability.

In Fig. 5.4 (b), we can see that in the simulation where ∆x = σm, the emittance evolution

in x (blue) and y (orange) are similar, and they are also similar to the emittance evolution

when the beam has no initial offset (dashed green). Note that the green dashed curves in
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Fig. (5.4) are exactly the same as the blue curves in Fig. (4.2) since they come from the same

simulation. We can also see that the orange curve is closer to the dashed green curve than

the blue curve, and this makes sense because the beam’s initial offset is in the x direction

rather than in the y direction. In these simulations there was no energy spread, if there was

energy spread the saturated emittance would saturate at Eq. (5.16) and the centroid would

vanish.
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Figure 5.4: Results from a simulation with a witness beam initially offset from a driver where

only the witness beam induces ion motion. (a) The beam centroid evolution. It essentially

performs simple harmonic motion in x and essentially remains 0 in y. (b)(c) The emittance

and spot size evolution of the beam with an initial offset ∆x = σm in two transverse planes.

Emittance and spot size evolution are similar to the no offset case.

5.4.2.2 Drive beam triggers ion motion

We just observed that taking advantage of the ion motion triggered by the witness beam

can mitigate the hosing instability [56]. The initial offset of the witness beam, instead of

oscillating with an increasing amplitude, just oscillates with a nearly constant amplitude,

i.e., it does not grow.

However, a witness beam with an oscillating amplitude may not be a great idea because

this may lead to appreciable radiation and it could make the final collision at the interaction

point more challenging if there is not predictive knowledge of the precise transverse location

of the beam.
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Fortunately, it was discovered that the ion motion triggered by the drive beam can

eliminate this witness beam oscillation [55]. In the simulation used for Fig. 5.4 the drive

beam’s density is too low to trigger any ion motion (nb0/n0 = 4), and therefore all the ion

motion is triggered by the witness beam itself. The basic idea is that if the drive beam’s

density is high enough to trigger ion motion, ions will collapse on the axis defined by the

centroid of the driver. The witness beam will also effect the ions so the axis for the ‘effective’

ion collapse is between that of the driver and the witness bunch. Thus, the beam gets pulled

towards an ‘axis’ defined where the focusing force vanishes that is off axis the drive beam. It

thus overshoots the original axis by a smaller amount. This gradually decreases the offset.

The physics is actually quite complicated as it depends on how much ion collapse has been

triggered by the drive beam before the location of the witness beam, so simulations are

essential.

We demonstrate this process using QPAD [98]. We use FACET II like parameters where

there is a uniform preformed hydrogen plasma with density n0 = 4× 1016cm−3 that is 104 k−1
p0

(26.6 cm) long. The drive beam has an initial energy of 10 GeV, a normalized emittance

of ϵn = 1µm, and a tri-Gaussian density profile with σr = 0.52µm, σz = 12.8µm. It is

thus matched to the uniform plasma. The drive beam’s peak density nb0 = 4651.4n0 is high

enough to trigger ion motion at the location of the witness beam. The total charge of the

drive beam is 1.6 nC. The witness beam has the same initial energy, ϵn, σr as the drive

beam, but with a σz = 6.4µm. It has a total charge of 0.48 nC. The axial center of the

witness beam is located at a distance of 147.7µm behind the center of the drive beam, and is

offset by ∆x = 1µm ≈ 2σr from the axis. Both beams are initialized with no energy spread,

and we also turn off the longitudinal acceleration for both beams to isolate the transverse

dynamics. The simulation keeps m = 0, 1, ..., 5 azimuthal modes to resolve the asymmetry of

the problem (we did the convergence test by running another simulation using m = 0, 1, ..., 6

modes and found the results are identical).
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Figure 5.5: The beam centroid, emittance, transverse spot size evolution for a simulation

where the witness beam is offset from the drive beam and both the drive beam and witness

beam induce ion motion.

The simulation results are shown in Fig. (5.5). In (a) we can see the centroid of the

witness beam quickly damps to zero only after a few betatron oscillations, due to the ion

motion triggered by the drive beam. However, this is at the expense of a larger emittance

growth, as we can see in (b). The final saturated emittance is 3.4 times the initial emittance,

which corresponds to 240% growth. This is significantly larger than the case in Fig.5.4, where

the emittance growth is only ∼ 20%. The percentage increase in the saturated emittance

should scale as
∆x2

σ2
mi

(see Eq. (5.16)).

5.4.3 Using adiabatic plasma density ramps to reduce emittance growth

In the previous section, we found in a preliminary simulation that the ion motion from the

witness beam can mitigate the hosing instability. If the drive beam does not trigger ion

motion, the centroid of the witness beam will oscillate like a simple harmonic oscillator, and

the emittance growth is similar to the case when there is no offset. If we use a higher density

drive beam, such that the driver also triggers ion motion, the centroid of the witness beam

will quickly damp to zero, but at the expense of a much larger emittance growth.

Recall the conclusion from Eq. (5.16) is that for the same initial offset ∆x, increasing the

initial matched spot size σmi will reduce the emittance growth. Although this equation is
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derived assuming an axisymmetric linear focusing force (no ion motion), this idea may still

work in the presence of ion motion (a nonlinear focusing force), since the intuition is the

same: When using a larger initial spot size, the offset looks relatively small (compared with

the spot size), and this may lead to a better result.

In chapter 4 we used a large σmi to match the beam into a plasma with small initial ion

motion. Here, we use a larger σmi to make ∆x look relatively small. Although the motivation

is different, the philosophy is the same. We can achieve the desired goal by using a plasma

density ramp, because at the plasma entrance the density is low, the corresponding σmi is

large.

We carried out the following simulation with a similar setup as was used in 5.4.2.2. This

time, we include a 1.5×104 k−1
p0 (39.9 cm) long plasma density upramp before the 104 k−1

p0 (26.6

cm) long density plateau. The density at the entrance of the upramp is 1% of the density

at the plateau. We also add a symmetric density downramp after the density plateau. The

entire plasma density profile is 4× 104 k−1
p0 (106.4 cm) long, shown in Fig. (5.6)(a). The αm

is plotted as the red dashed curve. It forms half of a sinusoidal oscillation inside the upramp

(downramp), with A = |αm| bounded by 0.1, so the adiabatic condition holds for the entire

plasma. We used this type of density upramp so that the witness beam can be matched to

the entrance of the plasma with α = 0. Note that because the witness beam parameters

we used here are FACET II like, which have A < 0.1 ≪ 1 (the adiabatic condition strictly

holds), the emittance growth is insensitive to the exact form of the ramp. However, if the

witness beam parameters are LC like, for ramps with a reasonable length, A ∼ 1, like what

we showed in section 4.6.1. In that case, the upramp corresponding to an αm with a constant

slope (see Fig. 4.12(a)) works better in terms of emittance preservation. One hypothesis is

that for the type of ramp in Fig. 4.12(a), the matched C-S parameters at the entrance agree

with the C-S parameters at the entrance calculated from numerical backward-propagation

using Eq. (4.25) (see section 4.6.2). But more investigations are needed.

The drive beam is initialized with the same total charge, spot size σr, and bunch length
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σz at the plasma entrance as for the case in 5.4.2.2. However, in order that the matched

spot size be the same, the emittance of the drive beam is 10 times smaller (ϵn = 0.1µm) to

compensate for the lower density at the entrance. The witness beam still has the same total

charge and emittance, and has no initial energy spread. However, the matched spot size of

the witness beam is now 1.63µm. Everything else remains the same (the initial transverse

offset of the witness beam ∆x, the azimuthal mode number m, etc.).

0 10000 20000 30000 40000
z (c/ωp0)

0.00

0.25

0.50

0.75

1.00

n(
z)
/n

0

−0.10

−0.05

0.00

0.05

0.10

α m

(a)

0 10000 20000 30000 40000
z (c/ωp0)

−0.02

0.00

0.02

0.04

ce
nt

ro
id

  (
c/
ω
p0

)
xc
yc

(b)

0 10000 20000 30000 40000
z (c/ωp0)

0.035

0.040

0.045

0.050

ε n
(c
/ω

p0
)

x
y

(c)

0 10000 20000 30000 40000
z (c/ωp0)

0.00

0.02

0.04

0.06

σ
(c
/ω

p0
)

σx
σy
σm

(d)

Figure 5.6: (a) Plasma density profile (b)(c)(d) Evolution of the centroid, emittance, and

transverse spot sizes of the witness beam with an initial offset ∆x = 1µm.

The simulation results are shown in Fig. 5.6. In (b) we can see the offset of the witness

beam damps very quickly within a few betatron oscillations, and becomes essentially zero

before even entering the density plateau. Again, this is due to the ion motion induced by
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the drive beam. In Fig. 5.6(c) we found that the emittance growth is only around 30%.

Compared with Fig. 5.5(b), we can see that using adiabatic plasma density ramps reduces

the emittance growth by almost an order of magnitude!

5.5 Asymmetric beams

In LC designs, asymmetric emittances are used to minimize the beamstrahlung that occurs

during disruption at the final focus. In such a case, the ion collapse also becomes asymmetric,

and emittance growth becomes more complicated. Preliminary results in Ref. [47] showed

that the growth of
√
ϵNxϵNy is even smaller than the symmetric case, assuming we still

linearly match the beam to the plasma.

In this section, we try to use QPAD to self-consistently simulate an asymmetric witness

beam, which Ref. [47] was not able to do. However, the asymmetric witness beam used

in Ref. [47] has a large ratio of ϵNx/ϵNy (ϵNx/ϵNy = 2µm/0.005µm = 400), which is very

challenging for QPAD because we would need to use numerous azimuthal modes to simulate

such a highly asymmetric beam. Therefore, we used a slightly asymmetric witness beam

with ϵNx = 2µm, ϵNx = 0.5µm instead for our preliminary study.

We are interested in how the adiabatic plasma density ramps affect the emittance evolu-

tion for this asymmetric witness beam. To investigate this, we use the simulation parameters

from section 4.6.1. We still use the plasma density profile described by the black curve in

Fig. 4.12(a). The driver is still the same as the one described in section 4.6.1. Most of

the witness beam parameters are also the same, but with the following differences: 1. The

initial normalized emittance in x, y are ϵNx = 2µm, ϵNx = 0.5µm respectively corresponding

to initially matched spot sizes of σx = 1.468µm and σy = 0.734µm respectively, 2. The

longitudinal resolution is ∆ξ = 5× 103k−1
p0 , and 3. We used m = 0, 1, 2 azimuthal modes.
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Figure 5.7: Normalized emittance, spot size, α, and aspect ratio, σx/σy evolution for an

asymmetric witness beam.

The evolution of the witness beam is shown in Fig. (5.7). Surprisingly, the emittance

in x, which starts with a larger value, decreases throughout the entire process! It turns

out that ϵNx decreases by 17%, and ϵNy increases by 73%. If we calculate their geometric

mean, we find that
√
ϵNxϵNy has only a 20% growth. The spot sizes in the two transverse

planes are shown in Fig. 5.7(b). From the spot size evolution we can see that the degree of

asymmetry of the beam seems to decrease as the beam propagates. This is shown explicitly

in Fig. 5.7(d), where the aspect ratio, σx/σy, decreases from 2 to 1.4, suggesting that the

beam becomes more “round” when it exits the plasma ramp. The α in two planes evolve in

a similar way, as shown in Fig. 5.7(c).
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Note that this study is very preliminary. For more asymmetric beams the use of a full

quasi-static code with mesh refinement, such as QuickPIC will be more appropriate.

5.6 Afterburner concept

The afterburner concept is the idea of placing a short plasma section at the end of an

existing collider to double the center of mass energy at the collision point [2]. Electrons

and positrons are accelerated to the collider’s nominal operating energy, overcompressed to

form two microbunches each, then the trailing half-bunches are doubled in energy over a

few meters in the plasma afterburner. An afterburner could be also be placed at the end of

either a LWFA or PWFA linear collider.

Figure 5.8: Schematic of the plasma afterburner concept [2]. Plasma wake field acceleration

(WFA) sections are placed at the interaction point (IP); short plasma lens sections of higher

density further focus the beams before collision. Note that the WFAs are not symmetric; the

positron section may be longer to reach the same energy and may have a channel to enhance

the wake.

Simulating an afterburner stage at the 500 GeV energy level is computationally challeng-

ing, since doubling the energy of a beam at this very high energy requires tens of meters

acceleration distance and very small matched spot sizes. This requires running very long

simulations with many cells. However, typically nothing really interesting happens in the

uniform acceleration section because the beam has stabilized. The emittance does not re-

ally grow because it has already saturated, and the spot size gradually decreases due to
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the acceleration (adiabatic damping). Therefore, we can simulate a much shorter uniform

acceleration section for the plasma afterburner, while gaining most of the physics insight.

We carry out simulations with the drive and witness beams having 500 GeV while the

emittances and current profiles are the same as for the cases in section 4.6.1. For those

higher energy beams the matched spot sizes are 201/4 times smaller, which would require

much smaller cell sizes to resolve. However, we have found that even for under resolved

simulations, ∆r ∼ σm, that the emittance growth is similar to the properly resolved cases.

Thus, in this preliminary simulation we used the same ∆r as was used in section 4.6.1. There

are only 3.5 ∆r across the minimal spot size of the witness beam in the simulation. We match

the witness beam directly into the uniform plasma with density n0 = 1017cm−3. We can see

that due to ion motion, the emittance quickly doubles and then saturates, similarly to what

happens to a 25 GeV beam shown in [47] and in chapter 4.
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Figure 5.9: Emittance and spot size evolution of a witness beam with initial energy of 500

GeV, initial emittance of 100 nm when directly matching to a uniform plasma with density

n0 = 1017cm−3

Next, we investigate the effect of plasma density ramps on the witness beam. We still

use a uniform plasma with density n0 = 1017cm−3, but add realistic plasma density ramps

at both the entrance and the exit of the density plateau. The entire plasma density profile
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is the same as the blue curve in Fig. 4.16(a).

To study how the emittance evolution depends on the initial emittance of the witness

beam, we ran three simulations, where the initial emittance of the witness beam is 100 nm,

200 nm, and 400 nm respectively. For each case, we match the witness beam into the plasma

using the numerically-backpropagation method described in section 4.6.2. The simulation

results are shown in Fig. 5.10. Note that there are 3.5, 5, 8 ∆r in the minimal spot size of

the witness beam in the simulation for cases where the initial emittances are 100 nm, 200

nm, 400 nm respectively.
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Figure 5.10: Evolution of 500 GeV witness beams with initial emittance of 100 nm, 200 nm,

400 nm respectively. The plasma density profile used in the simulation is the blue curve in

Fig. 4.16(a)

157



We can see in Fig. 5.10(a) that the beam with a smaller initial emittance has a larger

percentage emittance growth. This is intuitive since smaller emittance corresponds to smaller

spot size (as we can see in Fig. 5.10(b)), which leads to more ion motion. We also note that

20% ∼ 40% emittance growth for a witness beam with a few hundred nanometers emittance

may be satisfactory for the afterburner. In Fig. 5.10(c) and (d) we can see that the α

and energy of the beams evolve in a very similar way, despite the difference in their initial

emittance.

5.7 Summary

In this chapter, we described some preliminary investigations of several additional issues

for a plasma-based linear collider through QPAD simulations. The first one is staging. In

order to build a TeV class linear collider, multiple acceleration stages must be cascaded

together. Preliminary QPAD simulation results showed that after the beam exits from the

previous acceleration stage, the beam’s emittance growth in the next stage will be similar

to that in the previous stage. In this simulation we refocused the beam to the same spot

size but opposite α at the entrance of the next acceleration stage. This requires an accurate

beam delivery / focusing system between two adjacent stages. We also showed that a shaped

witness beam which provides better beam loading can provide improved energy spread of the

witness beam. It was found that the emittance growth induced by ion motion is still limited

when using a matching section. The third issue is the offset of the witness beam. Although

it has been shown that ion motion triggered by the witness beam can mitigate the hosing

instability, resulting in the witness beam oscillating around the axis, this is still not desirable

for a collider as it can also lead to significant betatron radiation as well as make it difficult

to collide the beams. We showed that ion motion induced by the drive beam can ‘drag’ the

centroid of the witness beam back on the axis, but at an expense of a large emittance growth.

Inspired by the analytical expression of the saturated emittance in the absence of ion motion,
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increasing the initial matched spot size of the beam can mitigate the emittance growth for a

given initial offset. This can be achieved by using a plasma density ramp. Preliminary results

showed that the combination of a carefully chosen drive beam that triggers ion motion and

an adiabatic plasma ramp can eliminate the beam’s initial offset and reduce the emittance

growth by an order of magnitude. We also explored the evolution of an asymmetric witness

beam in a plasma with adiabatic density ramps. Preliminary result showed that in the two

transverse planes, the emittance with a larger initial value can decrease during the entire

process. Last, we carried out simulations with 500 GeV witness beams with different initial

emittance to get insight for an afterburner. The parameter scan showed that the beam with

a smaller initial emittance has a larger emittance growth in percentage. The results in this

chapter are not meant to be definitive, but rather to be an impetus for future work.
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CHAPTER 6

Summary and final thoughts

Experiments on plasma-based acceleration have demonstrated ultra-high acceleration gradi-

ents, acceleration over meter and pump depletion distances, high energy transfer efficiency

from a drive beam to a witness beam, positron acceleration, and staging. Therefore, there

are now serious conversations regarding the development of roadmaps for true designs of

a plasma-based linear collider. For example, while each of the aforementioned milestones

relate to essential components of a collider, they have not been demonstrated for a true pro-

totype of a single or multiple stage of a PBA-LC. Thus many challenges remain. Emittance

preservation is believed to be one of the biggest challenges. In this dissertation, the evolution

and growth of emittance, and the mitigation of emittance growth are investigated for the

nonlinear blowout regime of PBA. Different scenarios were considered, including a plasma

plateau, a plateau with density up and downramp matching sections, cases with and without

acceleration, and cases with and without ion motion. Parameters close to FACET II (10 GeV

and ϵn = 1µm) and (parameters those relevant to a PBA-LC (25 GeV and ϵn = 0.1µm) were

studied.

In chapter 2, important concepts and results are reviewed and new results are given to set

the stage for the later chapters. Details on the motion of a single witness beam particle were

given. The “exact” solution to the transverse equation of motion of a single beam particle was

derived under the weak assumption that acceleration happens adiabatically. Approximate

solutions were obtained under the additional assumption that the plasma density changes

adiabatically, which is just the WKB assumption. These solutions were used to introduce
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the C-S parameters for a single particle and it was shown how they are related to the C-S

parameters for an ensemble or particles, i.e., a beam. The transport matrix for various cases

were given as well as the concepts of the geometric and normalized emittance of a beam.

It was shown that the emittance of a matched beam is conserved even if there is energy

spread so long as there is no acceleration; and it was shown that the normalized emittance

is conserved where there is no energy spread but there is acceleration. While the results

presented in Chapter 2 are mostly review it does contain some new perspectives and results.

Furthermore, it provides a comprehensive description on emittance preservation from both

the single particle and beam points of view. These results will be used in Chapter 3 to study

the beam evolution in plasma density ramps.

In Chapter 3, analytical expressions for the evolution of the beam emittance and the C-S

parameters in an arbitrary adiabatic plasma profile are derived base on the WKB solution

to the Hill like equation (the acceleration of the beam and ion motion inside the plasma

are neglected). Several important corollaries of the expressions were given: 1. The beam

emittance can be preserved in an adiabatic plasma ramp under the matching condition

assumption, even when the beam has an initial energy spread and 2. The emittance growth

for an unmatched beam is minimized when it is focused to the same vacuum plane as for a

matched beam. These corollaries were confirmed with 3D QuickPIC simulation results.

Simulations with parameters that are consistent with FACET II capabilities showed that

even when some assumptions used in deriving the analytical expressions are not satisfied,

the emittance growth can still be minimized by choosing the optimal focal plane. QuickPIC

simulations for FACET II experiments where the lithium plasma source is sandwiched by a

helium buffer gas showed how the emittance evolution was affected by the nonlinear focusing

force triggered by the field ionization of the helium gas.

However, the parameters available at FACET II cannot meet the requirement of the

luminosity of a linear collider. In some plasma-based LC designs the extreme accelerating

beam parameters are expected to trigger background ion motion. This means the important
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assumption about “fixed ion background” we made in chapter 3 is no longer valid. Ion motion

could be deleterious as it can lead to longitudinally varying nonlinear focusing forces and

thus result in emittance growth of the beam. In Chapter 4, a mitigation method that uses an

adiabatic plasma density ramp as a matching section was proposed. This concept requires

matching the witness beam to the low density plasma entrance, where the beam initially

has a large matched spot size so the ion motion effects are relatively small. As the beam

propagates in the plasma density upramp (downramp), it is adiabatically focused (defocused)

and its distribution evolves slowly towards an equilibrium distribution including the effects

of the adiabatically changing ion motion. Simulation results from QPAD show that within a

single acceleration stage, this concept can limit the projected emittance growth to only ∼2%

for a 25 GeV 100 nm and ∼20% for a 100 GeV, 100 nm emittance witness beam respectively.

The trade-off between the adiabaticity of the plasma density ramp and the initial ion motion

at the entrance for a given length of the plasma density ramp is also discussed.

In Chapter 5, additional issues for building a plasma based linear collider are investigated

using particle-in-cell simulations. Preliminary simulation results showed that: 1. Even in the

presence of ion motion, the beam’s emittance growth in a later stage can be similar to that

in the previous stage, assuming the beam can be properly delivered and refocused between

stages. 2. A shaped witness beam can improve beam loading, i.e., reduce the variation

of the accelerating field, and thus reduce the induced energy spread during acceleration.

The emittance evolution is therefore still dominated by ion motion, given that the beam is

matched properly. 3. Ion motion from the drive beam and plasma density ramps together

can eliminate an offset of the witness beam with respect to the drive beam while reducing the

emittance growth by a significant amount. 4. When an asymmetric witness beam evolves in

a plasma with density ramps, the emittance in the direction with the larger initial value can

decrease over the entire process. 5. In an afterburner, the emittance growth of a 500 GeV

witness beam with a few hundred nanometers emittance is estimated to be 20% ∼ 40%, and

the emittance growth in percentage appears to be smaller if the initial emittance is larger.
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The results of this dissertation show that emittance preservation for the electron arm

of a PBA-LC may be possible. The results point toward the need of for carefully designed

experiments on the use of matching sections. The results also indicate areas for future

theoretical and simulation work. These include emittance preservation and matching in

positron acceleration and alignment and emittance preservation of asymmetric beams.
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APPENDIX A

Conserved quantity for a plasma particle in a wakefield

For completeness, in this appendix we will derive a conservation law for a plasma electron

moving in a plasma wave wakefield that is valid within the QSA,

γ − pz = 1 + ψ (A.1)

where pz and ψ are in normalized units.

We start from the equation of momentum in the axial directions,

dpz
dt

= −e(E+ v ×B) · ẑ = −Ez − (v ×B) · ẑ (A.2)

and the equation of conservation of energy,

d(γmc2)

dt
= −ev · E = −v · E (A.3)

where we henceforth use normalized units, so e = 1, m = 1, and c = 1. Substituting Eq. (1.4)

(which has the same form in normalized units) into Eqs. (A.2) and (A.3) gives,

dpz
dt

=
∂ϕ

∂z
+
∂Az

∂t
− (v × (∇×A)) · ẑ

=
∂ϕ

∂z
+
∂Az

∂t
− (∇A · v − v · ∇A) · ẑ

=
∂ϕ

∂z
+
∂Az

∂t
− (

∂A

∂z
· v − (v · ∇)Az)

(A.4)

and

dγ

dt
= v · ∇ϕ+ v · ∂A

∂t
(A.5)

Subtracting Eq. (A.4) from Eq. (A.5) gives,
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d

dt
(γ − pz) = (v · ∇)(ϕ− Az) + v · ( ∂

∂t
+

∂

∂z
)A− ∂ϕ

∂z
− ∂Az

∂t

= (v · ∇+
∂

∂t
)(ϕ− Az) + v · ( ∂

∂t
+

∂

∂z
)A− (

∂

∂t
+

∂

∂z
)ϕ

=
d

dt
ψ + v · ( ∂

∂t
+

∂

∂z
)A− (

∂

∂t
+

∂

∂z
)ϕ

(A.6)

where we used Eq. (1.24) and
d

dt
≡ ∂

∂t
+ v · ∇ for field quantities in the last step. We

recognize that
∂

∂t
+

∂

∂z
=

∂

∂s
(see Eqs.(1.6) and (1.7)), which can be neglected within the

QSA to obtain

d

dt
(γ − pz − ψ) = 0 (A.7)

from which it follows that γ − pz − ψ is a constant. If we assume that the plasma is at rest

in front of the beam, where ψ = pz = 0, then,

γ − pz − ψ = (γ − pz − ψ)|t=−∞ = 1 (A.8)

which is just Eq. (A.1).
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APPENDIX B

General analysis of a second order ordinary differential

equation

In this appendix we analyze properties for solutions to general second order homogeneous

differential equations of the following form,

x′′(z) + p(z)x′(z) + q(z)x(z) = 0 (B.1)

which is the general form of the transverse equation of motion of a particle in a wakefield. If

we define p(z) = γ′(z)/γ(z) and q(z) = kβ(z)
2 then Eq. (B.1) reduces to Eq. (2.9). Without

longitudinal acceleration, p(z) = 0, and Eq. (B.1) reduces to Eq. (2.11).

We denote the two independent solutions of Eq. (B.1) as x1(z) and x2(z). From the

theory of differential equations, the Wronskian, defined as,

W (z) =

∣∣∣∣∣∣x1(z) x2(z)

x′1(z) x′2(z)

∣∣∣∣∣∣ (B.2)

is non-zero everywhere.

Using Eq. (B.1), it is easy to show W ′(z) = −p(z)W (z) which can be integrated to get

W (z) = W (z0)e
−

∫ z
z0

p(z)dz
(B.3)

which implies that if W (z0) does not vanish then W (z) never vanishes. We note that if W

does not vanish then the matrix constructed for the linearly independent solutions, x1 and

x2, x1(z) x2(z)

x′1(z) x′2(z)

 (B.4)

166



is invertible.

Therefore, the general solutions for x and x′ are

x(z) = C1x1(z) + C2x2(z) (B.5)

and

x′(z) = C1x
′
1(z) + C2x

′
2(z) (B.6)

These can be combined asx(z)
x′(z)

 =

x1(z) x2(z)

x′1(z) x′2(z)

C1

C2

 (B.7)

where the two constants can be obtained from the initial conditions: x(0) and x′(0) as follows.

We evaluate Eq. (B.7) at z = 0x(0)
x′(0)

 =

x1(0) x2(0)

x′1(0) x′2(0)

C1

C2

 (B.8)

and then recall that since W ̸= 0 this can be inverted to obtainC1

C2

 =

x1(0) x2(0)

x′1(0) x′2(0)

−1x(0)
x′(0)

 (B.9)

This can then be substituted back into Eq. (B.8) to obtainx(z)
x′(z)

 =

x1(z) x2(z)

x′1(z) x′2(z)

x1(0) x2(0)

x′1(0) x′2(0)

−1x(0)
x′(0)

 (B.10)

We can now define a transformation matrix in trace space as

Mtrace =

x1(z) x2(z)

x′1(z) x′2(z)

x1(0) x2(0)

x′1(0) x′2(0)

−1

(B.11)
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The determinant of Mtrace can be calculated,

det(Mtrace) = det

x1(z) x2(z)

x′1(z) x′2(z)

 det(

x1(0) x2(0)

x′1(0) x′2(0)

−1

)

=

det

x1(z) x2(z)

x′1(z) x′2(z)


det

x1(0) x2(0)

x′1(0) x′2(0)


=
W (z)

W (0)

= e−
∫ z
0 p(z)dz

(B.12)

from which it follows that the det(Mtrace) = 1 only when p(z) = 0. Therefore, in general,

the determinant of the transformation matrix (Jacobian) in trace space is not unity, and the

area in trace space is not conserved (unless p(z) = 0).

However, as we show next the determinant of the transformation matrix in phase space

is unity, and thus the phase space area is conserved. To see this, we apply the result from

our general theory to the specific case, described by Eq. (2.9) which we rewrite here

x′′ +
γ′

γ
x′ + k2βx = 0 (B.13)

where γ′

γ
= p(z) and k2β = q(z) for the general case. Therefore, for this case,

det(Mtrace) = e−
∫ z
0

γ′
γ
dz′

=
γ0
γ

(B.14)

This result indicates that γ det(Mtrace) is constant and thus phase space, (x, px), and not

trace space area is conserved. This can also be proven straightforwardly by following the

same procedure from above. We first rewrite x, px in terms of x1, x2, x
′
1, x

′
2 and γ x(z)

px(z)

 =

 x(z)

γx′(z)

 =

 x1(z) x2(z)

γx′1(z) γx′2(z)

C1

C2

 (B.15)
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The constants C1 and C2 can be evaluated by evaluating Eq. (B.15) at z = 0 x(0)

px(0)

 =

 x(0)

γ0x
′(0)

 =

 x1(0) x2(0)

γ0x
′
1(0) γ0x

′
2(0)

C1

C2

 (B.16)

and then inverting Eq. (B.16) to obtain x(z)

px(z)

 =

 x1(z) x2(z)

γx′1(z) γx′2(z)

 x1(0) x2(0)

γ0x
′
1(0) γ0x

′
2(0)

−1 x(0)

p′x(0)

 (B.17)

The phase space transformation matrix is therefore,

Mphase =

 x1(z) x2(z)

γx′1(z) γx′2(z)

 x1(0) x2(0)

γ0x
′
1(0) γ0x

′
2(0)

−1

(B.18)

The determinant for Mphase is therefore

det(Mphase) = det

 x1(z) x2(z)

γx′1(z) γx′2(z)

 det(

 x1(0) x2(0)

γ0x
′
1(0) γ0x

′
2(0)

−1

)

=
γ

γ0
det

x1(z) x2(z)

x′1(z) x′2(z)

 det(

x1(0) x2(0)

x′1(0) x′2(0)

−1

)

=
γ

γ0
det(Mtrace)

=
γ

γ0

γ0
γ

= 1

(B.19)

The determinant of the transformation matrix (Jacobian) in phase space is unity, and the

phase space area is conserved.
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APPENDIX C

WKB analysis of the Hill like equation

The WKB theory has numerous subtleties and requires insight. We first introduce a small

parameter ϵ into the equation,

ϵ2x′′(z) + kβ(z)
2x(z) = 0 (C.1)

We then assume an ansatz for x(z), which is called the WKB series,

x(z) ∼ exp

[
1

ϵ

∞∑
n=0

Sn(z)ϵ
n

]
(C.2)

Substituting this into Eq. (C.1), leads to(
∞∑
n=0

S ′
n(z)ϵ

n

)2

+ ϵ
∞∑
n=0

S ′′
n(z)ϵ

n + kβ(z)
2 = 0 (C.3)

which can be rewritten as,

∞∑
n=0

ϵn
n∑

i=0

S ′
i(z)S

′
n−i(z) +

∞∑
n=1

S ′′
n−1(z)ϵ

n + kβ(z)
2 = 0 (C.4)

An expansion is obtained if it is assumed that terms grouped for each power of ϵn vanish

separately,

S ′
0(z)

2 + kβ(z)
2 = 0 (C.5)

n∑
i=0

S ′
i(z)S

′
n−i(z) + S ′′

n−1(z) = 0 (n ≥ 0) (C.6)

The zero order term (Eq. (C.5)) can be solved easily,

S0(z) = ±i
∫
kβ(z)dz (C.7)
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The first order equation (n = 1 in Eq. (C.6)) is:

2S ′
0(z)S

′
1(z) + S ′′

0 (z) = 0 (C.8)

leading to

S1(z) = −
∫

S ′′
0 (z)

2S ′
0(z)

dz = −1

2

∫
k′β(z)

kβ(z)
dz = −1

2
ln kβ(z) (C.9)

We can continue this iterative process to solve for S2(z), S3(z), ... using Eq. (C.6). In

practice this is not usually done, and we usually only keep the first 2 terms. But here we

give the expression for S2 as well:

S2 = ±i
3k′2β − 2k′′βkβ

8k3β
(C.10)

If we only keep the first two terms and set ϵ = 1, we are left with:

x(z) ∼ exp(S0(z) + S1(z)) =
1√
kβ(z)

exp

[
±i
∫
kβ(z)dz

]
(C.11)

which is the same result of Eq. (2.38) in chapter 2. We can take the linear combination of

these two solutions and get the real representation, and after imposing initial conditions, our

final WKB solution is,

x(z) = x(0)

√
kβ(0)

kβ(z)
cos

(∫ z

0

kβ(s)ds

)
+
x′(0) + x(0)

k′β(0)

2kβ(0)√
kβ(0)kβ(z)

sin

(∫ z

0

kβ(s)ds

)
(C.12)
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APPENDIX D

Derivations of relationships used in Chapter 3

D.1 Calculation of the evolution of the beam spot size:
√

⟨x2⟩

In this appendix we provide details on calculating the second moment of the beam, i.e., the

square of the spot size,

⟨x2⟩ =
∫
x2f(x, x′)dxdx′

=

∫
x2fi(xi, x

′
i)dxidx

′
i

=

∫
(M11xi +M12x

′
i)
2fi(xi, x

′
i)dxidx

′
i

(D.1)

where f(x, x′) is the distribution function at z and fi is the initial distribution function.

From the Vlasov equation we have f(x, x′) = fi(xi, x
′
i), and dxdx

′ = dxidx
′
i because det(M)

= 1.

The last step above is correct only if all the particles have the same energy. However,

since different particles have different energy γ, their corresponding transport matrices M

are different. In order to calculate the above integral with an energy spread in the beam, we

assume the main difference in M is the phase advance ϕ. Even though the βm, αm in M are

different (because of different γ), we assume them to be the same for all the particles and use

γ = γ̄ (γ̄ is the mean energy among all the particles), while claiming the main difference in

the motion of particles is the variation in ϕ due to their different energy γ. After the beam

propagates for a distance z, we denote the distribution of the phase advance ϕ as fϕ(ϕ) (with

the normalization
∫
fϕ(ϕ)dϕ = 1), leading to,
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⟨x2⟩ =
∫∫∫

(M11xi +M12x
′
i)
2fi(xi, x

′
i)fϕ(ϕ)dxidx

′
idϕ

= ⟨x2i ⟩
∫
dϕfϕ(ϕ)M

2
11 + ⟨x′2i ⟩

∫
dϕfϕ(ϕ)M

2
12

+ ⟨xix′i⟩
∫
dϕfϕ(ϕ)2M11M12

= ϵi

[
βi

∫
dϕfϕ(ϕ)M

2
11 + γi

∫
dϕfϕ(ϕ)M

2
12

− αi

∫
dϕfϕ(ϕ)2M11M12

]
(D.2)

where ∫
dϕfϕ(ϕ)M

2
11

=
βm
βmi

∫
dϕfϕ(ϕ)(cosϕ+ αmi sinϕ)

2

=
1

2

βm
βmi

[(1 + C) + α2
mi(1− C) + 2αmiS]

=
1

2

βm
βmi

[βmiγmi + (1− α2
mi)C + 2αmiS]

∫
dϕfϕ(ϕ)M

2
12

= βmβmi

∫
dϕfϕ(ϕ) sin

2 ϕ

=
1

2
βmβmi(1− C)

∫
dϕfϕ(ϕ)2M11M12

= βm

∫
dϕfϕ(ϕ)(2 cosϕ sinϕ+ 2αmi sin

2 ϕ)

= βm[S + αmi(1− C)]

(D.3)

and where

C =

∫
dϕfϕ(ϕ) cos 2ϕ, S =

∫
dϕfϕ(ϕ) sin 2ϕ (D.4)
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Finally, we obtain:

⟨x2⟩ = ϵiβm

[βiγmi + γiβmi − 2αiαmi

2

+ (
βi
βmi

− βiγmi + γiβmi + 2αiαmi

2
)C

+ (
βi
βmi

αmi − αi)S
] (D.5)

We can define:

A =
βiγmi + γiβmi − 2αiαmi

2

B1 =
βi
βmi

− A =
βi
βmi

− βiγmi + γiβmi − 2αiαmi

2

B2 =
βi
βmi

αmi − αi

(D.6)

Leading to:

⟨x2⟩ = ϵiβm(A+B1C +B2S) (D.7)

D.2 Proof of A ⩾ 1

A =
βiγmi + γiβmi − 2αiαmi

2

⩾
2
√
βiγmiγiβmi − 2αiαmi

2

=
√
(1 + α2

i )(1 + α2
mi)− αiαmi

=
√
1 + α2

i + α2
mi + α2

iα
2
mi − αiαmi

⩾
√
1 + 2αiαmi + α2

iα
2
mi − αiαmi

= |1 + αiαmi| − αiαmi

⩾ 1

(D.8)
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D.3

In this appendix we derive the first order correction to the phase advance due to variations

of the energy of the particle. We begin with the definition for the phase

ϕ =

∫ z

0

ωp(s)√
2γc

ds (D.9)

Due to the variation of γ, the variation of ϕ is

∆ϕ = ∆

∫ z

0

ωp(s)√
2γc

ds

=

∫ z

0

∆(
ωp(s)√
2γc

)ds

=

∫ z

0

−1

2
(
ωp(s)√
2γ

3
2 c
)∆γds

= −∆γ

2γ

∫ z

0

ωp(s)√
2γc

ds

= − ϕ

2γ
∆γ

(D.10)

So the difference between the phase advance of a particle with energy γ and the phase

advance of a particle with the average energy γ̄ is

ϕ(γ)− ϕ(γ̄) = −ϕ(γ̄)
2γ̄

∆γ (D.11)

and

ϕ(γ) = ϕ̄− ϕ̄

2γ̄
∆γ (D.12)

D.4 Differential equation for β

In this appendix, we offer a derivation of equation (3.40) in chapter 3. We start from the

definition of the beam’s spot size:

σx =
√

⟨x2⟩ (D.13)
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Taking derivatives with respect to z provide:

σ′
x =

⟨xx′⟩
σx

(D.14)

σ′′
x =

⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2

σ3
x

+
⟨xx′′⟩
σx

(D.15)

Using the definition of geometric emittance (3.9) and the equation of motion (3.1), leads to:

σ′′
x =

ϵ2

σ3
x

− k2βσx (D.16)

If we assume the beam has no energy spread, then under a linear focusing force, the beam’s

normalized emittance ϵn is a constant, so ϵ = ϵn/γ is also a constant. Finally, if we use the

definition of β: β = σ2
x

ϵ
, we obtain

1

2
ββ′′ − 1

4
β′2 + β2k2β = 1 (D.17)
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APPENDIX E

Derivations of expressions used in Chapter 4

E.1 Adiabatic ramp design

In this Appendix, we show how to design the plasma density upramp such that the αm

linearly decreases from αmi to 0. Assume the plasma density upramp is in the range of

−L ≤ z ≤ 0, where L is the length of the upramp, then we have:

αm(z) = −αmi
z

L
(E.1)

From αm(z) = −1
2
dβm(z)

dz
, we can get:

βm(z) = βm0 + αmi
z2

L
(E.2)

We also assume that the beam’s energy is a constant when propagating in the density ramp

(This prior assumption can be verified in the simulation). From βm(z) =
√
2γ̄

c

ωp(z)
, we get:

n(z)

n0

=
ωp(z)

2

ω2
p0

=
β2
m0

βm(z)2
=

1(
1 +

αmiz
2

βm0L

)2 (E.3)

The density at the entrance, ni, is related to αmi and L by the constraint:

ni

n0

=
n(−L)
n0

=
1(

1 +
αmi

βm0

L

)2 (E.4)

So among ni, αmi, L, we can choose two parameters, and the third one is determined by the

constraint above. Note that if we want the degree of ion motion to be small at the entrance
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(small ni), and also an adiabatic plasma ramp (small αmi), then we have to use a longer

upramp (large L). So there is a trade off among the (1) degree of ion motion at the entrance

(2) adiabaticity of the ramp, and (3) length of the ramp. This trade off is something we

need to consider when designing the ramp.

E.2 Ion motion parameter for a linearly matched beam

In this Appendix, we calculate the ion motion parameter Φb when the beam is linearly

matched to the plasma. This follows arguments in Ref. [45] and Ref. [46].

Assume the density profile of the witness beam is transversely bi-Gaussian and longitu-

dinally a flat-top, with a bunch length Lb, then the peak density is given by:

nb0 =
N

2πσ2
rLb

(E.5)

If the beam is linearly matched to the plasma, then we substitute σr with equation (4.12)

and get:

nb0 =

√
γ̄

2

Nωp

2πLbϵnc
(E.6)

Substituting the expression above into equation(4.7) leads to,

Φb = kiLb

=

(
Z
nb0/n0

2M/m
k2p0L

2
b

) 1
2

=

(
Z

1

2π

1

2M/m

√
γ̄

2
N
k3p0
n0

Lb

ϵn

√
n

n0

) 1
2

(E.7)

where n0 is the initial electron density and Zni0 = n0. If the beam is Gaussian along z with

a bunch length σz, similarly we can get,

nb0 =
N

(2π)
3
2σ2

rσz
(E.8)
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Φb = ki(
√
2πσz)

=

(
Z
nb0/n0

2M/m
k2p0(

√
2πσz)

2

) 1
2

=

(
Z

1√
2π

1

2M/m

√
γ̄

2
N
k3p0
n0

σz
ϵn

√
n

n0

) 1
2

(E.9)

E.3 Nonlinear matching the spot size in a uniform plasma

In this appendix, we numerically find the approximated steady state spot size of the beam

in a given nonlinear focusing force described by the 1D Gaussian phenomenological model.

Details of the derivation will appear in a future publication by Hildebrand et al. We start

from the definition of the beam spot size,

σx =
√
< x2 > (E.10)

and then take the first and second derivatives with respect to z to get

σ′
x =

< xx′ >

σx
(E.11)

and

σ′′
x =

< x′2 >< x2 > − < xx′ >2

σ3
x

+
< xx′′ >

σx

=
ϵ2x
σ3
x

+
< xFx >

γσx

(E.12)

where we have assumed the beam has no energy spread. At steady state, σ′′
x = 0. If

Fx is linear in x, Fx = −kβx, then we obtain Eq. (2.71) in chapter 2. However, even if

Fx is nonlinear, useful expressions can still be obtained. For example, consider the 1D

phenomenological model for Fx including ion motion,

nion(x)/n0 = 1 + A0 exp
(
−x2/2σ2

ion

)
(E.13)

Fx(x) = −x
2
− A0σ

2
ion

1− exp
(

−x2

2σ2
ion

)
x

(E.14)
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We cannot determine < xFx > as a function of σ because we do not know the beam dis-

tribution function in x. We therefore assume the beam’s steady state distribution can be

approximated by a Gaussian distribution:

f(x) =
1√
2πσx

exp

(
− x2

2σ2
x

)
(E.15)

Under this assumption

< xFx > =

∫ +∞

−∞
xFxf(x) dx

= −σ
2
x

2
− A0σ

2
ion

(
1− σion√

σ2
x + σ2

ion

) (E.16)

which leads to the following steady state or nonlinear matching condition,

0 =
ϵ2x
σ3
x

− 1

γ

(
σx
2

+
A0σ

2
ion

σx

(
1− σion√

σ2
x + σ2

ion

))
(E.17)

For given ion collapse model parameters (A0 and σion) and given beam parameters (ϵx

and γ), we can find a numerical solution to σx for the above equation, which is a reasonable

estimate of beam’s steady state spot size.
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