
UC Davis
UC Davis Previously Published Works

Title
The network of epithelial–mesenchymal transition: potential new targets for tumor 
resistance

Permalink
https://escholarship.org/uc/item/33s2p3cc

Journal
Journal of Cancer Research and Clinical Oncology, 141(10)

ISSN
0171-5216

Authors
Nantajit, Danupon
Lin, Dong
Li, Jian Jian

Publication Date
2015-10-01

DOI
10.1007/s00432-014-1840-y
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/33s2p3cc
https://escholarship.org
http://www.cdlib.org/


1 3

J Cancer Res Clin Oncol (2015) 141:1697–1713
DOI 10.1007/s00432-014-1840-y

REVIEW – CANCER RESEARCH

The network of epithelial–mesenchymal transition: potential new 
targets for tumor resistance

Danupon Nantajit · Dong Lin · Jian Jian Li 

Received: 2 September 2014 / Accepted: 20 September 2014 / Published online: 1 October 2014 
© Springer-Verlag Berlin Heidelberg 2014

help to understand how tumors exploit the EMT mecha-
nisms for their survival and expansion advantages.
Conclusions The knowledge of EMT will offer more 
effective targets in clinical trials to treat therapy-resistant 
metastatic lesions.

Keywords Epithelial–mesenchymal transition · 
Metastasis · Cancer stem cell · Tumor aggressiveness · 
Therapeutic resistance

Epithelial–mesenchymal transition (EMT)

EMT is a fundamental biological process by which epithe-
lial cells undergo biochemical shifts to become mesenchy-
mal cells in order to generate or regenerate tissues that have 
different polarization from the original epithelia (Larue and 
Bellacosa 2005; Thompson et al. 2005). Upon EMT, epi-
thelial cells, the apicobasal-polarized adherent cells with 
intracellular adherent complexes, undergo multiple bio-
logical changes that enable them to become non-polarized 
elongated mesenchymal cells that lack intercellular junc-
tions and can move throughout the extracellular matrix 
(Thiery and Sleeman 2006). Three types of EMT have been 
described: A, EMT type 1, associated with implantation, 
embryo formation, and organ development in embryonic 
stage after fertilization; B, EMT type 2, associated with 
wound healing, tissue regeneration and organ fibrosis; and 
C, EMT type 3, related to cancer progression and metastasis 
(Kalluri 2009; Kalluri and Weinberg 2009). Though having 
a similar group of governing genes and biochemical ele-
ments, different EMT is distinct to one another by cell types 
and tissues and occur at different developmental stages of 
an organism (Baum et al. 2008; Micalizzi et al. 2010). Cells, 
proteins, as well as stimuli vary with certain overlaps in 
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Purpose In multiple cell metazoans, the ability of polar-
ized epithelial cells to convert to motile mesenchymal cells 
in order to relocate to another location is governed by a 
unique process termed epithelial–mesenchymal transition 
(EMT). While being an essential process of cellular plas-
ticity for normal tissue and organ developments, EMT is 
found to be involved in an array of malignant phenotypes 
of tumor cells including proliferation and invasion, angio-
genesis, stemness of cancer cells and resistance to chemo-
radiotherapy. Although EMT is being extensively studied 
and demonstrated to play a key role in tumor metastasis 
and in sustaining tumor hallmarks, there is a lack of clear 
picture of the overall EMT signaling network, wavering the 
potential clinical trials targeting EMT.
Methods In this review, we highlight the potential key 
therapeutic targets of EMT linked with tumor aggressive-
ness, hypoxia, angiogenesis and cancer stem cells, empha-
sizing on an emerging EMT-associated NF-κB/HER2/
STAT3 pathway in radioresistance of breast cancer stem 
cells.
Results Further definition of cancer stem cell repopula-
tion due to EMT-controlled tumor microenvironment will 
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phenotypic similarities and pathway mechanisms. An epi-
thelial cell undergoing EMT may present morphological 
changes from a cobblestone monolayer stationary cell to a 
motile spindle shape cell switching differentiation markers 
from cell–cell junction proteins and cytokeratin intermedi-
ate filaments to Fibronectin and Vimentin filaments. Deg-
radation of underlying basement membrane and abilities to 
migrate and invade through extracellular matrix of epithelial 
cells are the hallmark consequences of the EMTs (Kalluri 
and Weinberg 2009; Yang and Weinberg 2008). Such an epi-
thelial gain-of-function phenomenon is a reversible process, 
i.e., mesenchymal–epithelial transition (MET), its counter-
measure reverting the mesenchymal cells back to epithelial 
cells (Hugo et al. 2007; Thiery and Sleeman 2006). While 
relatively little is known regarding the function of MET, a 
large number of proteins and pathways governing EMT 
have been identified. For example, the building-up of mes-
enchymal markers and losing of epithelial markers such as 
accumulation of N-cadherin with degradation of E-cadherin 
are major features of EMT. The EMT markers include genes 
and proteins of cell surface, cytoskeleton, extracellular pro-
teins matrix, and transcription factors. As far, there are more 
than 70 protein markers identified and used to determine 
cells expressing or leaning toward epithelial or mesenchy-
mal phenotype. To target EMT, a number of microRNAs 
(miRNAs) are shown to be accountable for the transition 
driving and reversing EMT processes (Kalluri and Weinberg 
2009; Lamouille et al. 2013; Zeisberg and Neilson 2009). 
However, the challenge is that certain EMT markers can 
synchronously exert more than a single role to facilitate 
EMT forward. For example, the EMT-related transcription 
factor marker Ets-1 induces glomerular reorganization or 
vascular inflammation, and Snail is involved in inflamma-
tion, wound healing and hyperplasia; both contribute to the 
regulation of microenvironment and gene expression levels 
to actuate EMT (Du et al. 2010; Hotz et al. 2010; Mizui et 
al. 2006; Zhan et al. 2005). This review focuses on the over-
all signaling network of EMT (specifically, type three EMT) 
in tumor aggressiveness and metastasis with an emphasis 
on EMT-associated NF-κB/HER2/STAT3 pathways in radi-
oresistance of breast cancer stem cells. Further, testing the 
potential therapeutic elements in EMT interception will nec-
essary for inventing new therapeutic target to control meta-
static tumors.

EMT in development

The earliest EMT events occur during the implantation of 
the embryo into the uterus, and the extravillous trophecto-
derm cells undergo EMT in order to invade the endome-
trium and subsequently anchor itself in the placenta. Syn-
chronously, during the gastrulation, a group of epiblast cells 

moves to midline and forms a primitive streak as the first 
sign of gastrulation. These cells then undergo EMT and 
further generate mesoderm and endoderm. Mesoderm and 
ectoderm of an adult organism underwent several cycles of 
EMT and MET in order to form various tissues within the 
body. Otochord, somites, nephritic ducts, splanchnopleure, 
and somatopleure are derived from epithelial mesodermal 
cells that underwent MET; while liver, pancreas and cardiac 
valves are examples of internal organs derived from endo-
dermal cells underwent EMT/MET (Acloque et al. 2009; 
Johansson and Grapin-Botton 2002; Tanimizu and Miya-
jima 2007). Neural crest formation is also another EMT-
related event. The epithelial neuroectoderm cells form a 
neural tube then undergo EMT to generate migratory neu-
ral crest cells, which then disperse throughout the embryo 
to undergo differentiation for different cell types, such as 
melanocytes and glial cells (Duband and Thiery 1982). For-
mation of these derivative cell types often requires MET to 
aggregate post-migratory neural crest cells and form deriva-
tive cells such as sensory ganglia (Acloque et al. 2009).

EMT in tissue regeneration and organ fibrogenesis

Under inflammation stress, injury-damaged epithelial cells 
undergo EMT to avoid apoptosis as an adaptive response 
from the injury. These mesenchymal cells then move 
through the underlying basement membrane and become 
an additional source of fibroblast cells for reparation of 
the injured tissue (Liu 2010; Zeisberg et al. 2007b). Under 
fibrosis, however, overproduction of extracellular matrix 
by myofibroblasts derived from fibroblast and stromal cell 
results in accumulation of fibrotic matrix rich in collagen, 
especially type I and III. Initiation of myofibroblasts is 
accompanied with α-smooth muscle actin (α-SMA) expres-
sion and activation of TGF-β signaling from the injury site 
(Desmouliere et al. 2003; Guarino et al. 2009). Regen-
eration and fibrogenesis of certain organs such as kidney, 
heart, lung, liver and intestine are associated with EMT 
(Kalluri 2009; Kim et al. 2006; Potenta et al. 2008; Zeis-
berg et al. 2007a, b). Continuation of organ fibrogenesis, 
as a self-sustaining mechanism with perpetual generation 
of cytokines, could result in organ failure and, thus, has 
received attentions in research. EMT has been underlined 
as a process responsible for invasive fibrosis and proposed 
as a target for inhibition for the treatment of organ fibrosis 
(Guarino et al. 2009; Yang and Liu 2002).

EMT in tumor proliferation and metastasis

Tumor heterogeneity and plasticity have long been rec-
ognized; however, EMT has only been identified and 
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described as the underlying process for tumor metasta-
sis in the last two decades (Birchmeier et al. 1996; Fidler 
1975, 1978). So far, type 3 EMT is classified as the course 
that customarily converts primary tumor epithelial cells 
into invasive and metastatic mesenchymal tumor cells 
with enhanced mobility. The tumor mesenchyme can then 
intravenously migrate to a distant location and reverse 
back to epithelial cells through MET. During this migra-
tory process, the mesenchymal cancer cells are enhanced 
with invasiveness and protected from apoptosis and senes-
cence. Upon leaving the primary tumor site to lodging the 
distant site, MET activation is proceeded potentially due 
to the absence of EMT-inducing signals from the primary 
tumor site that stimulated EMT in the first place (Bissell 
et al. 2002; Kalluri and Weinberg 2009; Thiery 2002; Yang 
and Weinberg 2008). Importantly, EMT-driven machin-
ery also orchestrates immunosuppression as well as extra-
cellular matrix component and matrix metalloproteinase 
(MMP) productions to facilitate the completion of tumor 
metastatic progression (Kalluri and Neilson 2003; Orli-
chenko and Radisky 2008; Thiery et al. 2009). Changes of 
tumor microenvironment associated with Ras/ERK signal-
ing could as well contribute to such phenomenon (Turley et 
al. 2008). Therefore, EMT-mediated tumor metastatic abil-
ity is, rather than a single incident of tumor cells gaining 
motility, attended with a concert of cellular and molecular 
proceedings since circulating tumor cells do not expand 
and become a new tumor shortly after dislodgment. Spe-
cific proliferation mechanisms are required to be in place 
for tumor cells in order for expansion to happen; EMT-
orchestrated conditions are likely to be a prominent process 
for this expansion, although it may not be the only route 
involved in tumor invasion and metastasis (Bragado et al. 
2012; Meng and Wu 2012).

Among many factors found to be related to EMT activa-
tion, TGF-β was the first found to be able to induce EMT. 
Upon addition of TGF-β to cell culture, epithelial cells 
turned into elongated spindle shape with reduced epithelial 
markers and increased mesenchymal markers (Miettinen 
et al. 1994; Xu et al. 2009). The transforming growth fac-
tor TGF-β has been recognized as a major EMT inducer. 
Along with its downstream factors, TGF-β has been exten-
sively explored for its functions as a major propeller of 
TGF-β-induced EMT in cancer progression and metastasis 
including activation of signaling pathways and transcrip-
tional regulators for both Smad and non-Smad pathways. 
Transcriptional activities of Snail, ZEB and bHLH families 
are regulated by TGF-β to activate mesenchymal markers 
and degrade epithelial markers in a Smad-dependent fash-
ion (Zavadil et al. 2004). In the Smad-independent manner, 
RhoA, p38 MAPK and PI3K/Akt are involved in the TGF-
β-induced EMT. Wnt and Notch signaling also cooperate 
with TGF-β under certain tissues and conditions for driving 

EMT (Xu et al. 2009; Zavadil and Bottinger 2005; Zhang 
2009).

E-cadherin has been used as a cornerstone marker for 
epithelial cells (Kalluri and Weinberg 2009). Alteration in 
E-cadherin expression can result in switching of cell mor-
phology. Induction of EMT by c-Fos oncogene in normal 
mouse mammary epithelial cells correlates with a decrease 
in E-cadherin expression (Eger et al. 2000). On the con-
trary, ectopically expression of E-cadherin in the cells 
that underwent EMT causes cells to lose their mesenchy-
mal phenotype (Eger et al. 2000; Reichmann et al. 1992). 
Reduction of E-cadherin expression induced by β-catenin 
accumulation in the nucleus, where it becomes part of 
Tcf/LEF complexes, is subject to EMT and acquisition 
of an invasive phenotype (Kim et al. 2002; Thiery 2002). 
The levels of E-cadherin expression are inversely associ-
ated with patient survival (Hirohashi 1998). Mutations in 
the E-cadherin gene have been identified in cancer cells 
that are more susceptible to induction of EMT and cancer 
metastasis (Muta et al. 1996; Saito et al. 1999). Studies on 
the molecular mechanisms underlying E-cadherin loss in 
the EMT program revealed that transcription factors, such 
as Snail and Slug induced by TGF-β exposure, facilitate 
acquisition of a mesenchymal phenotype by repression of 
E-cadherin expression (Medici et al. 2008).

Accumulating numbers of proteins are shown to be 
involved in EMT. Following the EMT activation, alterations 
of EMT markers detecting phenotypical changes, such 
as E-cadherin, N-cadherin, Laminin-1, ZO-1, Cytokera-
tin, Vimentin and Fibronectin, are indicated to be the evi-
dence whether the cells are undergoing or leaning toward 
the stage of EMT or MET (Kalluri and Weinberg 2009). 
However, these presently available markers appear not be 
able to indicate invasive properties or relate to tumor inva-
sion in case of cancer EMT. Further identification of EMT 
markers, especially those responsible for or closely reflect-
ing the degree of tumor invasiveness and aggressiveness 
are desirable in order to predict and target cancer EMT and 
metastasis as EMT appears to be the key feature underlying 
metastasis of cancer (Chaffer and Weinberg 2011; Kudo-
Saito et al. 2009).

Interestingly, in addition to alteration in cellular mecha-
nisms, new evidence indicates that existence of mesen-
chymal cells contained within tumor may play a role in 
EMT-induced tumor metastasis. The mixture between 
mesenchymal stem cells and metastatic tumor cells greatly 
enhances tumor metastatic potential through the commu-
nication between the two types of cells utilizing CCR5, a 
chemokine receptor involved in binding interaction with the 
gp120 HIV-1 envelope glycoprotein (Karnoub et al. 2007). 
Similarly, circulating EMT tumor cells that are capable to 
invade into adjacent connective tissues by themselves failed 
to establish metastatic nodules, while circulating non-EMT 
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tumor cells are capable of doing so but lack the ability to 
invade connective tissues. The mixed between the two, 
however, can achieve the spontaneous metastasis process 
by complementing each other’s properties for lodging and 
invading the secondary site, as observed that the major-
ity of circulating cancer cells are positive for EMT mark-
ers (Aktas et al. 2009; Tsuji et al. 2009). The metastatic 
enhancement of EMT and non-EMT cells, with different 
morphologic properties, augments the complexity in deal-
ing with EMT-mediated cancer metastasis. Simply inhibi-
tion of EMT-related molecules, in hope for lessening EMT-
mediated tumor invasion, may not be sufficient to prevent 
metastasis. As non-EMT cells may play a part in promoting 
tumor metastasis; a potential communication between EMT 
and non-EMT cells may provide additional important infor-
mation on cancer metastasis. Thus, EMT alone could not 
drive the full process of tumor metastasis; similarly, neither 
all fibrogenesis events are occurred via EMT (Christian-
sen and Rajasekaran 2006; Fragiadaki and Mason 2011; 
Garber 2008; Grabias and Konstantopoulos 2012; Kriz et 
al. 2011; Rock et al. 2011; Tarin et al. 2005; Taura et al. 
2010). Therefore, the concept of complementary EMT or 
incomplete EMT should be advised when assessing EMT 
in tumor metastasis.

EMT in vascularization

Vascularization is an essential process for tumor sustenance 
and expansion since tumorigenesis as well as tumor growth 
require additional blood vessel formation for nutrient and 
oxygen supplies. Although there is yet evidence to support 
that EMT directly induces or associates with signals for 
angiogenesis, neither for tumor nor normal organ, TGF-β 
could promote angiogenesis by directly inducing capillary 
formation of endothelial cells in addition to EMT activation 
(Akhurst and Derynck 2001; Derynck et al. 2001; Kumar-
Singh et al. 1999). The dual functions of TGF-β provide 
additional survival advantages for tumor by both provid-
ing blood supply and escaping route for tumor cells in case 
of starvation. Blood cells and circulatory components can 
influence EMT and motility of tumor cells. Direct interac-
tion between platelets or CD8 T cells with cancer cells is 
shown to promote tumor metastasis through the TGF-β/
Smad and NF-κB signaling pathways and cells capable of 
undergoing EMT show cancer stem cell-like characteristics 
(Labelle et al. 2011; Santisteban et al. 2009). PDGF-D is 
potentially the factor responsible for the platelet–cancer 
cells interaction triggering EMT (Kong et al. 2009). More-
over, activation of tumor EMT by the blood components 
can result in generation of CSCs as a byproduct for those 
tumors that have direct access to blood vessel. Tumor cells 
are also likely to relocate toward blood supply and lymph 

node, rather than following a Brownian motion (Wu et al. 
2014). Thus, tumor access to blood supply may increase 
the likelihood of tumor cells undergoing to the evil transi-
tion process and subsequent metastasis as a nature of the 
transition (Singh and Settleman 2010).

EMT interconnects with chemotherapy resistance

EMT-mediated therapeutic resistance has been observed in 
several types of cancer and could limit treatment options 
for patients. Mesenchymal cells are more resistant to EGFR 
and PI3 K/Akt pathway inhibitors in general (Byers et al. 
2013). Resistance of chemotherapeutic reagents including 
gemcitabine, 5-FU (5-fluorouracil), cisplatin and adriamy-
cin corresponds with ZEB-1 and Twist levels and inversely 
correlates with E-cadherin and epithelial markers EVA1 
and MAL2 expressions. Likewise, c-Met activation and 
MDR (multidrug resistance) induction are also linked with 
their expressions in the same manner (Arumugam et al. 
2009; Li et al. 2009a). Acquired resistance of gefitinib in 
lung cancer drives cells toward EMT, as a part of chemo-
adaptive response, as well as develops resistance to sev-
eral tyrosine kinase inhibitors (Rho et al. 2009). Ovarian 
cancer resistant to paclitaxel also have increased expres-
sion of Snail and Twist (Kajiyama et al. 2007). Depletion 
of synergistic effects in cetuximab is observed in head and 
neck tumors with c-myc up-regulation and EMT progres-
sion (Skvortsova et al. 2010). Similarly, colorectal cancer 
cells resistant to oxaliplatin-induced EMT through Vimen-
tin induction (Yang et al. 2006b). Overexpression of Twist, 
Snail and FOXC2 in breast cancer cells not only provide 
tumor cells EMT activation but also ABC transporter up-
regulation and subsequent MDR (Saxena et al. 2011). 
Expression levels of several proteins have been tested and 
verified as prognostic factors for cancer patients depend-
ing on tissue types and pathological settings. Concerning 
EMT, expressions of Twist, Vimentin, Snail, Slug, FOXC1, 
β-catenin and E-cadherin are examples of markers used to 
indicate patient prognosis in chemotherapy (Al-Saad et al. 
2008; Fanelli et al. 2008; Taube et al. 2010; Uchikado et 
al. 2011; Xie et al. 2009). Sensitivity of concurrent chemo-
radiation therapy in non-small cell lung cancer depends 
upon expressions of EMT marker proteins (E-cadherin, 
cytokeratin, N-cadherin and Vimentin). Tumors with posi-
tive EMT markers can develop a subpopulation with resist-
ant phenotype rendering them difficult to treat (Shintani et 
al. 2011). Concurrent chemoradiation therapy, thus, may 
not be able to overcome EMT-mediated tumor resistance 
but could be the root for tumor resistant stem cells and 
metastasis through EMT, as observed in recurrent ovarian 
cancer (Ahmed et al. 2010). These reports collectively indi-
cate that EMT and induction of EMT-inducing genes are 
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an integral part of adaptive response to therapeutic reagents 
by advancing cells toward mesenchymal features for their 
gain-of-function and resistance to evade cell death. In order 
to overcome such resistance, disruption of EMT pathway 
specific in tumor cells is desirable.

Hypoxia induces EMT

In addition to the relationship between blood components 
and cancer EMT, induction of EMT by angiogenic factors 
can synchronically increase tumor aggressiveness as well 
as facilitate nutrient supply for tumor. Angiogenesis fac-
tor VEGF and its receptor, VEGFR-1, are capable to elicit 
EMT of cancer cells through TGF-β and EMT-associated 
pathways through Snail, Twist and Slug (Gonzalez-Moreno 
et al. 2010; Yang et al. 2006a). However, in case of blood 
supply inadequacy such as hypoxia, HIF-1 becomes a 
key factor in stimulating EMT by activating Twist, Snail 
and uPAR expressions to drive EMT forward (Cannito et 
al. 2008; Higgins et al. 2007; Lester et al. 2007; Luo et 
al. 2006; Yang and Wu 2008; Yang et al. 2008; Zhang et 
al. 2013a). Hypoxic condition could also induce TGF-β, 
GLIPR-2 and Notch signaling, while PER2 is down-regu-
lated to advance cells to EMT (Huang et al. 2013; Hwang-
Verslues et al. 2013; Ishida et al. 2013; Matsuoka et al. 
2013). As observed that loss of oxygen supply could trans-
form tumor epithelial cells into spindle shape with lost cell 
to cell contacts (Theys et al. 2011). Inhibition of GSK-3β 
and activation of PI3 K/Akt pathway are also involved in 
the hypoxia-mediated EMT possibly through transient 

intracellular increased generation of reactive oxygen spe-
cies (ROS) and HIF-1/VEGF-dependent pathway (Cannito 
et al. 2008; Yan et al. 2009; Zhou et al. 2004). Introduc-
tion or production of ROS, particularly mitochondrial ROS, 
appears to be an important inducer of EMT as an integral 
part of TGF-β-mediated EMT (Rhyu et al. 2005; Yoon 
et al. 2005; Zhang et al. 2007; Zhou et al. 2009). Wnt/β-
catenin pathway also plays a role in this hypoxia-mediated 
EMT as β-catenin is a repressor of E-cadherin transcription 
(Zhang et al. 2013b). As illustrated in Fig. 1, GSK-3β regu-
lates Snail so as to both controlling its subcellular locali-
zation and its repression of E-cadherin transcription (Zhou 
et al. 2004). The accumulating evidence has tight-knitted 
hypoxia and EMT in tumor aggressiveness, which high-
lights the potential alternative survival modalities under the 
circumstance of oxygen and nutrient deficiency that may be 
targeted to inhibit tumor cells (Brizel et al. 1996; Pugh and 
Ratcliffe 2003; Shweiki et al. 1992; Sullivan and Graham 
2007).

EMT in behavior of cancer stem cells

Although still controversial, the concept of cancer stem 
cells (CSCs, or called tumor-initiating cells, TICs) is 
accepted to describe the general heterogeneity of tumor 
cell population responsible for establishment, growth and 
sustenance of a tumor (Baker 2008; Reya et al. 2001). 
CSCs ranked at the top of tumor cell hierarchy, having 
elevated capacity of therapy resistance, angiogenesis and 
metastasis in addition to high tumor formation potential 

Fig. 1  Illustration of the 
relationship between EMT, 
angiogenesis and hypoxia. 
Hypoxia stimulates EMT fac-
tors by activating a similar set 
of genes for hypoxic responses 
and angiogenesis through HIF-1 
and ROS generation resulting 
in the activation of angiogenic 
pathway. Binding of VEGF to 
VEGFR signals TGF-β and 
PI3K to stimulate EMT in both 
Smad- and non-Smad-depend-
ent manners. Both hypoxic 
condition and EMT activation 
contribute to tumor aggressive-
ness and metastasis
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and self-renewability, as shown that only a few hundred 
of CSCs or less of CSC-like cells are sufficient to form a 
new tumor in recipient rodents (Al-Hajj et al. 2003; Bao 
et al. 2006b; Hermann et al. 2007). Such phenomenon 
has brought attentions to cancer stem cell investigation as 
well as its origination. Two major hypotheses regarding 
the origin of CSCs are that tumor cells are originated from 
either transformation of a group of normal cells, which a 
few of them turned into CSCs through their plasticity, or 
neoplastic transformation of normal stem cells which has 
been demonstrated to be a potential origin of tumor and 
CSCs (Bonnet and Dick 1997; Fujimori et al. 2012; Reya 
et al. 2001; Sell and Pierce 1994). Although the underly-
ing mechanisms of such conversion from normal to tumor 
stem cells are largely unknown, loss of contact inhibition of 
human mesenchymal stem cells was shown to be first step 
in neoplastic transformation (Serakinci et al. 2004). The 
discovery is further confirmed by evidence that EMT is a 
mesenchymal cell-generating process allowing acquisition 
of cancer stem cell characteristics (Mani et al. 2008; Morel 
et al. 2008). Therefore, it is rational to hypothesize that 
during the shifting course from epithelial to mesenchymal 
cells, EMT may mechanistically enhance cancer cell tumo-
rigenesis or renewability of tumor cells, as indicated that in 
both normal and carcinoma human breasts epithelial cells 
with CD44+CD24− express far greater levels of EMT tran-
scription factors than in CD44−CD24+ cells (Mani et al. 
2008; Polyak and Weinberg 2009). In addition to improv-
ing tumor cell mobility, invasiveness and death resistance, 
a variety of genes has been observed to be up-regulated 
during or as a part of the EMT process including those of 
stem cell-related genes. Up-regulation of TGF-β, TNF-α, 
FOXQ1, FOXC2, FOXM1, Oct4, Wnt, Notch, Hedgehog 
and Nanog, demonstrated to be activators of EMT, could 
give rise to stem cell-like cancer cells or cancer cells 
with stem cell properties. Suppression of these genes also 
reduces tumor aggressiveness as well as EMT (Asiedu et 
al. 2011; Bao et al. 2011; Chiou et al. 2010; Hollier et al. 
2013; Huber et al. 2005; Qiao et al. 2011; Reiman et al. 
2010). Many of these genes have been identified to be asso-
ciated with cell stemness as well as stem cell characteris-
tics, which implicate that EMT and stemness machineries 
are overlapped. Loss of mitochondrial DNA also activates 
EMT and generates CSCs through calcineurin in a revers-
ible manner, while activation of Akt and β-catenin is indis-
pensable for maintaining EMT-modulated cancer stem cell 
characteristics (Guha et al. 2013; Li and Zhou 2011). Addi-
tionally, external stimuli could prove to be able to induce 
CSC generation through EMT as demonstrated that CD8 
T cells could signal generation of breast cancer stem-like 
cells (Santisteban et al. 2009). This evidence has pointed 
out the significance of EMT not only in the cell-transi-
tioning process but also in CSC generation from tumor 

as observed that circulating tumor cells underwent EMT 
often express cancer stem cell markers and characteristics 
(Hennessy et al. 2009). Elimination of CSCs, the primary 
goal for CSC and cancer research, may be accomplished 
through inhibition of EMT program or domination of MET 
within cancer cells.

EMT and CSCs in therapy resistance

One of the prominent characteristics of CSCs is their resist-
ant phenotype to many anticancer modalities (Donnenberg 
and Donnenberg 2005; Rich 2007). Besides deriving tumor 
cells toward becoming the stemness feature, many EMT-
associated genes are behind other mechanisms inducing 
cell resistance to therapy. Up-regulation of p21 from Notch 
slowed down cell growth providing cell survival advantages 
against therapeutic insults (Nefedova et al. 2004). Nanog 
also provides protection of prostate and breast cancer cell 
resistance in addition to enhancing expressions of CXCR4, 
IGFBP5, CD133 and ALDH1 for cancer stem cell features 
(Jeter et al. 2011). Expectedly, inhibition of FOXQ1, shown 
to be a poor prognostic indicator, could lessen both meta-
static potential and resistance of tumor cells through the 
reversal of EMT (Feng et al. 2012; Sehrawat et al. 2012; 
Zhu et al. 2013). Although several key factors remain to be 
investigated, it is appropriate to assume that the signaling 
networks among metastasis, vascularization, CSC genera-
tion and tumor resistance to therapy are consolidated by the 
EMT pathway. Thus, it is reasonable to propose that distur-
bance to one of the EMT elements may affect more than a 
single feature of tumor, and thus could be used as a strategy 
for exploitation in cancer therapy.

EMT in cancer resistance to chemo-radiotherapy

A group of breast cancer MCF-7 clones that can survive 
long-term therapeutic radiation with increased DNA repair 
gene expression was isolated from irradiated MCF-7 cell 
population and identified to contain breast cancer stem cells 
with enhanced radioresistance (Ahmed et al. 2006; Duru et 
al. 2012; Li et al. 2001). Although the exact mechanism of 
the radioresistant cancer stem cells is to be elucidated, as 
mentioned earlier, EMT can produce CSCs that are gener-
ally known to be resistant to therapies, with elevated levels 
of free radical-scavenging proteins, DNA repair as well as 
drug-transporting capacity (Bao et al. 2006a; Dean et al. 
2005; Diehn et al. 2009; Rich 2007). The process of EMT 
also contributes to tumor chemo- and radioresistance via 
activation of EMT-mediated genes related to suppression 
of cell death mechanisms, as inhibition of Snail expression 
could sensitize tumor cells to genotoxic stress (Kajita et al. 
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2004). Activation of Notch signaling pathway through EMT 
and suppression of p53-mediated apoptosis by Snail and 
Slug provides examples of EMT-mediated tumor resistance 
to therapies (Kurrey et al. 2009; Wang et al. 2009). Notch 
signaling pathway also links between EMT and gemcitabine 
resistance in pancreatic cancer (Wang et al. 2009). Initiation 
of EMT, therefore, requires activation of an array of genes 
to alter the cell biochemically and physiologically, simulta-
neously; such activation influences other genes into defining 
other cell phenotypes. Both normal and tumor tissues have 
deployed the EMT mechanism in order to evade cell death. 
Type 2 EMT is the chief example of normal tissue avoiding 
cell death with enhanced repair capacity of fibroblastic cells 
derived from EMT. In cancerous cells, acquisition of EMT 
minimizes cell death by both reducing lateral membrane 
and contacting apoptosis signals due to loose structure of 
mesenchymal cells and enhancing pro-survival mechanisms. 
One of the pro-survival factors closely involved in EMT is 
NF-κB and, perhaps, the most influential transcription fac-
tor which orchestrates resistance characteristic. NF-κB is 
labeled as an essential gene for both induction and main-
tenance of EMT independent of TGF-β and considered to 
be directly connected with EMT by activating ZEB1, ZEB2 
and Vimentin expressions that suppress E-cadherin protein 
level. Activation of NF-κB can also be achieved by TGF-β 
during EMT as a feedback response to carry out EMT (Chua 
et al. 2007; Huber et al. 2004a, b, 2005; Maier et al. 2010). 
Treatment of proteasome inhibitor NPI-0052-mediated 
expression of RKIP (Raf kinase inhibitor protein) through 
NF-κB inhibition, which resulted in Snail inhibition and 
subsequent EMT repression (Baritaki et al. 2009). Exposure 
to ionizing radiation that invokes NF-κB signaling pathways 
improved cell motility and proceeded cells toward EMT 
(Jung et al. 2007). Identification of NF-κB-mediated Twist 
activation further linked and broadened our understanding 
of EMT to NF-κB-arbitrated cancer cell properties includ-
ing adaptive response, apoptosis resistance and metastatic 
properties (Yu et al. 2014). As NF-κB effector genes are 
responsible for a variety of cellular responses ranging from 
inflammation, immune response, cell adhesion, cell prolifer-
ation, anti-apoptotic response and oncogenesis to metastasis 
(Ahmed and Li 2008; Mayo and Baldwin 2000; Orlowski 
and Baldwin 2002). Further investigation in the mechanisms 
underlying coordination of NF-κB and its effectors in EMT 
process may shed light on novel therapeutic approaches as 
well as potential cancer prevention.

EMT in radioresistant breast cancer stem cells 
with activated NF-κB/HER2/STAT3 signaling pathway

Enrichment of CSCs through therapy is evidenced as 
tumor, rather than a collective group of homogenous cells, 

behaves in an organ-like manner with heterogeneity sub-
types and hierarchical cellular organization (Eyler and 
Rich 2008; Li et al. 2008). Exposure to ionizing radia-
tion is known to induce tissue remodeling and changes in 
microenvironment (Rodemann and Blaese 2007). Whether 
TGF-β is responsible for tumor migration is still debat-
able; modulation of matrix-degrading enzymes including 
uPA and MMPs is affected by ionizing radiation (Mon-
charmont et al. 2014). Enhancement of tumor migration 
and invasion is another imminent changes made by radia-
tion through EMT and other mechanisms related to ECM 
proteins, which leads to eventual tumor resistance to radia-
tion (Zhou et al. 2011). On top of the radiation-enhanced 
tumor survival and invasiveness, we found that exposure to 
therapeutic fractionated radiation can promote the selection 
of breast cancer stem cells (BCSCs) through induction of 
HER2 expression through radiation-induced NF-κB bind-
ing to HER2 gene promoter and activating transcription of 
the gene (Ahmed and Li 2008; Cao et al. 2009). However, 
as it has been noticed that HER2+ BCSCs can be detected 
not only in HER2+ tumor cells, but also in radioresistant 
HER2−/low breast cancer (Duru et al. 2012). The side popu-
lation harbored within tumors regardless of the status of the 
majority of cells is often observed having CSC-like prop-
erties (Chiba et al. 2006; Ho et al. 2007). In this instance, 
newly repopulated cells from the surviving BCSCs express 
HER2 in order to meet with the challenge of the stressor. 
Expression of HER2, as a receptor molecule, then acti-
vates STAT3, a latent cytoplasmic transcription factor that 
conveys signals from cell surface to nucleus by cytokines 
or growth factors through both JAK2- and Src-dependent 
manners as supported by the data showing that HER2 and 
STAT3 are co-expressed in radioresistant HER2+/CD44+/
CD24−/low but not in HER2−/CD44+/CD24−/low BCSCs 
(Cheng et al. 2008; Duru et al. 2012; Ren and Schaefer 
2002). Additionally, we recently demonstrated dramatic 
increase in STAT3 phosphorylation at Tyrosine-705 
(Y-705) residue in fractionated irradiated MDA-MB-231 
cells and MCF7-HER2 cells but not in their original paren-
tal cells. Moreover, evidence shows that STAT3 phospho-
rylation at Y705 was observed in MCF7-HER2 cells but 
not in MCF7 wild-type (Chung et al. 2014). These results 
further confirm the serial involvement of NF-κB/HER2/
STAT3 to EMT and stemness of tumor cells, as shown in 
Fig. 2. Additional studies show that the stem cell markers, 
Oct-4 and SOX-2, were expressed in MCF7-HER2 cells, 
but not in the MCF7 wild-type cells and knocking-down 
of STAT3 also down-regulated the two stemness markers 
(Chung et al. 2014). In agreement with the cancer stem 
cell markers, the protein levels of mesenchymal markers 
Vimentin and Slug increased significantly, while epithelial 
marker E-cadherin decreased dramatically in MCF7-HER2 
compared with control MCF7 wild-type cells. Inhibition of 
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STAT3 activation with stattic, a non-peptidic small mole-
cule that inhibits STAT3 activation by selectively inhibiting 
dimerization and nuclear translocation of STAT3, dimin-
ished expression of EMT markers Vimentin and Slug and 
concurrently dwindled the expression of stem cell mark-
ers SOX-2 and Oct-4, suggesting an intrinsic relationship 
between EMT and cancer stem cells (Schust et al. 2006). 
An emerging evidence also suggests EMT inducers as 
bona fide regulators of mammary stem cell state and com-
mitment (Ansieau 2013). The evidence that Slug is pre-
sent in mammary stem cells and it cooperates with SOX-9 
in orchestrating stem cell state of the cells further defines 
that EMT, cell stemness and therapy resistance are closely 
interrelated (Guo et al. 2012).

ROS-mediated EMT activation and tumor 
radioresistance

Although ROS has been considered a toxic reagent, ROS 
signaling is an important intracellular signaling pathway 
altering redox state of the cell to induce physiological 
responses ranging from growth factor stimulation to the 
generation of inflammatory response (Finkel 2011). The 
sources of ROS are from both intracellular origins and 
environmental factors. The major source of cellular ROS is 
derived from electron transport chains within mitochondria, 
as a part of aerobic respiration. This ROS source is dem-
onstrated to be primarily linked with the undertaking of 
EMT. Production of mitochondrial ROS can be prolonged 
by TGF-β-mediated disruption of mitochondrial complex 
IV activity; thus, cell growth is delayed as a mechanism for 

cell death resistance (Yoon et al. 2005). The excess mito-
chondrial ROS then stimulates activation of Snail tran-
scription factor and Smad pathway through MAPK/ERK 
cascade resulting in EMT (Radisky et al. 2005; Rhyu et al. 
2005). Activation of the redox-sensitive transcription fac-
tor NF-κB by ROS is also another route for ROS-mediated 
EMT as described earlier of NF-κB contributions to EMT 
(Chua et al. 2007; Julien et al. 2007).

Exposure to therapeutic dose of radiation is well-defined 
to impose both cellular and mitochondrial generation of 
ROS and led to alterations of gene expressions including 
those responsible for radioresistance and potential EMT 
as radiation is known to activate TGF-β (Barcellos-Hoff 
1993; Leach et al. 2001; Li et al. 2001). Radiation-induced 
TGF-β is, therefore, an apparent and prominent pathway 
for EMT activation as non-malignant human tumor cells 
can undergo EMT under the influence of radiation-acti-
vated TGF-β (Andarawewa et al. 2007; Zhou et al. 2011). 
Under the stress of radiation, transcription factor FoxM1 
up-regulates JNK1 expression, which then further activates 
TGF-β for the progression of EMT (Balli et al. 2013). TGF-
β-mediated EMT, in accordance with ATM, is capable to 
activate Homeobox B9 (HOXB9) for enhancement of DNA 
damage and repair responses leading to radioresistance of 
breast cancer (Chiba et al. 2012). Loss of E-cadherin due to 
hypoxic condition contributes to radioresistance of tumor 
cells in addition to the lack of oxygen, which is known 
to attenuate radiation-induced DNA damages (Theys et 
al. 2011). Down-regulation of serine protease HtrA1 is 
also linked with ATM-mediated DNA damage response 
and EMT activation through miR-200 depletion (Wang et 
al. 2012). Interestingly, EMT could be a part of low-dose 

Fig. 2  STAT3 phosphorylation at Y705 is increased in radiation-
induced HER2-up-regulated radioresistant breast cancer cells. Immu-
noblot analyses of HER2, STAT3 and pY705-STAT3 were performed 
in cancer cell lines MDA-MB-231 and its radioresistant cells (FIR). 
The activated phosphorylation of STAT3 is enhanced in the FIR cells 
(left panel). Schematic diagram presenting EMT-associated radiore-

sistance and aggressiveness of radioresistance breast cancer stem 
cells with activated HER2 and STAT3. Therapeutic resistance is a 
result of adaptive response which activates EMT and stemness gov-
erning genes. STAT3 activation is an intermediary in the activation of 
EMT (right panel)
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radiation-induced radioadaptive response as observed that 
EMT is activated in breast cancer cells receiving low-dose 
radiation (Zhang et al. 2011). These connections of EMT 
and radioresistance strongly suggest that induction of EMT 
is a part of adaptive response to ionizing radiation as tumor 
cells may apply apoptosis and cell death resistance proper-
ties of mesenchymal cells in order to survive the challenges 
of radiation. EMT is, accordingly, a pathway behind radio-
adaptive response and tumor resistance to therapy.

microRNAs targeting EMT

Recent research has turned attention to noncoding RNAs 
(ncRNAs) as it is taking the center stage in studies of many 
aspects of human diseases and cancer research including 
EMT. The roles of miRNAs in EMT have been explored, 
which leads to miR-10b and miR-21 being used as mark-
ers for mesenchymal phenotype (Kalluri and Weinberg 
2009). Many studies provide further evidence regarding 
functions of microRNA in regulating EMT. Several miR-
NAs including miR-200 family (miR-200a, miR-200b, 
miR-200c, miR-141 and miR-429), miR-30, miR-34, miR-
138, miR-192, miR-194 and miR-205 are demonstrated 
to target EMT-inducing transcription factors and proteins 
to enforce epithelial features and keep invasiveness and 
aggressiveness of tumor quiescent. Ectopic expressions 
of these miRNAs can also induce MET or reduce EMT 
through various mechanisms predominantly including 
suppression of Snail, TGF-β, ZEB1/ZEB2, EZH2, BMI-1 
and EMT expression marker, N-cadherin, as illustrated in 

Fig. 3 (Burk et al. 2008; Dong et al. 2011; Gregory et al. 
2008b; Kim et al. 2011a, b; Liu et al. 2011; Meng et al. 
2010). Expression of E-cadherin is also cooperatively regu-
lated under the same set of miRNAs by the subduction of 
ZEB1 and ZEB2, which are the transcriptional repressors 
of E-cadherin. Down-regulation of E-cadherin is identified 
as a spontaneous factor in progression, aggressive pheno-
type and poor prognosis of cancer (Perl et al. 1998; Wijn-
hoven et al. 2000). MiR-29a and miR-155, however, could 
degrade cell polarity by targeting tristetraprolin (TTP) and 
RhoA GTPAse, respectively, as both proteins are regulators 
of cellular polarity and tight junction moderators (Bull-
ock et al. 2012). Similarly, overexpression of miR-9, an 
E-cadherin regulator, could reduce E-cadherin expression 
by 70 % while reciprocally induced Vimentin expression 
(Ma et al. 2010). Providing this information, the discovery 
of miRNA in cancer EMT regulation is rapidly expanding 
and could be useful in specific drug development for sup-
pression of cancer EMT.

One of the most studied and, perhaps, the most targeted 
miRNAs involved in EMT regulation is miR-200 fam-
ily. Inhibition of miR-200 family lifts TGFβ-2 and ZEB-1 
expressions and activities; thus, allowing EMT proceed-
ing and E-cadherin suppression in the process (Braun et al. 
2010; Gregory et al. 2008a; Korpal et al. 2008). MiR-200 
is also linked with suppression of stem cell factors, SOX-2 
and KLF4, along with the miRNAs, miR-183 and miR-203 
(Wellner et al. 2009). Tumor suppressor p53 has also been 
highlighted in regulating transcriptions of EMT inhibi-
tory miRNAs especially in regards to miR-200 (Chang et 
al. 2011; Kim et al. 2011b). These functions of miR-200 

Fig. 3  Relationship between 
microRNAs with EMT and 
EMT-related factors. Various 
miRNAs involve in regulations 
of EMT through inhibition of 
EMT-initiating factors includ-
ing TGF-β, Snail, ZEB1/2 
and BMI-1. These factors also 
provide negative feedback 
loop to suppress miRNAs and 
reconstitute miRNA profile to 
allow EMT and mesenchymal 
elements as well as down-regu-
late epithelial marker proteins. 
P53 is a master regulator of 
miR-34, miR-192 and miR-200 
in impeding EMT through 
targeting of ZEB1/2 and Snail 
transcription factors
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in preventing EMT and sequential cancer metastasis have 
been extensively explored in several types of cancer, which 
lead to miR-200 being branded as the guardian against 
pluripotency and cancer progression (Peter 2009). The bal-
ance switch between ZEB1-ZEB2 and miR-200/miR-138 
in controlling cancer EMT could be a target for exploita-
tion in preventing tumor metastasis and improve clinical 
prognosis.

As aforementioned, miRNAs play an essential role 
in regulating EMT affecting metastatic status of a tumor. 
On the same hand, miRNAs are involved in tumor resist-
ance to several chemotherapeutic agents such as docetaxel 
by miR-192, miR-424 and miR-98 and 5-FU and metho-
trexate by miR-140 (Wang et al. 2010). In terms of EMT-
mediated resistance, it appears that artificially introduced 
expression of miRNAs including miR-200 and treatment 
of natural product isoflavone to activate miR-200 and let-7 
could reverse EMT and potentially reduce chemotherapeu-
tic resistance of pancreatic cancer (Li et al. 2009b). Further 
exploration of miRNAs functions in EMT and EMT-medi-
ated cancer resistance may provide critical approaches to 
improvement of therapy for resistant as well as metastatic 
cancer.

Targeting EMT to treat tumor aggressiveness 
and metastasis

EMT has been proposed to be a potential target for clinical 
application to control cancer initiation, maintenance and 
expansion (Findlay et al. 2014). The idea of suppressing 
EMT to subside cancer metastatic potential and enhance 
malignant cell killing has already been tested using vari-
ous approaches by inhibiting EMT prominent pathways. 
As discussed earlier that activation STAT3 by fractionated 
irradiation or chemotherapeutic reagents closely engages 
with both tumor EMT and cell stemness; therefore, inhibi-
tion of the transcription factor along with the other EMT-
related transcription factors is proposed, although it could 
be unfavorable for certain conditions (Davis et al. 2014). 
Epigallocathechin gallate (EGCG) with quercetin inhibit-
ing EMT-related genes such as Vimentin, Snail, Slug and 
nuclear β-catenin was proved to be effective in impairing 
EMT as well as the subpopulation with cancer stem cell-
like characters in prostate cancer cells. Self-renewal, inva-
sion and migration were all inhibited with enhanced apop-
tosis (Tang et al. 2010). Inhibition of CSC generation and 
EMT by resveratrol was also shown to be useful in pre-
venting EMT, tumor growth and development of pancre-
atic cancer (Shankar et al. 2011). Receptor tyrosine kinase 
Axl inhibitor, SGI-7097, also provided sensitivity of mes-
enchymal cells in non-small cell lung cancer (Byers et al. 
2013). Several other compounds chiefly targeting TGF-β, 

Wnt, Notch, Hedgehog, JAK-STAT and PDGFR are cur-
rently undergoing Phase I and II trials for several cancer 
types (Pattabiraman and Weinberg 2014). These reagents, 
with further studied and developed for precise targeting and 
delivery, could become beneficial in both studies of clinical 
EMT and practical treatment of malignant cancer.

The idea of utilizing miR-200 family to suppress ZEB1/
ZEB2, maintain epithelial polarization and induce MET 
for tumor mesenchyme could also be beneficial in the near 
future for preventing aggressive tumor metastasis. Manipu-
lation of miRNAs such as miRNA-200 family and miRNA-
205 could also prove to be worthwhile in reducing EMT 
for better prognosis. Targeting EMT-inducing genes with 
miRNAs or shRNAs has been observed in reducing EMT 
as well as metastatic and resistant potential of tumor cells. 
However, applying these molecules in the clinics remains 
impractical. The idea of activating certain proteins regu-
lating a set of EMT-regulated miRNAs has been studied. 
Repression of ZEB1/ZEB2 expressions with miR-192 and 
miR-200 mediated by tumor suppressor p53 appears to be 
effective in blocking EMT (Chang et al. 2011; Kim et al. 
2011b). Further investigations of EMT-silencing miRNAs 
and their modulating transcription factors are necessary 
for overcoming EMT and enhancing cancer therapeutic 
outcomes especially for high grade tumors or those with 
high metastatic capability. The approach of EMT repres-
sion could provide additional benefits in cancer therapy as 
adverse effects to normal tissue would be minimal.

Conclusions and perspectives

The functions of EMT in a tumor involve several key can-
cer hallmarks: origination (generation of CSCs), mainte-
nance (therapy resistance and activation of multiple cancer 
pathways) and expansion (angiogenesis and metastasis; 
Fig. 4). New targets of EMT-mediated tumor aggressiveness 
and resistant phenotype are emerging. For instance, EMT 
is activated in HER2-positive breast cancer stem cells that 
can survive long-term therapeutic radiation and are linked 
to resistant phenotype and poor prognosis of breast cancer 
patients. In such case, inhibition of EMT could be effec-
tive in treating the resistant current/metastatic tumors with 
HER2 overexpression. However, simplification of the com-
plex network by using a single molecule to suppress EMT 
could prove to be ineffectual as there are redundancies and 
bypasses in biological setting within tumors in which adap-
tive responses can clearly be observed. Therefore, inhibi-
tion of EMT in combination with other modalities such as 
anti-HER2 approaches in breast cancer may be effective in 
suppression of tumor growth while preventing them from 
dislocation. New challenges will appear by using different 
EMT-targeting modalities which requires further elucidating 
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EMT-mediated signaling network, especially in the path-
ways overlapping with tumor microenvironments such as 
hypoxia as well as intrinsic resistance of tumor cells and the 
repopulation of cancer stem cells, which is informative in 
treatment of resistant metastatic tumors.
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