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Abstract 
Bar graphs are commonly used graphs, but what do students 
infer about the data that created the bar graph? Previously, a 
drawing task revealed that a minority of students conflate mean 
bar graphs with count bar graphs and draw all data points 
within the bar of a mean bar graph (bar tip limit error, BTLE). 
The present study extends this literature by manipulating the 
instructional text for the drawing task, interviewing the 
participants on their drawings, and recording their drawings 
and drawing session for further analysis. While we did not see 
any differences in the BLTE rates across instructional 
conditions, we did see significant differences in their drawing 
explanations and drawn data distributions based on condition, 
and in their drawing explanations based on whether they 
expressed confusion and whether they committed the BTLE. 
We discuss possible explanations and their implications. 

Keywords: bar graphs, statistics, education, graph perception, 
data visualization 

Introduction 
Bar graphs are commonly used in academia as well as many 
other real-world contexts, such as education, media and 
business. Despite its ubiquity, bar graphs can be often 
misinterpreted. Some of these misinterpretations may be 
perceptual in nature (see Cui & Liu, 2021 for a review). For 
example, the values in bar graphs are often underestimated. 
One explanation of this result is that people use spatial 
location instead of length of bars to determine the value of 
bar graphs (Yuan, Haroz, & Franceroni, 2019). Other 
misinterpretations may be due to misconceptions about 
statistics or oversimplification of relationships between 
graphical elements and their statistical meaning. For 
example, people believe data within error bars, which 
typically depict standard error, are more likely than data 
outside the error bars (Newman & Scholl, 2012), all values 
within error bars are equally likely (Ibrekk & Morgan, 1987), 
and overlapping error bars reveal nonsignificance 
(Cumming, 2009). Even experts have misconceptions about 
how error bars relate to statistical significance and the 
difference between error bars and confidence intervals (Belia, 
Fidler, Williams, & Cumming, 2005). 

One of the commonly seen errors students make with bar 
graphs regards the relationship between the data points that 
created the bar graph and the bar graph depiction. Newman 

and Scholl (2012) coined the term within-bar bias to refer to 
the tendency for people to think data points within the bar in 
a bar graph are more likely to be part of the data set than data 
points outside the bar. Newman and Scholl (2012), along with 
other researchers following them (Correll & Gleicher, 2014, 
Okan, Garcia-Retamero, Cokely, & Maldonado, 2018, 
Pentoney & Berger, 2016), used a probability rating scale, 
which asked participants how likely a given data point is 
given the bar graph, in order to determine this within-bar 
bias. Another approach to assess for within-bar bias is the 
balls-and-bins approach, which asked participants to produce 
a “histogram-like” data distribution based on a bar graph 
(Goldstein & Rothschild, 2014, Kim, Walls, Kraft & 
Hullman, 2019, Andre, 2016, Hullman et al. 2018). These 
approaches categorized the bar graph misinterpretation as a 
bias - that everyone is biased in the direction of data points 
within a bar being more likely data points. 

However, when a different approach was used, that is one 
that allows for participants to more freely respond, a different 
interpretation of previous results arose. Kerns and Wilmer 
(2021) created the Draw Datapoints on Graphs (DDoG) 
measure, where participants draw data points on the graphs 
to show their understanding of data and the graph. These 
drawings revealed that what was once thought of as a bias 
(everyone exhibits) is actually an error that only a small 
minority of people commit. Only 20.6-27% of participants 
produced this error (from the data of Kerns & Wilmer, 2021, 
Pentoney & Berger, 2016, Newman & Scholl, 2012). Those 
participants conflate mean bar graphs with count bar graphs 
and draw all (most) of the dots within the bar, which the 
authors coined the bar tip limit error (see Figure 1). Kerns 
and Wilmer (2021) defined bar tip limit error as having a bar-
limit tip index: (# of data points drawn within the bar / # of 
data points) x 100 be over 80. 

Kerns and Wilmer (2021) asked participants to draw data 
points that “could be averaged to get the value shown by the 
bar”. The resulting drawings from participants showed 
regular and symmetric dots across the bar edge and few 
possible y values, suggesting that participants drew for the 
task and not for what they believed about data distributions. 

We extend the previous work by looking at whether 
instructional changes influence students’ drawing behavior 
and what characteristics they draw into their data 
distributions. In our experimental conditions, we activate 
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increasing levels of statistical concepts to see whether 
considerations of these statistical concepts change the data 
distributions they draw on the bar graphs. 

Figure 1: Example of Bar Tip Limit Error 
 
We hypothesize that changing the instructions for the task 

in include varying levels of statistical concepts would change 
the occurrence of the bar tip limit error, drawing behavior, 
and the types of data distributions drawn.  

 In the present study, participants were either asked to draw 
data points onto a bar graph, with consideration to the 
naturally occurring variance in data, or with additional 
consideration to the y-axis. We screen-recorded their drawing 
session and saved their drawings. Research assistants briefly 
interviewed them on their drawing. We compared the 
frequency of bar tip limit error across conditions, 
qualitatively coded for their explanation for their drawings 
and their drawing behavior from the screen-recorded video, 
and statistically analyzed their drawn data distributions. 

Methods 

Participants 
Participants were 148 undergraduates (97 Female, 29 Male, 
22 no response, Mage=21.90, SDage=6.28 from the University 
of California, Los Angeles. They participated for partial 
course credit. Most students have taken some statistics 
class(es) (M = 2.03 classes, SD = 1.07). Only two participants 
have not taken a statistics class before. 

Materials 
We used an Amazon Fire HD 10 tablet and a compatible 
stylus for our in-person experiment. We used Nearpod to 
administer the experiment and collect the drawings and 
responses. We selected one graph (i.e., the old vs. young 
adults on memory task) from Kerns & Wilmer (2021) to use 
due to its simplicity (i.e. 2 x 2 design, or 4 bars) and its values 
being all positive. This graph was provided as a reference 
image, on which participants can draw their 20 data points. 
At the top of the screen, participants were given the 
instructions for their drawing task (see Figure 2 for an 
example condition). 

There were three conditions, each had different text at the 
top of the screen (see Table 1). For reference, Kerns & 
Wilmer (2021) had as their instructions, “draw 20 dots that 
show possible individual values that could be averaged to 

get the value shown by the bar”. The resulting drawings 
showed some evidence of demand characteristics, that is 
drawing to the task by drawing regular and symmetric dots 
across the bar edge. We chose to reword the instructions 
from Kerns & Wilmer (2021) to be vaguer and more open to 
interpretation in order to avoid participants primarily 
drawing to the task. 

 
Figure 2: Example of screen for drawing task. Participants 
got instructions on the top. The graph had its own caption 

(in the black box) as well as a legend (AM tested, PM 
tested). At the bottom of the screen, participants can choose 

their pen or eraser. 
 

Table 1. Instructions for the three conditions. 
Condition Instructions 
Vague “Draw 20 dots that could be part of 

the data of that condition” 
+ Variance “Draw 20 dots that could be part of 

the data of that condition, keeping in 
mind the average shown by the bar’s 
height AND the amount of variation 
that could exist in data sets.” 

+ Y-axis “The y-axis represents all possible 
values for this task. Draw 20 dots 
that could be part of the data of that 
condition, keeping in mind the 
average shown by the bar’s height 
AND the amount of variation that 
could exist in data sets.” 

Procedure 
Participants completed the experiment on a digital tablet with 
a stylus. Participants were randomly assigned into one of 
three instructions conditions: vague, variance, y-axis. First, 
they had an opportunity to play around with the drawing 
interface, such as drawing dots and erasing them. Next, they 
were presented the bar graph and its accompanying 
instructions for their condition (see Figure 2). After they were 
done drawing, the research assistant asked the participant to 
explain how they drew the dots on the bar graph. After this 
interview portion, the participants filled out their 
demographics information, such as age, gender and number 
of statistics classes taken before. 
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Data Processing 
Image processing was constrained to the bar-of-interest for 
the task (i.e., the rightmost purple bar in Figure 2). We used 
the FindContours function in the OpenCV Computer Vision 
library for object (dot) detection. The original image was 
inverted into binary coding (black dots on white background). 
Once the contour (i.e., dot) is detected, we used the center of 
the contour as the coordinate for the point. Those points were 
scaled to be meaningful in the following way:  

(1): y-coordinates were scaled to match what they would 
be on the y-axis of the graph, extrapolating if the drawn dot 
is under 0 or over 100 from the y-axis. 
(2) x-coordinates were based on the left-boundary of the 
bar, that is 0 is a point on the left-edge and values increase 
as you move right in the bar, with any dots drawn to the left 
of that boundary being negative. The x-coordinates were 
scaled based on how many dots fit across the bar, which 
turned out to be 13 (each dot averaged to be 6 pixels in 
diameter). Therefore, dots with x-coordinates between 0 
and 13 can be interpreted as drawn within the confines of 
the bar, whereas x-coordinates below 0 and above 13 are 
drawn outside the confines of the bar. 

Once we collected the coordinates, we calculated the bar tip 
limit index (# of data points drawn within the bar / # of data 
points) x 100) as well as the following statistics for the dots 
drawn: mean, median, minimum value, maximum value, 
range, standard deviation and skewness. For reference, the 
bar edge has a y-coordinate of 29.54 so all dots drawn below 
that coordinate were considered within the bar. 

Qualitative Coding 
Interview Notes After the participant left, the research 
assistant recorded whether the participant committed bar tip 
limit error (BTLE), which we defined for coding simplicity 
as drawing all the dots within the bar. Actual BTLE index 
calculated and discussed later in the paper. 

We qualitatively coded the interviewer’s (research 
assistant) notes from the participants’ explanations of their 
drawings based on the grounded theory approach with no a 
priori categories. In other words, the primary coder made 
categories as they read through the responses (see Table 1 for 
codebook). The secondary coder used the categories 
description from the primary coder to code a random 30 
responses. We used percentage agreement (see Table 3) for 
interrater reliability because for many of the codes, there 
were more zeros than ones. 
 

Table 1: Codebook for participants’ explanation of their 
drawings. Binary coded (0 or 1).  

Code Description 
Even creating an equal distribution by placing an 

equal number of dots above and below the 
average line of the bar and trying to balance 
the data around the average 

Average trying to ensure that the overall distribution 
centers around the average and distributes 
dots around the average line 

Normal trying to mirror the dots above and below the 
average line in their distribution of dots. The 
drawing follows a normal distribution. 

Outliers drawing most of their dots around or below 
the average line but adding a few outliers 
that are farther away above the bar. 

Random not reporting a clear strategy for drawing the 
dots or having randomly distributed the dots 
across all bars. 

Edge drawing dots directly on the bar's edge or 
tracing the average line. 

Confused express confusion or lack of understanding 
to the task 

Hesitated hesitation at the beginning or drawing 
(uncertainty or delay in starting) 

Wrong 
Bar 

did not draw on the target bar, but drew on a 
different bar or on all bars 

Skew drew noticeably more dots within the bar or 
outside of the bar skewing the distribution 

 
Videos We qualitatively coded the drawing videos based on 
a priori categories. Two independent coders used the 
following codebook in their coding and overlapped in 30 
responses. Percentage agreement (see Table 4). was used 
again for interrater reliability. 
 

Table 2: Codebook for videos of participants’ drawing 
session. Binary coded (0 or 1).  

Code Description 
Alternate 

Mirror 
draws one dot within bar and a 
symmetric dot outside bar and alternate 
on this behavior 

Block Mirror draws dots either within or outside the 
bar all at once and then mirrors what is 
drawn on the other side of the bar 

Span Over draws dots from one direction: top-
down or bottom-up 

Random draws dots randomly over the space 
within and above bar with no perceived 
order 

Results 
First, we tested whether our instructional conditions affected 
the rate of the bar tip limit error (BTLE). We conducted a 
chi-square test to assess the relationship between 
instructional conditions and BTLE rates and found no reliable 
relationship, χ2(2) = 2.07, p = .35. In other words, activating 
different statistical concepts did not reduce the changes a 
student made the BTLE. The BTLE rates for each of the 
conditions: 15.69% (vague), 21.57% (+ variance), 27.91% 
(+y-axis) were also consistent with the BTLE rates found in 
previous data sets: 20.6-27%.  

We continued our data analysis with qualitative data that 
we have coded and used some of these codes to further 
explore the BTLE rates. 
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Drawing Explanations 
Next, we tested whether our instructional conditions affected 
any of our codes for participants’ explanation of their 
drawings (see Table 1 for details) and the codes for their 
video-captured drawing strategies (see Table 2 for details).  

We conducted a chi-square test assessing the relationship 
between the instructional conditions and each of the codes in 
Table 3. We only found a significant relationship between 
instructional conditions and the participant expressing some 
amount of confusion (Confused code), χ2(2) = 9.81, p = .007. 
Participants expressed some confusion in the + variance 
condition the most (41.5%), vague (27.5%), and then + y-axis 
(12.90%). However, it appears that this confusion did not 
translate into any difference in BTLE rates from the primary 
data analysis. We also found a significant relationship 
between instructional conditions and the focus on recreating 
an average (Average code), χ2(2) = 6.69, p = .035. 
Participants focused on the average the most in the + y-axis 
condition (64.50%), then the + variance (49.00%) condition, 
and then the vague condition (35.30%). The Confused code 
and the Average code were amongst the most prevalent 
aspects of participants’ explanations of their drawing (see 
Table 3). Chi-squares with other codes were nonsignificant.  

Overall, the participants seemed to be focused on 
recreating the average (47.37%) the most and the drawing 
dots in a random pattern (21.80%) with outliers (14.79%) and 
an even distribution (aka symmetric) of dots on each side of 
the bar edge. The topic of skew only came up in a minority 
of participants’ explanations (5.97%). It is also reassuring to 
see that majority of the participants (92.54%) drew the dots 
on the Correct Bar compared to the 7.46% that drew on 
multiple bars. 

 
Table 3: Participants’ explanation of their drawings. 
Percentage (%) is of 1’s. Reliability is % agreement 

between two independent coders. 
Code % Reliability 
Even 12.78 0.97 

Average 47.37 0.93 
Normal 8.27 0.93 
Outliers 15.79 0.87 
Random 21.80 0.87 

Edge 5.26 0.90 
Confused 30.83 0.93 
Hesitated 5.97 0.97 

Wrong Bar 7.46 0.97 
Skew 5.97 0.93 

 
Next, we were interested in whether some of the above 

codes were related to whether a participant committed a 
BTLE or not. We conducted a chi-square test assessing the 
relationship between the Confused code and BTLE rates and 
found no reliable relationship, χ2(1) = 2.21, p = .14. We also 
conducted a chi-square test between the Hesitated code and 
the BTLE rates and found no reliable relationship, χ2(1) = 

1.35, p = .25. This suggests that whether a participant was 
confused or hesitated to start drawing is not a good indicator 
as to whether they would commit the BTLE. However, they 
could be predictive of other characteristics of their drawing. 
Because the Confused code was so prevalent, we will 
primarily compare the Confused code and the BTLE error as 
splitting variables in the next few analyses. 

We looked at whether confused participants had different 
explanations than their non-confused counterparts. There was 
a significant relationship between confusion (Confused code) 
and the focus on recreating the average (Average code), χ2(1) 
= 7.79, p = .005. Confused individuals were less likely to 
focus on recreating the average (29.30%) than non-confused 
individuals (55.40%). Additionally, we found a marginally 
significant relationship between confusion (Confused code) 
and whether the participant drew dots randomly (Random 
code), χ2(2) = 3.41, p = .065. Confused individuals were more 
likely to draw dots randomly (31.7%) than those who were 
less confused (17.4%).  

We looked at whether participants who committed the 
BTLE had different explanations than the participants who 
did not commit the BTLE. There was a significant 
relationship between BTLE and focusing on recreating the 
average (Average code), χ2(2) = 12.40, p < .001. Those who 
committed the BTLE were less likely to focus on recreating 
the average (17.90%) than those who did not commit the 
BTLE (55.3%). There was a marginally significant 
relationship between BTLE and create a normal distribution 
with the bar edge as a mean (Normal code), χ2(2) = 2.94, p = 
.086, such that those who did not commit the BTLE were 
more likely to draw a normal distribution (9.7%) than those 
who committed the BTLE (0%). Finally, there was a 
marginally significant relationship between BTLE and 
drawing dots on the wrong bar(s) (Wrong Bar code), χ2(2) = 
2.91, p = .088, with those who did not commit the BTLE 
more likely to draw on the wrong bar(s) (9.6%) than those 
who did commit the BTLE (0%), suggesting that those that 
committed the BTLE had at least read the instructions 
carefully enough to draw on the target bar. 

Drawing Strategies 
We analyzed the screen-recorded videos of participants’ 
drawing sessions using the codes outlined in Table 2. We 
investigated whether there was a relationship between these 
codes and instructional conditions, the Confused code, and 
the BTLE. Unfortunately, we did not find any differences 
between instructional conditions, between confused vs. non-
confused individuals and between those who did and did not 
commit the BTLE on any of the video codes. In other 
words, the strategies that participants used to draw their dots 
did not differ based on their instructions, on whether they 
were confused, or on whether they committed the BTLE. 

Table 4 shows the overall results of the video codes, 
collapsing across conditions. The most common strategy 
used was drawing the dots randomly (48.46%) and while 
our two independent coders may have interpreted the word 
“random” differently, our reliability score is still pretty good 
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at a percentage agreement of 80%. The other strategies were 
very unpopular, suggesting that participants were not being 
super meticulous about ensuring the data points they drew 
created the average and that the distribution is perfectly 
symmetrical. Our codes do not capture all of the different 
strategies that could have existed but creating ad hoc 
categories of videos is difficult. 
 

Table 4: Drawing behavior from videos of participants’ 
drawing session. Percentage (%) is of 1’s and Reliability is 
the percentage agreement between two independent coders. 

Code % Reliability 
Alternate Mirror 1.54 1.00 

Block Mirror 3.08 0.96 
Span Over 7.69 0.92 
Random 48.46 0.80 

Drawn Data Distributions 
Next, we looked at whether there are any differences in the 
statistical characteristics of the data distributions drawn. We 
compared mean, median, minimum value, maximum value, 
range, standard deviation and skewness of the drawn data 
distributions based on instructional conditions.  

We conducted a one-way ANOVA on each of the statistical 
characteristics using instructional conditions as the 
independent variable. There was a significant relationship 
between instructional condition and the range of values 
participants drew, Welch’s test (unequal variances): F(2, 
88.1) = 3.43, p = .037. The range of values drawn increased 
as more statistical concepts were activated: vague condition 
(M = 43.50, SD = 16.30), variance condition (M = 50.00, SD 
= 23.10), and y-axis condition (M = 54.00, SD = 23.90). The 
standard deviations for each condition show that in each 
condition, the ranges of values drawn varied greatly. Post-
hocs using Games-Howell (unequal variances) correction 
revealed that there was a significant difference (10.54) in 
range of values drawn between the vague condition and the 
y-axis condition, t(72) = 2.45, p = .043. 

There was a marginally significant relationship between 
instructional conditions and the maximum value of the y 
drawn (y max), Welch’s test: F(2, 88.1) = 2.50, p = .088. The 
y-axis condition had the highest y-max (M = 60.7, SD = 
25.40), then the variance condition (M = 52.00, SD = 16.80) 
and then the vague condition (M = 52.00, SD = 16.80). This 
order makes sense as the y-axis condition drew participants 
attention to the y-axis and all possible values that the y 
variable could take. However, post-hocs using Games-
Howell correction revealed no significant comparisons.  

All statistical characteristics were significantly different 
when independent-samples t-tests were run between 
participants who committed the BTLE and those who did not, 
p < .05 (descriptive statistics for each feature can be found in 
Table 5). No other statistical characteristics of the drawn data 
distributions were different across the conditions.  

Since the bar tip is at 29.54, it is no surprise that those who 
committed the BTLE had a y mean around the midpoint of 
the bar (~15), a y max below 29.54, and smaller standard 

deviations for most characteristics (due to constraining dots 
within bar) compared to the participants who did not commit 
a BTLE. In addition, we observe that most participants had 
high BLT indexes (i.e., close to 100, or all of the dots within 
the bar), whereas those who did not commit the BTLE had 
roughly half of the dots within the bar (BTLE index of 46.30). 
While subtle, a very surprising difference based on BTLE 
error is skewness, as those who did not commit the BTLE 
error were drawing, on average, a positively skewed data 
distribution while participants who committed the BTLE 
were drawing symmetric distributions on average. This 
suggests that those who did not commit the BTLE may not 
assume normality in data distributions or believe extreme 
outliers (e.g., close to perfect scores) are highly probable in 
data sets. In fact, BLT index was negatively correlated with 
skewness, r(143) = -0.13, p = .12, such that the lower the BLT 
index (proportion of dots drawn within the bar), the more 
positively skewed the data distribution was. Similarly, BLT 
index was strongly negatively correlated with deviation (how 
far from the actual mean the drawn data distribution was), 
r(143) = -0.93, p < .001. 
 
Table 5: Descriptive statistics of statistical characteristics of 

drawn data distributions between those who committed 
BTLE and those who did not. Means shown in bold and 

standard deviations in parentheses. 
Characteristic No BTLE BTLE 

BTLE index 46.30 (17.30) 98.00 (4.45) 
Y mean 33.60 (8.86) 15.70 (1.90) 

Y median 32.40 (9.18) 15.50 (2.73) 
deviation from 

real mean 
4.11 (8.86) -13.80 (1.90) 

Y min 8.93 (8.29) 4.73 (2.56) 
Y max 65.20 (16.90) 26.70 (3.95) 
Range 56.20 (18.10) 22.00 (6.02) 

Skewness 0.27 (0.40) 0.008 (0.378) 
 

Table 6: Proportion of drawings that have means over, 
similar to and below the actual mean of the bar. Similar is 

defined as being 2 dot widths within the actual mean. 
Drawn Mean is: No BTLE BTLE 

Over 56.25% 0% 
Similar 23.21% 0% 
Under 20.54% 100% 

 
To investigate this further, we divided the drawings into 

three categories, having means that are over the bar mean, 
similar to the bar mean and under the bar mean (see Table 6 
for the breakdown). Means that were 2 dot widths (10 pixels) 
within the bar edge (29.54) were considered “similar” to the 
actual bar mean. As you can see from Table 6, majority of the 
data distributions drawn by those who did not commit the 
BTLE had averages over the bar mean.  

Statistics Courses Taken 
We investigated whether the number of statistics courses 
taken prior to the experience could explain the BTLE or the 
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drawing differences. An independent-samples t-test revealed 
no difference in the number of statistics classes taken 
between those who committed the BTLE error (M = 1.89, SD 
= 0.99) and those who did not (M = 1.97, SD = 1.10). 
Furthermore, the number of statistics classes taken did not 
correlate with how close the drawer was at recreating the 
average (deviation: drawn – actual), r(96) = -0.05, p = .65. 
However, there was a marginally significant positive 
correlation between number of statistics classes taken and the 
number of unique y values drawn, r(96) = 0.18, p = .08. In 
other words, with more statistics education, students 
understand that there are more possible y values in their data 
set. The lower unique y values could also reflect tracing the 
edge of the bar or only drawing a few data points and only 
closer to the bar. 

Discussion 
The purpose of this study was to see whether students can 
spontaneously realize where data points can fall on a bar 
graph if given enough statistical cues and clues before their 
drawing process and whether this cuing reduces the bar tip 
limit error (BTLE) rates. For example, drawing attention to 
the y-axis was meant to have them realize that data points can 
exist above the bar tip. We manipulated instructional text to 
have students think about statistical concepts like mean, 
variance and y-axis, ask participants to explain their 
drawings, recorded their drawing and drawing session, and 
analyzed their drawings both quantitatively and qualitatively.  

Increasing statistical concept activation (our conditions) 
did not produce statistically different rates of the BTLE. 
BTLE seems to be persistent and not something that can be 
corrected through spontaneous realization by the student. 
Intervention from an instructor seems to be necessary. What 
is more surprising is that whether a participant mentioned any 
confusion during their interview with the research assistant 
did not predict whether they produced the BTLE, suggesting 
that those participants may be confident in their responses or 
oblivious to how data is represented in the bar graph. 
Furthermore, looking at the Wrong Bar code, we see that all 
of the participants who committed the BTLE drew on the 
target bar only (instead of the wrong bars), suggesting that 
they did read the instructions carefully. Number of statistics 
courses taken previously also did not predict whether 
participants committed the BTLE, which is consistent with 
previous literature showing that expertise does not 
necessarily reduce graph interpretation errors. 

Instructional text did significantly influence participants’ 
drawn data distributions, with the maximum y value drawn 
and range of y values drawn increasing in order of included 
statistical concepts in the instructions: vague, variance, y-
axis. This makes sense as when one is probed to think about 
variance, one would draw more variable y-values, with many 
opportunities to draw upward. When one is probed to think 
about the y-axis, one would also draw more y-values higher. 

Majority (76.79%) of participants did not draw a dot 
distribution that had a similar mean as the bar mean. This 
could be due to limitations in people’s perceptual averaging 

abilities and readjusting tendencies during a generative 
process– some of our human-coded data, not reported here, 
show an 87.5% agreement between human and computer on 
determining whether the dot mean was over, similar to, or 
under the bar mean. On the other hand, perceptual averaging 
abilities related to viewing graphs tend to be quite good (e.g., 
with scatterplots: trend judgment, Ciccione, Sablé-Meyer, 
Boissin, Josserand, Potier-Watkins, Caparos, & Dehaene, 
2023; barycenter/mean position, Hong, Witt, & Szafir, 2021). 
There also was tendency for people to draw a data 
distribution with a mean higher than the bar mean if the 
BTLE was not committed. 

We further found that drawn data distributions from those 
who did not commit the BTLE were, on average, positively 
skewed, whereas those who did commit the BTLE drew, on 
average, symmetric dot distributions. This suggests that the 
former group may be drawing some outliers above the bar tip, 
which is consistent with the Outlier code we produced. The 
average maximum y value drawn in this group is also over 
twice as much as the bar tip (65.20 vs. 29.54), which suggest 
that most of this former group believe that naturally occurring 
data has outliers and more specifically, some individuals who 
perform much better than others (see Figure for context). This 
drawing behavior could also reflect a tendency to not assume 
normality in data distributions, which could be relate to a 
tendency to believe data points within a bar in a bar graph are 
more likely than outside the bar (within-bar bias). 

While the number of statistics classes taken did not predict 
committing the BTLE error, those who have taken more 
statistics classes were more likely to draw more unique y 
values, suggesting that statistics education helps students 
understand and imagine more possible data values. 

Our results and its interpretation are limited to the quality 
of the notes that the research assistants took from 
interviewing the participants as well as the self-awareness 
and reporting accuracy from the participants. Additionally, 
one needs to remember and notice patterns in drawing 
behaviors in order create ad hoc categories of those videos, 
which is harder to do than with text, so we may not be able to 
draw more information from the screen-recorded videos. 
Finally, because the BTLE only occurs in 20-30% of 
participants, our null effect could reflect an underpowered 
sample or sampling error. The low prevalence also makes it 
difficult to recruit enough participants to run follow-up 
intervention studies on this population. 

Our study reveals that the BTLE is a persistent problem and 
not one that can be resolved without direct instruction. Future 
studies should investigate strategies to reduce or eliminate the 
BTLE in students and improve students’ understanding of the 
relationship between data and bar graphs. Our study also 
starts a conversation of what students believe is true about 
naturally occurring data sets, in terms of its variance and 
skewness. Future studies could look into whether students 
think most data sets are positively skewed, whether it is 
specific to data sets on performance, and whether belief about 
skewness exists for other graphs that display means or 
distributions. 
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