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ABSTRACT OF THE DISSERTATION

Behavior-Based

Remote Executing Agents
by
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Professor Joseph C. Pasquale, Chair

ReAgents are remotely executing agents that customize Internet applications for
thin/weak clients. A reAgent is essentially a “one-shot” mobile agent that acts as
an extension of a client, dynamically launched by the client to run on its behalf
at a remote, more advantageous, location. ReAgents simplify the use of mobile
agent technology by transparently handling data migration and run-time network
communications, and provide a general interface for programmers to more easily
implement their application-specific customizing logic. This is made possible by
the identification of useful remote behaviors, i.e., common patterns of actions that
exploit the ability to process and communicate remotely. Examples of such behav-
iors are filters, monitors, cachers, and collators. In this dissertation, we identify
and analyze a set of useful reAgent behaviors, describe how to program and use
reAgents, and show that reAgents provide a scalable, deployable, and effective

solution to the problem of client heterogeneity.
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Chapter 1

Introduction

The trend towards smaller, wireless Internet-access devices has led to
complications in Internet client /server-based application design. Servers must now
be designed to handle a broad range of computing power and/or connectivity
quality. An increasingly frequent scenario is that of transient, sub-standard clients
popping into the network unexpectedly, demanding unusual services, and finding
the services unsatisfactory due to the server’s inability to flexibly deal with the
shortcomings of the client device.

To make these problems concrete, consider the typical client/server-based
electronic-commerce application of a user purchasing merchandise over the Inter-
net. If the user’s client device has below-average computing resources or network
connectivity, or if the user has unusual demands, problems can arise. A client de-
vice with limited network bandwidth and a black-and-white display might be too
slow when the server sends extraneous images and videos of the merchandise. An-
other device with an unreliable connection to the Internet may be unable to verify
that a transaction was completed, possibly sending a duplicate transaction order
due to an intervening disconnection. A third device, due to the susceptible nature
of its wireless connection, may require levels of security beyond the server’s ability
to supply. These types of problems degrade quality of service, and will increase in

frequency as client devices grow more diverse in their needs and resources.



Our approach to addressing these types of problems is to support the
remote processing of client/server application requests and (especially) responses
via dynamically deployed, remote agents, which carry out work tailored to the
particulars of the client device. The remote agent acts as an intermediary between
client and server, but maintains the client/server model (by operating as a server to
the original client and as a client to the original server). So, an application running
on a client device with a small, limited display would benefit from a remote agent
operating at or near the server that filters the rich server data into a spartan,
plain-text response. On a client device with an unreliable connection, application
performance would be improved from a remote agent operating at the boundaries
of the problematic portion of the connection (not necessarily the end-points) that
stabilizes it with a disconnection-aware protocol. Finally, for users with unusual
demands, a specialized service could be implemented as part of the remote agent,

acting as a higher-level service relative to the services provided by the server.

I.A  Previous Solutions

Active Networks and Server-based Solutions

The idea of enhancing client applications with remote code is not new, but
previous efforts have been divided on how and where to provide this functionality.
The active networks approach [41] is to place the logic “inside the network.”, having
it run on network-central machines such as routers. Another common approach is
to attempt to have servers adapt to the specifics of each individual client. Server-
provided CGI scripts/forms, and the group of technologies bundled into the Open
Mobile Alliance (OMA) [31] are two examples of this type of approach, where
the server programmer is responsible for anticipating common client problems and
catering to them.

These types of approaches can have deployability or scalability problems.

Placing the remote code in the network is difficult in terms of deployment, can



also negatively impact other network applications, and is open to violating the
end-to-end principle[34]. Server-based approaches, although easy to deploy on an
individual level, lack generality: some servers may support a specific client, but
other servers may not. Even if one restricted communications only to servers that
catered to one’s needs, performance is unsatisfactory if the client environment
changes in an unanticipated manner or new clients with different, unusual needs

arrive.

Intermediaries

A more scalable solution is to have the remote code operate as a user-level
intermediary on a machine between the client and server. Such an intermediary
would act as a standard client as viewed by the server by communicating with it
using the pre-established client/server protocol. The intermediary would also act
as a specialized server for the client, with the ability to, for example, filter data
received from the server into a more suitable form for the client.

A popular type of intermediary, for which there is much research and
experience, is a proxy that provides a static service, usually pre-installed by an ad-
ministrator, to which a client sends its requests for processing before it gets passed
on to the server. Proxies are a good solution for customizing large groups of clients
with similar demands. For example, all clients connecting via low-bandwidth links
to a higher-speed network might use a filtering proxy that operates beyond these
links. However, static proxies are limited in scope and typically inflexible in where
they can be located. If a client needs special customizing logic that operates opti-
mally at a specific location (such as at or near the base station for a wireless client),
it may be difficult to install such a special proxy at that location. Furthermore,
proxies installed by parties other than the client suffer from similar scalability
problems that arise from server-based customization.

At the other extreme of types of intermediaries is the mobile agent[12].

By a mobile agent, we simply mean a unit of code that is capable of migrating



from the client to a remote site, acting on behalf of the client. Mobile agents
may migrate in a weak fashion (where only the agent’s data and code, but not its
execution state, are moved autonomously) or in a strong fashion (weak migration
plus migration of execution state). As [26] demonstrates that a weak-migration
agent is equivalent to a strong-migration agent, we include both types of migration
in this discussion of mobile agents.

Mobile agents, with their potential to migrate during execution, are ex-
tremely flexible and powerful customization tools. And unlike server-based solu-
tions, they scale well with increasing client heterogeneity as each different client
can use its own type of agent to alleviate its problems. The downside of mobile
agents is that they typically require specialized agent systems to handle the se-
mantics and security problems that are a byproduct of code migration, even weak
migration. They are also not easy to program, as programmers are generally not

familiar with the mobile code programming paradigm.

I.B Our Solution: reAgents

Given these extremes, we seek a middle-ground solution, with the follow-

ing goals:

e provide the programmer a better way to handle its needs and limitations
e be transparent to servers (i.e., do not require modifications to servers)

e be easy to program and use

To meet these goals, we propose a remote code mechanism that is, sim-
ply put, more flexible than proxies but less complicated than fully-general mobile
agents. We achieve this compromise by, first, adopting a form of “one-shot” mobile
agents, simply called a reAgent (for “remotely executing agent”). Unlike a general

mobile agent, which can move to multiple machines during its computation and
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Figure I.1: Client-ReAgent-Server Model

retain its state and identity, a reAgent moves exactly once: before it begins execu-
tion. The reAgent cannot move after it has begun execution, or even launch other
reAgents (only the user may launch reAgents). By restricting its movement in this
fashion, we can restrict, and thus, make guarantees about its potential behavior.
This model is similar to that of remote evaluation [38].

A reAgent is launched to operate at a remote location that is superior
in, for example, available computing or network resources. This location is known
as the reAgent host (Fig. 1.1). The reAgent then acts as a customized proxy for
that particular user, passing through server requests and processing the response
before forwarding it to the client. This allows for extending the capabilities of the
client in a customized fashion.

By moving its own provided code to a better location, the client gains
extra power to better deal with its limitations and needs. And, the client can
represent itself to the server as a standard client via its reAgent, thereby keeping
the server code unchanged.

Several advantages arise from limiting movement to one hop. By avoid-
ing some of the security issues introduced by code that can roam from site to site,
infrastructural support is simplified. Also, with a stationary remote agent acting
on its behalf, the client gains the benefits from remote execution without adjust-
ing its client/server architecture: the reAgent acts as a server by taking requests
and returning responses. Finally, technical problems associated with maintaining
and updating program state during migration are avoided, without losing much

functionality, a view supported by [24].



The most novel aspect of our approach is that reAgent code is strictly
derived from a template library of behaviors. Behaviors are useful patterns of
processing and communication that are the result of restricting and simplifying
the form of movement of reAgents. Not only do behaviors capture common useful
forms of client/agent/server interactions, but importantly, can be specialized for
particular application needs via code parameters. The simplest and most common
example is that of a “filter” behavior, which in general processes a response from
a server before passing it on to the client, and can be specialized in terms of how
the server data will be reduced. A client device with a black/white display would
benefit from a filter that strips the color from image files, while another client
device with a tiny color display would benefit from a filter that shrinks the images
to a manageable pixel count. The filter behavior is a general behavior, while the
specific type of filter is a specialized behavior.

So far, the useful general behaviors we have identified are :

filtering, by reducing the form of a server response before it is communicated
to the client, to reduce the overhead over low-bandwidth links, or to reduce

client storage and processing

e monitoring, to improve application reaction times to critical changes in state

at the server by observing and triggering actions closer to the server

e caching, by saving commonly-accessed data at a location close to the client
to improve responsiveness when there is high network latency between the
client and the server and the client does not have sufficient system resources

to efficiently operate a local cache

e collating, by moving the distribution point of a request, copies of which will
be forwarded to numerous servers, to a more efficient location where the

responses can then be fused into a single result

These behaviors can be used not only in isolation, but also in combina-

tion. Thus, a single reAgent is composed of one or more behaviors (each of which



is specialized for its originating client). By identifying the general behaviors of
reAgents and using them as building blocks for development, we provide a simple,
structured way of building and deploying reAgents that efficiently extend clients
in an application-specific, scalable fashion.

The rest of this dissertation is organized as follows.

Chapter II covers the construction of a model of the operative network
environment, to fully outline the problem situation. Chapter III reviews previ-
ous related work in the area of Internet application customization to identify the
pros and cons of previous approaches. Then, the main contribution of this dis-
sertation follows: Chapter IV describes the concept of reAgents and explains why
their usage leads to scalable, deployable, and effective customization of network
applications. Chapter V describes specific components used for building reAgents:
behaviors, converters, and protocols. Chapter VI describes the external ReAgent
API, with Chapter VII illustrating the use of this API by providing a series of
progressive examples. Chapter VIII provides a detailed description of the inter-
nal implementation for launching and supporting reAgents. Then, Chapter IX
discusses the details of our implementation of this internal interface on top of a
bare-bones mobile code system, Java Active Extensions. Experiments showcasing
the versatility, performance, and usability of reAgents are described in Chapter X.
Finally, Chapter XI concludes this dissertation and proposes directions for future
work.

This chapter, in part, is a reprint of material as it appears in the Thir-
teenth International World Wide Web Conference (WWW2004) under the title
”Web Customization Using Behavior-Based Remote Executing Agents” and as it
appears in the Fourth Workshop on Applications and Services in Wireless Networks
(ASWN2004) under the title ”Using Behavior Templates to Design Remotely Ex-
ecuting Agents for Wireless Clients”. The dissertation author was the primary
researcher and author of these papers, and the co-author Joseph Pasquale directed

and supervised the research which forms the basis for this chapter.



Chapter 11

System Environment Model

In this chapter, we present a model of a system environment where an
advanced remote code mechanism would be useful. If a user is not running a
client application in an environment which fits this model, the conclusions drawn
by this model, and consequently this dissertation, may not apply. However, we
have designed the model so that it applies to many common Internet applications.
Meanwhile, the model facilitates explaining the rationale behind our approach:

application-based remote processing.

II.LA  System Environment Model

II.A.1 Definitions and Assumptions

We define the network environment as a traditional client/server envi-
ronment, with the network conceptually divided into two segments, the typical
segment T and the atypical segment A (Fig. IL.1).

T consists of physical network link(s) that are fairly homogeneous, pre-
dictable, and stable (i.e., the Internet in general). A, which represents the client de-
vice’s connection to the Internet, contains links less predictable in their attributes
and possibly significantly different from most links in 7.

Each network segment is a conceptual unification of its individual com-
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Figure I1.1: Operative network environment

posite links, and has gross characteristics of performance and reliability that can
be abstracted from the finer-grained characteristics of its individual links. For
example, on a link-level basis, the reliability of a segment is only as strong as its
weakest physical link. When there is only one route between the client and server,
the bandwidth of a segment cannot exceed the least bandwidth of its physical links.
Finally, the latency of a segment is at least the sum of the latencies of its physical

links.

Within this environment, we make the following assumptions:

e The server, when communicating with a client, assumes clients to be fairly
powerful devices that communicate with the server through links similar to

those in the typical segment.

e If a client device deviates from this expectation, the server is not expected

to handle it.

e The server expects the client to communicate with a pre-defined protocol Ps,

which we refer to as the server protocol.

e The client, when communicating with a server, knows its network limitations
and how it deviates from the server’s model of a standard, powerful, well-

connected client.

e The client also understands the above server protocol Ps.
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As stated earlier, our following argument is based on these assumptions
holding. However, the lack of one assumption does not necessarily render the
argument invalid: if, for example, there exist servers capable of catering to a client
device’s specialized needs, that merely means the problem scenario does not exist

for that specific client device at that specific server.

II.A.2 Regions

A region is an encapsulation of environmental awareness that incorporates
some of the above assumptions into our model. All machines in a region (and
the code that runs on those machines) possess knowledge of any deviations from
the standard Internet environment. For simplicity, deviations are assumed to be
static. In particular, a wireless network is only considered atypical if its operation
is distinguishable from that of a wired network.

In addition, machines outside of a region lack any knowledge of any envi-
ronmental deviations that operate within that region. Note that unlike a firewall,
a region does not preclude the ability to communicate with machines in different
regions — it merely expresses the boundary of environmental awareness.

Our model defines two regions: the client region and the server region.
The client region consists of the client device and the atypical segment, to model the
assumption that the client user understands its deviations. Meanwhile, the server
region consists of the server machine(s) and the typical network segments that
connect them to the atypical segment. This models the server’s lack of knowledge
about any client problems. (For purposes of simplicity and clarity, we limit the
subsequent discussion to a server region containing a single server, but multiple
servers are also supported by this model.)

Code in the server region operates as if the network environment were
as depicted in Fig. I1.2. This view consists of the exterior of the client region,
U— C (which contains the server region S), and the physical network links between

C and S that make up the client-server network connection (which is categorized
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Figure 11.2: Server view of environment

as a typical network segment). Thus, server code is only required to assume that
there is a client, operating on a machine remote to the server, that connects and
makes requests to the server using the server protocol Ps. It does not know about
the atypical network segment at all.

In contrast (Fig. I1.3), code operating in the client region operates in an
environment consisting of the exterior of the server region U — S (which contains
the client region C'). The code developer is not required to understand either the
implementation of the server architecture or the details of the typical segment, but
only the server protocol Ps and the point of communication where the server can

communicate with the client using Ps.

U
C S
- - 0
Client
De\I/i ce PS Server
Client Server
Region Region

Figure I1.3: Client view of environment

With the definition of regions, we can now model the problem of client
heterogeneity. We describe the client region C’ as different from a typical, standard

client region C' in one or more attributes. Examples of differences between C' and

C include:
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Physical limitations of client device (small display, inadequate memory)

Atypically low bandwidth in connection to Internet

Atypically unreliable communications

Atypically insecure communications

Excessive latency between client and server

All of these differences are encapsulated within the client region, modeling

the server’s lack of information about the client’s special problems.

II.B Location of Customizing Logic

Given this model, and the concept of using remote code for customizing
application performance, it is important to decide where the customizing logic
should be placed. There are three possible areas where such customizing logic is

based. They are:

e The network
e The server region

e The client region

As briefly alluded to in the Introduction (and discussed in more detail in
Chapter III), each of these three locations has been used in previous solutions for
customizing performance. If the customizing logic is placed within the network,
both client and server will have to deal with this change in their world view,
making it hard to deploy. Also, the overhead of the mechanisms supporting the
customizing logic is potentially incurred by all applications, regardless of whether
they use them or not, thus lowering efficiency.

Meanwhile, if the customization logic is based at the server, then each

change in a client causes a change in every server. This solution does not scale
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Figure I1.4: Bounding of Client Region

well: as the heterogeneity of client devices (represented by the addition of different
client regions) increases, support required in the server universe also increases, as
each server must add customization logic to handle each new client region.

Thus, we have chosen to base the location of the customizing logic in the
client region. The customizing logic is originated by the client and placed on a
machine that resides in the typical segment, beyond the atypical segment. Once
the logic is placed, we bound the client region to have the client device at one end
and the customizing logic at the other end, so that the atypical segment is masked
from the server. (Fig. I1.4)

From the model, we can see that the customizing logic, being in the client
region, is exposed to the problems of the client region, but that the server is not.
Instead, the server treats the customizing logic as the actual client, as they are
both part of the opaque client region. Thus, the server need not change when
new client problems arise, promoting deployability and scalability. Meanwhile, the
client is still able to communicate with the server by providing the customizing
logic with an understanding of the server protocol Ps. Moreover, with the addition
of client-originated customizing logic as an intermediary between client and server,
the client can now communicate with said logic using a custom client protocol Pc.
Such a protocol could be used to ameliorate communication problems over the
atypical segment, or provide the client with run-time control over the customizing

logic.
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II.C Advantages of Client-Based Code Mobility

Given this model, customization within the client region stands out as
having no intrinsic scalability or deployability problems. Yet previously well-
researched client-based customization solutions such as mobile agents are not
widely in use.

The reason is not because mobile agents are inapplicable to the problem
of client heterogeneity. Any solution that supports code mobility and remote

operation is powerful enough to solve individual client problems. For example :

e Resource-poor client devices can have computation take place on the server
hosting the agent (the agent host), bypassing the client environment as much

as possible.

e Bandwidth use over the atypical segment can be reduced by filtering data
at the agent host to a smaller amount before sending it over the atypical
segment, or having the agent be responsible for sending out messages to

multiple servers from its remote position.

e If the client and server are using a connection-less, unreliable protocol such as
UDP, then the reAgent can add reliability on top of the protocol by re-sending
lost data. Or, in the case of an extreme environment such as an interplanetary
network [10], the reAgent might improve reliability by implementing forward

error-correction.

e Insecure links can be strengthened by having the agent encode transmissions
(with a client-specific algorithm as the customizing logic) before sending to

the client for decoding.

e Latency can be reduced by moving computation closer to the object the
agent is communicating with, or by bypassing unnecessary communication
with the server by storing a copy of previously retrieved data with the agent

(e.g., a cache).
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The examples above show that many applications could benefit from the
advantages provided by mobile agents. Why, then, given such widespread appli-
cation, have mobile agents not been successful? Before describing our answer and
solution, we first revisit past solutions to the problem in more detail in the next

chapter.



Chapter 111

Related Work

The customization of applications for improved performance has seen
a variety of past research solutions. Active networks, dynamic proxies, pub-
lish /subscribe messaging, and mobile agents are but a few of the solutions ad-
vanced to solve this problem. In this chapter, we describe the past research in this
area in detail and explain how their solutions do not lend themselves to scalable,

deployable, and effective customization.

IITI.A  Active Networks

The active networks approach [41] argues for putting customizing logic at
the network level with the use of programmable packets, or “capsules”, that can
change the behavior of the network. While active networks are able to effectively
support a wide variety of client devices, they do so at the expense of deployability.
Using a network-based approach such as active networks makes severe demands
on the Internet infrastructure, going against the end-to-end principle[34] that is
arguably the primary reason behind its success. Violating the end-to-end principle
means that every application, including those that do not need customizing logic,
must deal with the overhead and side effects of active networks. In addition,
active networks also raise serious security concerns due to the possibility of packets

reprogramming the network.

16
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Some active networks have been implemented by researchers, the most
prominent being ANTS [44], NetScript [36], and SwitchWare [2]. In each of these
projects, the central problem of deploying active networks into the existing in-
frastructure remains. The ALAN project [14], which moves the active network
functionality into the application-level, addresses the issue of flexible deployment,
but does not explain a general, structured method for building applications, the

subject of this dissertation.

III.B Dynamic Proxies

Another customization solution lies in the use of proxies, which act as
intermediaries between client and server. Proxies are different from our approach
in that they are not necessarily mobile (movable from site to site), and thus tend to
be part of the existing infrastructure rather than originating from the client in re-
sponse to a certain problem. Such infrastructure-based approaches work well with
a general class of clients/problems, but are inadequate for unusual or unexpected
problems.

While traditional proxy applications concentrate on caching Web results
for improved performance and for controlling Internet access through firewalls [27],
some have focused on actively customizing application behavior (dynamic proxies).
In [8], the idea of an Active Cache, or a dynamic proxy that acts to help improve
caching for dynamic Web objects, was first proposed. In Active Cache, content
providers provide specialized code in the form of a cache applet that intermediate
caching servers execute to produce a new version of the cached object. More
recently, [28] describes a large-scale, server-based framework for caching dynamic
Web content and facilitating personalized services, called WebGraph. WebGraph
is designed to be deployed without client-side support, so it is primarily targeted
at groups of clients instead of individual clients.

Server-based customization techniques such as dynamic proxies are highly
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deployable because they do not require changing the underlying network infras-
tructure and represent the most popular approach of solving the problem of client
heterogeneity. However, such techniques, while effective in a piecemeal fashion
server-by-server, do not fit our goal for a global, scalable, server-independent cus-
tomization solution. While such a goal seems ambitious, it is actually a necessary
response to the continual creation of new client devices with correspondingly dif-
ferent demands. Such a process makes it difficult, if not impossible to anticipate
every potential variation in client capabilities. And even if such variations were
able to be anticipated completely, not every server has the resources to handle
every potential variation. Finally, even if such resources were available, there is no
guarantee that the service the user wants to use would make use of them to accom-
modate the user. The user may have no recourse in a server-based customization
scenario, being completely dependent on the server for a solution to its particular
problem.

The Active Names project [42] describes the use of a dynamic proxy, in-
troduced by either server or client, that customizes how resources on a wide-area
network are located and transported to a client. While this provides dynamic cus-
tomization, it does not satisfy the goal of completely avoiding server participation.

For scalability purposes, the client must introduce the customizing logic.

ITI.C Publish / Subscribe

Content-based publish/subscribe (a.k.a. pub/sub) is another technology
area that can be applied towards the goal of scalable customization. Potential
clients can subscribe to an event feed tied to a data server. When the server
publishes new data to the feed, all clients are notified that they need to update
their feed. The feed acts as an intermediary that allows clients and servers to be
added and removed independently of each other. The feed can also operate filters

to ensure that clients get customized traffic, thus supporting scalable, deployable
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customization. Past research in this area includes pub/sub systems such as Siena
[9], Gryphon [6], Solar[11], and Fulcrum [7].

While pub/sub achieves scalable, deployable customization, and is capa-
ble of emulating certain subsets of reAgent behaviors such as filtering newsfeeds for
news stories of particular interest, most pub/sub systems do not have the power to
support the full range of reAgent behaviors. A reAgent supports the execution of
general customized code with restricted inputs and outputs, so a reAgent provides

greater programming generality than a pub/sub system.

ITI.D Client-based Customizers

In order to be less dependent on the server, researchers have developed
customizers with more client-side support. Reference [46] describes the implemen-
tation of a client-proxy-server framework that supports the on-demand download-
ing of custom filters (the customizing logic) to a proxy. The proxy then executes
the filter on communications from the server before passing it onto the client. Un-
like our work, this framework focuses on filtering applications instead of all types
of applications that could benefit from mobile code.

A more flexible Web-oriented customization scheme is detailed in [40],
which describes the implementation of a middleware architecture that supports
adaptive Web-based proxies called Customizers. Customizers are deployed on be-
half of a client, and are split into two points of control, so as to separate the
individual extension of a Web browser from its remote, location-dependent com-
putation. However, it is optimized for use over an HTTP client/server connection
and not a more generic client/server connection.

An industry-based approach to individualized customization lies in IBM’s
Web Intermediary suite[5]. Here, the customizer (called a plugin) is an HTTP re-
quest processor, and can be placed either between client and server as a proxy, or

act as a HTTP server of its own. A Java development kit is provided for poten-
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tial plugin developers, allowing for rapid deployment of custom plugins through a
provided library of monitors, editors, and (document) generators. However, this
work is targeted for HT'TP connections only, and it does not use mobile code to

take advantage of deployment to optimal locations for customization.

III.LE Mobile Agents

A significant area of past research in client-based customization has been
based upon mobile agents. Mobile agents are pieces of customizing logic that
have a persistent identity, moving around the network to multiple sites. The IBM
Aglets Workbench [25] and the D’Agents project [17], from industry and academia
respectively, are prominent examples of systems that support the execution of
mobile agents. A fuller description of these and other important agent systems, as
well as the current state of mobile agent research can be found in [18].

Mobile agents provide a robust solution for addressing the problems of
client heterogeneity: they are both deployable and scalable. However, despite
having several years for the idea to incubate, mobile-agent-based applications are
rare. This is not due to lack of theoretical value: [20], [19], and [43] describe
applications which take advantage of mobile agents. But, value notwithstanding,
few applications based on mobile agents are in widespread use. Most application
programmers are either unaware of the paradigm of mobile agents, or uninterested
in handling the details necessary to support client-specific desires. Thus, our work
differs from previous mobile agent literature by concentrating on a method that

reduces the complexity of building agent-based applications.

III.LF Design Patterns

[45] describes the problems facing the development and deployment of
mobile agent (and mobile code) applications. Consequently, there has been some

work attempting to extend the idea of design patterns to mobile code [15]. Design
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patterns are a software engineering approach for facilitating the development of
object-oriented applications. While design patterns have previously been proposed
for use in designing mobile agent applications [3, 35, 37|, these patterns differ from
our approach, in that they tend to be at a higher level of abstraction instead of
application-oriented. For example, all reAgents would conform to what might be
called a One-Hop design pattern, as all of the reAgents move only one network hop.
In this work, each of these One-Hop reAgents are differentiated by the application

behavior and underlying support protocols.

ITI.G Summary

The problem of providing customizing logic to client applications is not
new, but previous efforts have been divided on how and where to provide this
functionality. Network-based solutions such as active networks face severe deploy-
ment issues. Server-based solutions such as dynamic proxies do not scale well
in handling unexpected client problems or non-standard protocols. Finally, pre-
vious client-based solutions such as mobile agents are promising, but not widely
used. The root of their lack of usage lies not in their applicability, but in their
complexity and unfamiliarity. What is needed is a client-based remote processing
technology more similar to client/server than mobile agents (to enhance usability)
while providing scalable and deployable benefits to the problem of client hetero-
geneity. The next chapter will describe the design and architecture of our solution
to this problem: reAgents.

This chapter, in part, is a reprint of material as it appears in the the
Fourth Workshop on Applications and Services in Wireless Networks (ASWN2004)
under the title ”Using Behavior Templates to Design Remotely Executing Agents
for Wireless Clients”. The dissertation author was the primary researcher and
author of this paper, and the co-author Joseph Pasquale directed and supervised

the research which forms the basis for this chapter.



Chapter 1V

ReAgents

As can be seen from the previous chapters, client-launched intermediaries
for remote customization is not a new idea, but previous solutions were complex
and hard to deploy. A reAgent is a client-originated intermediary with restrictions
placed upon its movements and its behavior (its actions). Such a behavior acts as
a template for building a reAgent, defining a specific sequence of communication
and processing.

In this chapter, we explore the design goals and top-level architecture of

reAgents.

IV.A Design Specification

The design goal of reAgents is to provide a scalable, deployable, and
effective solution to the problem of client heterogeneity. To that end, reAgents are

designed with the following key features:

Scalability through Client-Based Deployment Per the model in chapter II,
the client side may experience problems unknown to the server side. Thus, the
solution must come from the client side, not the server side, in order to properly
scale as new clients (and their corresponding problems) are introduced into the

environment. A reAgent is therefore launched by a client device to an intermediate

22
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site, the reAgent host, to be executed in a client-specific fashion.

One-shot Movement ReAgents use a restricted form of mobile agent tech-
nology by limiting movement to one migration only. This type of movement is
named one-shot to emphasize that reAgents move once and then terminate at
that location, in contrast to the unlimited movement capabilities present in most
mobile agents. Most of the advantages of client-based code mobility, as described
in Section II.C, do not depend upon the ability to move multiple times. Thus,
by simplifying the reAgent movement potential to one network hop, we have the

ability to create effective pieces of mobile code that are easy to deploy.

General Behaviors For most environment problems that are a result of client
heterogeneity, a general solution can be found that treats that problem. For ex-

ample:

e Excessive latency between computation and target is solved by moving the
computation closer to the object, or bypassing communication if unnecessary

through caching.

e Limited bandwidth can be solved by having the reAgent filter data at the

reAgent host before it is sent back.

e Insecure links can be neutralized by having the reAgent encrypt transmissions

before sending to client for decryption.

e Traffic can be shaped to a specific pattern by having the reAgent manage
the traffic flow.

e Unreliable links can be overcome with the reAgent re-sending lost data.

These solutions can be encapsulated as a general behavior. A general
behavior describes common patterns of action for a reAgent (specifically, its move-
ment, communication, and logical processing) that takes advantage of remote pro-

cessing to improve the application’s performance. In this manner, we guarantee
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that reAgents constructed from useful general behaviors will provide useful, effec-

tive customization.

Behavior Templates Part of the problem facing the widespread use of mobile
agents lies in their implementation and development. Most network application
programmers are used to programming in the client/server model, or lately, the
peer-to-peer model. In contrast, the mobile agent model adds several dimensions
(such as code movement, remote execution semantics, and intermediary commu-
nication handling) that are unfamiliar to most programmers. By categorizing
reAgents in terms of general behaviors, we can write code to handle these unfamil-
iar areas for each general behavior, and use it as a template for creating specific
reAgents that behave in that general manner.

For example, data filtering is a common, useful reAgent behavior. A
filtering template is provided to handle the movement and internal logic for a
general filtering reAgent. All a developer needs to do is to insert a client-specific
data-filtering algorithm (such as stripping color, or shrinking the image size), and a
custom reAgent will be created. Using a behavior template, one can easily create
custom, fully-functional reAgents as specific instances of a general intermediary

behavior.

Summary With these key design features, we conclude that reAgents are :

e Scalable — they are originated by the client

e Effective — applications that use them gain a strong advantage from remote

execution (the advantages provided by their behaviors).

e Deployable — built with a simple, reusable, integrated approach that handles

the interface between movement, communications, and the custom logic

This is in accordance with our design goals. It now remains to fill in the

details of this design specification and show its implementation.
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IV.B ReAgent Architecture

IV.B.1 Client/ReAgent/Server Linkage

ReAgents are targeted towards client/server environments, and are espe-
cially useful where servers (and clients) are not easily amenable to change. Given
a potential client/server interaction, the client and server must somehow be linked
to the reAgent, which is interposed in their communications. The reAgent com-
municates with the server as a traditional client: it sends the server a request and
receives a response. From the server’s point of view, the reAgent is just another
standard client. However, the reAgent needs to intercept the client request to a
server, without necessarily changing the client application code. This is accom-
plished by using a front-end prory that runs on or near the client device. The
client application’s output is redirected to the front-end proxy’s input for forward-
ing to the reAgent. The front-end proxy can do this because it is responsible for
launching the reAgent to the reAgent host (using the reAgent API).

Once the reAgent is launched, avenues of communication are automati-
cally set up between the front-end proxy and the reAgent, as well as between the
front-end proxy and client application (the client application’s output is redirected
to the front-end proxy’s input). Then, the proxy acts as a client to the reAgent
by sending requests (from the client application) to the reAgent, and acts a server
to the client by passing responses from the reAgent to the client application. In
this manner, the implementation of the client application and server remains un-
changed.

For the reAgent code to migrate for execution on the reAgent host, some
middleware system that supports remote execution must be available. Our imple-
mentation of reAgents is not tied down to a specific format of remote execution,
which would limit its scope. Instead, we leverage existing work in mobile code
systems by translating the launch procedure into the appropriate code movement

calls for each system. These movement calls are translated at run-time when the
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Figure IV.1: ReAgent Architecture

agent is launched, with the type of middleware on the target reAgent host is spec-
ified in a configuration file. (Note that the underlying mobile code middleware
system is completely transparent to the programmer, who must only understand
the simplified reAgent interface.) As explained in IX, we use a locally-developed

mobile-code middleware system [30].

IV.B.2 Components

Behaviors A reAgent is composed of specialized behaviors, which in turn are
instantiations of a general behavior. As a programming object, a general behavior
is equivalent to a template, consisting of base logic (the BL) that captures the
general actions of the behavior, and an API that allows it to be specialized with
programmer-provided custom logic (the CL) and to be controlled by the user during
run-time (control methods).

A behavior operates in the following fashion: as part of the reAgent, it
waits until it receives a request. This request is passed as an input to the BL, which
may call some methods implemented by the client (the CL). At some point during
the BL, request(s) are made to a server (specified as a parameter when the reAgent
is configured with the behavior), which returns a response. This response is also
passed through the BL (and may call another method of the CL) before being

output. At no point does the behavior initiate communication with the client;
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the reAgent containing the behavior handles all the input and output. During
execution, the client can tell the reAgent to invoke the control methods of the

behavior, which allow control of the reAgent’s behavior from an external point.

Converters Because input and output are handled at a higher level in a con-
sistent fashion, multiple behaviors can be combined in a chain. The behaviors
are chained together through the use of converters, i.e., code that can convert the
response output of one behavior into the request input for another one. Then, the
higher-level reAgent code can run a behavior whose response output is fed to the
converter, and then get the converter’s output of a client request to feed to the

next behavior in the chain.

Protocols A reAgent is able to customize its communication using protocol com-
ponents. Each behavior communicates with the server using the server protocol
(the protocol recognized by the server, and like the server, specified as a parame-
ter at reAgent configuration time) and with the client using a client protocol. The
client protocol is customizable by the client and allows the client to substitute a
protocol that is better suited than the server protocol for the connection between
client device and reAgent host. For example, a useful scenario for a custom client
protocol arises when a portion of the network path near the client is relatively
unreliable, e.g., wireless access. One could launch a reAgent to a location beyond
the unreliable portion, e.g., at or beyond the wireless base station, set up a more
stable, reliable protocol between the client and reAgent, while continuing to use
the standard server protocol between the reAgent and the server.

Finally, the client can explicitly control the reAgent during run-time us-
ing the reAgent protocol, which is at a higher level than the client/reAgent and
reAgent/server protocols discussed above. The reAgent protocol is fixed (it is
defined by the behaviors of the reAgent), and is used by the client to invoke a

behavior’s control methods.
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IV.C Relation to Model

With this design and architecture, reAgents comfortably fit within the
system environment model described in Chapter II. ReAgents are created and
launched by a user who understands how the client region deviates from the server
region, and knows how the reAgent can customize the server data to alleviate these
problems. The reAgent location designates the boundary between the client and
server regions, so that the client protocol is used to communicate within the client
region and the server protocol is used to communicate within the server region.

The reAgent host is picked by the user to divide the network into typical
and atypical segments. The route from the reAgent host to the server must be a
typical network segment (and by definition, can use the server protocol without
problems), while the route from the reAgent host to the client must be atypical
(and uses the client protocol to address any network problems). To achieve this
condition, the reAgent must migrate to a host that is closer to the server than any

bottleneck on the atypical segment.

IV.D Summary

In this chapter, we described the design specification for reAgents. We
introduced the reAgent components of behaviors, converters, and protocols, and
showed how they interact. Finally, we tied our design back to the system envi-
ronment model. In the next chapter, we will describe and analyze a library of
general behaviors that we use to create templates for reAgent categorization and

construction.



Chapter V

(General Behaviors

We developed the definition of behaviors based on their usefulness in the
design of reAgents. A behavior is “useful” if it exhibits benefits that are derived
from a reAgent’s ability to operate remotely. These benefits come from some

combination of, but not limited to, the following:

e use of remote computational resources

e avoiding or minimizing the effects of a problematic portion of the network

(high delay, low bandwidth, low reliability, etc.)

e ability to act autonomously on behalf of the client in a customized fashion

The following sections catalog the useful behaviors we have identified.
For each behavior, we present a description of the behavior, an outline of its base
logic, an example of its use, and an analysis of its performance. To clarify the
exposition, we show the base logic in pseudo-code. For consistency, we limit the
usage discussions to Web applications, as they are good illustrations of beneficiaries

of using reAgents, and were the focus of our first developed reAgents [21].
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Figure V.1: The Filter Behavior
V.A Filter

Description The Filter behavior (Fig. V.1) is used whenever a server response
needs to be reduced (in size) before reaching the client. The reAgent interposes
itself between the client and server, filters the server responses into a smaller,
possibly more suitable format for the client, and sends this filtered result back to
the client. The CL (customizing logic) is the application-specific algorithm that

defines how to reduce the data.

Base Logic

input: request

serverProtocol.send(request)
response = serverProtocol.receive()

newResponse = filterLogic.filter(response, args)

output: newResponse

The reAgent passes the request through to the server, runs the filtering

algorithm on the server response, and sends the new response back to the client.

Application The Filter behavior is designed for scenarios where the server data
is too large for the client. A common scenario involves browsers on clients with
limited capabilities, such as small battery-powered wireless devices (e.g., PDAs).
General features of such a device include limited network bandwidth as well as
low-fidelity rendering of data, so filtering by removing extraneous or unusable
data before sending it to the browser would reduce required bandwidth and reduce

delay without significantly impacting the perceived quality of the data.
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Analysis The following is a performance analysis of the Filter behavior. In this
analysis and those that follow, we assume that network latency (i.e., propagation
time) and network message processing overhead are negligible (relative to the other
factors we consider). All overheads that are attributable to the the reAgent itself,
e.g., its launching time, are encapsulated as a single variable ().

One way a filter is effective is if it reduces end-to-end server-to-client
delay. In straight client/server, the delay (D) to return a file of size S is the

transmission time given by file size divided by client-server bandwidth (B,;):

S

Dcs =
Bcs

The delay as a result of using reAgents is equal to the the transmission
time between the the server and reAgent (Bim) plus the processing time for the
filter (Priyter), plus the overhead of using the reAgent (A), plus the transmission
time between the reAgent and the client (g—i), where « is the percentage of original

data left over from the filter:

aS
BCT'

Dc'rs + Pfilter + A +

B; s

To compare D., and D,.,, we calculate the speedup, which represents

the percentage improvement of the reAgent approach. When the speedup is posi-

tive, reAgents are superior; when the speedup is negative, traditional client/server
implementations are superior.

The speedup is derived from the following equation:

DCTS
DCS

Plugging in the values of D,., and D, into the speedup equation above,

speedup = 1 — (V.1)

and setting B, equal to B, (assuming that the bandwidth of a set of links is equal
to the bandwidth of the slowest individual link) results in a speedup of

(1 - a)S/Bcs - (S/Brs) - Pfilter - A
Dcs

speedup =
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B,

If we express the ratio of the bandwidths as p = 5=, then speedup > 0

when

(I—a-p) S

Bcs _Pfilter > A

Thus, reAgents become more advantageous as

e « decreases (the filter reduces more data)

e p decreases (the bandwidth ratio of the client/reAgent to reAgent/server

network segments becomes much smaller)
® Ppiser decreases (the filtering algorithm processes more quickly)
e B, decreases (the overall bandwidth is small)
e S increases (there is more data to filter)

e ) decreases (overhead of using reAgent decreases)

So if client-reAgent bandwidth drops, or original data size gets larger, the

filtering reAgent becomes more effective.

V.B Monitor

Client launch ReAgent Host  Server
/\
1 RAN
Client -
itor N -l
Protocol @/g\ >
App+Proxy ReAgent Monitored Obj
(High Delay) (Multiple
Requests)

Figure V.2: The Monitor Behavior
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Description The Monitor behavior (Fig. V.2) is designed for use in applications
that have a need to frequently examine the state of a remote object (on a far-
away server) until a certain state is observed. The calculation of the next monitor
attempt, plus the response evaluation function, forms the CL.

A reAgent that uses the monitor behavior is placed on a site close to the
object that is being monitored, for the purpose of reducing the time of receiving a
critical state change and sending the trigger action to the server. This is important
for applications that require a real-time response to sudden changes in environment,

such as a stock ticker or online bidding auction.

Base Logic

input: request, requestParam

do
/* pause before checking */
queryTime =
monitorLogic.calcnextQuery(requestParam)
sleep (queryTime - currentTime)
/* check remote object */
serverProtocol.send(request)

response = serverProtocol.receive()

while (monitorLogic.testResponse(response) -> FALSE)

output: response

The behavior repeatedly calculates the next time to query the server,
queries the server at that time, and then checks to see if a trigger state has been
reached. Once the trigger state is reached, monitoring is terminated and the

response that triggered the state change is returned.

Application A simple example of an application for a Monitor involves intelli-
gent auto-refresh of a Web browser. Many pages auto-refresh at fixed intervals. A
Monitor can bypass the automatic refresh and refresh at its own customized rate.

This can be advantageous when the Monitor is sensitive to network conditions
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and adjusts the rate depending on the amount of traffic. More importantly, the
intelligent auto-refresh only updates the client when the server changes, and will

not force a refresh when the data remains unchanged, saving bandwidth.

Analysis To evaluate the monitor, we assume that the monitor will send a mes-
sage to the server n times before the trigger condition is satisfied.
Under straight client/server, the total delay between sending a request to

the server and processing its reply is

T..=nx D,

where n = the number of queries before the trigger condition is satisfied.

With a reAgent, the total delay is

Tcrs = Dcr + nDrs +A

as the delay between client and reAgent is only paid once. Equation V.1 gives a
reAgent speedup of

Dcr + nDrs + A
nDcs

speedup =1 —

Solving for speedup > 0, we find that reAgents are better for monitoring when
(n—1)Dg > A
Thus, reAgents become more advantageous as
e 1 increases (more queries before trigger state is reached)
e D, increases (more delay between client and reAgent that is avoided)
e ) decreases (overhead of using reAgent decreases)

Therefore, many queries, or high delay between the client and the re-

Agent, points to using a monitor reAgent to gain a performance advantage.
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Figure V.3: The Cacher Behavior

Description The Cacher behavior (Fig. V.3) is used for storing recently retrieved
server data at a nearby location with the expectation that it will be accessed again,
thus improving future performance. When previously retrieved data is requested
again, the nearby stored copy is retrieved instead of the distant original. The cache
replacement policy forms the CL. This behavior is especially useful for applications
that have frequent yet identical requests to remote servers, such as occurs in Web

browsing.

Base Logic

input: request

key = cacherLogic.hash(request)

if (cacherLogic.lookup(key) -> TRUE)
response = cacherLogic.get (key)
else
serverProtocol.send(query)
response = serverProtocol .receive()

cacherLogic.replace(key, response)

output: response

This behavior uses customized logic on the request input to decide whether
or not to pass along the request to the server. If the request has not been made
recently, the behavior generates a “key” which gets associated with the request,
and then uses the request to contact the server. When the server responds, the be-

havior associates the data in the response to the key of the request and stores both
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items in a database, i.e., the cache, before outputting the response data. When a
request is made that matches a key in the cache, the behavior will bypass sending
the request to the server and immediately return the associated cache data.

The behavior is in charge of inserting, removing, and retrieving data
contained within the cache. Insertion of data into the cache happens whenever
the server sends the behavior a response. Cached data and its corresponding key
are removed whenever the amount of storage allocated to the cache begins to run
out, or by special order of the client. Data is retrieved from the cache when the
client request key matches a key within the cache. While the behavior defines these
general actions, particulars regarding cache policy (such as which cache entries to

replace first when the cache is full) are supplied as part of the CL.

Application Caching of frequently accessed Web pages is so beneficial to per-
formance that most major Web browsers support some form of caching. With
no intermediate hosts, the server data is stored on the client device. While stor-
ing the cached data on the client device is optimal for minimizing network delay,
some client devices have such small amounts of memory that cache performance is
seriously degraded by running locally. These resource-poor clients would benefit
greatly from moving the cache from the client device to a nearby location with
sufficient resources.

In such situations, a reAgent with a Cacher type of behavior can be cre-
ated, along with a client-specified cache replacement policy and size, and launched

to the nearby machine to effectively operate a cache for the browser.

Analysis To evaluate the cacher in both scenarios, end-to-end delays are com-
pared.

Under straight client/server, the delay between sending a request to the
server and processing its reply is simply D,;.

Under a caching reAgent, the delay between sending a request to the

server and receiving its reply depends on whether the item requested is in the
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cache. A delay between client and reAgent is always incurred. When the item is
not found in the cache, a delay is also incurred between the reAgent and server.

This can be expressed as
Dcrs = Dc'r + pDrs + A

where p is the probability of a cache miss.

The speedup of a reAgent Cacher over client/server is

DC’I"+pDT'S+)\
DCS

speedup =1 —

and speedup > 0 when

(1 - p)D'rs > A
So caching is better when

e D,, increases (the delay from the network segment skipped by the cache is

higher)
e p decreases (fewer cache misses)

e ) decreases (overhead of using reAgent decreases)

Thus, a reAgent cache outperforms client/server when the delay between
reAgent and server is high enough, or the miss rate is low enough to overcome

reAgent overhead.

V.D Collator

Description The Collator behavior (Fig. V.4) transmits the same message to
multiple servers from a remote location, and waits until a wait condition, specified
by the client, is satisfied. Afterwards, the responses are sent to an application-

specific function that produces a result for the client (collating).
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Figure V.4: The Collator Behavior

Base Logic

input: request, serverList

n = sizeof (serverList)

replies = 0 // synchronized

for (i =1 to n)
spawn Thread that runs :
for (s = 1 to n)
serverProtocol.connect (serverList[i])
serverProtocol.send ()
response[i] = serverProtocol.receive() // blocking until timeout

replies = replies + 1

collatelogic.wait ();

fusedResponse = collatelogic.collate(resp ) // all resp passed

output: fusedResponse

The message is sent once to the reAgent, which then transmits it multiple
times, once for each server. The reAgent then waits for responses from the servers
in an application-specific fashion, as defined by the wait () method (the CL). For
example, the reAgent may only wait for the first response from any server, or for
some bounded number of responses, or even wait for responses from the servers

within a timeout period. After the wait() method returns, the server responses



39

are collated by the collate() function (also part of the CL), and the result is sent
to the client.

Application A typical Web application that exhibits this behavior is a compar-
ison agent that queries different servers with the same question and returns the
“best” result. While many services for finding the best price of an item already ex-
ist on the Web, they do not perform correctly if a server is not known or supported
by the query service, or if the user is more concerned about some other attribute,

such as delivery time or seller reputation, that the service does not support.

Analysis For ease of analysis, the following assumes that the messages are sent
serially, not in parallel.
Under straight client/server, the delay for completing requests to n servers

is
Des =n X do,
where d.; = the average delay between client and server.
Under a collating reAgent, the time is
Deys = ndps + A

where d,; = the average delay between reAgent and server.

Applying the speedup equation (V.1) gives a speedup of

d A
ndcs
and a performance win for reAgents when
(n—1)de > A

where d.. = the average delay between client and reAgent.
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Thus, for any advantage to be gained, n > 1 (confirming the obvious).
For each n beyond 1, a collating reAgent reduces delay by d.., which logically
corresponds to traversing the network segment between the client and the reAgent,
per additional server. If this amount is greater than the overhead from using the

reAgent, the reAgent performs better than client/server.

V.E Summary

In this chapter we described effective general behaviors. Then, for each
general behavior, we verified and quantified its advantages. Now it remains to show
how one can use these behaviors as templates to develop client-specific reAgents.
In the next chapter, we begin our description of the external programming interface
used to implement these behaviors.

This chapter, in part, has been submitted for publication in the 5th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MASO06) under the title "ReAgents : Behavior-based Remote Agents and Their
Performance”. The dissertation author was the primary researcher and author of
this paper, and the co-author Joseph Pasquale directed and supervised the research

which forms the basis for this chapter.



Chapter VI

ReAgent API

In this chapter, we describe the API accessible to a reAgent programmer
working from the client side. Later chapters describe the internal interfaces that
are of primary interest to systems programmers.

For each component that is visible to the application programmer, we
define an interface. The visible components are Behaviors, Converters, Protocols,
and the ReAgent component, which acts as a container for these components.
While all of these components are language-independent, we have shown their
implementation in the Java language, as our first implementation of reAgents was
in Java. (Our reasons for this approach will be described in the implementation

Chapter (Chapter IX)).

VI.A The ReAgent Interface

All reAgents implement the ReAgent container interface, which defines

the following methods:

public interface ReAgent {

public ReAgent (Protocol cp);

public void addBehavior (Behavior b);

public void addBehavior (Behavior b, Converter c);

41



42

public boolean launch (String hostName, String configFile);
public Object process (Object request);

public void stop ();

Constructor method:

e ReAgent (Protocol cp) creates an environment which keeps track of all the
behaviors supported by that reAgent and any common variables, such as
the order of behaviors and the client communications handler. It takes an

instantiation of the client protocol cp as an argument.
General methods:

e addBehavior(Behavior b) adds a general behavior b to the reAgent envi-

ronment.

e addBehavior(Behavior b, Converter c) adds a general behavior b to the

reAgent environment with a specific converter ¢ associated with it.

e launch(String hostName, String configFile) moves the current reAgent
to the environment of the machine designated by hostName (the reAgent
host) using the parameters defined in the file configFile. It is provided
in the general ReAgent API because all reAgents are assumed to use the
same launch procedure (i.e. determine agent system, get reAgent host, set

up reAgent, deploy).

e process(Object request) sends a request to the reAgent using the client
protocol cp. Upon receipt by the reAgent, the request is processed by the

behaviors in its environment, and the output of these behaviors is returned.

e stop() method takes no arguments and terminates the reAgent. This is
provided in the ReAgent API because all reAgents are assumed to use the

same termination procedure.
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VI.B The Behavior Interface

In our design, each general behavior is a specific instance of the parent

Behavior component. This component’s interface is

public interface Behavior {
public Behavior (String type, ServerProtocol sProtocol,

String CL, String[] ClLargs);

The only method the Behavior supports is its constructor, which takes
the type of behavior, the server protocol, the CL, and the CL’s arguments as its
parameters. The type of behavior defines the base logic used, and the customized
methods supported. In addition to customized methods, a behavior’s interface
may also include control methods: methods that allow the client to override with

the operation of the behavior during run-time.

VI.B.1 Customizing Logic Interfaces

The client is responsible for providing customizing logic that can com-
municate with the base logic of the general behavior. For example, a customized
monitor must know how to interface with a MonitorLogic object, which is a child
of the general Behavior class. Each behavior defines a corresponding Logic inter-

face (i.e., MonitorLogic, CacherLogic) which the customizing logic must support.

GenericResponse Object Some of the logical interfaces use an abstract data

structure that represents a server response: GenericResponse:

public class GenericResponse implements java.io.Serializable
{
public Object response;

public byte[] content;
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The GenericResponse data structure splits out the content from the raw
response data so that the general behavior can handle the response in an abstract

fashion.

The FilterLogic Interface Customizing logic that acts as a Filter must support

the following methods:

public interface FilterLogic extends Behavior {

// called by the reAgent logic
public byte[] filter (bytel] content);

// may be called by the user for control

public void setLevel(int level);

Customizing method:

e filter(byte[] content) reduces the server data (stored in content) in an

application-specific fashion.
Control method:

e setLevel(int level) allows the client to dynamically adjust the degree of

filtering according to the amount specified by level.

The MonitorLogic Interface Customizing logic that acts as a Monitor must

support the following methods:

public interface MonitorLogic extends Behavior {
// called by the reAgent logic
public long calcNextQuery (Response responseStruct, long lastQuery);

public boolean testResponse (String [] args, Response responseStruct);

// may be called by the user for control

public void sendQueryNow();
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Customizing methods:

e calcNextQuery(GenericResponse responseStruct, long lastQuery) re-

turns the next time the monitoring reAgent should make another query.

e testResponse(String args, GenericResponse responseStruct) teststo
see if the server response (stored in responseStruct has produced a trigger

state.
Control method:

e sendQueryNow() forces the monitoring reAgent to query the server immedi-

ately.

The CacherLogic Interface Customizing logic that acts as a Cacher must

support the following methods:

public interface CacherLogic extends Behavior {
// called by the reAgent logic
public String hash (byte[] request);
public boolean lookup (String key);
public Response get (String key);

public void replace (String key, Response responseStruct)

// may be called by the user for control
public void flush(Q);

public void changeCacheSize(int size)

Customizing methods:

e hash(byte[] request) takes a request as input and returns a String that

is the key string for that request.

e lookup(String key) returns true if the key string key is in the cache.
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e get(String key) returns the GenericResponse associated with key string
key in the cache.

e replace(String key, GenericResponse responseStruct) puts key string

key in the cache and associates it with a GenericResponse.
Control methods:
e flush() immediately empties the cache.
e changeCacheSize(int size) allows the client to dynamically modify the

size of the cache to the amount specified by the parameter size.

The CollatorLogic Interface Customizing logic that acts as a Collator must

support the following methods:

public interface CollatorLogic extends Behavior {
// called by the reAgent
public void wait ();

public Object collate (Response[] responses);

// called by the user for control

public void forceCollate ();

Customizing methods:

e wait () pauses the reAgent until a certain condition (defined in the method)

has been met.

e collate(Response[] responses) takes all the results received and com-

bines them into one object to be sent back to the client.
Control method:

e forceCollate() forces the reAgent to exit the wait() method and begin

collation immediately.
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VI.C The Converter Interface

The Converter is the simplest reAgent component. It only needs to

support one method:

public interface Converter {
// convert function

byte[] convert (byte [] response)

Method:

e convert(byte[] response) takes the output of a behavior (usually a
server response) and converts it into a new server request for another

behavior.

VI.D The Protocol Interface

The Protocol component is used for handling communications between

reAgent and the outside world.

public interface Protocol
{
public boolean connect (InetAddress address, int port);
public Protocol waitForConnect (int port);
public void send (Object obj);
public Object receive ();
public void disconnect ();

public void cleanup();

The client and server protocols must be ported to this interface. (The
specific implementation of a protocol, like customizing logic, is not part of the
reAgent API, but common protocol implementations can be provided by a third-

party developer.) Consequently, the interface only defines general functions that all
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protocols must support (send, receive, connect, and disconnect). In this manner,
flexibility of protocol choice is retained while giving the reAgent an interface that

it can use to communicate with client and server.

The ServerProtocol Interface The ServerProtocol interface is a sub-class
of Protocol that allows the code implementing the general behavior to interface
with the specific server protocol. Consequently, all server protocols must be of

type ServerProtocol. The interface, in code, is :

public interface ServerProtocol extends Protocol
{
public Object handleRequest (byte[] request);

public byte[] assembleResponse (byte[] content, Object oldResponse);

Methods:

e handleRequest(byte [l request), turns a general request by client into
the actual request to server. The server is then contacted with this request

and its response, if any, is returned.

e assembleResponse(byte [] content, Object oldResponse), allows the
behavior to generate a new response in the format of the server protocol that
functions as the behavior’s output. The two arguments are the new data and
the old response. This is a necessary abstraction when the reAgent changes
the server response, so that the reAgent can assemble a new response without

knowing the details of the server protocol.

VI.LE Summary

This chapter has outlined the general methods that are either called by

the application code or need to be implemented by the application programmer.
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The next chapter will explain how these methods are used to create and deploy
reAgents.

This chapter, in part, is a reprint of material as it appears in the Thir-
teenth International World Wide Web Conference (WWW2004) under the title
”Web Customization Using Behavior-Based Remote Executing Agents”. The dis-
sertation author was the primary researcher and author of this paper, and the
co-author Joseph Pasquale directed and supervised the research which forms the

basis for this chapter.



Chapter VII

Programming Examples

To provide some intuition as to how reAgents work and simplify program-
ming, we present some examples in this chapter, showing how reAgents are used

and easily changed to meet to the user’s requirements.

VII.A Examples of Usage

The implementation of reAgents is encapsulated in a package of files,
known as the ReAgent package. The ReAgent package facilitates cooperation with
existing mobile code systems by providing interfaces that will properly interact
with that system to create an intermediary (the reAgent) that customizes the
client /server communications according to the customizing logic. In order to create

the reAgent, the developer must:

1. Choose the mobile code system (specified as a parameter in a configuration

file), and a machine with that system installed, the reAgent host
2. Choose the reAgent behavior that describes the general behavior of the CL
3. Provide an implementation of the CL to run on the reAgent host

4. Provide an implementation of the server and client protocols

50
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In all of the following examples, to simplify the discussion, we assume
that the mobile code system has been pre-determined, and that the language of

implementation is in Java.

VII.A.1 Example 1: Basic Data Filtering reAgent

Consider the problem of Web browsing on a PDA over a low-bandwidth
connection to the Internet. Given that images can take a long time to download
because of the limited bandwidth, and that the screen display is not big enough to
accommodate large images, it would be beneficial to interpose a reAgent to shrink
the image to a size that the PDA screen can support before it is sent over the

low-bandwidth connection, catering to both usability and performance.

Using the reAgents Package

To support this common scenario, after choosing a mobile code system
(step 1), the programmer picks the Filter behavior template from the behavior
library (step 2). This is because shrinking shares the defining characteristic of
filters: reducing the server data to a different format (for performance reasons)
before transmission. The CL must also be implemented (step 3). For this par-
ticular example, the programmer bases the CL on a shrinking algorithm using
standard Java image library functions. Here is the relevant class that implements

this algorithm :

public static BufferedImage shrink(BufferedImage src, double factor) {
int w = (int) (src.getWidth() * factor);
int h = (int) (src.getHeight() * factor);
Image image = src.getScaledInstance(w, h, Image.SCALE_AREA_AVERAGING);
BufferedImage result =
new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);
result.createGraphics().drawImage (image, 0, 0, null);

return result;
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Using the FilterLogic Interface

The programmer must port the CL to the behavior-specific interface (in
this case, the FilterLogic interface in our Java implementation) so that the Filter
template knows how to invoke the CL.

As a reminder, the FilterLogic interface requires the CL to support the

following methods:

public interface FilterLogic extends Behavior {

// called by the reAgent logic

public byte[] filter (bytel] content);

// may be called by the user for control

public void setLevel(int level);

The algorithm of the shrink function can be used as the filter function,

with the factor argument being set by setLevel. Here is the Shrink class in full:

class Shrink implements FilterLogic {
int shrinkFactor;

// the private, internal custom logic
private static BufferedImage shrink(BufferedImage src, double factor) {
int w = (int) (src.getWidth() * factor);
int h = (int) (src.getHeight() * factor);
Image image = src.getScaledInstance(w, h, Image.SCALE_AREA_AVERAGING);
BufferedImage result =
new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);
Graphics2D g = result.createGraphics();
g.drawImage (image, 0, 0, null);

return result;
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// the public interface for using the private logic

public byte[] filter(bytel[] content) {
BufferedImage sourcelmage = new BufferedImage(content);
targetImage = shrink(sourcelmage, shrinkFactor);

return targetImage.toBytes();

// the public interface for setting the shrinking facotr
public void setLevel(int level) {

shrinkFactor = level;

Using the ReAgent API

Once the CL is ported to this interface, the client and server protocols
need to be defined (step 4). For this example, we use the pre-defined standard
protocols included with the ReAgents package: a simple plaintext protocol on top
of TCP/IP[32] for the client protocol, and HTTP[16] for the server protocol. (More
information on these protocols can be found in Section IX.C.) A filtering reAgent

can then be created with the following code:

ReAgent reagent;
Protocol clientProtocol = new Plaintext();

ServerProtocol serverProtocol = new HTTP();
String filterCL = "Shrink.class";
String[] filterArgs = {"320", "200"};
String configFile = "standard.cfg";

reagent = new ReAgent(clientProtocol);

Behavior filter = new Behavior ("Filter", serverProtocol,

filterCL, filterArgs);
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reagent.addBehavior(filter);

reagent.launch("tap.ucsd.edu", configFile);

The constructor method of reAgent creates a reAgent that will commu-
nicate with the client using the plaintext-based client protocol (included in the
package). A filtering behavior is then added to the reAgent, with the appropriate
CL and arguments. In this example, the CL takes as arguments the target im-
age resolution of 320x200. Then, the code launches the reAgent to the location
“tap.ucsd.edu”, provided as a parameter. The reAgent is now at the remote host
(the “reAgent host”) and is ready to communicate with the client.

For the client to send the reAgent (and through it, the server) a request,

the process method is invoked :

byte[] response = (byte []) reagent.process (request);

The process method is responsible for actually communicating with the
reAgent. It takes a request to pass to the server as an argument and returns the
output of the reAgent in a byte array. All the filtering is hidden from the user;
the reAgent, through the pre-defined Filter classes, is responsible for calling the
client-specific Filter function (to shrink the server data) when appropriate.

At this point, we have a working reAgent that compresses the server data
before sending it to the browser. All the complexity of the actual movement, com-
munications, and processing has been abstracted into a few lines of code. Neither
the browser nor the server is aware of the filtering — the browser is connected to
the reAgent, but is not privy to its internal function, while the server treats the
reAgent as the actual browser. In this way, the reAgent homogenizes the client
environment for servers while requiring no additional effort or knowledge on the

server’s part.
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VII.A.2 Example 2: Customizing Communications

ReAgents, composed of CL-containing behaviors, abstract away move-
ment and communications from the programmer. However, while movement is
designed to be fixed to a one-shot style, similar restrictions are not placed on
communications. Just as they are parameterized to accommodate specialized cus-
tomizing logic functions, reAgents can accommodate special communications re-
quirements by allowing specification of communication protocols that the reAgent
uses to communicate with the client and server. Such custom protocols are useful
whenever specialized communications are needed, such as in the case of an unreli-
able network whose default error recovery mechanism is unsatisfactory. (If custom
protocols are not necessary, nothing special needs to be done, as default proto-
cols are automatically provided when the constructor is called without a custom
protocol as an argument.)

The Protocol interface (Section VI.D) defines only highly general func-
tions that protocols must support (send, receive, connect, and disconnect). In
this manner, flexibility of protocol choice is retained while giving the reAgent an
interface that it can use to communicate with client and server in a customized
fashion. Furthermore, by separating the single client/server protocol into client-
reAgent and reAgent-server components, the reAgent is able to communicate with
the client using a client-specific protocol that specifically addresses client problems
unsupported by the server protocol.

In this example, the user of the PDA is in a hotel attending an academic
conference. Balking at the exorbitant rates that the hotel is charging for high-speed
Internet access, the user finds a nearby, unsecured wireless router and hooks up.
However, this wireless network also happens to be extremely unreliable, dropping
packets with great frequency. After implementing a customized error-recovery
protocol (StableProtocol) to improve application performance over this network,

linking the reAgent with the custom protocol uses the following code:



o6

Protocol clientProtocol = new StableProtocol();

ServerProtocol serverProtocol = new HTTP();

String filterCL = "Shrink.class";
String[] filterArgs = {"320", "200"};

String configFile = "standard.cfg";

ReAgent reagent;

reagent = new ReAgent(clientProtocol);

Behavior filter = new Behavior("Filter", serverProtocol,
filterCL, filterArgs);

reagent.addBehavior(filter);

reagent.launch("tap.ucsd.edu", configFile);

The reAgent created will then communicate with the client with the client

protocol and with the server using the server protocol.

VII.A.3 Example 3: Integration into Traditional Applications

This section shows how a traditional browser application would integrate
the previous two examples to use a filtering reAgent. First, here is the top-level

code view of a traditional implementation of a HT'TP Web browser:

Protocol HTTP = new HTTP();

public void main () {
while (true) {
request = getInputFromClient(); // gets input from keyboard
HTTP.send (request) ; // server specified in request
byte[] response = HTTP.receive();

displayResponse (response);
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In order to transform the browser application into one using a reAgent
that communicates with the client and server using HT'TP, the following changes

are made (changed lines marked with an asterisk) :

public void main () {

Protocol clientProtocol = new HTTP(); *

ServerProtocol serverProtocol = new HTTP();

ReAgent reagent; *
String filterCL = "Shrink.class"; *
String[] filterArgs = {"320", "200"}; *
String configFile = "standard.cfg"; *
reagent = new ReAgent(clientProtocol); *

Behavior filter = new Behavior("Filter", serverProtocol, *

filterCL, filterArgs); *
reagent.addBehavior (filter); *
reagent.launch ("tap.ucsd.edu", configFile); *

while (true) {

request = getInputFromClient();

*

byte[] response = (byte []) reagent.process (request);

displayResponse (response);

All communications and filtering are now completely hidden from the

browser — the template abstracts them away with the process() method.

VII.A.4 Example 4: Changing the CL to Filter Ads

Little work was needed to create the filtering reAgent beyond obtaining a

suitable CL and interfacing it with the appropriate behavior. However, one could
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argue that one could simply build a filtering agent and use it for any client in a
similar situation, such as shrinking images for small PDAs. But not all users need
to shrink images.

Take another user, this time one who is unconcerned about image size,
but who does not enjoy reading advertisements inserted into Web pages. Here, the
user would find a filtering reAgent useful, but for a different reason. The reAgent
is used to intercept the offending ads before they reach the client, strip them out
of the data, and send the content without the ads to the client. Depending on the
ad filtering algorithm, the level parameter can be used in a variety of ways, such
as determining the maximum size of ads to allow without filtering, or counting the
number of popups a site sends before the filter is activated.

Note that this is the same type of behavior as in the first example, except
that instead of shrinking images, the reAgent is removing ads. In each case, a
reAgent receives data from the server, changes it to conform to a client’s custom
requirements (using the level to determine the degree of change), and then sends it
to the client. With reAgents, the shared parts of the behavior are already written.
The programmer only needs to provide a suitable CL to customize the reAgent’s
behavior towards the needs of the client. For example, here the CL is chosen
to be the popular AdBlock filter. An implementation of AdBlock is written in
AdBlock.class, ported to the FilterLogic interface, and sent to the template as

a parameter to create a reAgent that behaves in a predictable, useful fashion:

public void main () {

Protocol clientProtocol = new HTTP();
ServerProtocol serverProtocol = new HTTP();

ReAgent reagent;

String filterCL = "AdBlock.class"; *
String[] filterArgs = {}; *

String configFile = "standard.cfg";
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reagent = new ReAgent(clientProtocol);

Behavior filter = new Behavior("Filter", serverProtocol,
filterCL, filterArgs);

reagent.addBehavior (filter);

reagent.launch ("tap.ucsd.edu", configFile);

while (true) {
request = getInputFromClient();
byte[] response = (byte []) reagent.process (request);

displayResponse (response);

Note that the only changes from the previous filtering example are in the

class file for the Filter and its arguments (the size of the ad).

VII.A.5 Example 5: Using Other Behaviors

In addition to reAgents providing flexibility in customizing logic with
similar behaviors, reAgents also make it easy to use any customizing logic that
conforms to one of the characteristic behaviors identified. The user simply needs
to change the type of reAgent used to instantiate the agent and use a CL that
conforms to the logic interface for that behavior.

In this example, a user has access to an online stock exchange, and wants
to be alerted when the stock of MacroHard (ticker symbol: MHRD) drops to a
target price of $100, but only after it has done so three times in a 24-hour period
(known as a “triple dip” in technical analysis). The online brokerage doesn’t offer
this service, but the user can program a reAgent using a Monitor behavior to watch
the stock price’s movements. The user writes up his algorithm in a class called
TripleDip. This class uses the MonitorLogic interface, and it takes as arguments

the stock ticker symbol and the target price. Then, he writes the following code:



public void main () {
Protocol clientProtocol = new StandardProtocol();
ServerProtocol serverProtocol = new HTTP();

ReAgent reagent;

String monitorCL = "TripleDip.class";

String[] monitorArgs = {"MHRD", 100};

String configFile = "standard.cfg";

reagent = new ReAgent(clientProtocol);

Behavior monitor = new Behavior("Monitor", serverProtocol,

monitorCL, monitorArgs);

reagent.addBehavior (monitor) ;

reagent.launch ("tap.ucsd.edu", configFile);

while (true) {

request = getInputFromClient();

byte[] response = (byte []) reagent.process (request);

displayResponse (response);

60

In this manner, the user is able to identify a triple dip without needing

server support for this type of action. The changes from the filter example are

straightforward, with only the behavior type and the custom logic changing.

VII.A.6 Example 6: Using Multiple Behaviors

ReAgents can be powerful when multiple behaviors are chained together.

For example, take the monitoring reAgent of example 5. Now, instead of merely
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being alerted, the user wants to automate the process of selling the stock when the
stock experiences a “triple dip” (supposedly, a sell signal). Most online broker-
ages do not support such a specific request, but a reAgent can perform this task
by linking the Monitor with a Filter that doesn’t filter (one that merely relays
a request and returns a response). The two behaviors are tied together with a
Converter that transforms the server response back to an appropriate server re-
quest to sell the stock GenerateSellRequest. In this manner, when the Monitor
finishes by detecting a “triple dip”, the Filter is triggered to pass a sell request to
the server and the stock is sold without paying the latency cost of transmitting

the information to the user or the user reaction time. The code :

public void main () {

Protocol clientProtocol = new HTTP();
ServerProtocol serverProtocol = new HTTP();

ReAgent reagent;

String monitorCL = "StockPoller.class";

String[] monitorArgs = {"MHRD", 100};

String convertCL = "GenerateSellRequest.class"; *
String filterCL = "Relay.class"; *
String[] filterArgs = {}; *

String configFile = "standard.cfg";

reagent = new ReAgent(clientProtocol);
Behavior monitor = new Behavior("Monitor", serverProtocol,

monitorCL, monitorArgs);

Converter fConvert = new Converter (convertCL); *
Behavior filter = new Behavior ("Filter", serverProtocol, *

filterCL, filterArgs); *
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reagent.addBehavior (monitor) ;
reagent.addBehavior (filter, fConvert); *

reagent.launch ("tap.ucsd.edu", configFile);

while (true) {
request = getInputFromClient();
bytel] response = (byte []) reagent.process (request);

displayResponse (response);

VII.B Best Practices

ReAgents are fairly straightforward to use correctly. In this section, we

describe some best-practices approaches for using reAgents.

VII.B.1 Determining Location

Given an atypical network segment between client and server that is de-
ficient in some manner beyond server expectations (the critical link), the reAgent
host must be chosen so that when the reAgent communicates with the server, all
such critical links are avoided or bypassed. This causes all communications be-
tween reAgent and server to be conducted using a typical network segment, which,
by definition, are without atypical problems. It also allows the reAgent to com-
municate with the server according to server expectations, and with the client in

a fashion that caters to the deficiencies of the critical link.

VII.B.2 Determining Protocols

To use a reAgent, two protocols need to be given as arguments to the
reAgent, the server protocol and the client protocol. Determining the server pro-

tocol is simple: it should be an implementation of the protocol that the server uses,
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ported to the ServerProtocol interface. For example, for most Web applications,
the server protocol should be an HTTP ServerProtocol implementation.

On the other hand, the client protocol should be a protocol that caters
in some fashion to the critical link. For example, if the critical link is a wireless
connection with no security against eavesdroppers and the server protocol does not
support a high level of encrpytion, a protocol which encrypts data with a stronger

encryption mechanism could be used to eliminate the security hole.

VII.B.3 Determining Behaviors

Usually the choice of a behavior for a single-behavior reAgent is straight-
forward. The behaviors have been designed to be extremely different from each
other in their patterns of communication and logic, and many common network
applications are a specific implementation of a behavior (such as a Web filter being
a Filter implementation).

However, sometimes a complicated operation is required by the reAgent
developer, one that a single behavior can not satisfy. Behavioral determination for
a multi-behavior reAgent is an issue that was not explored fully at the time of this

dissertation, and is an area for future research.

VII.C Summary

This chapter presented several scenarios for using reAgents. We showed
the ability of reAgents to facilitate changes in logic, communications, or behavior.
We also showed how reAgents can link behaviors in sequence to create even more
powerful reAgents. Finally, we explained some ideas to help a reAgent developer

decide how to use reAgents effectively.



Chapter VIII

Internal API

ReAgents are designed to be interdependent of mobile code system. To
provide a simple interface to the user by abstracting away differences in mobile
code systems, reAgents must be configured to interface with an existing mobile
code system before that system can be used. Alongside the client API, the Java
reAgents package also defines an internal API, hidden from the client, that allows
interaction with a Java-based mobile code system. The driving idea behind the
design of this API has been the ability to support many agent systems with the
reAgents code, because reAgents are supposed to be an abstraction that works

across mobile code platforms.

VIII.A The AgentSystemHandler Interface

Because reAgents are conceptually independent of mobile code system,
it is required to have an interface to the system, the AgentSystemHandler. The
AgentSystemHandler interface allows the reAgent code to retrieve a handle to a
mobile code system running on a remote machine, and to create and deploy a

reAgent compatible with the system to that machine.
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The AgentSystemHandler interface is defined as follows:

public interface AgentSystemHandler
{

public abstract ReagentHost getReagentHost(String hostname)

throws ServerNotFoundException;

public abstract ReagentHandle deploy(Reagent reagent, ReagentHost iServer,
String cProto, String sProto,
URL[] codebase)

throws RemoteException;

e getReagentHost () returns an handle to the host, of type ReagentHost.

e deploy() launches and starts the reAgent, and returns a handle to the re-
Agent that provides control and communication with any system protocol.

The handle returned is of type ReagentHandle.

The two general interfaces ReagentHandle and ReagentHost allow the
code to reference reAgents and their hosts in a general fashion. Thus, it does not
matter if the mobile code is actually an IBM Aglet[25] or a Dartmouth D’Agent[17],
the template code can treat it as a general reAgent via a ReagentHandle, and send

it to a ReagentHost (instead of specifically an Aglet server or a D’Agents Server).
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VIII.B The ReagentHandle Interface

ReagentHandle is an abstract class that should be the parent of any class
that implements the handle that references a reAgent. The ReagentHandle class

supports general methods for controlling and communicating with the reAgent:

public abstract class ReagentHandle {
public abstract void start ();
public abstract void stop ;
public abstract void systemSend (Object request);

public abstract Object systemReceive ();

e start() encapsulates the execution of a remote reAgent with this system.
e stop() encapsulates the termination of a remote reAgent with this system.

e systemSend() and systemReceive() encapsulate system-supported commu-

nication between the client and the reAgent.

With these methods, the template code is able to start, stop, and com-
municate with the reAgent — all functions that we consider fundamental to any
reAgent. The communication capability, via what we call the reAgent protocol is
a separate, internal communication mechanism from the client protocol specified
by the client. The client protocol is used during normal operation and varies from
reAgent to reAgent, but the reAgent protocol allows the client-side logic imple-

mentation to control high-level aspects of the reAgent in a standard fashion.

VIII.C The ReagentHost Interface

public abstract class ReagentHost {
by

ReagentHost is simply an empty interface that functions as the parent of

any class that implements a reAgent host. The class does not define any methods,
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it is merely an umbrella class for all reAgent host classes, which are implemented

for a specific agent system, i.e., AgletAgentHost for Aglets.

VIII.D The ReAgent Protocol

This reAgent protocol consists of a few string-based commands that al-
lows the ReagentHandle to control the reAgent, overriding its behavior(s). It is

currently in a simple, primitive state, with only a few commands:

SEND_IP tells the reAgent to send back the IP address of its host.

ARG < behavior# >< args > changes the arguments of the behavior specified

to args.

QUIT tells the reAgent to terminate prematurely.

On execution, the reAgent launches a thread to listen for commands sent
by the client via the reAgent protocol. This enables the client to override the

reAgent, or even change the behavior arguments during run-time.

VIII.LE Summary

Because reAgents are theoretically extensible to all forms of mobile code,
the implementation of the ReAgents package needs to be able to interact with
reAgents and their hosts in a general fashion. The AgentSystemHandler,
ReagentHost, and ReagentHandle interfaces are used by the ReAgents code to
reference systems, hosts, and intermediaries in general, while the Behavior general
logic allows us to port behaviors across mobile code platforms. We now examine
the specific implementation of these interfaces within a mobile code system, the

UCSD Java Active Extensions (JAE) system.



Chapter IX

ReAgent Implementation

Even with all these pre-defined interfaces, the reAgent design still leaves
some room for implementation decisions. Among these areas are language, agent

system, and protocols.

IX.A Language: Java

While the concepts behind reAgents are language-independent, the choice
of language for an actual implementation affects deployability. We implemented
reAgents in the Java language, because of its portability: its virtual environment,
the Java Virtual Machine (JVM) provides a standard, homogeneous environment
for execution that allows code to be compatible across platforms. Also, Java’s
excellent support for dynamic code loading and remote serialization of objects (for
mobile code) [4] makes it the popular language of choice for mobile code systems,
and allows us to leverage existing mobile code system technology by using these

Java-based systems as a testbed for running reAgent-based applications.

IX.B Mobile Code System: JAE

In our implementation, we made use of a locally-developed mobile code

system called Java Active Extensions (JAE) [29, 30]. We made this choice for
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two major reasons: (1) it is a stripped-down, bare-bones Java implementation of
one-shot code mobility, and (2) we were familiar with the system.

In order to integrate the reAgents package with the JAE system, spe-
cific implementations of AgentSystemHandler, ReagentHost, ReagentHandle are
needed to generate code that works within the JAE system (called eztensions).
Thus, each reAgent must be implemented as an extension so that it can be de-
ployed and executed on the remote extension server (the reAgent host). This

chapter describes all of these implementations.

IX.B.1 The ExtensionHandler class

The ExtensionHandler class is a sub-class of AgentSystemHandler. It
implements the methods getReagentHost () and deploy().

In getReagentHost (), code for interacting with the Extension Manager
is provided. The Manager provides handles to Extension Servers, and the han-
dle it provides to the host is returned as an instance of JAEHost (a sub-class of
ReagentHost (Section IX.B.3)).

In deploy(), the code loads a special extension written as part of the
implementation, the ReagentExtension, that is the entry point to running any
client-specific intermediary as an extension. The ReagentExtension is described
in further detail in Section IX.B.4. The code then returns a JAEHandle (a sub-class

of ReagentHandle) to the client for control and communication.

IX.B.2 The JAEHandle class

public class JAEHandle

extends IntHandle
ExtensionHandle ext;

public JAEHandle (ExtensionHandle extension, String protocolName) {



// instantiate the IntHandle class variables

super (protocolName) ;

// set the extension handle

ext = extension;

/*
* starts the extension
*
*/
public void start ()
{
try {
ext.begin();
} catch (RemoteException e) {

e.printStackTrace() ;

/*
* stops the extension

*
*/
public void stop ()

{
this.systemSend ("QUIT");

/*
%

* sending using the extensions communicator

70
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*
*/
public void systemSend (Object request)
{
try {
ext.send(request);
} catch (RemoteException e) {
System.err.println ("Error sending message via extension system.");

e.printStackTrace();

/%
*

* receiving using the extensions communicator

*
*/
public Object systemReceive ()
{
try {
return ext.receive();
} catch (RemoteException e) {
System.err.println ("Error receiving message via extension system.");
e.printStackTrace();

return null;

The JAEHandle class defines an internal variable, ext, that allows the
methods defined within the class to reference the extension as an ExtensionHandle
object (part of the JAE API). Then, the ExtensionHandle interface is ported
to the ReagentHandle interface by having its methods tied to ReagentHandle’s

start(), systemSend(), and systemReceive() methods. In this manner, the
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general reAgent code can handle extension objects without specific knowledge of

extensions. (For more information on the ExtensionHandle, see [30]).

IX.B.3 The JAEHost class

public class JAEHost extends ReagentHost

{

ExtensionServer eServer;

public JAEHost (ExtensionServer server) {

eServer = server;

The JAEHost class is a data structure that defines an internal variable,
eServer, that allows deploy() to reference the Server as an ExtensionServer
object (also part of the JAE API). This variable is set in the implementation of
getReagentHost () in ExtensionHandler. This allows the general reAgent code

to operate without specific knowledge of the ExtensionServer object.

IX.B.4 The ReagentExtension class

public class ReagentExtension implements Extension, Serializable
{
public ReagentExtension (Reagent reagent);

public void run (Collection resources);

public class Listener extends Thread
public Listener (int port);

public void run();

public class BehaviorManager extends Thread
public BehaviorManager (Protocol cProtocol);

public void run();
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The ReagentExtension class provides the hook for the extension server
to run the client-specific code by implementing the Extension interface defined
in the JAE API. In this interface, a run() method is called by the Extension
Server when the extension is ordered to begin execution by a call to the begin
method of the ExtensionHandle associated with the extension. The parameters
to the extension (including the ReAgent object) are stored in memory, so that the
reAgent can be transmitted from the client.

The run method of ReagentExtension is the main method of the ex-
tension, and it can communicate with the client via the reAgent protocol. This
allows the client to control high-level aspects of the extension, such as changing

the behavior parameters of the extension during run-time.

Listener sub-class

When the extension is ordered to listen, it starts a new thread using
the ListenerThread class. This thread listens for network connections on a pre-
defined port and, for each connection, spawns a new thread, the behavior manager,
to communicate with it via the client protocol. The ListenerThread runs until

ordered to shut down by the client via the reAgent protocol.

Behavior Manager sub-class

The behavior manager contains the logic that manages the behaviors that
run on the reAgent host, and is activated when the client connects to the extension
using the client protocol. The thread constructor takes the ReAgent passed into
the ReagentExtension parameters and instantiates each behavior in its queue by
linking the general behavior logic with its client-specific logic. The constructor
also defines a source (a converter, which can be null) and sink (usually another
converter) for each behavior. Each behavior receives a request from its source,
which it processes by triggering a call to the server protocol at some point. Upon

receipt and post-processing of the server response, the behavior outputs the re-
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sponse to the sink, which is the source converter of the next behavior in the queue,
linking the behaviors. An exception is the sink of the last behavior in the queue:
since there is no behavior after this, the sink is not a converter, but the behavior
manager itself. The behavior manager forwards this final response back to the
client via the client protocol.

Once the inputs and outputs of the queued behaviors are linked, each
behavior logic is started in a separate thread by the behavior manager. Requests
from the client via the client protocol go through the behavior manager as input
to the first behavior logic in the chain. The behavior manager then sleeps until a
response from the last behavior logic in the queue is returned. Upon the return,

the response is sent back to the client via the client protocol.

IX.C Standard Protocols

To enable the use of reAgents, it was helpful to develop two standard
protocols that use the reAgent Protocol interface. The first implements a simple
plaintext protocol, for basic debugging and testing of reAgent communications.
The second implements HTTP, useful for writing reAgents in conjunction with

Web applications.

IX.C.1 Plain-text Protocol Implementation

This is one of the simplest protocols that can be implemented using the
Protocol interface, as all it does is take some data in the form of a byte array and
write it to another instance of the class. This allows simple character strings to
be used as entire messages, hence the name ”plain-text protocol”. There are no
headers or codes that need to be parsed by the protocol handler; the content is
the entire message.

The Plaintext class implements the Protocol methods in minimal fash-

ion. connect () opens a socket to the IP address and port number parameters given
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using the default Java libraries, while waitForConnect () allows incoming connec-
tions to use the Plaintext protocol. send() and receive() use byte arrays to
store, send, and receive data, with no specialized handling beyond simple end-of-
transmission detection. disconnect() and cleanup() merely close the opened
sockets and any outstanding I/O streams.

A wrapper was also written to use the Plaintext protocol in communi-

cation with servers. The ServerProtocol methods are implemented as follows:

public Object handleRequest (InetAddress serverAddr,
int serverPort,

byte[] request) {

if (connect(serverAddr, serverPort)) {

send (request);

byte [] responseBytes = (byte []) receive();

GenericResponse response =

new GenericResponse (responseBytes, responseBytes);

disconnect();
return response;
} else {
System.err.println("Server down, exiting.");

return null;

public byte[] assembleResponse (byte[] newData,

Object oldResponse) {

return newData;
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The code is fairly straightforward. The GenericResponse object is con-
structed using the same data twice, because the content is exactly the same as the
message itself. Even though in this instance the reAgent could simply parse the
message as content, the reAgent has to use the GenericResponse methods in order
to be able to interface with other protocols. Meanwhile, the assembleResponse ()
method simply returns the new data as the new response, since there are no headers

to edit.

IX.C.2 HTTP Implementation

For this important protocol, we ported a simple Java implementation
of HTTP [39] to use the Protocol interface. The HTTP package defines the
HttpInputStream and HttpOutputStream classes, along with methods for parsing
the data. Of particular interest in the port was the send() method, where certain

headers (such as "If-Modified-Since”, and ”If-None-Match”) needed to be removed

to fool the server into sending a response:

public void send (Object request) {
try {

RequestBuffer newRequest = (RequestBuffer) request;

newRequest.headers.removeHeader("If—Modified—Since");
newRequest .headers.removeHeader ("If-None-Match") ;
newRequest.headers.removeHeader ("If-Range") ;

newRequest.headers.removeHeader ("Range") ;

// sends the actual request line

newRequest.requestLine.print();
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out.writeRequest (newRequest, true);
out.flush();
debugMsg ("HTTP request sent.");
} catch (Exception e) {
System.err.println ("Error sending HTTP Request.");

e.printStackTrace();

return;

Meanwhile, the receive() method reads the HTTP response and splits
it into content and headers. A GenericResponse object is created with these two
as arguments, and is returned so that the reAgent can parse the content without

knowing about the actual protocol:

public Object receive () {

ResponseBuffer httpResponse = null;

GenericResponse gResponse = null;

try {
httpResponse = in.readResponse();

} catch (Exception e) {
System.err.println ("Error receiving HTTP Response.");
e.printStackTrace() ;

debugMsg ("Received HTTP Response.");

gResponse = new GenericResponse(httpResponse.content, httpResponse) ;

return gResponse;
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To have a reAgent use HT'TP to communicate with the server, the two
ServerProtocol methods had to be implemented to hide the internal workings of
HTTP from the reAgent. The handleRequest() method parses the data for the

server name and port and opens an HTTP connection:

public Object handleRequest (InetAddress serverAddr,
int serverPort,
byte[] request) {

final int DEFAULT_HTTP_PORT = 80;

HttpInputStream httpInputStream = null;

RequestBuffer httpRequest = null;
GenericResponse response = null;
String serverName = null;
//

// turn the byte array of the request into an HTTP Request
//

httpInputStream = new HttpInputStream(new ByteArrayInputStream(request)) ;

try {
httpRequest = httpInputStream.readRequest();
} catch (Exception e) {
System.err.println ("Error receiving HTTP Request.");

e.printStackTrace();

//
// parse out the server address and the server port

//

try {
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// there are two methods for a server to be specified in an HTTP request:

// 1. is when the host is stated in a request header
// so check to see if hostname was given in request h

serverName = httpRequest.headers.getValue("Host");

if (serverName == null) {
// 2. is when the hostname is given in the request

serverName = httpRequest.requestLine.url.getHost();

serverAddr = InetAddress.getByName(serverName);

} catch (java.net.UnknownHostException uhe) {

System.err.println("No IP address found for server " + serverName) ;

// if no port is specified, set to 80, the default HTTP port
if ((serverPort = httpRequest.requestLine.url.getPort()) ==

serverPort = DEFAULT_HTTP_PORT;

// transact with server —-
// connect, send, receive, disconnect, return response

1/

if (super.connect(serverAddr, serverPort)) {
send (httpRequest);
response = (GenericResponse) receive();
disconnect();
debugMsg ("Received HTTP response from server.");
return response;

} else {

System.err.println("Server down, exiting.");

eader

-1) {
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return null;

while the assembleResponse() method re-writes the Content-Length

header to be consistent with any response that the reAgent provides:

public byte[] assembleResponse (byte[] newData,
Object oldResponse) {

ResponseBuffer newResponse = null;

byte [] buf = null;

//

// test if the oldResponse object is an HTTP response

//

if (! (oldResponse instanceof ResponseBuffer)) {
System.err.println("oldResponse is not an HTTP response.");

} else {
newResponse = (ResponseBuffer) oldResponse;

newResponse.content = newData;

// adjust the content-length header to match the new content’s length

newResponse.headers.removeHeader ("Content-Length") ;

newResponse.headers.addHeader (
new Header("Content-Length",

(new Integer (newData.length)).toString()));
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//
// convert the response to a byte array

//

ByteArrayOutputStream bas = new ByteArrayOutputStream();
HttpOutputStream hos = new HttpOutputStream(bas);
try {
hos.writeResponse(newResponse) ;
hos.flush();
} catch (IOException e) {

System.err.println ("Error converting response to byte array.");

return bas.toByteArray();

Through the use of these interfaces, the reAgent logic is able to parse and

send HTTP requests and responses in a general fashion.

IX.D Summary

To make the reAgent design a reality, the reAgents were implemented
in Java to use a simple mobile code system, Java Active Extensions (JAE). by
filling out a few interfaces with specific code to handle JAE structures. A similar
implementation can be done to port reAgents to other agent systems such as
Aglets. To enable basic reAgent communications, two protocols, a simple plain-
text protocol and an HTTP protocol, were implemented using the Protocol and

ServerProtocol interface.



Chapter X

Experiments

Having described a specific implementation of reAgents on the JAE sys-
tem, we now describe several basic experiments conducted from implementing
reAgents as Java Active Extensions. The experiments were chosen to show that
they exhibit the goals of our design as described in Chapter IV; that is, that they

are :

e Scalable — client-based approach allows for customization in communica-

tions without affecting server (Experiment 1)

e Effective — applications using reAgents are more effective when compared

with traditional applications (Experiments 2 and 3)

e Deployable — not only are they easy to use and deploy, but their overhead

is not significant (Experiment 3)

X.A Experiment 1: Scalable Communications

ReAgents provide scalable customization in both communications and
operations. In both cases the client can customize the type of communication or
operation without requiring knowledge on the server programmer’s part.

To demonstrate the scalability of custom reAgent protocols, we imple-

mented a bandwidth regulating algorithm on top of the Plaintext protocol, and
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then constructed a reAgent that uses this protocol to regulate the bandwidth of
the client/reAgent connection. We then tested the reAgent by using it with a
simple client application that retrieves a large file from a data server.

Note that this is merely an example to demonstrate how a reAgent could
used to implement a custom protocol. This is not to imply that traffic shaping by
the server is undesirable or necessary. But if the client application needs traffic
shaping that the server does not support, then the reAgent can add this function-
ality for the client.

The bandwidth regulator algorithm performs flow control on its input
stream by limiting the bandwidth to not exceed a client-specified maximum number
of kilobytes per second (passed to the module as a parameter). The regulator
operates in cycles. At the beginning of a cycle, it checks the input stream for as
much data as is allowed to be transferred in a cycle. It then sends what it has
to its output stream, computes the time it took to send, and sleeps for the rest
of the cycle. If the sending time overruns the cycle time, the next cycle begins
immediately. Consequently it is desirable to have a cycle time larger than the
expected sending time, but not too large so as to compromise performance. In our
implementation, we have defined the cycle time as 100 ms.

By incorporating the regulating algorithm into the send () and receive()
methods, we generated a protocol for a reAgent that would restrict bandwidth ac-
cording to a designated level. This protocol could then be used in any client

application that needs to regulate bandwidth in a client-specified manner.

Results

The user launched the reAgent to a chosen reAgent host for execution.
The user, through the reAgent, then requested a 14668 kB image file from a server.
The results are shown in Figure X.A.

The bandwidth used was consistently 20 kB/s, as requested by the client,

except for the final segment of 8 kB, which was the proper remainder from dividing
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Figure X.1: Bandwidth Regulator Output

the file into 20 kB segments. To verify, this file was requested 24 more times, with
identical results. Furthermore, the average transfer time was regularly within a
millisecond or two of the expected transfer time, showing that the overhead from

the regulator did not significantly impact performance.

Analysis

The experiment showed that the reAgent Protocol interface could be
used to regulate the bandwidth for a low-bandwidth connection, without incurring
much overhead. While not all aspects of deployability were covered in this exper-
iment, the modularity of the Protocol interface allows only clients that need to
regulate bandwidth the capability to do so. In addition, the server was completely
unchanged during this experiment, maintaining compatibility with both regulat-
ing and non-regulating clients and increasing the scalability of a reAgent-based

solution.

X.B Experiment 2: Effectiveness of reAgent Paradigm

In addition to providing greater scalability of customization, reAgent-
based applications must gain a strong advantage over traditional applications, or
there is no incentive behind their use. This section describes a couple of experi-

ments to highlight the effectiveness of reAgents by using a stock trading application



85

(described in Section VIIL.A.5).

As a preliminary, a primitive stock server was developed as a testbed. The
server outputs a ticker, showing the fluctuating price of a stock, and is programmed
to accept only the first buy order it receives per run (i.e. only 1 share is available
at this listed price).

The Monitor behavior was then used as the basis for a reAgent that would
connect via network sockets to the stock server to watch stock prices and issue a
buy order. The Monitor behavior was chosen because this application requires
multiple communications between the reAgent and stock server. The reAgent
monitors the ticker and sends a buy request when the price of a certain stock falls
to a certain value (both chosen by the user as input arguments). The decision-
making component is a custom algorithm that acts as the CL for the Monitor
behavior.

In the following experiments, the performance metric used was the time
it took for the server to receive a "buy” command after the stock hit the target
price, essentially a measure of the total latency between the decision-maker and

the server, plus the CPU time alloted to the decision-maker.

X.B.1 Experiment 2a: Response Time Comparison

The first experiment was to evaluate the relative performance of three

network application paradigms :
1. traditional RPC — the Traditional paradigm
2. reAgent-based computing — the reAgent paradigm

3. customized incorporation of services — the Service paradigm

To introduce a non-trivial latency, the client machine, federation, a Sun
Ultra 1, was stationed at Carnegie Mellon University in Pittsburgh, approximately

2500 miles away from the stock server machine, ursus, a Sun Ultra 10, in San
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Diego. The results, after 10000 iterations for each paradigm, are summarized in

the following table:

Table X.1: Comparison of Response Time for Various Paradigms
Response Time (ms) || Confidence | Standard
Paradigm | Min | Max | Mean (95%) Deviation
Traditional || 71 | 3474 79.6 + 1.8 ms 91.4 ms
ReAgent 1 14 1.161 4+ 0.008 ms | 0.39 ms
Seruvice 0 11 0.051 4 0.005 ms | 0.27 ms

The confidence intervals show that the averages are statistically signifi-
cant. These results say, not surprisingly, that the best performance occurs if the
server can be hard-wired with the action that the client requests. While this might
be true for simple operations like limit-order stock purchases, in practice, not all
servers will be able to anticipate every need of the client, such as in the situa-
tion described in Section VII.A.5, where the user has an unusual stock-trading
algorithm to implement.

Comparing the non-hardwired methods of traditional vs. reAgent, the
traditional method suffers severe performance penalties as well as a highly variable
response time. The high variance is a result of intermittent network congestion
and timeouts, which the reAgent, running near the server, can ameliorate.

From this experiment, it can be concluded that a Monitor-based reAgent
application achieves similar, although slightly inferior, performance when com-
pared with a server-based service. However, the cost of building applications with
a similar level of performance with reAgents is much smaller than having every
server in the world hardwire their services for each user. Attempts to create flexible
applications without reAgents result in highly variable and inferior performance
due to the high-latency communications between the decision-making algorithm

and the server.
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Figure X.2: Stock Traders Setup

X.B.2 Experiment 2b: Application Performance Comparison

An application-based comparison was performed as a supplement to the
previous experiment. The comparison centered on the Monitor-based stock trading
reAgent described in the previous section. This reAgent was run in sets of two.
In each set, one reAgent remains at the client (the stationary reAgent), while the
other reAgent (the mobile reAgent) is potentially launched to a different host to
improve application performance. Each Trader’s goal is to wait until the stock hits
a pre-determined low price, and then buy it before their opponent.

The experiment was conducted with three sets of reAgents. The first set
has both reAgents begin at federation (the client), to demonstrate the worst case
of no supporting reAgent servers. The next set has the mobile reAgent moves
to ursus, the stock server itself, and results are compared. The final set has the
mobile reAgent move to abmem, a machine on ursus’s LAN that acts as a reAgent
host. The last experiment is important because it highlights the deployable nature
of reAgents; one can neither assume that every server in the world will support
reAgents, nor that servers will always have the capacity to host reAgents. However,
it is reasonable to assume that an independent reAgent host will be nearby.

The experiment showed that the mobile reAgent beat the stationary re-
Agent every time when operating from a closer location. The full results can be
seen in Table X.2.

The 100% success rate in the cases where the reAgent migrated closer

demonstrated that the mobile reAgent could parlay the theoretical performance
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Mobile ReAgent || Mobile ReAgent | 95% Confidence
Host Success Rate Interval
Client 50.8% + 1.4%
Server 100.0% + 0.0%

ReAgent host 100.0% + 0.0%

benefits of reAgents into a superior, flexible application. In the worst-case scenario
with no supporting reAgent servers, the reAgent still functioned on a relatively
equal footing with a normal, traditional trader (represented by the stationary re-
Agent). However, the mobile reAgent was able to use its ability to move when
closer reAgent hosts were available, allowing it to improve its performance along
with its location. The reAgent allows this improvement to be easily customiz-
able, merely by changing its destination (a line of text). As users have different
requirements — for example, running directly on the server may be significantly
more expensive, so a grad student’s trading application may only give a destina-
tion of a cheaper reAgent server — reAgents allow users to scale the performance

effectiveness to a level appropriate with their needs and abilities.

X.C Experiment 3: Deployability Overhead

The final design goal of reAgents is that they are highly deployable. While
we were unable to conduct usability surveys, we were able to measure the overhead
incurred by deploying reAgents. We implemented a simple filtering application,
based on the Filter behavior, and show that the overhead is low, especially when
taken relative to the performance gains derived by a filtering reAgent.

In this experiment, the filter simply reduced in size the Web server images
received before sending it over a low-bandwidth connection to the client. The

algorithm used was part of the ACME Labs JPM package [1].
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Environment

In the following experiment, the following conditions applied:

e The client was a home computer PC PII-300 connected to the Internet via

a dialup connection.

e The reAgent host was tap.ucsd.edu, a machine with 2 800Mhz Pentium IIT

processors and on the same subnet as the data server.

e The data server was charlotte.ucsd.edu, the departmental web server.

The client was connected to the reAgent host via a dialup connection
with effective bandwidth measured at 10-15 KB/s (KB = kilobytes). The reAgent
host and data server were on the same subnet, so there was little overhead from
network latency (thus allowing us to isolate observed overhead to our system).
The regular bandwidth between the reAgent host and the server was measured at
approximately 800 KB/s.

A fixed cost that needs to be paid at least once per reAgent creation is
the launch overhead (the time it takes for the reAgent to be launched from the
client to the reAgent host). The mean launch overhead of the JAE system for
sending the reAgent and its associated classes over the local subnet was 984 ms
(with a 95% confidence interval of 11 ms). Note that this is a one-time start-up
cost; once the reAgent is launched, it can be used for multiple transactions, each of
which involves receiving a request from the client, passing it to the server, getting
the server’s response, applying a function (in this case, filtering), and sending it

to the client.

Setup

To eliminate alternative sources of overhead, a primitive Web browser
was written in Java. It takes a series of HT'TP requests as input, and returns

the HTML output. The HTTP requests were for actual image files on the Web,
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Figure X.3: End-to-end comparison times

ranging from 10 KB to 3.4 MB in size (with each successive file larger than the
previous by a factor of approximately 2-3). This was to give the test suite a variety
of realistic data files, which exhibited different filtering ratios, rather than canned
ones that might be biased in favor of certain client-specific algorithms.

A proxy was also written as the interface for the browser to communicate
with the reAgent. The browser was set to use the proxy, and launched the reAgent
via a form. Thereafter, all communications from the browser went through the

proxy and reAgent before the server.

Results

The results, compared to a non-filtering Web browser, are summarized in
Fig. X.3. For most of the files, the filtering reAgent exhibited good performance
gains, reducing end-to-end times by 30-75%. (The variable performance gain was
dependent on how effective the reduction was.) The exception was the 10KB file,
where the gain from compressing the data sent over the limited bandwidth link did
not compensate for the reAgent processing overhead. However, the filter provided
superior performance to the client/server approach for files greater than 10KB.
An obvious optimization would be for the reAgent to not filter small files, as the

benefit does not outweigh the cost.



1le+06

100000

10000

1000

100

10 |

1

R

I I
10 100 1000
PDF file size (kilobytes)

L
10000

[Control ——

Server -x- CL -%- Send & Process -®--

EJE -0 ]

Figure X.4: Overhead of filtering (log-based)

91

We timed different parts of the reAgent while filtering in order to deter-

mine which factors are contributing the most to the end-to-end processing time

and how they scale. The results are shown in Fig. X.4, which provides more detail

for the smaller contributers to overhead by using logarithmic scales. The majority

of the time was spent sending the data over the low-bandwidth link. The cost of

filtering, processing, or moving the data from the server to the reAgent host were

all minor and scaled well.

In this figure,

client /server implementation.

Control is the end-to-end processing time for a standard (i.e., non-reAgent)

e Server is the time it took for the reAgent host to download the file from the

server (over a typical connection with high bandwidth).

e CL is the time for the filtering CL to operate.

e Send is the time it took for the client to download the file from the reAgent

host.

e Process is the processing time of the reAgent on the file.

e E2E is the end-to-end processing time of the reAgent.
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This experiment shows that the main bottleneck is clearly the network,
and not the reAgent. In such cases, a reAgent based on the Filter behavior not only
imposes little overhead (and hence high deployability), but can provide significant

improvements in performance over a traditional client/server application.

X.D Summary

With these three experiments, we have shown that reAgents have met
some aspects of the three design goals of scalability, effectiveness, and deployability.
While none of the experimental results are surprising, they support and validate
the analytical approach behind the reAgents model.

This chapter, in part, has been submitted for publication in the 5th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MASO06) under the title "ReAgents : Behavior-based Remote Agents and Their
Performance”. This chapter, in part, is also a reprint of material as it appears in
the Thirteenth International World Wide Web Conference (WWW2004) under the
title ”Web Customization Using Behavior-Based Remote Executing Agents”. The
dissertation author was the primary researcher and author of these papers, and
the co-author Joseph Pasquale directed and supervised the research which forms

the basis for this chapter.



Chapter XI

Conclusion

In this dissertation, we described the reAgent (remote agent) program-
ming abstraction for designing improved-performance client/server-based Internet
applications. ReAgents are especially applicable to situations where clients are
resource-limited in their computing or network access capabilities. A reAgent ef-
fectively extends the client’s reach into the network, and derives its power by

performing remote operations that :

1. minimize the effects of a problematic network path,
2. gain an advantage by operating close to one or more servers,

3. take advantage of remote resources (e.g., computational, memory) that are

relatively more powerful than those locally available at the client,

4. act autonomously on behalf of the client in a customized fashion.

The use of reAgents allows us to derive benefits of mobile agent systems
— specifically their support for dynamically-located remote execution, limited to
one-shot movement — in an easy-to-program form. Key to this simplicity is the
transparent handling of data migration and run-time network communications.
This is a direct result of the reAgent programming model: reAgents are composed

of one or more behaviors, i.e., abstractions for common remote patterns of action,
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each of which can be specialized with custom logic that allows reAgents to be
tailored to their applications. We identified four such general behaviors — filtering,
caching, monitoring, and collating — and presented analytical models showing the
conditions under which performance will improve when compared to the straight
client /server model.

Our experience to date with reAgents has been in the context of Web-
based applications [21], and mobile-computing applications [22]. We have found
that they indeed lead to higher performance when conditions as predicted by
the analytic models, most common in wireless environments with resource-limited
clients, hold.

The main contributions from this work are as follows:

e Restricting movement of reAgents to one hop does not significantly impact
the ability to construct useful, desirable applications. Meanwhile, it greatly

simplifies security concerns and operation semantics.

e ReAgents can be categorized as behaving in a certain manner. We have
identified a small core set of behaviors that capture common and useful
patterns of action by remotely executing agents. These behaviors include

the following: Filter, Monitor, Cacher, and Collator.

e We can more easily build agent-based applications through behavior tem-
plates. Behavior templates allow the programmer to plug in application-
specific customizing logic to create a reAgent that customizes performance
in a manner that fits their needs. This is a simple, scalable, and practical

solution to the problem of client heterogeneity that adds little overhead.

Future avenues of research include identifying and implementing more be-
haviors, obtaining performance numbers for other basic template implementations,
dynamic server protocol allocation, more complicated pre-defined protocols, and
exploring the possibility of dynamically combining behavior templates to easily

create applications with more complicated behaviors.
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