## **UC Irvine**

# **UC Irvine Previously Published Works**

#### **Title**

Magnetic ordering in the high Tc superconductor Eu0.1Gd0.9Ba2Cu3Ox

### **Permalink**

https://escholarship.org/uc/item/33q1j6c9

## **Journal**

Hyperfine Interactions, 42(1-4)

#### ISSN

0304-3843

### **Authors**

Taylor, RD Willis, JO Fisk, Z

#### **Publication Date**

1988-02-01

#### DOL

10.1007/bf02395626

## **Copyright Information**

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

# MAGNETIC ORDERING IN THE HIGH T SUPERCONDUCTOR $Eu_{0.1}Gd_{0.9}Ba_2Cu_3O_x^{\dagger}$

R.D. TAYLOR, J.O. WILLIS and Z. FISK

Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Superconducting transition temperatures  $T_c$  near 95 K have been found for a number of R  $\rm Ba_2Cu_3O_x$  systems, where R includes most of the rare earths /1/. Even magnetic ions such as  $\rm Gd^{3+}$  have little effect on  $\rm T_c$ . Heat capacity measurements of  $\rm GdBa_2Cu_3O_x$  show a  $\lambda$ -like feature at 2.24 K thought to be associated with magnetic ordering, and superconductivity persists below this temperature /2/. We have made  $^{151}\rm Eu$  Mossbauer Effect (ME) measurements on  $\rm EuBa_2Cu_3O_x$  at

We have made <sup>151</sup>Eu Mossbauer Effect (ME) measurements on EuBa<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub> at temperatures down to 1.3 K. The isomer shift in EuBa<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub> clearly shows the Eu to be in the 3+ state, and the absence of any hyperfine field shows it to be non-

magnetic at all temperatures studied. For Eu<sub>0.1</sub>Gd<sub>0.9</sub>Ba<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub> we find a transferred hyperfine field at the Eu-sites developing below 2.1 K. These results are shown in Fig. 1 from data fitted with a magnetic Hamiltonian for the unresolved hyperfine spectra. The curve shown is a Brillouin fit to the data assuming g = 2 and a moment of  $7\mu_B$  for Gd<sup>3+</sup>. The fit gives a saturation hyperfine field of 2.9(3) T and a magnetic ordering temperature  $T_N$  of 2.09(11) K. The temperature of the peak in the heat capacity for Eu<sub>0.1</sub>Gd<sub>0.9</sub>Ba<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> was determined to be 1.95(5)K.

The measurements show that  ${\rm Eu_{0.1}Gd_{0.9}Ba_2Cu_3O_x}$  becomes magnetically ordered below 2.1 K with the temperature dependence expected for spontaneous ordering of  ${\rm Gd}^{3+}$  ions. The magnitude of the hyperfine field transferred to the  $^{151}{\rm Eu}$  sites is roughly that expected from the dipole

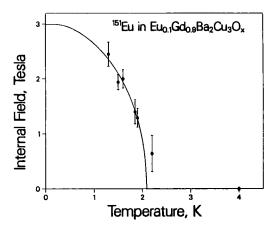



Fig. 1. Transferred hyperfine field at <sup>151</sup>Eu sites as a function of temperature.

roughly that expected from the dipole field from the Gd $^{3+}$  neighbors; the Eu retains its Eu $^{3+}$  nonmagnetic character. The ordering temperature T and the heat capacity peak are of common origin. Superconductivity masks the presence of magnetic ordering in magnetic susceptibility measurements, but a long extrapolation of the high temperature susceptibility /2/ of GdBa $_2$ Cu $_3$ O $_7$  gives T $_6$  ~ -4.8 K. Below 2.1 K, magnetism and superconductivity coexist.

<sup>†</sup>Work supported by Department of Energy, Basic Energy Sciences, Materials Science

#### References

- /1/ Z. Fisk, J. D. Thompson, E. Zirngiebl, J. L. Smith, and S-W. Cheong, Solid State Commun., 62 (1987) 743.
- /2/ J. O. Willis, Z. Fisk, J. D. Thompson, S-W. Cheong, R. M. Aikin, J. L. Smith, and E. Zirngiebl, J. Magn. Magn. Mat. 67 (1987) L139.