
UC San Diego
UC San Diego Previously Published Works

Title
Apurinic/Apyrimidinic Endonuclease 1 Restricts the Internalization of Bacteria Into 
Human Intestinal Epithelial Cells Through the Inhibition of Rac1

Permalink
https://escholarship.org/uc/item/33p5d909

Authors
Hartog, Gerco den
Butcher, Lindsay D
Ablack, Amber L
et al.

Publication Date
2021

DOI
10.3389/fimmu.2020.553994

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/33p5d909
https://escholarship.org/uc/item/33p5d909#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Frontiers in Immunology | www.frontiersin.

Edited by:
Paul W. Bland,

University of Gothenburg, Sweden

Reviewed by:
Andy Wullaert,

Ghent University, Belgium
Yogesh Singh,

Tübingen University Hospital,
Germany

*Correspondence:
Peter B. Ernst

pernst@health.ucsd.edu

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Mucosal Immunity,
a section of the journal

Frontiers in Immunology

Received: 01 September 2020
Accepted: 14 December 2020
Published: 02 February 2021

Citation:
den Hartog G, Butcher LD, Ablack AL,
Pace LA, Ablack JNG, Xiong R, Das S,

Stappenbeck TS, Eckmann L,
Ernst PB and Crowe SE (2021)

Apurinic/Apyrimidinic Endonuclease 1
Restricts the Internalization of Bacteria
Into Human Intestinal Epithelial Cells

Through the Inhibition of Rac1.
Front. Immunol. 11:553994.

doi: 10.3389/fimmu.2020.553994

ORIGINAL RESEARCH
published: 02 February 2021

doi: 10.3389/fimmu.2020.553994
Apurinic/Apyrimidinic Endonuclease
1 Restricts the Internalization of
Bacteria Into Human Intestinal
Epithelial Cells Through the
Inhibition of Rac1
Gerco den Hartog1†, Lindsay D. Butcher1†, Amber L. Ablack1, Laura A. Pace1,
Jailal N. G. Ablack2, Richard Xiong1, Soumita Das3, Thaddeus S. Stappenbeck4,
Lars Eckmann1, Peter B. Ernst3,5,6* and Sheila E. Crowe1,4

1 Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA, United States,
2 Department of Medicine, Division of Rheumatology, University of California San Diego, La Jolla, CA, United States,
3 Division of Comparative Pathology and Medicine, Department of Pathology, University of California San Diego, La Jolla, CA,
United States, 4 Division of ImmunoBiology, Washington University, St. Louis, MO, United States, 5 Center for Mucosal
Immunology, Allergy and Vaccine Development, Department of Pathology, University of California San Diego, La Jolla, CA,
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Pathogenic intestinal bacteria lead to significant disease in humans. Here we investigated
the role of the multifunctional protein, Apurinic/apyrimidinic endonuclease 1 (APE1), in
regulating the internalization of bacteria into the intestinal epithelium. Intestinal tumor-cell
lines and primary human epithelial cells were infected with Salmonella enterica serovar
Typhimurium or adherent-invasive Escherichia coli. The effects of APE1 inhibition on
bacterial internalization, the regulation of Rho GTPase Rac1 as well as the epithelial cell
barrier function were assessed. Increased numbers of bacteria were present in APE1-
deficient colonic tumor cell lines and primary epithelial cells. Activation of Rac1 was
augmented following infection but negatively regulated by APE1. Pharmacological
inhibition of Rac1 reversed the increase in intracellular bacteria in APE1-deficient cells
whereas overexpression of constitutively active Rac1 augmented the numbers in APE1-
competent cells. Enhanced numbers of intracellular bacteria resulted in the loss of barrier
function and a delay in its recovery. Our data demonstrate that APE1 inhibits the
internalization of invasive bacteria into human intestinal epithelial cells through its ability
to negatively regulate Rac1. This activity also protects epithelial cell barrier function.

Keywords: intestinal epithelial barrier, invasion, internalization, Rac1, Salmonella Typhimurium, AIEC LF82 strain,
apurinic/apyrimidinic endonuclease 1
INTRODUCTION

Food-borne bacterial infections are a major cause of disease that negatively impacts both quality and
quantity of life (1). Frequently occurring acute intestinal infections include Shigella flexneri,
Salmonella enterica serovar Typhimurium and Campylobacter jejuni. The incidence of these
infections has not changed in recent decades and the Centers for Disease Control and
org February 2021 | Volume 11 | Article 5539941
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Prevention estimate that 48 million people are infected annually
resulting in 128,000 hospitalizations and 3,000 deaths in the US
alone (2, 3).

Various food-borne bacterial pathogens translocate effector
molecules into host cells that facilitate their entry and survival (3,
4). For example, S. Typhimurium has a type III secretion system
that manipulates host cell signaling to enable its invasion into
multiple cell types (5–7). Adherent-invasive Escherichia coli
(AIEC) can reside in human intestinal cells or the lumen for
prolonged periods of time although they enter host cells less
efficiently than S. Typhimurium (8–10). S. Typhimurium can
invade the epithelium of the small and large intestine while AIEC
is typically isolated from the small intestine (11–13). Invasion of
epithelial cells by bacteria is facilitated by the activation Rho
GTPases, including Rac1, subsequent to the translocation of
effector molecules mediated by the secretion system (14–16).
In turn, activation of Rac1 leads to cytoskeleton rearrangements
and internalization of the bacteria.

Apurinic/apyrimidinic endonuclease 1 (APE1) is a
multifunctional protein that plays a central role in regulating
innate immunity and host responses in the context of oxidative
stress (17). APE1 physically interacts with Rac1 in the gastric
epithelium to inhibit Rac1 function and the accumulation of
reactive oxygen species (ROS) (18). Although the entry of
bacteria into host cells often involves regulation of Rho
GTPases such as Rac 1 (14–16), it is unknown if the effects of
APE1 on Rac1 that impact the accumulation of ROS would also
modify the internalization of S. Typhimurium or AIEC in the
intestine. The data show that APE1 regulates invasion of
intestinal epithelial cells by S. Typhimurium and AIEC
through the negative regulation of Rac1.
MATERIALS AND METHODS

Bacterial Strains and Quantification
Salmonella enterica serovar Typhimurium (SL1344), as well as
isogenic mutants DSPI1 and DSPI2 and a strain of SL1344
expressing RFP (kind gifts from Drs. Olivia Steele-Mortimer
NIAID, Rocky Mountain Laboratory, MT, USA and Brett
Finlay, University of British Columbia, Vancouver, BC,
Canada) (19, 20) were used at MOI 10. Adherent-invasive
Escherichia coli (AIEC) strains LF82 and LF82 expressing GFP
(a gift from Dr. Phil Smith, University of Alabama) (21),
EPEC, Campylobacter jejuni strain C31 and E. coli strain K12
(obtained from ATCC) were used at an MOI of 100. Bacteria
were maintained on LB agar and for experiments, grown in
LB broth and diluted 1/100 overnight under oxygen
limiting conditions.

Bacteria were quantified by culture to evaluate colony
forming units (CFU) as previously described (22–24). To
evaluate invasion, extracellular bacteria were killed with
gentamicin (500 µg/mL) for 90 min at 37°C, followed by low-
dose gentamicin (50 µg/mL) for the rest of the experiment. At
indicated times, cells in each well were washed with phosphate-
buffered saline (PBS) and lysed in 1% Triton X-100 in PBS for
Frontiers in Immunology | www.frontiersin.org 2
15 min at 37°C, followed by serial dilution and plating onto LB
agar plates as described in detail elsewhere (24).

Cell Culture
Epithelial cell lines were maintained using standard techniques
(25, 26). Briefly, T84 cells (ATCC) were maintained in high
glucose F12/DMEM containing L-glutamine and 5% FBS. HT-29
cells (ATCC) were maintained in McCoy’s 5A medium
supplemented with 10% FBS. Primary intestinal epithelial cells
were isolated and maintained according to the procedures
developed previously (27, 28). Biopsy specimens were obtained
from adult subjects undergoing medically-indicated
ileocolonoscopy. Ethical approval was obtained by the IRB of
UCSD and all donors provided written informed consent.
Briefly, biopsy specimens were minced, treated with
collagenase (37° C, 1 h), washed and filtered. Cultures were
maintained in Matrigel and medium containing Wnt3a, R-
spondin and Noggin, which was refreshed or passaged every
2–3 days. For monolayer experiments, wells were coated with 1/
30 Matrigel for 30 min, which was removed immediately before
cells were added.

Genetic Manipulation of Cells
APE1 levels in T84 were suppressed by gene transduction as
previously described (29) using shRNA in the pSIREN vector
targeting 3’ outside of the open reading frame, grown under
puromycin selection (Sigma, 1µg/ml). HT-29 and primary
epithelial cells were virally transduced with the same shAPE
sequences in the FG12 vector ( (30), Addgene #14884). PCMV5.1
expression plasmid with wt APE1 was used for complementation
of APE1 expression. The open reading frame from this plasmid is
not targeted by the shAPE strategy as described elsewhere (31).
Briefly, the U6 promoter-APE shRNA cassette from pSIREN was
cloned into FG12 which was digested with XbaI and XhoI.
Luciferase shRNA was cloned into FG12 and used as a control
in these studies as previously described (18, 32).

HT-29 cells were distributed in 24 wells plate or 10 cm dish
and transfected with 0.75 µg or 3 µg of control vector DNA or
DNA expressing APE1 (using pcDNA 3.0 (33)) or Rac1 (Active
Rac1 V12, kind gift from Dr. James Casanova University of
Virginia, Charlottesville, VA, USA) with 3 µl or 20 µl of
Lipofectamine 2000 (Life Technologies) respectively in
opti-MEM.

Antibodies
Antibodies used were: mouse anti-APE1 clone 13B8E5C2
(Novus Biologicals), mouse anti-Rac1 clone 28A (Millipore)
and mouse anti-a-Tubulin clone DM1A (Abcam), anti-rabbit
or anti-mouse HRP-conjugated IgG (Cell Signaling Technology)
and AlexaFluor488 and AlexaFluor568-conjugated goat anti-
mouse or goat anti-rabbit (Life Technologies). Isotype controls
(Thermo Fisher) were used for staining.

Western Blot and Rac1 Activity Assays
Cells were washed with ice-cold PBS and lysed in RIPA buffer
containing protease inhibitors for 10 min on ice. Cells lysates
were cleared by centrifugation and protein levels determined
February 2021 | Volume 11 | Article 553994
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(Bradford assay). Samples were boiled in laemmli buffer with ß-
mercapto-ethanol for 5 min and run on Tris-glycine gels,
transferred to PVDF membrane, and probed. Proteins were
visualized with fluorescent secondaries (IRDye 680RD Goat
anti-Mouse IgG, Li Cor, 926-68070) or chemiluminescene
(HRP-linked anti-mouse IgG or anti-rabbit IgG, cell signaling,
7076S and 7974S).

Active Rac1 was measured as described previously (23).
Briefly, cells were lysed (50 mM Tris-HCl (pH 7.5), 2 mM
MgCl2, 0.1 M NaCl, 1% NP-40, and 10% glycerol with
protease inhibitors) and incubated with Glutathione S-
transferase (GST) coupled to the p21-binding domain of Pak
(PBD) to precipitate Rac-GTP while rotating at 4°C. Beads were
then washed 4 times in lysis buffer and resuspended in SDS
sample buffer and heated (5 mins 95°C). Samples were then
loaded onto SDS-PAGE and processed for Western blotting.

Protein levels were quantified using ImageJ software to
measure density of target proteins bands relative to a control
protein (tubulin). Results were graphed and presented as
bar graphs.

PCR
Cells were lysed in Trizol and the Zymo DirectZol kit was used
for extraction of RNA and digestion of DNA according the
manufacturer’s instructions. RNA levels and purity was
measured using NanoDrop. cDNA was produced using qScript
(Quanta Biosciences, 95048-500) and 1 µg of RNA in a total
volume of 25 µl. For quantitation of gene expression exon-
spanning validated FAM-labeled primers for Rac1, Cdc42,
RhoA, APE1, and 18S (Life technologies) were used and the
Taqman master mix from Applied Biosystems.

Ethical Considerations
IRB-approved, informed consent was used to obtain all human
biopsy specimens.

Confocal Microscopy
Cells were washed with and fixed in 2% formaldehyde for 15 min
at 37°C. Cells were blocked and permeabilized (1.5% BSA, 5%
goat serum, and 0.2% triton X-100 in PBS) for 1 h at 37°C.
Antibodies (1/100) were incubated at 4°C overnight and
AlexaFluor-conjugated secondary antibodies (1/500 in blocking
buffer) incubated for 1 h at room temperature. AF647-
conjugated Phalloidin (1/200) was added in PBS containing 1%
goat serum and incubated for 20 min at room temperature. Slides
were mounted in ProLong antifade Gold containing DAPI (Life
Technologies). Frozen tissue section (8 µm) were fixed and
stained as described for cells. Slides were imaged using an
Olympus IX81 inverted confocal microscope and analyzed
using Olympus FluoView 3.0 and quantified using ImageJ.

Barrier Studies
500,000 T84 cells were seeded onto inserts (Millipore
PIHA01250) and allowed to develop trans-epithelial electrical
resistance (TEER of >1,000 W*cm2) (34). Trans-epithelial
electrical resistance (TEER) of the cells was measured using a
voltmeter (World Precision Instruments). Data is reported as
Frontiers in Immunology | www.frontiersin.org 3
relative TEER which is the TEER measurement at the
experimental time point compared to start of the experiment.
For infection experiments, cells were allowed to equilibrate for
1 h in Ringers solution containing 10 mM glucose. 0.1 U/ml of
glucose oxidase was used to impart an oxidative stress.

Proximity Ligation Assay
APE1-Rac1 interactions were detected using the Duolink
proximity ligation assay (PLA) Kit (Olink Bioscience, Uppsala,
Sweden) per the manufacturer’s protocol and as previously
described (18). The PLA detects proteins by hybridizing two
tags that together allow for the transcription of a fluorescent-
tagged product. Briefly, cells were grown in 8-well glass chamber
slides, fixed, permeabilized, and blocked as described for confocal
microscopy. Rabbit-anti-APE1 (1/200) and mouse-anti-Rac1 (1/
100) were used as primary antibodies and anti-rabbit PLUS and
anti-mouse MINUS PLA probes (1/5) as secondary detection.
Then, provided ligase-ligation solution and amplification
polymerase solution were applied. Slides were mounted using
supplied mounting media containing DAPI. Fluorescent signal is
produced for proteins within 40 nm of each other. Quantification
of relative PLA signal (red fluorescence per DAPI signal) was
measured using at least nine images per condition using
ImageJ software.

Data Analysis/Statistics
Data were entered in Graphpad Prism 5 and statistical
significance tested using Student’s t-test for two conditions or
ANOVA with Bonferroni-corrected post-hoc testing for data
with three or more different comparisons. Graphs show the
mean values and error bars indicate standard errors of the mean.
RESULTS

APE1 Regulates the Internalization of
Bacteria Into Intestinal Epithelial Cell Lines
To select the most suitable bacteria for the studies, we first
determined the ability of different bacteria to become
internalized into T84 by comparing Salmonella enterica serovar
Typhimurium (SL1344) (MOI 10), adherent-invasive Escherichia
coli strain LF82 (AIEC/LF82), enteropathogenic E. coli (EPEC),
E. coli (K12) and C. jejuni (all at MOI 100). CFU were evaluated
following infection for 1, 2 or 4 h using the gentamicin protection
assay. As expected, prolonged infection time resulted in
increased internalization for all tested bacteria. Internalization
was significantly lower for enteropathogenic E. coli (EPEC),
E. coli K12 and C. jejuni (data not shown). Due to the
increased ability of S. Typhimurium and or AIEC strain
LF82 to internalize, these two species were used for all
subsequent experiments.

To assess the role of APE1 on internalization, we confirmed
the expression of APE1 by human intestinal epithelial cells using
immunofluorescence assays performed on biopsy specimens
obtained from human intestine (Figure 1A). Subsequently, we
employed cells in which APE1 expression was substantially
February 2021 | Volume 11 | Article 553994
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reduced by transfecting T84 cells with short hairpin vector
targeting APE1 mRNA (shAPE1) leading to suppression of
APE1 protein (Figure 1B). Furthermore, we specifically chose
the shRNA-based APE1 knockdown method over APE1
knockout method as a previous study has shown that complete
deletion of APE1 results in cellular death due to the
multifunctional aspect of APE1 (35). Assays for intracellular
bacteria were performed in control or APE1-deficient cells 1 h
after infection to focus on the bacteria that internalized most
Frontiers in Immunology | www.frontiersin.org 4
efficiently and to minimize the effects of bacteria-induced cell
death. Infection of these cells with S. Typhimurium or AIEC
strain LF82 showed that internalization of the bacteria was
increased when APE1 expression was inhibited (Figure 1C).
To validate the observation in T84 cells, APE1 was inhibited in
HT29 cells which also showed an increase in internalization
(Figure 1D). Complementation of APE1 by transfection of
pcMV5.1 APE1 into APE1-deficient cells was confirmed
(Figure S1A) and when applied in these studies, resulted in
A

B C

D E

FIGURE 1 | Numbers of intracellular bacteria in intestinal epithelial cells are negatively regulated by APE1. (A) To confirm that APE1 was expressed by human
epithelial cells, human colonic biopsy specimens were stained with DAPI or goat anti-APE1 followed by an anti-goat secondary antibody and imaged. Staining
can be detected in both the epithelium and lamina propria. (B) T84 cells containing short hairpins to APE1 have reduced levels of APE1 protein compared to
cells containing a control vector. (C) T84 cells with normal or suppressed levels of APE1 were infected with S. Typhimurium at MOI 10 or AIEC at MOI 100 for
1 h and assayed for intracellular bacteria using the gentamicin inhibition assay. N= 6-8 pooled from two independent experiments. (D) To ensure APE1
specificity of our findings in cells containing shAPE (targeting intron), APE1 levels were complemented by transfecting HT-29 cells containing shAPE with a
vector expressing wild type (wt) APE1 or a control vector (pcMV5.1) and then infected with S. Typhimurium (MOI 10) or AIEC (MOI 100) for 1 h in two
independent experiments with each 3-5 replicates. Control (ctr) cells with normal levels of APE1 had lower levels of intracellular bacteria with no further reduction
by the transfection to increase wild type APE1 (open bars). Inhibition of APE1 by shAPE1 (black bars) increased intracellular bacteria which decreased after
complementing with wild type APE1, particularly for AIEC. (E) To exclude the possibility that increased intracellular bacteria were caused by impaired autophagy,
T84 cells were pretreated with rapamycin before assaying for bacterial internalization (expressed as CFU) to show that APE1-deficient cells have functional
autophagy. All error bars are represented as SEM. *p < 0.05
February 2021 | Volume 11 | Article 553994
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the reduction of intracellular S. Typhimurium (not significantly)
and AIEC numbers (p < 0.05) compared to control cells
(Figure 1D). As numbers of increased intracellular bacteria
can be caused by enhanced entry into the cells or reduced
clearance of intracellular bacteria (36), autophagy function was
evaluated in APE1 suppressed cells by pretreating the cells with
rapamycin. Rapamycin inhibits mTOR which is a physiological
inhibitor of autophagy. Treatment of cells with rapamycin
allowed APE1-deficient cells to clear the majority of
intracellular AIEC, indicating that APE1-deficiency did not
disable the clearance of intracellular bacteria by autophagy
(Figure 1E).

APE1 Regulates Bacterial Internalization
Into Primary Human Epithelial Cell Lines
Since increased numbers of intracellular S. Typhimurium and
AIEC strain LF82 were detected in APE1-deficient tumor cell
lines, human primary epithelial cells derived from the terminal
ileum or colon of healthy donors were used as a more biologically
relevant target. Primary epithelial cells of ileum and colon were
capable of being infected by both S. Typhimurium and E. coli
strain LF82 (expressed RFP and GFP, respectively) as observed
by confocal microscopy (Figure 2A). Subsequently, these
primary epithelial cells were transduced with a lentiviral vector
containing either a control shRNA or shAPE1 construct with the
latter reducing APE1 expression (Figure 2B). Following
infection, primary human APE1-deficient colonic and ileal
epithelial cells showed increased numbers of intracellular S.
Typhimurium (Figure 2C). As AIEC is typically observed in
the ileum, primary ileal epithelial cells were infected with AIEC
and tested for internalization and also showed increased
numbers of intracellular bacteria when levels of APE1 were
suppressed (Figure 2C). Confocal imaging confirmed the
increase in S. Typhimurium when APE1 was inhibited (Figure
2D). Together, these data show that APE1 regulates levels of
intracellular bacteria in both human cancer cell lines and
primary human epithelial cells.

Activation of Rac1 by Enteric Pathogens
Is Regulated by APE1
As Rho GTPases are known to regulate bacterial internalization
by invasion (14–16) or engulfment (23). To focus on a Rho
GTPase that might be regulated by APE1, we evaluated which
Rho GTPases were regulated by APE1 at the transcriptional level.
The mRNA for three Rho GTPases (Rac1, Cdc42 and RhoA) was
assayed in T84 cells and primary human intestinal epithelial cells
by qRT-PCR. Rac1 mRNA expression was increased in APE1-
deficient epithelial cells (Figure S1B, C) so our evaluation
focused on how APE1 regulated Rac1 function in the process
of bacterial internalization.

To determine that the number of intracellular bacteria was
regulated through APE1-Rac1 interactions, we first established
the co-localization of these molecules in human intestinal
epithelial cells. Primary human ileal epithelial cells were
infected with S. Typhimurium for 1 h and analyzed for the co-
localization of APE1 and Rac1 using the proximity ligation assay
Frontiers in Immunology | www.frontiersin.org 5
(PLA). Infection of primary ileal epithelial cells with S.
Typhimurium or AIEC increased co-localization of APE1 and
Rac1 (Figures 3A, B). The PLA indicates a distance less than or
equal to 40 nm between APE1 and Rac1. Since APE1 has been
shown to physically associate with Rac1 and inhibit its
contribution to the generation of reactive oxygen species (18),
it is reasonable to speculate that the proximity of APE1 to Rac1
in the context of infection limits Rac1 activation and its role in
the internalization of the bacteria.

As the interaction between APE1 and Rac1 may impair Rac1
activation, T84 cells or HT-29 cells were pre-treated with the
Rac1 inhibitor NSC23766 overnight. NSC23766 is commonly
used in multiple cell types and in vivo to inhibit Rac1 without
effecting RhoA or Cdc42 activation (37–40). Pre-treatment of
T84 cells with NSC23766 resulted in reduced numbers of
intracellular S. Typhimurium in APE1-deficient cells thereby
reversing the effect caused by the reduced APE1 expression
(Figure 3C). Inhibition of bacterial internalization was also
observed for AIEC in T84 and HT-29 cells pre-treated with
NSC23766 (Figures 3D, E). Subsequently, HT-29 were
transfected with constitutively active Rac1 or control plasmid.
Control cells expressing Rac1 V12 had numbers of intracellular
bacteria that were not statistically different than the numbers
from APE1-deficient cells after 1 h infection (Figure 3F). These
data showed that targeting Rac1 activation led to an intracellular
bacterial burden that correlated to the effects of changing
APE1 expression.

As APE1 regulated the internalization of S. Typhimurium and
AIEC and resembled the effects of manipulating Rac1 activation
pharmacologically or genetically, we assessed if the inhibition of
APE1 expression modulated Rac1 activation in the context of
these infections. T84 cells were infected with S. Typhimurium or
AIEC for 1 h and cell lysates were analyzed for levels of active
GTP-bound Rac1 relative to total levels of Rac1. Both species of
bacteria resulted in increased levels of activated Rac1 (Figure 4,
Figure S2). Activation of Rac1 was significantly higher in APE1-
deficient cells compared to control cells following infection with
S. Typhimurium and AIEC (Figure 4). These findings suggest
that APE1 impairs the activation of Rac1 and this accounts for
the increase in intracellular bacteria when APE1 expression
is inhibited.

APE1 Enhances Barrier Recovery
Following Infection With Salmonella
Typhimurium
As we observed that APE1 deficiency led to increased numbers of
intracellular bacteria, we examined whether APE1 protects
against barrier loss following infection with S. Typhimurium.
Various MOI of S. Typhimurium (MOI 50, 25, 10) all caused a
comparable decrease in TEER and dextran leakage (Figure S3).
However, MOI lower than 10 exposed a dose-sensitive loss of
barrier function (Figure 5A). Since this was not seen in E. coli
(data not shown) we chose to further explore the dose-sensitive
barrier function loss with Salmonella infection. Consistent with
the reduced numbers of intracellular bacteria, Salmonella lacking
SPI-1, which do not invade efficiently, did not result in barrier
February 2021 | Volume 11 | Article 553994
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loss at MOI 10 (Figure 5B). Subsequently, we tested the impact
of intracellular S. Typhimurium on the ability of the cells to
recover barrier. Following infection for 1 h, TEER was assessed
and cells were treated with the non-cell permeable antibiotic
gentamicin or the cell permeable antibiotics ciprofloxacin or
Frontiers in Immunology | www.frontiersin.org 6
chloramphenicol. The following day, TEER was re-evaluated.
Treatment of the cells overnight with cell permeable antibiotics
resulted in higher barrier function recovery (Figure 5C). Since
we observed increased numbers of intracellular S. Typhimurium
in APE1-deficient cells, T84 monolayers were infected with S.
A

B C

D

FIGURE 2 | APE1 negatively regulates levels of intracellular bacteria in primary human epithelial cells. (A) To determine the ability of the bacteria to become
internalized into human primary intestinal epithelial cells (colon), stem cells were differentiated on transwell inserts and infected for 1 h with RFP-expressing S.
Typhimurium, (MOI 10) or GFP-expressing AIEC (MOI 100) and imaged by confocal microscopy. Arrows indicate clusters of S. Typhimurium, or individual AIEC.
(B) APE1 protein levels are reduced in primary human ileal and colonic cells following transduction using lentiviruses expressing short hairpins against APE1. (C) Both
APE1-deficient ileal and colonic primary epithelial cells show increased numbers of intracellular S. Typhimurium following infection for 1 h at MOI 10. AIEC were used
to primary human ileal epithelial cells only at an MOI of 100. Numbers of intracellular bacteria were significantly increased in cells deficient in APE1. Data are shown
from 5 independent experiments. (D) Confocal microscopic analysis confirms that APE1-deficient primary cells contain higher numbers of intracellular S. Typhimurium
following infection at MOI 10. All error bars are represented as SEM. *p < 0.05
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A

B

C D

E F

FIGURE 3 | APE1 interacts with Rac1 following infection. (A) Primary human ileal intestinal epithelial cells were infected with S. Typhimurium (MOI 10) or AIEC (MOI
100). Following infection, cells were fixed and the co-localization of APE1 and Rac1 was analyzed by proximity ligation assay (PLA), which produces a red fluorescent
signal for proteins located within 40nm of each other. Significantly increased red fluorescence showing co-localization of APE1 and Rac1 was observed following
infection with S. Typhimurium and AIEC, as shown by the quantification of nine different images as shown in (B). (C).T84 cells were pretreated with the Rac1 inhibitor
NSC 23766 overnight and then infected with S. Typhimurium at MOI 10 for 1 h. Intracellular bacteria were quantified and show reduced numbers of S. Typhimurium
in APE1-deficient cells pretreated with the Rac1 inhibitor. Pre-treatment of T84 (D) or HT-29 (E) cells with the Rac1-inhibitor NSC23766 limits internalization of AIEC
strain LF82. (F) When instead of pretreating cells with the inhibitor, HT-29 cells were transfected with active Rac1 (V12) the levels of intracellular Salmonella bacteria
in APE1 sufficient cells became similar to the levels observed in APE1-deficient cells after a 1 h infection. All error bars are represented as SEM. *p < 0.05; **p <
0.01; ***p < 0.001
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Typhimurium and then treated with gentamicin. Control T84
cells were able to recover greater barrier function whereas APE1-
deficient cells containing more bacteria had lower epithelial
barrier function (Figure 5D). To confirm that APE1-deficient
cells were still able to maintain and recover barrier function, cells
were pulsed with glucose oxidase resulting in the generation of
hydrogen peroxide (0.1 mmole/min) which is well known for
compromising barrier loss (41) similar to S. Typhimurium
infection (data not shown). After replacing the glucose oxidase
with fresh medium, the glucose oxidase-treated APE1-deficient
cells had barrier function similar to control cells, indicating
that the inability to recover from barrier loss was caused by
the infection with S. Typhimurium and not an effect of
APE1 expression.
DISCUSSION

Many different pathogenic bacteria are internalized into host
cells through invasion or engulfment (14–16, 23, 42–45). We
found that the numbers of intracellular S. Typhimurium and
AIEC were increased in APE1-deficient cells. Increasing
numbers of intracellular S. Typhimurium resulted in impaired
barrier function. Not only was APE1 in close proximity to Rac1,
but APE1-deficient cells showed increased levels of Rac1
activation while inhibition of Rac1 activation restored the
levels of intracellular bacteria to the numbers observed in
control cells. Together, these data support the notion that
APE1 regulates levels of intracellular S. Typhimurium and
AIEC through its ability to inhibit the activation of Rac1
suggesting that the regulation of APE1 expression may
contribute to the modulation of bacterial internalization.

Our study examined two different human cancer-derived cell
lines and primary human epithelial cell cultures from different
Frontiers in Immunology | www.frontiersin.org 8
subjects, all confirming that APE1 attenuates the accumulation
of intracellular bacteria. We validated the specificity of our short
hairpin RNA’s by western blot analysis and showing that a
plasmid encoding wildtype APE1 could restore the inhibition
of intracellular bacteria by complementing shAPE1 cells (46).
Our data showed that deficient autophagy ability of APE1
deficient cells was not the cause of the increased intracellular
bacteria, however, further study is needed to elucidate the precise
role autophagy does have in this accumulation. APE1-dependent
regulation of cell internalization was observed for two different
species of bacteria: S. Typhimurium and AIEC. We used PLA to
demonstrate the co-localization of APE1 and Rac1 in primary
human epithelial cells that would enable the regulatory process.
In addition to evidence of proximity in the cells following
infection with S. Typhimurium and AIEC, APE1 was able to
regulate levels of active Rac1 after infection. Thus, the evidence
for the involvement of Rac1 in this APE1-dependent regulation
of cell-internalization by these species was based on: the co-
localization of APE1 and Rac1; the inhibition of Rac1 activation
by APE1; and by using both an inhibitor of Rac1 binding to
guanine nucleotide exchange factors (GEF) and genetic
manipulation of Rac1. The Rac1 inhibitor, NSC23376 may not
be specific for Rac1 (47), however, the validation with a genetic
approach and the data showing the effect of APE1 on Rac1
activation provide a compelling case that APE1 can modulate
bacterial internalization, at least in part, through its effects on
Rac1. While our multiple methods demonstrate the APE1 and
Rac1 interaction, exactly how the interaction is initiated by
bacterial infection needs to be established in future studies.

The internalization of various pathogenic bacteria into
epithelial cells by means of invasion or engulfment occurs
through the regulation of Rho GTPases (14, 16, 22, 23, 43–45).
In particular, highly invasive S. Typhimurium actively regulate
Rho GTPases, including Rac1 through the translocation of
A B

FIGURE 4 | APE1 negatively regulates levels of active Rac1. (A) Triplicate cultures of sham (ctr) or shRNA transduced T84 cells were left uninfected (UI) or infected with
S. Typhimurium. Cell lysates analyzed for levels of active GTP-bound Rac1 by a pull down assay or total Rac1. APE1-deficient cells show significantly increased levels of
active Rac1 relative to total levels of Rac1 as determined by the ratios of the densitometry from four independent experiments. (B) As observed with S. Typhimurium,
AIEC-infected APE1 deficient T84 cells show significantly higher levels of active Rac1. All error bars are represented as SEM. *p < 0.05; **p < 0.01.
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effector molecules (14–16, 48). Therefore, the finding that APE1
is capable of negatively regulating the levels of active Rac1 in
epithelial cells would be consistent with the concept that APE1
limits Rac1-mediated internalization of bacteria. Previously, we
have shown that APE1 is expressed in human gastric epithelial
cells and regulates host response induced by Helicobacter pylori
(H. pylori) including the activation of Rac1 and its effects on the
generation of reactive oxygen species (18). However, H. pylori do
not, in general, become internalized. The current results extend
these observations to human intestinal epithelial cells as well as
to the role of APE1 in the regulation of enteric pathogen
internalization, thereby expanding our understanding for the
multifunctional role for APE1 in bacterial pathogenesis.

An essential role of the intestinal epithelium is maintaining a
barrier, which was progressively impaired with MOI increasing
from 0.3 to 10. As expected, because of the increased numbers of
intracellular bacteria, barrier function following infection was
Frontiers in Immunology | www.frontiersin.org 9
impaired in APE1-deficient cells. indicating that the observed
differences in numbers of intracellular bacteria may impact
barrier function. The impaired barrier recovery by the
increased in intracellular bacteria could be reversed using cell-
permeable antibiotics, but not with non-permeating antibiotics,
indicating that the failure to restore barrier function was
attributable to the intracellular bacteria. Thus, the regulation of
bacterial internalization by APE1 may have profound effects on
epithelial cell function. Future studies probing the role of APE1
in enterocytes will be enhanced by tissue-targeted knockout of
the APEX1 gene.

Initially, the function of APE1 was described in base excision
repair of oxidative DNA damage, followed by its role as a redox
transcriptional regulator and inhibitor of reactive oxygen species
(ROS) production, including its ability to inhibit Rac1 (46, 49–
51). On one hand, APE1 promotes DNA integrity by limiting
levels of ROS and repairing oxidative DNA damage and on the
A B

C D

FIGURE 5 | Regulation of barrier function by APE1 A) Compromised barrier function in T84 cells was assayed by TEER and found to be reduced with lower MOI of
S. Typhimurium after 3 h (3-4 replicates). (B) Infection (MOI 10) for 5 h of T84 cells on transwell inserts with wild type or mutants (DSPI-1 or DSPI-2) of S.
Typhimurium resulted in barrier loss by S. Typhimurium that expressed SPI-1 (wild type or DSPI-2) but not when SPI-1 (DSPI-1) was lacking as shown from four to
five replicates. (C) To confirm the impact of the number of intracellular bacteria on barrier recovery, T84 cells were infected at MOI 10 in triplicate and treated with a
cell impermeable antibiotic gentamicin, or the cell permeable antibiotics chloramphenicol or ciprofloxacin. Cell permeable antibiotic treatment resulted in improved
barrier recovery and have reduced numbers of intracellular bacteria (latter data not shown). (D) Following infection (MOI 10) or treatment with glucose oxidase, cells
were washed and cell culture medium containing gentamicin was added. Barrier recovery was recorded the next day. Data show that APE1-deficient cells infected
with S. Typhimurium had reduced recovery compared to cells with similar loss in barrier induced by glucose oxidase. Data shown are from three independent
experiments. All error bars are represented as SEM. *p < 0.05; **p < 0.01; ***p < 0.001.
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other hand, APE1 promotes immunity by activating NF-kB and
AP-1 in response to infection (18, 49, 52). The present data
provide new insights into the role of APE1 in bacterial
pathogenesis by showing that APE1 inhibits Rac1 activation in
intestinal epithelial cells resulting in significantly lower numbers of
intracellular bacteria. Mechanisms whereby APE1 negatively
regulates the numbers of intracellular bacteria would
complement other functions for APE1 in innate immunity to
protect the host against infection. Based on the functions reported
here, it is possible that the regulation of APE1 expression, or
genetic polymorphisms affecting its interactions with Rac1, may
affect bacterial pathogenesis. We propose that APE1 contributes to
host protection at many levels including the control of bacterial
burden; the accumulation of reactive oxygen species; the
regulation of innate responses to help clear infection; the
maintenance of the epithelial barrier; and through its role in
maintaining host DNA integrity in responses to infections.
Future studies should establish the importance of APE1 in host
defense in a mouse model to increase our understanding of the
physiological role of APE1 and potential therapeutic applications.
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Supplementary Figure 1 | (A) Supplementation of wtAPE1 restored APE1 to
wild type levels in shAPE knockdown HT-29 cell lines compared to control vector
pcMV5.1. Control (ctr) and shAPE1 transduced T84 (B) or primary human epithelial
cells from the ileum (C) were assayed for various Rho GTPases. Since APE1-
deficient cells expressed increased levels of Rac1 mRNA, it was chosen as the
focus for the experiments.

Supplementary Figure 2 | Additional western blots for independent experiments
for Salmonella (A) and AIEC (B) show regulation of levels of active Rac1 by APE1 in
T84 cells.

Supplementary Figure 3 | Infection of T84 cells with S. Typhimurium at varying
MOIs results in similar loss of barrier function as assayed by TEER (A) and
paracellular leakage of FITC-dextran (B).
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