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ABSTRACT OF THE DISSERTATION

Machine Learning Towards Large-scale Atomistic Simulation and Materials Discovery

by

Yunxing Zuo

Doctor of Philosophy in NanoEngineering

University of California San Diego, 2021

Professor Shyue Ping Ong, Chair

In materials science, the first principles modeling, especially density functional theory

(DFT), serves as the de facto tool in studying physical phenomena and properties of materials

from the atomistic level. However, the high computational cost and poor scaling of DFT has

limited its applications in two important scientific problems — large-scale atomistic simulations

and high-throughput screening for materials discovery. This thesis demonstrates how the machine

learning (ML) techniques enable atomistic simulations in large size and time scale with DFT-

accuracy and accelerate materials discovery with the state-of-the-art graph neural network models.

This thesis is divided into two topics.

In the first topic (Chapters 2 and 3), we will investigate how the machine learning

xiii



interatomic potentials (ML-IAPs) are trained and provide a systematic assessment of the cost and

accuracy performances for several major ML-IAPs. We have also implemented high-level Python

interfaces for ML-IAPs development and materials properties calculators using a molecular

dynamic (MD) engine. This toolkit enabled us to develop a highly accurate and efficient ML-IAP

for refractory high-entropy alloy NbMoTaW, an important alloy system yielding exceptional

mechanical properties under high temperature. We will demonstrate how the ML-IAP driven

atomistic simulations help us understand the mobility of edge/screw dislocations with the presence

of short-range order (SRO).

In the second topic (Chapter 4), we developed a Bayesian Optimization With Symmetry Re-

laxation (BOWSR) algorithm using MatErials Graph Network (MEGNet) energy model to obtain

equilibrium crystal structures, bypassing the high-cost DFT relaxations. The BOWSR algorithm

enabled us to screen∼ 400,000 transition metal borides and carbides for ultra-incompressible hard

materials. Attempts were made to synthesize the top ten candidates with the highest computed bulk

modulus with eight unique compositions, and two new crystals yielding ultra-incompressibility

were successfully synthesized.
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Chapter 1

Introduction
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1.1 Background

Materials design, including known materials optimization and new materials discovery,

is among the most important subjects in materials science. For the past decades, the growing

computational resources and the well-established quantum mechanical approximations to the

Schrödinger’s equation, in particular density functional theory (DFT)1,2, has enabled the re-

searchers to predict the physical and chemical properties of materials in silico and virtually guide

the experimental efforts, in place of the historical trial-and-errors mode.

Despite the promising perspective of “virtual materials design” driven by the DFT, its high

cost and poor scalability with the increase of number of electrons (typically O(n3
e) or higher)3–5

fundamentally limits the simulations to ∼ 1000 atoms and hundreds of picoseconds, even with

the modern supercomputing power. In effect, this has hindered the development of two aspects

of materials design. On the one hand, the optimization of known materials demands large-

scale simulations for realistic systems far beyond ∼ 1000 atoms, such as enhancing strength of

alloys6,7 and understanding diffusion mechanism of solid electrolytes8? . On the other hand, the

chemistries and structures search spaces for new materials discovery are significantly constrained

using the traditional high-throughput screening with DFT9,10.

Recently, machine learning (ML) has emerged as a transformative paradigm in materials

science11,12. The large materials data allow the ML models to learn the relationship between the

materials descriptors and targets and thus enable the rapid property predictions for the unexplored

space of materials without solving the Schrödinger’s equation.

In this chapter, we first discuss the learning targets in materials optimization, especially

the important role of ML models in large-scale atomistic simulation required for understanding

and optimizing the properties of materials under various experimental conditions. Then, we

analyze the strengths and weaknesses of the popular ML models for accurate materials property

predictions and their potential application in new materials discovery. Finally, we conclude with

2



the objectives and overview of this thesis.

1.2 Materials optimization

For the known materials to surpass the current performance, one strategy is optimizing the

constituents and working conditions of the materials13–16. From an atomistic point of view, this

generally requires large-scale simulations for realistic systems with ∼ O(105−106) atoms that

are computationally intractable using DFT. Therefore, the molecular dynamic (MD) simulation

coupled with empirical interatomic potentials (IAPs) emerged to address this problem for many

common systems17–22. The empirical IAPs are typically parameterizations of the experimental or

calculated observables based on physical functional forms and have linear scaling with respect

to the number of atoms. Although the empirical IAPs have been widely used in large-scale

simulations, their predictions are qualitative at best23–25.

Recently, the development of ML algorithms coupled with atomic descriptors26–31 has

given rise to the surge of machine learning interatomic potentials (ML-IAPs). In principle, the

potential energy surface (PES) of the material is described as a function of the local environment

descriptors that are invariant to rotation, translation, and permutation of homonuclear atoms,28,32

as shown in Fig. 1.1. The local environment descriptors for each central atom in the system

encodes the information of neighboring atoms within the cutoff radius by incorporating their

distances to the central atom and the angles formed in triplets that include the central atom and

neighboring atoms. The ML model is then applied to learn the relationship between the descriptors

and the targets, generally the DFT-calculated energy and atomic forces. Presumably, a well-

performed ML-IAP can be used to simulate arbitrary atomic configurations (e.g., amorphous33,34

and interfaces35) within the PES provided that the training data set covers a diverse space of

atomic local environments. The ML-IAPs have shown remarkable improvement over the empirical

IAPs in terms of achieving near-DFT accuracy at the linear scaling cost.
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Figure 1.1: Schematic illustration of the PES and the mechanisms of ML-IAPs to approximate
the PES.

There have been extensive studies on the development of ML-IAPs. Major ML-IAPs

include neural network potential (NNP)36,37, the Gaussian approximation potential (GAP)28,38,39,

the Spectral Neighbor Analysis Potential (SNAP)30,40–42, moment tensor potentials (MTP),29,43,44,

deep potential (DP)45 and etc. These ML-IAPs have shown great performance in understand-

ing and optimizing the materials properties for various applications such as catalytic35,46 and

structural7,47 and energy materials.48

1.3 Materials discovery

Another important aspect of materials design is new materials discovery. The process can

be generally split into two steps: crystal structure generation and property predictions. Crystal

structures can be generated through various strategies. While previous works show that heuristic

methods such as evolutionary algorithm49 and particle swarm optimization50 are capable of

4



identifying novel crystal structures, a dominant strategy of deriving new compounds comes

from chemical substitution to the known structure prototypes9,51,52, which is commonly used in

high-throughput screening approach53,54. Recent development of ML generative algorithm has

motivated the “inverse design” of new crystal structures55,56 and attracted widespread interest.

For property predictions, DFT methods have been long considered as the de facto tools

due to their high accuracy and transferability. However, the high cost and poor scaling of DFT

have limited their broad application across vast chemistries and structures and confined the

exploration space of traditional high-throughput screening for materials discovery. To date,

numerous collective efforts have been made to assemble DFT-computed properties for over 105

known and hypothetical compounds57–59. Albeit, these are far from adequate compared to the

gigantic unexplored chemical space (∼ 1060). To address this challenge, ML has emerged as a

new paradigm for developing efficient surrogate models for predicting materials properties at

scale.

Among all of the materials properties, the formation energy is the most fundamental

one as it is the key metric for the stability or synthesizability of a compound52,60,61. Hence,

the development of surrogate ML models demands accurate predictions on formation energies,

at the minimum. These ML models were usually trained on large databases57–59 and can be

divided into two categories. The models that take chemical compositions as input have shown

relatively high accuracy over a broad range of structure prototypes62–64. However, the lack of

structural information limits their application in distinguishing between polymorphs for the same

composition. As a result, these models are poorly suited for materials discovery within specific

chemical spaces. Recent advances of graph neural networks65 give rise to the development

of graph-based models for accurate property predictions for molecules66–69 and crystals70–72.

In particular, these models interpret the molecular or crystal structures by nodes and edges

representing atoms and bonds, respectively. Training on the Materials Project database57, the

graph-based models have shown state-of-the-art performance in prediction of various materials

5



properties70–72.

1.4 Objectives

Despite the increasingly important role ML plays in materials design, major gaps remain

in ML-IAPs for materials optimization and graph-based ML models for materials discovery.

The blossom of different ML-IAPs provides multiple options for interested researchers and

practitioners. However, the relative strengths and weaknesses of different ML-IAPs remain poorly

assessed. The evaluation of the performances (e.g., accuracy and computational cost) of major

ML-IAPs and the factors that determine these performances may provide a useful guideline in

choosing different ML-IAPs for different applications. Moreover, ML-IAPs for the optimization

of multiple-component systems (e.g., high-entropy alloys) remain rarely developed due to the

demand of exponentially larger amount of training data.

Although the graph-based models have shown significantly high accuracy suited for tar-

geted materials discovery, paradoxically, these models typically require accurate crystal structures,

either from experimental measurements or DFT relaxations, as input. This requirement funda-

mentally limits the scope of application of these surrogates to well-explored chemical space as

the relaxed crystal structures of hypothetical materials are unknown without DFT relaxations.

In this thesis, we attempt to address these gaps for both materials optimization and

discovery. The thesis is divided into two topics. In the first topic, we will demonstrate a systematic

assessment of accuracy and computational cost for the major ML-IAPs using a standardized

data set. We also implemented high-level Python interfaces for seamless ML-IAPs development

and materials property predictions. Using this toolkit, we developed a well-performed general-

purpose ML-IAP for refractory high-entropy alloy system NbMoTaW. In the second topic,

we propose the Bayesian Optimization With Symmetry Relaxation (BOWSR) algorithm for

“DFT-free” relaxation of crystal structures using MatErials Graph Network (MEGNet) as energy

6



estimator, breaking through the limitations of graph-based models in materials discovery. A brief

description for each subsequent chapter is provided as follows:

• Chapter 2 presents an impartial comparison between four major ML-IAPs from several

aspects: accuracy, data requirement, and computational cost. We also analyzed the factors

that may determine their relative strengths and weaknesses and extended the concept of

Pareto frontier in terms of accuracy and cost for ML-IAPs assessment.

• Chapter 3 presents a study on mechanism of plastic deformation of bcc refractory high-

entropy alloy (RHEA) system MoNbTaW driven by ML-IAPs. The ML-IAP enabled

us to perform MD simulations of over 500,000 atoms for understanding the mobility of

edge/screw dislocation with respect to temperature and the presence of short-range order

(SRO).

• Chapter 4 presents an algorithmic effort in developing BOWSR for crystal structure re-

laxation, bypassing the high-cost DFT. We showcased that BOWSR algorithm and the

MEGNet models enabled us to identify eight new candidates out of ∼400,000 transition

metal borides and carbides for ultra-incompressible hard materials. Two of them were

successfully synthesized via in-situ reactive spark plasma sintering (SPS).
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Chapter 2

Performance and cost assessment of

machine learning interatomic potentials
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2.1 Introduction

A fundamental input for atomistic simulations of materials is a description of the potential

energy surface (PES) as a function of atomic positions. While quantum mechanics-based de-

scriptions, such as those based on Kohn-Sham density functional theory (DFT)2,73, are accurate

and transferable across chemistries, their high cost and poor scaling (typically O(n3
e) or higher,

where ne is the number of electrons)3–5 limits simulations to ∼ 1000 atoms and hundreds of

picoseconds. Hence, large-scale and long-time simulations traditionally rely on interatomic

potentials (IAPs), which to date are in most cases empirical parameterizations of the PES based

on physical functional forms that depend only on the atomic degrees of freedom.18–20 IAPs gain

linear scaling with respect to the number of atoms at the cost of accuracy and transferability.

In recent years, a modern alternative has emerged in the form of machine-learned IAPs

(ML-IAPs), where the PES is described as a function of local environment descriptors that

are invariant to translation, rotation and permutation of homonuclear atoms28,32. Examples of

such potentials include the high-dimensional neural network potential (NNP)36,37, the Gaussian

approximation potential (GAP)28,38,39, the Spectral Neighbor Analysis Potential (SNAP)30,40–42,

moment tensor potentials (MTP),29,43,44 among others74–79. A typical approach to training

such potentials involves the generation of a sufficiently large and diverse data set of atomic

configurations with corresponding energies, forces and stresses from DFT calculations, which

are then used in the training of the ML-IAP based on one or several target metrics, such as

minimizing the mean absolute or squared errors in predicted energies, forces, stresses or derived

properties (e.g. elastic constants). ML-IAPs have been shown to be a remarkable improvement

over traditional IAPs, in general, achieving near-DFT accuracy in predicting energies and forces

across diverse chemistries and atomic configurations. Despite the fact that recent benchmark

efforts80–82 have demonstrated the remarkable performance of ML-IAPs, a critical gap that

remains is a rigorous assessment of the relative strengths and weaknesses of ML-IAPs across a
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standardized data set, similar to what has been done for classical IAPs.83–85.

In this work, we present a comprehensive performance comparison of four major ML-

IAPs — GAP, MTP, NNP and SNAP. The four IAPs were evaluated in terms of their accuracy

in reproducing DFT energies and forces, as well as material properties such as the equations of

state, lattice parameter and elastic constants. An attempt was also made to assess the training data

requirements of each ML-IAP and the relative computational cost based on the best-available

current implementations. To ensure a fair comparison, standardized DFT data sets of six elements

(Li, Mo, Cu, Ni, Si and Ge) with the same training/test sampling and similar fitting approaches

were used. The elements were chosen to span diverse chemistries and bonding, e.g., bcc and fcc

metals, main group and transition metals, and group IV semiconductors.

2.2 Methods

2.2.1 Machine learning interatomic potentials

The four ML-IAPs investigated in this work have already been extensively discussed in

previous works and reviews28–30,32,36–44,86–89. All ML-IAPs express the potential energy as a

sum of atomic energies that are a function of the local environment around each atom, but differ

in the descriptors for these local environments and the ML approach/functional expression used

to map the descriptors to the potential energy. The detailed formalism of all four ML-IAPs are

provided in the Supplementary Information. Here, only a concise summary of the key concepts

and model parameters behind the ML-IAPs in chronological order of development is provided to

aid the reader in following the remainder of this paper.

1. High-dimensional neural network potential (NNP). The NNP uses atom-centered sym-

metry functions (ACSF)26 to represent the atomic local environments and fully connected

neural networks to describe the PES with respect to symmetry functions36,37. A separate
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neural network is used for each atom and each neural network processes the symmetry

functions from local environments of the corresponding atom and outputs its atomic energy.

The architecture of the neural network is defined by the number of hidden layers and

the nodes in each layer, while the descriptor space is given by the following symmetry

functions:

Gatom,rad
i =

Natom

∑
j 6=i

e−η(Ri j−Rs)
2 · fc(Ri j),

Gatom,ang
i = 21−ζ

Natom

∑
j,k 6=i

(1+λcosθi jk)
ζ · e−η′(R2

i j+R2
ik+R2

jk) · fc(Ri j) · fc(Rik) · fc(R jk),

where Ri j is the distance between atom i and neighbor atom j, η is the width of the Gaussian

and Rs is the position shift over all neighboring atoms within the cutoff radius Rc, η′ is

the width of the Gaussian basis and ζ controls the angular resolution. fc(Ri j) is a cutoff

function, defined as follows:

fc(Ri j) =





0.5 · [cos(πRi j
Rc

)+1], for Ri j ≤ Rc

0.0, for Ri j > Rc.

(2.1)

These hyperparameters were optimized to minimize the root-mean- square errors of energies

and forces for each chemistry. The NNP model has shown great performance for Si36,

TiO2
90, water91 and solid-liquid interfaces46, metal-organic frameworks92, and has been

extended to incorporate long-range electrostatics for ionic systems such as ZnO93 and

Li3PO4
94.

2. Gaussian Approximation Potential (GAP). The GAP calculates the similarity between

atomic configurations based on a smooth-overlap of atomic positions (SOAP)27,28 kernel,

which is then used in a Gaussian process model. In SOAP, the Gaussian-smeared atomic
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neighbor densities ρi(R) are expanded in spherical harmonics as follows:

ρi(R) = ∑
j

fc(Ri j) · exp(−|R−Ri j|2
2σ2

atom
) = ∑

nlm
cnlm gn(R)Ylm(R̂), (2.2)

The spherical power spectrum vector, which is in turn the square of expansion coefficients,

pn1n2l(Ri) =
l

∑
m=−l

c∗n1lmcn2lm, (2.3)

can be used to construct the SOAP kernel while raised to a positive integer power ζ to

accentuate the sensitivity of the kernel28,

K(R,R′) = ∑
n1n2l

(pn1n2l(R)pn1n2l(R′))ζ, (2.4)

In the above equations, σatom is a smoothness controlling the Gaussian smearing, and nmax

and lmax determine the maximum powers for radial components and angular components

in spherical harmonics expansion, respectively28. These hyperparameters, as well as the

number of reference atomic configurations used in Gaussian process, are optimized in

the fitting procedure to obtain optimal performance. The GAP has been developed for

transition metals38,39, main group elements33,95,96, diamond semiconductors34,97 as well

as multi-component systems88.

3. Spectral Neighbor Analysis Potential (SNAP). The SNAP uses the coefficients of the

bispectrum of the atomic neighbor density functions28 as descriptors. In the original

formulation of SNAP, a linear model between energies and bispectrum components is

assumed30. Recently, a quadratic model (denoted as qSNAP in this work)98 has been

developed, which extends the linear SNAP energy model to include all distinct pairwise

products of bispectrum components. In this work, both linear and quadratic SNAP models

were investigated. The critical hyperparameters influencing model performance are the
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cutoff radius and Jmax, which limits the indices j1, j2, j in Clebsch-Gordan coupling

coefficients H
jmm′

j1m1m′1
j2m2m′2

in construction of the bispectrum components:

B j1, j2, j =
j1

∑
m1,m′1=− j1

j2

∑
m2,m′2=− j2

j

∑
m,m′=− j

(u j
m,m′)

∗

×H
jmm′

j1m1m′1
j2m2m′2

u j1
m1,m′1

u j2
m2,m′2

,

(2.5)

where u j
m,m′ are coefficients in 4-dimensional hyper-spherical harmonics expansion of

neighbor density function:

ρi(R) =
∞

∑
j=0

j

∑
m,m′=− j

u j
m,m′U

j
m,m′, (2.6)

The SNAP model as well as qSNAP model has demonstrated great success in transition

metals30,40,41,98 as well as binary systems41,42,89.

4. Moment Tensor Potential (MTP). The MTP29 devises rotationally-covariant tensors

Mµ,ν(R) = ∑
j

fµ(Ri j) Ri j⊗·· ·⊗Ri j︸ ︷︷ ︸
ν times

, (2.7)

to describe the atomic local environments. Here fµ are the radial functions, and Ri j⊗·· ·⊗

Ri j are tensors of rank ν encoding angular information about the atomic environment. The

rank ν can be large enough to approximate any arbitrary interactions. MTP then contracts

these tensors to a scalar that yields rotationally-invariant basis functions, and applies linear

regression to correlate the energies with the basis functions. The performance of MTP

is controlled by the polynomial power-like metric, which defines what tensors and how

many times are contracted. The MTP model has been successfully applied to metals29,43,99,

boron100, binary and ternary alloys44 as well as gas-phase chemical reactions101.
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2.2.2 DFT data sets

A comprehensive DFT data set was generated for six elements - Li, Mo, Ni, Cu, Si and

Ge. These elements were chosen to span a variety of chemistries (main group metal, transition

metal and semiconductor), crystal structures (bcc, fcc, and diamond) and bonding types (metallic

and covalent). For each element, we generated a set of structures with diverse coverage of atomic

local environment space, as follows:

(1) The ground-state crystal for each element.

(2) Strained structures constructed by applying strains of −10% to 10% at 2% intervals to the

bulk supercell in six different modes, as described in the previous work102. The supercells

used are the 3×3×3, 3×3×3 and 2×2×2 of the conventional bcc, fcc and diamond

unit cells, respectively.

(3) Slab structures up to a maximum Miller index of three, including (100), (110), (111), (210),

(211), (310), (311), (320), (321), (322), (331), and (332), as obtained from the Crystalium

database103,104.

(4) NVT ab initio molecular dynamics (AIMD) simulations of the bulk supercells (similar

to those in (2)) performed at 300 K and 0.5×, 0.9×, 1.5×, 2.0× of the melting point of

each element with a time step of 2 fs. The bulk supercells were heated from 0 K to the

target temperatures and equilibrated for 20,000 time steps. A total of 20 snapshots were

obtained from the subsequent production run in each AIMD simulation at an interval of 0.1

ps. The radial distribution function (RDF) analysis confirms that the structures obtained

from AIMD simulations above melting point are liquid-like in the atomic environments

(see Figure A.1).

(5) NVT AIMD simulations of the bulk supercells (similar to those in (2)) with a single vacancy

performed at 300 K and 2.0× of the melting point of each element. The bulk supercells
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were heated from 0 K to the target temperatures and equilibrated for 20,000 time steps. A

total of 40 snapshots were obtained from the subsequent production run of each AIMD

simulation at an interval of 0.1 ps.

All DFT calculations were carried out using the Vienna ab initio simulation package

(VASP)105 version 5.4.1 within the projector augmented wave approach106. The Perdew-Burke-

Ernzerhof (PBE) generalized gradient approximation (GGA)107 was adopted for the exchange-

correlation functional. The kinetic-energy cutoff was set to 520 eV and the k-point mesh was

4× 4× 4 for the Mo, Ni, Cu, Si and Ge supercells, and 3× 3× 3 for the Li supercells. The

electronic energy and atomic force components were converged to within 10−5 eV and 0.02 eV/Å,

respectively, in line with previous works40,41. The AIMD simulations were carried out with a

single Γ k point and were non-spin-polarized, but static calculations using the same parameters

as the rest of the data were carried out on the snapshots to obtain consistent energies and forces.

All structure manipulations and analyses of DFT computations were carried out using Python

Materials Genomics (Pymatgen)108 library, and the automation of calculations was performed

using the Fireworks software109.

2.2.3 Optimization scheme

Figure 2.1 provides an overview of the general data generation and potential development

scheme. The training data set was first generated via DFT static calculations on the four categories

of structures. The optimization procedure comprised two loops. In the inner loop, sampled

structures in the database were transformed into atomic descriptors (e.g., bispectrum components

for SNAP and symmetry functions for NNP), which were then fed into the corresponding ML

model together with the DFT energies, forces, and stresses as the targets of training. The data was

apportioned into training and test sets with a 90:10 split. The parameters of the ML models were

optimized during the training process. In the outer loop, the ML model trained in the inner loop

was used to predict basic material properties (e.g., elastic tensors), and the differences between
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the predicted and reference values were then used to determine the optimal hyperparameters

for each ML-IAPs. In this work, we adopted a combination of the grid search algorithm and

differential evolution algorithm to perform hyperparameters optimization for different ML-IAPs.

Pymatgen

Fireworks + VASP

DFT static
Dataset

Elastic deformation Distorted
structures

Surface generation Surface 
structures

Vacancy + AIMD Trajectory
snapshots

(low T, high T) AIMD Trajectory
snapshots

Crystal
structure

property fitting
E
e

e.g. elastic, phonon

· · ·
energy weights

degrees of freedom · · ·
cutoff radius

expansion width
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S2

Sn

· · ·

rc

atomic descriptors

local
environment

sites
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X1(r1j … r1n)
X2(r2k … r2m)

Xn(rnj … rnm)

machine learning
Y =f(X;!)
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Figure 2.1: Machine-learning interatomic potential development workflow.

2.3 Results

2.3.1 Optimized model parameters

Here, we will limit our discussions to a parameter that is common to all ML-IAPs - the

cutoff radius - and present a convergence study of each ML-IAP with the number of degrees of

freedom of the model.
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Table 2.1: Optimized cutoff radius for each element for each ML-IAP.

fcc bcc diamond
cutoff radius (Å) Ni Cu Li Mo Si Ge
GAP 3.9 3.9 4.8 5.2 5.4 5.4
MTP 4.0 3.9 5.1 5.2 4.7 5.1
NNP 3.9 4.1 5.2 5.2 5.5 5.6
SNAP 4.1 4.1 5.1 4.6 4.9 5.5
qSNAP 3.8 3.9 5.1 5.2 4.8 4.9

The cutoff radius determines the maximum range of interatomic interactions, and hence,

has a critical effect on the prediction performance of ML-IAPs. Table 2.1 provides the optimized

cutoff radii of different ML-IAPs across different chemistries. Different ML-IAPs yield similar

optimized cutoff radii for the same elemental system. The optimized cutoff radii are between the

second nearest neighbor (2NN) and 3NN distance for fcc elements (Cu, Ni), between 3NN and

4NN distances for the bcc (Li, Mo) and diamond (Ge and Si) elements. These observations are

consistent with those from previous traditional and ML IAP development efforts, where typically

2NN interactions are found to suffice for fcc metals,110,111 while contributions from 3NN cannot

be ignored for bcc metals29,38,43,112,113 and diamond systems114,115.

The number of degrees of freedom (DOF), e.g., the number of weights and biases for

the NNP and number of representative points in GAP, has a strong effect on the accuracy and

computational cost of each ML-IAP. Figure 2.2 illustrates the trade-off between computational

cost and test error under varying DOFs for each fitted Mo ML-IAP. It should be noted that the

relative computational costs are based on the most efficient available implementations28–30,98,116

of each ML-IAP at this time in LAMMPS17 and performed on a single CPU core of Intel i7-

6850k 3.6 GHz with 18×18×18 bulk supercell containing 11,664 atoms for Mo system. Future

implementations and optimizations, such as to the evaluation of the local environment descriptor,
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may improve on these results, as discussed in a recent work117. A dashed Pareto frontier is

drawn in Figure 2.2a to represent points at which better accuracy can only be attained at the

price of greater computational cost118 and the black arrows indicate “optimal” configurations for

each model in terms of the trade-off between test error and computational cost. These “optimal”

configurations were used for subsequent accuracy comparisons in energies, forces and properties.

We find that the “optimal” MTP, NNP, SNAP and qSNAP models tend to be two orders of

magnitude less computationally expensive than the “optimal” GAP model. The MTP models

generally lie close to the Pareto frontier, exhibiting an excellent balance between model accuracy

and computational efficiency. For the SNAP and qSNAP models, the descriptor space (i.e.,

bispectrum components) is determined by the parameter Jmax. We find that the rate-limiting step

is the calculation of bispectrum and the computation of quadratic terms in qSNAP has only a

marginal effect on the computational cost.98. However, we find that the substantial expansion

in the number of DOF in the qSNAP model leads to over-fitting for larger values of Jmax (see

Figure 2.2b), which can be attributed to the large number of fitted coefficients of its formalism.

For the GAP model, the computational cost is linearly related to the number of kernels used in

Gaussian process regression.38. It should be noted that classical IAPs remain substantially lower

in computational cost than ML-IAPs by 2-3 orders of magnitude.

2.3.2 Accuracy in energies and forces

Figure 2.3 provides a comparison of the root-mean-square errors (RMSEs) in energies

and forces for the four ML-IAPs and best-available classical IAPs relative to DFT. All ML-IAPs

show extremely good performance across all elements studied, achieving RMSEs in energies and

forces that are far lower than best-available traditional IAPs for each element. It should be noted

that differences in RMSEs between ML-IAPs are on the scale of meV atom−1 in energies and 0.1

eV Å−1 in forces; hence, any subsequent discussion on the relative performances of the ML-IAPs

should be viewed in the context that even the largest differences in accuracy between the ML-IAPs
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Figure 2.2: Trade-offs between accuracy and computational cost for ML-IAPs. (a) Test error
versus computational cost for the Mo system. The grey dashed line indicates an approximate
Pareto frontier formed by the convex hull of points lying on the bottom left of the chart.
This Pareto frontier represents an optimal trade-off between accuracy and computational cost.
Timings were performed by LAMMPS calculations on a single CPU core of Intel i7-6850k
3.6 GHz. Black arrows denote the “optimal” configuration for each ML-IAP that was used in
subsequent comparisons. (b) Plots of the training and test errors versus the number of degrees
of freedom for each ML-IAP.
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are already close to the limits of DFT error. In all cases, the training and test errors are similar,

indicating no over-fitting for the optimized ML-IAPs. The energy and force errors of ML-IAPs

are marginally larger than those reported in a recent work119 on Cu and Ge. However, this is

likely due to the fact that the data in this work contains a diverse range of structures sampled from

AIMD simulations at a much larger time intervals (0.1 ps vs 10 fs in the previous work) as well

as strained structures, surface structures and vacancy-containing structures.

The GAP and MTP models generally have the lowest RMSEs in energies and forces. The

highest RMSEs in energies are observed for the SNAP models and NNP models. It is well-known

that neural network-based models often require larger data sets for best performance; previous

NNP models have been trained on thousands or tens of thousands of structures80,120, while only

hundreds of structures are used in training the current ML-IAPs. Nevertheless, the NNP models

still show surprisingly good performance for bcc systems. The qSNAP models’ performances

are between those of the GAP and NNP. In general, the qSNAP models have moderately lower

RMSEs than the linear SNAP, though at the expense of a large expansion in the number of

parameters.

In terms of chemistries, we find that the lowest RMSEs in energies are observed for the

fcc systems, followed by the bcc systems, and the highest RMSEs are observed for the diamond

systems. Very low RMSEs in forces are observed across all ML-IAPs for Cu, Ni and Li, while

relatively higher RMSEs in forces are observed for Mo, a metal with higher modulus and larger

force distributions. Higher RMSEs in forces are also observed for the diamond semiconductors.

These trends are generally consistent across all ML-IAPs studied. The RMSEs normalized to the

ground state energy per atom for each element is given in Figure A.2) further supports the better

accuracy for the metals (both fcc and bcc) relative to the diamond systems, and the much better

performance of the ML-IAPs over the classical IAPs.

We have also performed a study of the convergence of the ML-IAPs with training data

size using Mo as the benchmark system given that it is a bcc metal (for which traditional IAPs
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Figure 2.3: Root-mean-square errors in (a) predicted energies (b) predicted forces for all four
ML-IAPs as well as traditional IAPs (EAM121,122, MEAM123–125, Tersoff126,127). The upper
left and lower right triangles within each cell represent training and test errors, respectively.
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a b

Figure 2.4: RMSEs in predicted (a) energies (b) forces of the test set versus the size of the
training data for the ML-IAP Mo models.

tend to perform poorly) with large force distributions. Here, the length of the AIMD simulations

was increased four-fold, and more training structures were sampled at the same time interval.

The convergence results are shown in Figure 2.4. While the prediction errors of all models

decrease with increase in the number of training structures, the most substantial improvements in

accuracy, especially in predicted energies, are observed for the NNP and qSNAP models. The

SNAP Mo model appears to have converged in energy and force at a training data size of ∼ 400

structures, respectively. For the qSNAP, additional training structures offer modest improvements

in force accuracy, but large improvements in energy accuracy, which implies qSNAP has a higher

“learning rate” in terms of energy accuracy and a lower “learning rate” in terms of force accuracy

than NNP. This can also be seen in Figure A.3, which showed the log-log plot of accuracies

versus the size of training data and the slope of the line as the “learning capability” of different

ML-IAPs. Indeed, it is possible that the NNP and qSNAP Mo models have not been converged

with respect to accuracy in energies even at ∼ 800 training structures. We have not attempted to

further converge these models in view of the computational expense involved.
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2.3.3 Accuracy in material properties

The accuracy in predicting basic material properties is critical for evaluating the per-

formance of ML-IAPs. Here, we perform the climbing-image nudged elastic band (CI-NEB)

method128 as well as molecular dynamics (MD) with ML-IAPs to obtain the cubic lattice param-

eter, elastic constants, migration energies and vacancy formation energies. The comparison of

these predicted material properties with respect to the DFT values is provided in Table 2.2. The

performances of all ML-IAPs are generally excellent, with lattice parameters within 0.1-2.0% of

the DFT values and elastic constants that are typically within 10% of DFT values. It should be

noted that the large percentage error in Li for elastic constants is due to the small reference values.

The MTP, SNAP and qSNAP models perform well on elastic constants on fcc and bcc systems,

but exhibit slightly higher prediction errors in the diamond systems. A possible explanation for

the slightly poorer prediction of elastic constants of the NNP model could be the limitation of the

size of training data, which restricts the potential of a fully connected neural network. However,

it should be noted that despite the slightly higher prediction errors of elastic components for

the NNP model, its prediction errors of Voigt-Reuss-Hill approximated bulk modulus129 across

various elemental systems are in good agreement with DFT reference values.

In terms of diffusion properties, the GAP and MTP models perform well across different

chemistries, with most of the prediction errors within 10% of DFT values, albeit with a moderate

underestimate of the migration energy for diamond systems, in line with the previous study34.

While SNAP and qSNAP models show high accuracy in predicting diffusion properties for fcc

systems, they considerably underestimate the vacancy formation energy as well as activation

barrier for diamond systems. It is noteworthy that all ML-IAPs overestimate the migration energy

of Mo system by more than 20%, which has also been observed in a previous work40.
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Table 2.2: Calculated cubic lattice parameter a, elastic constants (ci j), Voigt-Reuss-Hill bulk
modulus BVRH, migration energy (Em), vacancy formation energy (Ev) as well as activation
barrier for vacancy diffusion (Ea = Ev +Em) with DFT and the four ML-IAPs. Lowest absolute
errors with respect to DFT for each property are bolded for ease of reference. Error percentages
with respect to DFT values are shown in parentheses.

DFT GAP MTP NNP SNAP qSNAP

Ni

a (Å) 3.508 3.523 (0.4%) 3.522 (0.4%) 3.523 (0.4%) 3.522 (0.4%) 3.521 (0.4%)

c11 (GPa) 276 281 (1.8%) 284 (2.9%) 274 (-0.8%) 283 (2.5%) 267 (−3.3%)

c12 (GPa) 159 159 (0.0%) 172 (8.2%) 169 (6.3%) 168 (5.7%) 155 (−2.5%)

c44 (GPa) 132 126 (−4.5%) 127 (-3.8%) 113 (−14.4%) 129 (-2.3%) 125 (−5.3%)

BVRH (GPa) 198 200 (1.0%) 209 (5.6%) 204 (3.0%) 206 (4.0%) 193 (−2.5%)

Ev (eV) 1.49 1.46 (−2.0%) 1.43 (−4.0%) 1.65 (10.7%) 1.47 (-1.3%) 1.47 (-1.3%)

Em (eV) 1.12 1.14 (1.8%) 1.11 (−0.9%) 1.14 (1.8%) 1.12 (0.0%) 1.05 (−6.3%)

Ea (eV) 2.61 2.60 (-0.4%) 2.54 (−2.7%) 2.79 (6.9%) 2.59 (−0.8%) 2.52 (−3.4%)

Cu

a (Å) 3.621 3.634 (0.4%) 3.636 (0.4%) 3.637 (0.4%) 3.634 (0.4%) 3.636 (0.4%)

c11 (GPa) 173 175 (1.2%) 177 (2.3%) 182 (5.2%) 178 (2.9%) 178 (2.9%)

c12 (GPa) 133 120 (−9.8%) 120 (9.8%) 125 (−6.0%) 126 (−5.3%) 124 (−6.8%)

c44 (GPa) 88 82 (−6.8%) 81 (−8.0%) 76 (−13.6%) 86 (-2.3%) 82 (−6.8%)

BVRH (GPa) 146 138 (−5.5%) 139 (−4.8%) 144 (-1.4%) 143 (−2.1%) 142 (−2.7%)

Ev (eV) 1.15 1.05 (−8.7%) 1.10 (−4.3%) 1.23 (7.0%) 1.19 (3.5%) 1.15 (0.0%)

Em (eV) 0.79 0.76 (−3.8%) 0.77 (-2.5%) 0.77 (-2.5%) 0.82 (3.8%) 0.74 (−6.3%)

Ea (eV) 1.94 1.81 (−6.7%) 1.87 (−3.6%) 2.00 (3.1%) 2.01 (3.6%) 1.89 (-2.6%)

Li

a (Å) 3.427 3.450 (0.7%) 3.446 (0.6%) 3.434 (0.2%) 3.506 (2.3%) 3.469 (1.2%)

c11 (GPa) 15 18 (20.0%) 14 (-6.7%) 17 (13.3%) 18 (20.0%) 12 (−20.0%)

c12 (GPa) 13 14 (7.7%) 13 (0.0%) 12 (−7.7%) 7 (−46.2%) 6 (−53.8%)

c44 (GPa) 11 12 (9.1%) 11 (0.0%) 12 (9.1%) 10 (−9.1%) 11 (0.0%)

BVRH (GPa) 14 15 (7.1%) 13 (-7.1%) 13 (-7.1%) 11 (−21.4%) 8 (−42.9%)

Continued on next page
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Table 2.2 – continued from previous page

DFT GAP MTP NNP SNAP qSNAP

Ev (eV) 0.62 0.56 (−9.7%) 0.53 (−14.5%) 0.50 (−19.4%) 0.63 (1.6%) 0.58 (−6.5%)

Em (eV) 0.06 0.06 (0.0%) 0.08 (33.3%) 0.05 (−16.7%) 0.09 (50.0%) 0.09 (50.0%)

Ea (eV) 0.68 0.62 (−8.8%) 0.61 (−10.3%) 0.55 (−19.1%) 0.72 (5.9%) 0.67 (-1.5%)

Mo

a (Å) 3.168 3.168 (0.0%) 3.169 (0.0%) 3.165 (−0.1%) 3.169 (0.0%) 3.170 (0.1%)

c11 (GPa) 472 481 (1.9%) 472 (0.0%) 441 (−6.6%) 457 (−3.2%) 436 (−7.6%)

c12 (GPa) 158 169 (7.0%) 154 (−2.5%) 192 (21.5%) 158 (0.0%) 166 (5.1%)

c44 (GPa) 106 112 (5.7%) 103 (−2.8%) 114 (7.5%) 109 (2.8%) 104 (-1.9%)

BVRH (GPa) 263 271 (3.8%) 260 (-1.1%) 266 (1.1%) 258 (−1.9%) 256 (−2.7%)

Ev (eV) 2.70 2.68 (-0.7%) 2.61 (−3.3%) 2.94 (8.9%) 2.72 (0.7%) 2.79 (3.3%)

Em (eV) 1.22 1.60 (31.1%) 1.51 (23.8%) 1.59 (30.3%) 1.49 (22.1%) 1.50 (23.0%)

Ea (eV) 3.92 4.28 (9.2%) 4.12 (5.1%) 4.53 (15.6%) 4.21 (7.4%) 4.29 (9.4%)

Si

a (Å) 5.469 5.458 (−0.2%) 5.465 (-0.1%) 5.501 (0.6%) 5.466 (0.1%) 5.464 (-0.1%)

c11 (GPa) 156 168 (7.7%) 155 (-0.6%) 141 (−9.6%) 128 (−17.9%) 155 (-0.6%)

c12 (GPa) 65 62 (-4.6%) 76 (16.9%) 62 (-4.6%) 75 (15.4%) 58 (−10.8%)

c44 (GPa) 76 69 (−9.2%) 75 (-1.3%) 55 (−27.6%) 71 (−6.6%) 69 (−9.2%)

BVRH (GPa) 95 97 (2.1%) 102 (7.4%) 89 (−6.3%) 93 (-2.1%) 90 (−5.3%)

Ev (eV) 3.25 3.04 (−6.5%) 3.11 (-4.3%) 2.60 (−20.0%) 2.71 (−16.6%) 2.37 (−27.1%)

Em (eV) 0.21 0.21 (0.0%) 0.16 (−23.8%) 0.21 (0.0%) 0.26 (23.8%) 0.20 (−4.7%)

Ea (eV) 3.46 3.25 (−6.1%) 3.27 (-5.5%) 2.81 (−18.8%) 2.97 (−14.2%) 2.57 (−25.7%)

Ge

a (Å) 5.763 5.777 (0.2%) 5.770 (0.1%) 5.789 (0.5%) 5.773 (0.2%) 5.775 (0.2%)

c11 (GPa) 116 127 (9.5%) 106 (−8.6%) 98 (−15.5%) 101 (−12.9%) 121 (4.3%)

c12 (GPa) 48 45 (-6.3%) 54 (12.5%) 54 (12.5%) 41 (−14.6%) 43 (−10.4%)

c44 (GPa) 58 54 (−6.9%) 55 (-5.2%) 43 (−25.9%) 54 (−6.9%) 50 (−13.8%)

BVRH (GPa) 71 72 (1.4%) 71 (0.0%) 69(−2.8%) 61 (−14.1%) 69 (−2.8%)

Continued on next page
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Table 2.2 – continued from previous page

DFT GAP MTP NNP SNAP qSNAP

Ev (eV) 2.19 2.10 (-4.1%) 1.98 (−9.6%) 1.97 (−10.0%) 1.77 (−19.2%) 1.67 (−23.7%)

Em (eV) 0.19 0.17 (−10.5%) 0.17 (−10.5%) 0.20 (5.3%) 0.28 (47.4%) 0.18 (-5.3%)

Ea (eV) 2.38 2.27 (-4.6%) 2.15 (−9.7%) 2.18 (−8.8%) 2.05 (−13.9) 1.85 (−22.3%)

We have also calculated the relaxed (011) γ surface for the generalized stacking faults

(GSFs) along the [1̄1̄1] direction124,130 for Mo, (111) glide plane along the [112] direction34,131

for Si, and (111) γ surface along the [112] direction132,133 for Ni and Cu, as these have been

already been studied extensively in previous works.34,124,130–133. From Figure 2.5 and Table

2.3, it can be observed that all ML-IAPs are able to reproduce the major qualitative features

of the relaxed (011) γ surface and the correct trend in the unstable stacking fault energy for all

four systems. The MTP models generally yield γus that are closest to DFT for Si (111)[112],

Ni(111)[112] and Cu(111)[112]. All ML-IAPs significantly underestimate the Mo(011)[1̄1̄1] γ

surface, which is consistent with previous ML-IAP studies of bcc metals30. The NNP models

exhibit the largest deviation from DFT for Mo(011)[112], Ni(111)[112] and Cu(111)[112] γ

surfaces. In particular, the NNP models predict a symmetric γ surface with a near-zero intrinsic

stacking fault energy for the fcc metals Ni and Cu.

2.3.4 Accuracy in equations of state

To provide an evaluation of the performance of ML-IAPs far from equilibrium, we have

computed a pairwise comparison of the equation of state (EOS) curves for all elements studied

using the ∆EOS gauge of Lejaeghere et al.134–136 The ∆EOS gauge, which has been used to evaluate
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Figure 2.5: Cross sections of the relaxed γ surfaces calculated with all four ML-IAPs with
respect to DFT reference data.34,124,133. (a) The relaxed (011) γ surface along the [1̄1̄1] direction
for Mo. (b) The relaxed (111) glide plane along the [112] direction for Si. (c) The relaxed
(111) γ surface along the [112] direction for Ni. (d) The relaxed (111) γ surface along the [112]
direction for Cu.

Table 2.3: Calculated unstable stacking fault energy γus of (011) γ surface along the [1̄1̄1]
direction for Mo, (111) glide plane along the [112] direction for Si and (111) γ surface along the
[112] direction for Ni and Cu. Lowest absolute errors with respect to DFT are bolded for ease
of reference. Error percentages with respect to DFT values are shown in parentheses.

γus(mJ/m2) Mo (011) [1̄1̄1] Si (111) [112] Ni (111) [112] Cu (111) [112]
DFT 1677124 174034 289133 164133

GAP 1324 (−21.0%) 1858 (6.8%) 308 (6.6%) 177 (7.9%)

MTP 1333 (−20.5%) 1747 (0.4%) 288 (-0.3%) 173 (5.5%)

NNP 1130 (−32.6%) 1849 (6.3%) 248 (−14.2%) 145 (−11.6%)

SNAP 1354 (−19.3%) 1528 (−12.2%) 292 (1.0%) 172 (4.9%)
qSNAP 1387 (-17.3%) 1965 (12.9%) 277 (−4.2%) 151 (−7.9%)
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accuracy differences between DFT codes, is the root-mean-square difference between two EOS

curves over a ±6% interval around the equilibrium volume, defined as follows:

∆EOS =

√∫ 1.06V0
0.94V0

[Ea(V )−Eb(V )]2dV

0.12V0
(2.8)

where Ea and Eb denote energies computed using methods a and b, respectively.

Figure ?? shows the ∆EOS values of various machine learning models with respect to

DFT reference data for different elemental systems as well as the EOS curves of these ML-IAPs.

In all cases, the ∆EOS for all ML-IAPs for all elements are within 2 meV/atom, which is the

threshold for “indistinguishable EOS” previously used in evaluating different DFT codes137. It

is noteworthy that despite the relatively high prediction errors of SNAP models presented in

Figure 2.3a, they perform considerably better in predicting the EOS curves, with all the ∆EOS

lower than 1 meV/atom across different chemistries. The NNP models deviate slightly from DFT

curves at both tensile and compressive strains for fcc systems, while for diamond systems, the

deviation of the NNP models from DFT curve is comparable with those of GAP and MTP models,

as evidenced in ∆ gauge comparison. In general, it is more challenging to give highly accurate

predictions of EOS in diamond system than in fcc and bcc systems.

2.3.5 Accuracy in molecular dynamics (MD) trajectories

One of the principal applications of ML-IAPs is in molecular dynamics (MD) simulations.

To assess the ability of the ML-IAPs to provide stable MD trajectories, we carried out NV T MD

simulations at 1,300 K (0.5× melting point) on a 3×3×3 54-atoms supercell of bulk Mo for

0.25 ns using LAMMPS with the different ML-IAPs. A total of 40 snapshots at an interval of 2.5

ps were sampled from each MD trajectory, and DFT static calculations were performed on these

snapshots. Figure 2.7 shows the distribution of the errors in the energies and forces of sampled

structures. In line with the previous results, the GAP and MTP models generally exhibit smaller
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Ni Li Si

Cu Mo Ge

Figure 2.6: Assessment of accuracy of ML-IAPs in predicting equation of state. (a) ∆ gauge
comparison provides quantitative estimate of deviation between the EOS curve from each
ML-IAP with that of DFT. (b) EOS curves for all six elements using DFT and the four ML-IAPs.
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a b

Figure 2.7: Error distributions in (a) predicted energies (b) predicted forces for sampled struc-
tures from MD simulations using each ML-IAP. The rectangular box indicates the interquartile
range (IQR), while the line within the box indicates the median.

errors in the energies and forces than the NNP, SNAP and qSNAP models. The GAP model has

not only the lowest median but also the smallest interquartile range (IQR) in the errors in energies

and forces. Somewhat interestingly, the NNP model has higher energy errors, but smaller force

errors than SNAP and qSNAP. For consistency of comparison, all models shown here are the

“optimal” models based on ∼ 100 training structures. It is likely that a larger training set would

improve the performance of the NNP and qSNAP models. (Figure 2.4).

2.3.6 Accuracy in polymorphic energy differences

To evaluate the ability of the ML-IAPs to extrapolate to unseen data, we have computed

the energy differences between the DFT ground state polymorph and a low-energy polymorph for

each element, presented in Figure 2.8. The low-energy polymorphs correspond to the bcc, fcc,

and wurtzite (hexagonal diamond) structures for the fcc, bcc, and diamond systems, respectively.

It should be noted that only the ground state structures were used in training the ML-IAPs, and

these low-energy polymorphs were not present in the training structures. Except for Li which has

an extremely small energy difference between the fcc and bcc structures in DFT, all ML-IAPs

are able to reproduce qualitatively the energy difference between polymorphs. For most systems,
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the ML-IAPs are able to reproduce energy differences between the polymorphs to within 10-20

meV/atom; the main exception is Mo, which exhibits a large energy difference between the

fcc and bcc structures. One notable observation is that the GAP model shows the largest error

in predicting the energy difference between the wurtzite and diamond structures in Si and Ge

compared to the other ML-IAPs, despite having relatively low RMSE in predicted energies in

these systems (see Figure 2.3a). We believe that this may be due to the fact that the active features

in GAP diamond models did not cover the polymorph phase region and the Gaussian process

is sensitive to unseen data, while the other IAPs are able to extrapolate the interactions to this

unseen configuration more effectively. To test this hypothesis, we have constructed two additional

Si GAP models derived by augmenting the original Si GAP model with (a) features close to

the wurtzite polymorph, and (b) features that are exactly correspond to the wurtzite polymorph.

As seen from Figure A.4, the predicted energy differences between the wurtzite and diamond

polymorphs are much closer to the DFT values for the augmented Si GAP models. A principal

component analysis further shows that the wurtzite polymorph lies in a feature space that is not

covered by the original training data. Somewhat surprisingly, the linear SNAP model exhibits

among the best performance in reproducing the polymorphic energy differences across all systems,

outperforming even the GAP and MTP for Mo, Si and Ge, despite having substantially larger

RMSEs in energies and forces.

2.4 Conclusions

We have performed a comprehensive unbiased evaluation of the GAP, MTP, NNP, SNAP,

and qSNAP ML-IAP models using consistently-generated DFT data on six elemental systems

spanning different crystal structures (fcc, bcc, and diamond), chemistries (main group metals,

transition metals and semiconductors) and bonding (metallic and covalent). This evaluation is

carried out across three key metrics that are of critical importance for any potential user of these
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SNAP qSNAP

bcc Ni bcc Cu

fcc Mo fcc Li

wurtzite Si wurtzite Ge

Figure 2.8: Calculated energetic differences between the typical low energy polymorph and
ground-state polymorph of each elemental system. The inset shows the magnified bar chart for
Li system due to its relatively small range. The typical low energy polymorph is indicated with
the label above each bar chart.
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ML-IAPs:

1. Accuracy in predicted energies, forces and properties for both seen and unseen structures;

2. Training data requirements, which influence the number of expensive DFT computations

that have to be performed to train an ML-IAP to a given accuracy; and

3. Computational cost, which influences the size of the systems on which computations can

be performed for a given computing budget.

These three metrics are inextricably linked - for all the four ML-IAPs, an increase in

number of DOF (with increase in computational cost) and increase in training structures generally

leads to higher accuracy, though diminishing returns are observed beyond a certain number of

DOFs. We demonstrate the application of the Pareto frontier as a means to identify the optimal

trade-offs between these metrics. For all ML-IAPs, we find that there is an “optimal” configuration

at which further expansion of the number of DOF yields little improvement in accuracy with

increases in computational cost. We find that all ML-IAPs are able to achieve near-DFT accuracy

in predicting energies, forces and material properties, substantially outperforming traditional

IAPs. The GAP and MTP models exhibit the smallest RMSEs in energies and forces. However,

the GAP models are among the most computationally expensive for a given accuracy (based

on current implementations) and show poor extrapolability to higher energy polymorphs in the

diamond systems. Indeed, the simple linear SNAP model, which has among the highest RMSEs

in predicted energies and forces, show the best extrapolability to higher energy polymorphs as

well as reproducing the equations of state for the diamond systems. The NNP and qSNAP models

show relatively high RMSEs in energies with small data sizes, but these can be mitigated with

increases in training data.

Another somewhat surprising conclusion is also that even with relatively small training

data sets of ∼100-200 structures, the GAP, MTP and SNAP models appear to be reasonably

well-converged to meV atom−1 accuracy in energies and 0.01 eV Å−1 accuracy in forces. The
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NNP and qSNAP models can be further improved with larger training data sets, but the RMSEs

even at ∼ 100 structures are not excessively high. As training cost is a key performance metric,

we have not attempted to further converge the NNP and qSNAP models beyond ∼ 800 structures

(Figure 2.4), which is already several times the benchmarked training data set size. We attribute

this performance to the training data generation procedure, which is aimed at sampling a diversity

of structures from both ground state and multi-temperature AIMD simulations. In other words,

the diversity of training data is arguably a more important consideration than quantity.

Finally, we will note several limitations of this study, which are possible avenues for future

work. Firstly, no attempt was made include non-elemental (binary, ternaries, etc.) systems in

this study for practical considerations of computational cost in generating the large number of

training structures needed and the diverse range of bonding types (e.g., metallic, ionic, covalent,

and van der Waals, or a mixture of these). Second, we have chosen to focus on only ML-IAPs

based on local environment descriptors. It should be noted that there are similarities between

some of the descriptors. Both the SOAP and bispectrum (SNAP) descriptors are derived from

the local atomic density function, while the NNP and MTP are based on parameterizations of

the radial and angular distributions using various basis functions. There are alternative ML-IAPs

that rely on global representations138 that were not covered in this work. Finally, we have not

attempted to combine the different local environment descriptors (symmetry functions, SOAP,

bispectrum, moment tensors) with different ML frameworks (linear regression, Gaussian process

regression, neural network, etc.). Instead, we rely on existing implementations of ML-IAPs as

reported. The choice of descriptor affects how efficiently diverse local environments can be

encoded, while the choice of ML framework determines the functional flexibility in mapping the

relationship between descriptors and energies/forces. Ultimately, the performance of an ML-IAP

is related to the atomic environment descriptor and the ML methodology. Our work has identified

some differences in performances as being related to the choice of the ML model. For example,

the quadratic qSNAP model can be converged to substantially higher accuracies than the linear
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SNAP model, albeit at increased risk of overfitting. The poorer extrapolability in the diamond

systems and higher computational cost of the GAP can be traced to the use of Gaussian process

regression. Constructing ML-IAPs using descriptor-model combinations can potentially yield

further insights into the interplay between atomic descriptor and ML framework as well as better

trade-offs between accuracy and cost for a particular application.

Chapter 2 presents an impartial comparison between four major ML-IAPs from several

aspects: accuracy, data requirement, and computational cost. We also analyzed the factors that

may determine their relative strengths and weaknesses and extended the concept of Pareto frontier

in terms of accuracy and cost for ML-IAPs assessment.
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Chapter 3

Atomistic simulations of dislocation

mobility in refractory high-entropy alloys

and the effect of chemical short-range

order
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3.1 Introduction

Metallic alloys containing multiple principal alloying elements, which are known as high-

entropy alloys (HEAs)13,139,140, have attracted extensive research interest in recent years with

many studies focused on their microstructure, mechanical properties and underlying deformation

mechanisms141–143. For example, as a new class of structural materials, certain face-centered

cubic (fcc) alloys, in particular CrCoNi-based HEAs, have been shown to possess improved

strength and exceptional damage tolerance, especially at cryogenic temperatures144,145. A second

prominent class of HEA systems are refractory high-entropy alloys (RHEAs), which comprise

mostly refractory elements and invariably crystallize as body-centered cubic (bcc) solid-solutions;

these alloys have been considered as promising candidate materials for elevated-temperature appli-

cations due to their exceptional resistance to softening and extremely high melting points146–148.

Although many practical challenges remain in processing of RHEAs due to their brittleness and

oxidation susceptibility149, numerous RHEAs have been designed, fabricated and assessed exper-

imentally, with additional insight coming from computational approaches150–154. Specifically,

to investigate the deformation of RHEAs, transmission electron microscopy (TEM) studies on

RHEAs have shown a dominant role of screw dislocations with increasing plastic strain155,156, and

slip activity on high-order-planes has been observed through in situ scanning electron microscopy

experiments153; indeed, strong intrinsic lattice resistance has been generally found in these

alloys156,157. Theoretical models for strengthening in RHEAs by screw dislocations have been

developed6,158, and atomistic simulations of dislocation properties using molecular dynamics

(MD) and density functional theory (DFT) calculations have been undertaken7,159–162. However,

compared to single-phase bcc metals, there are still limited studies on the unique deformation

behavior of bcc RHEAs. Although HEAs possess crystalline order, but compositional disorder,

they are not necessarily random solid solutions for every atomic species163–172. A further feature

of HEAs is the presence of local chemical short-range order (SRO), which can affect defect
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properties and hence may influence mechanical properties. In previous studies, SRO effects in

fcc or hcp alloys have been found to be able to change the dislocation morphology, i.e., from

wavy to planar, and may impact twinning173,174. Recent experimental results have provided

direct evidence for the presence of SRO in certain fcc HEAs and its correlation with mechanical

properties175,176. Moreover, for RHEAs, such as the MoNbTaW, numerical studies have revealed

a significant energetic driving force for SRO162–164,177. The effect of such SRO is thus a relevant

issue that requires further investigation for bcc-RHEAs. To date, there are to our knowledge

no detailed investigations of the effects of SRO on larger-scale defect properties, especially

dislocation mobility, for bcc-RHEAs. This situation provides the motivation for the current

study. Accordingly, our objective here is to employ MD simulations, based on a machine-learning

interatomic potential developed for this purpose, to investigate in detail the mechanisms of the

movement of dislocations as a function of temperature in bcc RHEAs, focusing on the MoNbTaW

system, with specific emphasis on the effect of SRO on dislocation mobility.

3.2 Methods

3.2.1 Machine-learning interatomic potential

The MTP model and its formalism have been extensively studied and applied in previous

work429,43,44,100. The MTP essentially constructs contracted rotationally invariant local envi-

ronment descriptors for each atom in the system and builds a polynomial regressed correlation

between the potential energy surface (PES) and these descriptors. The descriptors, named moment

tensors, are devised as follows:

Mµ,ν(R) = ∑
j

fµ(Ri j) Ri j⊗·· ·⊗Ri j︸ ︷︷ ︸
ν times

, (3.1)
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where the functions fµ are the radial distribution of local environment around atom i and these

functions are specified according to the atomic type of the neighbor atom j. The terms Ri j⊗

·· ·⊗Ri j are tensors of rank ν encoding the angular information about the local environment. The

basis functions B(R) are formulated by contracting the moment tensors Mµ,ν to a scalar, and the

potential energy of atom i are linearly expanded on a set of the basis functions:

Ei(R) = ∑
l

βlB(R) (3.2)

There are two key hyperparameters that determine the performance of the accuracy and computa-

tional cost of the MTP: the radius cutoff (Rcut) and maximum level (levmax). The Rcut encodes the

extent of atomic interactions in the local environment, and the levmax controls the completeness

of the basis functions B(R), which in turn influences the computational cost and likelihood of

over-fitting. In this work, we adopted the grid search method to examine the choice of hyperpa-

rameters by evaluating the performance on reproducing the basic materials properties, e.g., elastic

constants and stacking fault energies. The Rcut and levmax were set to 4.7 Å and 14, respectively.

The energy and force data were assigned weights of 1 and 0.01 respectively, in line with previous

studies25.

3.2.2 Local chemical short-range order parameter

The Warren Cowley order parameter178, αi j = 1− Pj,i
c j

, was used to quantify the SRO

in each specific nearest-neighbouring shell. Pj,i is the fraction of species j in the nearest-

neighbouring shell around i, and c j is the concentration of j. To indication the overall degree of

SRO, we make use of a quantity given as the sum of all the |αi j| for all species at nearest-neighbor

shell (∑i, j |αi j|).
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3.2.3 Molecular dynamic simulation

MD simulations were performed using the software package LAMMPS17,179 and the

atomic configurations were displayed by OVITO68. The simulation cells are illustrated in B.1,

with dimensions of approximately 150 Å in x, 320 Å in y, 200 Å in z and contains 573672 atoms.

3.2.4 MC/MD simulation

The MC/MD simulations were first conducted to equilibration the SRO before the disloca-

tion line was inserted in the cell. The periodic boundary conditions are set for all three directions.

The samples were initially relaxed and equilibrated at 800K and zero pressure under the NPT

ensemble through MD. After that MC steps consistent of attempted atom swaps were conducted,

hybrid with MD. In each MC step, a swap of one random atom with the other random atom of

different type is conducted based on the Metropolis algorithm. 102 MC swaps were conducted at

every 103 MD steps and the time step is 0.001 ps during the simulation.

3.2.5 Dislocation Mobility Simulation

The dislocation line was inserted in the simulation cell based on the Burgers vector180,181

for both RSS and the SRO sample after MD/MC relaxation. Periodic boundary conditions

were imposed along x- and y-directions and shrink-wrapped non-periodic boundary condition

in z-direction. The samples were initially relaxed and equilibrated at the targeted temperature

and pressure in the x- and y-direction was equilibrated to zero through NPT ensemble for 50 ps.

During the loading step, the bottom two layers of atoms in z-direction were fixed and the top two

layers of atoms were treated as rigid body with different levels of shear stresses applied, while

NVT ensemble was applied to other atoms. To minimize the effect of stress waves and oscillation

of the shear stress, the applied shear stress was gradually ramped from zero at a rate of 20MPa

per 1.5 ps. When the shear stress reached the target value, it was held constant for 150 ps while
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the dislocation positions were recorded.

3.3 Results

3.3.1 Machine-learning interatomic potential

In this section we discuss results of the development of the interatomic-potential model

used to enable the application of MD simulations of dislocation properties in bcc MoNbTaW.

We employ the general framework of machine-learning (ML) based approaches, which have

emerged recently as a systematic framework to develop potentials with accuracies near that of

the underlying DFT calculations for elemental and multi-component systems7,25,29,30,43. Here,

using training data reported previously7 for elemental, binary, ternary, and quaternary systems

in Nb-Ta-Mo-W, we developed a potential for the MoNbTaW RHEA based on the moment

tensor potential (MTP) formalism, which has been found to feature an excellent balance between

accuracy and computational cost25. The flowchart for constructing the MTP is shown in Fig. 3.1a

with the methodological details provided in the Methods section. The basic materials property

predictions of the MTP model are provided in B.1. Figures 3.1b-c show a comparison of the DFT-

and MTP-predicted energies and forces for both training and test sets. While the mean absolute

errors (MAEs) of energies of 4.6 and 4.3 meV atom−1 for respective training and test data are

similar to those reported for previously developed potentials7, the MAEs of forces were decreased

by half using the present implementation of MTP, compared to the previous spectral neighbor

analysis potential (SNAP).7 In addition, since the current work aims to investigate dislocation

properties through MD simulations, we have also undertaken further validation studies of the

MTP for dislocation energetics. Specifically, we consider the distribution of excess energies

for supercells with a dislocation dipole, as the dislocation cores are moved to different local

environments within the cell, as calculated in recent DFT calculations for systems with varying

degrees of SRO162. The distribution of dislocation dipole energies obtained with the MTP are
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found to be in excellent agreement with these previous DFT results, as shown in B.2. These

results suggest that the MTP provides an accurate model for the variation in dislocation core

energies as a function of local environment, motivating its use in the current MD studies of

dislocation mobilities.

3.3.2 Local chemical short-range order in MoNbTaW RHEA

To enable investigation of the effect of SRO on dislocation mobility, we develop two

simulation cells that can be used for such simulations in MD, one corresponding to a random-solid-

solution (RSS), and another corresponding to an equilibrium state of SRO at a temperature of

800K (this temperature is chosen as one where SRO is relatively strong, but above that associated

long-range-ordering transitions). To equilibrate the SRO state, we apply a hybrid MD/Monte

Carlo (MD/MC) approach. Details of the simulations and the nature of the equilibrium SRO are

described in the Methods section.

We note that in the studies of dislocation mobility at different temperatures presented

below, we compare results for both RSS and systems with SRO equilibrated at 800K. The purpose

of this comparison is to explore the effect of SRO, and the SRO state at 800K is chosen as a

representative configuration where SRO is pronounced. Thus, in this scenario we are simulating

the effect of SRO derived from annealing the sample at one single temperature (800K), on the

subsequent motion of dislocations over a range of deformation temperatures.

3.3.3 Screw dislocation velocities and the influence of SRO

A screw dislocation line is created in both the RSS and SRO simulation supercells. Shear

stresses with a range of different values are applied at different temperatures to drive the motion

of the screw dislocations and characterize their mobility (see Methods section). It is worth

mentioning that due to practical considerations of computation cost, the current work considers
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Figure 3.1: Machine learning interatomic potential development and evaluation. a Flowchart
of constructing the moment tensor potential (MTP) for the NbMoTaW RHEA. Parity plots of
the MTP prediction on b, energies and c, forces for training and test data are shown.
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Figure 3.2: Simulation results for the effect of SRO on the velocities of screw dislocations as a
function of applied shear stress over a range of temperatures. a, Velocities of screw dislocations
in the RSS sample as a function of applied shear strain. b, Velocities of screw dislocations
versus shear stress in the sample with local chemical SRO equilibrated at 800K. c-h, Detailed
comparisons of the influence of SRO at different temperatures from 300K to 2000K. Lines
between scattered data are guides to the eyes and do not correspond to fits of theoretical models.

a periodic length along the dislocation line direction of approximately 15 nm. The simulations

thus investigate mobilities for dislocations with line lengths that are quite short compared with

those characteristics of realistic experimental conditions, and considered in theoretical models158.

The mobilities calculated in current setup are expected to be dependent on length in the range of

size employed in this work180. Thus, the focus in the present work is on understanding intrinsic

strengthening mechanisms and the associated effects of SRO; detailed comparisons of mobility

magnitudes would require use of this information in theoretical models than can be extrapolated

to larger line lengths.

Figure 3.2 shows the velocities of screw dislocations as a function of applied shear stress,

in cells with and without SRO at various temperatures. In Fig. 3.2a, the dashed lines represent
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the velocity vs. stress data for a screw dislocation in the RSS sample under applied stresses

ranging from 0 to 3.0 GPa, at temperatures from 300K to 2000K, whereas the solid lines in Fig.

3.2b represent the corresponding results for a screw dislocation in the sample with SRO under

the same conditions. The results show that, at low temperatures, the screw dislocation does not

move under low values of the applied stress within the simulation timescale. When the stress is

increased above some critical level, we can observe the initiation of screw dislocation movement

at a velocity that increases with the magnitude of the applied shear stress. As the temperature

increases, the critical stress to initiate screw dislocation glide is progressively reduced. When

the temperature reaches 1800K or 2000K, even at the lowest applied stress of 200 MPa in our

simulation, screw dislocation glide can be clearly observed within the simulation time scale.

Overall, the results demonstrate that screw dislocation glide in the MoNbTaW RHEA exhibits

strongly temperature-dependent behavior.

Figures 3.2c-h compare the screw-dislocation velocities with and without SRO at different

temperatures. At 300K (Fig. 3.2c), the influence of SRO is clearly apparent; based on the shift in

the velocity curve, we can estimate the extra strengthening from SRO to be ∼180 MPa. We can

attribute the extra strengthening from SRO to be associated with the break-up of local chemical

order which creates diffuse antiphase boundaries (DAPBs)182. When the screw dislocation

glides in a system containing SRO, the order will be partially destroyed and a DAPB will be

created along the glide plane, with an energy cost per area γDAPB. A classical estimation of this

strengthening effect of SRO by Fisher48 can be written as: ∆τ = γDAPB/b, where ∆τ is the stress

increment due to SRO and b is the Burgers vector. Using the value of the γDAPB from Figure

B.3, the stress increment based on Fisher’s relationship is approximately 130 MPa, which is

comparable to the strengthening estimated from the MD simulations in Fig. 3.2c-d at temperatures

of 300K and 600K. However, in this model the strengthening effect of SRO is athermal and should

also be observed at higher temperatures, contrary to the current simulation data. The influence of

SRO at higher temperatures is illustrated in Fig. 3.2e-f, for temperatures ranging from T = 800K
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to 2000K. There is a clear attenuation of the SRO strengthening in these figures as temperature is

increased. Indeed, when the temperature reaches 2000K, the dashed and solid lines in Fig. 3.2f,

respectively representing the screw dislocation mobility in the RSS and SRO samples, essentially

overlap. A theoretical framework for interpreting the effect of temperature on the level of SRO

strengthening is presented below.

3.3.4 Screw dislocation glide mechanism and strengthening through cross-

slip locking

An analysis of the atomic configurations during screw dislocation glide reveals that the

dominant mechanism underlying dislocation motion in the lower-to middle temperature and stress

regimes corresponds to thermally-activated kink-pair nucleation and migration183,184, with a

strong temperature-dependence similar to that seen in pure bcc metals. Figures 3.3a(i-iv) display

a sequence of snapshots from the simulations highlighting kink-pair nucleation and migration

along the dislocation line.

From an analysis of the velocity data for various temperatures and stresses from all

simulations, it is found that certain simulations show anomalously low average dislocation

velocities compared to other data. For example, in Fig. 3.3b the velocities at 1200K in both RSS

and SRO samples exhibit two data points with very low velocity values, as highlighted by the

dashed circles. Figure 3.3c shows the displacement vs. time results for a screw dislocation in the

simulation with 1.4 GPa shear stress in the RSS sample, where it can be seen that the dislocation

moves initially at a constant velocity via the kink-pair nucleation and migration mechanism;

however, at a certain point, this glide is arrested due to the formation of a locking mechanism

such that no further glide is observed.

In bcc metals, cross-kinks are formed when multiple kink-pairs nucleate on the same

dislocation line but on different slip planes; breaking free from such cross-kink pinning sites

requires higher stress or thermal activation. This phenomenon thus provides extra strengthening
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Figure 3.3: Kink nucleation mechanism and the observation of cross-slip locking providing
extra strengthening during screw dislocation glide. a, Snapshots of atomic configurations along
the screw dislocation, illustrating kink nucleation during glide. (i) The initial straight screw
dislocation line. (ii) A kink pair nucleates (indicated by the black arrows) and migrates along
the dislocation line (dashed arrow). (iii) Kink pair migration leads to net motion of the screw
dislocation line. (iv) Another kink pair nucleates (indicated by the red arrows) and migrates.
Only the dislocation core atoms are shown and the atoms are colored by coordinates in the glide
direction [11̄2]. b, Simulation velocity vs. stress results for the screw dislocation at 1200K;
the circles show anomalous points yielding significantly lower average velocity, associated
with the formation of cross-slip locking. Details of the dislocation configurations are shown in
c-d. c, Displacement vs. time curve of a screw dislocation under a shear stress of 1.4 GPa at
1200K in the random sample. The insert shows the formation of cross-slip locking during screw
dislocation glide. d, Corresponding displacement vs. time curve of a screw dislocation under a
shear stress of 2.0 GPa at 1200K in the SRO sample. The insert figure shows the formation and
unlocking of cross-slip locking during screw dislocation glide. The atoms in (c-d) are colored
by the coordinates in the slip plane direction [1̄10]].
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and can lead to debris such as vacancies, interstitials and prismatic loops, as described in

theoretical modeling6, kinetic MC simulations185 and directly observed in TEM experiments157.

However, the cross-slip jogs observed here are somewhat more complex than these previously

defined cross-kinks and appear to resemble the cross-slip controlled Kear-Wilsdorf (KW) type

locks found in long-range-ordered L12 intermetallics186,187, as shown by the insets in Fig. 3.3c.

Specifically, this figure displays the screw dislocation line with periodic boundary conditions

where the atoms are colored by the height of the slip planes in [1̄10]. In the inset, one segment

of the dislocation line has moved to the upper slip plane by cross-slip, represented by the red

color, and two jogs are created at the intersections between the cross-slipped segment and the

original blue segment, as shown by the two arrows in the inset figure. Extra stress is then required

to break or move these jogs, as shown in the Figure B.4. In this case, the whole dislocation line

is immobile due to the pinned jogs during the entire simulation time after they form. In another

simulation shown in Fig. 3.3d for the sample with SRO, where the shear stress is higher (2.0

GPa) we can observe the locking formation and self-unlocking during the simulation. From the

displacement vs. time curve in Fig. 3.3d, the dislocation first glides at a constant velocity and then

becomes immobile due to the locking, as shown by the insets in the figure. Because of the high

applied shear stress in this case, after some time the jogs become automatically unlocked such

that the screw dislocation can resume gliding. Similar to KW locks, the formation and breaking

of such jogs would provide extra strengthening for the RHEA. From the theoretical model of

Maresca and Curtin6, the frequency of such cross-kinks depends on the ratio of the kink energy

and the solute-dislocation interaction energy; accordingly, the formation of such cross-kinks

and jogs (superkinks) would be expected to be easier in the RHEA concentrated solid-solution

compared to pure bcc metals or dilute binary alloys. In addition, the intrinsic fluctuation in

energy along the dislocation line and rugged energy landscape for screw dislocation segments

in RHEAs has been observed in previous DFT and MD simulations160,162,188; this can further

facilitate cross slip along the dislocation line and cause the formation of jogs, which strongly
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implies that cross-kink and cross-slip locking plays a more important role in the deformation and

strengthening of RHEAs, as compared to pure single-phase bcc metals.

3.3.5 Phenomenological dislocation mobility model

In this section we consider further the effect of SRO on dislocation mobilities presented

above, employing a phenomenological theoretical model for screw dislocation velocities. In

this analysis we exclude the effects of the cross-slip locking and focus on the data associated

with dislocation glide in the absence of such pinning events. The goal is thus to understand the

temperature-dependent SRO effects associated with dislocation glide through the kink-nucleation

and growth mechanism. The MD results are analyzed within the theoretical framework developed

in previous work189, which is extended to account for the effect of SRO on the free energy of

kink-pair nucleation. In the low temperature and low stress regime, dislocation mobility is deemed

to be governed by kink-pair nucleation and migration, with the Gibbs free energy for kink-pair

formation, ∆Gkp, written as:

∆Gkp = ∆Hkp−T ∆Skp (3.3)

where ∆Hkp is the formation enthalpy, and ∆Skp is the corresponding entropy. The formation

enthalpy is usually written as:

∆Hkp = ∆H0
[
1− (

τ

τ0
)p]q (3.4)

where ∆H0 is a pre-factor related to the kink-pair formation energy, p and q are fitting parameters,

τ is the applied shear stress and τ0 is the Peierls stress. The entropy term ∆Skp is simplified

and approximated as a constant term by: ∆Skp =
∆Hkp

T0
, where T0 is a characteristic temperature

dependent on the composition of the material. Thus, the free energy of kink-pair formation
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becomes:

∆Gkp(τ,T ) = ∆H0

[[
1− (

τ

τ0
)p]q− T

T0

]
(3.5)

For the RHEA with local chemical SRO, the nucleation of each kink-pair will break the local

order and create a small segment of DAPB, which needs to be included in the Gibbs free energy

term. Here, we add an extra term ∆HDAPB to the free energy of kink-pair nucleation:

∆Gkp(τ,T ) = ∆H0

[[
1− (

τ

τ0
)p]q− T

T0

]
+∆HDAPB (3.6)

where ∆HDAPB = 0 in the RSS sample, and ∆HDAPB as a fitting constant for the sample with a

fixed amount of SRO. The value of ∆HDAPB should scale with γDAPB and the characteristic length

scale of kink-pair nucleus, such as width and height of the kink-pair nucleus.

It is clear that for ∆Gkp(τ,T )> 0, the mobility is dominated by the kink-pair nucleation

and migration mechanism. According to previous work189, the velocity of the screw dislocation

can be written as:

ν(τ,T ) =
τb

B(τ,T )
= exp

(
− ∆Gkp(τ,T )

2kBT

)
(3.7)

Here, B(τ,T ) =
a
[

2aexp
(

∆Gkp(τ,T )
2kBT

)
+L
]

2hL Bk, where a is the lattice parameter, kB is the Boltzmann

constant, L is the length of the screw dislocation line, h is height of a kink in the glide direction

and Bk is a fitted kink drag coefficient. The effect of DAPB during kink-pair migration along

the dislocation line is assumed to be small compared to the kink-pair nucleation; it is thus

not included in the current model, which leads to a fixed Bk. As the stress and temperature

increases, the ∆Gkp(τ,T ) term will decrease and dislocation motion will transfer into a phonon-

drag regime, which leads to ν(τ,T ) = τb/B(τ,T ), with the classic drag coefficients as B(τ,T ) =

B0+B1T , where B0 and B1 are fitting parameters. Here we have neglected the effect of the DAPB

strengthening, which will be small relative to the values of τ where phonon drag is observed. In

summary, the following phenomenological mobility law for screw dislocation motion is fitted to
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our simulation results:

ν(τ,T ) =





τb
B(τ,T )exp

(
− ∆Gkp(τ,T )

2kBT

)
if ∆Gkp(τ,T )> 0

τb
B(τ,T ) if ∆Gkp(τ,T )≤ 0

(3.8)

B(τ,T ) =





a
[

2aexp
(

∆Gkp(τ,T )
2kBT

)
+L
]

2hL Bk if ∆Gkp(τ,T )> 0

B0 +B1T if ∆Gkp(τ,T )≤ 0

(3.9)

∆Gkp(τ,T ) = ∆H0

[[
1− (

τ

τ0
)p]q− T

T0

]
+∆HDAPB (3.10)

where a sigmoidal function centered around ∆Gkp(τ,T ) = 0 was used to interpolate the transition

smoothly for ν(τ,T ) and B(τ,T ).

The fitted velocity model is plotted with the simulation results in Fig. 3.4a. We note that

the parameters in the phenomenological model used here to fit the MD data, such as kink-pair

formation enthalpy, are effective values and do not represent the fact that these quantities will

be possess a statistical distribution in a RHEA. To investigate the underlying physics of the

temperature-dependent SRO effect that we observe from the MD-derived dislocation velocity

data, we have included a SRO enthalpic term ∆HDAPB in the free energy of kink-pair nucleation,

to represent the extra energy required to disrupt the SRO during the kink-pair formation process.

In so doing, we assume that the dominant effect of SRO is on the kink-pair formation energy, and

neglect its effect on kink motion after formation.

With the fitted parameters from the RSS samples, we keep all other parameters in the

model fixed and only fit the ∆HDAPB for the SRO samples. Figure 4b shows the fitted model

along with the simulation results for the systems with SRO. From the current model, ∆HDAPB

should be positively correlated with the degree of SRO in the sample; a higher value of ∆HDAPB

would lead to a higher SRO-strengthening effect. With respect to the temperature-dependence of
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the SRO effect, the mobility curves based on the model for two temperatures, 300K and 2000K,

are plotted on Fig. 3.4c, with the dashed lines representing the RSS cases (∆HDAPB = 0) and the

solid lines considering the SRO effect (∆HDAPB = 4%∆H0). The model also shows that at high

temperature (2000K), the strengthening effect from SRO is significantly diminished compared

to behavior at room temperature (300K), which is consistent with the MD results. Based on

the model, we can attribute this attenuation to the thermal entropy term ∆Skp. With increasing

temperature, the contribution from ∆Skp to the kink-pair formation free energy ∆Gkp increases

linearly, causing ∆Gkp to decrease to zero at lower stresses as the temperature is raised. The

contribution of ∆HDAPB will thus be weakened due to the larger contribution from the entropy

term at high temperatures, and this is reflected in the dislocation mobility curves in Fig. 3.4c. In

summary, in this section, we have fit screw dislocation mobility laws in the MoNbTaW-RHEA

with a phenomenological model that includes the effect of SRO on the formation energy for a

double kink. The strengthening induced by the presence of the local chemical SRO is found

to be highly temperature-dependent; specifically, it is found to decrease at high homologous

temperatures.

3.3.6 Edge dislocation velocities and the influence of SRO

We consider next MD results for edge-dislocation motion in both RSS and SRO samples.

Figure 3.5 shows the MD simulation results over a range of temperatures. Figure 3.5a represents

the mobility data in the RSS sample with the stress ranging from 0 to 1.0 GPa, at temperatures

from 300K to 2000K, with Fig. 3.5b representing results for the sample with SRO. Comparing the

behavior of the screw and edge dislocation, it is clear that the mobility of the edge dislocations is

much higher than that of the screw dislocations under similar applied stresses. Different from the

kink-pair nucleation mechanism in screw dislocations, the glide of edge dislocations in bcc metals

is generally believed to be governed by solute drag, phonon drag and wave speed limitation over

different velocity regimes190.
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Figure 3.4: Fitted screw dislocation mobility model and the influence of thermal entropy on the
SRO strengthening effect. a, Velocity vs. stress results over a range of temperatures for screw
dislocation in the RSS sample. The open symbols are the simulation data, and the dashed lines
are the fits of the phenomenological model described in the text. b, Velocity vs. stress results
over a range of temperatures for screw dislocation in the systems with SRO. The solid lines are
the fitted screw mobility based on the phenomenological model with the ∆HDAPB term included
in the kink-pair formation free energy. c, The influence of temperature on the SRO strengthening
of the screw dislocation. Solid lines represent the fitted model results for the sample with SRO
and the dashed lines represent the fitted model for the RSS sample. The strengthening effect due
to SRO attenuates when temperature increases from 300K to 2000K.
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Figure 3.5: Simulation results illustrating the effect of SRO on the velocities of edge dis-
locations as a function of applied shear stress over a range of temperatures. a Velocity vs.
stress results from the simulations of edge dislocations in the RSS sample are shown with open
symbols with data for each temperature connected by dashed lines that represent guides to the
eye. b Similar results as in panel (a), but for edge dislocations in the sample with chemical SRO.
c-h Detailed comparisons of the influence of SRO at representative temperatures, from 300K to
2000K.
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The influence of SRO on the edge dislocation mobility is investigated by comparing the

mobility curves in Fig. 3.5a and b. For both low and intermediate stress regimes, the edge

dislocation mobilities for the system with SRO differ significantly from those in the RSS sample.

In the low stress regime, the glide of an edge dislocation in the RSS sample shows the “friction

stress” effect, where the dislocation stays immobile until the applied shear stress exceeds a critical

value; this critical stress decreases as the temperature increases. A similar phenomenon has

been observed in other alloy systems180,191,192, which can be attributed to the pinning of the

dislocation due to the collective interaction of random solute atoms. However, in Fig. 5b, with

the presence of SRO, the friction phenomenon is not as effective as in the RSS sample. Instead,

the edge dislocation is not immobile, but glides at a very low velocity (¡ 2 Å/ps) in the low stress

regime. This is in contradiction with previous understanding that the onset of dislocation glide

necessitates the break-up of local order on the slip plane, which requires extra energy and stress.

Consequently, there must be another competing mechanism that enhances the dislocation mobility

through the SRO at the same time.

A detailed comparison of edge dislocation velocities at different temperatures in Fig.

3.5c-h reveals that in the high stress regime, the influence of SRO on the motion of the edge

dislocation is the direct opposite from that for the screw dislocation, in that the mobility of the

edges is enhanced in the SRO sample compared to that in the RSS sample. It is important to

note, however, that in the simulations in the high stress regime, the edge dislocation must glide

through the periodic boundary multiple times, such that the SRO on the specific slip plane will

have already been destroyed after the edge first crosses through the cell. Nevertheless, although

the local slip plane becomes randomized, there is still a significant difference in the velocities of

the edge dislocation in the SRO versus the RSS samples, such that we conjecture that the SRO

in the neighboring planes could influence the edge dislocation even when the order on the glide

plane has been disrupted by dislocation motion. In this case, there is then the question of how the

existence of SRO can influence edge dislocation mobility and what characteristic length-scale is

55



associated with the influence of SRO for an edge dislocation.

One reasonable hypothesis is that the existence of SRO can also influence the solute

interactions and, as such, lower the solute drag effect to enhance the mobility of the edge

dislocation. From the nature of SRO, the ordered sample will always have lower configurational

energy; furthermore, our previous DFT study showed a flattened energy landscape for the screw

dislocation cores in the RHEA due to the presence of SRO162, which can be assumed also to

be of relevance to edge dislocations. Here, the effect of SRO inducing a considerably flattened

energy landscape (lower solute drag effect) could offset the extra energy cost to create a DAPB,

such that the dislocation mobility will be enhanced by SRO to give a lower friction effect and

higher averaged velocity.

Accordingly, additional simulations were conducted to substantiate the hypothesis. We

show in Fig. 3.6a-b schematics representing the state of SRO in the sample, where the dashed

lines represent the atomic planes, the blue section represents a region where equilibrated SRO is

maintained, and the cyan represents regions where the SRO has been destroyed. For the system

with SRO, when the edge dislocation crosses through the periodic boundary multiple times,

as noted above, the order on its slip plane actually has already been destroyed, but the solute

configurations of the atoms in the neighboring regions still display SRO, as shown in Fig. 3.6a.

In addition to comparing with the fully RSS sample, we can manually randomize several layers

of atoms around the original slip plane to create an RSS region of limited size. Specifically, if n

layers of atoms are randomized, n+1 layers of ordering will be destroyed, as illustrated in Fig.

3.6b. Thus, for the additional simulations, 1, 2 and 4 layers of atoms are manually randomized to

create an RSS region of limited size so that the average edge dislocation velocity within these

regions can be calculated and compared with the samples with complete SRO and the RSS

samples.

Figure 3.6c shows the position vs. time curves of an edge dislocation in the five different

samples described above with an applied 0.6 GPa shear stress at 300K. The fitted average
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Figure 3.6: Attenuated drag effect for the edge dislocation induced by SRO in layers neigh-
boring the guide plane. a, The schematic figure illustrates the state of SRO in the sample. The
edge dislocation is represented in red, indicating the position of the glide plane, and the dashed
lines are the corresponding atomic planes parallel to the guide plane. The cyan color represents
that the SRO on the slip plane has been destroyed after the edge dislocation glides across the
whole periodic cell. The blue regions reflect planes where the SRO remains present. b, This
panel represents the situation for simulations in which SRO is destroyed not only along the slip
plane, but in neighboring parallel planes. c, The effect of the SRO state around the neighboring
slip planes of the edge dislocation motion (distance vs. time). The dashed line represents the
average velocity of the edge dislocation in a sample where SRO is destroyed only within the
guide plane (corresponding to panel (a)). The solid lines represent the edge dislocation motion
in the samples with controlled number of destroyed SRO layers, i.e., for different thicknesses of
the cyan region in panel (b). Also shown are results obtained for the RSS sample where SRO is
not present on any planes in the system.
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dislocation velocities are shown in the inset to Fig. 3.6c. It is observed that the dislocation

velocity is highest in the sample with full SRO, i.e., only order on the slip plane has been

destroyed. With more layers of atoms around the slip plane being randomized, the RSS region

becomes thicker and the average dislocation velocity keeps decreasing. When four layers of

atoms are randomized in the SRO sample, the thickness of the RSS region is 1.2 nm and the

average velocity of the dislocation nearly converges to the velocity in the sample with complete

random disorder. This result confirms our hypothesis that SRO would reduce the solute drag

interaction for the edge dislocation, and shows that this effect extends to a characteristic length

scale of∼1.2 nm. Thus, different from the strengthening effect due to SRO for screw dislocations,

the existence of SRO is found to enhance the mobility of edge dislocations in the RHEA.

3.3.7 Mobility of screw vs. edge dislocations in the MoNbTaW-RHEA and

pure Mo and Nb metals as a function of temperature

In addition to the RHEA, the dislocation mobilities in pure Mo and Nb are also calculated

for reference, in the same manner described in the Methods section using the MTP. Figure 3.7a

displays the mobility of the edge dislocation in the RSS RHEA as compared to pure Mo and

Nb at temperatures of 300K and 2000K. The most notable difference in this comparison is that

there is no threshold stress effect in the pure metals, associated with solute drag. The mobilities

in Mo and Nb show a significant influence of phonon drag, which increases with increasing

temperature. The mobility in Mo is much lower than that in Nb but still higher compared to the

RSS-RHEA. However, this difference in dislocation mobility in the RHEA and Mo diminishes as

the temperature is increased; specifically, the velocity difference between the RHEA and pure

metal is far smaller at 2000K than that at 300K.

Figure 3.7b shows the velocity results for screw dislocations in the RSS-RHEA as com-

pared to pure Mo and Nb at temperatures of 300K and 2000K. Since the glide of screws is

dominated by kink-pair nucleation, the motion in both the RHEA and the pure metals display the
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Figure 3.7: Comparison of the simulation results for dislocation velocities for edge and screw
dislocations in the MoNbTaW RHEA and pure Mo and Nb bcc metals at different temperatures.
Velocity as a function of stress for a, edge dislocations and b, screw dislocations in the RHEA
and pure Mo and Nb at temperatures of T = 300K and 2000K. Velocity as a function of stress
for edge and screw dislocations in the RHEA and pure Mo at temperatures of c, 300K and d,
2000K. In all of the results the symbols are simulation data and the solid lines are guides to the
eye, connecting results for a given dislocation character (edge or screw) and given temperature.
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friction effect at 300K, although the friction stress disappears at 2000K in all cases. Similar to the

edge dislocation, the velocities of the screw dislocations in the RHEA are lower than those in Mo

and Nb at 300K. However, the difference in screw dislocation velocity in the RHEA and in Mo

almost vanishes at this higher temperature.

Summarizing, at low temperature (300K) the mobility of both the edge and screw dis-

locations shows significant differences in the RHEA compared to that in the pure bcc metals.

However, at high temperature (2000K), the mobility curves of the screw dislocation in the RHEA

and pure Mo are almost identical, although the mobility of the edge dislocation in RHEA is still

lower than that in the pure metals as it retains some friction stress due to the solute drag effect.

One might ask what the relevance is of such observations. RHEAs have been actively

investigated due to their demonstrated high elevated-temperature strength193 although the precise

physical origins are still not fully understood. For pure bcc metals, it is well known, e.g., from

in situ TEM experiments183,194,195, that edge dislocations play a minor role in strengthening at

low and moderate temperatures due to their higher mobility. However, from recent studies for

bcc-RHEAs, the role of the edge dislocations is now believed to play a more important role in the

high-temperature regime158,161,196; additionally, a large fraction of non-screw segments has been

observed during the glide of dislocations in such alloys153. In this work, we have calculated the

mobility of screw and edge dislocations over a wide range of temperatures in such a RHEA and

have shown that the mobility of the edge dislocations does decrease with increasing temperature

due to phonon drag; moreover, at the same time the mobility of the screw dislocations is found to

increase with temperature due to a lowering of the free-energy barrier for kink-pair nucleation.

Figure 3.7c-d shows the representative velocity versus stress curves for screw and edge

dislocations in the MoNbTaW and Mo at 300K and 2000K. The ratio of the edge-to-screw

velocities does indeed decrease as the temperature is raised, as can be seen by the fact that the

angle between the velocity versus stress curves for the screw and edge dislocations in MoNbTaW

becomes smaller from Fig. 3.7c to Fig. 3.7d. The edge-to-screw mobility ratio is around 20 at
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300K, which decreases to 11 when temperature is raised to 2000K. However, the mobility of

the edge dislocation remains much higher than that of the screw dislocation. The discrepancy

between the current edge-to-screw velocity ratios compared with the CoFeNiTi system studied in

previous work196 might be due to the different levels of lattice distortion in the two alloy systems.

A similar trend in decreasing mobility ratios with increasing temperature is also observed in pure

Mo, as shown in Fig. 3.7c-d, which indicates that this is not a unique feature of RHEAs. One

significant temperature-dependent property that differentiates the mobility of screw and edge

dislocations, which is also a unique property in the RHEAs, is the enhanced friction stress. For

edge dislocations, the friction is zero in pure metals for edge dislocations, whereas due to solute

drag interactions we can clearly observe a temperature-dependent friction stress for edge in the

RHEA, as shown in Fig. 3.5a and Fig. 3.7. For screw dislocations, the friction phenomenon is

due to the energy barrier associated with kink-pair nucleation, which holds for both pure metals

and RHEAs. Accordingly, the differing mechanisms of the friction effect for edge and screw

dislocations naturally leads to different dependences of the critical friction stress on temperature.

Here, the critical friction stress is determined as the stress for which the velocity reaches 0.2 Å/ps

for screw dislocations and 1.0 Å/ps for edge dislocations.

Figure 3.8a shows the critical stress as a function of temperature for the screw dislocation

in the RSS-RHEA, which are fit well by an exponential decay curve, whereas in Fig. 3.8b,

the critical stress for the edge dislocation is well fit by a function that decreases linearly with

temperature. Moreover, the critical stress for the screw dislocation is more sensitive to the

increment of temperature and, as such, decays at a much higher rate compared with the edge

dislocation. According to our simulation data, from 300K to 2000K the critical friction stress

decreases by 140 MPa for the edge dislocation, whereas the decrease is almost an order of

magnitude larger at 1.3 GPa for the screw dislocation. Although the initial friction is much

higher for the screw dislocation at room temperature, the screw and edge critical stresses decay to

approximately the same level at roughly 2000K (Fig. 3.8c).
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Figure 3.8: Critical friction stress as a function of temperature for screw and edge dislocations.
a, Critical stress as a function of temperature for the screw dislocation in RSS samples obtained
from MD simulations (open symbols), fitted with an exponential function (solid line). b, Critical
stress as a function of temperature for the edge dislocation in RSS samples obtained from MD
simulations (open symbols), fitted with a linear function (solid line). c, Comparison of critical
stresses for screw and edge dislocations as a function of temperature. The critical stresses for
edge dislocations in Mo-Nb binary alloys are included for comparison.
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For comparison and to further show the unique features of the RHEA, we also calculated

friction stresses of some binary alloys through same procedures, from Mo95Nb5 to Mo75Nb25.

Figure 3.8c shows that the overall values of the critical friction stresses in the binary alloys

are lower compared with the RHEA, and the slope of the critical stress is also decreasing with

decreasing solute concentration, where the friction stress is expected to converge to horizontal

line with zero friction stress in the pure bcc metal for edge dislocation motion. However, due to

the kink nucleation barrier, the screw dislocation will still maintain an observable level of critical

friction stress in the pure bcc metal.

3.4 Conclusion

In summary, we have developed a new machine-learning interatomic potential and used

it as the basis for systematic MD studies of the mobility of edge and screw dislocations over a

wide range of temperatures in a bcc MoNbTaW refractory high-entropy alloy (RHEA). Screw

dislocations in the MoNbTaW RHEA move through kink-pair nucleation and migration; addi-

tionally, a cross-slip locking mechanism is observed in the simulations, which can be attributed

to the intrinsic fluctuation of energy along the dislocation line and rugged energy landscape in

the system, which will provide extra strengthening to the RHEA. Short-range order (SRO) is

found to induce a temperature-dependent strengthening effect on the screw dislocations moving

through the kink-pair nucleation mechanism, while accelerating the edge dislocation movement

through an attenuation of the magnitude of the solute interactions. A phenomenological model

for the mobility of screw dislocations has been constructed to reveal the origin of the temperature-

dependent SRO effect for screw dislocation motion through kink-nucleation mechanism, which

arises from the contribution of SRO to the free energy barrier for kink-pair nucleation. With

increasing temperature, a reduced edge-to-screw mobility ratio was discovered in both pure bcc

metals and in the MoNbTaW-RHEA. A different temperature sensitivity for the critical stress
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to initialize dislocation motion is found but only in the RHEA; the critical friction stress for

the edge dislocation decays much slower than it does for the screw dislocation with increasing

temperature, and it becomes comparable in magnitude for both edge and screws at 2000K. These

findings demonstrate the salient mechanisms and specific influences of temperature and local

chemical order on the mobility of edge and screw dislocations in RHEAs, all of which can have a

significant impact on the mechanical properties of RHEAs.

Chapter 3 presents a study on mechanism of plastic deformation of bcc refractory high-

entropy alloy (RHEA) system MoNbTaW driven by ML-IAPs. The ML-IAP enabled us to

perform MD simulations of over 500,000 atoms for understanding the mobility of edge/screw

dislocation with respect to temperature and the presence of short-range order (SRO).
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Chapter 4

Accelerating materials discovery with

bayesian optimization and graph deep

learning

65



4.1 Introduction

The accurate prediction of novel stable crystals and their properties is a fundamental

goal in computation-guided materials discovery. While ab initio approaches such as density

functional theory (DFT)1,2 have been phenomenally successful in this regard53,197–199, their high

computational cost and poor scalability have limited the broad application across vast chemical

and structural spaces. As a result, high-throughput DFT screening has been mostly performed on

∼ O(100−1000) crystals with relatively small unit cells.

To circumvent this limitation, machine learning (ML) has emerged as a new paradigm

for developing efficient surrogate models for predicting materials properties at scale.200–205

Such ML models are usually trained on large databases of materials properties57–59 to learn

the relationship between input chemical and/or structural features and target properties (e.g.,

formation energies, band gaps, elastic moduli, etc.). Only ML models utilizing structural as well

as chemical features can distinguish between polymorphs and be universally applied in materials

discovery across diverse crystal structures. In particular, graph neural networks, where atoms and

bonds in crystals are represented as nodes and edges in a mathematical graph, have emerged as

a particularly promising approach with state-of-the-art accuracy in predicting a broad range of

energetic, electronic and mechanical properties.66,67,69–72,206,207

Ironically, a critical bottleneck in the application of structure-based ML models for

materials discovery is the requirement for equilibrium crystal structures as the inputs. These are

obtained by “relaxing” initial input structures along their potential energy surfaces, which are

typically computed via expensive DFT calculations. While there have been recent efforts208,209 at

deriving accurate interatomic forces from graph representations, the application has been limited

to a few molecular systems or constrained chemical spaces.

Here, we propose a Bayesian Optimization With Symmetry Relaxation (BOWSR) algo-

rithm to obtain equilibrium crystal structures for accurate ML property predictions without DFT.
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Utilizing a highly efficient MatErials Graph Network (MEGNet) formation energy model,72 we

demonstrate that BOWSR-relaxed structures can serve as accurate inputs to ML property models,

yielding far higher accuracy in the prediction of various materials properties. Finally, we demon-

strate the power of this approach by screening ∼400,000 transition metal borides and carbides

for ultra-incompressible hard materials. Two new materials with relatively low predicted energy

above hull60 were successfully synthesized and demonstrated to have exceptional mechanical

properties, in line with the ML prediction.

4.2 Methods

4.2.1 Bayesian optimization with symmetry relaxation algorithm

Geometry relaxation of a crystal structure requires the optimization of up to 3N + 6

variables - six lattice parameters and three fractional coordinates for each of the N atoms. By

constraining the symmetry to remain unchanged during relaxation can reduce the number of

independent variables considerably.50,210,211 The open-source spglib212 package was used for

symmetry determination. The search for optimized symmetry-constrained lattice parameters and

atomic coordinates that minimize the total energy was then carried out via Bayesian optimization

(BO). The changes in the variables were used as the optimization inputs to reduce the tendency of

the BO process being dominated by parameters with large magnitudes. This approach has been

previously used for geometry optimization along the imaginary phonon modes.211

Using a Latin hypercube sampling, a set of training observations D∼ {(xi,U(xi)) i = 1 :

m} were initialized, where the xi are the m independent lattice parameters and atomic coordinates

and U(.) is the energy of the corresponding structure evaluated by the surrogate model (see

Equations 4.4 and 4.5). The BO strategy comprises two steps213:

1. A Gaussian process (GP) model is trained on the initialized training observations D to
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approximate the U(x). The Rational Quadratic kernel214 is adopted as the covariance

function of GP. The noise level of GP model is set to the root mean square error (RMSE) of

the energy model.

2. The acquisition function that balances the exploitation and exploration is calculated for

samples in the search space apart from the training observations and the candidate with

optimal acquisition function is proposed to be evaluated (formation energy prediction by

surrogate ML model). Exploitation represents the samples with high predicted mean from

the GP, and exploration accounts the samples with high predictive uncertainty.215–217 Here,

we chose the expected improvement as the acquisition function, which can be analytically

expressed as218,219:

E[I(x)] = (µ(x)−U(x+)−ξ) ·Φ(Z)+σ(x) ·φ(Z) (4.1)

and

x+ = argmax
i=1,...,n

U(xi) (4.2)

Z =
µ(x)−U(x+)−ξ

σ(x)
(4.3)

where µ(x) and σ(x) are the mean and standard deviation of the posterior distribution on x

from the GP, respectively, and Φ(x) and φ(x) are the cumulative distribution function (CDF)

and probability density function (PDF), respectively. The ξ parameter can be tuned to

balance the trade-off between the first term (exploitation) and the second term (exploration)

in Equation (4.1). Until the maximum number of iteration steps is reached, the sample with

optimal acquisition function was iteratively augmented to the training observations and

used to update the GP surrogate model in the next loop.

It should be noted that by removing the symmetry constraint, i.e., treating all crystals
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as having triclinic P1 symmetry, the BO yields much higher errors (see Figure C.1) than that

with symmetry constraints. This can be attributed to the limitation of BO in optimizing the high

dimensional parameter space that scales linearly with the number of atoms in crystals without

symmetry. In this work, the number of initialized training observations and the maximum number

of iterations were both set at 100 to achieve the best trade-off between accuracy and efficiency

(see Figure C.1). For property predictions, ξ was set to 0 as the dataset has been well explored

by DFT calculations. For the discovery of new incompressible materials, ξ was set at 0.1 to

allow the BO to have a higher likelihood of finding the global energy minimum in the exploration

space with higher predictive uncertainty. In addition, the search space for optimized changes in

the fractional coordinates, lattice lengths, and lattice angles variables was set to 0.2, 1.2 Å, and

5◦, respectively. This search space is sufficiently large to have a reasonably high likelihood of

including the global energy minimum while not overly large to be computationally intractable.

4.2.2 Materials graph network models

The Materials Graph Network (MEGNet) models used in this work are based on the same

architecture as our previous work.72 Briefly, three graph convolutional layers with [64, 64, 32]

neurons were used in each update function, and the shifted softplus function was used as the

non-linear activation function. A set2set readout function with two passes was used after the

graph convolution steps. The cutoff radius for constructing the neighbor graph was 5 Å. The

MEGNet formation energy (E f ) and elasticity (KVRH and GVRH) models were trained using the

2019.4.1 version of Materials Project database57 containing 133,420 structure-formation energy

and 12,179 structure-bulk/shear modulus data pairs. Each dataset was split into 80%:10%:10%

train:validation:test ratios. During the model training, we used a batch size of 128 structures,

and set the initial learning rate to 0.001 in the Adam optimizer. All models were trained for a

maximum of 1500 epochs with an early stopping callback, which terminates the model training if

the validation error does not reduce for 500 consecutive steps. The mean absolute errors (MAEs)
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of E f , log10(KVRH) and log10(GVRH) models in test data are 26 meV atom−1, 0.07, and 0.12,

respectively.

4.2.3 DFT calculations

The DFT relaxations, energy and elastic tensor calculations for the small number of

candidates that passed the ML screening were carried out using Vienna ab initio simulation

package (VASP)105 within the projector augmented wave approach.106 The exchange-correlation

interaction was described using the Perdew-Burke-Ernzerhof (PBE) generalized gradient approxi-

mation (GGA)107 functional for structural relaxations and energy calculations. The plane wave

energy cutoff was set to 520 eV, and the k-point density of at least 1,000 per number of atoms

was used. All structures were relaxed with energies and forces converged to 10−5 eV and 0.01

eV/Å, respectively, consistent with the calculation setting used in the Materials Project.57 The

elastic tensor calculations were performed using the procedure described in previous work.220 A

tighter energy convergence criterion of 10−7 eV was used, and strains with magnitude of (-1%,

-0.5%, 0.5%, 1%) were applied to each of the 6 independent components of strain tensor.

4.2.4 Synthesis

Bulk specimens of candidates ReOsB, ReOsB2, MoWC2, ReWB, Re13WB9, OsWB,

Re6W7B8, and ReW2B2 were synthesized via in-situ reactive spark plasma sintering (SPS).

Elemental powders of Mo, W (>99.5% purity, ∼325 mesh, Alfa Aesar), Re (∼99.99% purity,

∼325 mesh, Strem Chemicals), Os (∼99.8% purity, ∼200 mesh, Alfa Aesar), boron (∼99%

purity, 1-2 µm, US Research Nanomaterials), and graphite (∼99.9% purity, 0.4-1.2 µm, US

Research Nanomaterials) were utilized as precursors. For each composition, stoichiometric

amounts of elemental powders were weighted out in batches of 5 g. The powders were first mixed

by a vortex mixer, and then high energy ball milled (HEBM) in a Spex 8000D mill (SpexCertPrep)
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by tungsten carbide lined stainless steel jars as well as 11.2 mm tungsten carbide milling media

(ball-to-powder ratio ≈ 4.5:1) for 50 min. 0.05 g or ∼1 wt% of stearic acid was used as lubricant

in the milling process. After HEMB, the as-milled powder mixtures were loaded into 10 mm

graphite dies lined with graphite foils in batches of 2.5 g, and subsequently consolidated into

dense pellets via SPS in vacuum (< 10−2 Torr) by a Thermal Technologies 3000 series SPS

machine. The HEBM and powder handing were conducted in an argon atmosphere (with O2 level

< 10 ppm) to prevent oxidation.

During the SPS, specimens were initially heated to 1400 ◦C at a rate of 100 ◦C/min under

constant pressure of 10 MPa. For the final densification, the temperature was subsequently raised

at a constant rate of 30 ◦C/min to a final isothermal sintering temperature, which was set at

different levels for different target compositions — 1800 ◦C (ReWB), 1700 ◦C (MoWC2 and

Re6W7B8), 1600 ◦C (Re13WB9 and ReW2B2), or 1500 ◦C (ReOsB, ReOsB2, and OsWB), and

maintained isothermally for 10 min. Meanwhile, the pressure was increased to 50 MPa at a

ramp rate of 5 MPa/min. The final densification temperature was optimized for each specimen to

achieve a high relative density while prevent specimen melting due to overheating. The in-situ

reactions between elemental precursors likely took place during the initial temperature ramping.

After sintering, the specimens were cooled down naturally inside the SPS machine (with power

off).

4.2.5 Experimental characterization

Sintered specimens were first ground to remove the carbon-contaminated surface layer

from the graphite tooling, and polished for further characterizations. X-ray diffraction (XRD)

experiments were conducted using a Rigaku Miniflex diffractometer with the Cu Kα radiation

at 30 kV and 15 mA. The Vickers microhardness tests were carried out on a LECO diamond

microindentor with loading force varying from 0.49 N (50 gf) to 9.8 N (1 kgf) and constant

holding time of 15 s, abiding by the ASTM Standard C1327. Over 20 measurements at different
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locations were conducted for each specimen at each indentation load to ensure statistical validity

and minimize the microstructural and grain boundary effects. In particular, over 30 measurements

were conducted for each specimen at 9.8 N indentation load.

The Young’s and shear moduli of the specimens were calculated from the ultrasonic

velocities measured with a Tektronix TDS 420A digital oscilloscope, following the ASTM

standard A494-15. Multiple measurements were conducted at different locations.

4.3 Results

4.3.1 Bayesian optimization with symmetry relaxation algorithm

Bayesian optimization (BO) is an adaptive strategy for the global optimization of a

function. In crystal structure relaxation, the function to be optimized is the potential energy

surface, which expresses the energy of the crystal as a function of the lattice parameters and

atomic coordinates. In the BOWSR algorithm, the symmetry (space group) of the lattice and

the Wyckoff positions of the atoms are constrained during the relaxation process, i.e., only the

independent lattice parameters and atomic coordinates are allowed to vary. The BO goal is then

the minimization of the following mapping:

x := {a,b,c,α,β,γ,~c1,~c2, ...} (4.4)

xopt = argmin
x

U(x),U : Rn −→ R (4.5)

where {a,b,c,α,β,γ} and {~c1,~c2, ...} represent the independent lattice parameters and the atomic

positions for a P1 crystal, respectively, and U(.) is the energy of the system. The schematic of the

BOWSR algorithm as well as two examples of the geometry parameterization for a high-symmetry

cubic crystal and a low-symmetry triclinic crystal are shown in Figure 4.1.
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Figure 4.1: Bayesian Optimization With Symmetry Relaxation (BOWSR) algorithm. a, The
BOWSR algorithm parameterizes each crystal based on the independent lattice parameters and
atomic coordinates based on its space group. The potential energy surface is then approximated
by initializing a set of training observations and energies from the ML energy model. Bayesian
optimization is then used to iteratively propose lower energy geometries based on prior ob-
servations. b, Two examples of the geometry parameterization for cubic perovskite SrTiO3
and triclinic PdN2Cl2. For the high-symmetry cubic perovskite, the lattice parameter a is the
only independent parameter, and all atoms are in special Wyckoff positions with no degrees of
freedom in the fractional coordinates. For the triclinic crystal, all six lattice parameters and all
atomic coordinates are independent parameters.
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The convergence accuracy and speed of BOWSR are set by the energy evaluator U(.),

which can be any computational model, including ab initio methods, empirical potentials, and

surrogate ML models. In this work, we have elected to use a MatErials Graph Network (MEGNet)

formation energy model previously trained on the DFT-computed formation energies of 133,420

Materials Project crystals.57 This MEGNet model has a cross-validated mean absolute error

(MAE) of 26 meV atom−1, which is among the best accuracy among general ML models thus

far.70,71. Examples of the convergence of the BOWSR algorithm using the MEGNet energy

model are shown in Figure C.2.

4.3.2 Properties prediction

Elemental substitution is a common, chemically intuitive approach to deriving potential

new compounds. For instance, the rock salt LiCl can be derived from rock salt NaCl by sub-

stituting Na for the chemically similar Li. Here, we demonstrate the potential for BOWSR to

substantially enhance ML property predictions of the formation energies and elastic moduli (bulk

and shear moduli) of substituted crystals. The dataset comprises a total of 12,277 and 1,672

unique crystals with pre-computed DFT formation energies and elastic moduli, respectively, from

the Materials Project.57 These crystals belong to 144 (35 binary, 91 ternary, and 18 quaternary)

common structure prototypes in the Inorganic Crystal Structure Database (ICSD).221,222 Each

prototype comprises at least 30 compositions (statistical distribution shown in Figure C.3). For

each crystal in the dataset (e.g., rock salt GeTe), another crystal with the same prototype but a dif-

ferent composition (e.g., rock salt NaCl) was selected at random and multi-element substitutions

(Na→Ge, Cl→Te) were performed to arrive at an “unrelaxed” structure. The BOWSR algorithm

was then applied to obtain a BOWSR-relaxed structure. The unrelaxed, BOWSR-relaxed, and the

original DFT-relaxed structures were then used as inputs for property predictions using MEGNet

models. These MEGNet models were trained on the DFT-computed formation energies and

elastic moduli of 133,420 and 12,179 crystals, respectively, from the Materials Project.
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Figure 4.2: Performance of MEGNet materials properties predictions for three levels of relax-
ation. Three levels of relaxation are served as inputs for MEGNet materials properties predictions
— unrelaxed, BOWSR-relaxed, and DFT-relaxed structures. a, b, and c show the parity plot of
MEGNet prediction on formation energies, bulk moduli, and shear moduli, respectively. d, e,
and f show the errors distribution on the corresponding materials property.

Figure 4.2 compares the MEGNet model predictions using the unrelaxed, BOWSR-relaxed,

and DFT-relaxed structures as inputs with respect to DFT-computed values. The mean absolute

errors (MAEs) of the MEGNet models using the DFT-relaxed structures provide a best-case

performance baseline. It should be noted that the MEGNet models were trained using a superset

of data from the Materials Project that includes the DFT-relaxed structures.57 Hence, the reported

MAEs of MEGNet predictions using DFT-relaxed structures in this work are much smaller than

the previously reported MAEs of these MEGNet models from cross-validation and should not be

considered as a metric for MEGNet performance. Using the unrelaxed structures as inputs results

in much higher, positively skewed MAEs in the MEGNet formation energy prediction compared

to using DFT-relaxed structures. This is because the unrelaxed structures have lattice parameters

and atomic positions that can deviate substantially from the ground state DFT-relaxed structures,

resulting in higher energies. Using the BOWSR-relaxed structures as inputs reduces the MAEs by
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a factor of four, from 363 meV atom−1 to 88 meV atom−1. The R2 also substantially increases

from 0.67 to 0.96, and the error distribution is Gaussian-like with a mean close to 0. Similarly,

large improvements in the MEGNet predictions of the elastic moduli are also observed using the

BOWSR-relaxed structures compared to using unrelaxed structures, with MAEs in the log10 KVRH

and log10 GVRH reducing by half. We tested the sensitivity of the BOWSR algorithm to the initial

structures used to perform elemental substitution. Using four randomly chosen parent structures

with different lattice parameters for each prototype, the above procedures were repeated and the

results are shown in Figure C.4. The BOWSR-relaxed structures exhibit consistently low errors

regardless of initial structure selection.

We also tested the sensitivity of the BOWSR algorithm to the accuracy of the energy

evaluator by artificially introducing Gaussian noise into the MEGNet formation energy prediction.

The energy errors from the BOWSR-relaxed structures are linearly correlated with the errors

of the surrogate ML model with the root mean square error (RMSE) ranging from 27 to 1000

meV atom−1 (Figure C.5), which indicates the robustness of the BO propagation and the broad

applicability of the BOWSR algorithm to any surrogate ML models. The same linear correlations

are also observed between the elastic moduli errors and the errors of the surrogate ML model, as

shown in Figure C.5c and d.

4.3.3 Discovery of ultra-incompressible hard materials

We used the BOWSR algorithm with the MEGNet models to rapidly screen hundreds

of thousands of candidates for novel ultra-incompressible hard materials, as shown in Figure

4.3. Given that binary compounds have already been extensively explored in the literature223,224,

we targeted our search in 12 ternary M′xM′′y Xz chemical spaces, where M′, M′′ = Mo, W, Os, or

Re and X = B or C. These elements were selected based on their common occurrences in ultra-

incompressible hard binary compounds. By combinatorially applying elemental substitutions to

5,555 ternary structures prototypes in the ICSD,221,222 399,960 candidates were generated and
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relaxed using the BOWSR algorithm with the MEGNet energy model. The BOWSR-relaxed

candidates were then screened for stability and mechanical properties using MEGNet property

models. The stability metric used was the energy above hull EMEGNet
hull , which was computed using

the predicted formation energy EMEGNet
f with the 0 K phase diagram in the Materials Project

database52,57,60. At this intermediate stage, a relatively generous threshold of EMEGNet
hull < 100

meV atom−1 was used to obtain candidates that are likely to be thermodynamic stable.61 Of

these, candidates with relatively high MEGNet-predicted bulk and shear moduli (KMEGNet
VRH > 250

GPa and GMEGNet
VRH > 100 GPa) were identified. Similar to the stability criterion, the mechanical

criteria used are slightly lower than the conventional threshold for ultra-incompressibility to

account for the higher MAE of the MEGNet elastic moduli predictions.224 DFT relaxations and

energy calculations were then carried out on the 1,603 candidates that passed all three ML-based

screening criteria. Subsequently, expensive DFT elastic tensor calculations220 were performed on

the 143 candidates that have DFT EDFT
hull < 100 meV atom−1.

Table 4.1 summarizes the computed elastic properties of the top ten candidates with the

highest computed bulk modulus together with other well-known ultra-incompressible materials.

Attempts were then made to synthesize all ten candidates with eight unique compositions via in-

situ reactive spark plasma sintering (SPS) using elemental precursors in the appropriate ratios (see

Methods). Two crystals, MoWC2 (P63/mmc) and ReWB (Pca21), were successfully synthesized

and confirmed via X-ray diffraction (XRD, Figure 4.4a) as single phase, while the synthesis of

the other six compositions yielded multiple phases. Henceforth, we will refer to the two novel

phases of MoWC2 (P63/mmc) and ReWB (Pca21) simply as MoWC2 and ReWB, respectively.

The mechanical properties of MoWC2 and ReWB were measured using the pulse-echo

method.225,226 As shown in Figure 4.5a and b, the experimentally-measured bulk and shear

moduli are in excellent agreement with both the MEGNet and DFT predictions. Both new

materials exhibit ultra-incompressibility, with bulk modulus close to or larger than 300 GPa224.

MoWC2 also exhibits high estimated Vickers hardnesses Hv of 36.6 at 0.49 N indentation load
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and 20.9 GPa at 9.8 N load (Figure 4.5c). ReWB has a comparatively lower measured hardness of

29.5 at 0.49 N load and 17.6 GPa at 9.8 N load. The Hv values at 0.49 N load are within 20-25%

of those derived from the MEGNet and DFT predicted shear moduli via the empirical relation

Hv = 0.151G,227 as shown in Figure 4.5d.
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Figure 4.3: Flowchart of ultra-incompressible materials discovery leveraged by the BOWSR
algorithm and MEGNet models. The materials candidates were generated by elemental substi-
tution to structure prototypes. These candidates were relaxed by the BOWSR algorithm and
subsequently screened by their predicted thermodynamic stability and mechanical properties.
The screened candidates were further verified by DFT calculations, and the high-ranked can-
didates were directed to synthesis attempts. Quantity in the parenthesis shows the number of
candidates at each stage.
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Table 4.1: DFT-computed bulk modulus (KVRH), shear modulus (GVRH), Young’s modulus
(EVRH), Poisson’s ratio (ν) and energy above hull (Ehull) for the top 10 candidates with regard to
KVRH in descending order. MoWC2 and ReWB are bolded as they are successfully synthesized
by experiments. Some of the known ultra-incompressible materials are used as references.

KVRH
(GPa)

GVRH
(GPa)

EVRH
(GPa)

ν Ehull (meV)

Candidates

ReOsB (P6̄m2) 370.7 241.3 594.7 0.233 31.7

ReOsB2 (P63/mmc) 367.3 220.9 552.0 0.250 87.8

MoWC2 (P63/mmc) 357.9 260.5 628.8 0.207 96.3

ReWB (Fddd) 356.8 176.9 455.5 0.287 20.6

Re13WB9 (P6̄m2) 353.1 177.0 455.1 0.285 88.4

ReWB (Pca21) 352.6 144.1 380.4 0.320 33.1

OsWB (Pbam) 351.1 183.1 467.9 0.278 43.3

ReWB (Cmce) 350.9 161.5 420.1 0.301 32.6

Re6W7B8 (P6/m) 348.4 182.8 466.8 0.277 22.2

ReW2B2 (P4/mbm) 345.8 156.0 406.8 0.304 72.1

Known incompressible
materials

C (Fd3̄m) 430.3 503.6 1086.9 0.079 136.4

WC (P6̄m2) 389.8 280.0 677.8 0.210 1.1

BN (F 4̄3m) 370.1 382.8 852.4 0.116 77.3

ReB2 (P63/mmc) 334.9 272.3 642.7 0.180 4.7
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Figure 4.4: Two new materials proposed by the BOWSR algorithm and MEGNet prediction
confirmed by XRD characterizations. a, Measured and calculated XRD patterns of two materials
(ReWB and MoWC2). The major peaks are indexed for reference. The pymatgen library108 was
used to calculate the XRD patterns of the DFT-relaxed crystal structures. Minor shifts in peak
positions between the measured and calculated XRD patterns can be attributed to the systematic
errors between DFT and experimentally-measured lattice parameters. b, Crystal structures and
space group of these two materials. The predicted energy above hull for ReWB and MoWC2
are 66 and 7 meV atom−1, respectively.
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Figure 4.5: Experimental measurements and theoretical prediction of mechanical properties
for the new materials. Comparisons of a, bulk moduli and b, shear moduli between MEGNet,
DFT and pulse-echo measurements. c, Measured Vickers microhardness of ReWB and MoWC2
under loads ranging from 0.49 N to 9.8 N. d, Comparisons between the hardness derived from
MEGNet predicted bulk modulus and shear modulus227 and the hardness measured by Vickers
indentation at the low load (0.49 N). The DFT calculated results are referenced. The error bar
represents the standard deviation of multiple experimental measurements.

4.4 Discussion

Many materials properties, such as formation energies, mechanical properties, etc., exhibit

a strong dependence on the crystal structure. However, obtaining equilibrium crystal structures as

inputs to accurate ML models still requires expensive ab initio computations. By coupling an
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accurate MEGNet energy model with Bayesian optimization of symmetry-constrained parameters,

we demonstrate that the new algorithm can reasonably approximate equilibrium structures. The

resulting substantial improvements in ML property predictions enable the rapid screening of

∼400,000 candidate crystals for stability and exceptional mechanical properties, 103 - 104 orders

of magnitude larger than that accessible by high-throughput DFT calculations.

The effectiveness of the BOWSR algorithm is limited by the accuracy of the energy

evaluator. While the MEGNet formation energy model has been selected in this work, we foresee

that the future development of more accurate ML energy models may improve the quality of the

BOWSR-relaxed structures, and subsequent ML property predictions, even further. Here, the

search for ultra-incompressible materials has been chosen as a model problem due to the high

cost of acquisition of elastic moduli via standard DFT approaches, but the approach outlined can

be readily extended to any property for which a reliable ML model can be developed. It should

be noted, however, that there is an inverse relationship between the cost of acquisition and the

training data size; hence, datasets on expensive properties (e.g., elastic moduli, optical properties,

etc.) tend to be much smaller in size compared to cheaper properties, making it more difficult to

build reliable ML models for high-cost properties. While approaches such as transfer learning

or multi-fidelity models have been shown to mitigate this trade-off to some extent,72,206,228,229

the generally higher errors in ML models for high-cost properties should be factored into the

screening process in the thresholds.

Chapter 4 presents an algorithmic effort in developing BOWSR for crystal structure

relaxation, bypassing the high-cost DFT. We showcased that BOWSR algorithm and the MEGNet

models enabled us to identify eight new candidates out of ∼400,000 transition metal borides and

carbides for ultra-incompressible hard materials. Two of them were successfully synthesized via

in-situ reactive spark plasma sintering (SPS).
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Chapter 5

Summary and Outlook
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Materials design remains one of the primary challenges in technological advancement.

The optimization of the known materials and the discovery of the new materials are two key

components. To approach these two major problems, ML is playing a transformative role because

of the broad access of big materials data and the development of ML model frameworks. In

this thesis, we highlight three works that assess the current ML models in large-scale atomistic

simulations for materials optimization, and develop new ML algorithm for materials discovery.

In the first work, we perform a systematic unbiased evaluation of GAP, MTP, NNP,

SNAP, and qSNAP ML-IAPs regarding three inextricably linked metrics — accuracy in materials

property predictions, training data requirements, and computational cost. We show that an

increase in the degree of freedom (DOF) and increase in training structures generally leads to

higher accuracy for all ML-IAPs. By using the Pareto frontier to identify the trade-offs between

accuracy and cost, we observe that there is an “optimal” configuration at which further expansion

of the number of DOF yields little improvement in accuracy with increases in computational cost

for each ML-IAPs. We also notice that even with relatively small training data sets of ∼100-200

structures, all ML-IAPs exhibit reasonably good accuracy, while further improvement can be

achieved with larger training data sets for NNP and qSNAP due to their model complexity. We

attribute this performance to the training data generation procedure intended to sample a diverse

set of structures from multi-temperature AIMD and conclude that diversity of training data is

arguably a more important consideration than quantity. These observations provide a critical

guideline in choosing reasonable ML-IAPs for different applications of interest.

In the second work, we present an exemplified application of ML-IAP in studying the

plastic deformation of RHEA system MoNbTaW using extensive MD simulations. We investigate

the mobilities of screw and edge dislocations over various temperatures ranging from 300 K to

2000 K, and evaluate how these mobilities are affected by the presence of SRO. We notice that the

movement of screw dislocations is driven by kink-pair nucleation and migration, while a cross-

slip locking mechanism appears due to the intrinsic fluctuation of energy along the dislocation
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line and rugged energy landscape in the system. The SRO is found to induce a temperature-

dependent strengthening effect on the screw dislocations moving through the kink-pair nucleation

mechanism. This effect is further understood by a proposed phenomenological model, which

shows that the SRO contributes to the free energy barrier for the kink-pair mechanism. These

findings reveal the mechanism of influence of temperature and SRO on the plastic deformation of

RHEAs, and serve as a useful guideline for optimizing the processing conditions for MoNbTaW

as well as other high-entropy alloys.

In the third work, we propose the BOWSR algorithm to break through the limitations of

graph-based models that require accurate crystal structures as inputs. Using the state-of-the-art

MEGNet energy model with BO of symmetry-constrained parameters, we demonstrate that

the BOWSR algorithm can reasonably approximate equilibrium structures originally obtained

from the DFT relaxations. The ML property predictions for BOWSR-relaxed structures yield

significantly lower errors compared to unrelaxed structures. The substantial improvements enable

the rapid screening of ∼400,000 candidate crystals for stability and exceptional mechanical

properties in ultra-incompressible hard materials discovery. Experimental attempts were made

to synthesize the top 10 candidates with regard to the highest computed bulk modulus, and two

novel crystals were successfully confirmed. The algorithm proposed removes one of the final

major bottlenecks to ML-based exploration of hypothetical materials entirely.

To conclude, the works fulfilled not only advance the understanding of relative strengths

and weaknesses of major ML-IAPs for materials optimization as well as the mechanism of plastic

deformation in RHEAs where ML-IAP applies, but also provide new protocol in accelerating

materials discovery. We hope that these works may serve as inspiration for future efforts in

materials design as a whole. Meanwhile, we also notice that there remain some gaps, which are

possible avenues for future work. In this thesis, we have chosen only focus on only ML-IAPs

based on local environment descriptors, while coverage of alternative ML-IAPs that rely on

global representations may provide more insights. A guideline for methodological development

86



is also lacking, where descriptor-model combinations can yield further values. Despite the great

performance of BOWSR algorithm exhibited in materials discovery, several factors that may limit

its effectiveness are yet to explore in detail. For example, while the BO yields much higher errors

by removing symmetry constraints (i.e., treating all crystals as having triclinic P1 symmetry),

preservation of symmetry remains a relatively strong assumption that constrains the identification

of larger structure space for discovery.
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Figure A.1: The radial distribution function (RDF) of Si in high temperature (1.5×, 2.0× of
the melting point) AIMD simulations.
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Figure A.2: Root-mean-square errors in predicted energies normalized to total energy per atom
for all four ML-IAPs as well as traditional IAPs (EAM121,122, MEAM123–125, Tersoff126,127).
The upper left and lower right triangles within each cell represent training and test errors,
respectively.

90



a b

Figure A.3: Log-log plot of RMSEs in (a) energies (b) forces versus the the size of the training
data for the ML-IAP Mo models. The slope of the line represents the learning rate of different
ML-IAPs.
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Figure A.4: Two-dimensional projection of the principal components of (a) the original model,
(b) the “close” model and (c) the “exact” model. (d) Energetic differences between the wurtzite
and diamond polymorph for Si of the original GAP model and augmented GAP models compared
to DFT and other ML-IAPs.
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Table B.1: Basic materials property predictions of the MTP model. The predicted melting
points (Tm), unstable stacking fault energy γus of (011) γ surface along the [1̄1̄1] direction, elastic
constants (ci j), and Voigt-Reuss-Hill129 bulk modulus (BVRH) for bcc Nb, Mo, Ta, and W are
compared with DFT and experimental values.

Tm (K)
γus
(mJ/m2)

c11 (GPa) c12 (GPa) c44 (GPa)
BVRH
(GPa)

Nb

Expt.230 2750 — 247 135 29 172
DFT — 827 249 135 19 173

MTP 2700
789
(−4.6%)

238
(−4.4%)

159
(17.8%)

24
(26.3%)

185
(6.9%)

Mo

Expt.231 2896 — 479 165 108 270
DFT — 1468 472 158 106 263

MTP 2860
1256
(−14.4%)

390
(−17.4%)

174
(10.1%)

85
(−19.8%)

246
(−6.5%)

Ta

Expt.232 3290 — 266 158 87 194
DFT — 835 264 161 74 195

MTP 3040
809
(−3.1%)

257
(−2.7%)

161
(0.0%)

67
(−9.5%)

193
(−1.0%)

W

Expt.232 3695 — 533 205 163 314
DFT — 1661 511 200 142 304

MTP 3680
1557
(−6.3%)

480
(−6.1%)

187
(−6.5%)

122
(−14.1%)

285
(−6.3%)
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Figure B.1: MD Simulation cell for dislocation mobility simulations. Crystalline orientations
of the cells are shown, with the screw and edge dislocations gliding on the (11̄0) plane.

Figure B.2: Comparison of dislocation dipole energies calculated from MTP and DFT. Distribu-
tions of dislocation dipole energies for varying local environments, calculated through the MTP
potential and compared with DFT data. The results were obtained by inserting a dislocation
dipole to supercells with three different levels of randomness: c1, c2 and c3. Each configuration
contains 231 different individual samples. For the DFT results the positions of the atoms are
relaxed through DFT. For the MTP results these positions are relaxed in MD based on the MTP
forces using the DFT relaxed cells. The histogram of supercell excess energies of different
configuration calculated by MD and DFT are plotted in green, blue and red, and fitted with a
Gaussian distribution, where µ is the average value and σ is the standard deviation. The results
calculated by MTP agree well with the DFT results. (The supercell excess energy is defined
as the energy difference between the supercell with and without the dislocation dipole. The
detailed dipole cell construction and VASP parameters for the DFT calculations are described in
previous work162).
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Figure B.3: Evolution of potential energy, diffuse antiphase boundary (DAPB) energy and
local chemical SRO in the MoNbTaW RHEA from hybrid MC/MD simulations. a, Change in
the total potential energy of the simulation cell containing 0.5 million atoms, DAPB energy
and cumulative SRO parameter (see Methods section) as a function of the number of MC
swaps during equilibration at 800K. b, The detailed values of Warren Cowley parameter αi j for
different pair types as a function of the MC swaps at the same temperature.
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Figure B.4: Extra stress required to break the interlocking kinks. Restart from the final
configuration shown in Figure 3.3c, the applied shear stress is increasing at the rate of 1.2
MPa/ps. The screw dislocation stays immobile until the shear stress reaches approximately 1.55
GPa, and the interlocking kinks are unlocked, as shown by the green arrow.
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Figure C.1: Comparison of mean absolute errors (MAEs) of MEGNet predictions compared to
DFT in formation energies of crystals relaxed using Bayesian optimization with and without
symmetry constraints. The MAEs are plotted with respect to the number of iterations.
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Figure C.2: Convergence of the BOWSR algorithm using the MEGNet energy model for
six structures in the dataset of properties prediction. These structures comprise two binary,
two ternary, and two quaternary crystals obtained from elemental substitution in commonly
occurring structure prototypes. The structure prototypes for a, Ta5Si3, b, MgF2, c, Ca4Bi2O, d,
SnCe2Se4, e, Ba2LaIrO6, f, CsYZnTe3 are Cr5B3 (ICSD# 27124), Sr2Si (ICSD# 422), K2NiF4
(ICSD# 15576), CaFe2O4 (ICSD# 28177), La2ZnIrO6 (ICSD# 75596), and KZrCuS3 (ICSD#
80624), respectively. All structures were relaxed via the BOWSR algorithm using the default
number of initialization samples (100) and iterations (100).
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Figure C.3: Statistical distribution of dataset used for property predictions. a, The distribution of
35 binary, 91 ternary, and 18 quaternary commonly occurring structure prototypes in the dataset.
Each bar represents one structure prototype and there are at least 30 unique compositions for
each structure prototype. b, Frequency of each element occurring in the dataset. Elements are
color-coded according to the number of occurrences. Oxygen is the most common element. The
relatively high frequencies of the transition metal elements Fe, Co, Ni, Cu can be attributed to
the commonly occurring intermetallic structure prototypes. The three most commonly occurring
structure prototypes are the ternary intermetallic (ThCr2Si2,233 TiNiSi,234 and ZrNiAl235) and
have 633, 619, and 484 compositions, respectively.
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Figure C.4: Mean absolute errors (MAEs) of MEGNet prediction compared to DFT ground
state calculations in formation energies using unrelaxed and BOWSR-relaxed structures grouped
by structure prototypes. To test the sensitivity of the BOWSR algorithm to the initial structures,
within each structure prototype, we selected four parent structures with different lattice parame-
ters for elemental substitution to obtain the unrelaxed structures (i.e., same composition with
different lattice parameters). The mean and standard deviation in the MAEs of the MEGNet
formation energy prediction with respect to DFT-computed values for each prototype are plotted
in the ascending order of mean MAE for the BOWSR-relaxed structures. While the unrelaxed
structures obtained from elemental substitution have large MAEs, relaxation via the BOWSR
algorithm consistently yields structures with much lower and less noisy MAEs in the formation
energies.
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Figure C.5: Sensitivity of the BOWSR algorithm to the accuracy of the energy model. a, Error
distributions of the MEGNet formation energy model on the training and test data. Both the
standard deviation (σ) and root mean squre error (RMSE) are 27 meV atom−1. Varying amounts
of Gaussian noise are added to the MEGNet formation energy prediction during the BOWSR

relaxation process. The error of the energy model σenergy is then given by
√

σ2
MEGNet +σ2

noise,
where σnoise is the standard deviation of the added noise. The RMSEs of the MEGNet-predicted
b, formation energy, c, bulk modulus, and d, shear modulus for the BOWSR-relaxed structures
are plotted against the error in the energy model. In all cases, linear correlations are observed
between the RMSE of the MEGNet prediction and the error of the energy model, and reasonably
low RMSEs in prediction are obtained when σenergy < 0.1 eV atom−1.
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[81] Lauri Himanen, Marc O.J. Jäger, Eiaki V. Morooka, Filippo Federici Canova, Yashasvi S.
Ranawat, David Z. Gao, Patrick Rinke, and Adam S. Foster. DScribe: Library of descriptors
for machine learning in materials science. Computer Physics Communications, 247:106949,
February 2020. ISSN 00104655. doi: 10.1016/j.cpc.2019.106949.

[82] Chandramouli Nyshadham, Matthias Rupp, Brayden Bekker, Alexander V. Shapeev, Tim
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Kerber, Lauren E. Marbella, Clare P. Grey, Stephen R. Elliott, and Gábor Csányi. Realistic
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[114] Sandip De, Albert P. Bartók, Gábor Csányi, and Michele Ceriotti. Comparing molecules
and solids across structural and alchemical space. Phys. Chem. Chem. Phys., 18(20):
13754–13769, 2016. ISSN 1463-9076, 1463-9084. doi: 10.1039/C6CP00415F.

[115] M. I. Baskes, J. S. Nelson, and A. F. Wright. Semiempirical modified embedded-atom
potentials for silicon and germanium. Phys. Rev. B, 40(9):6085–6100, September 1989.
ISSN 0163-1829. doi: 10.1103/PhysRevB.40.6085.

114



[116] Andreas Singraber, Jörg Behler, and Christoph Dellago. Library-Based LAMMPS Imple-
mentation of High-Dimensional Neural Network Potentials. J. Chem. Theory Comput., 15
(3):1827–1840, March 2019. ISSN 1549-9618, 1549-9626. doi: 10.1021/acs.jctc.8b00770.

[117] Yaolong Zhang, Ce Hu, and Bin Jiang. Embedded Atom Neural Network Potentials:
Efficient and Accurate Machine Learning with a Physically Inspired Representation. J.
Phys. Chem. Lett., 10(17):4962–4967, September 2019. ISSN 1948-7185, 1948-7185. doi:
10.1021/acs.jpclett.9b02037.

[118] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza
Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and Kevin Murphy.
Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, pages 3296–3297, July
2017. doi: 10.1109/CVPR.2017.351.

[119] Linfeng Zhang, Jiequn Han, Han Wang, Wissam A Saidi, and Roberto Car. End-to-
end Symmetry Preserving Inter-atomic Potential Energy Model for Finite and Extended
Systems. Proceedings of the 32nd International Conference on Neural Information
Processing Systems; Curran Associates Inc.: Montreal, Canada, pages 4441–4451, 2018.

[120] Bingqing Cheng, Edgar A. Engel, Jörg Behler, Christoph Dellago, and Michele Ceriotti. Ab
initio thermodynamics of liquid and solid water. Proc. Natl. Acad. Sci., 116(4):1110–1115,
January 2019. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1815117116.

[121] X. W. Zhou, R. A. Johnson, and H. N. G. Wadley. Misfit-energy-increasing dislocations in
vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B, 69(14):144113, April 2004. ISSN
1098-0121, 1550-235X. doi: 10.1103/PhysRevB.69.144113.

[122] A. Nichol and G. J. Ackland. Property trends in simple metals: An empirical potential
approach. Phys. Rev. B, 93:184101, May 2016. doi: 10.1103/PhysRevB.93.184101.

[123] Ebrahim Asadi, Mohsen Asle Zaeem, Sasan Nouranian, and Michael I. Baskes. Two-phase
solid–liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the
modified embedded-atom method. Acta Mater., 86:169–181, March 2015. ISSN 13596454.
doi: 10.1016/j.actamat.2014.12.010.

[124] Hyoungki Park, Michael R. Fellinger, Thomas J. Lenosky, William W. Tipton, Dallas R.
Trinkle, Sven P. Rudin, Christopher Woodward, John W. Wilkins, and Richard G. Hennig.
Ab Initio based empirical potential used to study the mechanical properties of molybdenum.
Phys. Rev. B, 85(21):214121, June 2012. ISSN 1098-0121, 1550-235X. doi: 10.1103/Phys
RevB.85.214121.

[125] Thomas J Lenosky, Babak Sadigh, Eduardo Alonso, Vasily V Bulatov, Tomas Diaz de la
Rubia, Jeongnim Kim, Arthur F Voter, and Joel D Kress. Highly optimized empirical
potential model of silicon. Modell. Simul. Mater. Sci. Eng., 8(6):825–841, oct 2000. doi:
10.1088/0965-0393/8/6/305.

115



[126] T. Kumagai, S. Izumi, S. Hara, and S. Sakai. Development of bond-order potentials that
can reproduce the elastic constants and melting point of silicon for classical molecular
dynamics simulation. Comput. Mater. Sci., 39(2):457 – 464, 2007. ISSN 0927-0256. doi:
10.1016/j.commatsci.2006.07.013.

[127] Sayyed Jalil Mahdizadeh and Golnoosh Akhlamadi. Optimized tersoff empirical potential
for germanene. J. Mol. Graphics Modell., 72:1 – 5, 2017. ISSN 1093-3263. doi:
10.1016/j.jmgm.2016.11.009.

[128] Graeme Henkelman and Hannes Jónsson. Improved tangent estimate in the nudged elastic
band method for finding minimum energy paths and saddle points. J. Chem. Phys., 113
(22):9978–9985, 2000. doi: 10.1063/1.1323224.

[129] R Hill. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc., London, Sect.
A, 65(5):349–354, May 1952. ISSN 0370-1298. doi: 10.1088/0370-1298/65/5/307.

[130] Søren L. Frederiksen and Karsten W. Jacobsen. Density functional theory studies of screw
dislocation core structures in bcc metals. Philos. Mag., 83(3):365–375, January 2003.
ISSN 1478-6435, 1478-6443. doi: 10.1080/0141861021000034568.

[131] Yu-Min Juan and Efthimios Kaxiras. Generalized stacking fault energy surfaces and
dislocation properties of silicon: A first-principles theoretical study. Philos. Mag. A, 74(6):
1367–1384, December 1996. ISSN 0141-8610, 1460-6992. doi: 10.1080/014186196082
40729.

[132] Jonathan A Zimmerman, Huajian Gao, and Farid F Abraham. Generalized stacking fault
energies for embedded atom FCC metals. Modell. Simul. Mater. Sci. Eng., 8(2):103–115,
March 2000. ISSN 0965-0393, 1361-651X. doi: 10.1088/0965-0393/8/2/302.

[133] A. Hunter, R. F. Zhang, and I. J. Beyerlein. The core structure of dislocations and their
relationship to the material γ-surface. J. Appl. Phys., 115(13):134314, April 2014. ISSN
0021-8979, 1089-7550. doi: 10.1063/1.4870462.

[134] K. Lejaeghere, V. Van Speybroeck, G. Van Oost, and S. Cottenier. Error Estimates for
Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-
State Elemental Crystals. Crit. Rev. Solid State Mater. Sci., 39(1):1–24, January 2014.
ISSN 1040-8436, 1547-6561. doi: 10.1080/10408436.2013.772503.
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