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Abstract

In the past decade, there has been a notable rise in foodborne outbreaks, prominently fea-

turing Escherichia coli as a primary pathogen. This bacterium, known for its prevalence in

foodborne illnesses and as a reservoir of antimicrobial resistance, was isolated from raw

vegetables, soil, and water samples collected from rooftop and surface gardens in urban

(Dhaka North City Corporation; DNCC and Dhaka South City Corporation; DSCC) and peri-

urban (Gazipur City Corporation; GCC) areas of Bangladesh. In this study, 145 samples

including vegetables (n = 88), water (n = 27) and soils (n = 30) from DNCC (n = 85), DSCC

(n = 30), and GCC (n = 30) were analyzed to assess the prevalence of E. coli using culture,

biochemical tests, and PCR targeting the malB gene. E. coli was detected in 85 samples,

indicating an overall prevalence of 58.62% (95% CI: 50.48–66.31). In urban areas (DNCC

and DSCC), the prevalence rates were 44.70% and 80.0%, respectively, with surface gar-

dens showing higher contamination rates (70.83%) than rooftop gardens (46.57%). In the

peri-urban GCC, overall prevalence of E. coli was 76.7%, with rooftop gardens more con-

taminated (93.33%) than surface gardens (60.0%). Antibiogram profiling of 54 randomly

selected isolates revealed 100% resistance to ampicillin, with varying resistance to cipro-

floxacin (25.92%), tetracycline (14.81%), cotrimoxazole (14.81%), imipenem (9.25%), and

fosfomycin (1.0%). Notably, all isolates were susceptible to ceftazidime, gentamicin, chlor-

amphenicol, nitrofurantoin, and cefotaxime. Multidrug resistance (MDR) was found in

14.81% of isolates. The blaTEM gene was present in 81.48% of the isolates, while the tetA

gene was detected in 3.70%. These findings underscore the urgent global health concern

posed by the significant presence of E. coli in fresh vegetables, highlighting the need for

improved safety measures and monitoring to prevent the spread of antimicrobial resistance

through the food chain.
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Introduction

Vegetables are regarded as vital components of balanced diets due to the phytochemicals, vita-

mins, minerals, and dietary fiber they provide. Vegetables in the daily diet have been associated in

a significant way with improved gastrointestinal health, enhanced vision, a decreased risk of car-

diovascular disease, stroke, chronic diseases including diabetes, and certain types of cancer [1,2].

It is believed that certain phytochemicals found in vegetables reduce the risk of chronic disease by

preventing free radical damage, influencing metabolic activation and detoxification of carcinogens

or even regulating processes that alter the progress of tumor cells [3]. The various vegetables could

provide defense against chronic diseases to human beings [4]. Recent research indicates a negative

association between vegetable consumption and mortality rates, particularly in cardiovascular dis-

ease and cancer [5,6]. However, findings have varied. Some studies suggest a lower mortality risk

with increased vegetable intake, yet a British study found no significant mortality differences

between vegetarians and non-vegetarians [7,8]. Unbalanced diets, marked by insufficient intake

of complex carbohydrates, dietary fiber, and vegetables, account for approximately 2.7 million

deaths each year [9] and are among the top 10 risk factors for mortality [4].

While fresh vegetables provide many health benefits, they can also pose potential risks [10].

In recent years, fresh fruits and vegetables have been associated with various outbreaks of

transmissible diseases around the world. Efforts are underway to tackle these food safety chal-

lenges [11]. Occasionally, raw salad vegetables are consumed without washing, peeling, or

applying any heat treatment. This exposes consumers to potential risks of foodborne illnesses

[12]. Vegetable contamination can occur at any stage, both before and after harvesting. Using

untreated effluent and manure as fertilizers in vegetable cultivation contributes to this contam-

ination [13,14]. Furthermore, a variety of potential contamination sources exist, including

debris, animal and human waste products, and the use of contaminated transportation and

handling processes. Harvesting and processing equipment can also introduce contaminants.

Each of these stages, from the field to the consumer, poses risks for introducing harmful sub-

stances into the food supply [15,16]. Earlier studies reported that consumption of a variety of

contaminated vegetables and fruits has been linked to outbreaks of viruses, bacteria, and para-

sites [16,17]. Fecal microorganisms have the potential to endure prolonged periods in soils

and manure and water and therefore, they serve as an accessible source of contamination

[18,19]. Antimicrobial resistance has become a noteworthy economic and public health worry

[20]. Recently, antibiotic resistance in E. coli and Salmonella spp. has been reported globally

[21,22]. E. coli keeps getting progressively more difficult to treat as resistance to most first-line

antimicrobials has evolved [22]. Furthermore, resistant E. coli tends to transfer genes encoding

resistance to antibiotics to other strains of E. coli and bacteria residing in the gastrointestinal

tract, thereby developing resistance from external organisms [23,24]. Resistance to ampicillin,

a semi-synthetic-lactam antibiotic commonly used to treat E. coli infections in humans and

livestock, has recently increased [25]. The prevalence of multidrug resistance E. coli in humans

and animals is rising worldwide [20,21,26]. The increasing resistance of E. coli to beta-lactam

antibiotics is leading to severe troubles among the general population [27]. E. coli may also

develop resistance to various classes of commonly prescribed antibiotics, including trimetho-

prim-sulfamethoxazole, aminoglycosides, and fluoroquinolones [28]. Such resistance would

result in higher mortality and morbidity rates, prolonged hospital stays, elevated treatment

expenditures, and disintegration of healthcare facilities. Two plasmid-mediated beta-lactam

enzymes, extended-spectrum beta-lactamases (ESBLs) and AmpC beta-lactamases (AmpC),

trigger resistance to beta-lactam antibiotics, resulting in a grave effect on the global health sec-

tor [28]. Plasmid-mediated AmpC (CMY-2) is a major threat to public health that appears fre-

quently in Enterobacteriaceae, especially E. coli, in humans and animals [29].
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The malB gene is involved in the maltose and maltodextrin transport system in bacteria,

particularly in E. coli [30]. The malB operon encodes components essential for the transport

and metabolism of maltose and maltodextrins, which are polysaccharides derived from starch.

This operon is part of the ATP-binding cassette (ABC) transporter family and includes genes

like malE, malF, and malG, which encode for the maltose-binding protein (MalE) and the

membrane components (MalF and MalG) that form the maltose transporter complex [30,31].

The presence of multidrug resistance E. coli in vegetables is a serious global concern [19].

Despite extensive research on E. coli in commercially sourced vegetables [32,33], there is a sig-

nificant knowledge gap regarding its presence in vegetables from home gardens, which are cul-

tivated organically without pesticides or herbicides. Currently, there is a lack of data on E. coli
in rooftop and surface gardening practices in Bangladesh. This study aims to isolate and iden-

tify E. coli from various vegetables, soil, and water samples from rooftops and surface gardens.

We also assessed the resistance profiles of the E. coli isolates and identified the genes responsi-

ble for beta-lactams and tetracycline resistance.

2. Materials and methods

2.1 Sample information

This study was carried out at the Bacteriology Laboratory, Department of Microbiology and

Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh, from September

2022 to March 2023. Vegetables, water, and soil samples (S1 Table) were collected from urban

locations including Dhaka North City Corporation (DNCC, 23˚52’55.5"N, 90˚24’14.9"E; total

population: 5,979,537, total areas: 19,700 hectares) and Dhaka South City Corporation (DSCC,

23˚43’27.0"N, 90˚28’51.0" E; total population: 4,299,345, total area: 10,920 hectares), as well as

the peri-urban area of Gazipur City Corporation (GCC, 25˚35’37.1"N, 83˚34’53.4"E; total pop-

ulation: 1,129,145, total area: 32,923 hectares) within the Dhaka division of Bangladesh (S1

Fig) [34]. These areas are approximately 15–20 km apart from each other and feature tropical

wet and dry climates. A total of 145 samples including 85 from DNCC (rooftop garden = 43,

surface garden = 42), 30 from DSCC (rooftop garden = 15, surface garden = 15) and 30 from

GCC (rooftop garden = 15, surface garden = 15) were collected. Further classification of the

samples included most commonly grown 88 vegetables namely Coriander (Coriandrum sati-
vum), Red amaranth (Amaranthus cruentus), Radish leaves (Raphanus sativus), Green chilies

(Capsicum frutescens), Tomato (Solanum lycopersicum), Malabar spinach (Basella alba)), 27

water samples (Deep tubewell, stored water), and soils (n = 30).

2.2 Isolation and identification of E. coli
Isolation and identification of E. coli were performed by culturing on Eosin Methylene Blue

(EMB) agar plates (HiMedia, India) followed by Gram staining. A single loopful of overnight

culture grown in nutrient broth was streaked onto EMB agar (HiMedia, India) and incubated

aerobically overnight at 37˚C [35,36]. Phenotypic identification of the isolates (N = 85) was

performed based on the colony morphology and Gram-staining (Gram -ve, formation of

green metallic sheen on EMB), and biochemical tests such catalase, indole, methyl red, Voges-

Proskauer (VP), oxidase, urease and triple sugar iron tests [21]. The isolates were molecularly

confirmed as E. coli using species-specific polymerase chain reaction (PCR) amplification of

the malB gene (S2 Fig) [21,37]. The malB gene specific primers are presented in Table 1.

Genomic DNA from overnight culture by boiled DNA extraction method using commercial

DNA extraction kit, QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany). Quality and quan-

tity of the extracted DNA were measured using a NanoDrop ND-2000 spectrophotometer

(Thermo Fisher Scientific, Waltham, MA). DNA extracts with A260/280 and A260/230 ratios
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of* 1.80 and 2.00 to 2.20, respectively, were considered as high-purity DNA samples [38] and

stored at -20˚C prior to PCR amplification [37,39]. Amplification of targeted DNA was carried

out in a 20 μL reaction mixture, which included 3 μL nuclease-free water, 10 μL 2X master

mixture (Promega, Madison, WI, USA), 1 μL each of forward and reverse primers, and 5 μL

DNA template. PCR-positive controls consisted of E. coli genomic DNA previously confirmed

for the target genes [37]. PCR-negative controls utilized non-template controls with PBS

instead of genomic DNA. The amplified PCR products were then subjected to electrophoresis

on a 1.5% agarose gel and visualized using an ultraviolet transilluminator (Biometra, Got-

tingen, Germany). A 100 bp DNA ladder (Promega, Madison, WI, USA) was used to validate

the expected sizes of the amplified PCR products [37,40]. Finally, 85 isolates were confirmed as

E. coli through species-specific PCR.

2.3 Antimicrobial susceptibility assay

The antimicrobial susceptibility profiles of 54 randomly selected E. coli isolates (out of 85 con-

firmed isolates) were assessed using the disk diffusion test (DDT), in accordance with the guide-

lines outlined in the Clinical Laboratory Standards Institute (CLSI) 2023 (M100 33rd Edition)

[42]. Eleven antibiotics from nine commonly practiced antibiotic classes in Bangladesh were

employed. These were ciprofloxacin (CIP, 5 μg), gentamicin (GEN, 10 μg), tetracycline (TET,

30 μg), ceftriaxone (CTR, 30 μg), ampicillin (AMP, 25 μg), ceftazidime (CAZ, 5 μg), chloram-

phenicol (C, 30 μg), imipenem (IMP, 10 μg), fosfomycin (FOS, 50 μg), nitrofurantoin (NIT,

300 μg), and cotrimoxazole (COT, 25 μg). The isolated colonies were taken into 4–5 mL of nutri-

ent broth for performing DDT. After preparing the broth cultures, isolates were incubated for

4–5 hrs at 37˚C, and the turbidity of bacterial suspensions was adjusted with the 0.5 McFarland

unit (HiMedia, India). After that, the dried surface of a Muller Hilton (MH) agar plate was inoc-

ulated by spreading the broth suspension on the surface with sterile cotton swabs. Finally, the

antibiotic disks were applied on the surface of the agar plates, and left for overnight (>16 hrs.)

incubation at 37˚C. The isolates were categorized as susceptible, intermediate, and resistant

according to CLSI guidelines [42]. Multidrug resistance (MDR) patterns, defined as resistance

to� 3 antibiotics, were identified using the protocol outlined by Saha et al. and Sultana et al.

[43,44]. The Multiple Antibiotic Resistance (MAR) index was calculated by dividing the number

of antibiotics to which an isolate was resistant by the total number of antibiotics tested [45]. E.

coli strain ATCC25922 was used as the negative control in the antimicrobial susceptibility tests.

2.4 Molecular detection of antibiotic-resistant genes in E. coli
To detect antibiotic-resistant genes in the E. coli isolates (n = 54), simplex PCR assays were

conducted for beta-lactamase genes (e.g., blaTEM) (S3A Fig) and tetracycline resistance genes

(e.g., tetA) (S3B Fig) using specific primers (Table 1). For both genes, PCR was conducted

Table 1. List of primers used in this study.

Name of Primers Targeted gene Primer sequences (5´-3´) Amplicon size (bp) References

malB (F) malB 5´GACCTCGGTTTAGTTCACAGA3´ 585 [30]

malB (R) 5´ CACACGCTGACGCTGACCA3´

tetA (F) tetA 5´ GGTTCACTCGAACGACGTCA3´ 577 [41]

tetA (R) 5´ CTGTCCGACAAGTTGCATGA3´

blaTEM (F) blaTEM 5´ CATTTCCGTGTCGCCCTTAT3´ 793

blaTEM (R) 5´ TCCATAGTTGCCTGACTCCC3´

https://doi.org/10.1371/journal.pone.0315938.t001
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with a final volume of 20 μL. The PCR conditions for the tetA gene involved an initial denatur-

ation at 95˚C for 5 min, followed by 32 cycles of denaturation at 95˚C for 1 min, annealing at

57˚C for 1 min, and extension at 72˚C for 1 min. A final extension step was carried out at 72˚C

for 10 min. For the blaTEM gene, the thermal profile included an initial denaturation at 95˚C

for 1 min, followed by 34 cycles of denaturation at 95˚C for 1 min, annealing at 56˚C for 1

min, and extension at 72˚C for 1 min, with a final extension at 72˚C for 7 min [40]. Although a

positive control was not included for the resistance genes, a non-template control (NTC),

which contained no DNA, was used to ensure the absence of contamination.

2.5 Statistical analysis

Data were entered into Microsoft Excel 20201 (Microsoft Corp., Redmond, WA, USA) and ana-

lyzed using SPSS version 25 (IBM Corp., Armonk, NY, USA) and GraphPad Prism version 8.4.3

(GraphPad Software, Inc.). The Pearson’s chi-square test was conducted to compare the occur-

rence of E. coli across different sample categories (e.g., DNCC, DSCC, and GCC). Prevalence per-

centages were calculated by dividing the number of positive samples in each category by the total

number of samples tested within that category [46,47]. The prevalence formula was applied for

determining occurrence percentage of E. coli. The AMR patterns, resistance, intermediate and

sensitivity, and MAR index were calculated using the CLSI (2023) guideline using the cut-off as

provided in the brochure of the manufacturer (Liofilchem1, Italy). Additionally, an identical test

was done to determine whether the presence of resistance genes caused variations in phenotypic

antibiotic resistance. For the test, p< 0.05 was considered statistically significant.

Results

3.1 Overall prevalence of E. coli
In this study, 145 samples were collected from DNCC, DSCC, and GCC and subjected to anal-

ysis. The identification process involved culturing the samples, performing biochemical tests,

and conducting PCR targeting the malB gene (S2 Fig). Out of the total samples, 85 isolates

were confirmed as E. coli. This resulted in an overall prevalence of E. coli in the studied samples

of 58.62% (95% CI: 50.48–66.31) (S2 Table). This prevalence indicates that more than half of

the samples contained E. coli, reflecting its significant presence in the studied areas.

3.2 Prevalence of E. coli in urban (DNCC and DSCC) areas of Bangladesh

In DNCC, a total of 85 samples, including vegetables, water, and soil, were collected from roof-

top (n = 43) and surface (n = 42) gardens. The overall prevalence of E. coli in these samples

was 44.70% (95% CI, 34.59–55.28) (Fig 1A, S3 Table). However, the prevalence of E. coli was

lower in rooftop gardens, at 20.93% (95% CI: 11.42–35.20), compared to surface gardens,

which had a higher occurrence of 69.04% (95% CI: 53.97–80.92) (Fig 1B, S4 Table). In the

rooftop samples of DNCC, E. coli was detected in vegetables and soil with frequencies of 28.0%

(95% CI: 14.28–47.57) and 25% (95% CI: 4.44–59.07), respectively. Water samples from the

rooftop gardens were found to be free of E. coli (Fig 1C, S5 Table). In contrast, surface samples

showed E. coli prevalence rates of 86.95% (95% CI: 67.87–95.46) in vegetables, 12.5% (95% CI:

0.64–47.08) in water, and 72.73% (95% CI: 43.43–90.25) in soil (Fig 1C, S6 Table).

Similarly, from DSCC, 30 samples were collected, including rooftop gardens (n = 15) and

surface gardens (n = 15), with an 80.0% prevalence found (95% CI, 62.69–90.49) (Fig 1A, S3

Table). Consistent with DNCC, the prevalence of E. coli was lower in rooftop gardens

(73.33%, 95% CI, 48.05–89.10) compared to surface gardens (86.67%, 95% CI, 62.12–97.63)

(Fig 1B, S4 Table). In rooftop gardens of DSCC, E. coli was found in 70% of vegetable samples
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(95% CI, 39.67–89.22), 50% of water samples (95% CI, 2.56–97.43), and 100% of soil samples

(95% CI, 43.85–100) (Fig 1C, S5 Table). Conversely, in surface gardens of DSCC, E. coli preva-

lence was highest in vegetables (100%, 95% CI, 72.24–100), followed by soil (66.67%, 95% CI,

11.84–98.29) and water samples (50%, 95% CI, 2.56–97.43) (Fig 1C, S6 Table).

3.3 Prevalence of E. coli in peri-urban (GCC) areas of Bangladesh

In the peri-urban area of GCC, a total of 30 samples (15 from rooftop gardens and 15 from sur-

face gardens) were collected and analyzed, with an overall E. coli prevalence of 76.7% (95% CI,

Fig 1. Prevalence of E. coli based on study areas (DNCC, DSCC, and GCC), locations (rooftop and surface gardens), and sample types (vegetables, water

and soils).

https://doi.org/10.1371/journal.pone.0315938.g001
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59.07–44.20) (Fig 1A, S3 Table). In contrast to the urban areas (DNCC and DSCC), E. coli
prevalence was higher in rooftop gardens (93.33%, 95% CI, 70.18–99.65) compared to surface

gardens (60.0%, 95% CI, 35.74–80.17) in the peri-urban area of GCC (Fig 1B, S4 Table). Spe-

cifically, E. coli was found in 100% of vegetable (95% CI, 72.24–100) and soil (95% CI, 17.76–

100) samples from rooftop gardens, while water samples had a prevalence of 66.7% (95% CI,

11.84–98.29) (Fig 1C, S5 Table). In contrast, water samples from surface gardens were free of

E. coli. However, E. coli was detected in 70.0% of vegetable (95% CI, 39.68–89.22) and 66.7% of

soil (95% CI, 11.84–98.29) samples from the same gardens (Fig 1C, S6 Table).

3.4 Antibiogram profile of E. coli
The overall antibiogram profile of isolated E. coli is presented in Fig 2. Out of the 85 isolates, a

random selection of 54 was subjected to antibiogram testing. Resistance was observed across

all isolates to ampicillin (AMP; 100%), with varying resistance rates noted for ciprofloxacin

(CIP; 25.92%), tetracycline (TET; 14.81%), cotrimoxazole (COT; 14.81%), imipenem (IMP;

9.25%), and fosfomycin (FOS; 1%) (Fig 2). Additionally, these isolates showed intermediate

resistance to ciprofloxacin (CIP; 74.0%), imipenem (IMP; 37.0%), and fosfomycin (FOS;

33.0%). Fortunately, the tested E. coli isolates were 100% susceptible to gentamicin (GEN), cef-

tazidime (CAZ), chloramphenicol (C), nitrofurantoin (NIT), and ceftriaxone (CTR). They

Fig 2. Overall resistance rates of the 54 E. coli isolates to 11 antibiotics. The percentage of R (Resistant, olive), I (Intermediate resistant, orange), and S

(Susceptible, green) profiles are indicated for each antibiotic inside the bar chart. CIP: Ciprofloxacin, GEN: Gentamicin, CAZ: Ceftazidime, TET; Tetracycline,

IMP; Imipenem, COT; Cotrimoxazole, FOS; Fosfomycin, AMP; Ampicillin, C; Chloramphenicol, NIT; Nitrofurantoin and CTR: Ceftriaxone.

https://doi.org/10.1371/journal.pone.0315938.g002
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were also susceptible to tetracycline (TET; 79.6%), cotrimoxazole (COT; 79.6%), fosfomycin

(FOS; 64.8%), and imipenem (IMP; 53.7%) (Fig 2). However, bivariate analysis of the tested

antibiotics revealed a strong positive and significant correlation between resistance to tetracy-

cline and cotrimoxazole (p = 0.002, ρ = 0.413) (Table 2).

3.5 Phenotypic resistance patterns of the multidrug resistance E. coli
isolates

Table 3 presents the phenotypic multidrug resistance (MDR) patterns of the E. coli isolates.

Among the 54 isolates, 48.14% (95% CI: 35.39–61.14) exhibited MDR. In total, 10 distinct anti-

biotic resistance patterns were identified. The most prevalent pattern was pattern no. 1 (AMP,

TET, CIP, COT, IMP), observed in 14.81% of isolates, followed by pattern no. 2(AMP, TET,

COT) in 12.96% of the isolates. Patterns no. 3, 4, 5, 6, and 7, which include combinations like

(AMP, TET, CIP), (AMP, CIP, COT), (AMP, COT), (AMP, TET), and (AMP, IMP) showed a

prevalence of 11.11%. The least prevalent pattern was pattern no. 8 (AMP, FOS), 9 (AMP,

CIP), and 10 (AMP), observed in 5.55% of the isolates. The multiple antibiotic resistance

(MAR) indices were found to vary between 0.09 and 0.45 (Table 3).

3.6 Genotypic resistance patterns of E. coli isolates

The presence of two AMR genes (e.g., blaTEM and tetA) in all E. coli isolates was assessed by

PCR (Fig 3). Among the 54 randomly selected E. coli isolates, all 54 (100.0%) exhibited pheno-

typic resistance to ampicillin. In contrast, only 8 isolates (14.81%) demonstrated phenotypic

resistance to tetracycline. In the E. coli isolates that exhibited resistance to ampicillin, the bla-
TEM gene was detected in 81.48% (95% CI: 69.16–89.61, 44 out of 54 isolates). In those resis-

tant to tetracycline, the tetA gene was present in 25.0% (95% CI: 4.44–59.07, 2 out of 8 isolates)

(Fig 3).

Discussion

Foodborne illnesses have increasingly become a significant concern across communities glob-

ally [48,49]. This rise in foodborne illnesses is attributed to variations in distribution patterns,

manufacturing processes, and consumer behaviors [11]. This study on the prevalence and

Table 2. Pearson correlation coefficient to assess the pairs of any of two resistant antibiotics used in E. coli.

Antibiotics TET CIP COT FOS IMP

TET Pearson Correlation 1

Sig. (2-tailed)

AMP Pearson Correlation -0.057

Sig. (2-tailed) 0.681

CIP Pearson Correlation 0.229 1

Sig. (2-tailed) 0.096

COT Pearson Correlation 0.413** 0.229 1

Sig. (2-tailed) 0.002 0.096

FOS Pearson Correlation -0.057 -0.081 -0.057 1

Sig. (2-tailed) 0.681 0.559 0.681

IMP Pearson Correlation 0.226 0.103 0.226 -0.044 1

Sig. (2-tailed) 0.1 0.46 0.1 0.753

** Correlation is significant at the 0.01 level (2-tailed). TET: Tetracycline, CIP: Ciprofloxacin, COT: cotrimoxazole, FOS: Fosfomycin, IMP: Imipenem.

https://doi.org/10.1371/journal.pone.0315938.t002
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Table 3. Resistance patterns of multidrug resistant (MDR) E. coli isolates.

Pattern No. Resistance patterns No. of antibiotics (classes) No. of MDR Isolates MDR

(%)

MAR index

1 AMP, TET, CIP, COT, IMP 5(5) 7 48.14 0.45

2 AMP, TET, COT 3(3) 7

0.273 AMP, TET, CIP 3(3) 6

4 AMP, CIP, COT 3(3) 6

5 AMP, COT 2(2) 7

0.186 AMP, TET 2(2) 6

7 AMP, IMP 2(2) 6

8 AMP, FOS 2(2) 3

9 AMP, CIP 2(2) 3

10 AMP 1(1) 3 0.09

TET: Tetracycline, AMP: Ampicillin, CIP: Ciprofloxacin, COT: Cotrimoxazole, FOS: Fosfomycin, IMP: Imipenem.

https://doi.org/10.1371/journal.pone.0315938.t003

Fig 3. Heatmap illustrating the distribution of resistance genes (blaTEM and tetA) in E. coli isolates, with the X-axis representing the resistance genes

and the Y-axis displaying the isolates. In the heatmap, the red color denotes resistant isolates, while the green color indicates sensitive isolates.

https://doi.org/10.1371/journal.pone.0315938.g003
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antibiotic resistance profiles of E. coli in urban (DNCC and DSCC) and peri-urban (GCC)

rooftop and surface gardens explored the frequency of this pathogen in these environments

and its resistance to various antibiotics. We also assessed how often E. coli is found in rooftop

versus surface gardens and examined the antibiotic resistance patterns of isolated strains and

the presence of specific resistance genes. In this study, the overall prevalence of E. coli was

found to be 58.62%, indicating a significant presence of this pathogen in the surveyed urban

and peri-urban gardens. In a similar study, Nipa et al. reported a 40.62% prevalence of E. coli
in fresh salad vegetables, which is lower compared to the prevalence observed in the current

study [50]. Raw vegetables are particularly vulnerable to contamination by pathogenic bacteria

like E. coli, which can either be dispersed on the plant surface or embedded as microcolonies

within plant tissues [51]. In developing countries like Bangladesh, the incidence of foodborne

illnesses linked to contaminated vegetables is notably high [52,53]. The lack of research and

surveillance often results in many outbreaks going unreported, with only a limited number

documented in scientific literature.

The study provides a detailed examination of E. coli prevalence in urban gardens, revealing

distinct patterns between rooftop and surface gardens in DNCC and DSCC. In DNCC, the

overall E. coli prevalence was 44.70%, with rooftop gardens exhibiting a lower prevalence

(20.93%) compared to surface gardens (69.04%). Specifically, E. coli was present in 28.0% of

rooftop vegetable samples and 25% of rooftop soil samples, while no E. coli was detected in

rooftop water samples. Conversely, surface gardens had a significantly higher prevalence of E.

coli in vegetables (86.95%), with lower levels in water (12.5%) and a substantial prevalence in

soil (72.73%). The findings from DSCC corroborate these trends, showing an overall E. coli
prevalence of 80.0%. Rooftop gardens in DSCC had a prevalence of 73.33%, whereas surface

gardens had a higher prevalence of 86.67%. In rooftop gardens, E. coli was found in 70% of

vegetable samples, 50% of water samples, and 100% of soil samples. In surface gardens, the

pathogen was detected in 100% of vegetable samples, 66.67% of soil samples, and 50% of water

samples. However, in the peri-urban area of GCC, a total of 30 samples from rooftop and sur-

face gardens revealed a high overall E. coli prevalence. Rooftop gardens had a higher preva-

lence compared to surface gardens. Specifically, E. coli was found in 100% of vegetable and soil

samples from rooftop gardens and in 66.7% of water samples. In surface gardens, E. coli was

present in 70.0% of vegetable samples and 66.7% of soil samples but was absent from water

samples. These results indicate that rooftop gardens experience more extensive contamination,

particularly in vegetables and soil, highlighting the need for enhanced sanitation and manage-

ment practices in both garden types to address E. coli contamination [11,24]. Agricultural

practices in rooftop and surface gardens in urban and peri-urban areas of Bangladesh, such as

using manure-based fertilizers, irrigating with possibly contaminated water, and applying pes-

ticides or antibiotics, may introduce and propagate MDR bacteria. This contamination can

transfer to plants and soil, posing public health risks when these vegetables are consumed.

Although this study analyzed a limited sample size, it marks, to the best of our knowledge, the

first investigation of antimicrobial resistance in urban and peri-urban garden systems in Ban-

gladesh, highlighting a critical area for further research and monitoring.

While the presence of E. coli in these urban settings has been shown not to be a good indica-

tor of pathogens, we assume that E. coli is prevalent in urban and rooftop gardens due to fac-

tors like contaminated water sources, exposure to animal waste, insufficient hygiene practices,

and soil quality issues [54]. These conditions create ideal environments for bacterial contami-

nation, impacting food safety. The elevated E. coli prevalence in surface gardens may stem

from differences in soil type, irrigation, fertilization, and exposure to human or animal activity,

which vary significantly from rooftop gardens [55,56]. The role of soil as a primary reservoir

for E. coli suggests its capacity to sustain and spread the bacterium to plants and ultimately to
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humans [57,58]. Additionally, the use of unsanitized organic fertilizers or compost in surface

gardens can introduce bacteria, while rooftop gardens exhibited no contamination in water

samples, implying more controlled inputs. Lower prevalence in water compared to vegetables

may indicate dilution effects or sampling differences, while high soil prevalence reinforces

soil’s potential as an E. coli reservoir [58]. This underscores the public health significance of

soil in urban and rooftop gardens, where contaminated soil can directly impact food safety

and increase the risk of E. coli-related infections.

The antibiogram of 54 E. coli isolates showed universal resistance to ampicillin (100.0%)

and varying resistance rates to ciprofloxacin, tetracycline, cotrimoxazole, imipenem, and Fos-

fomycin (< 30.0%). Intermediate resistance was noted for ciprofloxacin (74%), imipenem

(37%), and fosfomycin (33%). There were high susceptibility rates (100.0%) among the E. coli
isolates to gentamicin, ceftazidime, chloramphenicol, nitrofurantoin, and ceftriaxone.

Remarkably, a significant correlation was found between resistance to tetracycline and cotri-

moxazole (p = 0.002, ρ = 0.413). In this study, 48.14% of the E. coli isolates showed multidrug

resistance (MDR), with 10 distinct resistance patterns identified. The most common pattern

involved ampicillin alone, while other patterns included combinations of ampicillin with vari-

ous antibiotics. These results moderately contrast with those of Cao et al., who reported a

92.9% multidrug resistance rate among E. coli isolates from retail fresh vegetables in Shaanxi

Province, China [59]. This study also noted variability in the MAR indices among the isolates.

Antibiotic-resistant bacteria like E. coli can migrate from one location to another and from the

environment to humans via the consumption of raw vegetables. This transmission pathway

underscores the importance of monitoring and managing antibiotic resistance in agricultural

and food safety practices [60]. Unlike our findings, which showed 14.81% of E. coli isolates

resistant to tetracycline, two previous studies reported higher resistance rates of 80% and

43.06%, respectively [61,62]. Many studies have documented the presence of drug-resistant E.

coli and other coliforms in vegetables [53,60,63]. This highlights a concerning trend in food

safety, as the consumption of contaminated vegetables can facilitate the spread of antibiotic-

resistant bacteria to humans. The fact that ampicillin is a clinical antibiotic makes this more

disturbing and suggests the source of contamination may have been from human waste and

thus corroborate the assumption that contamination is due to discharge from anthropogenic

sources [53]. This result also agrees with a recent report of high tetracycline resistance

observed among E. coli isolates [53]. Moreover, the detection of resistance phenotype was also

supported by the detection of blaTEM and tetA genes in the E. coli isolates. All 54 isolates were

resistant to ampicillin, with 81.48% carrying the blaTEM gene. However, only 14.81% showed

resistance to tetracycline, and among these, 25.0% had the tetA gene. Statistical analysis indi-

cated that while ampicillin-resistant isolates had similar frequencies of blaTEM and tetA genes,

tetracycline-resistant isolates had a significantly (p = 0.035) higher prevalence of tetA com-

pared to blaTEM, highlighting differences in phenotypic resistance. E. coli is a common com-

ponent of the intestinal flora and is generally harmless. However, antibiotic resistance genes

like blaTEM and tetA present in commensal E. coli can be transferred to pathogenic strains

like E. coli O157 or Salmonella spp. [53,64]. This gene transfer can lead to serious health issues,

complicating treatment and increasing the risk of severe infections [64]. In contrast to our

findings, Kim and Woo (2014) characterized antimicrobial-resistant E. coli from organic vege-

tables and found a lower prevalence of blaTEM genes (3.6%) but a higher prevalence of tetA
genes (10.7%) [63].

Industrialization has increased health awareness, leading people to prefer homegrown vege-

tables with minimal pesticides, fertilizers, and antibiotics. Consequently, antibiotic resistance

remains moderate, with multidrug resistance (14.81%) in E. coli being a concern. Sustainable

farming practices, regular hygiene, and farm management are essential to control resistance.
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Effective management is crucial to mitigate the risks posed by antibiotic-resistant E. coli in

urban agriculture. While E. coli can be found in various environments, the lack of detailed

information regarding gardening practices in the three areas limits the applicability of our

findings for effective garden management. To enhance vegetable safety for human consump-

tion, further research should focus on comparing soil quality, water sources, and preparation

techniques. This would provide actionable insights for improving hygiene practices and miti-

gating contamination risks in both rooftop and surface gardens.

5. Conclusion

MDR E. coli poses a significant public health threat worldwide. The findings from the present

study provide the prevalence of E. coli in vegetables, water and soil samples at the urban

(DNCC and DSCC) and peri-urban (GCC) rooftop and surface gardens harboring blaTEM
and tetA resistance genes. Detection was confirmed both phenotypically and genotypically via

PCR, raising serious public health concerns. Fresh salad vegetables could be a potential source

of drug-resistant E. coli. This study is the first in Bangladesh to report MDR E. coli from roof-

top vegetables, soil, and water in urban (DNCC and DSCC) and peri-urban (GCC) rooftop

and surface gardens of Bangladesh. Overall, these findings emphasize the importance of moni-

toring and managing E. coli contamination in urban and peri-urban gardens, especially in

areas with high prevalence. Our findings underscore the importance of public awareness about

hygiene practices and environmental controls to minimize contamination risks in both surface

and rooftop gardens. Encouraging regular monitoring and thoroughly washing rooftop garden

produce with safe, potable water is essential to safeguard public health and prevent potential

foodborne illnesses. Regular training and awareness programs for gardeners about best prac-

tices can also enhance overall food safety and reduce public health risks.
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