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Abstract

Completely automated public Turing test to tell humans apart
(CAPTCHA) aims to exploit the ability gaps between ma-
chines and humans to distinguish between them. However, the
rapid development of artificial intelligence technology in the
past decade has significantly narrowed the gap in some tasks
based on natural images (e.g., object detection and recogni-
tion). Mooney images (MIs) are important research materials
in the field of cognitive science. Compared to natural images,
we perceive MIs relying more on the iteration between feed-
forward and feedback processes. In this paper, we explored an
intriguing question: Can MIs be used to distinguish between
machines and humans? Before this study, we first proposed
a framework HiMI that generated the high-quality MIs from
natural images and also allowed flexible adjustment of the per-
ceived difficulty. Next, we designed two MI-based Turing test
tasks related to foreground-background segregation and object
recognition, respectively. We compared the performance of
human subjects and the deep neural networks on these two
tasks. The experimental results indicate the significant gaps
between the deep neural networks and humans, providing ev-
idence for the potential of MIs in the design of CAPTCHA
schemes. We hope that HiMI will contribute to more research
related to MIs in the fields of cognitive science and computer
science.

Keywords: Turing test; CAPTCHA; Mooney image; closed-
loop information processing; object detection; figure-ground
segregation; deep neural networks.

Introduction
The Turing test, proposed by computer scientist Alan Math-
ison Turing, aims to judge whether a machine attains a level
of intellectual capacity akin to that of humans (French, 2000).
Researchers later proposed the schemes of completely auto-
mated public Turing tests to tell humans apart (CAPTCHA)
to ensure the security of websites and online applications (Xu,
Liu, & Li, 2020). According to the format of data, these
CAPTCHA schemes can be broadly categorized into three
types: text, image, and audio. Text-based and image-based
CAPTCHA schemes are the most widely applied and typi-
cally rely on visual tasks of target detection and recognition
(Alqahtani & Alsulaiman, 2020; Shi et al., 2020). Specifi-
cally, users are required to identify English letters, Chinese
characters, or target objects within them.

With the rapid improvement in the performance of recog-
nition algorithms, the security of many CAPTCHAs is under
severe threat (Zhao et al., 2018; Searles et al., 2023). Al-
gorithms can be roughly divided into two categories based
on their development process: traditional methods and those

based on deep neural networks. Traditional methods are in-
spired by perceptual processing theories (e.g., Gestalt the-
ory (Wagemans, Elder, et al., 2012; Wagemans, Feldman,
et al., 2012)) and object recognition theories (e.g., Ob-
ject template theory, Recognition by components theory
(Biederman, 1987)). Designers of text-based CAPTCHAs
typically employ some techniques to enhance recognition dif-
ficulty (Bursztein, Martin, & Mitchell, 2011; Wang et al.,
2023). For instance, introducing noise into the CAPTCHA,
increasing overlap and intersection between texts, and induc-
ing a certain degree of deformation. Moreover, the complex-
ity of content and interference noise in natural images result
in incomplete feature extraction, thereby affecting the perfor-
mance of traditional methods. Deep neural networks have
made significant strides in recognition accuracy compared to
traditional methods. With the massive training data and pow-
erful computation, the performance of these methods even
surpasses that of humans (Alqahtani & Alsulaiman, 2020).

In daily life, we can effortlessly recognize pedestrians and
vehicles on the road, words in a book, or food on a desk-
top. The efficiency of the visual system leads us to overlook
the process from the initial visual signals to the emergence
of perception. Research indicates that approximately half of
the cerebral cortex in primates is involved in visual percep-
tion (Felleman & Van Essen, 1991; DiCarlo, Zoccolan, &
Rust, 2012). Therefore, this process involves high computa-
tional complexity. Fig. 1 (A) displays the closed-loop infor-
mation processing process for object recognition in the hu-
man visual system. It comprises two iterative components:
feedforward/bottom-up and feedback/top-down (Theeuwes,
2010). During the bottom-up process, the visual system in-
tegrates low-level visual signals through perceptual organi-
zation to obtain higher-level visual features and extract cru-
cial cognitive cues (e.g., shape, texture). Our brain combines
these cues with rich object knowledge, generating visual ex-
pectations. During the feedback process, the visual system
actively adjusts perceptual organization by integrating miss-
ing information, filtering noise, and reducing redundancy to
meet these expectations.

The Mooney image (MI) are a type of stylized image that
consists of discrete speckles with irregular shapes and sizes,
colored only in black and white (Mooney, 1957; Mitra et al.,
2009; Hegdé, Thompson, & Kersten, 2007). It is obtained
by binarizing natural images and setting a threshold to pre-
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Figure 1: (A) Comparison between the natural and MIs. Visually, natural images contain rich cues, complete and continuous
object information, while in MIs, there are fewer cues, the content is incomplete and discrete. According to the closed-loop
information processing process of human vision system, perceiving the target object from MIs relies more on the iteration
between the bottom-up process and the top-down process. (B) The overview of HiMI. It consists of two steps, color quantization
and perceived difficulty control. Color quantization aims to reduce the color space to 1-bit while preserving as much of the
natural image content as possible. We consider two factors, object saliency and recognition cues, to control the perceived
difficulty of MIs.

serve the highlighted areas. Fig. 1 (A) displays an example
of the MI. When some speckles are appropriately organized
together, we can perceive a tiger. From the visual comparison
between the natural image and the MI, we can observe that
the MI contains fewer visual cues, and its content is partial
and discrete. These characteristics make it an important re-
search material in cognitive science. The discrete speckles in-
crease the difficulty of perceptual organization in the bottom-
up process, enabling researchers to more clearly observe and
record the occurrence of perceptual organization (Andrews &
Schluppeck, 2004; Mooney, 1957; Grützner et al., 2010). In
addition, MIs miss some visual content and cues, increasing
its ambiguity. Therefore, it is also used to explore related re-
search on utilizing prior-knowledge to visual disambiguation
(Hegdé & Kersten, 2010).

While deep neural networks improves the performance of
machines in certain visual tasks, they lack the biological
mechanisms, which may result in differences in visual repre-
sentations and consequently lead to gaps in behavior and ca-
pabilities. Neurobiological studies found that long-range hor-
izontal connections between neurons in the same hierarchical
visual cortex contribute to the integration of visual signals in
the bottom-up process (Das & Gilbert, 1995). Houtkamp et
al. proposed the pathfinder challenge to investigate the prin-
ciple of good continuation in Gestalt theory (Houtkamp &
Roelfsema, 2010). Inspired by this, Kim et al. trained a deep
neural network using the pathfinder challenge dataset and
evaluated the performance of multiple deep models (Linsley,
Kim, Veerabadran, Windolf, & Serre, 2018; Kim, Linsley,

Thakkar, & Serre, 2019). The experimental results demon-
strate the gap in solving this challenge between deep neu-
ral networks and human. Furthermore, the interpretability of
deep neural networks is poor. Specifically, we cannot dis-
cern the basis for the final decisions made by deep neural
networks. For instance, research by Geirhos et al. revealed
instances where deep neural networks incorrectly classified
the cat with the elephant texture as an elephant (Geirhos et
al., 2018).

In this paper, we explored an intriguing question: Can MIs
be employed in CAPTCHA schemes to distinguish ma-
chines from humans? Before this study, we first proposed
a universal framework HiMI that can use the natural image to
generate high-quality MIs. HiMI consists of two steps: color
quantization and perceived difficulty control. In the first step,
we reduce the color space of the image to 1-bit while preserv-
ing as much of the natural image content as possible. Next,
we consider two factors object saliency and recognition cues,
and set the corresponding parameters to control the perceived
difficulty of MIs. We demonstrated the effectiveness of these
two parameters through user experiments. After using HiMI
to generate diversified MIs, we designed two MI-based Tur-
ing test tasks related to the figure-ground segregation and ob-
ject recognition respectively. We compared the performance
of human subjects and deep neural networks on solving these
two tasks. The experimental results show a significant gap be-
tween deep neural networks and humans in solving these two
MI-based perceptual tasks, which provides evidence that the
MI can be used to distinguish between machines and humans.
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HiMI: High-quality Mooney Images
We need to generate high-quality MIs for the following MI-
based Turing test. The existing MI generation methods typ-
ically set a threshold for natural images and retain the con-
tent of the highlighted regions. However, this processing has
some issues. Firstly, there is inconsistency in brightness be-
tween different images. If we set a uniform threshold for
all images, inappropriate threshold values will result in ex-
cessive loss of image content. In addition, the brightness
within a single image is uneven. If the background region
has higher brightness than the foreground region, an inappro-
priate threshold will result in the final MI missing the fore-
ground object to be recognized. The design goal of the image-
based CAPTCHA is to minimize the impact on human recog-
nition performance while enlarge the impact on machines as
much as possible. Therefore, we need to design a generation
method that can flexibly adjust the perceived difficulty of MI.

Two Factors for Perceived Difficulty
Object saliency. Before recognizing the target object, the
visual system needs to perform figure-ground segregation.
Research indicates that visual attention (including endoge-
nous spatial attention and exogenous spatial attention) influ-
ences the occurrence of figure-ground segregation (Vecera &
Farah, 1994; Kimchi, Yeshurun, Spehar, & Pirkner, 2016;
Vecera, 2000). Vecera et al. further demonstrated that ex-
ogenous spatial attention influenced the role of bottom-up
Gestalt cues in figure-ground segregation (Vecera, Flevaris,
& Filapek, 2004). The pattern (e.g., texture, color) differ-
ences between the foreground and background are closely re-
lated to exogenous spatial attention. An example is that some
organisms have evolved camouflage colors to self-protect by
reducing predators’ exogenous spatial attention. The greater
pattern difference between the foreground and background,
the faster occurrence of figure-ground segregation.

Recognition cues. The amount of object recognition cues
in MIs can affect the accuracy. In object recognition, we use
object features such as color, texture, and shape. Traditional
recognition theories emphasize that shape is more important
in object recognition. Psychological-behavioral experiments
have shown that surface information (color, texture) speeds
up recognition but does not significantly improve recogni-
tion accuracy (Gegenfurtner & Rieger, 2000). Biederman’s
recognition-by-components asserts that surface information
only plays a role in low-level vision and provides cues for
the organization and integration of visual signals while object
recognition tasks rely on shape (Biederman, 1987). However,
this view cannot explain discrimination between horses and
zebras. If we only provide subjects with the shape of a ze-
bra, they will likely mistake the zebra for a horse. The “shape
+ surface” computational framework for object recognition
suggests that surface and shape information play a joint role
in high-level visual processing, and that the role of surface in-
formation depends heavily on differences in structural prop-
erties between the objects in question (Tanaka, Weiskopf, &

Williams, 2001).
According to “shape + surface” theory, the process of per-

ceiving the tiger in the MI shown in Fig. 1 (A) can be de-
scribed as follows. The visual system first obtains shape in-
formation, such as edges or contour segments, based on the
physical features of visual signals in the bottom-up process.
Then, it reorganizes the shape and surface information in the
top-down process to discover more holistic combinations and
form a cognitive hypothesis of a tiger based on a prior knowl-
edge. Parsing the process backward gives us the following in-
sight. Under the condition that a prior knowledge is available,
the visual system reorganizes signals and collects cues in an
iterative way. The results of cue collection affect the speed
and accuracy of visual expectation which in turn affects the
speed and accuracy of object recognition in the MI.

Generation Process
As shown in Fig. 1 (B), we use a zebra image to introduce
HiMI. Compared to the 24-bit color space of natural images,
MIs are two-tone (1-bit color space). Therefore, we need to
perform color quantization on natural images. We use Color-
CNN proposed by Hou et al. to reduce the color space while
preserving image content as much as possible (Hou, Zheng,
& Gould, 2020). Next, we control the perceived difficulty
based on the results of color quantization (binarized image).
We set two parameters, α and β, to control the amount of
recognition cues and object saliency, respectively. The first
parameter, α, is used to adjust the proportion of recognition
cues. For example, α = 0.2 means 20% of the surface infor-
mation will be randomly selected to be rendered by speckles.
After the parameter α is set, the density of speckle in the ob-
ject region can be calculated. Then, the second parameter β

controls the density of noise speckles around the object. For
example, β = 0.2 means the speckle-density of the surround-
ings is 20% of the object region.

Natural Image Datasets
Two public image datasets (Animal 2K dataset (Li,
Zhang, Maybank, & Tao, 2022) and PASCAL VOC2012
(Everingham & Winn, 2012)) are used in our study. Animal
2K is created by Li et al. for natural image matting studies
in computer vision, and it includes 2000 images in 20 ani-
mal categories. Most images in the Animal 2K contain only
one animal. In addition, the images in the dataset are high
resolution, which makes data processing easier. PASCAL
VOC2012 is a classical dataset for multiple computer vision
tasks such as image classification, object detection, and image
segmentation. It contains 20 classes of objects with a total of
11,530 images.

Effectiveness of Two Parameters
The purpose of this experiment is to test the effectiveness of
two parameters in HiMI. Subjects are presented with MIs that
reflected only changes in one parameter α or β to reduce the
influence of other factors on the experimental results.
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Participants. A total of 100 students participated in this
experiment (mean age = 22.8 years; 50 female). The partici-
pants come from the School of Computer Science, School of
Psychology, School of Life Sciences, and School of Mathe-
matics. None of the subjects had visual cognitive impairment.
The 100 subjects were divided equally into ten groups: G1, ...,
G10. The ratio of male to female in each group was kept the
same as the overall ratio.

Stimuli. We randomly select one image from each cate-
gory in Animal 2K and PASCAL VOC2012 datasets. Totally
fourty images were then used to generate MIs. We employed
the concept of controlling variables to generate MIs for test-
ing these two factors. When generating MIs for validating
the factor recognition cues (α), we set the parameter β to 0
to minimize the impact of object saliency and sequentially
adjusted the parameter α to 0.2, 0.4, 0.6, 0.8, and 1. When
generating MIs for validating the factor object saliency (β),
we set the parameter α to 1 to reduce the impact of object
recognition cues and sequentially adjusted the parameter β to
0.2, 0.4, 0.6, 0.8, and 1. Each natural image had ten corre-
sponding MIs. In the experiment, ten MIs corresponding to
a natural image were presented to subjects in the ten groups,
respectively.

Procedure. Subjects sat 34 cm in front of a 24-inch moni-
tor with a resolution of 1920×1080. The screen sequentially
displayed 40 MIs, each containing only one target object. The
subjects’ task was to observe the MI and identify the target
object, and then verbally state the object’s category. After-
ward, the subjects clicked the “Next” button to play the next
MI and repeated the process.

Results. The time taken from the presentation of a MI on
the screen (start of observation) to the subject stating the cate-
gory of the object in the image (end of observation) is referred
to as the reaction time (RT). A smaller RT value means that
the subject recognize the object from the MI more quickly
and with less difficulty. For each MI, a group of RT values
was obtained from 10 subjects, and the average of these 10
values was the subjects’ RT for recognizing the target object
in this MI. After obtaining the RTs of 40 MIs under a certain
parameter setting (e.g., α = 0.2 or β = 0.2), we calculated the
mean of these 40 values as the RT for the current parameter
setting. Fig. 2 presents the statistical results of subjects’ RTs
when observing MIs under different settings of the recogni-
tion cues (α) and the object saliency (β). The experimental
results demonstrate that both two parameters α and β can sig-
nificantly influence the speed of object recognition and thus
control the perceived difficulty of the generated MIs.

In the experiment, the subjects’ recognition results for each
MI were recorded. A correct recognition was recorded as 1;
otherwise, 0. Each stimuli had 10 values of 0 or 1, and the
mean value was the recognition accuracy that reflects the dif-
ficulty of recognizing the target objects from the MI. Fig. 3
illustrates the impact of the two parameters α and β on the
recognition accuracy. When fixing the parameter β at 0 and
sequentially adjusting the parameter α, the recognition accu-
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Figure 2: Statistical results of RTs with 90% confidence in-
tervals.The results demonstrate that both recognition cues (α)
and object saliency (β) have a significant impact on the speed
of object recognition.

racy gradually improves. However, when fixing the parame-
ter α at 1 and adjusting the parameter β, there is no significant
change in the accuracy.
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Figure 3: Statistical results of recognition accuracy with 90%
confidence intervals. We can observe that the factor recogni-
tion cues (α) has a significant impact on the accuracy, while
object saliency (β) only has a slight impact on it.

MI-based Turing Test
In this section, we will explore an intriguing question: Can
Mooney images be used in CAPTCHA to distinguish be-
tween humans and machines? Inspired by the famous Google
reCAPTCHA v2, we design two tasks (shown in Fig. 4): (1)
select all MIs that contain the target category of objects
from a set of MIs; (2) select the one located in the area of
object from four red dots.
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Deep models (AlexNet,
VGG19, ResNet34)

A random set of Mooney images
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1
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Figure 4: Explanation for two MI-based Turing test tasks. Task 1 is related to object recognition. We randomly select six MIs
from AnimalMI and PASCALMI, including N (1 ≤ N ≤ 3) images that contain the objects of the target category. The human
subjects and the deep neural networks need to find all the images that contain the target objects. Task 2 is related to the figure-
ground segregation. We randomly select one from the six MIs of Task 1, and combine the object segmentation groundtruth
provided by dataset to generate four red dots. The human subjects and deep vision model need to find the one located within
the area of the target object.

Participants and Deep Models
We invited the same 100 subjects (average age = 22.8 years;
50 female) to participate in this experiment. The subjects
were divided equally into two groups: G1 (average age =
22.5 years) and G2 (average age = 23.1 years). The propor-
tion of male and female subjects in the two groups was the
same as the overall proportion. We ensured that these 100
subjects had the required prior knowledge before the experi-
ment. YOLO, a classical one-stage detection model, has per-
formed impressive results on the task of object deteciton, and
it is also used in the Google reCAPTCHA v2 solver. In Task
1, we use AlexNet (Krizhevsky, Sutskever, & Hinton, 2017),
VGG19 (Simonyan & Zisserman, 2014) and Resnet34 (He,
Zhang, Ren, & Sun, 2016) as the task networks. In Task 2,
we test the ability of YOLO v8 (Redmon, Divvala, Girshick,
& Farhadi, 2016) to detect objects based on MIs.

Stimuli
We generate MIs based on the Animal 2K and the PASCAL
VOC2012 datasets. We adjust the generated results using
two parameters α and β. Here, we use HiMI(α,β) to de-
note the generated results the with different parameter set-
tings. In Table 2, we take some representive examples to ex-
plain the meanings of the symbols related to these two pa-
rameters in this experiment. We firstly generate two corre-
sponding Mooney-style datasets, denoted as AnimalMI and
PASCALMI, respectively. For each natural image in the train-

ing set, we use HiMI(1,{0,0.5,1}) to generate its MIs with dif-
ferent perceived difficulty. For each natural image in the test
set, we use HiMI(1,[0,1]) to generate its MIs.

Table 1: Meanings of symbols related to parameters α and β

in this experiment.

Parameters Symbols Meaning

α,β
1 set parameter to 1

{0,0.5,1} set parameter to 0, 0.5, 1 in order
[0,1] randomly set it to a value within [0, 1]

Procedure
Model training. We firstly use the officially available pre-
trained models, and then fine-tune them on Animal 2K,
AnimalMI, PASCAL VOC2012, and PASCALMI. For train-
ing, we use a batch size of 16 and train these model for 300
epochs with an initial learning rate of 0.01.

Task 1. We randomly select six MIs from the test set, in-
cluding N (1 ≤ N ≤ 3) images that contain the target category
of objects. We conducted 50 task experiments for each set-
ting of N. Subjects in G1 are instructed to select all images
containing the target category of objects from this set of MIs,
and the task for the deep neural networks is to classify these
six MIs. The human approach to solving this task relies on
two strategies. First, subjects can accurately identify N MIs
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that contains the target category of objects. Second, subjects
can successfully identify the other (6−N) MIs, and then ar-
rive at the correct result through the process of elimination.
Therefore, we established two rules to evaluate the deep neu-
ral networks’ results. First, if the deep neural network can
correctly classify N target MIs, the task is considered success-
fully solved. Second, if the deep neural network can classify
the remaining (6−N) MIs, it is also considered successful.

Task 2. We randomly select one from the set of six MIs,
and generate four red dots based on the groundtruth of object
segmentation provided by the dataset. Note that one of the red
dots must be located in the area of the target object. Subjects
in G2 are required to select a red dot from these four red dots.
The task for the deep vision models is to segment the object
from the MI, and the result will be successful if the segmented
object region only includes a red dot.

Results

Fig. 5 shows the success rates of Task 1. When N = 1, human
subjects achieved a success rate of 85.4%, while the success
rates of the three deep neural networks (AlexNet, VGG19,
and ResNet34) were 23.9%, 20.7%, and 33.4%, respectively.
As the number of MIs containing the target object increased
in the set of six MIs, both human subjects and the three
deep neural networks presented a decrease in success rates.
However, human subjects maintained a significantly higher
success rate compared to these three deep neural networks.
In Table 2, we present the comparison of the success rates
in completing Task 2 between human subjects and the deep
vision model YOLO v8. Human subjects achieved a suc-
cess rate of 87.2% in solving Task 2, while YOLO v8 only
achieved a success rate of 33.5%. The above experimental
results demonstrate that human subjects exhibit stronger abil-
ities than deep neural networks in solving these two MI-based
vision tasks.

Task 1
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0
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1
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Human
AlexNet
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Figure 5: Statistical results of success rate on Task 1. Com-
pared to deep neural networks, humans have a significant ad-
vantage in the success rate of completing Task 1.

Table 2: Statistical results of success rate on Task 2.

Human YOLO v8
Success rate 87.2% 33.5%

Conclusion & Discussion

While the MI is an important research material in the field of
cognitive science due to their distinctive characteristics, there
is still a lack of an efficient generation scheme. Therefore, in
this paper, we proposed HiMI for generating high-quality MIs
from natural images. It involves two steps: color quantization
and perceived difficulty control. The first step aims to reduce
the color space of natural images to 1-bit while preserving the
semantic content of the images. In the second step, we set two
parameters to adjust object saliency and recognition cues, en-
abling users to change the perceived difficulty of MIs accord-
ing to their needs. We verified the effectiveness of the two pa-
rameters through controlled experiments. We initially fixed
the recognition cues and adjusted object saliency, finding a
noticeable impact on subjects’ recognition speed with a rela-
tively minor effect on accuracy. Conversely, when we fixed
object saliency and altered recognition cues, we observed a
significant impact on both subjects’ recognition speed and
accuracy. Additionally, what cognitive research can we use
HiMI for? (1) By two factors, object saliency and recog-
nition cues, we can respectively adjust subjects’ exogenous
spatial attention and endogenous spatial attention during MI
observation. Although some research has identified the im-
pact of these two spatial attentions on behaviors like object
detection, the mechanisms underlying how they affect low-
level visual representations and how their interaction occurs
remain unclear (Fernández, Li, & Carrasco, 2019). (2) Vi-
sual disambiguation refers to the ability to interpret ambigu-
ous information in a reasonable manner, which is important
in an ever-changing external environment. We currently un-
derstand the significant role of prior object-knowledge in dis-
ambiguation, but the neural circuits behind disambiguation
induced by prior knowledge remain unclear (Hegdé & Ker-
sten, 2010).

We are in an era of rapid development in artificial intel-
ligence technology. With the support of data and computa-
tional resources, the deep neural networks can achieve per-
formance in certain visual tasks based on natural images that
matches or even surpasses humans. This suggests that these
tasks no longer effectively reflect the differences in abilities
between machines and humans. In this study, we attempted
to utilize visual tasks based on MIs to distinguish between
machines and humans. Task 1 involves selecting the one con-
taining the target object from a set of six MIs. Task 2 requires
selecting one of the four dots in a single MI located within
the target object area. Experimental results indicate a signifi-
cant performance gap between the deep neural networks and
humans.
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