
UCLA
UCLA Electronic Theses and Dissertations

Title
First-Order Methods for Trace Norm Minimization

Permalink
https://escholarship.org/uc/item/33k509ss

Author
Chao, Hsiao-Han

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/33k509ss
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

First-Order Methods for Trace Norm

Minimization

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical Engineering

by

Hsiao-Han Chao

2013

c© Copyright by

Hsiao-Han Chao

2013

Abstract of the Thesis

First-Order Methods for Trace Norm

Minimization

by

Hsiao-Han Chao

Master of Science in Electrical Engineering

University of California, Los Angeles, 2013

Professor Lieven Vandenberghe, Chair

Minimizing the trace norm (sum of singular values) of a matrix has become pop-

ular as a convex heuristic for computing low rank approximations, with numerous

applications in control, system theory, statistics, and machine learning. How-

ever, it is usually too expensive to solve these matrix optimization problems with

second-order methods, such as the interior-point method, given that the scale

of the problems is relatively large. In this thesis, we compare several first-order

methods for nondifferentiable convex optimization based on splitting algorithms,

and apply them to primal, dual, or primal-dual optimality conditions. The imple-

mentation aspects of the algorithms are discussed in detail and their performance

is compared in experiments with randomly generated data as well as system iden-

tification test sets. We show that on large-scale problems, several of the first-order

methods reach a modest accuracy within a shorter time than the interior-point

solvers. Based on the experiments, the most promising methods are the Alter-

nating Direction Method of Multipliers and the Pock-Chambolle semi-implicit

algorithm.

ii

The thesis of Hsiao-Han Chao is approved.

Vwani P. Roychowdhury

Alan J. Laub

Lieven Vandenberghe, Committee Chair

University of California, Los Angeles

2013

iii

To my dear family and family in Christ

iv

Table of Contents

1 Introduction . 1

1.1 Rank Minimization . 1

1.2 System Identification . 2

1.3 Outline . 5

2 Convex Optimization . 7

2.1 Dual Problem . 8

2.2 Optimality Condition . 9

2.3 Monotone Operators and Resolvents 10

2.4 Trace Norm Minimization Problems 12

2.4.1 Dual Problem and Optimality Condition 13

2.4.2 Vectorized Notations . 14

3 First-Order Splitting Methods for Convex Optimization 17

3.1 Douglas-Rachford Splitting . 18

3.1.1 ADMM . 19

3.2 Forward-Backward Splitting . 20

3.2.1 FISTA . 21

3.2.2 Tseng’s Modified Forward-Backward Splitting 23

3.3 Semi-Implicit Methods . 24

3.3.1 Pock-Chambolle . 25

3.3.2 Chen-Teboulle . 25

4 Numerical Methods Applied on Trace Norm Minimization . . 27

v

4.1 Interior-Point method for Semidefinite Programming 28

4.2 ADMM . 29

4.3 Douglas-Rachford Splitting on Primal-Dual 33

4.4 FISTA on Dual . 35

4.5 Tseng’s Modified Forward-Backward Splitting on

Primal-Dual . 36

4.6 Pock-Chambolle . 37

4.7 Chen-Teboulle on Dual . 39

4.8 Summary . 40

5 Experimental Results . 43

5.1 Randomly Generated Data . 43

5.1.1 Random Problem Generation 43

5.1.2 Method Selection . 45

5.1.3 Large-Scale Data . 47

5.2 System Identification Data . 50

6 Conclusions . 53

References . 55

vi

List of Figures

4.1 Interior-point method convergence curve 30

4.2 ADMM convergence curve . 32

4.3 ADMM convergence curve. Dashed line curves use adaptive step size

with parameters (µ, β). 32

4.4 DR1A convergence curve . 34

4.5 FIST convergence curve . 36

4.6 TsFB convergence curve . 37

4.7 Pock convergence curve . 38

4.8 Comparison of TsFB and Pock . 38

4.9 Chen convergence curve . 40

4.10 Convergence curve for pure semi-implicit method, implemented as

Chen but without step 4, the corrector step. 40

4.11 Comparison of convergence curves 41

4.12 Singular values of solutions . 42

5.1 Performance comparison over large-scale problems 49

5.2 Largest singular values (left) and identified output (right) of [96-

006]:Data of a laboratory setup acting like a hair dryer from DaiSy,

with regularization parameter γ equals 2.5 (top), 1.75 (middle), 1.5

(bottom), respectively. 51

5.3 Largest singular values (left) and identified output (right) of [96-

009]:Data from a flexible robot arm from DaiSy with γ equals 11. 52

vii

List of Tables

4.1 Lookup table for first-order methods 28

5.1 Performance of Douglas-Rachford splitting type methods over ran-

domly generated problems of medium sizes. Under each method,

the left column is the number of iteration, the right column is the

cpu time in seconds. 45

5.2 Performance of forward-backward splitting methods over randomly

generated problems of medium sizes. Under each method, the left

column is the number of iteration, the right column is the cpu time

in seconds. 46

5.3 Performance of semi-implicit splitting methods over randomly gen-

erated problems of medium sizes. Under each method, the left

column is the number of iteration, the right column is the cpu time

in seconds. 47

5.4 Sizes of problems for large-scale experiments 48

viii

Acknowledgments

This thesis could never have come together without the support and guidance

of Professor Lieven Vandenberghe, to whom I owe countless thanks and deep

gratitude. I am thankful for having been showered by his elegant and vigorous

teaching, and his great characters both as a teacher and as an advisor. His passion

and insight for research has been inspiring, yet he is ever encouraging and patient

with my slowness. Indeed, I would say, God has provided the best advisor I could

ever have to enjoy working with and learning from, that I never expected before

coming to UCLA.

I would also like to thank Professor Alan Laub and Professor Vwani Roy-

chowdhury, who have kindly agreed to be on my committee, and have enriched

me intellectually through their classes.

I am grateful for the support and friendship of our group members: Daniel,

Jinchao, Rong, and Yifan, who have been so welcoming and encouraging, always

passionately talking about math and research, and of course, fun stuffs. Many

thanks go to my friends, roommates, and neighbors, who have definitely colored

my life here and made me feel like home. Thanks to Grace on Campus and Grace

Community Church, where the Bible is being preached clearly and faithfully.

Thanks to Dr. Lu, who graciously supported me for one quarter, and has been

willing to get to know and share encouragements with me. Special thanks to my

dear family, who has fully supported me through love, care, provision and prayer.

Last but not least, let all thanks be to God, who has sustained me through

all the up-and-downs and has shown to be faithful. I know there is way more to

learn and way longer to go, but praises be to Him who has allowed us to rejoice

always in His light, in His kingdom to come, into which we can enter only through

the Lord Jesus Christ our Savior, but none of our own merits.

ix

CHAPTER 1

Introduction

Although there are relatively well-developed methods for solving convex opti-

mization problems, a lot of problems in practice are not convex by nature. One of

the common approaches is to approximate the nonconvex problem with a convex

model, or to use convex optimization as heuristics of finding promising solutions.

In this thesis we minimize the trace norm (sum of singular values) of a matrix as

a heuristic for finding low-rank solutions. This was proposed by Fazel et al. in

2001 [FHB01], motivated by the observation that the resulting matrix from trace

norm minimization often has low rank, and it can be viewed as a generalization

of `1-norm minimization techniques for cardinality minimization.

1.1 Rank Minimization

The rank of an appropriately constructed matrix could be representing the order,

dimension, or complexity of an underlying system from various contexts. System

identification or model estimation problem can be expressed as minimizing the

rank of a matrix subject to constraints, because we believe there is a rather sim-

ple governing model underlying observations, as noisy or interfered by unknown

factors. A general formulation is

minimize rank(A(x)−B)

subject to F(x) ∈ C,

1

where A(x)−B is an affine matrix-valued function of x. This rank minimization

problem arises in control, signal processing, and statistics. Particularly, there has

been growing interest in robotics, system identification, and machine learning.

However, while special purpose solvers exist, the problem is NP-hard in general.

In this thesis we consider a general approximate problem of minimizing the

quadratically regularized trace norm of the affine matrix-valued function, which

has been shown successful in several applications, such as the minimum-rank

matrix completion problem. There has been a proven special case where trace

norm minimization gives solutions to rank minimization [RFP10].

Most of these problems that arise in practice are relatively large-scale, which

makes it impractical to solve with second-order methods (Newton’s method or

interior-point method), considering the memory capacity and computational power

of today’s machines. Thus, more attention has been drawn to a class of first-order

methods [MGC11, FPS11], especially those based on splitting techniques.

1.2 System Identification

This thesis is motivated by applications in system identification. We follow the

idea presented in [LV09] that shows how trace norm minimization is utilized as

a variant in the earlier subspace algorithm. A discrete-time linear time-invariant

state-space model has the form

x(t) = Ax(t− 1) +Bu(t− 1)

y(t) = Cx(t) +Du(t),
(1.1)

where u(t) ∈ Rl, y(t) ∈ Rk are input and output sequences that can be measured

for time t = 0, . . . , N , and x(t) ∈ Rm is the state variable at t. The goal is to

estimate the model order m, the matrices A,B,C,D, and the initial state x(0).

2

If we define block Hankel matrices

Y =

y(0) y(1) y(2) · · · y(N − r)

y(1) y(2) y(3) · · · y(N − r + 1)
...

...
...

...

y(r) y(r + 1) y(r + 2) · · · y(N)

 ∈ Rk(r+1)×(N−r+1)

and

U =

u(0) u(1) u(2) · · · u(N − r)

u(1) u(2) u(3) · · · u(N − r + 1)
...

...
...

...

u(r) u(r + 1) u(r + 2) · · · u(N)

 ∈ Rl(r+1)×(N−r+1),

then (1.1) can be written as

Y = JX +KU, (1.2)

where

J =

C

CA

CA2

...

CAr

, K =

D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAr−1B CAr−2B CAr−3B · · · D

,

and

X =
(
x(0) x(1) x(2) · · · x(N − r)

)
.

We are given the matrices U and Y , or noisy measurements of them, where r is a

chosen parameter such that r > m is ensured,and J,K,X are unknown. We refer

the reader to [Lju99, chapter 10], [VV07, chapter 9] for more details.

Subspace Algorithm

Taking a matrix U⊥ whose columns span the nullspace of U and multiplying (1.2)

on the right with it, we have

Y U⊥ = JXU⊥. (1.3)

3

Assuming no cancellation of rank in the matrix multiplicationXU⊥ and rank(X) =

m, which hold generally with randomly chosen input sequence, then rank(Y U⊥) =

m with exact measurements of input and output.

A system realization can therefore be determined as follows. First compute a

matrix J̃ whose columns form a basis for the column space of Y U⊥, and then we

have J̃ = JT , where T is a nonsingular matrix. Therefore,

J̃ =

J̃0

J̃1

...

J̃r

 =

C

CA
...

CAr

T

is the extended observability matrix for the system

x̃(t) = Ãx̃(t− 1) + B̃u(t− 1)

y(t) = C̃x̃(t) + D̃u(t),

where Ã = T−1AT, B̃ = T−1B, C̃ = CT , and D̃ = D, which can be verified as

equivalent to (1.1), with the only difference being a change of coordinates of the

state space, x(t) = T x̃(t). We then have C̃ = J̃0, and Ã through solving
J̃1

J̃2

...

J̃r

 =

J̃0

J̃1

...

˜Jr−1

 Ã. (1.4)

Following from the linear equations

C̃Ãtx̃(0) +
t−1∑
s=0

C̃Ãt−sB̃u(s) + D̃u(t) = y(t), t = 0, . . . , N, (1.5)

the matrices B̃, D̃ and the initial state x̃(0) can be computed.

If the input or output data are with error, then the above equations would not

be solvable. Instead, one can estimate the system order m using thresholding on

4

the singular values, and get an estimate of J̃ by keeping only the first m terms

in the singular value decomposition. Solving for least-square solutions for the

overdetermined equations (1.4) and (1.5) then gives us estimates of the state-

space model.

Identification via Trace Norm Minimization

Alternatively, if we denote the measured outputs as ymeas(t), and obtain y(t), t =

0, . . . , N by solving the problem

minimize ‖Y U⊥‖∗ + γ

N∑
t=0

‖y(t)− ymeas(t)‖2
2 (1.6)

for a weighting parameter γ > 0 on the quadratic regularization term. With

the optimal solution y(t) of (1.6) with a selected γ that gives desirable rank

property and error on the trade-off curve, we can compute Y U⊥ and solve for

the estimates of the state-space model as described in the previous section. This

alternative provides the advantage of preserving linear matrix structure in the

low-rank approximation. One simple variation is to use different weights for each

measurement,

minimize ‖Y U⊥‖∗ +
N∑
t=0

‖Wt(y(t)− ymeas(t))‖2
2.

This approach to system identification is promising because it is easy to impose

additional constraints according to prior knowledge, to add regularization terms

on model inputs and outputs, or to accommodate problems with missing data

points [LHV13, DSC07, GJM09].

1.3 Outline

Chapter 2 provides necessary background for convex optimization and prelim-

inaries for understanding derivation of numerical methods, and introduces the

5

quadratically regularized trace norm minimization problem that the thesis is fo-

cusing on. The first-order numerical methods and their convergence are discussed

in chapter 3, and how they are applied on trace norm minimization is described

in chapter 4. Finally, we show the experiments in chapter 5.

6

CHAPTER 2

Convex Optimization

In this chapter we introduce the basic knowledge of convex optimization necessary

for understanding the work of the thesis. Consider a convex optimization problem

of the following form,

minimize f(x) + g(A(x)), (2.1)

where f and g are convex functions and A is a linear operator. All convex op-

timization problems can be represented in this form. For example,a constrained

optimization problem,

minimize f(x)

subject to A(x) ∈ C,

where C is a convex set, can be represented as

minimize f(x) + IC(A(x)), (2.2)

where IC is the indicator function of C such that IC(y) equals zero if y ∈ C,

infinity if y /∈ C. Another commonly encountered example is to have a norm

function as the objective function,

minimize f(x) + ‖A(x)−B‖, (2.3)

where ‖ · ‖ can be any norm, for example, the `∞-norm or `1-norm for a vector,

and the spectral norm or trace norm for a matrix.

We denote the value of the objective function of (2.1) as p, and its minimum

p∗, which is −∞ if the problem is unbounded below, ∞ if it is infeasible. When

the optimal value is attained, x∗ denotes a solution that gives the value p∗.

7

2.1 Dual Problem

We consider the Lagrangian dual of our problem, and refer to problem (2.1) as

the primal problem. In order to have a useful Lagrangian, we first reformulate

the primal problem as

minimize f(x) + g(y)

subject to A(x) = y.
(2.4)

The Lagrangian is then defined with multiplier z as

L(x, y, z) = f(x) + g(y) + 〈z, A(x)− y〉, (2.5)

where 〈·, ·〉 denotes inner product. We obtain the dual objective function by taking

the infimum of the Lagrangian over the primal variables.

inf
x,y
L(x, y, z) = inf

x
(f(x) + 〈Aadj(z), x〉) + inf

y
(g(y)− 〈z, y〉)

= − sup
x

(−〈Aadj(z), x〉 − f(x))− sup
y

(〈z, y〉 − g(y))

= −f ∗(−Aadj(z))− g∗(z),

where Aadj is the adjoint of A, such that 〈z, A(x)〉 = 〈Aadj(z), x〉 for all x and z,

and in the last line we use the conjugate function notation.

Definition 2.1 (Conjugate function) The conjugate function f ∗ of a function

f is defined as

f ∗(y) = sup
x∈domf

(〈y, x〉 − f(x)).

The conjugate function f ∗ is always convex regardless of the convexity of f .

The dual problem is then defined as the maximization of the dual function,

maximize −f ∗(−Aadj(z))− g∗(z). (2.6)

Note that this is maximization over a concave function, which is also a convex

optimization problem. We denote the value of the dual objective function as d,

8

and its maximum d∗, which is ∞ if the problem is unbounded above, −∞ if

infeasible. If the interior of the feasible set of either the primal or dual problem

is nonempty, strong duality ensures that p∗ = d∗, otherwise we always have the

weak duality, p∗ ≥ d∗.

The conjugate function of IC is the support function of C, defined as hC(z) =

supx∈C〈z, x〉, and thus the dual of (2.2) is

maximize −f ∗(−Aadj(z))− hC(z).

The conjugate function of a norm is the indicator function of its dual unit norm

ball, therefore the dual of (2.3) is

maximize −f ∗(−Aadj(z))− I‖·‖d≤1(z).

2.2 Optimality Condition

Since the functions we are dealing with are not always differentiable, here we

introduce the subdifferential of a function.

Definition 2.2 (Subdifferential) A subgradient h of a function f at a point

x ∈ domf is a vector that satisfies

f(y) ≥ f(x) + 〈h, y − x〉 ∀y ∈ domf.

The subdifferential of f at x is the set of all subgradients at x, denoted as

∂f(x) = {h|f(y) ≥ f(x) + 〈h, y − x〉 ∀y ∈ domf}.

For a convex function f , the subdifferential ∂f is always nonempty, except possibly

at the boundary of domf . For example, f(x) = −
√
x is not subdifferentiable at

x = 0. If a convex function f is differentiable at point x, meaning the gradient,

∇f(x) exists, then ∂f(x) = {∇f(x)}. If zero is in the subdifferential set at x,

then f(x) is a global minimum of the function f , since f(y) ≥ f(x) ∀y ∈ domf .

9

The primal objective function in (2.1) is at its minimum when zero is in its

subdifferential,

0 ∈ ∂f(x∗) + Aadj(∂g(A(x∗))), (2.7)

where Aadj(∂g(y)) = {Aadj(h)|h ∈ ∂g(y)}. This inclusion is the primal optimality

condition. The dual optimality condition can be obtained similarly,

0 ∈ −A(∂f ∗(−Aadj(z
∗))) + ∂g∗(z∗), (2.8)

by noting that the problem (2.6) is equivalent to solving the minimization of the

negative of its objective function, which is then convex. If we reformulate (2.7) as

0 ∈ ∂f(x∗) + Aadj(z
∗)

z∗ ∈ ∂g(A(x∗)),

and note that (∂g)−1 = ∂g∗ for g being a convex and closed function, it is equiv-

alent to

0 ∈ Aadj(z
∗) + ∂f(x∗)

0 ∈ −A(x∗) + ∂g∗(z∗), (2.9)

which is usually identified as the primal-dual optimality condition. For more

detailed theories related to convex optimization, please refer to [BV04].

2.3 Monotone Operators and Resolvents

We now introduce a category of operators which maps a vector x ∈ Rm to a set

F (x) ∈ Rm. Specifically, in this thesis the operators we deal with are monotone

operators.

Definition 2.3 (Monotone operator) An operator F is monotone if it satis-

fies

〈y − ŷ, x− x̂〉 ≥ 0, ∀x, x̂ ∈ domF, y ∈ F (x), ŷ ∈ F (x̂).

Furthermore, F is maximal monotone if and only if Im(I + F) = Rm.

10

This means that if F is maximal monotone, the image of the operator (I + F)

is the whole space, and hence there exists a solution x to y ∈ x + F (x) for all

y ∈ Rm.

The subdifferential ∂f of a convex function f is a monotone operator. If f

is closed and convex, then ∂f is maximal monotone, and the inverse of it is the

subdifferential of the conjugate of f , (∂f)−1 = ∂f ∗, which we used in the previous

section to derive the primal-dual optimality condition. Another example of a

maximal monotone operator is a skew symmetric linear operator

F =

 0 ÂT

−Â 0

 ,

where Â is any matrix. A nonnegative combination of two maximal monotone

operators is also maximal monotone, provided that the intersection of their domain

has nonempty interior.

The resolvent operator of an operator is also often used in the thesis.

Definition 2.4 (Resolvent) The resolvent of an operator F is defined as

(I + tF)−1,

where I is the identity matrix and t > 0 is a scalar.

An operator is monotone if and only if its resolvent is firmly nonexpansive, such

that for all y, ŷ ∈ dom(I + tF)−1, x ∈ (I + tF)−1y, x̂ ∈ (I + tF)−1ŷ,

〈x− x̂, y − ŷ〉 ≥ ‖x− x̂‖2
2.

This implies the uniqueness of resolvent, and thus we can write x = (I+ tF)−1(y)

instead of the inclusion. If further F is maximal monotone, then (I+ tF)−1(y) ex-

ists for every y, since dom(I+ tF)−1 = Rm. We use the following two expressions

interchangeably,

x = (I + tF)−1y ⇐⇒ y − x
t
∈ F (x).

11

The resolvent of ∂f is the proximal mapping.

Definition 2.5 (Proximal operator) The proximal operator of a closed and

convex function f is defined as

proxtf (y) = (I + t∂f)−1(y)

= argminx(f(x) + 1
2t
‖x− y‖2

2),

since the optimality condition of the minimization is 0 ∈ ∂f(x) + 1
t
(x− y).

The proximal operator of the indicator function of a closed and convex set C is

the Euclidean projection on C.

proxtIC (y) = (I + tNC)−1(y)

= argminx(IC(x) + 1
2t
‖x− y‖2

2) = PC(y),

where NC = ∂IC is the normal cone to C.

The resolvent of a skew symmetric linear operator is I tÂT

−tÂ I

−1

,

whose existence and uniqueness can be easily identified.

For more complete discussion about these operators, please refer to [Roc76,

Roc97].

2.4 Trace Norm Minimization Problems

In this section we introduce the specific convex optimization problem we are solv-

ing in the form of the previous sections. Then we simplify the expressions by using

a vectorized notation. Consider a quadratically regularized trace norm minimiza-

tion problem of the following form,

minimize 1
2
xTPx+ ‖A(x)−B‖∗ , (2.10)

12

where A(x) = A1x1 +A2x2 + · · ·+Anxn. Here x ∈ Rn is the optimization variable,

and P ∈ Sn+, Ai, B ∈ Rp×q ,where i = 1, . . . , n, are problem parameters. The

trace norm of a matrix Y ∈ Rp×q is the sum of singular values of Y , denoted

‖Y ‖∗, and is also known as the nuclear norm, the Schatten 1-norm, and the Ky

Fan min(p, q)-norm [HJ85, chapter 3] [HJ91, chapter 7]. We can put (2.10) into

the form of (2.1) by taking

f(x) = 1
2
xTPx

g(Y) = ‖Y −B‖∗,

which are both convex.

2.4.1 Dual Problem and Optimality Condition

To obtain the dual form (2.6) of our problem, we need f ∗, g∗, and Aadj. We have

f ∗(y) = sup
x

(yTx− 1

2
xTPx) =

1

2
yTP †y,

with domf ∗ = Range(P). In this thesis we use the Moore-Penrose pseudoinverse

of P , denoted as P †, such that P † = P−1 if P is nonsingular, and it has the prop-

erty P †PP † = P †. Particularly, if P =
∑

i λiqiq
T
i is an eigenvalue decomposition

of P , then

P † =
∑
λi>0

1

λi
qiq

T
i .

Note that P is usually diagonal in our applications.

For the conjugate of g(Y) = ‖Y − B‖∗, follow the definition and that the

spectral norm (largest singular value) is the dual of the trace norm,

g∗(Z) = sup
Y

(Tr(ZTY)− ‖Y −B‖∗)

= Tr(BTZ) + I‖·‖2≤1(Z).

13

To derive Aadj, using the relation 〈Z,A(x)〉 = 〈Aadj(Z), x〉, and comparing that

〈Z,A(x)〉 = Tr(ZTA(x))

=
n∑
i=1

xiTr(ZTAi)

〈Aadj(Z), x〉 = Aadj(Z)Tx,

it is clear that Aadj(Z) = (Tr(ZTA1),Tr(ZTA2), . . . ,Tr(ZTAn)).

The dual problem of (2.10) is then

maximize −1
2
Aadj(Z)TP †Aadj(Z)−Tr(BTZ)− I‖·‖2≤1(Z)

subject to Aadj(Z) ∈ Range(P).
(2.11)

Moving on to the optimality condition, we have

0 ∈ Px∗ + Aadj(∂‖A(x∗)−B‖∗) (2.12)

for the primal, where

∂‖Y ‖∗ = {UV T +W | Y = Udiag(s)V T , UTW = 0,WV = 0, ‖W‖2 ≤ 1}.

Here the compact form of singular value decomposition of Y is used, and W has

orthogonal column and row spaces with Y [RFP10]. The dual optimality condition

is

0 ∈ A(P †Aadj(Z
∗)) +B +N‖·‖2≤1(Z∗). (2.13)

As you may see, the linear operators A and Aadj that perform transformation

between vectors and matrices seem rather complicated. Hence in the following

section, we redefine the problem using vectorized notations for the convenience of

formulating the algorithms in later chapters, and we will be using these notations

henceforth in the thesis.

2.4.2 Vectorized Notations

We use z = vec(Z) to denote a vector z ∈ Rpq formed by appending all the

columns of Z ∈ Rp×q one after another into a single column vector, and Z =

14

mat(z) represents the inverse of this process. We also use the linear operator

A(x) = Âx, where

Â = (vec(A1) vec(A2) · · · vec(An)) ∈ Rpq×n,

and thus Aadj(z) = ÂT z.

Using the newly defined notations, our problem is expressed as

minimize f(x) + g(Âx), (2.14)

where f is as defined earlier in the section, and we overload the function g so that

g(y) = ‖mat(y)−B‖∗.

We then have

g∗(z) = vec(B)T z + IC(z),

where the set C denotes a set of vectors in Rpq such that the spectral norm of the

corresponding matrix form in Rp×q is less than or equal to one,

C = {z | ‖mat(z)‖2 ≤ 1}. (2.15)

The dual problem can be written as

maximize −f ∗(ÂT z)− g∗(z). (2.16)

Noting also that

∂f(x) = Px

∂f ∗(w) = P †w

∂g(y) = vec(∂‖mat(y)−B‖∗)

∂g∗(z) = vec(B) +NC(z),

we then write the primal optimality condition as

0 ∈ ∂f(x) + ÂT∂g(Âx), (2.17)

15

and the dual optimality condition,

0 ∈ −Â∂f ∗(−ÂT z) + ∂g∗(z). (2.18)

The primal-dual optimality condition can now be written as one inclusion,

0 ∈

 0 ÂT

−Â 0

 x

z

+

 ∂f(x)

∂g∗(z)

 . (2.19)

16

CHAPTER 3

First-Order Splitting Methods for Convex

Optimization

In this chapter we introduce several numerical methods for solving a general

convex optimization problem, with possibly some assumptions on the objective

function and its domain. Specifically, we focus on first-order splitting methods

since our application is on large-scale data. Second-order methods usually achieve

higher accuracy, but become inefficient as the size of the problem grows larger.

Consider a maximal monotone zero inclusion problem,

0 ∈ T (x),

whose solutions can be easily shown to be the fixed points of the resolvent (I +

tT)−1. The fixed-point iteration

x+ = (I + tT)−1x (3.1)

is called the proximal point algorithm, which converges independently of the choice

of t [Roc76]. Here x+ represents the updated value of the current iterate x. (The

same notation will be used in the following sections.) Equation (3.1) is equivalent

to
x+ − x

t
∈ −T (x+),

which can be interpreted as the backward Euler discretization of the differential

inclusion,
dx(t)

dt
∈ −T (x(t)).

17

On the other hand, the forward Euler discretization computes x+ from x+ ∈

x − tT (x), which is cheaper but requires T (x) to be single-valued and converges

only if the step size t is sufficiently small.

If we apply the proximal point algorithm, for example, to the dual optimality

condition (2.8), we have

z − z+

t
∈ T (z+) = −Â∂f ∗(−ÂT z+) + ∂g∗(z+).

Using the inverse property such that (∂f ∗)−1 = ∂f and (∂g∗)−1 = ∂g gives an

equivalent formulation,

0 ∈

0 0 ÂT

0 0 −I

−Â I 0

x+

y+

z+

+

∂f(x+)

∂g(y+)

0

+
1

t

0

0

z+ − z

 ,

which is the optimality condition of minimizing

L̃t(x
+, y+, z) = f(x+) + g(y+) + 〈z, Âx+ − y+〉+

t

2
‖Âx+ − y+‖2

2,

jointly over x+ and y+, and taking z+ = z + t(Âx+ − y+). We refer to L̃t(x, y, z)

as an augmented Lagrangian of (2.4). However, the minimization may be too

expensive or too difficult to accomplish.

The first-order methods introduced in this chapter all seek to incorporate fully

or partially the backward Euler rule due to its desirable numerical stability and

accuracy, while various tricks are used in order to reduce the cost of calculation.

3.1 Douglas-Rachford Splitting

Douglas-Rachford splitting is a method for finding a zero for the sum of two

maximal monotone operators,

0 ∈ F (x) +G(x). (3.2)

18

The method does not require the evaluation of the resolvent of F + G; instead,

it requires resolvents of the two operators individually, which hopefully are less

expensive to evaluate. While the idea was first introduced for the discretized heat

equation in mid-1950’s by Douglas and Rachford [DR56], it got its name as the

Douglas-Rachford scheme in [LM79]. It is later shown to be a special case of the

proximal point algorithm applied to a specific splitting operator [EB92].

Algorithm 1 (Douglas-Rachford Splitting)

Initialization choose any x̃.

Iteration repeat

1. x+ = (I + tG)−1(x̃)

2. x̄ = (I + tF)−1(2x+ − x̃)

3. x̃+ = x̃+ x̄− x+

According to [EB92], x converges to some zero of F + G if the solution set is

not empty, and there is no assumption on the step size t.

3.1.1 ADMM

We may apply Douglas-Rachford splitting on any of the optimality conditions,

depending on which one of an optimization problem is less expensive to solve.

Particularly, if we apply (Alg. 1) to the dual optimality condition (2.8) and work

out the mathematics, it is shown by [Gab83] to be equivalent to the Alternating

Direction Method of Multipliers, often addressed as ADMM.

ADMM in itself is a popular first-order method especially for large-scale ap-

plications where high accuracy is not essential. It usually has a fast convergence

to a modest accuracy, but a slow convergence to a higher one. The history of

its development can be found in [EB92], where its origin is dated back to the

mid-1970’s.

19

Recall the example of the proximal point method in the beginning of the

chapter; ADMM also seeks to minimize the augmented Lagrangian L̃t(x, y, z),

but alternately with respect to x and y, which is how it got its name.

Algorithm 2 (ADMM)

Initialization choose any y and z.

Iteration repeat

1. x+ = argminx̄L̃t(x̄, y, z)

2. y+ = argminȳL̃t(x
+, ȳ, z)

= proxg/t(Âx
+ + z/t)

3. z+ = z + t(Âx+ − y+)

The only difference is that the steps in (Alg. 2) does not minimize both

variables simultaneously.

As with Douglas-Rachford splitting method, convergence of ADMM is indepen-

dent of the choice of t, which can be either a fixed value or determined adaptively

in each iteration.

3.2 Forward-Backward Splitting

Consider again the zero inclusion problem (3.2) and the differential inclusion

dx(t)

dt
∈ −F (x(t))−G(x(t)).

Besides the forward Euler rule and the backward Euler rule, the discretization

can also be done by applying the mixture of the two, which we call the forward-

backward discretization,

x+ − x
t

∈ −F (x)−G(x+).

20

Solving for x+ in the this case gives the forward-backward update,

x+ = (I + tG)−1(x− tF (x)).

We can see that this requires F to be single-valued and that domG ⊆ domF .

Given a simple optimization problem whose objective function can be repre-

sented in two parts,

minimize f(x) + g(x), (3.3)

by applying forward-backward Euler update on its optimality condition, we obtain

the proximal gradient method.

Compared to Douglas-Rachford splitting method, forward-backward method

requires only one resolvent instead of two, which provides a potential advantage

for decomposing the ”dense” part into F . However, it also requires a stronger

condition for convergence. A convergence proof of the forward-backward method

for co-coercive operator F is given in [Tse91]. Co-coercivity is such that for all

x, x̂ ∈ domF , y ∈ F (x), ŷ ∈ F (x̂), there exists some γ > 0 that,

(y − ŷ)T (x− x̂) ≥ γ‖y − ŷ‖2
2.

Assumption of a nonempty solution set is required, and the step size must be

chosen as t ∈ (0, 2γ).

3.2.1 FISTA

FISTA is the acronym for Fast Iterative Shrinkage-Thresholding Algorithm as

introduced by Beck and Teboulle [BT09]. It is a proximal gradient method ac-

celerated by performing the proximal gradient at an extrapolation point of the

previous two points.

Consider again problem (3.3), if f is convex and differentiable with domf =

Rn, and g is closed and convex so that its proximal operator is well defined,

21

and preferably inexpensive to compute, then FISTA can be applied to solve the

problem. A simple version of FISTA is described in the following algorithm.

Algorithm 3 (FISTA)

Initialization choose any x = x−.

Iteration for k ≥ 1, repeat

1. x̄ = x+ k−2
k+1

(x− x−)

2. x+ = proxtg(x̄− t∇f(x̄))

Here k is the iteration count, and x− from two iterations ago. {x−, x, x+} are

consecutive elements from the sequence {xk} as generated by the iterations of the

algorithm. Same idea applies in chapter 4.

In each iteration, x̄ might not be a feasible point, but x+ always is. FISTA is

not a descent method, although we can surely make it one through some variation

of the update of x+. Convergence is guaranteed if the optimal value p∗ is finite

and attained at some point x∗, and ∇f is Lipschitz continuous with constant L,

‖∇f(x)−∇f(x̂)‖2 ≤ L‖x− x̂‖2 ∀x, x̂.

The step size t can be either fixed to 1/L or determined by a line search. The

convergence analysis requires that

f(x+) ≤ f(x̄) +∇f(x̄)T (x+ − x̄) +
1

2t
‖x+ − x̄‖2

2,

which is known to hold for t ∈ (0, 1
L

]. Hence, we can start with a larger step size

t = t0 > 1/L, with a parameter β ∈ (0, 1). In each iteration, replace step 2 with

the following steps.

22

x+ = proxtg(x̄− t∇f(x̄))

while f(x+) > f(x̄) +∇f(x̄)T (x+ − x̄) + 1
2t
‖x+ − x̄‖2

2

t+ = βt

x+ = proxt+g(x̄− t+∇f(x̄))

end

The t+ in the inner while-loop is the update for each iteration of the inner loop.

Once t becomes less than or equal to 1/L, Lipschitz continuity of ∇f guarantees

that the while-loop condition will no longer be met.

The rate of convergence in function values is proven to be O(1/k2) according to

[BT09], an improvement from the worst-case convergence rate O(1/k) of proximal

gradient methods, which does not have the extrapolation step but costs about the

same with FISTA in each iteration. According to [BT09] and their experiment on

image deblurring, FISTA works well both theoretically and in practice.

3.2.2 Tseng’s Modified Forward-Backward Splitting

Tseng presented a modified forward-backward method in [Tse00] that uses an

approximate backward Euler rule,

x+ − x
t

∈ −F (x̄)−G(x̄),

where x̄ is obtained through a forward-backward update,

x̄− x
t
∈ −F (x)−G(x̄).

The method is described in the following algorithm.

Algorithm 4 (Tseng’s Modified Forward-Backward Splitting)

Initialization choose any x ∈ domF .

23

Iteration repeat

1. x̄ = (I + tG)−1(x− tF (x))

2. x+ = x̄− t(F (x̄)− F (x))

Here we need to assume domF = Rn to ensure that x+ ∈ domF . Convergence

requires Lipschitz continuity of F , which is implied by, but usually less constrained

than co-coercivity. The step size can be fixed as t = 1/L or determined by a

backtracking line search. The line search is done similarly to that of FISTA. We

start with t = t0 > 1/L, and multiply it by β whenever the following condition is

not satisfied.

t‖F (x̄)− F (x)‖2 ≤ θ‖x̄− x‖2

When t ≤ θ/L, the condition is guaranteed to be satisfied, and θ ∈ (0, 1) is an

algorithm parameter.

3.3 Semi-Implicit Methods

Semi-implicit method describes yet another way to compute the updates. A nat-

ural consideration would be the primal-dual optimality condition (2.19).

1

t

 x− x+

z − z+

 ∈
 0 ÂT

−Â 0

 x

z+

+

 ∂f(x+)

∂g∗(z+)

The only difference with applying forward-backward Euler discretization on (2.19)

is the z+ in the first term of the right-hand side, which makes the mixture a little

more ”implicit” than the forward-backward update. Another option is to use

(x+, z) in that term instead of (x, z+). Solving for the updates of x+ and z+ gives

the following algorithm [AH58].

Algorithm 5 (Arrow-Hurwicz)

Initialization choose any x, z.

24

Iteration repeat

1. z+ = proxtg∗(z + tÂx)

2. x+ = proxtf (x− tÂT z+)

Many modifications have been made of this algorithm. In this thesis we studied

two relatively recent ones.

3.3.1 Pock-Chambolle

Pock and Chambolle presented a variant of the Arrow-Hurwicz algorithm where

they added an extrapolation term x̄ with θ ∈ [0, 1], and used possibly different

step sizes for x and z updates [PCB09, CP11].

Algorithm 6 (Pock-Chambolle)

Initialization choose any x̄, z.

Iteration repeat

1. z+ = proxσg∗(z + σÂx̄)

2. x+ = proxτf (x− τÂT z+)

3. x̄ = x+ + θ(x+ − x)

A general convergence O(1/k) is proven for θ = 1 and 0 < σ, τ < 1/‖Â‖2. For

the problems with both f and g being smooth, linear convergence can be reached

(O(ωk) with ω ∈ (0, 1)). No line search has been proposed for this method.

3.3.2 Chen-Teboulle

Similarly, the predictor-corrector proximal method presented by Chen and Teboulle

can be interpreted as a variant of the semi-implicit method applied to a reformu-

25

lation of the primal optimality condition (2.7)

0 ∈

0 0 ÂT

0 0 −I

−Â I 0

x

y

z

+

∂f(x)

∂g(y)

0

which gives

1

t

x− x+

y − y+

z − z+

 ∈

0 0 ÂT

0 0 −I

−Â I 0

x

y

z+

+

∂f(x+)

∂g(y+)

0

 .

Chen and Teboulle’s method adds a corrector term as presented in the following

algorithm, which they call the predictor-corrector proximal multiplier method.

Algorithm 7 (Chen-Teboulle)

Initialization choose any x, y, z.

Iteration repeat

1. z̄ = z + t(Âx− y)

2. x+ = proxtf (x− tÂT z̄)

3. y+ = proxtg(y + tz̄)

4. z+ = z + t(Âx+ − y+)

Convergence is guaranteed if the optimal solution set is nonempty and the

step size satisfies ε ≤ t ≤ min(1−ε
2
, 1−ε

2‖Â‖2
) in each iteration, for some 0 < ε ≤

min(1
3
, 1

2‖Â‖2+1
). Linear convergence rate is proven with some further assumptions

of the problem, such as the existence of a unique optimal point and so on [CT94].

No line search has been proposed for this method.

26

CHAPTER 4

Numerical Methods Applied on Trace Norm

Minimization

In this chapter, we apply the numerical methods described in chapter 3 on our

trace norm minimization problem (2.14), with possibility of different combinations

of the primal and dual formulation. Interior-point method is included here for the

purpose of comparison as a well-developed second-order method.

A few assumptions for the discussion in the chapter: n ≥ max(p, q), pq ≥ n

and Â has full column rank, n. For convenience, we also assume p ≥ q, since ‖Y ‖∗

and ‖Y T‖∗ are always identical.

For each method, we show its implementation, linear algebra complexity per

iteration, some typical convergence curves, and some observations concerning its

performance. Specifically, the two convergence plots shown for each implementa-

tion are the minimizations of two randomly generated problem instances of the

form 2.14, one of which with size parameters n = 50, p = q = 40, rank(mat(Âx)−

B) = 10, the other one with n = 100, p = 80, q = 60, rank(mat(Âx)−B) = 30.

The relative error (p− p∗)/p∗ in the convergence curves is computed with an op-

timal value as known from the problem generation procedure presented in section

5.1.1. Except for the interior-point method, all the methods terminate when the

relative error becomes less than 10−5 or the number of iterations exceeds 104.

Generally speaking, first-order methods cost less per iteration, but the number

of iterations they take to convergence tends to vary with problem complexity, size,

27

and the step size, initial point chosen.

A lookup table for the full name and the shorthand notation of each method

is summarized in Table 4.1.

Table 4.1: Lookup table for first-order methods

Notation Full name Section

ADMM Alternating direction method of multipliers 3.1.1, 4.2

DRpd Douglas-Rachford splitting on primal-dual 3.1, 4.3

FIST FISTA on dual 3.2.1, 4.4

TsFB Tseng’s modified forward-backward splitting on

primal-dual

3.2.2, 4.5

Pock Pock-Chambolle 3.3.1, 4.6

Chen Chen-Teboulle on dual 3.3.2, 4.7

4.1 Interior-Point method for Semidefinite Programming

The trace norm minimization problem can be formulated as a semidefinite pro-

gram (SDP), and the most popular method for solving an SDP is the primal-dual

interior-point method. It has the advantage of giving solutions of high accuracy,

having robust behavior, and a fast convergence that typically takes some tens

of iterations independent of the problem size. However, both the complexity of

computation and the memory requirement grow really fast with the problem size.

According to [FHB01, VB96], we can formulate the quadratic regularized trace

28

norm minimization problem (2.10) as a semidefinite program,

minimize 1
2
(t+ Tr(U) + Tr(V))

subject to

 I P
1
2x

(P
1
2x)T t

 � 0 U A(x)−B

(A(x)−B)T V

 � 0,

(4.1)

where t ∈ R, U ∈ Sp, V ∈ Sq are optimization variables introduced in addition

to the original one, x. The large auxiliary matrix variables introduced by the

reformulation thus make it expensive to solve by general-purpose interior-point

solvers, where the complexity grows at least as fast as O(n6), assuming p = O(n)

and q = O(n). Liu and Vandenberghe have developed a more efficient method by

exploiting the structure of the semidefinite program reformulation, and the cost

per iteration is reduced to O(n4), which is comparable to the cost of solving the

approximation problem in the Frobenius norm, that is, a least squares problem of

size pq × n [LV09].

As noted in the literature, it takes only a small number of iterations for the

interior-point method to reach a desirable accuracy, and there is a steady progress

in each iteration.

4.2 ADMM

Applying ADMM to our trace norm minimization problem, we obtain the following

implementation.

Implementation 1 (ADMM)

Initialization choose any y (= vec(B)) and z (= 0).

29

1 2 3 4 5 6
10

−8

10
−6

10
−4

10
−2

10
0

(n,p,q,rank) = (50,40,40,10)

iteration

(p
 −

 p
*)

 /
 p

*

1 2 3 4 5 6
10

−8

10
−6

10
−4

10
−2

10
0

(n,p,q,rank) = (100,80,60,30)

iteration

(p
 −

 p
*)

 /
 p

*

Figure 4.1: Interior-point method convergence curve

The missing data point is due to a primal objective that is smaller than the

optimum because of the allowance of infeasible points in the primal-dual interior-

point method.

Iteration repeat

1. x+ = (P + tÂT Â)−1ÂT (ty − z)

2. Udiag(s)V T = mat(Âx+ 1
t
z)−B

y+ = vec(B + Udiag(max(0, s− 1
t
))V T)

3. z+ = z + t(Âx+ − y+)

Again, Udiag(s)V T in step 2 refers to the compact singular value decomposi-

tion of the right hand side, which is the most costly step in each iteration, taking

O(p2q) flops. Solving the linear equation (P+tÂT Â)x+ = ÂT (ty−z) in step 1 can

be even more expensive if it were implemented naively. However, some prepro-

cessing can significantly reduce the complexity. For example, if t is fixed, only one

Cholesky factorization for P+tÂT Â is needed before the iterations start, and then

computing ÂT (ty − z) and using forward and backward substitution to solve for

x+ cost O(npq) and O(n2), respectively. However, the step size t is usually made

adaptable in practice to improve convergence. In this case, we use simultaneous

diagonalization as described in [LHV13] for a general P , where the complexity for

30

solving the linear equation remains O(n2). First take a Cholesky factorization,

LLT = P + ÂT Â,

and then an eigenvalue decomposition,

QΛQT = L−1PL−T .

Noting therefore that

P = LQΛQTLT

ÂT Â = LQ(I − Λ)QTLT ,

and (P + tÂT Â)x = b can be solved by

x = L−TQ(tI + (1− t)Λ)−1QTL−1b.

If desired, the Cholesky factorization L can be computed by taking a QR

factorization, that is,

Q̃LT =

 P
1
2

Â

 ,

as in the case discussed above. The same technique for solving linear equations is

used for other methods discussed in the following sections.

An observation is made concerning the effect of different choices of t such that

for each problem size, a certain choice of t usually gives the fastest convergence,

while larger or smaller choices give slower ones. This can be explained in light of

the simultaneous convergence of the primal and dual residuals defined as

rp = Âx+ − y+

rd = tÂT (y+ − y).

Larger t places a larger penalty on violation of primal feasibility, and thus may

result in a smaller rp. Smaller t may produce a smaller rd according to its defini-

tion, while the resulting rp might be larger. Thus, one intuitive example of step

31

adjusting as mentioned in [BPC11] is

t+ =

βt ‖rp‖2 > µ‖rd‖2

t/β ‖rd‖2 > µ‖rp‖2

t otherwise

which seeks to keep rp and rd within a factor µ of each other. The parameters

β, µ > 1 are typically chosen as β = 2 and µ = 10.

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

(n,p,q,rank) = (50,40,40,10)

iteration

(p
 −

 p
*)

 /
 p

*

0 10 20 30 40
10

−6

10
−5

10
−4

10
−3

(n,p,q,rank) = (100,80,60,30)

iteration

(p
 −

 p
*)

 /
 p

*

Figure 4.2: ADMM convergence curve

0 100 200 300 400 500
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

ADMM, (n,p,q,rank) = (50,40,40,10)

iteration

(p
 −

 p
*)

 /
 P

*

Fixed t = 0.5
(2,0.5)
(2,2)
(10,2)

0 50 100 150 200 250 300
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

ADMM, (n,p,q,rank) = (100,80,60,30)

iteration

(p
 −

 p
*)

 /
 P

*

Fixed t = 0.5
(2,0.5)
(2,2)
(10,2)

Figure 4.3: ADMM convergence curve. Dashed line curves use adaptive step size

with parameters (µ, β).

32

Lastly, the expression shown in parenthesis for initialization step is the initial

point chosen in our implementation, which also affects the convergence. According

to [LHV13], y is initialized to zero, but we find initializing it to vec(B) generally

gives faster convergence.

As can be seen in Figure 4.2, ADMM exhibits steady and fast progress in each

iteration, as compared to other first-order methods. Moreover, in Figure 4.3, we

see that different choices for the parameters of step size adaption give different rate

of convergence, and its effect varies with problem sizes. Also, while µ = 2, β = 0.5

gives a superior performance in these two instances, it does not reach convergence

in some other instances.

4.3 Douglas-Rachford Splitting on Primal-Dual

There are several ways to split the zero inclusion problem (2.19). For example, if

we take

F (x, z) =

 0 ÂT

−Â 0

 x

z

G(x, z) =

 ∂f(x)

∂g∗(z)

 (4.2)

for (Alg. 1) we obtain the following implementation.

Implementation 2 (DR1A)

Initialization choose any x̃ (= 0) and z̃ (= 0).

33

Iteration repeat

1. x+ = (I + tP)−1x̃

z+ = PC(z̃ − tvec(B))

2. x̄+ = (I + t2ÂT Â)−1(2x+ − x̃− tÂT (2z+ − z̃))

z̄+ = 2z+ − z̃ + tÂx̄+

3. x̃+ = x̃+ x̄+ − x+

z̃+ = z̃ + z̄+ − z+

Recall from chapter 2 that PC is the Euclidean projection onto set C, as defined

in (2.15). The z update in the first step is done by taking an SVD of the matrix

form of the parameter of PC , and then truncating to one those singular values

larger than one. Specifically, it is done in two steps,

Udiag(s)V T = mat(z̃ − tvec(B))

z+ = vec(Udiag(min(1, s))V T),

where Udiag(s)V T refers to the compact SVD of the right hand side. Same rule

applies to the following sections.

0 200 400 600 800 1000
10

−6

10
−4

10
−2

10
0

10
2

(n,p,q,rank) = (50,40,40,10)

iteration

(p
 −

 p
*)

 /
 p

*

0 200 400 600 800 1000 1200
10

−6

10
−4

10
−2

10
0

10
2

(n,p,q,rank) = (100,80,60,30)

iteration

(p
 −

 p
*)

 /
 p

*

Figure 4.4: DR1A convergence curve

34

Interchanging the operator F and G in the previous case, we obtain a different

implementation. We can also take another splitting such as

F (x, z) =

 0 ÂT

−Â 0

 x

z

+

 ∂f(x)

0

G(x, z) =

 0

∂g∗(z)

 .

Again, interchanging F and G in the previous case gives us another implemen-

tation. However, the performance of all four combinations appears to be almost

identical, only off by one iteration. Thus, we refer to these four implementations as

DRpd. The curve for DRpd exhibits a slow convergence for the most part and a fast

drop at one point, which varies with the step size chosen. A scheme for adaptive

step size similar to that for ADMM might improve these implementations.

Now consider the complexity of these methods. Each of them does two matrix-

vector multiplications of O(npq) and one SVD that costs O(p2q) in one iteration.

4.4 FISTA on Dual

Since applying FISTA on the primal problem (2.14) gives a problem as difficult

to solve in each iteration as the problem itself, in this thesis we apply FISTA on

the dual problem (2.16). We use the dual variable z, take f in (Alg. 3) to be

1
2
zT ÂP †ÂT z and g to be vec(B)T z + IC(z), then obtain the following implemen-

tation.

Implementation 3 (FIST)

Initialization choose any z = z− (= 0).

Iteration for k ≥ 1, repeat

1. z̄ = z + k−2
k+1

(z − z−)

2. z+ = PC(z̄ − t(vec(B) + ÂP †ÂT z̄))

35

For a general dense P , we can take its Cholesky factorization during prepro-

cessing, so the complexity for each iteration becomes one SVD and two O(npq)

multiplications.

The rate of convergence of FIST slows down really soon, and the objective

value even jumps up after the initial convergence.

0 1000 2000 3000 4000 5000 6000
10

−6

10
−4

10
−2

10
0

10
2

(n,p,q,rank) = (50,40,40,10)

iteration

(p
 −

 p
*)

 /
 p

*

0 2000 4000 6000 8000 10000
10

−4

10
−2

10
0

10
2

(n,p,q,rank) = (100,80,60,30)

iteration

(p
 −

 p
*)

 /
 p

*

Figure 4.5: FIST convergence curve

4.5 Tseng’s Modified Forward-Backward Splitting on

Primal-Dual

Apply (Alg. 4) on the primal-dual optimality condition (2.19) with F (x, z) and

G(x, z) split shown in (4.2). Thus, F is single-valued and Lipschitz continuous

with L = ‖Â‖2.

Implementation 4 (TsFB)

Initialization choose any (x, z) (= (0, 0)) ∈ domA.

36

Iteration repeat

1. x̄ = (I + tP)−1(x− tÂT z)

z̄ = PC(z + t(Âx− vec(B)))

2. x+ = x̄− tÂT (z̄ − z)

z+ = z̄ + tÂ(x̄− x)

In each iteration, one SVD and four O(npq) matrix-vector multiplications are

performed.

0 100 200 300 400 500
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

(n,p,q,rank) = (50,40,40,10)

iteration

(p
 −

 p
*)

 /
 p

*

0 500 1000 1500
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

(n,p,q,rank) = (100,80,60,30)

iteration

(p
 −

 p
*)

 /
 p

*

Figure 4.6: TsFB convergence curve

Generally speaking, TsFB exhibits two phases in the convergence curve, first

of which converges faster and has interesting oscillating behavior, second of which

slower.

4.6 Pock-Chambolle

We use the same step size t for both primal and dual updates.

Implementation 5 (Pock)

Initialization choose any x̄ (= 0), z (= 0).

37

Iteration repeat

1. z+ = PC(z + t(Âx̄− vec(B)))

2. x+ = (I + tP)−1(x− tÂT z+)

3. x̄ = x+ + θ(x+ − x)

In each iteration, one SVD and two O(npq) matrix-vector multiplications are

performed.

0 100 200 300 400
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

(n,p,q,rank) = (50,40,40,10)

iteration

(p
 −

 p
*)

 /
 p

*

0 500 1000 1500
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

(n,p,q,rank) = (100,80,60,30)

iteration

(p
 −

 p
*)

 /
 p

*

Figure 4.7: Pock convergence curve

0 100 200 300 400 500 600 700 800
10

−5

10
−4

10
−3

10
−2

10
−1

(n,p,q,rank) = (100,80,60,30)

iteration

(p
 −

 p
*)

 /
 P

*

Pock
TsFB

Figure 4.8: Comparison of TsFB and Pock

38

The convergence of Pock is also roughly a two-phase one. It exhibits a fast

convergence to a modest accuracy and then a rather slow one thereafter. A com-

parison is made between TsFB and Pock shown in Figure 4.8. Although Pock

reaches modest accuracy a lot sooner, both methods typically converge to higher

accuracy with almost the same pace.

4.7 Chen-Teboulle on Dual

Applying Chen and Teboulle’s method to the dual optimality condition (2.18)

gives us f(z) = vec(B)T z + IC(z), g(w) = 1
2
wTP †w and ÂT z = w for (Alg. 7),

and we have the following implementation.

Implementation 6 (Chen)

Initialization choose any z (= 0), w (= 0), x (= 0).

Iteration repeat

1. x̄ = x+ t(ÂT z − w)

2. z+ = PC(z − t(Âx̄+ vec(B)))

3. w+ = (I + tP †)−1(w + tx̄)

4. x+ = x+ t(ÂT z+ − w+)

In each iteration, one SVD and three O(npq) matrix-vector multiplications are

performed.

The convergence as shown in Figure 4.9 is steady but rather slow even for

small problems. However, we can see that the corrector step added from the pure

semi-implicit update has a nice effect on the convergence curve, as compared to

Figure 4.10.

39

0 500 1000 1500 2000 2500
10

−6

10
−4

10
−2

10
0

10
2

10
4

(n,p,q,rank) = (50,40,40,10)

iteration

(p
 −

 p
*)

 /
 p

*

0 1000 2000 3000 4000 5000
10

−6

10
−4

10
−2

10
0

10
2

10
4

(n,p,q,rank) = (100,80,60,30)

iteration

(p
 −

 p
*)

 /
 p

*

Figure 4.9: Chen convergence curve

0 2000 4000 6000 8000 10000
10

−6

10
−4

10
−2

10
0

10
2

10
4

(n,p,q,rank) = (50,40,40,10)

iteration

(p
 −

 p
*)

 /
 p

*

0 2000 4000 6000 8000 10000
10

−6

10
−4

10
−2

10
0

10
2

10
4

(n,p,q,rank) = (100,80,60,30)

iteration

(p
 −

 p
*)

 /
 p

*

Figure 4.10: Convergence curve for pure semi-implicit method, implemented as

Chen but without step 4, the corrector step.

4.8 Summary

Considering all the first-order splitting methods discussed above, we see that

FISTA on dual (FIST) and Chen-Teboulle on dual (Chen) do not converge to

acceptable accuracy within reasonable number of iterations; Douglas-Rachford

splitting on primal-dual (DRpd), Tseng’s modified forward-backward splitting on

primal-dual (TsFB), and Pock-Chambolle (Pock) converge to modest accuracy

within reasonable number of iterations, while Pock gives faster initial convergence;

40

only ADMM reaches high accuracy and demonstrates fast initial convergence. Their

behaviors can be summarized in Figure 4.11.

0 1000 2000 3000 4000 5000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

(n,p,q,rank) = (100,80,60,30)

iteration

(p
 −

 p
*)

 /
 p

*

ADMM
DRpd
FIST
TsFB
Pock
Chen

Figure 4.11: Comparison of convergence curves

We can also observe that the solutions that these methods find to the quadrat-

ically regularized trace norm minimization do tend to be low-rank. Specifically,

if we take only the singular values within two orders of the largest one, then the

optimal rank is recovered. The range of the corresponding left singular vectors

also converges to that of the optimal solution, which is verified by taking the angle

between the optimal and the recovered subspaces. For the two instances shown

in this chapter, the angles are 4.49 ◦ and 8.65 ◦ respectively.

41

0 5 10 15 20 25 30 35 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

(n,p,q,rank) = (50,40,40,10)

Singular value index

S
in

g
u
la

r
v
a
lu

e
s

ADMM

DRpd

FIST

TsFB

Pock

Chen

0 10 20 30 40 50 60
10

−4

10
−3

10
−2

10
−1

10
0

10
1

(n,p,q,rank) = (100,80,60,30)

Singular value index

S
in

g
u
la

r
v
a
lu

e
s

ADMM

DRpd

FIST

TsFB

Pock

Chen

Figure 4.12: Singular values of solutions

In the bottom figure FIST does not reach the same accuracy because it reached

the iteration limit before converging to the desired value.

42

CHAPTER 5

Experimental Results

In this chapter we give numerical experiments that compare the performance of

each method over different problem sizes.

All the experiments in this thesis are run on a 2.83 GHz quad-core Intel Q9550

processor with 8 GB of memory. The primal-dual interior-point method is found

in CVXOPT (version 1.1.5) written in Python (version 2.7.3) [GCC4.6.3] [LV09],

and all the other implementations use MATLAB 7.13.0.564 (R2011b).

5.1 Randomly Generated Data

In this section we first explain how the random problems used to test the meth-

ods are generated, and then we show extensive experiments of all the first-order

splitting methods on some medium-sized problems, which then become the basis

for selecting promising methods for large-scale problems.

5.1.1 Random Problem Generation

We are not certain if all randomly generated problems will have optimal solutions.

Hence we want to generate problems that are known to have optimal solutions.

This method of problem generation also allows us to generate a problem with

specified rank of the matrix mat(Âx) − B, which is an essential parameter with

applications on system identification.

The parameters that define the problem are P, Â, B, the optimization vari-

43

able is x, and the supplemental variables are y and z. An optimal solution along

with the associated problem parameters should satisfy the generalized KKT con-

ditions [BV04], which is another way to describe optimality conditions. Consider

a reformulation of (2.14),

minimize 1
2
xTPx+ ‖mat(y)‖∗

subject to Âx− vec(B) = y,

with z being the multiplier of the equality constraint. The KKT conditions are

Âx− vec(B) = y

Px+ ÂT z = 0

‖mat(y)‖∗ − zTy = 0

‖mat(z)‖2 ≤ 1.

Moreover, for a convex optimization problem, points that satisfy the KKT condi-

tions are also guaranteed to be optimal. Thus, we can randomly generate some of

the parameters and solutions, and use the equations given by the KKT conditions

to derive the rest, as proposed in the following implementation.

Implementation 7 (Random problem generation)

1. Randomly generate P � 0, Â, ‖mat(z∗)‖2 ≤ 1

2. Solve for a y that satisfies ‖mat(y)‖∗ − z∗Ty = 0

3. Solve for x∗ according to Px∗ + ÂT z∗ = 0

4. Solve for B according to Âx∗ − vec(B) = y.

The random matrices are generated by the randn function in MATLAB. The

matrix P can be chosen to be dense, diagonal, or a multiple of the identity matrix.

The matrix mat(z∗) is generated randomly, and its singular values are scaled so

that the mth singular value becomes one, and then all those larger than one are

44

truncated to one. In step 2, we first randomly generate the first m singular values

for mat(y), set the rest to zero, and multiply it with the corresponding m left

and right singular vectors of mat(z∗). Specifically, if USV T is a singular value

decomposition of mat(z∗) and Ỹ is the matrix whose first m diagonal elements

are randomly generated positive values, then y = vec(UỸ V T).

5.1.2 Method Selection

Experiments in this section are conducted over problems with around a hundred

variables. Again, we assume that n ≥ max(p, q), pq ≥ n and Â has full column

rank, n, which hold generally in applications.

Table 5.1: Performance of Douglas-Rachford splitting type methods over randomly

generated problems of medium sizes. Under each method, the left column is the

number of iteration, the right column is the cpu time in seconds.

n p q rank ADMM(0) ADMM DRpd

50

40 40
30 65.2 0.33 14.8 0.08 1414.0 12.10

10 63.3 0.28 12.5 0.06 3481.7 27.46

20 20 10 52.4 0.12 16.4 0.04 1756.6 6.41

40 20 10 58.5 0.15 14.4 0.03 4264.6 19.49

100

80 80

60 120.9 3.35 13.7 0.37 6203.5 336.83

30 113.5 3.07 11.5 0.29 7535.6 410.75

10 108.4 3.07 8.9 0.24 8969.1 518.80

40 40
30 92.3 0.51 15.6 0.09 8806.6 101.34

10 87.2 0.48 11.4 0.07 8214.2 75.84

20 20 10 86.5 0.19 14.0 0.03 1184.7 5.00

80 60
30 108.8 1.88 10.5 0.19 11957.8* 453.99

10 110.2 2.03 8.7 0.15 7070.7* 268.76

40 30 10 89.4 0.34 11.7 0.05 6226.0* 44.74

80 40 10 104.2 1.14 10.4 0.12 5635.0 137.89

80 20 10 105.8 0.34 10.6 0.04 9233.5* 67.47

40 20 10 81.6 0.22 12.3 0.04 1828.6 9.75

*Some instance(s) reached maximal iteration (40000) without converging to an acceptable solution.

Table 5.1, 5.2, and 5.3 shows, for each method, the average number of iterations

and cpu time in seconds over 10 randomly generated problems, with 16 different

45

problem dimensions. The methods terminate when the relative error is less the

10−5. The matrix P is taken to be diagonal in all cases. A couple observations

are drawn from the experiments.

Here ADMM(0) uses step size 1.0 and initial point y = 0, ADMM uses step

size 0.5 and initial point y = vec(B), and DRpd uses 1.0 step size. We see that

changing step size and initial point for ADMM improves its speed to convergence

by an order. Using a smaller step size for DRpd also improves its speed from that

shown in Table 5.1. Roughly speaking, we see that ADMM takes longer time as p, q

and rank grow larger, and DRpd takes longer with growing dimensions.

Table 5.2: Performance of forward-backward splitting methods over randomly

generated problems of medium sizes. Under each method, the left column is the

number of iteration, the right column is the cpu time in seconds.

n p q rank FIST TsFB

50

40 40
30 2929.7 22.89 210.4 1.76

10 9290.9* 52.07 229.2 1.99

20 20 10 3088.4 5.90 194.3 0.88

40 20 10 5748.3 13.36 213.0 0.96

100

80 80

60 13324* 1211.7 253.0 14.48

30 18521* 1300.2 265.6 15.84

10 18124* 1311.5 384.0 23.22

40 40
30 10687 61.19 176.6 2.44

10 12377* 68.53 207.5 2.73

20 20 10 2198.8 4.66 147.3 0.72

80 60
30 13272 551.44 228.6 9.65

10 15324 530.10 308.6 12.20

40 30 10 7754.2 29.14 175.8 1.38

80 40 10 10240 186.57 259.2 6.88

80 20 10 11321* 39.67 179.5 1.45

40 20 10 5081.3 12.96 161.3 0.94

*Some instance(s) reached maximal iteration (40000) without converging to an acceptable solution.

In Table 5.2, we see that TsFB takes shorter time to convergence when the

rank is fuller. While FIST exhibits similar trend, it is less obvious. The number

of iterations for TsFB sometimes varies a lot due to the two-phase feature of its

46

convergence curve.

Table 5.3: Performance of semi-implicit splitting methods over randomly gener-

ated problems of medium sizes. Under each method, the left column is the number

of iteration, the right column is the cpu time in seconds.

n p q rank Pock Semi Chen

50

40 40
30 205.5 1.00 2024.5 9.96 1261.8 6.15

10 226.1 0.92 6592.8 30.71 1592.9 7.61

20 20 10 192.4 0.48 1753.1 3.33 875.5 1.69

40 20 10 202.4 0.41 3125.8 6.80 1062.5 2.42

100

80 80

60 245.1 5.33 4210.7 102.37 2615.5 58.96

30 245.2 5.38 8346.3 194.13 3106.9 67.53

10 209.7 4.58 24524 572.18 3569.8 76.50

40 40
30 169.9 0.89 2140.2 11.50 1312.2 7.17

10 191.6 0.97 7355.6 38.82 1669.2 8.92

20 20 10 148.9 0.31 1729.3 4.02 885.9 2.10

80 60
30 194.8 2.79 5856.4 86.57 2537.0 37.59

10 211.2 2.62 19947 274.60 2759.9 39.38

40 30 10 171.1 0.61 4766.9 17.88 1441.1 5.44

80 40 10 219.5 1.94 12561.3 115.04 2528.4 22.36

80 20 10 169.5 0.48 5688.3 17.36 1575.2 4.95

40 20 10 162.3 0.40 2933.7 7.89 1132.4 3.06

In Table 5.3, we see that the average number of iterations of Pock does not vary

much according to problem dimensions, while the time it takes does. Compared

to pure semi-implicit implementation, Chen has consistently better performance.

Both of them obviously take longer time as p, q grow larger, but also as the rank

grows smaller.

In general, listing the methods in the order of decreasing performance, we have

ADMM, Pock, TsFB, DRpd, Chen, and FIST. We then choose ADMM, TsFB, and Pock

to proceed to large-scale problems.

5.1.3 Large-Scale Data

Experiments on 12 sets of problems with different dimensions listed in Table 5.4

are conducted.

47

Table 5.4: Sizes of problems for large-scale experiments

Problem set # n p q rank

1 50 20 10 3

2 250 200 100 30

3 500 250 50 10

4 500 250 50 30

5 500 200 100 30

6 500 450 50 10

7 1000 200 100 30

8 1000 940 30 10

9 500 400 400 30

10 500 400 400 100

11 1000 800 100 10

The performance is compared in Figure 5.1, where the order of the problem

sets is arranged roughly according to the cpu time it takes interior-point solver so

solve the problem. A version of ADMM with adaptive step size with µ = 10, β = 2 is

included in the comparison. We stop the first-order methods when the accuracy

reaches 10−5, and the interior-point solver terminates with that better than 10−6.

Each entry is the average result of running on 10 different problems, except

for the entry for the interior-point method, which is generated with one instance.

The data is considered reliable since the performance of the interior-point method

is stable over different problem instances of the same dimensions, while that of

first-order methods may vary.

We see that for larger problems, ADMM, like interior-point method, uses a rel-

atively small number of iterations to reach convergence. In the bottom figure,

interior-point method takes longer time than ADMM on large problems and even

48

0 2 4 6 8 10 12
10

0

10
1

10
2

10
3

10
4

Comparison of average # iterations

Problem set #

#
 i
te

ra
ti
o
n
s

ADMM
ADMM (10,2)
Pock
TsFB
Interior−Point

0 2 4 6 8 10 12
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Comparison of average cpu time

Problem set #

c
p

u
 t

im
e

 (
s
e

c
.)

ADMM
ADMM (10,2)
Pock
TsFB
Interior−Point

Figure 5.1: Performance comparison over large-scale problems

49

Pock is faster in some problems, especially those whose p � q. This result jus-

tifies the use of first-order methods over interior-point methods on large-scale

problems.

5.2 System Identification Data

Finally, we test the quality of trace norm minimization as a heuristic for rank

minimization on real-world data collected by [DDD94].

Following the implementation of CVXOPT [LV09], we choose r = min(30
k
, N+2
k+l+1

+

1). It can be noticed that r is chosen so that the resulting Y U⊥ is rather rectan-

gular. Specifically, since the order of the systems in practice rarely exceeds 30, we

choose the column dimension kr to be less than or equal 30. It is better small in

the sense that the estimated column space may be more accurate, and that it re-

quires a smaller number of variables, which is desirable both for the interior-point

methods and the first-order methods.

We first fit the problem (1.6) to the general form (2.14) discussed in the thesis,

with optimization variables ỹ(t) = y(t) − ymeas(t), t = 0, . . . , N . Consider the

single-input-single-output case, we take P = 2γI, B = −mat(Âymeas), and

Â = mat(vec

u⊥1 u⊥2 · · · u⊥r · · · u⊥N−r+1 · · · 0 0

0 u⊥1 · · · u⊥r−1 · · · u⊥N−r · · · 0 0
...

...
. . .

...
. . .

...
. . .

...
...

0 0 · · · u⊥1 · · · u⊥N−2r+2 · · · u⊥N−r u⊥N−r+1

),

where u⊥i , i = 1, . . . , N − r + 1 are the row vectors of U⊥.

We use N = 198 in the following experiments. Shown in Figure 5.2 is one

example of the effect of using different γ, where a clear-cut in the singular values

can be identified when γ gets smaller while maintaining an acceptable identifica-

tion error. In some other cases, for example, as shown in Figure 5.3, the solutions

to the trace norm minimization fail to suggest an obvious system order.

50

0 5 10 15 20 25 30
10

−6

10
−4

10
−2

10
0

10
2

Singular value index

S
in

g
u
la

r
v
a
lu

e
s

Measured
Identified

0 50 100 150 200
3

3.5

4

4.5

5

5.5

6

6.5

Time

O
u

tp
u

t

Measured
Identified

0 5 10 15 20 25 30
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Singular value index

S
in

g
u
la

r
v
a
lu

e
s

Measured
Identified

0 50 100 150 200
3

3.5

4

4.5

5

5.5

6

6.5

Time

O
u

tp
u

t

Measured
Identified

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Singular value index

S
in

g
u
la

r
v
a
lu

e
s

Measured
Identified

0 50 100 150 200
3

3.5

4

4.5

5

5.5

6

6.5

Time

O
u

tp
u

t

Measured
Identified

Figure 5.2: Largest singular values (left) and identified output (right) of

[96-006]:Data of a laboratory setup acting like a hair dryer from DaiSy, with

regularization parameter γ equals 2.5 (top), 1.75 (middle), 1.5 (bottom), respec-

tively.

51

0 5 10 15 20 25 30
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Singular value index

S
in

g
u
la

r
v
a
lu

e
s

Measured
Identified

0 50 100 150 200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

O
u
tp

u
t

Measured
Identified

Figure 5.3: Largest singular values (left) and identified output (right) of

[96-009]:Data from a flexible robot arm from DaiSy with γ equals 11.

52

CHAPTER 6

Conclusions

The thesis studies several first-order splitting methods that have been proposed

for various applications, and applies them to a specific trace norm minimization

problem.

Compared to an existing semidefinite programming solver, we see that as the

problem data grows larger (with a couple hundreds primal variables), some first-

order methods outperform the interior-point method in time and complexity with

an acceptable accuracy, which is expected according to their computational com-

plexity.

Among the studied first-order methods, we show that while ADMM has the

reason for its long-lasting popularity, some other recent methods can be promis-

ing, too. For example, Pock-Chambolle’s modified semi-implicit method shows

fast convergence to a modest accuracy, and Tseng’s modified forward-backward

method is of interest when the optimal solution has relatively full rank.

We also see that trace norm minimization of a properly constructed matrix,

with a proper choice of the quadratic regularization parameter, can often provide

us a good estimate of the system order in system identification, which is especially

helpful if the data is noise-polluted.

For possible future research directions, it is interesting to learn what makes

some methods work well on the trace norm minimization problem, and to develop

a general solver for it. As for the nature of using trace norm as an approximation of

the rank, some interesting questions are: when is the approximation exact, that is,

53

when is a low-rank solution the optimal one, what is the role of the regularization

parameter and what determines the value that gives optimal fit in the setting of

system identification and realization? Lastly, we would like to know if there are

other convex heuristics for the rank minimization, for example, other norms like

Ky Fan k-norms (k largest singular values) or Schatten m-norms.

54

References

[AH58] K. J. Arrow and L. Hurwicz. Studies in Linear and Non-Linear Pro-
gramming. Stanford University Press, 1958.

[BPC11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. “Dis-
tributed optimization and statistical learning via the alternating direc-
tion method of multipliers.” Found. Trends Mach. Learn., 3(1):1–122,
2011.

[BT09] A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems.” SIAM Journal on Imaging Sciences,
2(1):183–202, 2009.

[BV04] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[CP11] A. Chambolle and T. Pock. “A first-order primal-dual algorithm for
convex problems with applications to imaging.” J. Math. Imaging Vis.,
40(1):120–145, May 2011.

[CT94] G. Chen and M. Teboulle. “A proximal-based decomposition method
for convex minimization problems.” Mathematical Programming,
64:81–101, 1994.

[DDD94] B. De Moor, P. De Gersem, B. De Schutter, and W. Favoreel. “DaISy:
Database for the Identification of Systems.”, 1994.

[DR56] J. Douglas and H. H. Rachford. “On the numerical solution of heat
conduction problems in two and three space variables.” Transactions
of the American mathematical Society, 82(2):421–439, 1956.

[DSC07] T. Ding, M. Sznaier, and O. Camps. “A rank minimization approach to
fast dynamic event detection and track matching in video sequences.”
In Decision and Control, 2007 46th IEEE Conference on, pp. 4122–
4127, 2007.

[EB92] J. Eckstein and D. P. Bertsekas. “On the Douglas-Rachford splitting
method and the proximal point algorithm for maximal monotone oper-
ators.” Mathematical Programming, 55:293–318, 1992.

[FHB01] M. Fazel, H. Hindi, and S. P. Boyd. “A rank minimization heuristic with
application to minimum order system approximation.” Proceedings of
the American Control Conference, 2001.

55

[FPS11] M. Fazel, T. K. Pong, D. Sun, and P. Tseng. “Hankel matrix rank min-
imization with applications in system identification and realization.”,
2011.

[Gab83] D. Gabay. “Applications of the Method of Multipliers to Variational
Inequalities.” In M. Fortin and R. Glowinski, editors, Augmented La-
grangian Methods: Applications to the Numerical Solution of Boundary-
Value Problems, volume 15 of Studies in Mathematics and Its Applica-
tions, chapter IX, pp. 299 – 331. Elsevier, 1983.

[GJM09] C. Grossmann, C. N. Jones, and M. Morari. “System identification via
nuclear norm regularization for simulated moving bed processes from in-
complete data sets.” In Decision and Control, 2009 held jointly with the
2009 28th Chinese Control Conference. Proceedings of the 48th IEEE
Conference on, pp. 4692–4697, 2009.

[HJ85] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, 1985.

[HJ91] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, 1991.

[LHV13] Z. Liu, A. Hansson, and L. Vandenberghe. “Nuclear norm system iden-
tification with missing inputs and outputs.” Submitted to System and
Control Letters, 2013.

[Lju99] L. Ljung. System Identification: Theory for the User. Prentice Hall,
2nd edition, 1999.

[LM79] P. Lions and B. Mercier. “Splitting algorithms for the sum of two
nonlinear operators.” SIAM Journal on Numerical Analysis, 16(6):964–
979, 1979.

[LV09] Z. Liu and L. Vandenberghe. “Interior-point method for nuclear norm
approximation with application to system identification.” SIAM Jour-
nal on Matrix Analysis and Applications, 31(3):1235–1256, 2009.

[MGC11] S. Ma, D. Goldfarb, and L. Chen. “Fixed point and Bregman iterative
methods for matrix rank minimization.”, 2011.

[PCB09] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. “An algorithm for
minimizing the Mumford-Shah functional.” In Computer Vision, 2009
IEEE 12th International Conference on, pp. 1133–1140, 2009.

[RFP10] B. Recht, M. Fazel, and P. A. Parrilo. “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization.”
SIAM Review, (3):471–501, 2010.

56

[Roc76] R. T. Rockafellar. “Monotone operators and the proximal point algo-
rithm.” SIAM Journal on Control and Optimization, 14(5):877–898,
1976.

[Roc97] R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathe-
matics, 1997.

[Tse91] P. Tseng. “Applications of a splitting algorithm to decomposition in
convex programming and variational inequalities.” SIAM Journal on
Control and Optimization, 29(1):119–138, 1991.

[Tse00] P. Tseng. “A modified forward-backward splitting method for maximal
monotone mappings.” SIAM Journal on Control and Optimization,
38(2):431–446, 2000.

[VB96] L. Vandenberghe and S. P. Boyd. “Semidefinite programming.” SIAM
Review, (1):49–95, 1996.

[VV07] M. Verhaegen and V. Verdult. Filtering and System Identification: A
Least Squares Approach. Cambridge University Press, 2007.

57

