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Domain engineered ferroelectric relaxor-PT crystals have attracted extensive attentions due to 

their ultrahigh piezoelectric coefficients and electromechanical coupling factors. To gain insight 

into the microstructure and its effects on the material behavior, a modeling approach was 

developed from an energetic perspective. A Landau-Devonshire energy function, in the form of a 

10th order polynomial, was proposed to describe the dielectric, piezoelectric and ferroelectric 

properties of rhombohedral phase PIN-PMN-PT crystals with a MPB composition. The 

coefficients of this energy function were determined through extensive fitting to the experimental 

data. The resulting energy function reproduced the temperature induced phase transformations as 

well as the polarization and strain hysteresis loops of domain engineered 4R and 2R crystals. 

This energy function was then implemented in a phase-field model to investigate the evolution of 



iii 

 

domain structures under the electric field. A new way to apply periodic boundary conditions was 

implemented to accommodate nonzero strain during domain formation and evolution. The 

domain formation process was simulated first and 71 and 109 domain walls were found to 

populate the crystals. Then these two types of domain walls were individually studied under the 

electric field applied along the [110] direction. They showed different behavior in response to the 

electric field. A domain wall broadening effect was observed on 71 domain walls when below 

the coercive field. When the field exceeded the coercive field, homogeneous polarization 

switching occurred with no motion of 71 domain walls. While the sweeping of 109 domain walls 

facilitated heterogeneous polarization switching and reduced the energy required relative to 

homogeneous polarization switching. The two mechanisms of domain evolution are consistent 

with the minimal domain wall motion in the engineered domain structures under the electric 

field. With this work, the application of the phase-field method was expanded to the new 

rhombohedral phase relaxor-PT crystals beyond ferroelectric materials with tetragonal 

symmetry. This work also deepened the understanding of domain structures of ferroelectric 

single crystals that is important in many applications. 
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1 Introduction  

1.1 Motivation   

The past two decades have seen the rapid development of ferroelectric relaxor-PbTiO3 (PT) 

crystals. They have attracted extensive attentions due to their ultrahigh piezoelectric coefficients 

(d33>2000pC/N) and electromechanical coupling factors (k33>0.9). As shown in Figure 1.1, the 

relaxor-PT crystals far outperform state-of-the-art polycrystalline piezoelectric ceramics, 

exhibiting great potential for replacing polycrystalline ceramics in piezo-based applications such 

as sensors and actuators. 

 

Figure 1.1. Piezoelectric coefficient d33 and electromechanical coupling factor k33 of relaxor-PT single crystals and 

piezoelectric ceramics as a function of the Curie temperature [1]. 

Two typical relaxor-PT crystals are (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) and 

(1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-PT). They were first reported to have ultrahigh 

piezoelectric coefficients (d33>2500pC/N) and strain levels up to 1.7% through domain 

engineering by Park and Shrout [2]. Domain engineering is a technique to obtain enhanced 
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piezoelectric properties, including cutting and poling the crystals along certain directions. These 

crystals with rhombohedral symmetry have eight spontaneous polarization directions, the <111> 

directions. Each of them is called a rhombohedral variant. Usually the crystals are poled along 

specific nonpolar directions, resulting in a set of equivalent domains such that there is no driving 

force for domain wall motion under subsequent electric field [3]. Figure 1.2 shows examples of 

domain engineered rhombohedral crystals poled along the [001] and [011] directions. By poling 

along the [001] direction, only the top four variants are populated in the crystal. This is called a 

four-rhombohedral-variant (4R) crystal. It exhibits a giant longitudinal piezoelectric coefficient 

d33 and a high electromechanical coupling factor k33. A two-rhombohedral-variant (2R) crystal is 

obtained by poling along the [011] direction. Large transverse and shear piezoelectric 

coefficients and electromechanical coupling factors, i.e. d32, k32, d15 and k15, are observed in 2R 

crystals [4]. 

 

Figure 1.2. Domain engineered rhombohedral crystals. (a) Eight variants of rhombohedral crystals before poling. 

(b) 4R crystals obtained by poling along the [001] direction. (c) 2R crystals obtained by poling along the [011] 

direction. 
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Domain engineered PMN-PT crystals exhibit exceptional piezoelectric properties. However, 

their relatively low Curie temperature (TC) and ferroelectric phase transition temperature (TRT) 

limit their applications. In addition, their low coercive field Ec results in depolarization issues. In 

some applications a DC bias may be required to maintain the polarization. This results in 

reduction of sensitivity. Applying a DC bias also adds complexity and cost to the device. 

Furthermore, their low mechanical quality factors (Qm~100) restrict their use in resonance based 

applications [1]. Single crystals with better thermal stability, higher coercive field and lower loss 

were desired. This led to extensive efforts to develop new crystals. The ternary compositions of 

xPb(In1/2Nb1/2)O3-(1-x-y)Pb(Mg1/3Nb2/3)O3-yPbTiO3 (PIN-PMN-PT) were found to have higher 

TC/TRT and Ec, while maintain similar piezoelectric properties compared to the binary 

compositions of PMN-PT [5]. With a broader temperature usage range and improved electrical 

stability, PIN-PMN-PT crystals provide more room for the design of piezo-based devices. The 

properties of crystals can be further tailored by adding dopants. For example, enhanced 

mechanical quality factors (Qm~1000) are observed in Mn doped PIN-PMN-PT crystals, making 

them potential candidate for high power transducer applications [6]. 

Both binary compound PMN-PT and ternary compound PIN-PMN-PT may possess different 

symmetries depending on the composition and external conditions. The highest piezoelectric 

coefficients are found in compositional ranges close to a morphotropic phase boundary (MPB) 

for both. The MPB is a compositional boundary separating two ferroelectric phases with 

different crystallographic symmetries. As shown in Figure 1.3, the MPB of PMN-PT is in the 

range of 31%-37% PT, separating the rhombohedral phase from the tetragonal phase and 

coexisting with a monoclinic phase [7], while the MPB of PIN-PMN-PT is in the range of 24%-

33% PIN and 30%-33% PT between the rhombohedral phase and the tetragonal phase [8]. 
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Within the compositional ranges close to the MPB, the structure is less stable, making it easier 

for polarization to rotate. This results in large material response under external excitations and 

enhanced dielectric and piezoelectric properties.   

 

Figure 1.3. (a) Phase diagram of PMN-PT in terms of temperature and composition [7]. The MPB is in the range of 

31%-37% PT. (b) Phase diagram of PIN-PMN-PT in terms of composition [8]. The MPB is in the range of 24%-

33% PIN and 30%-33% PT. 

Research of ferroelectric relaxor-PT crystals is ongoing and focused on improving or tailoring 

the material properties for piezo-based applications. Material modeling is used to obtain insight 

into the microstructure and its effects on the material behavior. The phase-field method has 

proved to be a powerful approach to modeling and predicting mesoscale microstructural 

evolution [9]. It uses order parameters to describe the domain structure, including domains and 

domain walls in ferroelectric single crystals. When the material is not in the equilibrium state, 

there is a driving force for the evolution of the order parameters that minimizes the energy of the 

system. This is governed by a kinetic relation, the time dependent Ginzburg Landau (TDGL) 
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equation. The phase-field method has been used to investigate many ferroelectric single crystals. 

However, most of the previous work was focused on conventional materials with tetragonal 

symmetry such as BaTiO3, PbTiO3 and certain compositions of lead zirconate titanate (PZT) 

with high PT content. This is because the phase-field method requires input of a Landau-

Devonshire energy function that describes the dielectric, piezoelectric and ferroelectric 

properties of a single crystal in the single domain state, but this type of energy function was not 

available for ferroelectric relaxor-PT crystals with rhombohedral symmetry.  

This dissertation describes the development of such an energy function for ferroelectric 

relaxor-PT crystals [10]. A MPB composition of PIN-PMN-PT with rhombohedral symmetry at 

room temperature was of most interest because the crystals grown in this compositional range 

exhibit the highest piezoelectric coefficients. In addition, these crystals undergo a series of phase 

transformations on cooling, including both paraelectric to ferroelectric and ferroelectric to 

ferroelectric phase transformations. Therefore, the formulation of their energy functions is the 

most complicated. The method of constructing the energy functions can be extended to 

compositions away from the MPB because they only undergo paraelectric to ferroelectric phase 

transformation and the associated energy functions are simplified versions of the one for the 

MPB compositions. This method also applies to PMN-PT and other relaxor-PT crystals. Then 

the energy function developed for rhombohedral PIN-PMN-PT crystals was implemented in a 

phase-field model to study the domain formation and evolution and their contributions to the 

material properties [11]. Special attention was given to the two types of domain walls that were 

populated in the rhombohedral crystals, the 71 and 109 domain walls. They showed different 

responses to external electric field. The minimal domain wall motion in the engineered domain 

structures was discussed in the context of these results.  



6 

 

The dissertation is constructed as follows. Chapter 1 provides the motivation for this work and 

a review of background material on piezoelectricity and ferroelectricity. It is followed by an 

introduction to the thermodynamics of coupled electromechanical systems in Chapter 2. This 

provides the theoretical basis of the phase-field method. Chapter 3 presents the energy function 

construction for a MPB composition of PIN-PMN-PT crystals with rhombohedral variants. 

Based on this energy function, the development of a phase-field model is presented in Chapter 4. 

Chapter 5 provides the summary and conclusions of the dissertation.    
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1.2 Background 

1.2.1 Piezoelectricity 

The term “piezoelectricity” describes the coupling between the mechanical and electrical 

response of a material. When a piezoelectric material is squeezed, electric charges accumulate on 

the surface. This is the direct piezoelectric effect, discovered in 1880 by French physicists 

Jacques and Pierre Curie. Conversely, when an electric field is applied, a piezoelectric material 

mechanically deforms. This is the converse piezoelectric effect. It was first deduced from 

thermodynamics by Gabriel Lippmann in 1881, and then experimentally confirmed by the Curie 

brothers. 

Many crystalline materials exhibit piezoelectric behavior, including naturally occurring 

crystals, synthetic crystals and ceramics. Examples of naturally occurring crystals are Quartz and 

Rochelle salt [12]. Synthetic materials exhibit much better piezoelectric properties than natural 

materials. The most common piezoelectric material today, lead zirconate titanate, also known as 

PZT, is a type of lead-based ceramics. It is produced in the form of both bulk ceramics [13–15] 

and thin films [16–18]. Concern regarding the toxicity of lead and its compounds is growing. 

Developing lead-free piezoelectric materials has been a focused research topic and attracted 

attention from both academia and industries [19,20]. Examples of lead-free materials are sodium 

potassium niobate ((K,Na)NbO3, or KNN) and sodium bismuth titanate ((Na0.5Bi0.5)TiO3, or 

NBT) [21–24]. Certain polymers represent another important piezoelectric material category. A 

typical piezoelectric polymer is polyvinylidene fluoride (PVDF) [25,26].               
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The continued development of piezoelectric materials has led to a huge market of piezo-based 

products ranging from those for everyday use to more specialized devices. Piezoelectric 

materials were initially developed for military and marine applications. The first application was 

an ultrasonic submarine detector during World War I. The discovery of synthetic piezoelectric 

materials, which exhibited piezoelectric properties much higher than natural piezoelectric 

materials, led to rapid development of piezoelectric materials and their applications since World 

War II. The emergence of microelectromechanical systems (MEMS) in the 1980s further 

catalyzed the development of piezoelectric MEMS devices. Now piezo-based applications such 

as sensors, actuators, high voltage and power generators, and energy harvesters are widely used 

in the automotive industry, manufacturing, consumer electronics, medical devices and defense 

industry. Examples include cigarette lighters, ignition systems, air bag sensors, microphones, 

speakers, inkjet printers, auto-focus motors of camera, ultrasonic transducers for medical 

imaging, nondestructive testing, vibration reduction system, etc. The global demand for 

piezoelectric devices was valued at approximately US $21.60 billion in 2015 [27]. 

The piezoelectric effect originates from the occurrence of electric dipole moments in the 

materials. The corresponding crystal classes do not possess a center symmetry. Of the 32 crystal 

classes, 21 are non-centrosymmetric. All of them are piezoelectric with one exception, the cubic 

class 432. The piezoelectric crystal classes include triclinic class (1), monoclinic class (2, m), 

orthorhombic class (222, mm2), tetragonal class (4, 4̅, 422, 4mm, 4̅2m), trigonal class (3, 32, 

3m), hexagonal class (6, 6̅, 622, 6mm, 6̅2m) and cubic class (23, 4̅3m). The unit cell of lead 

titanate (PbTiO3) is illustrated as an example in Figure 1.4.  
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Figure 1.4. A conceptual schematic showing the perovskite structure of lead titanate in the high temperature cubic 

phase (left) and the low temperature tetragonal phase with spontaneous polarization Ps (right). 

Lead titanate is an ABO3 perovskite type oxide. The perovskite has an A+2 ion at each corner 

of the unit cell, a B+4 ion at the center of the unit cell and an O-2 at the center of each face. At 

high temperature, lead titanate is cubic. When cooled below the Curie temperature, it becomes 

tetragonal due to the displacement of the central Ti+4 ion relative to the surrounding O-2 ions. The 

separation of positive and negative ions gives rise to electric dipole moments. The polarization is 

defined as the dipole moments per unit volume. The external load, in the way of either 

mechanical stress or electric field, can change the polarization by inducing a relative 

displacement of the positive and negative ions. The load also deforms the crystal structure and 

induces strain. This is the coupling effect of polarization and strain. When the external load is 

small, the change is reversible and linear. Lines and Glass [28] derived linear constitutive laws 

for piezoelectric effect from energy considerations. Not only the coupling between strain and 

polarization is included, but also the elastic and dielectric effects. Depending on the independent 
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variables used, the piezoelectric constitutive equations have following forms for an isothermal 

process. 

a. Strain-Charge Form       

 

E
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b. Stress-Charge Form 
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c. Strain-Voltage Form 
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d. Stress-Voltage Form 
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  (1.4) 

Repeated subscripts (i, j = 1, 2, 3; m, n = 1, 2, 3, 4, 5, 6) imply summation (Einstein summation 

convention). To simplify notation, the tensors are written in the matrix form, following the Voigt 

convention. The superscripts indicate the variables that are kept constant. All the symbols in Eq. 

(1.1) – (1.4) are listed in Table 1.1.    
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Table 1.1. Symbols in piezoelectric constitutive equations. 

Symbol Type Matrix Size Unit Meaning 

σ Rank-2 tensor 61 N/m2 Stress 

ε Rank-2 tensor 61 - Strain 

c Rank-4 tensor 66 N/m2 Elastic stiffness 

s Rank-4 tensor 66 m2/N Elastic compliance 

E Vector 31 V/m Electric field 

D Vector 31 C/m2 Electric displacement 

κ Rank-2 tensor 33 F/m Dielectric permittivity 

β Rank-2 tensor 33 m/F Inverse dielectric permittivity 

d Rank-3 tensor 36 m/V Piezoelectric coefficient 

e Rank-3 tensor 36 C/m2 Piezoelectric coefficient 

g Rank-3 tensor 36 m2/C Piezoelectric coefficient 

h Rank-3 tensor 36 V/m Piezoelectric coefficient 

 

Note the piezoelectric coefficients of the same type are thermodynamically equivalent, thus the 

superscripts can be omitted. This is shown in Eq. (1.5) in the tensor form. 

 

σ E

ε E

D σ

D ε

d = d

e = e

g = g

h = h

  (1.5) 

The coefficients in different forms of piezoelectric constitutive equations are mutually related. 

That means given the coefficients of one form, those of the other forms can be theoretically 

derived. An example of strain-charge form converting to the other three forms is shown in Eq. 
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(1.6)-(1.8). The superscript t and -1 denote the transpose and inverse of the corresponding 

matrix, respectively. 

a. Strain-Charge Form to Stress-Charge Form 

 

1

1

1

( )

( )

( ) t









 

   

E E

E

ε σ E

c s

e d s

κ κ d s d

  (1.6) 

b. Strain-Charge Form to Strain-Voltage Form 

 

1

1

1

( )

( )

( )

t 





   

 



D E σ

σ

σ σ

s s d κ d

g κ d

β κ

  (1.7) 

c. Strain-Charge Form to Stress-Voltage Form  

 

1 1 1

1 1 1

1 1 1

( ) ( ( ) )

( ( ) ) ( )

( ) ( ( ) )

t

t

t

  

  

  

    

       

    

D D E σ

ε σ E E

ε ε σ E

c s s d κ d

h β e κ d s d d s

β κ κ d s d

  (1.8) 

From Eq. (1.6) and (1.7), it is clear that the dielectric permittivity and elastic compliance 

measured under different conditions will have different values. The free dielectric permittivity 

(zero stress) and clamped dielectric permittivity (zero strain) can vary by as much as 50-80% 

[29]. This variance also applies to the elastic compliance measured under open circuit (zero 

electric displacement) and short circuit conditions (zero electric field). Therefore, it is important 

to have a good control of the boundary conditions in the measurements of piezoelectric material 

properties.   
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1.2.2 Ferroelectricity 

The term “ferroelectricity” describes the characteristics of a material that possesses at least 

two equilibrium orientations of spontaneous polarization in the absence of external electric field, 

and in which the spontaneous polarization can be switched between those orientations by an 

electric field [29]. This term is used in analogy to ferromagnetism despite the fact that most 

ferroelectric materials do not contain iron, which is the meaning of prefix “ferro”.  

Ferroelectric materials are all piezoelectric. However, not all piezoelectric materials are 

ferroelectric. This is because the dipoles present in some piezoelectric materials (e.g. polymers) 

are carried by molecular chains or are only present when induced by mechanical stress such as in 

quartz. These materials do not have spontaneous polarization that can be reversed even though 

they lack a center of symmetry in their unit cell and can still exhibit piezoelectric effect. As 

discussed in Section 1.2.1, 20 out of 32 crystal classes exhibit piezoelectricity. Among the 20 

piezoelectric classes, 10 of them have a spontaneous polarization that varies with the 

temperature. This is the pyroelectric effect. Among the 10 pyroelectric classes, if the 

spontaneous polarization of a material can be reversed by an electric field, then it is called a 

ferroelectric material. 

Many ferroelectric materials have perovskite structure and undergo a phase transformation 

from a high temperature paraelectric phase to a low temperature ferroelectric phase. The 

spontaneous polarization is developed with the separation of positive and negative electrical 

charges upon the paraelectric to ferroelectric phase transformation. This also comes with the 

spontaneous strain which is related to the spontaneous polarization through the electrostrictive 

effect [30–32]. The spontaneous polarization of a tetragonal structure can lie along one of six 
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<001> orientations with equal probability because all six orientations are energetically 

equivalent. This is corresponding to a potential energy that has an energy well along each of the 

six orientations. An illustration of the energy landscape of a tetragonal structure is shown in 

Figure 1.5. The potential energy is plotted as a function of two polarization components P1 and 

P2. Therefore, four energy wells are observed in Figure 1.5(a). Positive work must be done to get 

the polarization out of one energy well and negative work is done as it slides into another. If the 

system is conservative, the total work of polarization switching from one energy well to another 

is zero due to the equivalent depth of the energy wells. Otherwise, heat is generated for a 

dissipative process. If an electric field is applied along one of the orientations with energy 

minima (P2 axis in Figure 1.5(b)), the energy landscape is tilted such that the energy well along 

the electric field goes deeper while the others elevate. At certain electric field, other energy states 

become unstable and the associated polarizations switch to the one favored by the electric field. 

This is called ferroelectric polarization switching. The polarization can be rotated by either 180º 

or 90º for a tetragonal structure. A similar term is ferroelastic polarization switching. It describes 

the polarization switching driven by a mechanical load. This is illustrated in Figure 1.5(c) where 

the mechanical compression applied along one axis (P2 axis) leads to shallower energy wells in 

that direction but deeper wells in the perpendicular direction. Thus only 90º polarization 

switching can be induced via a ferroelastic effect in a tetragonal structure.  
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Figure 1.5. Energy landscape of a tetragonal structure plotted as a function of two polarization components P1 and 

P2. (a) Energy landscape with four energy wells representing four spontaneous states of a tetragonal structure in 2 

dimensional space. (b) Energy landscape under an electric field applied along the P2 axis. (c) Energy landscape 

under mechanical compression applied along the P2 axis. 

Figure 1.5 represents the behavior of polarization in a unit cell. If all the unit cells in a region 

of a crystal have the same spontaneous polarization, then this region is called a domain. The 

region between two domains is called a domain wall. The type of domain walls depends on the 

angle between two polarization directions and the symmetry of crystal structure. Two types of 

domain walls, i.e. 180º and 90º domain walls, are populated in a tetragonal structure like lead 
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titanate. A crystal structure with rhombohedral symmetry has eight possible spontaneous 

polarizations along the <111> directions. This results in three types of domain walls: 71º, 109º 

and 180º domain walls. Typically, single crystals are composed of many domains separated by 

domain walls. Bulk ceramics and polycrystalline films are split into many grains and each grain 

has multiple domains. In the as-grown state, the domains are randomly distributed such that the 

net polarization is zero. The material is not piezoelectric under this condition. An electric field is 

required to bring the material into a polar state and exhibit the piezoelectric effect. The process 

of reorienting the polarizations and aligning the domains with the direction of electric field is 

called poling. This is usually done with a high electric field (1-10MV/m) at elevated 

temperatures. For single crystals, a single domain can be obtained if they are poled along one of 

the polar directions. However, this complete poling is not likely to occur in ceramics because 

some domains within the grain cannot be reoriented due to the internal stresses and physical 

constraints imposed by neighboring grains. The schematics of single crystals and ceramics 

before and after poling are shown in Figure 1.6.  
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Figure 1.6. The schematics of ferroelectric crystalline materials before and after poling. (a) Single crystals with 

multiple domains. Dashed lines represent domain walls. (b) A single domain is formed under electric field E. (c) 

Polycrystalline ceramics with multiple grains. Solid lines represent grain boundaries. (d) Domains are reoriented 

under electric field E. Not all domains align with the electric field due to the constraints imposed by neighboring 

domains and grains. 

The most important characteristic of ferroelectric materials is the hysteresis loop of electric 

displacement or polarization vs electric field. In most ferroelectric materials, the electric 

displacement D is nearly equal to polarization P. This is because D is related to P and electric 

field E by the equation D = P + κ0E where κ0 is the permittivity of free space. The term κ0E is 

negligible compared to P. The polarization hysteresis loop can be obtained from experiments 
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using a Sawyer-Tower circuit [33]. Figure 1.7(a) are the electric displacement data of lead 

lanthanum zirconate titanate (8/65/35 PLZT) recorded under a 0.02 Hz cyclic electric field at 

zero stress [34]. The measurement started from the as-grown state, in which the electric 

displacement was zero. The loops occurring prior to the fully developed one are not shown in 

Figure 1.7(a). The hysteresis loop shown here represents the response of poled piezoelectric 

ceramics. At point A, the material has nonzero polarization at zero electric field. This 

polarization is called remanent polarization. A negative electric field (opposite to the direction of 

polarization) is applied. At point B, the polarization begins to switch to the negative direction 

and the intersection at the electric field axis is called coercive field. At point C the polarization is 

fully reversed and saturated in the negative direction. Then the electric field is reduced to zero at 

point D and the material attains the negative remanent polarization. As the electric field turns 

positive and reaches point E, the negative polarization decreases and begins to reverse. At point 

F, the polarization is saturated and aligned with the positive electric field. Then the field is 

reduced to zero and the material returns to point A. The slope at zero field is the linear dielectric 

permittivity.  

In addition to the hysteresis loop of electric displacement vs electric field, polarization 

switching in ferroelectric materials also results in a hysteretic response of strain under the 

electric field. The strain hysteresis loop resembles the shape of a butterfly. Thus it is also called a 

butterfly loop. Figure 1.7(b) are the longitudinal strain data of PLZT recorded simultaneously 

with the electric displacement in the same experiment [34]. The strain was set to zero in the as-

grown state as a reference. Again, the loops occurring prior to the fully developed one are 

omitted. The lettered points in Figure 1.7(b) correspond to the same letters in Figure 1.7(a). At 

point A, the material has nonzero strain at zero electric field. This strain is called remanent 
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strain, corresponding to the remanent polarization. As a negative electric field is applied, the 

elongation is reduced with ions in the crystal structure experiencing a force pushing them 

towards the cubic state. When the coercive field is reached at point B, the polarization turns 

negative. The negative electric field stretches negative polarization and the crystal structure, 

giving rise to a positive strain at point C. Then the electric field is reduced to zero and the 

material attains remanent strain at point D. Note point D is corresponding to the negative 

remanent polarization despite its coincidence with point A, which corresponds to the positive 

remanent polarization. A positive electric field is applied to the negatively polarized material. 

The elongation is reduced. When the coercive field is reached at point E, the polarization 

switches back to being positive. This comes with a positive strain of the crystal structure. The 

maximum elongation is attained at point F. Then the electric field is reduced to zero and the 

material returns to point A with positive remanent polarization and strain. The slope at zero 

electric field is the linear piezoelectric coefficient.       

 

Figure 1.7. The electric displacement and strain hysteresis loops of 8/65/35 PLZT [34]. (a) The hysteresis loop of 

electric displacement vs electric field. The slope at zero electric field is the linear dielectric permittivity. (b) The 
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hysteresis loop of longitudinal strain vs electric field. The slope at zero electric field is the linear piezoelectric 

coefficient. 
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2 Thermodynamics of ferroelectric materials  

The approach to describing ferroelectric material behavior involves the first law and second 

law of thermodynamics. The first law states the conservation of energy. In order words, the 

change in the total energy of a closed system is equal to the heat added to the system, plus the 

work that is done on the system. The second law states that the total entropy of an isolated 

system can never decrease over time. The discussion of thermodynamics of ferroelectric 

materials here is based on the work presented by Carka and Lynch [35] and Su and Landis [36].  

2.1 External work, heat addition and internal energy 

The description of the material within a thermodynamic framework begins with the first law 

of thermodynamics. The external work includes mechanical work, electrical work and thermal 

energy added to the system. To calculate the mechanical work done on a material, the distributed 

surface tractions, distributed body forces and the associated displacements are used. The 

relations are formulated in a rate form. The rate of mechanical work (𝑊̇𝑀) is the sum of the 

integral of the traction vector (ti) and displacement rate (𝑢̇𝑖) over the surface (S) and the integral 

of the body force (bi) and displacement rate (𝑢̇𝑖) over the volume (V), Eq. (2.1). 

 M

i i i i

S V

W t u dS bu dV      (2.1) 

The dot on top of a variable indicates the time derivative. Electrical work is done by moving a 

charge to a location with different electric potential. The rate of electrical work (𝑊̇𝐸) is found 

using the rate of surface charge densities (𝜔̇𝑆), the rate of volume charge densities (𝜌̇𝑉) and the 

associated electric potentials (ϕ), Eq. (2.2). 
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 E

S V

S V

W dS dV       (2.2) 

Note that the volume charge density (𝜌𝑉) is zero for ferroelectric materials by treating them as 

insulators. The thermal energy added to the system can be evaluated as the sum of the heat 

generated within the volume from an external source and the heat transferred across the surface 

of the system by heat flux. The rate of heat addition Θ̇ is given by Eq. (2.3). 

 
i i

V S

rdV q n dS       (2.3) 

Here 𝑟̇ is the rate at which heat is generated within the volume from an external source. This 

does not account for the heat generated by an internal dissipative process. The vector 𝑞̇𝑖 is the 

rate of outward heat flux, representing the heat leaving the system per unit area per unit time. 

The vector ni is the unit normal vector of the surface S. According to the first law of 

thermodynamics, the expression for energy balance is 

 
M EW W K U      (2.4) 

where the left-hand side (LHS) is the sum of all the energy transferred to the system and the 

right-hand side (RHS) represents where the energy is going. The first term and second term on 

the RHS represent the rate of kinetic energy (𝐾̇) and internal energy (𝑈̇) of the system, 

respectively. Substituting Eq. (2.1), (2.2) and (2.3) into (2.4) yields 

 
1

2

i i i i S V i i

S V S V V S

i i

V V

t u dS bu dV dS dV rdV q n dS

d
u u dV edV

dt

 

 

    

 

     

 
   (2.5) 
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where 𝑒̇ is the rate of internal energy density, ρ is the mass density. Using the expressions of 

surface tractions and surface charge densities, Eq. (2.5) becomes Eq. (2.6). 

 
1

2

ij j i i i i i V i i

S V S V V S

i i

V V

n u dS bu dV D n dS dV rdV q n dS
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  

 

    

 

     

 
   (2.6) 

Using the divergence theorem, the surface integrals can be written as volume integrals, Eq. (2.7). 
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ij i i i i V i ij i
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 
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 
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 
   (2.7) 

Expanding the partial derivatives, Eq. (2.7) becomes Eq. (2.8). 
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 
  (2.8) 

Note the stress does no work on the rigid body rotations. This is shown in Eq. (2.9) and has been 

applied to Eq. (2.8).  

    , , , , ,

1 1

2 2
ij i j ij i j j i ij i j j i ij iju u u u u           (2.9) 

The equations for mechanical equilibrium, Gauss law and the relation between electric field and 

electric potential are in Eq. (2.10).  
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Using Eq. (2.10), Eq. (2.8) is simplified to Eq. (2.11). 

 
,ij ij i i i i

V V V V V

dV E D dV rdV q dV edV            (2.11) 

This is the desired expression for the rate of change of the internal energy. The second law of 

thermodynamics states that the heat added to the system will never be greater than the increase of 

thermally stored energy. This can be expressed by 

 
,i i

V V V

rdV q dV TSdV      (2.12) 

where the equals sign is adopted for a reversible process. Now we will only consider reversible 

processes. By shrinking the volume to a point, the integral form of Eq. (2.11) can be expressed in 

a differential form, 

 ij ij i iU e E D TS        (2.13) 

which can also be written as 

 ij ij i idU d E dD TdS      (2.14) 

Here it is assumed εij, Di and S are independent variables of the internal energy. A difficulty with 

the expression in Eq. (2.14) is the entropy S cannot be easily controlled while the temperature T 

is usually controlled. This motivates interchanging the roles of T and S in Eq. (2.14). This can be 

accomplished using a Legendre transformation to define a new thermodynamic potential, the 

Helmholtz free energy.  

     U TS d dU SdT TdS         (2.15) 
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Substituting Eq. (2.14) into Eq. (2.15) yields Eq. (2.16). 

 
ij ij i id d E dD SdT       (2.16) 

Now the independent variables become εij, Di and T. The stress σij, electric field Ei and entropy S 

can be expressed by the following relations, Eq. (2.17). 

               ij i

ij i

E S
D T

  




  
   
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  (2.17) 

Actually, the three independent variables can be chosen in eight different ways from the 

conjugate pairs (σij, εij), (Ei, Di) and (T, S). This leads to eight thermodynamic potentials listed in 

Table 2.1 [28]. 

Table 2.1. Thermodynamic potentials with different independent variables. 

Thermodynamic potentials Differential forms Independent variables 

Internal energy dU = σdε + EdD + TdS ε, D, S 

Helmholtz energy dΨ = σdε + EdD - SdT ε, D, T 

Enthalpy dH = - εdσ - DdE + TdS σ, E, S 

Elastic enthalpy dH1 = - εdσ + EdD + TdS σ, D, S 

Electric enthalpy dH2 = σdε - DdE + TdS ε, E, S 

Gibbs energy dG = - εdσ - DdE - SdT σ, E, T 

Elastic Gibbs energy dG1 = - εdσ + EdD - SdT σ, D, T 

Electric Gibbs energy dG2 = σdε - DdE  - SdT ε, E, T 
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2.2 Energy function formulation based on series expansion 

The free energy is a function of each of the independent variables. Though the energy 

function is still unknown, a well behaved function can be approximated using a Taylor’s series 

expansion. Note that internal energy is also stored in polarization gradients [35]. Therefore, the 

polarization gradients Pi,j should be included as independent variables and there should be some 

work conjugate variables associated with the gradients [35]. Then the Helmholtz free energy can 

be expressed as Eq. (2.18). 

    FS

, ,, , , , , , ,ij m i j ij m m i jD P T P P P T        (2.18) 

Here the electric displacement Dm is decomposed into Pm and Pm
FS by the relation Dm = Pm + 

κ0Em. The variable Pm
FS = κ0Em represents the polarization in the free space occupied by the 

material. κ0 is the permittivity of free space, Em is the electric field. The variable Pm represents 

the polarization in the ferroelectric material. Therefore, the free energy includes both the energy 

stored in the material and the energy stored in the free space occupied by the material.  

The series expansion describes the energy relative to a reference state. Here ferroelectric 

materials with a perovskite structure are considered. These materials have cubic symmetry in the 

parent phase above the Curie temperature. When cooled below the Curie temperature, they 

possess spontaneous polarizations. The reference energy state is taken as the cubic state at a 

given temperature. This will be a metastable state when below the Curie temperature, but 

maintains all of the cubic symmetry. If the temperature is held constant, the Helmholtz free 

energy density can be expanded with respect to the cubic state, Eq. (2.19).  
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 (2.19) 

Note that all partial derivatives are taken with all other independent variables fixed. This is 

explicitly denoted in the linear terms in Eq. (2.19), but from here forward will not be indicated. 

A number of terms in Eq. (2.19) can be eliminated under the following conditions.  

a. No odd order terms of polarization are allowed. This is because the system is in a 

cubic state with symmetry in all directions about this state. A positive polarization 

change should have the same effect on the energy as a negative polarization change. 

b. The strain is a quadratic term. This is corresponding to the linear relation of stress and 

strain. The coupling of strain and polarization is described by the product of strain 

term and even order terms of polarization.      

c. The free space polarization is a quadratic term that gives rise to the linear contribution 

of electric field to electric displacement. This term is not coupled to other terms. 

d. The polarization gradient term is associated with dipole-dipole interactions. It is taken 

as a quadratic term only even though the gradient term could be coupled with other 

terms, which requires higher order contributions.   
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e. Constant temperature is assumed. In general, temperature dependence needs to be 

included. The temperature coupling terms are related to the Curie-Weiss behavior 

above the Curie temperature. 

f. It is assumed the energy is relative to the cubic state with zero energy where the strain 

and polarization are both zero. This enables dropping all of the deltas in Eq. (2.19).  

With the restrictions above, the Helmholtz free energy is simplified as Eq. (2.20). 
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  (2.20) 

The variables σij, Ek
eff, Ek and ξkr are obtained by taking the partial derivatives of the energy 

function in Eq. (2.20). 
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   (2.21) 

The first equation in Eq. (2.21) is the stress σij. With the polarization fixed, a tensile strain is 

associated with a tensile stress and a compressive strain with a compressive stress. This is 
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described by the first term in the stress equation, the linear elastic stiffness. If the strain is held 

fixed and the polarization varies, the coupling between the polarization and strain should give 

rise to stress. This is described by the second term, the quadratic term of polarization. The 

second equation in Eq. (2.21) is the effective electric field Ek
eff in the material. It is related to the 

polarization and also dependent on the strain through the coupling effect. The third equation in 

Eq. (2.21) is the electric field Ek, which is related to the polarization in the free space through the 

inverse permittivity of free space. The fourth equation in Eq. (2.21) is the work conjugate 

variable ξkr associated with the polarization gradient. Eq. (2.21) can be rewritten as 
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with Cijkl representing the elastic stiffness coefficients, Qijkl representing the electrostriction 

coefficients, αkl representing the dielectric stiffness coefficients and Gkrls representing the 

gradient coefficients. These coefficients are related to the partial derivatives in Eq. (2.21).  
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With these coefficients, the Helmholtz free energy in Eq. (2.20) can be rewritten as Eq. (2.24). 
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To generate a multi-well energy landscape to represent multiple spontaneous polarizations, 

higher even order terms of polarization are needed. The easy way to visualize this is to consider a 

quadratic polynomial with a negative coefficient and a quartic polynomial with a positive 

coefficient (Figure 2.1). Add the two together and the resulting function will initially be negative 

and then go positive as the independent variable increases from zero. There are some locations 

where the slope is zero. These local minima are the energy wells that can be used to represent the 

spontaneous polarizations.  

 

Figure 2.1. The superposition of a quadratic polynomial and a quartic polynomial to generate local minima. 
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Eq. (2.25) is the updated Helmholtz free energy to which the higher order terms of polarization 

are added. 
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  (2.25) 

The energy function can be further modified with additional terms to better represent the 

ferroelectric materials. For example, the fourth order elasticity tensor must have cubic symmetry 

with this energy function regardless of the polarization, but a real material exhibits a lower 

symmetry of elasticity when the spontaneous polarizations are developed below the Curie 

temperature. This may result in tetragonal, orthorhombic or rhombohedral symmetry. In this case 

a higher order term in the Helmholtz free energy should be kept that represents the dependence 

of stiffness on polarization, i.e. 
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which leads to an stiffness tensor that is a function of polarization in Eq. (2.27).  
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Similarly, higher order terms can be added to modify the electrostriction tensor that has cubic 

symmetry in this formulation. The higher order dependence on polarization enables matching a 

lower symmetry induced by the spontaneous polarization. Examples of using higher order 
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coupling terms to describe tetragonal symmetry can be found in the work of Su and Landis [36] 

and Völker et al. [37]. 
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2.3 Evolution law for polarization 

The coefficients of the energy function are all constants. These constants are determined by 

fitting to the piezoelectric, elastic and dielectric properties of the ferroelectric materials. The 

coefficient determination process is not trivial. Detailed discussion about the energy function 

formulation and the coefficient determination for a composition of PIN-PMN-PT crystals is 

presented in Chapter 3. Once these constants are obtained, the equilibrium state under a set of 

external loads can be determined. A kinetic relation is required to govern the process of the 

material approaching the equilibrium state. This is known as the time dependent Ginzburg-

Landau (TDGL) equation. A generalized form of it is shown in Eq. (2.28).  
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This is derived by Su and Landis [36] who proposed a set of micro-forces and the associated 

governing balance laws following the work of Fried and Gurtin [38–40]. The inverse mobility 

tensor βij is positive definite. Most of the time it is assumed βij = βδij (β ≥ 0) for materials with 

cubic symmetry above the Curie temperature. An external micro-force vector γi is introduced to 

describe the power density expended on the material by external sources. An internal micro-force 

vector πi is also introduced to describe the power density expended by material internally, Eq. 

(2.29).  
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The term on the RHS of Eq. (2.28) represents the viscous response of the polarization. It governs 

the rate at which the polarization responds to the driving force at a point in the material. Note 
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that the viscous parameter β should be zero for equilibrium state. However, in practice we 

usually need to allow the material to evolve along non-equilibrium paths. Therefore β is used as 

a free numerical parameter to drive the solution and is gradually reduced to zero at equilibrium. 
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2.4 Finite element implementation 

The evolution of polarization field is described by the TDGL equation. In addition, the 

ferroelectric material behavior also obeys the mechanical equilibrium and Gauss law. The 

governing equations and boundary conditions of mechanical fields are  
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The governing equations and boundary conditions of electric fields are  
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The superscript 0 in Eq. (2.30) and (2.31) represents the quantities that are prescribed. Here it is 

assumed the system reaches mechanical equilibrium instantaneously for a given polarization 

field but varies slowly with respect to the speed of light (quasi-static electromagnetic 

approximation). The inertial terms and body forces are neglected. There is no volume charge 

density within the material.  

The three groups of governing equations (TDGL, mechanical equilibrium and Gauss law) 

need to be solved simultaneously for a fully coupled model. This can be done by using a semi-

implicit Fourier-spectral method [41], a finite difference method [42] or a finite element method 
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[36,43]. The finite element method is adopted here because it allows for analysis of arbitrary 

geometries with non-periodic or periodic boundary conditions. It also makes it possible to use 

commercial FEA software packages that allow you to program your own weak forms. The 

mechanical displacement, polarization and electric potential are used as nodal degrees of 

freedom. The field quantities are interpolated from the nodal quantities d with the shape 

functions N such that  
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The shape function matrix N must meet the requirements for C0 continuous elements [44]. In 

order to model the polarization evolution, a time-dependent analysis is required. At a given time 

step, the polarization rate is 
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The field quantities are 
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  (2.34) 

The superscript denotes the time step at which the field is solved. The parameter α between 0 and 

1 describes how the solution fields are interpolated in time. When α = 0 the first-order accurate 

forward Euler integration scheme is recovered; α = 1 represents the first-order accurate backward 
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Euler scheme that allows for enhanced numerical stability with larger time increments; α = 0.5 is 

the second-order accurate Crank-Nicholson method.  

Given a known set of nodal values at time t, a set of non-linear equations (Eq. (2.35)) in terms 

of nodal degrees of freedom at time t + Δt are obtained by substituting the finite element 

interpolations (Eq. (2.32)) and the time integration approximations (Eq. (2.33) and (2.34)) into 

the governing equations.  

  t t B d F   (2.35) 

These nonlinear equations can be solved with Newton-Raphson method,  
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where subscript i is the step counter in the Newton-Raphson iteration. The iteration is carried out 

until the solution fields are converged at time t + Δt. Then the procedure continues to run through 

time and the evolution history in terms of the solution fields can be obtained.  
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3 Energy function development for ferroelectric single crystals 

3.1 Introduction 

In this work Landau-Devonshire energy functions were developed for ferroelectric single 

crystals. The coefficients of the energy functions were determined through extensive fitting to 

the experimental data. The energy functions were validated by comparison of simulated 

temperature induced phase transformations, coercive fields, remanent polarizations, dielectric 

constants and piezoelectric coefficients with measured values.  

Landau-Devonshire energy functions represent the structural free energy of a unit cell. This 

thermodynamics based theory was developed by Devonshire [45,46], who applied the Ginzburg-

Landau theory of phase transformation to BaTiO3 crystals using a 6th order polynomial of 

polarization. Bell and Cross [47] used a modified form of Devonshire energy function to model 

field-driven ferroelectric phase changes in BaTiO3. Amin et al. [48] developed a 6th order energy 

function with coefficients determined at various compositions across the phase diagram of PZT. 

Haun et al. introduced a 6th order energy function for PbTiO3 [49] and presented a two-sublattice 

model for PbZrO3 [50] following Kittel’s theory of antiferroelectricity [51]. The discovery of a 

monoclinic phase in PZT by Noheda et al. [52] challenged the traditional 6th order expansion 

form of the Landau-Devonshire energy. Vanderbilt and Cohen [53] proposed that energy 

functions allowing monoclinic and triclinic phases require terms up to the 8th and 12th order, 

respectively. An 8th order polynomial was constructed by Li et al. [54], which is applicable to 

BaTiO3 thin films under large strains. Wang et al. [55] used additional temperature dependent 

coefficients in an 8th order polynomial to achieve a better description of the dielectric properties 
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of BaTiO3 around and above the Curie temperature. Methods have been developed by Heitmann 

and Rossetti [56,57] to interpolate between end members to obtain energy functions that 

reproduce the morphotropic phase boundary (MPB) effects. Völker et al. [37,58] presented an 

adjustment procedure of the energy function coefficients of PbTiO3 and PZT based on first-

principles calculations.  

Although ferroelectric relaxor single crystals with rhombohedral symmetry are of 

considerable technological importance, Landau-Devonshire energy functions that reproduce their 

behavior have not yet been introduced. These are needed for phase-field models [9] such as those 

presented by Hu and Chen [59,60], Zhang and Bhattacharya [42,61], Su and Landis [36], and 

many others that are used to gain deeper understanding of the energy landscapes, of how energy 

landscapes are affected by composition and external excitations, of domain formation and 

evolution, and of domain engineered structures.  

Ferroelectric relaxor single crystals, such as certain compositions of PMN-PT and PZN-PT, 

have extraordinarily large piezoelectric coefficients and high electromechanical coupling factors 

when cut and poled in certain orientations. The ternary compound PIN-PMN-PT was developed 

to increase the phase transition temperature and coercive field of these crystals without 

sacrificing their superior piezoelectric properties. Compositions with the highest piezoelectric 

coefficients are generally found in rhombohedral phase close to a morphotropic phase boundary. 

These rhombohedral crystals possess spontaneous polarizations along eight <111> pseudo-cubic 

directions. Each of the eight possible polarization directions is referred to as a crystal variant. A 

domain is a region in the crystal where neighboring cells in the lattice are all of the same variant. 

The boundary between two different domains is a domain wall. In general, ferroelectric single 

crystals have multiple domains and domain walls, giving rise to complex domain structures. 
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Domain engineering [2,62,63] involves cutting and poling the crystals in orientations that do not 

produce a driving force for domain wall motion when an electric field is applied within limits 

governed by polarization reversal, field induced phase transformations and dielectric breakdown. 

The work presented herein draws from many experimental results reported in the literature. 

Ferroelectric relaxor single crystals occur in different phases, and they can be cut and poled in 

different orientations. Results reported in the literature typically introduce a Cartesian coordinate 

system with the x3 direction aligned with the volume average polarization direction. A notation is 

adopted here that is consistent with most of the reported results. The orientation of the Cartesian 

coordinate system x1-x2-x3 for each crystal cut is defined in terms of the pseudo-cubic coordinate 

system and the associated Miller indices. The variant and phase structure, the poling direction, 

the resulting macroscopic symmetry, the associated Cartesian coordinate system and the variants 

present in the domain engineered crystals are given in Table 3.1. The variant and phase structure 

are identified by a number indicating the number of variant types present followed by a letter 

indicating the phase. Poling along the [001], [110] or [111] direction induces domain structures 

in the rhombohedral crystals that have certain enhanced volume average properties. The 

rhombohedral crystals poled along the [001] direction have an enhanced longitudinal 

piezoelectric coefficient while those poled along the [110] direction have an enhanced transverse 

piezoelectric coefficient. The [111] poled single domain state exhibits a high shear piezoelectric 

coefficient. 
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Table 3.1. Nomenclature used to describe ferroelectric relaxor single crystals. 1T, 1O and 1R represent tetragonal, 

orthorhombic and rhombohedral crystals in the single domain state. 2R and 4R are domain engineered rhombohedral 

crystals with two and four variants. 

Variant and 

phase structure 

Poling 

direction 

Macroscopic 

symmetry 

Cartesian coordinate 

system x1 – x2 – x3 
Variants 

1T [001] 4mm [100] – [010] – [001]  [001] 

1O [110] mm2 [-110] – [001] – [110] [110] 

1R [111] 3m [1-10] – [11-2] – [111] [111] 

2R [110] mm2 [-110] – [001] – [110] [111], [11-1] 

4R [001] 4mm [100] – [010] – [001] [111], [1-11], [-111], [-1-11] 
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3.2 Landau-Devonshire energy function  

In this section we introduce the 10th order Landau-Devonshire energy function suitable for 

describing the dielectric, piezoelectric and ferroelectric properties of PIN-PMN-PT observed on 

cooling through the sequence of cubic (C)  tetragonal (T)  orthorhombic (O)  

rhombohedral (R) phase transformations, and the effects of applied electric field and temperature 

on the polarization switching in domain engineered rhombohedral crystals. 

3.2.1 Energy function formulation  

In perovskite ferroelectric single crystals, the high temperature cubic paraelectric phase 

distorts into a ferroelectric phase with lower symmetry as it is cooled. Taking the cubic phase as 

the reference state with zero energy, the Landau-Devonshire energy function is expressed as a 

series expansion of polarization up to the 10th order under zero stress conditions. The polynomial 

only contains even order terms because the energy must remain invariant for any orthogonal 

transformation of the polarization components in the prototype cubic phase. Material symmetry 

arguments are used to reduce the number of terms, resulting in Eq. (3.1),  
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  (3.1) 

where Pi (i = 1, 2, 3) are the orthogonal components of polarization along the axes of the pseudo-

cubic unit cell and α’s are the coefficients of the energy function.  

With mechanical stress applied, the elastic energy needs to be included. The stresses and 

stiffness coefficients can be obtained by taking the first and second derivatives of the elastic 

energy with respect to strains, respectively. The elastic stiffness tensor for the high temperature 

paraelectric phase has cubic symmetry. Thus cubic elastic stiffness tensor is normally used for 

ferroelectric phases. In order to have a more accurate description of the elastic energy for 

ferroelectric crystals with lower symmetry, higher order terms can be added to address the 

coupling with polarization. These additional terms result in modification of stiffness coefficients 

and matching a lower symmetry of the elastic stiffness tensor. The stiffness coefficients with 

lower symmetry have been experimentally characterized and these data can be used for a better 

description of the elastic energy. This work did not address the stiffness coefficients. 
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3.2.2 Material properties  

Finding a consistent set of coefficients for the energy function requires addressing large 

uncertainties in the data reported in the literature. Single crystals are cut from boules that have a 

compositional gradient and the composition is often estimated, not directly measured. As a 

result, the composition has a degree of uncertainty not reported, and the measured properties can 

lie within a fairly broad range for the same reported composition. Further, the property 

measurements on a MPB composition at multiple temperatures with different cuts that produce a 

single domain state in each ferroelectric phase are not available, posing challenges to obtaining a 

complete set of characterization data. To address this, a qualitatively observed composition-

temperature equivalence was used. As temperature increases, the rhombohedral crystal 

undergoes a phase transformation to the orthorhombic phase and with further temperature 

increase to the tetragonal phase. As the PT content increases, the material behavior shifts from 

the rhombohedral phase toward the MPB at a fixed temperature, and with further increase to the 

tetragonal phase. The trends in material properties changing with the temperature and 

composition are similar. The approach to using the composition-temperature equivalence is 

described in Figure 3.1. Most available data were measured at room temperature on different 

compositions. These are marked by the orange dashed line in Figure 3.1. However, the data for a 

single composition at multiple temperatures (marked by the red dashed line) are needed to 

determine the coefficients of the energy function. In this work, data were taken from the 

literature where possible, and approximations of the properties based on the proximity to the 

MPB were made when data were not available. Since the high temperature properties of the 

tetragonal phase (light blue dot) and orthorhombic phase (light green dot) could not be found, we 

approximated those properties at elevated temperatures by examining the data collected at room 
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temperature with compositional modification resulting in a stable tetragonal phase (blue dot) or 

orthorhombic phase (green dot) with higher PT content. The single domain properties for the 

stable rhombohedral phase (red dot) at room temperature are approximated based on the 

measurements of a composition away from the MPB (dark red dot). To account for the increase 

of the dielectric constants with the composition approaching the MPB [64–66], a factor of 1.5 

was used to adjust the dielectric constants and found to work well as a fitting parameter. The data 

that were used to determine the coefficients of the energy function for a composition of PIN-

PMN-PT right on the rhombohedral side of the MPB at room temperature are listed in Table 3.2. 

Table 3.2. Data used to determine the coefficients of the energy function for a MPB composition of PIN-PMN-PT. 

Superscript T, O and R represent tetragonal, orthorhombic and rhombohedral phase, respectively. PS and eii (i = 1, 2, 

3) denote spontaneous polarization and dielectric constants measured at fixed stress in the single domain state. The 

subscript of the dielectric constants follows the definitions in Table 3.1. 

Quantities Values Units Quantities Values Units 

C 1.48106 f °C T2
*  25c °C 

T0  182e °C PS
O (T2

*)  0.455g C/m2 

TC  192a °C e33
O (T2

*)  1500c
1.5 - 

T1
*  25b °C e11

O(T2
*)  8070c

1.5 - 

PS
T (T1

*)  0.43b C/m2 e22
O(T2

*)  30000c
1.5 - 

e33
T (T1

*)  1090b
1.5 - T3  25d °C 

e11
T (T1

*)  15000b
1.5 - PS

R (T3)  0.47h C/m2 

TOT  118a °C e33
R(T3)  650d

1.5 - 

TRO  93a °C e11
R(T3)  5800d

1.5 - 

                        a: Reference [67];        b: Reference [68];        c: Reference [69];        d: Reference [70];  

                        e: No experimental data available. Estimated based on TC; 

                        f: No experimental data available. Typical values of C are on the order of 105 ~ 106; 

                        g: No experimental data available. Estimated based on the average of PS
T (T1

*) and PS
R (T3);    

                        h: No experimental data available. Estimated based on PS
R ≈ √3PS

4R ≈ √3PS
2R/√2.  
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Figure 3.1. A schematic of the composition-temperature phase diagram of PIN-PMN-PT. C, T, O and R denote 

cubic, tetragonal, orthorhombic and rhombohedral phase, respectively. Vertical red dashed line represents the MPB 

composition for which the energy function is developed. The horizontal orange dashed line represents the 

compositions that have been experimentally characterized. A typical MPB composition contains 32%-33% of PT. 

3.2.3 Coefficient determination  

There are in total 15 coefficients in the proposed energy function. Two coefficients α11111 and 

α11122 were found not to have much effect on the material behavior and were thus set to zero. 

This simplified the coefficient determination process and was found to provide sufficient degrees 

of freedom to describe the properties involving different symmetries. Only α1 was taken to be 

temperature dependent. The remaining 12 coefficients were assumed to be temperature 

independent. The coefficient α1 was determined by applying the Curie-Weiss law above the 

Curie temperature though it is not an exact representation of relaxors, 
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where T, e0 and C are temperature, permittivity of free space and Curie constant, respectively. T0 

is the Curie-Weiss temperature. It is not equal to the Curie temperature for a first order transition 

between the paraelectric phase and ferroelectric phase. Typically T0 is slightly lower than the 

Curie temperature.  

The remaining 12 coefficients were divided into three groups according to the symmetry of 

ferroelectric phases. First tetragonal symmetry was considered. Taking P3 as the polar direction 

of the single domain state and setting P1 and P2 to zero, the energy function was reduced to 

having only three unknown coefficients α11, α111 and α1111. They were determined by fitting to 

the polarization and dielectric constant of the tetragonal phase at T1 as well as the Curie 

temperature TC. Next orthorhombic symmetry was utilized with a tensor transformation of the 

energy function to a local coordinate system defined as 1O in Table 3.1. Setting the two 

polarization components along the nonpolar directions to zero, the energy function only contains 

unknown coefficients α12, α112, α1112, α1122 and α11112. They were determined from the polarization 

and dielectric constants of the orthorhombic phase at T2 and the phase transition temperature TOT 

between the tetragonal phase and the orthorhombic phase. Finally by transforming the energy 

function to another local coordinate system defined as 1R in Table 3.1 and setting the two 

transverse polarization components to zero, the remaining unknown coefficients α123, α1123, α11223 

and α11123 were determined from the rhombohedral phase properties at T3 (room temperature). 

The obtained coefficients are listed in Table 3.3. More details about the coefficient determination 

process are provided in the appendix. 
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Table 3.3. Coefficients of the energy function in Eq. (3.1). T is temperature in °C. 

Coefficients              Values Units Coefficients Values Units 

α1
  3.816104 (T-182) C-2m2N α1122

 -1.993109 C-8m14N 

α11
 -1.212107 C-4m6N α1123

 -3.9561010 C-8m14N 

α12
 -1.285107 C-4m6N α11112

 -8.865109 C-10m18N 

α111
  9.424107 C-6m10N α11223

  1.7171011 C-10m18N 

α112
  1.550108 C-6m10N α11123

  8.9461010 C-10m18N 

α123
  4.716109 C-6m10N α11111

  0 C-10m18N 

α1111
  3.190107 C-8m14N α11122

  0 C-10m18N 

α1112
  2.521109 C-8m14N    
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3.3 Simulated thermal properties  

The proposed energy function was used to simulate the temperature induced phase 

transformations. Figure 3.2(a) is a schematic of a pseudo-cubic unit cell. The three ferroelectric 

phases T, O and R can be described with the polarization in the diagonal plane (1-10). This 

enables a 2D representation of the energy function in this plane using the axis P12 = (P1+P2)/√2 

and the axis P3. There can be multiple energy wells at a single temperature. The shallower wells 

represent the metastable states and the deepest wells represent the stable states. Thermal 

fluctuations can cause the polarization to move from metastable to stable states, and stress or 

electric field can tilt the entire energy landscape and change the energy minima. When the 

minimum energy occurs in the P3 direction (P12 = 0), the tetragonal phase is stable. When the 

minimum energy occurs in the P12 direction (P3 = 0), the orthorhombic phase is stable. When the 

minimum energy corresponds to the polarization in the [111] direction, the rhombohedral phase 

is stable. 

The energy density is plotted as a function of P12 and P3 in Figure 3.2. Only one energy well 

is present, at zero polarization, when above the Curie temperature (Figure 3.2(b)). This 

represents the paraelectric phase with zero spontaneous polarization. When cooled below the 

Curie temperature (Figure 3.2(c)), the crystal possesses a multi-well landscape with energy wells 

at nonzero polarizations in the directions of all three ferroelectric phases. Following an 

assumption made by many authors [3,48–50,54,71], the depth of the energy wells was used to 

indicate the stable phase and the crystal was assumed to transform to the phase with the lowest 

energy due to the thermal fluctuations taking it out of the metastable state. This approach 

neglects the hysteresis in the phase transformations associated with increasing vs decreasing 

temperature. As shown in Figure 3.2(c), the lowest energy at room temperature is associated with 
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polarization in the <111> directions. This means the crystal is in the rhombohedral phase at this 

temperature. The shallower wells represent the tetragonal phase and the orthorhombic phase with 

higher energy levels. 

 

Figure 3.2. A schematic of a pseudo-cubic unit cell (a) and its energy density plotted as a function of P12 and P3 

above the Curie temperature (b) and at room temperature (c). 

The energy levels of each ferroelectric phase are plotted as a function of temperature in Figure 

3.3. The phase transition temperatures were obtained at the intersections of the curves. The 

paraelectric cubic phase was assumed to possess zero energy. The energy densities of all three 

ferroelectric phases exceeded zero when the temperature went above 192°C. This was identified 



51 

 

as the Curie temperature. In the inset, the orthorhombic phase and rhombohedral phase were seen 

to successively possess the lowest energy as the temperature was reduced below 118°C and 

93°C. Note the Curie temperature TC = 192°C and phase transition temperature TOT = 118°C 

were taken from the measurements on 26PIN-42PMN-32PT [67] and used to determine the 

coefficients of the energy function. The resulting phase transition temperature TRO = 93°C 

matched the results of the same experiment on 26PIN-42PMN-32PT [67]. 

 

Figure 3.3. Energy density of three ferroelectric phases plotted as a function of temperature. The phase transition 

temperatures are obtained at the intersections of the curves. 

The spontaneous polarization and dielectric constants are plotted as a function of temperature 

in Figure 3.4. The spontaneous polarization was obtained by minimizing the energy function at a 

given temperature. As shown in Figure 3.4(a), the magnitude of spontaneous polarization 

decreased as the temperature increased. Characteristics of first order phase transitions were 
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observed at the transition with polarization being discontinuous. In addition, the direction of 

spontaneous polarization changed from <001> to <110> and finally to <111> as the crystal 

underwent the phase transitions T  O  R. The dielectric constants were obtained by taking 

the second derivatives of the energy function, Eq. (3.3). 
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LD

A A A

0

1
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
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  (3.3) 

Since three different ferroelectric phases are involved, superscript A is used to denote the 

ferroelectric phase and all the quantities are expressed in the associated local coordinate systems. 

The dielectric constants of all three ferroelectric phases are plotted in Figure 3.4(b). For 

tetragonal phase and rhombohedral phase, the two transverse components e11 and e22 are equal. 

The orthorhombic phase has three independent components of dielectric constants. The sharp 

increase of the dielectric constants when approaching the Curie temperature is related to the 

abrupt reduction of the polarization. 
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Figure 3.4. (a) Spontaneous polarization PS plotted as a function of temperature. (b) Dielectric constants eii (i = 1, 2, 

3) plotted as a function of temperature. Superscript T, O and R represent tetragonal, orthorhombic and rhombohedral 

phase, respectively. The subscript of the dielectric constants follows the definitions in Table 3.1. 
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3.4 Electric field driven homogeneous polarization switching  

When an external electric field (E1, E2, E3) is applied, the potential energy of the polarization 

in the electric field is added to the Landau-Devonshire energy, Eq. (3.4). 

    1 2 3 LD 1 2 3 1 1 2 2 3 3, , , ,f P P P f P P P PE P E P E       (3.4) 

The electrical energy terms tilt the energy landscape, resulting in lower energy in the direction 

the electric field is applied. Under zero field, the energy landscape of the rhombohedral crystal 

possesses eight equivalent energy wells along the <111> directions. The barriers between any 

two energy wells prevent switching of the variants until a critical electric field is reached. Under 

the external electric field, the energy wells aligned with the field become deeper while those that 

are not favored by the field elevate. When the field exceeds a critical value, the elevated energy 

wells become unstable and the associated energy barriers become saddle points. This means the 

variants that are not favored by the field switch to other field-favored variants. In other words, 

the variant switching or homogeneous polarization switching takes place when the energy barrier 

between two variants is overcome under the external electric field. The height of the energy 

barrier governs the coercive field for homogeneous switching, i.e. switching not facilitated by 

domain wall motion. However, most of the previous work used the depth of energy wells for 

different variants or phases as the critical condition to trigger the polarization switching or phase 

transformation, without considering the energy barriers. As with the thermal case described 

above, this leads to anhysteretic behavior. Thermal fluctuations are capable of agitating the 

polarization past small energy barriers (out of shallow metastable wells). Applied field is 

required to move the polarization out of deeper wells. The effects of thermal fluctuations are not 

included in this work. 



55 

 

The polarization and strain response to a bipolar external electric field at room temperature 

were simulated for two domain engineered structures, [001] poled 4R and [110] poled 2R. A 

crystal variant based model [72,73] was adopted where each variant was tracked individually 

during the whole process and the overall response was the weighted sum of the contributions 

from all variants. The behavior of the [001] poled 4R crystals was determined by individually 

simulating each of the four variants and then taking the average. Similarly, the [110] poled 2R 

crystals were simulated by taking the average response of the two variants in the crystals. For a 

single variant, the associated polarization was obtained by finding the local minimum of the 

energy function, a condition defined by Eq. (3.5). 
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  
  (3.5) 

Under the stress free boundary condition, the strain response was modeled based on quadratic 

electrostriction. The spontaneous strain components are given by Eq. (3.6). 
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  (3.6) 

The electrostrictive coefficients Q11 = 0.066m4/C2, Q12 = -0.032m4/C2 and Q44 = 0.023m4/C2 

were determined by fitting to the piezoelectric coefficients of domain engineered rhombohedral 

crystals at room temperature. The normal strain component along any direction with the unit 

vector [l, m, n] can be calculated by Eq. (3.7) [10]. 

  
2 0 2 0 2 0 0 0 0

11 22 33 12 13 23, ,
2 2 2

l m n
l m n lm ln mn              (3.7) 
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The simulated polarization-electric field (PE) hysteresis loops for 4R and 2R are shown in 

Figure 3.5. In 4R (Figure 3.5(a)), as the cyclic electric field along the [001] direction exceeds the 

positive coercive field and overcomes the energy barriers, the four downward oriented variants 

become unstable and switch to the upward oriented variants. Then they switch back to downward 

oriented variants when the electric field reaches the negative coercive field and turns the energy 

barriers into saddle points. As shown in Figure 3.5(b), similar switching behavior between two 

leftward pointing variants and two rightward pointing variants is observed in 2R under the field 

along the [110] direction. Specifically for 2R, the polarization component perpendicular to the 

diagonal plane (1-10) is zero throughout the whole process. This indicates the polarization 

switching in 2R under the field along the [110] direction is an in-plane process. 
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Figure 3.5. The simulated volume average polarization-electric field (PE) hysteresis loops for 4R (a) and 2R (b). 

The energy landscape labeled as A, B, C and D are corresponding to the points in the PE hysteresis loops. 

The simulated strain-electric field (SE) hysteresis loops for 4R and 2R are shown in Figure 

3.6. The volume average shear strain components are zero for both 4R and 2R. In 4R (Figure 

3.6(a)), the two transverse strain components ε[100] and ε[010] are equal and opposite in sign from 

the longitudinal strain ε[001]. The crystals elongate longitudinally and shrink transversely when 

the polarization and the electric field are in the same direction. In 2R (Figure 3.6(b)), there are 
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three independent normal strain components. The transverse strain component ε[-110] has the same 

sign as the longitudinal component ε[110] while the other transverse component ε[001] has the 

opposite sign. 

 

Figure 3.6. The simulated volume average strain-electric field (SE) hysteresis loops for 4R (a) and 2R (b). 

With the homogeneous switching model (single polarization, no domains present) there is an 

abrupt jump of polarization and strain at the coercive field. Once the polarization has been 
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oriented, the dielectric constants and piezoelectric coefficients are apparent as the slope of the 

polarization and strain curves at zero field. They are defined by Eq. (3.8). 
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  (3.8) 

The obtained constants are listed in Table 3.4 along with the experimental data. These data are 

from compositions in the rhombohedral region of the phase diagram. Some of the compositions 

are away from the MPB, resulting in lower piezoelectric properties. The data obtained in this 

work match the experimental measurements well except the coercive field and e22 of 2R. The 

reasons could be the absence of domain wall effects in the homogeneous switching, the absence 

of thermal fluctuation effects, or the approximations made in the coefficient determination 

process due to the lack of experimental data. 

The piezoelectric coefficients for the single domain orthorhombic phase (at 100°C) and 

tetragonal phase (at 120°C) were calculated using the electrostrictive coefficients determined for 

the rhombohedral phase. The tetragonal phase has d33 = 1429pm/V and d31 = -693pm/V while 

the orthorhombic phase has d33 = 638pm/V, d31 = 123pm/V and d32 = -716pm/V. No high 

temperature experimental data of the MPB composition are available for direct comparison. The 

compositions that are not at the MPB exhibit lower piezoelectricity at room temperature: the 

single domain tetragonal phase has d33 = 530pm/V and d31 = -200pm/V [68] while the single 

domain orthorhombic phase has d33 = 350pm/V, d31 = 153pm/V and d32 = -346pm/V [69]. In 
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order to have a more accurate description of the piezoelectricity for tetragonal phase and 

orthorhombic phase, a new set of electrostrictive coefficients may need to be determined. 

Table 3.4. Dielectric constant, coercive field, remanent polarization and piezoelectric coefficient of 4R and 2R at 

room temperature. Dielectric constant and piezoelectric coefficient were calculated based on the slope of the PE and 

SE curves between 0 and 0.1MV/m, respectively. 

Crystal properties This work Experimental data 

4R 

e33
 (-) 5919 7244a, 5900d, 4753h,4532g, 4400c 

e11
 (-) 6147 10081a, 1728h, 1666g 

EC (MV/m) 0.60 0.6g, 0.57h, 0.56c, 0.55a, 0.43d 

Pr (C/m2) 0.271 0.34a, 0.267h, 0.26c, 0.258g 

d33
 (pm/V) 2671 2742a, >2000d, 1500c, 1338g, 1285h 

d31
 (pm/V) -1331 -1337a, -700c, -651g, -646h 

d15
 (pm/V) 197 232a, 147g, 122h 

2R 

e33
 (-) 3497 4574e, 4361b, 4360f, 3613h, 3400c, 3384g 

e11
 (-) 8729 7459e, 6814b, 6810f, 5028h, 5000g 

e22
 (-) 6147 1596e, 1483b, 1480f, 1273h, 1201g 

EC (MV/m) 1.18 0.66g, 0.61f, 0.55b, 0.53e, 0.53c 

Pr (C/m2) 0.38 0.37c, 0.37g 

d33
 (pm/V) 1236 1363b, 1300f, 1068e, 972g, 925c, 922h 

d31
 (pm/V) 687 744b, 730f, 675e, 590c, 496g, 488h 

d32
 (pm/V) -1911 -1781b, -1693e, -1680f,-1420c,-1268g, -1196h 

d15
 (pm/V) 2905 3354b, 3122e, 2900f, 2373h, 2288g 

d24
 (pm/V) 279 200f, 162b, 142e, 106h, 94g 

                         a: 27PIN-40PMN-33PT (Reference [74]);      b: PIN-PMN-32PT (Reference [67]);  

                         c: 28PIN-40PMN-32PT (Reference [75]);      d: MPB (Reference [66]);  

                         e: 24PIN-46PMN-30PT (Reference [76]);      f: MPB (Reference [77]); 

                         g: 33PIN-38PMN-29PT (Reference [78]);      h: 24PIN-47PMN-29PT (Reference [79]). 
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3.5 Combined effect of temperature and electric field  

The previous two sections addressed the thermal properties under zero field and PE and SE 

hysteresis loops at room temperature. In this section, simulations of the combined effect of 

temperature and electric field are presented. The hysteresis loops for 4R and 2R were simulated 

at 25°C, 50°C and 75°C. The results are shown in Figure 3.7. The trends observed in 4R and 2R 

are similar. As the temperature increases, the polarizations decrease while the dielectric constants 

and piezoelectric coefficients at small field increase. In addition, the PE hysteresis loops become 

slimmer with lower coercive field. This indicates the energy barrier becomes smaller and the 

critical electric field of driving the polarization switching is reduced. Direct quantitative 

validation of the results is not available due to the lack of experimental data. But the same trend 

was observed in the measurements on 26PIN-47PMN-27PT [80] and 24PIN-51PMN-25PT [81]. 

These two compositions are also in rhombohedral phase at room temperature but away from the 

MPB with lower piezoelectric properties. By comparing to the experimental results, the 

capability of the proposed energy function in capturing the combined effect of electric field and 

temperature was partially validated. 
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Figure 3.7. The hysteresis loops at 25°C, 50°C and 75°C. (a) The PE loops of 4R. (b) The PE loops of 2R. (c) The 

SE loops of 4R. (d) The SE loops of 2R.  
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3.6 Conclusion 

Domain engineered rhombohedral ferroelectric single crystals of PIN-PMN-PT have stable 

domain structures that improve piezoelectric properties and reduce dielectric loss. Modeling the 

evolution of domain structures is challenging as multiple domain switching and phase 

transformations take place with temperature and applied electric field. A Landau-Devonshire 

energy function, in the form of a 10th order polynomial, was calibrated through extensive fitting 

to the experimental data reported in the literature. The resulting energy function reproduced the 

dielectric, piezoelectric and ferroelectric properties of PIN-PMN-PT with a composition near the 

MPB. It also captured the effects of temperature and electric field on the homogeneous 

polarization switching in domain engineered 4R and 2R crystals. The energy barrier between 

variants was used to govern the coercive field, resulting in hysteresis loops of polarization and 

strain. The homogeneous polarization switching described by the energy function reproduced the 

behavior of domain engineered crystals where the domain structures were stable with minimal 

domain wall motion. To include domain wall effects, the energy function needs to be 

implemented in a phase-field model where the gradient energy is taken into account. The domain 

patterns and the effects of boundary conditions, geometry, etc. can also be addressed using the 

phase-field method. With the energy function proposed in this work, the Landau-Devonshire 

theory has been extended from the classic BaTiO3 crystals with tetragonal symmetry to PIN-

PMN-PT crystals with rhombohedral symmetry. This will enable the use of phase-field models 

to gain a deeper understanding of domain structures, domain energetics and the associated 

mechanisms of domain evolution in rhombohedral ferroelectric single crystals. 
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Appendix A Coefficient determination  

The coefficients of the proposed energy function were determined by fitting to the data of 

polarization and dielectric constants of each ferroelectric phase in the single domain state as well 

as the temperatures of phase transformations. Since the three ferroelectric phases have different 

polar directions, local coordinate systems were used to describe the properties of each 

ferroelectric phase. These local coordinate systems were defined in Table 3.1 with x3 direction 

aligned with the polar direction of each ferroelectric phase. For tetragonal phase, the local 

coordinate system was the same as the global pseudo-cubic coordinate system. However, for 

orthorhombic phase and rhombohedral phase, the energy function was expressed in the 

associated local coordinate systems through orthogonal transformations, indicated by Eq. (3.9).  
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  (3.9) 

With α11111 and α11122 set to zero and α1 solved by applying the Curie-Weiss law, the 

remaining 12 unknown coefficients were divided into three groups according to the symmetry. 

For tetragonal phase, by taking the P3 as the polar direction of the single domain state and setting 

P1 and P2 to zero, the energy function only contained three unknown coefficients α11, α111 and 

α1111. These were determined by Eq. (3.10). 
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  (3.10) 

The first two equations in Eq. (3.10) were for the spontaneous polarization and longitudinal 

dielectric constant of tetragonal phase. The remaining two equations were used to describe the 

energy equivalence between tetragonal phase and cubic phase at the Curie temperature. The 

cubic phase was assumed to possess zero energy. Note the spontaneous polarization of tetragonal 

phase at the Curie temperature PS
T(TC) was unknown. It was determined together with α11, α111 

and α1111. Solving Eq. (3.10) and all the following equations required a numerical method as high 

order polynomials were involved. The Newton-Raphson method was used. With α11, α111 and 

α1111 determined, the spontaneous polarization of tetragonal phase at the temperature of phase 

transition between tetragonal phase and orthorhombic phase PS
T(TOT) was calculated using Eq. 

(3.11).  
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Next, orthorhombic symmetry was considered. In the local coordinate system associated with 

1O configuration, by setting the two polarization components along the nonpolar directions to 

zero, the energy function only contained unknown coefficients α12, α112, α1112, α1122 and α11112. 

They were determined by solving Eq. (3.12).  



66 

 

 

   
  

  

   
  

   
  

     

  

2 T
TLD

12T T
11 1 0 1

O
OLD

2O

3

2 O
OLD

22O O
33 2 0 3

2 O
OLD

22O O
11 2 0 1

O O T T

LD OT LD OT

O
OLD

OTO

3

1
0,0,

0,0, 0

1
0,0,

1
0,0,

0,0, 0,0,

0,0, 0

S

S

S

S

S S

S

f
P T

e T e P

f
P T

P

f
P T

e T e P

f
P T

e T e P

f P T f P T

f
P T

P

























  (3.12) 

The first equation in Eq. (3.12) was for the transverse dielectric constant of tetragonal phase. The 

second to fourth equations were for the spontaneous polarization and dielectric constants of 

orthorhombic phase. The remaining two equations were used to describe the energy equivalence 

between tetragonal phase and orthorhombic phase at the phase transition temperature TOT. Since 

PS
T(TOT) was already solved in Eq. (3.11), the RHS of the fifth equation in Eq. (3.12) was 

known.  

With the above-mentioned coefficients determined, the last few coefficients α123, α1123, α11223 

and α11123 were determined by solving Eq. (3.13). 
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The first equation in Eq. (3.13) was for the other transverse dielectric constant of orthorhombic 

phase. The remaining equations in Eq. (3.13) were used to fit to the spontaneous polarization and 

dielectric constants of rhombohedral phase. 
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4 Phase-field simulation of domain walls in ferroelectric single crystals 

4.1 Introduction  

Ferroelectric relaxor single crystals PMN-PT exhibit ultrahigh piezoelectric coefficients and 

electromechanical coupling factors and thus are widely used as a substitute for conventional 

piezoelectric ceramics to improve the performance of sensors and actuators. The ternary 

compound PIN-PMN-PT [5] was developed to increase the phase transition temperature and 

Curie temperature of PMN-32PT without sacrificing the exceptional piezoelectric properties. 

These ferroelectric relaxor-PT crystals are usually grown in compositional ranges close to a 

morphotropic phase boundary (MPB) that results in rhombohedral symmetry. Then they are cut 

and poled along certain orientations to achieve enhanced piezoelectric properties, a process 

described as domain engineering [2,62,63].  

The engineered domain structures are very important in understanding the material behavior 

and the mechanism of domain evolution under external excitations. The phase-field method is a 

powerful approach to modeling mesoscale microstructural evolution governed by the time-

dependent Ginzburg-Landau (TDGL) equation. Chen et al. developed a semi-implicit Fourier-

spectral method [41] to solve the TDGL equation and applied it to the phase-field modeling of 

ferroelectric domain formation in three-dimensional space [60] and domain structures in 

ferroelectric thin films [82–85]. Using the same computational method, Wang et al. simulated 

ferroelectric and ferroelastic polarization switching [86] and studied the effect of mechanical 

strain [87] and defects (cracks and notches) [88–90]. Zhang and Bhattacharya modeled domain 

switching subjected to mechanical stress and cyclic electric field using a finite difference 
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framework and attributed the large strain actuation to 90° domain switching [42]. A finite 

element implementation of a phase-field model was established by Schrade et al. [43] and Landis 

et al. [36]. In addition to single crystals, the phase-field method was extended to polycrystals to 

look into the effect of grains [91–93]. Recently, the phase-field method was used to investigate 

the flexoelectric effect on the domain structures in nanoscale ferroelectrics [94–96].  

Even though the phase-field method has proved to be a powerful approach to understanding 

the mechanism of microstructural evolution, most of the modeling work was focused on the 

materials with a tetragonal structure such as BaTiO3, PbTiO3 and certain compositions of PZT 

with high PT content. This is because the phase-field method requires input of a Landau-

Devonshire energy function that describes the dielectric, piezoelectric and ferroelectric 

properties of a single crystal in the single domain state, but this type of energy function was not 

available for the new ferroelectric relaxor-PT crystals. Recently Lv and Lynch developed a 10th 

order Landau-Devonshire energy function for rhombohedral PIN-PMN-PT crystals [10,97]. This 

was elaborated in Chapter 3. This energy function was implemented in a phase-field model in the 

work presented here. The results showed the effects of domain formation and evolution on the 

material properties. Special attention was given to the two types of domain walls that were 

observed in the rhombohedral crystals, the 71 domain wall and the 109 domain wall. The next 

section reviews the phase-field formulation and finite element implementation. This is followed 

by the simulations of 71 domain walls and 109 domain walls resulting in homogeneous and 

heterogeneous responses, respectively. Then the minimal domain wall motion in the engineered 

domain structures under the electric field is discussed based on the simulation results. 
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4.2 Phase-field method 

The phase-field method uses a free energy density functional with order parameters that 

describe dielectric, piezoelectric, ferroelectric and elastic properties. Polarization and strain are 

usually chosen as the order parameters for ferroelectric materials. The total free energy density 

of the system includes the Landau-Devonshire energy, gradient energy, elastic energy and 

electrical energy, Eq. (4.1).  

 L-D grad elas elecf f f f f      (4.1) 

Here the Landau-Devonshire energy is expressed as a 10th order polynomial that was developed 

for PIN-PMN-PT crystals with rhombohedral variants [10,97]. This energy function was 

originally expressed in terms of three polarization components P1, P2 and P3 along the axes of 

the pseudo-cubic unit cell as shown in Figure 4.1(a). The associated coordinate system is called 

the “cubic” coordinate system. Since the polarization component perpendicular to the diagonal 

plane (-110) remains zero throughout the switching process under the electric field along the 

[110] direction [10], the whole system can be reduced to two dimensions by using two in-plane 

components py and pz as defined in Figure 4.1(b). The associated coordinate system is referred to 

as the “rhombohedral” coordinate system. The plane (-110) contains four spontaneous 

polarization directions corresponding to the energy minima of the Landau-Devonshire energy. 

Each of them is called a rhombohedral variant. By poling along the [110] direction with electric 

field, an engineered domain structure is obtained with only two variants, R1-R2 or R3-R4. This 

is called a two-rhombohedral-variant (2R) crystal. 
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Figure 4.1. (a) The “cubic” coordinate system used in reference [10]. The three axes are in the directions 

[100]-[010]-[001]. (b) The 2D “rhombohedral” coordinate system used in this work. The three axes are in the 

directions [-110]-[001]-[110]. The y-z plane is the diagonal plane (-110) in (a). It contains four rhombohedral 

variants, R1, R2, R3 and R4. 

In this work, the engineered 2R domain structure is modeled in the 2D rhombohedral 

coordinate system. All of the energy terms are expressed in this 2D system. Detailed derivations 

of the energies can be found in Chapter 2 and the work of Su and Landis [36]. The 10th order 

Landau-Devonshire energy function with coefficients expressed in the rhombohedral coordinate 

system is given by Eq. (4.2).  
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All of the coefficients are taken from reference [10] and temperature is set to 25°C for α1. 

The gradient energy is expressed in terms of polarization gradient, which penalizes large 

spatial variations of polarization, Eq. (4.3). 

  2 2 2 2

grad , , , ,

1

2
y y z z y z z yf G p p p p      (4.3) 

The comma after the variable represents the derivative with respect to the spatial coordinate. 

Here the gradient coefficient G is the only parameter, making the gradient energy independent of 

crystallographic orientation. The gradient energy has a direct effect on the domain wall 

thickness, which is proportional to the square root of G [36]. 

The elastic energy is expressed in terms of elastic strain components, Eq. (4.4). 

 el el

elas

1

2
ijkl ij klf C     (4.4) 

Repeated indices imply summation (Einstein summation convention). The superscript “el” is 

used to represent the elastic strain tensor, which is the difference between total strain and 

spontaneous strain: εij
el = εij – εij

0. Here the elastic stiffness tensor Cijkl has the same symmetry as 

the high temperature cubic phase. The three independent components are C11 = 121010N/m2, 

C12 = 101010N/m2 and C44 = 61010N/m2. These values are estimated based on the 

measurements [74,98]. Note the elastic stiffness tensor Cijkl is defined in the cubic coordinate 

system. Tensor transformation is required before it can be used to describe the elastic energy in 

the rhombohedral coordinate system, Eq. (4.5).    

      
2 2 2

el el el el el

elas 22 33 23 44

1 1
2

2 2
yy zz yy zz yzf C C C C             (4.5) 
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Here C’ijkl is the elastic stiffness tensor in the rhombohedral coordinate system. The subscripts 1-

2-3 represent the orthogonal directions [-110]-[001]-[110], corresponding to x-y-z axes of the 

rhombohedral coordinate system. The subscripts 4-5-6 represent the shear terms yz-zx-xy. Eq. 

(4.5) is the elastic energy expansion by assuming generalized plane strain such that all elastic 

strain components are zero except εyy
el, εzz

el and εyz
el. Note that the total out-of-plane strain εxx is 

not zero. It is assumed to be equal to the out-of-plane component of the spontaneous strain εxx
0. 

The nonzero elastic strain components can be calculated by the displacement components uy and 

uz along y and z axes in Figure 4.1(b), Eq. (4.6). 
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  (4.6) 

The spontaneous strain components εyy
0, εzz

0 and εyz
0 within (-110) plane in the 2D rhombohedral 

coordinate system are obtained via tensor transformation of the spontaneous strain components 

defined in the cubic coordinate system, Eq. (4.7). 
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  (4.7) 

The spontaneous strain components in Eq. (4.7) are defined using the quadratic electrostrictive 

coefficients in the cubic coordinate system. The electrostrictive coefficients Q33 = 0.066m4/C2, 

Q13 = -0.032m4/C2 and Q44 = 0.023m4/C2 are from reference [10].  
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The electrical energy has two contributions, one from the material, and the other from the free 

space occupied by the material, Eq. (4.8). 

  2 2

elec 0

1

2
y y z z y zf E p E p E E       (4.8) 

Here κ0 is the permittivity of free space. The electric field components Ey and Ez are along y and 

z axes, respectively. They are related to the electric potential (ϕ) by Eq. (4.9). 
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The stress and electric displacement are obtained from the partial derivatives of the total free 

energy f using Eq. (4.10).  
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  (4.10) 

The temporal evolution of the polarization is governed by the TDGL equations. In the 2D 

system, they are expressed as 

   (4.11) 

where β is the inverse mobility coefficient. The dot on top of the variable represents the 

derivative with respect to time. The terms on the RHS of Eq. (4.11) represent the driving force 

for the evolution of the system.  



75 

 

The governing equations for mechanical equilibrium and Gauss law are in Eq. (4.12).  

 
,

,

0

0

ij j

i iD

 


  (4.12) 

The TDGL equation, mechanical equilibrium and Gauss law are solved simultaneously to make 

the phase-field model fully coupled. It is assumed that the system reaches mechanical 

equilibrium instantaneously for a given polarization field but varies slowly with respect to the 

speed of light (quasi-static electromagnetic approximation). The inertial terms and body forces 

are neglected. There is no volume charge density within the body. The boundary conditions for 

mechanical equilibrium and Gauss law are prescribed displacement / traction and prescribed 

electric potential / charge density, respectively.  

The three governing equations (TDGL, mechanical equilibrium and Gauss law) are solved 

simultaneously using the finite element method. A mapped mesh is used with quadrilateral 

elements and quadratic Lagrange shape functions. Each node has five degrees of freedom: two 

polarization components (py and pz), one electric potential (ϕ) and two displacement components 

(uy and uz). In order to improve the convergence, the variables and coefficients are normalized as 

follows, 
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   (4.13) 

where r is the spatial coordinate. The constants for normalization are P0 = 0.384C/m2 and G0 = 

5.9910-12m4NC-2. The characteristic length scale is l0 = 1nm. All the variables and coefficients 

with a star represent the normalized quantities.  
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4.3 Domain wall formation  

The phase-field method was first used to simulate the domain formation process on a 

representative volume element with the size of 200200nm2. The mesh size was 11nm2 to 

ensure there were multiple mesh elements across a domain wall. The representative volume 

element works with periodic boundary conditions. It is straight-forward to apply periodic 

boundary conditions to the polarization and electric potential, i.e. the polarization and electric 

potential on one boundary are equal to those on the opposite boundary. However, applying 

periodic boundary conditions in the same manner to the displacements imposes a zero strain 

condition. A mechanical clamping effect is introduced. Most of the phase-field work in the past 

used the zero strain condition, but the free standing material behavior under external excitation is 

also of interest. In this work, a periodic boundary condition that accommodates nonzero strain 

was used based on a method developed for heterogeneous material systems [99,100]. Figure 4.2 

is a schematic of a representative volume element with quadrilateral geometry. The node sets on 

the four edges except the vertex points are denoted as Top, Bot, Left and Right. LT, RT, LB and 

RB represent four vertex nodes, respectively. The periodic boundary conditions can be applied to 

the two displacement components (u and v) in the following manner: 
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  (4.14) 

The first two groups of equations in Eq. (4.14) ensure periodicity in the vertical and horizontal 

directions, respectively. The last group of equations defines the relations of four vertex points, 
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which are not included in the first two groups. These periodic boundary conditions not only 

enforce periodicity in displacements, but also accommodate dilation or contraction with nonzero 

strain. To suppress rigid body motion, the vertex LB is fixed and the vertical displacement of 

vertex RB is constrained.    

 

Figure 4.2. A schematic of a representative volume element with boundaries (Top, Bot, Left and Right) and vertex 

points (LT, RT, LB and RB). u and v are horizontal and vertical displacement components, respectively. 

Driven by energy minimization to reach equilibrium state, the domain formation process in a 

representative volume element of the rhombohedral ferroelectric single crystal is shown in 

Figure 4.3. The colors represent the magnitude of polarization with unit C/m2. The white arrows 

represent the directions of polarization. To initiate the process, random perturbations were 

applied to the initial values of polarizations. Triggered by the perturbation (Figure 4.3(a)), some 

domains began to nucleate and grow (Figure 4.3(b)). As the domains got larger, they began to 

interact with other domains nearby. Domains with the same polarization merged and formed 
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larger domains while those with different polarizations were separated by domain walls (Figure 

4.3(c)). The 71, 109 and 180 domain walls all appeared, but soon the 180 domain walls became 

disfavored and began to fade out (Figure 4.3(d)). The intermediate process was mainly 

dominated by the 71 and 109 domain walls (Figure 4.3(e), (f) and (g)). The domain walls were 

3~4nm thick given the normalized gradient coefficient G* = 4. As the domains continued to 

evolve, 71 domain walls gradually disappeared. Eventually, two 109 domain walls survived in 

the equilibrium state (Figure 4.3(h)). As shown in Figure 4.3, the average strain was not zero 

throughout the domain formation process. The periodic boundary conditions in Eq. (4.14) 

accommodated the volume variation and avoided the clamping issue that could be introduced by 

equating the displacements on the opposite boundaries.   

 Note Figure 4.3(h) represents the ideal minimum energy state. In the actual material, defects 

exist that can pin the domain walls, generating more complex domain patterns similar to the 

intermediate states such as those in Figure 4.3(e), (f) or (g), where both 71 and 109 domain walls 

are populated and thus have a major effect on the material behavior. In order to gain deeper 

insight into the characteristics of the 71 and 109 domain walls and their effects on the properties 

of domain engineered 2R crystals, the evolution of the two domain walls under the electric field 

along the [110] direction was simulated and discussed in the next section. 
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Figure 4.3. Domain formation process in a representative volume element of the rhombohedral ferroelectric single 

crystals. The colors represent the magnitude of polarization with unit C/m2. The white arrows represent the 

directions of polarization. The deformation is magnified by 10 times. 
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4.4 Electric field driven domain wall evolution  

4.4.1 71 domain wall 

A square periodic element containing two 71 domain walls was simulated. The size of the 

square was 4040nm2. Periodic boundary conditions were applied. Two 71 domain walls were 

formed at one-quarter and three-quarter of the height by setting the initial conditions in the 

proximity of the expected equilibrium solutions of R4 in the middle and R3 in the top and 

bottom, and then letting the system relax. The resulting equilibrium state at t = 0 is shown in 

Figure 4.4. An electric field along the [110] direction was applied by setting the potential 

difference on the top and bottom boundaries accordingly. The electric field was in a triangle 

wave form with the peak field 1MV/m. The period T was long enough so that the system reached 

equilibrium at each step. The volume average py along the [001] direction (P[001]) and pz along 

the [110] direction (P[110]) are also plotted in Figure 4.4. P[001] was zero throughout the process, 

meaning the 71 domain walls did not move. P[110] varied with the field applied, indicating 

broadening and narrowing of the 71 domain walls. No domain switching occurred. When the 

field was in the opposite direction from the polarization, the 71 domain walls became narrower. 

When the field was in the same direction, the 71 domain walls became wider. The domain walls 

were thinnest (t = T/4) and thickest (t = 3T/4) when the field reached the positive peak and 

negative peak, respectively.  
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Figure 4.4. The broadening of the 71 domain walls when the electric field is below the coercive field. T is the 

period of the electric field. The domain wall is zoomed in to show the variation of the domain wall thickness. 

When the electric field exceeded the coercive field, polarization switching occurred as shown 

in Figure 4.5. At t = 0, R3 and R4 were separated by two 71 domain walls. As the positive field 

increased and exceeded the coercive field, P[110] jumped to a positive value with R3 switching to 

R1 and R4 switching to R2 simultaneously. The domains stayed with R1 and R2 as the field 

decreased to zero at t = T/2. When the field became negative and went beyond the coercive field, 

P[110] jumped back to being negative with R1 and R2 switching back. In the meantime, P[001] 

remained zero, indicating the 71 domain wall did not move during the switching process. As the 

electric field cycled, polarization switching occurred homogeneously without domain wall 

motion. This is the domain engineering effect, where the electric field does not provide a driving 

force for domain wall motion. This lack of domain wall motion is the reason why the domain 

engineered crystals have a very low dielectric loss coefficient (tanδ) and high electromechanical 

coupling factors. 
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Figure 4.5. The homogeneous polarization switching with no motion of the 71 domain walls when the electric field 

exceeds the coercive field. The domains before and after the switching are shown on the right. 

4.4.2 109 domain wall  

A square periodic element containing two 109 domain walls was simulated. The size of the 

square was 4040nm2. Periodic boundary conditions were applied. Two 109 domain walls were 

formed at one-quarter and three-quarter of the width by setting the initial conditions in the 

proximity of the expected equilibrium solutions of R3 in the middle and R1 in the left and right, 

and then letting the system relax. The obtained equilibrium state at t = 0 is shown in Figure 4.6. 

A constant electric field of 0.1MV/m along the [110] direction was applied by setting the 

potential difference on the top and bottom boundaries accordingly. The electric field was applied 

at t = 0 and the response of P[110] and P[001] is plotted in Figure 4.6. The increase of P[110] 

corresponded to the motion of two 109 domain walls towards each other as R3 switched to R1. 

The domain wall motion exhibited an almost linear behavior until an abrupt change to P[110] and 
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P[001] was observed when the two 109 domain walls began to contact and merge. Eventually the 

109 domain walls disappeared. R3 domain completely switched to R1 through the sweeping of 

the 109 domain walls and a single domain was formed. The response of the single domain is 

governed by the Landau-Devonshire energy and the hysteresis loops can be reproduced as those 

in reference [10]. The switching from R3 to R1 is not a strain free process. If the zero strain type 

of periodic boundary conditions is applied, two 109 domain walls shown in Figure 4.6 will not 

merge due to the mechanical clamping effect and thus the single domain will not form. The time 

axis in Figure 4.6 provides an idea of how long it takes to reach equilibrium under the given 

conditions. The domains reach equilibrium at each time step if the period of the cyclic electric 

field is longer than nano-seconds by orders of magnitude.  

 

Figure 4.6. The sweeping of the 109 domain walls and heterogeneous polarization switching under the constant 

electric field 0.1MV/m. A single domain is formed after the two domain walls merge and disappear. 

Note the electric field applied in Figure 4.6 is only 0.1MV/m. If an even lower electric field is 

applied, a smaller driving force will be generated and the 109 domain walls will move slower. 
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There is no critical electric field to drive the sweeping of 109 domain walls. This is because 

under the electric field along the [110] direction, the domain on one side of the 109 domain wall 

is always favored by the field while the other is not. The favored domain expands by pushing the 

domain wall to the disfavored one. This heterogeneous process does not involve all the material 

at the same time. It is a local effect where the two regions compete and the wall in between 

moves towards the region with higher energy to minimize that region. This helps reduce the field 

or energy required to drive the polarization switching as compared to the case where the whole 

region is equally favored by the electric field and it has to be switched simultaneously. There are 

some other factors that may affect the polarization switching such as the domain size, loading 

rate, gradient coefficients and defects or other pinning sources. The complete study of these 

factors goes beyond this work. However, the simulation results show the fundamental difference 

in the mechanism of polarization switching with 71 or 109 domain walls involved. The domain 

wall sweeping reduces the energy required to reorient the domains in the heterogeneous 

switching (109 domain wall) compared to the homogeneous switching (71 domain wall).   

The simulation results also help understand why the domain wall motion is minimal in the 

engineered domain structures [65,80,101,102]. Both 71 and 109 domain walls are populated in 

the unpoled crystals. These crystals are then cut and poled (domain-engineered) to achieve the 

enhanced piezoelectric properties. During the poling process, domains reorient and align in the 

directions favored by the field. This reduces 109 domain walls because the domain on one side 

of 109 domain wall is not favored by the field and these domains are minimized. As a result, the 

109 domain walls associated with these disfavored domains disappear. Some may remain due to 

the domain wall pinning effects but the dominant effect is from the favored domains and the 

associated 71 domain walls. Since the two domains separated by the 71 domain wall are equally 
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favored by the external electric field, the domain wall motion is minimal in domain engineered 

structures. This explains why the intrinsic crystal lattice effects (homogeneous response) account 

for 80~90% of the overall response while the extrinsic effects related to domain wall motion 

(heterogeneous response) are only 10~20%. 
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4.5 Conclusion 

In this work, a phase-field model was developed based on a 10th order Landau-Devonshire 

energy function for rhombohedral PIN-PMN-PT ferroelectric single crystals. In order to gain a 

better understanding of the engineered domain structures, domain formation and domain wall 

evolution under the electric field along the [110] direction were simulated. A new way to apply 

periodic boundary conditions was used to accommodate nonzero strain during domain formation 

and evolution. Special attention was given to the 71 and 109 domain walls that were populated in 

the crystal from the domain formation process. The two types of domain walls showed different 

behavior in response to the electric field. A domain wall broadening effect was observed on the 

71 domain walls when the electric field was below the coercive field. Homogeneous polarization 

switching with no motion of the 71 domain walls occurred when the electric field exceeded the 

coercive field. While the sweeping of the 109 domain walls facilitated heterogeneous 

polarization switching and reduced the energy required relative to the homogeneous switching. 

The two mechanisms of domain evolution explained the minimal domain wall motion in the 

engineered domain structures under the electric field. With this work, the application of the 

phase-field method was expanded to the new rhombohedral phase ferroelectric relaxor-PT 

crystals beyond tetragonal phase ferroelectric materials. This work also provided insight into the 

engineered domain structures of ferroelectric single crystals that is important in many 

applications. 
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5 Summary and conclusions 

Domain engineered ferroelectric relaxor-PT crystals have attracted extensive attentions due to 

their ultrahigh piezoelectric coefficients and electromechanical coupling factors. They show 

great potential for replacing the conventional piezoelectric ceramics and improving the 

performance of piezo-based applications such as sensors and actuators. To gain insight into the 

microstructure and its effects on the material behavior, this dissertation presented a modeling 

approach from an energetic perspective.  

It started with an introduction to the thermodynamics of coupled electromechanical systems in 

Chapter 2. A kinetic relation governing the evolution of polarization (the TDGL equation) and a 

finite element formulation to solve the coupled problem were also discussed. These provided the 

theoretical background of this energetic modeling approach.  

A Landau-Devonshire energy function, in the form of a 10th order polynomial, was proposed 

to describe the dielectric, piezoelectric and ferroelectric properties of rhombohedral phase PIN-

PMN-PT crystals with a MPB composition. This was elaborated in Chapter 3. The coefficients of 

this energy function were determined through extensive fitting to the experimental data. The 

resulting energy function reproduced the temperature induced phase transformations as well as 

the polarization and strain hysteresis loops of domain engineered 4R and 2R crystals. With the 

energy function proposed, the Landau-Devonshire theory was extended from the conventional 

BaTiO3 crystals with tetragonal symmetry to the novel PIN-PMN-PT crystals with rhombohedral 

symmetry.  

This energy function was then implemented in a phase-field model to investigate the 

evolution of domain structures under the electric field. The details were presented in Chapter 4. 
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In order to accommodate nonzero strain during domain formation and evolution, a new way to 

apply periodic boundary conditions was proposed. The domain formation process was simulated 

first and 71 and 109 domain walls were found to populate the crystals. Then these two types of 

domain walls were individually studied under the electric field applied along the [110] direction. 

They showed different behavior in response to the electric field. A domain wall broadening 

effect was observed on 71 domain walls when below the coercive field. When the electric field 

exceeded the coercive field, homogeneous polarization switching occurred with no motion of 71 

domain walls. While the sweeping of 109 domain walls facilitated heterogeneous polarization 

switching and reduced the energy required relative to homogeneous polarization switching. The 

two mechanisms of domain evolution are consistent with the minimal domain wall motion in the 

engineered domain structures under the electric field. With this work, the application of the 

phase-field method was expanded to the new rhombohedral phase relaxor-PT crystals beyond 

tetragonal phase ferroelectric materials. This work also deepened the understanding of domain 

structures in ferroelectric single crystals that is important in many applications.  
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