

Motivation

- Solar energy not yet cost-competitive with fossil fuels without subsidies
- Earth abundant materials more cost-effective and sustainable, e.g. S, Cu, Zn, Sn

Experimental Aim

- Goal: Make thin film of Cu₂ZnSnS₄ (CZTS) using CVD or ALD
- ZnS/Cu_xS multilayer/alloy stacks unsuccessful
- Cu_2SnS_3 similar structure to CZTS
- CZTS could function as absorber in nanostructured solar cells, which use extremely thin absorber (ETA)
 - ETA improves charge extraction & reduces material (hence reducing cost)
- Conformal nature of ALD, CVD allows deposition into nanostructure:

John Norman et al., Microelectronic Engineering 85, 10 (2008)

- Extended X-ray Absorption Fine Structure (EXAFS) needed to characterize the local structure [XRD inconclusive]
 - Also sensitive to type of 2nd neighbor; can look for clustering

Experimental Details

- Thin films were approximately 100 nm thick.
- EXAFS analysis was performed on the Sn and Cu K-edges of the thin films, using SSRL's Beamline 4-1.

μ(E)	1.6		I
	1.4		
	1.2	_ ∠n	$\overline{\Lambda}$
	1	Μ	\checkmark
	0.8	-	
	0.6	-	
	0.4	-	
	0.2	-	
	0		I
		9500 9600 97	700
]
าก	Λ	1	

Evidence for Cu₂SnS₃ Formation: An Important Step towards CZTS for Solar Applications

Leila Jewell, Andrew Short, Frank Bridges, Sue A. Carter, Glenn Alers Physics Department, UC Santa Cruz

Individual Thin Films

 Cu_2S

- Different shapes for CuS versus Cu_2S
- EXAFS for the thin film mostly matches bulk Cu₂S

Cu₂SnS₃ Thin Films

Cu EXAFS

- After anneal, increase in 2nd peak's amplitude Indicates formation of Cu₂SnS₃
- Fit to Cu_2SnS_3 with ~15% CuS
- Analysis of 2nd peak favors Cu-Cu bond [Should be 2/3 Cu and 1/3 Sn]

Sn EXAFS

- Sn data also has an increase in amplitude of the 2nd peak after anneal.
- While stoichiometry is Cu-rich from Cu EXAFS and EDX, preliminary Sn EXAFS analysis indicates few Cu 2nd neighbors.

Conclusions

- Close to successful attempts to make Cu_2SnS_3
 - Some excess CuS
 - Bond lengths consistent with desired structure (see comparison on left)
- EXAFS suggests clustering of Cu & Sn within structure, forming mainly 2nd neighbor Cu-Cu & Sn-Sn pairs

Progress towards CZTS

- Next step is adding ZnS
- EXAFS useful for
- secondary structures

[•] i.e. Mostly Sn-Sn neighbors