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ABSTRACT OF THE THESIS 

 

A Metabolomic and Microbial Approach to Diagnosing Advanced Fibrosis in NAFLD Patients 

 

by 

 

Tobin Escher Groth 

Master of Science in Biology 

University of California San Diego, 2020 

Professor Rob Knight, Chair 
Professor Joseph Pogliano, Co-Chair 

 
 

Non-alcoholic fatty liver disease (NAFLD) has emerged as a health crisis not only in the US but 

throughout the world. Current methods of identifying indicators of liver disease progression, such as 

advanced fibrosis (AF), are accurate but costly, slow, and impossible to perform on population-wide 

studies. To fill in this diagnostic gap, we look to build machine learning (ML) models using serum and 

fecal metabolomics data from NAFLD patients that can accurately classify AF. These patients encompass 

the entire spectrum of NAFLD which allows us to dig into the diversity and composition of their 

metabolomes to understand the changing metabolites between different liver disease states. Using these 

metabolites, we built baseline ML models and improved performance using a multitude of feature 

selection methods. These feature selection methods allowed us to develop a fecal metabolome ML model 

that could classify AF with an area under the receiver operating characteristic (AUROC) of 0.82. To 

further develop our findings, we combined our strongest fecal metabolome results with fecal microbial 



 x 

features from a previous study to build a multi-omic machine learning model. Building this multi-omic ML 

model expanded on our results and led us to a stronger performing model that could accurately classify 

AF patients with an AUROC of 0.86. 
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Introduction 

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in westernized 

countries, affecting roughly 1 in 3 adults in the US, and approximately 25% of adults globally (1). NAFLD 

is characterized by an increased accumulation of intracellular fat in hepatocytes and is often referred to 

as the hepatic manifestation of metabolic syndrome (2). Although the majority of NAFLD cases persist 

without complication, roughly 20% of individuals progress to more advanced stages of NAFLD, such as 

non-alcoholic steatohepatitis (NASH) (3). NASH results in inflammation and pathological wound healing, 

therefore increasing the risk of developing advanced fibrosis (AF), irreversible liver cirrhosis, and 

hepatocellular carcinoma (HCC), which has a 5-year survival rate of only 10% in the United States (4).  

Despite its prevalence, limited options exist for diagnosing NAFLD, NASH, and AF, thus 

increasing the rate of late diagnosis and mortality from cirrhosis and HCC. Currently, the gold standard for 

diagnosing liver disease is through biopsy. Although effective, biopsies are highly invasive, expensive, 

and pose the risk of complication (5). Further, biopsies are not a feasible approach for routine screening 

or when completing population-wide studies (1).  Thus, there is a critical need to develop robust, 

minimally invasive diagnostic tools capable of identifying the reversible stages of NAFLD: NASH and AF.  

The gut microbiome-liver-axis is closely linked via the portal vein, biliary tract, and systemic 

circulation. Previous research supports that machine learning algorithms trained on key gut microbial 

features are capable of diagnosing advanced fibrosis with an AUROC of 0.87 (6). Through their analysis, 

the previous research was also able to identify key microbes that were in higher abundance for NAFLD-

cirrhosis patients compared to patients at earlier stages of liver disease.  Metabolites are the tools for 

communication between the liver and microbes and previous studies support the notion that these 

metabolites provide enough information to diagnose AF in NAFLD patients (7,8). In this study, we 

propose a method for identifying key metabolites from both serum and fecal metabolomic data to build a 

machine learning (ML) model that can diagnose AF with an accuracy comparable to ML models built on 

microbial data. Following our identification of these key metabolites, we then looked to combine the 

previous microbial data with our metabolomic features to build a multi-omic ML model to diagnose AF.  
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Methods 

Diversity Analysis 

 We used diversity scores from different alpha and beta diversity metrics as a way to identify initial 

differences between our disease groups. For the serum metabolome, we compared Faith’s PD and 

unweighted UniFrac between 55 non-NAFLD controls, 19 NAFLD without AF probands, and 25 NAFLD-

cirrhosis probands, Table 1. For the fecal metabolome, we compared Faith’s PD and unweighted UniFrac 

between 56 non-NAFLD controls, 18 NAFLD with AF probands, and 24 NAFLD-cirrhosis probands, Table 

2. By identifying differences in our disease states we would know whether or not we could use ML models 

to try and differentiate between these groups. Before performing the analysis, we normalized our data 

using quantile normalization (20). Once the data was normalized we looked into both alpha and beta 

diversity. For alpha diversity, we looked at Faith’s Phylogenetic Diversity. For beta diversity, we looked at 

unweighted UniFrac (9). These distance metrics were calculated using Qiime2 and SciPy and were 

visualized with Matplotlib in a jupyter notebooks python environment (21,22,23). 

 

Composition Analysis 

 To understand the specific metabolite differences between disease states, we used composition 

analysis for both serum and fecal metabolome data. We separated the samples into disease states: Non-

NAFLD probands and relatives, NAFLD without AF probands and relatives, and NAFLD-cirrhosis 

probands and relatives. The counts for each group follows the same counts used in the diversity analysis, 

and can be found in Tables 1 and 2. After separating the samples into groups, we then counted the 

relative abundance of our metabolomic features based on taxonomic groups. The hierarchy of the groups 

is as follows: kingdom; superclass; class; subclass; direct parent. By splitting up the metabolomic features 

this way we could compare the composition of the disease states at whichever taxonomic level we saw fit. 

Taxonomy was determined using qemistree fingerprints (24). We plotted these relative abundances using 

Matplotlib in a jupyter notebooks python environment (22). 
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Machine Learning Model Building 

 To perform ML analysis we first had to standardize both the fecal and serum feature tables. We 

chose to use sklearn’s StandardScaler as we would be using the sklearn python library for our ML 

analysis (13). After the feature tables were processed, we split the data into cross-validation(CV)/train 

and test groups. For CV/training we used the non-NAFLD probands and the NAFLD-cirrhosis probands to 

expose the models to AF positive (NAFLD-cirrhosis) and AF negative (non-NAFLD) samples. For CV, we 

performed a 5-fold CV using sklearn’s StratifiedShuffleSplit for each model. When testing the models, we 

tested on NAFLD-cirrhosis first degree relatives to expose the model to a mix of AF positive and negative 

samples. We measured the performance of these models using ROC and PR curves. The models that we 

used for our analysis were the RandomForestClassifier and the LogisticRegression from sklearn. Our 

results focus on the RF model as this specific ML model has shown strong results in previous analyses 

(6,8). When building the models we used mostly default parameters but for RF, n_estimators=500, and 

for logistic regression max_iter was set to the lowest threshold such that the model converged, usually set 

to 200 but never higher than 10,000. All ML model performance metrics can be found in Tables 4,5,6. 

 

Feature Selection 

 To improve ML model accuracy, we employed a number of feature selection methods. We used 

the RF built-in feature importance scoring to iteratively reduce the number of features by only retaining 

features that met a certain feature importance threshold. We also used the biological relevance of 

features to create a subset of features. For biological relevance, we used the results from the composition 

analysis as well as literature review to guide our selection. From the serum features, we selected bile 

acids and two types of phosphocholine (179 total features). From the fecal features, we selected bile 

acids and fatty acids (91 total features). The final method of feature selection that we employed was the 

use of Songbird to identify key features that are highly associated with AF status (25). When building a 

Songbird model for the serum data we used default parameters as well as --p-formula 

"ATTRIBUTE_adv_fibrosis",  --p-differential-prior 0.4, --p-epochs 5000 (Q2=0.349344). When building the 

Songbird model for the fecal data we used default parameters as well as --p-formula 
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“ATTRIBUTE_adv_fibrosis+ATTRIBUTE_groups”, --p-differential-prior 0.4, --epochs 2500 (Q2=0.028746). 

Using these models we built 3 different feature sets: top 50 features associated with AF, bottom 50 

features associated with AF, and top 25+bot 25 features associated with AF.  Once we created a feature 

set for each of these unique criteria we followed our normal method of CV, training, and testing the 

model. 

Results 

Study Population Characteristics 

 This analysis was based on a study that recruited patients encompassing the full spectrum of 

NAFLD (non-NAFLD controls, NAFLD without AF, NAFLD-cirrhosis) as well as their first degree relatives. 

Our analysis made use of 192 total patients, made up of 25 NAFLD-cirrhosis probands and 34 first 

degree relatives, 18 NAFLD without AF probands and 17 first degree relatives, as well as 56 non-NAFLD 

controls and 42 of their first degree relatives. Patient samples were included or excluded from the 

subsequent analysis depending on fecal and serum metabolomics data availability. Patient information 

and specific demographic counts for the serum, fecal, and multi-omic analysis can be found in Tables 1,2, 

and 3.  

Serum and Fecal Metabolomic Profiling 

We first assessed the overall metabolomic diversity for our serum and fecal metabolome. We 

compared the diversity metrics between probands of our different disease states (non-NAFLD, NAFLD 

without AF, and NAFLD-cirrhosis). We looked at both alpha diversity (intra-sample diversity) as well as 

beta diversity (inter-sample diversity) to identify changes as disease state increased. To investigate alpha 

diversity we used Faith’s Phylogenetic Diversity (PD). In the serum metabolome, we identified an overall 

decrease in diversity for NAFLD-cirrhosis samples compared to our non-NAFLD controls (p<0.001) and 

NAFLD without AF probands (p<0.001), Fig. 1A. Within the fecal metabolome, we did not match this trend 

and saw an increase in Faith’s PD for NAFLD without AF probands compared to the other disease groups 

(no significance), Fig 1C. For serum beta diversity, we used the unweighted UniFrac metric (9) and found 
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that within the serum metabolome, our NAFLD without AF probands had the lowest diversity score 

compared to non-NAFLD controls (p<0.001) and NAFLD-cirrhosis probands, Fig 1B. These results match 

a trend identified in a previous analysis investigating microbial diversity in NAFLD patients, which 

suggests an overall decrease in metabolome diversity at early disease stages that develop into a 

dysbiotic, more diverse metabolome as patients progress to late-stage liver disease(6). The unweighted 

UniFrac results for the fecal metabolome show an overall decrease in diversity as disease state increased 

where non-NAFLD controls exhibited higher diversity scores than both NAFLD without AF probands 

(p<0.001) and NAFLD-cirrhosis probands (p<0.001), Fig. 1D.  The fecal metabolome beta diversity trend 

suggests that as liver disease progresses, the metabolome becomes less diverse and more similar 

between late-stage disease patients. All of our diversity results, barring alpha diversity in the fecal 

metabolome, show that metabolites in fecal and serum samples are changing as disease state increases 

in severity, supporting our hypothesis that we can use these metabolite changes to diagnose AF in our 

NAFLD patients. 

The results of our diversity analysis show that there are changes in the fecal and serum 

metabolome as disease state increases in our samples. To understand the specifics of the changing 

metabolome, we assessed the relative abundance of metabolites at the direct parent level and compared 

these abundances between our disease states. For the serum metabolome, Glycinated bile acids (GBAs) 

and some phosphocholine (PC) were enriched in NAFLD-cirrhosis probands, while another form of 

phosphocholine was seen at decreased levels, Fig. 2A. A potential explanation for the shift in GBA 

relative abundance could be related to the effects of liver disease on the microbiome. As liver disease 

increases in severity, a previous study identified that gram-positive bacteria decrease in abundance while 

gram-negative bacteria increase in abundance (6). Gram-positive bacteria have also been recognized to 

play a role in deconjugating conjugated bile acids, like GBAs (10). The decrease in abundance of gram-

positive bacteria in late stage liver disease could be a cause for the overall increase in abundance of 

GBAs in NAFLD-cirrhosis probands. Changes in PC abundance within liver disease is recognized by a 

review discussing the importance of maintaining a consistent ratio of PC to phosphatidylethanolamine 
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(PE) to avoid disease progression (11). In the fecal metabolome, NAFLD-cirrhosis probands are enriched 

with a different kind of bile acid, trihydroxy bile acids (also known as cholic acid (CA)), while long-chain 

fatty acids (LCFA) are decreased in cirrhosis probands, Fig. 2B. CA has been linked with increases in 

inflammation, a characteristic of liver disease progression, suggesting that CA enrichment could be 

contributing to the progression to later stages of liver disease (10). The decrease in LCFAs is harder to 

characterize but it could be due to an overall increase in uptake of LCFAs commonly seen in the steatotic 

livers of rats (12). By investigating the metabolomic composition of patients in different disease states, we 

identified specific metabolomic changes that our diversity analysis results hinted at. The combination of 

these results supports our overall goal of using fecal and serum metabolites to build machine learning 

models for AF classification. 

Build a Metabolome-Derived ML Model for AF Classification 

 Following the results of our composition and diversity analysis of the fecal and serum 

metabolome, we began to build ML models to diagnose AF in our NAFLD patients. We used Random 

Forest (RF) Classifier and Logistic Regression (LR) models from sklearn to classify samples (13). Our 

results focused on the RF model but we used the LR model as a linear control. In our model building 

process, we used a wide variety of feature selection methods to identify the strongest subset of features 

for the serum and fecal metabolome. Our feature selection process is detailed in the Methods section. 

The best performing RF serum model was built off 23 features (20 serum metabolites, and 3 

metadata features: BMI, age, sex), and achieved an AUROC of 0.64, Fig 3C. The performance of the 

serum model was hindered greatly by overfitting, which was identified by comparing CV scores to test 

scores, Table 4. Due to the consistent overfitting seen with the serum model, we did not include serum 

features in any downstream analyses. 

The strongest RF fecal ML model was built from the top 25 and bottom 25 features associated 

with AF, as determined by Songbird, as well as 3 metadata features (BMI, age and sex).  Using these 

features the model achieved an AUROC of 0.82 and classified AF positive samples with an area under 
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the precision-recall (AUPR) of 0.76, Figure 4C. Prior to including the metadata categories, we 

investigated the specific features that made up this feature set to identify what our potential biomarkers 

could be. When looking at the features at the subclass taxonomic level we see a majority of our feature 

importance is reliant on unclassified features, with amino acids, fatty acids and bile acids making up the 

next largest majority of importance, Fig 5. It is unfortunate that a majority of the features are unclassified, 

but it is reassuring to see that both bile acids and fatty acids appear again, similar to the results of our 

fecal composition analysis, Fig 2B. By validating our composition results during our fecal model 

classification, we support that we are using the trend we previously identified to classify our samples for 

AF. 

Building a Multi-Omic ML Model for AF Classification  

After identifying our strongest metabolome feature set, we combined our fecal metabolome 

results with results from a previous analysis to build a multi-omic model for classifying AF. The previous 

analysis used 16S sequencing data from the same NAFLD patients to build a model using microbial 

features (6). Since our features were from an overlap in samples, we filtered our samples so that we only 

included samples that had fecal metabolome and fecal microbiome features, Table 3. We didn’t include 

any serum metabolome features in our multi-omic model building process due to the overfitting issues 

seen previously in our analysis, Table 4. 

The top-performing multi-omic model was built off 27 fecal microbial features, 14 fecal 

metabolites, and 3 metadata categories (BMI, age, sex) and was able to achieve a AUROC of 0.86, Fig 

6C. The features for this model were derived initially from the best fecal metabolome model, Fig 4C, as 

well as the top predictive microbial features from Caussey et al. Most of the fecal metabolite features 

were removed during the feature selection process. The strong results of the multi-omic model suggest 

that combining different types of data does not cause overfitting or poor performance for RF ML models. 

During our feature selection process, we removed 36 fecal metabolites which suggests that the ML model 

relies more heavily on fecal microbial features when classifying AF. However, the importance of fecal 
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metabolites cannot be overlooked as suggested by the performance of our fecal metabolome ML model, 

Fig 4C. 

Discussion 

In this study, we used features from the fecal and serum metabolome to build ML models that 

could accurately diagnose AF within NAFLD patients. While the serum metabolome models did not 

garner the strongest of results due to overfitting (Figure 3), the best performing fecal metabolome ML 

model (Songbird Top25+Bot25 features plus BMI, age, and sex) was able to diagnose AF in NAFLD 

patients with an AUROC of 0.82. The results from the fecal metabolome model provide substantial 

evidence in support of our hypothesis that we could use metabolites and machine learning models as a 

potential alternative to more invasive forms of AF diagnosis. We substantiated these results by combining 

our fecal metabolite features, and metadata features with fecal microbial features from a previous study, 

to build a fecal multi-omic model that could diagnose AF with an AUROC of 0.86. 

    

Building a machine learning model off of metabolomics data is important not only because it 

shows the potential for metabolomics to diagnose AF, but also shows that these changing metabolites are 

shifting in accordance with microbes identified in previous studies. Our study pulled metabolomics data 

from the same patients as Caussy et al. who identified similar changes in diversity as well as composition 

for the fecal microbiome. Across both studies, we see trends of decreasing diversity as disease state 

increases, within patients for the serum metabolome and microbiome as well as between patients in the 

fecal metabolome. The serum metabolome and fecal microbiome also mimic the hourglass shaped 

results seen when comparing beta diversity between disease states. Though it can be hard to compare 

composition between microbes and metabolites, we do see consistent trends. Some of the key species of 

microbes that were enriched in NAFLD-cirrhosis patients were from the family Enterobacteriaceae which 

shows not only a shift towards gram-negative bacteria, but Enterobacteriaceae have also been identified 

to proliferate following changes in bile acid synthesis (6,14). In both fecal and serum composition we saw 
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changes in relative abundance for bile acids, a common theme in liver disease, but we can now relate this 

change to specific microbes that have been previously identified.  

 

Following these results, we would like to see future studies make use of multiple types of 

metabolomic data and investigate the co-occurence of microbes and metabolites. In our case, the serum 

metabolome posed significant issues in combining metabolome data and prevented us from building a 

multi-omic model that incorporated serum metabolites. Serum metabolites are still very informative and 

can provide strong results when using them to identify NAFLD (15), but further investigation is needed to 

understand their relevance to AF and liver disease progression. Our results and the results from previous 

analyses (16) suggest associations between metabolites, microbes, and the liver in regard to liver 

disease. The microbiome has already been shown to have a direct role in affecting human metabolism, 

and we believe that this interaction cannot be overlooked, especially in regard to liver disease 

(7,17).  Tools such as MMVEC are able to use metabolomics and microbial data to investigate the co-

occurrence and therefore the interaction between specific microbes and metabolites (18). Future studies 

that have access to microbial and metabolomic data could use tools like these to further understand the 

specifics of microbe-metabolite interactions and use this information to identify co-occurring biomarkers.  

 

We acknowledge the following limitations of this study. Firstly, the discrepancy between the 

samples used between the fecal, serum, and multi-omic portions of the analysis. We understand that this 

keeps us from being able to directly compare the performance metrics and diversity results across our 

study, but the standalone results still support our initial hypothesis of a changing metabolome with liver 

disease progression. Secondly, this study makes use of a number of metabolomic features that can 

notoriously hinder studies due to batch effects (19). As seen in our serum ML models, the performance of 

the models can be greatly affected by these batch effects, but through our comparison of CV and testing 

scores, we remain certain that only the serum portion of this analysis was affected by these batch effects. 

Lastly, the associations we have identified throughout this study do not necessarily confirm causality. 

Further studies using similar data types are needed to confirm the results we have identified and 
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substantiate our hypothesis that fecal and serum metabolites can be used alone or in conjunction with 

microbes to build a machine learning model capable of classifying AF. However, the strengths of this 

study include a multi-part validation of metabolome changes during liver disease progression as well as a 

thorough feature selection process ensuring peak performance for ML models.  
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FIGURES 
 
 

 
 
Figure 1: Serum and fecal metabolite diversity shifting between disease states. For serum 
metabolite diversity, A. Faith’s PD comparison shows an overall decrease in diversity in the NAFLD-
cirrhosis groups compared to non-NAFLD controls (p<0.001) and NAFLD without AF probands (p<0.001). 
B. Unweighted UniFrac for the serum metabolites shows a drop in diversity for NAFLD without AF 
probands compared to non-NAFLD controls (p<0.001) as well as NAFLD-cirrhosis probands (p<0.01). C. 
Faith’s PD for fecal metabolites does not show the same trend, rather an increase in diversity for 
moderate and late-stage disease states (no significance). D. Unweighted UniFrac for fecal metabolites 
shows non-NAFLD controls having significantly higher diversity compared to NAFLD without AF probands 
(p<0.001) and NAFLD-cirrhosis probands (p<0.001). Group counts for each comparison can be found in 
Table 1 for serum metabolites and Table 2 for fecal metabolites. The box plots show the quartiles and 
whiskers show the rest of the distribution (1.5 inter-quartile range) the center liner corresponds to the 
median. All p-values were determined using a two-sided Kruskal-Wallis test. 
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Figure 2: Serum and fecal metabolite composition differences between disease groups. 
A. Serum composition differences between groups, viewed at the direct parent taxonomic level. B. Fecal 
composition differences between disease groups, viewed at the direct parent taxonomic level. Metabolites 
are compared using relative abundance. Taxonomy based on qemistree fingerprint classification (24). 
Group counts for each composition plot can be found in Table 1 for serum metabolites and Table 2 for 
fecal metabolites. 
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Figure 3: Serum metabolome machine learning model improvement. A. The PR and ROC test 
scores for the base model built off all serum metabolites (1847 total features). B. A similar plot showing 
the PR and ROC test scores following feature selection. The model shown is the Further Selected model 
that was built from features with a feature importance >0.02 (20 total features). C. The final best 
performing serum model that was built off the Further Selected features as well as the metadata features 
BMI, age and sex. All serum machine learning models underwent 5-fold cross validation on Non-NAFLD 
and NAFLD-cirrhosis probands before being tested on NAFLD-cirrhosis first degree relatives. 
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Figure 4: Fecal metabolome machine learning model improvement. A. The PR and ROC test scores 
for the base model built off all fecal metabolites (985 total features). B. A similar plot showing the PR and 
ROC test scores following feature selection. The model shown was built off the Songbird Top25+Bot 25 
AF associated features (50 total features). C. The final best performing fecal model that was built off the 
Songbird Top25+Bot25 features as well as the metadata features BMI, age and sex. All fecal machine 
learning models underwent 5-fold cross validation on Non-NAFLD and NAFLD-cirrhosis probands before 
being tested on NAFLD-cirrhosis first degree relatives. 
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Figure 5: Feature importance of fecal Songbird Top25+Bot25 features. Feature importance values 
were taken from the RF model built off the fecal Songbird Top25+Bot25 features. Metabolites are viewed 
at the subclass level. Metabolite classification provided by qemistree fingerprints (24). 
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Figure 6: Multi-omic (metabolome and microbiome) machine learning model improvement. A. The 
PR and ROC test scores for the base model built off the top performing fecal metabolome model 
(Songbird Top25+Bot25) and the top 27 predictive microbial features (77 total features). B. A similar plot 
showing the PR and ROC test scores following feature selection. The model shown was built off the 
selected features that had a feature importance >0.005 (27 microbial features, 14 fecal metabolites). C. 
The final best performing multi-omic model that was built off the selected features as well as the metadata 
features BMI, age and sex. All multi-omic machine learning models underwent 5-fold cross validation on 
Non-NAFLD and NAFLD-cirrhosis probands before being tested on NAFLD-cirrhosis first degree 
relatives. 
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TABLES 
 

Table 1: Demographics for the serum metabolome data set. This table provides the overall counts for 
the samples used in the serum diversity, composition and machine learning analysis. Samples are split 
into groups based on disease state. We include sex, BMI and age counts as these are the metadata 
features we used in our machine learning models. 
 

 
 
 

Disease Stage Group Counts Sex BMI Age

18-29 = 36

30s = 7

Non-NAFLD

Serum Metabolome Data Demographic

40s = 1

50s = 19

>60s = 34

Underweight = 2

Female = 70

Male = 27

Probands = 55

1° Relatives = 42

Normal = 51

Overweight = 28

Obese = 16

Not Provided = 0

NAFLD without AF

Probands = 19

1° Relatives = 15 Male = 13

Female = 21

Not Provided = 0

18-29 = 2

30s = 3

40s = 9

50s = 8

>60s = 12

Underweight = 0

Normal = 7

Overweight = 12

Obese = 15

Underweight = 0

Normal = 5

Overweight = 18

Obese = 35

Not Provided = 1

NAFLD-cirrhosis

Probands = 25

1° Relatives = 34

Female = 45

Male = 14

18-29 = 3

30s = 10

40s = 10

50s = 7

>60s = 29
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Table 2: Demographics for the fecal metabolome data set. This table provides the overall counts for 
the samples used in the fecal diversity, composition and machine learning analysis. Samples are split into 
groups based on disease state. We include sex, BMI and age counts as these are the metadata features 
we used in our machine learning models. 
 

 
 
 
 
 
 

Disease Stage Group Counts Sex BMI Age
Fecal Metabolome Data Demographic

Non-NAFLD

Probands = 56 Female = 71

Underweight = 2 18-29 = 36

Normal = 51 30s = 7

Overweight = 27 40s = 1

1° Relatives = 42 Male = 27 Obese = 18 50s = 19

Not Provided = 0 >60s = 35

NAFLD without AF

Probands = 18 Female = 20

Underweight = 0 18-29 = 4

Normal = 7 30s = 3

Overweight = 13 40s = 9

1° Relatives = 17

NAFLD-cirrhosis

Probands = 24 Female = 44

Underweight = 0 18-29 = 3

Male = 15 Obese = 15 50s = 8

Not Provided = 0 >60s = 11

Normal = 5 30s = 10

Overweight = 17 40s = 10

1° Relatives = 34 Male = 14 Obese = 35 50s = 7

Not Provided = 1 >60s = 28
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Table 3: Demographics for the multi-omic data set. This table provides the overall counts for the 
samples included in the multi-omic machine learning analysis. We include sex, BMI and age because we 
used these metadata features in our machine learning models. 

 
 
 
 
 
 
 
 

Disease Stage Group Counts Sex BMI Age
Multi-Omic Data Demographic

Non-NAFLD

Probands = 54 Female = 69

Underweight = 2 18-29 = 36

Normal = 51 30s = 7

Overweight = 27 40s = 1

1° Relatives = 42 Male = 27 Obese = 16 50s = 18

Not Provided = 0 >60s = 34

NAFLD without AF

Probands = 18 Female = 20

Underweight = 0 18-29 = 2

Normal = 7 30s = 3

Overweight = 11 40s = 9

1° Relatives = 15

NAFLD-cirrhosis

Probands = 25 Female = 45

Underweight = 0 18-29 = 3

Male = 13 Obese = 15 50s = 8

Not Provided = 0 >60s = 11

Normal = 5 30s = 10

Overweight = 18 40s = 10

1° Relatives = 34 Male = 14 Obese = 35 50s = 7

Not Provided = 1 >60s = 29
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Table 4: Serum machine learning model performances. All serum models were cross-validated and 
tested and the PR and ROC scores were recorded for both. Cross-validation was performed on non-
NAFLD (AF negative) and NAFLD-cirrhosis (AF positive) probands. Testing was performed on NAFLD-
cirrhosis first degree relatives (mix of AF positive and negative). PR and ROC scores are the AUC values 
for each metric. In the case where the AF positive (1) and negative (0) classification AUCs were different, 
we included both. Feature selection models used a feature importance cutoff of >0.005, while further 
selection models used a feature importance cutoff of >0.02. 
 

 
 

Serum Models Test Stage Metric Random Forest Logistic Regression
ROC 0.98 0.98
PR 0.96 0.91

ROC 0.58 0.71
PR 0.82 (0), 0.29 (1) 0.87 (0), 0.54 (1)

ROC 0.98 0.99
PR 0.99 0.98

ROC 0.59 0.55
PR 0.82 (0), 0.28 (1) 0.76 (0), 0.46 (1)

ROC 0.98 0.98
PR 0.98 0.97

ROC 0.62 0.53
PR 0.84 (0), 0.37 (1) 0.74 (0), 0.37 (1)

ROC 0.96 0.97
PR 0.97 0.88

ROC 0.62 0.54
PR 0.85 (0), 0.39 (1) 0.79 (0), 0.30 (1)

ROC 0.98 0.98
PR 0.99 0.98

ROC 0.66 0.62
PR 0.86 (0), 0.32 (1) 0.82 (0), 0.49 (1)

ROC 0.93 0.92
PR 0.88 0.92

ROC 0.53 0.58
PR 0.77 (0), 0.31 (1) 0.77 (0), 0.44 (1)

ROC 0.92 0.96
PR 0.88 0.93

ROC 0.48 0.70
PR 0.73 (0), 0.24 (1) 0.82 (0), 0.66 (1)

ROC 0.93 0.95
PR 0.89 0.90

ROC 0.54 0.72
PR 0.78 (0), 0.26 (1) 0.86 (0), 0.67 (1)

ROC 0.95 0.92
PR 0.86 0.79

ROC 0.3 0.54
PR 0.70 (0), 0.18 (1) 0.74 (0), 0.30 (1)

ROC 0.99 0.98
PR 0.99 0.90

ROC 0.64 0.61
PR 0.86 (0), 0.32 (1) 0.75 (0), 0.43 (1)

SB Bottom 50 
Features

(50 Features)

Cross Validation

Test

Further Sel + 
Metadata

(23 Features)

Cross Validation

Test

SB Top 50 
Features

(50 Features)

Cross Validation

Test

SB Top 25 + 
Bot 25 

Features
(50 Features)

Cross Validation

Test

Bio Feature 
Selection

(41 Features)

Cross Validation

Test

Bio Further 
Selection

(17 Features)

Cross Validation

Test

Further 
Selection

(20 Features)

Cross Validation

Test

Bio Relevant 
Base Model

(179 Features)

Cross Validation

Test

Serum Machine Learning Model Performances

Base Model
(1847 

Features)

Cross Validation

Test

Feature 
Selection

(44 Features)

Cross Validation

Test
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Table 5: Fecal machine learning model performances. All fecal models were cross-validated and 
tested and the PR and ROC scores were recorded for both. Cross-validation was performed on non-
NAFLD (AF negative) and NAFLD-cirrhosis (AF positive) probands. Testing was performed on NAFLD-
cirrhosis first degree relatives (mix of AF positive and negative). PR and ROC scores are the AUC values 
for each metric. In the case where the AF positive (1) and negative (0) classification AUCs were different, 
we included both. Feature selection models used a feature importance cutoff of >0.005, while further 
selection models used a feature importance cutoff of >0.02. 

 

Fecal Models Test Stage Metric Random Forest Logistic Regression
ROC 0.77 0.81
PR 0.66 0.67

ROC 0.55 0.55
PR 0.81 (0), 0.26 (1) 0.80 (0), 0.37 (1)

ROC 0.9 0.91
PR 0.83 0.81

ROC 0.56 0.51
PR 0.82 (0), 0.27 (1) 0.71 (0), 0.41 (1)

ROC 0.93 0.83
PR 0.84 0.75

ROC 0.52 0.47
PR 0.79 (0), 0.24 (1) 0.70 (0), 0.33 (1)

ROC 0.79 0.72
PR 0.71 0.58

ROC 0.53 0.65
PR 0.83 (0), 0.24 (1) 0.88 (0). 0.29 (1)

ROC 0.81 0.75
PR 0.72 0.66

ROC 0.52 0.47
PR 0.82 (0), 0.23 (1) 0.78 (0), 0.20 (1)

ROC 0.84 0.82
PR 0.77 0.71

ROC 0.54 0.57
PR 0.84 (0), 0.24 (1) 0.85 (0), 0.25 (1)

ROC 0.70 0.73
PR 0.49 0.50

ROC 0.76 0.55
PR 0.91 (0), 0.54 (1) 0.76 (0), 0.46 (1)

ROC 0.64 0.78
PR 0.44 0.52

ROC 0.79 0.68
PR 0.92 (0), 0.56 (1) 0.87 (0), 0.51 (1)

ROC 0.39 0.60
PR 0.31 0.33

ROC 0.36 0.59
PR 0.74 (0), 0.18 (1) 0.86 (0), 0.26 (1)

ROC 0.72 0.85
PR 0.56 0.62

ROC 0.82 0.84
PR 0.92 (0), 0.76 (1) 0.93 (0), 0.72 (1)

Fecal Machine Learning Model Performances

Bio Further Selection
(23 Features)

Cross Validation

Test

SB Top25 + Bottom 
25 

+ Metadata

Cross Validation

Test

Bio Relevant Base 
Model

(91 Features)

Cross Validation

Test

Bio Feature Selection
(46 Features)

Cross Validation

Test

SB Top + Bot 25 
Features

(50 Features)

Cross Validation

Test

SB Bottom 50 
Features

(50 Features)

Cross Validation

Test

Further Selection
(22 Features)

Cross Validation

Test

SB Top 50 Features
(50 Features)

Cross Validation

Test

Base Model
(985 Features)

Cross Validation

Test

Feature Selection
(45 Features)

Cross Validation

Test
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Table 6: Multi-Omic machine learning model performances.  All multi-omic models were cross-
validated and tested and the PR and ROC scores were recorded for both. Cross-validation was 
performed on non-NAFLD (AF negative) and NAFLD-cirrhosis (AF positive) probands. Testing was 
performed on NAFLD-cirrhosis first degree relatives (mix of AF positive and negative). PR and ROC 
scores are the AUC values for each metric. In the case where the AF positive (1) and negative (0) 
classification AUCs were different, we included both. Selected models used a feature importance cutoff of 
>0.005. 

 
 
 
 
 
 
 
 

This thesis is coauthored with Groth, Tobin; Knight, Rob; Dorrestein, Pieter; Tripathi, Anupriya; 
Fogelson, Kelly; Rahman, Gibraan. The thesis author was the primary author of this material. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multi-Omic Models Test Stage Metric Random Forest Logistic Regression
ROC 0.76 0.66
PR 0.87 0.58

ROC 0.8 0.62
PR 0.92 (0), 0.50 (1) 0.83 (0), 0.42(1)

ROC 0.79 0.69
PR 0.89 0.66

ROC 0.81 0.69
PR 0.93 (0), 0.52 (1) 0.83 (0), 0.55 (1)

ROC 0.85 0.62
PR 0.95 0.53

ROC 0.86 0.58
PR 0.95 (0), 0.59 (1) 0.83 (0), 0.42(1)

ROC 0.84 0.70
PR 0.94 0.53

ROC 0.86 0.66
PR 0.95 (0), 0.61 (1) 0.82 (0), 0.48 (1)

Multi-Omic Machine Learning Model Performances

Full Multi-
Omic+Metadata

(80 Features)

Cross Validation

Test

Sel Multi-
Omic+Metadata

(44 Features)

Cross Validation

Test

Full Multi-Omic
(77 Features)

Cross Validation

Test

Selected Multi-Omic
(41 Features) 

Cross Validation

Test
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