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EXECUTIVE SUMMARY
With the advent of emerging technologies,  urban intersections are being increasingly equipped with
various types of video-based and in-pavement sensing systems to facilitate round-the-clock monitoring
and optimization of multi-modal flows. In comparison, the assessment of the safety performance of
these facilities continues to be largely based on either crash history or citizen grievances.  Herein lies an
opportunity to apply advanced sensing platforms to proactively monitor safety-critical events of multi-
modal road users.

This work presents a traffic safety monitoring framework which showcases the capabilities of utilizing
in-pavement  sensors  to  provide  a  detailed,  automated  assessment  of  mobility  and  safety-related
performance measures for multi-modal traffic at signalized intersections. This effort supplements the
crash data-based retrospective studies by routinely monitoring the safety-critical behavior of multimodal
traffic. Herein, the term safety-critical refers to any action or interaction that can adversely impact a road
user’s safety, including jaywalking, red-light running, and drivers not yielding to pedestrians. Unlike in-
person surveys  and video analysis  techniques  which  are  limited  in  their  scope to  short  term study
periods, in-pavement sensors facilitate round-the-clock, non-intrusive data collection over continuous
periods of time. Consequently, the development of suitable automated algorithms to analyze this data
can generate a report of safety-critical multi-modal dynamics. Such an output can be used by agencies to
proactively identify, and address, hazardous locations before a crash occurs. 

In order to analyze mode-specific and multi-modal safety-critical dynamics, it is necessary to infer the
various motorized and non-motorized movements taking place across the intersection. In this regard, a
trajectory-based mode classification algorithm is presented which distinguishes the sensor events on the
crosswalk  as  events  triggered  by  motorized  and  non-motorized  modes.  Thereafter,  the  inferred
trajectories are used to analyze mode-specific safety-critical concerns, such as non-motorized movement
on the crosswalk against a pedestrian signal, as well as driver red light violations. In addition, driver
yielding behavior in the presence of non-motorized activity is investigated. Additional trajectory and
mode classification algorithms are also presented. Finally, some preliminary comparisons between in-
pavement and video-based automated algorithms are also made.

The accuracy of  the  trajectory-based classification  when differentiating  between non-motorized  and
motorized events on the crosswalk is 94.5% and 89.2% within the training and test data respectively. In
comparison, the accuracy of a sensor-specific  binary logit  classifier  on the same datasets  shows an
accuracy of 99.6% and 96.9% respectively. The analysis of driver yielding behavior when turning right
during a pedestrian green reveals two types of yielding: : (i) drivers who wait behind the crosswalk
while  allowing pedestrians  to  cross;  and  (ii)  drivers  who yield,  but  aggressively encroach  into  the
intersection.  Such  type  of  behavior  is  typically  difficult  to  capture,  and  quantify,  in  traditional
observational studies. The insights gained from this behavior can have important implications for other
intersections as well (both signalized and non-signalized), where aggressive yielding behavior may be
more common in reality (but not as well documented). 

In summary, this study demonstrates the feasibility of using a sensor-based classification framework to
automatically monitor safety-critical  interactions at signalized intersections over extended periods of
time. 

Key Components
The report is divided into the following eleven chapters that describe the overall project and its findings:
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Chapter 1 – Introduction provides an overview of prior studies from the literature that have evaluated 
traffic safety at intersections.   

Chapter 2 – Data Sources describes the study intersection with details about the sensors, their 
installation and the types of data obtained from them.

Chapter 3 – Data Processing describes the steps taken to process the data into the form that is required 
for the subsequent data analysis. In particular, this chapter outlines the development of a intuitive data 
visualization tool which integrates the data received from the different types of sensors.

Chapter 4 – Trajectory-based Classification of Modes details the algorithms designed to infer the 
different movements of motor vehicles and non-motorized modes.  

Chapter 5 – Extracting Variables for Right Turn Safety Analysis presents the algorithm developed to 
detect yielding decisions of right turning vehicles in the presence of non-motorize modes on the 
crosswalk.  

Chapter 6 – Assessment of Right Turn-related Safety provides results regarding the right turn-on-green 
yielding rates and surrogate safety measures for yielding/non-yielding, as well as additional quantitative 
analysis to identify factors to explain the yielding/non-yielding behavior.

Chapter 7 – Analysis of Mode-specific Safety Critical Behavior uses the trajectory-based algorithm to 
identify instances of jaywalking and red light running.

Chapter 8- Sensor-based Classification of Motorized/Non-motorized Modes  discusses an alternative 
classification approach to distinguishing sensor events triggered by motorized and non-motorized 
modes.  

Chapter 9- Alternative Algorithms for Inferring Non-motorized Trajectories provides some additional 
discussion on frameworks to infer trajectories of non-motorized modes along crosswalks

Chapter 10- Additional Algorithms for Inferring Non-motorized Trajectories provides some discussion 
on additional frameworks developed to infer trajectories of non-motorized modes along crosswalks

Chapter 11- Conclusion summarizes the results, contributions and shortcomings of this work along with 
a discussion of scope for future research
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1 Introduction 
Recent mobility trends in the context of California, as well as the United States, reveal that travel is 
becoming increasing multi-modal in nature. The results of the 2010-12 California Household Travel 
Survey (CHTS) (California Department of Transportation, 2013) indicate that while driving is still the 
most dominant mode of choice (75%), its mode share has decreased by 10% since 2000. In comparison, 
walking (17%), transit (4.5%) and biking (1.5%) have doubled their, albeit small, but increasingly 
significant mode share. Similarly, the results of the 2009 National Household Travel Survey indicate an 
average American made 17 more walk trips in 2009 than in 2001, covering nine additional miles (Pucher
et al., 2011).

Given this emergence of multi-modal travel, it is of immense concern that the corresponding 
improvements made to traffic safety have not been commensurate across all modes. Figure 1 shows the 
recent trends in traffic fatalities for the state of California for cars/light trucks and pedestrians/bicyclists. 
Herein, it can be seen that while traffic fatalities have reduced for cars and light trucks by about 40% 
between 2006 and 2011, the change in the number of pedestrians and bike fatalities has been much less 
drastic and non-monotonic.

Figure 1.1 Trends in traffic fatalities in California from 2006 to 2011

Source: Statewide Integrated Traffic Records System (SWITRS) database

From an administrative standpoint, while there has been an effort made by agencies to improve safety
for all  travelers,  recent  performance assessments indicate that  there is  a need for a more concerted
implementation. For instance, in 2011, the Bay Area Metropolitan Transportation Commission (MTC)
and the Association of Bay Area Governments (ABAG) adopted a performance target of reducing the
number of injuries and fatalities from all collisions across all modes by 50% below 2005 levels by 2040
(Metropolitan Transportation Commission, 2013). However, the same report acknowledges that given
the investments planned for this period, the projected decline in the number of injuries and fatalities is
likely to fall short of the adopted target. In the case of Caltrans, the 2014 State Smart Transportation
Initiative (SSTI) review (California Department of Transportation, 2014) of the state agency’s efforts
suggests  that  Caltrans  should  generally  rethink  its  approach  to  facilities  in  metro  areas  by putting
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pedestrian, bicyclist and livability concerns before auto-mobility. The report also calls for incorporating
the performances measures suggested by Caltrans in its 2010 Smart Mobility Report (which includes
multi-modal travel mobility, reliability and safety) into its programs and activities.

While there has been considerable research done to systematically quantify the safety performance of
transportation facilities based on crash history, there is little work on routinely measuring the safety-
critical behavior of road-users as surrogate measures of traffic safety. In addition to monitoring the crash
frequencies, transportation agencies should also be able to evaluate the performance of their facilities on
safety-critical behavior, such as yielding. This is especially crucial in multi-modal environments where
the dynamics are not well captured by existing performance measures. In addition, as the emphasis on
heavier instrumentation of intersections through video cameras and other in-pavement sensors increases,
there is an opportunity to generate comprehensive performance evaluations of multi-modal safety and
mobility at these locations to proactively identify, and address, hazardous locations even before a crash
occurs. 

A unique opportunity in this  regard is  provided by the data made available  through the Safety and
Mobility  System (SAMS)  developed  by Sensys  Networks,  Inc.,  which  is  an  intersection  detection
platform  that  was  primarily  developed  for  traffic  signal  operation  and  round-the-clock  vehicular
mobility  and  safety  performance  monitoring  (Muralidharan  et  al.,  2014).  SAMS  provides  a  time
synchronized database of road-user activity in the traffic lanes and crosswalks, as well as the precise
details of the signal phasing at an intersection. The availability of such detailed data provides a unique
opportunity to propose/validate new safety performance measures that can provide a detailed view of
multi-modal intersections. 

The next section provides an overview of the different types of multi-modal traffic safety studies that
have been undertaken in the literature.  

1.1 Literature Review
Given the increase in the emphasis on multi-modal mobility and the associated safety concerns, there is
a need to efficiently account for them in the various transportation operations and safety frameworks. In
this regard, one of the major challenges associated with efficiently designing and planning for a multi-
modal environment is a limited understanding of safety-critical behavior of road-users based on existing
data streams that are available to researchers and agencies. Traditionally, the most common form of data
collected to assess multi-modal traffic are aggregated volume counts, which help us appreciate the mode
share at a particular location, such as an intersection or a mid-block crossing. Another form of data
which helps us understand the burden of injury of the different modes is the total number of collisions to
have taken place over a long period of time. Together, the elements of traffic volume and collisions help
ascribe the element of risk to various modes at a given location.

However,  the  associated  shortcomings  of  direct  measures,  such  as  crash  frequency and  crash  risk,
include  a  small  sample  size  of  crashes  and  the  lack  of  details  associated  with  such  data  to  help
understand the innate  crash causing mechanism (Tarko et  al.,  2009).  In order  to  address  this  issue,
researchers have introduced surrogate measures of safety,  which utilize traffic conflict  techniques to
identify near-misses between different modes. Some examples of surrogate measures include time-to-
collision, post-encroachment time, and gap time, that quantify the spatial and temporal proximity of
different modes (Gettman and Head, 2003, Laureshyn et al., 2010). Traffic conflict techniques benefit
from a larger sample size that allows for a more significant representation of the various inter-modal
safety-critical interactions taking place at a location.

However, there are two major limitations of both forms of studies. Firstly, these studies typically involve
recording videos and then manually processing them to identify different behaviors and conflicts, which
requires tremendous human effort. Secondly, as a result of the significant processing time for videos,
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these studies are typically conducted over shorter periods of time (two to four hours) at each location.
Such short periods of observation can limit the insights that can be obtained.

Consequently, in order to minimize the human involvement in quantifying safety-critical behavior, the
use  of  computer  vision  techniques  to  automate  traffic  safety  monitoring  has  become  an  emerging
research area in recent times. Two major research efforts in this regard have been the development of an
automated road safety analysis system (Saunier and Sayed, 2007), which in turn laid the foundations for
the development of an open source software system called Traffic Intelligence (Jackson et al., 2013, St-
Aubin et al., 2013). In addition, Caltrans has begun exploring video-based data collection for collecting
count  data  for  different  modes,  including  bicycles  and  pedestrians  (California  Department  of
Transportation, 2012). In this context, the open source project is an exciting prospect for it provides
opportunities to build on an existing code base and suitably modify it to cater to each project’s need. For
a comprehensive review of computer vision techniques for the analysis of urban traffic, please refer to
(Buch et al., 2011). 

Finally, researchers have investigated different aspects of mode-specific and multi-modal interactions as
part  of  traffic  safety-related  studies.  For  pedestrian-related  activity,  researchers  have  investigated
pedestrian crossing behavior  as  a  function of  signal  phasing using observational  studies (Jason and
Liotta, 1982; Tiwari et al, 2007; King et al, 2009), automated video analysis (Yu et al., 2011, Brosseau et
al., 2013), as well as survey-based responses (Yagli, 2000). For safety-related concerns pertaining to
motor  vehicles,  red  light  violations  have  been  investigated  using  crash  data  (Retting  et  al.,  1999;
Bonneson et al., 2001), sensor events (Grembek et al., 2007, Zhang et al., 2009) as well as video-based
analysis  (Elmitiny  et  al.,  2009).  Finally,  studies  associated  with  multi-modal  safety  concerns  have
looked into pedestrian-vehicle conflicts using crash data (Leden, 2002, Mohamed et al., 2013), in-person
observational  studies  (Abdulsattar  et  al,  1996),  video-based  data  collection  (Milazzo  et  al.,  1998;
Hubbard et  al., 2009;  Ling et  al., 2014),  as  well  as  automated  video analyses  (Ismail  et  al.,  2009,
Alhajyseen et al., 2013).

Based on the review of traffic safety literature, it has been observed that most observational studies tend
to be limited in scope as the data collection process is tailored to study a specific type of interaction. In
the case of automated video analysis, researchers have developed algorithms which are multi-purpose in
nature. However, a significant shortcoming of video-based analysis is that while it can be standardized
and replicated across multiple locations, collecting and analyzing video data over extended periods of
time  can  be  challenging.  On  the  other  hand,  the  use  of  in-pavement  sensors  for  traffic  safety
investigations has been largely focused on safety-related concerns of motor vehicles only. Consequently,
using in-pavement sensors to study multi-modal traffic safety at signalized intersections represents a
unique opportunity for traffic safety. 

1.2 Problem Statement 
The  proposed  research  effort  is  aimed  at  developing  a  detailed,  automated  assessment  of  several
mobility and safety-related performance measures for multi-modal traffic at  signalized intersections.
Such an effort supplements the crash data-based retrospective studies by routinely monitoring the safety-
critical behavior of multimodal traffic. Herein, the term safety-critical refers to any action or interaction
that can adversely impact a road user’s safety, such as jaywalking, red-light running, drivers not yielding
to pedestrians, etc. Unlike in-person surveys and video analysis techniques which are limited in their
scope to short  term study periods, in-pavement sensors facilitate round-the-clock, non-intrusive data
collection over long periods of time. Consequently, the development of suitable automated algorithms to
analyze this data can generate a comprehensive understanding of safety-critical multi-modal dynamics.
In particular, such an automated algorithm can evaluate multi-modal traffic at different levels of safety-
related concerns:

7



1. Mode-specific counts (which is an important attribute in safety studies, also referred to as exposure);
2. Mode-specific safety-critical behavior:

i. Vehicular traffic: red-light violations;
ii. Non-motorized traffic: using the crosswalk without pedestrian signal actuation;

3. Multi-modal safety-critical interactions:
i. Yielding rate of drivers to pedestrians;

ii. Calculation of surrogate measures of safety such as post-encroachment time.
In addition to using in-pavement sensors, video recordings taken from the study location will be used to
train  and  test  the  accuracy of  the  algorithms.  The  video  recordings  shall  also  be  used  to  explore
automated video analysis techniques to contrast its approach against in-pavement sensors.

The next chapter discusses the different types of sensor data available from the study intersection in
Danville.
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2 Data Sources
This chapter provides details about the study intersection in Danville, the sensor types, their layout, as
well as the types of data obtained from them. 

2.1 Study Intersection

The study intersection locates at Diablo Road and Green Valley Road, Danville, CA, shown in Figure 
2.1. 

Figure 2.1 Location of study intersection (Source: Google Maps)

This intersection is instrumented with the Safety and Mobility System (SAMS) developed by Sensys
Networks,  Inc.,  which  is  an  intersection  detection  platform  that  was  developed  for  traffic  signal
operation and round-the-clock vehicular mobility and safety performance monitoring (Muralidharan et
al.,  2014).  SAMS  provides  a  time-synchronized  database  of  activity  in  the  vehicular  lanes  and
crosswalks,  as  well  as  the  precise  details  of  the  signal  phasing  at  an  intersection.  The  system
configuration of the sensing architecture includes: 1) the vehicle detection system; 2) signal control
system, 3) crosswalk detection system, and 4) video recording system.   

2.2 Vehicular Lane Detection System

The vehicular lane detection system includes stop bar and departure lane detectors, called magnetometer
sensors, or magsensors. Each vehicle passing the magsensors generates a detected and an undetected
event. There were 31 magsensors installed at the study intersection as per the layout shown in Figure
2.2.  Unfortunately nine magsensors  stopped functioning,  and were thus  not  available  for  the  entire
duration of the study. The events triggered at the magsensors are assumed to be triggered by motor
vehicles as per their design specifications.
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Figure 2.2 Layout of magsensors

2.3 Signal Control System

The signal control system records the signal event data. The EDI card in controller cabinet broadcasts
signal phase and then Sensys AP translates this data and sends them to the server. The timing plan is
shown in Figure 2.3; there are 8 partially overlapped vehicular and pedestrian-activated phases. The
cycle length and each phase time vary upon time.

Figure 2.3 Timing plan of study intersection
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2.4 Crosswalk Detection System

2.4.1 Sensys Microradar Sensor

Microradar sensors have a programmable detection range between 4’ (1.2 m) and 10’ (3 m). The width
of a detection zone is approximately 90 degrees and the default range is 6’ (2 m). Microradar sensors are
installed very close to the roadway surface and these in-ground sensors can transmit high frequency RF
pulses and measure reflections. Figure 2.4 shows how a microradar sensor works to detect objects within
its detection zone.

Figure 2.4 Detection process of a microradar sensor (Source: Sensys Networks, Inc.)

Both stationary and moving objects  can be detected within the detection zone.  Figure 2.5 shows a
simplified  example  of  how  these  sensors  are  activated  as  a  pedestrian  (red),  bicycle  (red),  and
automobile (black) pass by.

Figure 2.5 Examples of Microradar Activations (Source: Muralidharan et al. (2014))

In the microradar sensor, a detection line is initially set up as a base line, shown as the red dash line in
Figure  2.6.  A signal  has  to  go  above  this  line  for  detecting  an  object.  In  Figure  2.6a  (right),  the
pedestrian is  approaching the detection zone of  the nearest  sensor  while  in  Figure 2.6b (right),  the
pedestrian is passing it. It can be observed that the blue and grey line is above the base line in Figure
2.6b (left).
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Figure 2.6a Mechanism of detection (Source: Muralidharan et al. (2014))
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Figure 2.6b Mechanism of detection for a microradar (Source: Muralidharan et al. (2014))

2.4.2 Layout and Installation

In this project, only one of the crosswalks, shown in Figure 2.7, is instrumented with 13 microradar
sensors with the intention of the detection zones covering most of the crosswalk area as well as the
adjoining waiting areas. The layout of these sensors is presented in Figure 2.8. Once again, the sensors
crossed out in red stopped functioning through the course of the study.
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Figure 2.7 Location of study crosswalk (Source: Muralidharan et al. (2014))

Figure 2.8 Layout of microradar sensors

2.5 Camera Detection System

A video camera is installed at the southern edge of the crosswalk facing the crosswalk, as shown in
Figure 2.9.  Video recordings can be scheduled to be triggered at  specific time intervals, and stored
within the camera with remote downloading capability. 
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Figure 2.9 Location of the camera

In addition to using the video data to establish a ground truth for events taking place on the crosswalk, 
the videos can also be utilized to track the trajectories of vehicles/pedestrians/bicycles using automated 
video analysis techniques, which will be discussed further in Chapter 10.

2.6 Cost Estimates
The cost incurred to equip a signalized intersection with the type of sensors described above depends on 
the size of the intersection. In terms of a general estimate, to equip the stop-bar and departure lanes with 
magsensors for signal actuation and other mobility-related performance measures would be around 
$15,000-$20,000. The additional cost of instrumenting all crosswalks with microradars to detect and 
evaluate the safety of non-motorized modes would be between $8,000 and $12,000. Finally, the average 
service life of a magsensor and microradar is 10 years and 8 years respectively. 
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3 Data Processing
In this chapter, the raw data received from the sensor system at the Danville intersection are processed to
extract individual events and their associated attributes. These events are calculated for each sensor type
(microradars, magsensors, and signal phase), and aggregated by each day.

3.1 Description of Raw Data

3.1.1 Microradar Data

The raw microradar  data  provides  a  constant  stream of  status  updates  for  all  sensors.  These status
updates are given in a set of three messages that can be represented as follows:

<id> <timestamp> <bulk>

<id.0> <timestamp> <status> [DIR1]

<id.1> <timestamp> <status>

where

            id                     is the sensor ID, hex value

            id.0                  is sub-channel 0 of the sensor, 

                                    [DIR1] is a flag indicating a reverse moving object

            id.1                  is sub-channel 1 of the sensor,

            timestamp      is the UTC timestamp of the event

            bulk               is the token value indicating the signal strength of the microradar, (baseline: 128)

            status              is an integer indicating sub-channel status

                                    0 – detection off

                                    1 – detection on

                                    3 – watchdog detection on (if an event is active for an extended period of time)

                                    4 – watchdog detection off (if a sensor is inactive for an extended period of time)

Based on the  above mentioned template,  the  important  status  updates  of  sub-channels  0  and 1 are
summarized as follows:

 (0,0): The sensor detection is off
 (4,4): The sensor detection has been off for an extended period of time, but sensor is relaying the

message that it is still functional
 (3,3): The sensor detection is on, but due to no change in the active status of the sensor, the

sensor is relaying the message that it is still functional
 (1,0): The sensor is detecting an object within its detection zone
 (1,1): The sensor is detecting an object within its detection zone, and the object size/reflection

strength is high
The difference between sub-channel status (1,0) and (1,1) is unqualified, and requires validation using
video data. However, based on discussions with Sensys, it appears that (1,1) is likely to be triggered for
bigger object sizes.
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Finally, to illustrate a single microradar event, consider the sequence of status updates for Sensor ID
96dd as shown in Table 3.1:

Table 3.1 Example of a microradar event

Update Messages
Time since last

update
Sensor
Status

1

96dd 1390611599.563 128

-
De-

activated
96dd.0 1390611606.438 4

96dd.1 1390611606.438 4

2

96dd 1390611606.438 138

16.875 seconds Activated96dd.0 1390611606.438 1

96dd.1 1390611606.438 0

3

96dd 1390611606.563 142

0.125 seconds Active96dd.0 1390611606.563 1

96dd.1 1390611606.563 1

4

96dd 1390611606.813 138

0.25 seconds Active96dd.0 1390611606.813 1

96dd.1 1390611606.813 0

5

96dd 1390611607.563 128

0.75 seconds
De-

activated
96dd.0 1390611607.563 0

96dd.1 1390611607.563 0

The sequence of updates shown in Table 3.1 is interpreted as follows:

 Update 1: The sub-channel status (4,4) indicates that the sensor has been inactive for some time.

In addition, it can be observed that the bulk value corresponds to 128 which is the baseline for
when the sensor is inactive.

 Update 2: A new event has been triggered as indicated by the transition of the sub-channel status

from (4,4) to (1,0). The bulk value also increased 138 (>128).
 Update 3: The sensor is still active, but the sub-channel status changed from (1,0) to (1,1)—

perhaps indicative of a change in the size of the object that is reflecting the microradar signal.
The corresponding bulk value is 142, which is also higher than the previous bulk update.  

 Update 4: The sub-channel status returned to (1,0) but the sensor is still activated.
 Update 5:  The sensor is de-activated as the sub-channel changes to (0,0) and the bulk value

returns to 128. 
The raw data containing a chronological sequence of sensor updates is provided by Sensys in a .csv file.
This file is read through a MATLAB code which develops a database structure for all events associated
with the microradar sensors for a given day (as defined by Pacific Standard Time). For each microradar
event associated with a sensor, the following attributes are generated:

1. Activation time
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2. De-activation time
3. Event duration
4. Average bulk value (average of the different bulk values observed during an event)
5. Time-averaged bulk value (time-weighted average of the different bulk values observed during

an event)
6. Maximum bulk value
7. Whether the sub-channel status was (1,1) during an event
8. The duration for which the sub-channel status was (1,1)

That rationale for generating the various supplementary attributes is to assess, with the help of video
data, as to whether there are any attributes, or combination of attributes, which can help differentiate the
different modes from each other.

3.1.2 Magsensor Data

Unlike  the  microradar  data,  the  raw magsensor  data  do  not  contain  any additional  details  beyond
activation  and  de-activation  time  for  each  sensor.  Consequently,  its  status  updates  follow  a  more
simplied template:

<id> <timestamp> <status>

where

            id                     is the sensor ID, hex value

            timestamp       is the UTC timestamp of the event

            status              is an integer indicating magsensor status

                                    0 – detection off

                                    1 – detection on

Subsequently, the raw magsensor data are converted into a structured database for each calendar day
containing, the following attributes for each sensor event:

1. Activation time
2. De-activation time
3. Event duration

As indicated earlier, the magsensors are designed to be triggered by motor vehicles. Hence, it is assumed
for the sake of simplicity that all magsensor events are associated with motor vehicles.

3.1.3 Signal Phase Data

The raw data corresponding to the signal phasing provides an update for every change in the signal.
There are 8 vehicular phases, some of which may partially overlap which each other. In addition, there
are  four  pedestrian  phases  for  the  pedestrian-activated  signals  installed  on  each  crosswalk.
Consequently, for each signal phase update, the active phase state is characterized by a timestamp and
the following values:

 0: Red
 1:Yellow (relevant for vehicular phases only)
 2: Green

Additional information regarding the number of rings, cycle number, etc., is also included in the raw
data, but was not utilized for the purposes of this study.

The  raw data  were  subsequently re-organized  as  a  data  structure  containing  the  activation  and  de-
activation times (in PST) for each vehicular and pedestrian phase.
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3.1.4 Video Data

In addition to the sensor data, the camera could be triggered remotely to record and store videos, which
could later be downloaded. However, unlike the sensor data which could be collected for multiple days,
the video data collection is more memory intensive. Consequently, the video recordings were scheduled
for morning and evening peak hours which were chosen to coincide with higher pedestrian activity—
typically associated with the neighboring elementary school’s hours. The web interface used to access
the camera is shown in Figure 3.1.

As Figure 3.1 shows, the crosswalk of interest cannot be completely viewed. Consequently, the camera
orientation was adjusted to maximize the crosswalk coverage while providing some visibility of the right
turning lane on the northern approach of the intersection. The optimized orientation of the camera also
ensures that all the microradars installed within the crosswalk are also visible.

 

Figure 3.1 Web interface to access the camera remotely
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3.2 Data Visualization Tool
While the processed sensor and video data can provide some useful insights when analyzed in isolation,
the real benefits of the study arrive from combining all the data elements. In order to realize such an
integrated data processing framework, an interactive data visualizing tool was developed as part of the
effort which packaged the information obtained from the microradars, magsensors, signal phase system,
and videos (when available),  in an intuitive way.  The key features  that  were desired from this tool
included:

 Taking advantage of  the time synchronization of  the various  data  streams to depict  a  visual

representation  of  the  various  activations/de-activations  in  a  manner  that  could mimic modes
moving from one part of the intersection to another

 Integrate the videos with the sensor data
 Provide an interactive interface to access and visualize data from different dates and times
 Label microradar events and use as ground-truth for algorithm validation and testing

Figure 3.2 Data visualization tool

Figure 3.2 shows the data visualizing tool, which has the following five components:

A. This module allows for different dates and times to be selected for viewing, either as a movie, or
by manually moving the frames backwards or forwards. The frames per second are selected as a
function of the 8 hz frequency of the microradars (either 1, 2, 4, or 8 frames per second).
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B. This module provides a time-space diagram of the microradar activation/deactivations. The y-
axis represents the location of the sensors along the crosswalk. The x-axis represents time, with 0
representing the current time, and positive and negative values representing future and past time
respectively. The blue bars represent the duration of a sensor event. The thickness of the bars is
proportional to the average bulk value (an option that is available in module A). The green bars
on top show the durations of different phases. When the play option is selected, the time-space
diagram moves from right to left, and sensor states of the future get initiated over time.

C. This module provides a visual representation of which sensors are currently active (shown in
red). The lighting up of sensors matches the bars in module B which overlap with time 0.

D. This module includes time-space diagrams of the different magsensors that are located closest to
the intersection. The orientation of these time-space diagrams is chosen so that past-to-future
event transitions are aligned with the movements of the vehicles. For instance, events for sensors
8545 and 7c1b move from top to bottom, while events for sensors 7c1b and 85fe on the move
from bottom to top.

E. This module displays the video frames associated with the current timestamp, if available.

Figure 3.3 Separation of trajectories as visible from the time-space diagram

In the particular instant that is being captured by Figure 3.2, the video frame shows a combination of
pedestrians and cyclists riding/walking their cycle at different parts of the crosswalk. A closer view of
the time-space diagram can visually reveal the presence of four trajectories separating out over time, as
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indicated  by the  arrows  in  Figure  3.3.  Phase  14  corresponds  to  the  lead  pedestrian  phase  for  this
crosswalk, while phase 4 corresponds to the vehicular phase for north-to-south-and-west movements.
The presence  of  a  vehicle  stopping in  front  of  the  stop bar  location  is  getting  captured  by a  long
microradar event in the time-space diagram as displayed around y=30.

3.2.1 Labeling microradar events

The  consolidation  of  the  video  and  sensor  data  also  enables  us  to  label  the  microradar  events  as
pedestrians,  cyclists,  motor  vehicles,  etc.,  based on the evidence presented by the video recordings.
Consequently, a drop-down menu was also added to this interface which facilitated manual labeling of
the sensor events as one among the following options:

 Not labeled

1. 1 pedestrian (NS)
2. 1 pedestrian (SN)
3. 2 pedestrians (NS)
4. 2 pedestrians (SN)
5. 3+ pedestrians (NS)
6. 3+ pedestrians (SN)
7. Cycle (walk) (NS)
8. Cycle (walk (SN)
9. Cycle (ride) (NS)
10. Cycle (ride) (SN)
11. Passenger vehicle (Straight)
12. Passenger vehicle (Left)
13. Passenger vehicle (Right)
14. Passenger vehicle (Stopped)
15. Truck/trailer (Straight)
16. Truck/trailer (Left)
17. Truck/trailer (Right)
18. Truck/trailer (Stopped)
19. Bus (Straight)
20. Bus (Left)
21. Bus (Right)
22. Bus (Stopped)
23. Others

These labels are manually coded for each microradar event that is activated during the time periods for
which the video recordings are also collected. 

With the help of the labeled microradar data, the development and testing of classification algorithms to
differentiate between events triggered by motorized and non-motorized modes can be undertaken, which
is the focus of the next chapter.
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4 Trajectory-based Classification of Modes
An in-pavement sensing platform facilitates non-intrusive data collection over long periods of time by
summarizing the traffic movements at the intersection as a sequence of sensor detections. However, in
order to re-create the activity of the different modes from the individual sensor events, it is important to
develop a methodology to (a) infer which modes are triggering the sensors, and (b) track the movements
of those modes through the intersection.  In particular, the microradars on the crosswalk can be triggered
by motorized vehicles moving in to/out of the vehicular lanes, or by non-motorized modes using the
crosswalk. The ability to distinguish modes is also a necessary first step to count modes, as well as
identify mode-specific and multi-modal safety-critical events.

In this chapter, the sensor and video data are used to develop and test algorithms which classify the
microradar events along the crosswalk as motorized and non-motorized modes.  More specifically,  a
trajectory-based classification method is proposed which combines the microradar and magsensor data
to  track  the  progression  of  sensor  activations/de-activations  across  the  intersection  over  time.  The
available video recordings are used to label the matching microradar events, and the labeled events are
used to both calibrate as well as test the algorithms.

Figures 4.1 and 4.2 represent a simplified numbering scheme for the microradars and magsensors used
in the algorithms. The sensors that have been crossed out in the figures stopped functioning during the
course of this study, and were thus excluded from the algorithmic development.

Figure 4.1 Simplified microradar referencing scheme
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Figure 4.2 Simplified magsensor referencing scheme

A trajectory can be defined a sequence of sensor events that can be associated with a mode moving from
one part  of  the  intersection  to  another.  Using the  notations  provided in  Figures  4.1 and 4.2,  some
potential examples of different trajectories are as follows:

 Right movement (North to West): Magsensor 31  Microradar 12  Microradar 11  Magsensor 2
 Straight movement (West to East): Magsensor 7  Microradar 4  Microradar 5  Magsensor 16
 Crosswalk (North to South): Microradar 11  Microradar 9  Microradar 8  Microradar 3

The examples shown above are illustrative of how a trajectory-based classifier seeks to extract different
movements. However, some of the potential challenges associated with tracking objects across sensors
can be as follows:

 The  path  of  a  moving  object  may lie  outside  the  detection  zone  of  some sensors  (e.g.,

walking  outside  of  the  crosswalk),  which  results  in  the  complete  trajectory  not  getting
captured.

 Some sensors along the path of a trajectory may have stopped working (e.g., for a straight

movement from east to west, sensors 19 and 3 stopped working during the course of the
study)

 There  may  be  multiple  objects  moving  around  the  intersection  simultaneously  (e.g.,

pedestrians walking in opposite directions, cars yielding to pedestrians, etc.)
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The proposed trajectory-based algorithm seeks to overcome these issues by incorporating information
such as the time separation between successive sensor events, the bulk value and channel statuses of the
microradar events, overlapping sensor events, etc.

4.1 Movements
Since the emphasis of the study is on multi-modal behavior, the algorithm development largely focuses
on the leading pedestrian phase associated with the crosswalk (phase 14), which also overlaps with the
north-to-south and north-to-east  green time. Consequently,  the movements which are considered for
trajectory-based classification are as follows:

 Right (NW)
 Right (W S)
 Straight (EW)
 Straight (WE)
 Crosswalk (NS)
 Crosswalk (SN)

It is acknowledged that the left turn algorithms have not been developed as part of the effort. However,
since the analysis focuses on the pedestrian phase, their omissions do not significantly impact the study.
In addition, the approach used to develop the trajectory-based classifiers is similarly applicable for the
left turn movements.

4.2 Data
In order to develop the algorithms, the microradar, magsensor and signal phase data were obtained from
Sensys Networks for the following days:

 April 22-24, 2015
 October 12-16, 2015

Videos were also recorded for the following time periods:

 3:02 PM to 4:02 PM, April 22, 2015
 8:19 AM to 9:19 AM, April 22, 2015
 7:30 AM to 8:30 AM, October 12-16, 2015
 2:30 PM to 3:30 PM, October 13-16, 2015

The microradar events overlapping with the video recordings were labeled using the data visualization
tool, and were used to both calibrate the algorithms as well as test the accuracy of their results.

4.3 Data Preparation for Trajectory-Based Classification

4.3.1 Sorting Microradar and Magsensor Events Chronologically

Prior to identifying trajectories for the different movements, the microradar and magsensor events
are sorted chronologically.  Herein,  there exist  two sorting options to  choose from: the sensors’s
activation time, or its de-activation time. In the proposed approach, the de-activation time is chosen
as the sorting criterion since there can sometimes be long delays between a vehicle arriving at and
departing from a sensor location, especially at stop bar locations. 

A summary of the steps taken to prepare the data for trajectory-based classification is as follows:

 Input: Start and end date for the analysis
i. Find the start and end times of all the pedestrian phases (phase 14) during the study period

ii. Find all microradar events taking place 15 seconds before and after each phase 14
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 The 15 second buffer is added to capture the events taking place before and after the

pedestrian phases 
iii. Find all magsensor events taking place 25 seconds before and after each phase 14

 The additional 10 second buffer helps capture any additional magsensor events that

may be a part of a trajectory. 
iv. Sort all the identified sensor events by their de-activation time,
v. Store supplementary data associated with each sensor event, such as: 

 Activation time, event duration, 
 Time-averaged and non-time averaged bulk value (for microradars), 
 Maximum bulk value (for microradars), 
 Presence of channel status (1,1) (for microradars),

vi. Initialize the classifier decision to zero for all right turn, straight, and crosswalk movements
(zero corresponds to an unclassified sensor event).

Once the data are sorted, the events are processed in batch to classify each type of trajectory in the
following order: 

i. Right (NW)
ii. Right (W S)

iii. Straight (EW)
iv. Straight (WE)
v. Crosswalk (NS and SN)

The order of the trajectory classification is selected based on the extent of information involved for
each movement. However, the sensitivity of the accuracy of the classifier to this ordering scheme
can also be tested in the future.

4.3.2 Identifying All Right (NW) Movements

Figure 4.3 highlights the sensors that can be potentially triggered by a vehicle turning right from the
north  side  of  the  intersection.  Some of  the  sensors  associated  with  this  movement  may not  be
available for trajectory classification, since they stopped responding during the course of the study. 

The trajectory associated with any right (NW) turning vehicle can be divided into three stages:

1. Stop bar lane detection (Magsensors 31, 30, 29)
2. Crosswalk detection (Microradars 11, 12, 9)
3. Exit lane detection (Magsensors 1, 2, 3)
In each of the above-mentioned stages, it is essential to detect the presence of at least one sensor
event. While the associated sensors can be part of other types of movements as well, the objective is
to identify a set of conditions which can maximize the likelihood of capturing right turn trajectories
within the unclassified sensor events.

25



Figure 4.3 Scenario highlighting the sensors which may get activated by a right turn (NW)

Another consideration for trajectory classification is to identify the logical sequence in which to
identify the events associated with the trajectory. While trajectories can be inferred from identifying
the relevant unclassified sensors events in a chronological order, one of the challenges with right
turning vehicles is the presence of pedestrians/cyclists crossing at the crosswalk prior to the vehicle
movement. Consequently, it is possible to misclassify a non-motorized event as part of a right-turn
trajectory. 

To overcome this issue, trajectories can be identified in a reverse chronological order, beginning with
the exit lane sensors. An analysis of the labeled data from April 22 and 24 reveals that the time
difference between microradar detections labeled as right turns (9, 11, 12) and the subsequent exit
lane magsensors tends to be smaller than the time difference between the same crosswalk events and
the previous stop bar lane events, as shown in Figure 4.4. The large time variation for the first half of
the right turn trajectory can attribute to a wider range of speeds as vehicles approach the crosswalk,
as opposed to when they leave the crosswalk.
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Figure 4.4 Box plot of time differences between right turn microradar events labeled on the crosswalk and the
associated magsensor events in the vehicular lanes

The relevant  sensors identified in  the exit  lanes  (as well  as  the crosswalk)  are  not  likely to be
simultaneously triggered by a right turning vehicle.  Instead,  a subset of them may get triggered
based on the vehicle’s trajectory and size, and their selection is conditioned upon there being a time
overlap in their detections. In the case of the crosswalk sensors, based on the microradar events
labeled  in  the  training data,  microradar  11  is  observed to  be a  regular  occurrence in  right  turn
trajectories.  Thus,  the  identification  of  microradar  11  is  made  a  requirement  for  a  successful
trajectory identification.

Using  the  reasoning  described  above,  the  details  of  the  proposed  algorithm  for  right  (NW)
movements can be summarized as follows:

 Input: Dataset of microradars and magsensor events triggered around the pedestrian phases, and

sorted by their de-activation times
1. Starting from the end of the dataset, and classifying trajectories in a reverse chronological

order:
a. Exit lane detection: Find the first available unclassified magsensor 1, 2 or 3 (end of

the trajectory)
i. Identify any overlapping magsensor  events  for  sensors  1,  2  or  3  with  the

trajectory-initiating magsensor.
b. Crosswalk  detection:  Find  the  first  available  unclassified  microradar  events

associated with sensors 11, 12 or 9
i. Select the sensor 11 event and any or both of sensor 12 or 9 events, if at least

one of them overlaps with sensor 11. (The other sensor should either overlap
with sensor 11 or the third sensor.)

27



c. Stop  bar  lane  detection:  Once  the  exit  lane  and  crosswalk  activations  have  been
identified, find the first available unclassified magsensor event associated with sensor
31. (start of the trajectory)

i. Once the relevant magsensor 31 event has been identified, search for the first
available  unclassified  event  for  magsensor  30  (if  available),  followed  by
magsensor 29. (Optional for trajectory identification)

d. Resume the classifier from the next available unclassified exit lane magsensor
 Additional constraints on the trajectory:

 A completed trajectory should not take more than 6 seconds from the time the stop bar

sensor 31 is de-activated. 
 Such a time constraint is included to prevent events separated far in time from

being included as part of the same trajectory.
 Exit lane considerations: If multiple unclassified events are observed for any of the exit

lane  magsensors  prior  to  the  identification  of  an  unclassified  crosswalk  event,  the
trajectory is not feasible.

 The  likelihood  of  detecting  two  exit  lane  events  corresponding  to  the  same

magsensor prior to detecting a crosswalk event is low. 
 Physical considerations based on distance separation: The time difference between exit

lane and crosswalk de-activation should be at least 0.3 seconds.
 Crosswalk consideration: If multiple events associated with microradar 9 are observed

prior to the stop bar de-activation, the trajectory is not feasible.
 Stop bar lane consideration: The time difference between sensors 31, 30 and 29 should

not be more than 2 seconds.
The  rule-based  constraints  described  above  have  been  added  to  capture  the  time  taken  by the
vehicles  to  move between the  various  sensors,  as  well  as  recognize  event  sequences  which  are
unlikely to be representative of a right turning vehicle’s trajectory. The specific values chosen for
these constraints were manually calibrated with the help of the training data.

4.3.3 Identifying All Right (WS) Movements

Similar  to the right  (NW) movement,  Figure 4.5 highlights the sensors that can be potentially
triggered by a vehicle turning right when approaching from the west side of the intersection. The
trajectory described in Figure 4.5 traverses the following types of detectors:

1. Stop bar lane detection (Magsensors 8)
2. Crosswalk detection (Microradars 2, 3)
3. Exit lane detection (Magsensors 9)
Unlike the right (NW) movement, the magsensor closest to the stop bar lane for the right (WS)
movement stopped functioning during the course of the study. Consequently, the trajectory algorithm
is developed to infer the right turn movements using only the crosswalk and exit lane sensors.

Given the absence of stop bar sensor, it is assumed that during a WS movement, both the relevant
microadars (2 and 3) get triggered by the vehicles. This assumption is consistent with the labeled
observations in the training data. 
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Figure 4.5 Scenario highlighting the sensors which may get activated by a right turn (W S)

Given that  the trajectory classification  is  reliant  only on two of  the  three stages  of  the vehicle
movement, the trajectory is initiated using the crosswalk sensors, and terminated at the exit lane
sensor. The inference takes place in chronological order and the steps associated with the proposed
algorithm are summarized below:

 Input: Dataset of microradars and magsensors sorted by their de-activation times
1. Starting from the end of the dataset, progressing upwards:

a. Crosswalk  detection:  Find  the  first  available  unclassified  microradar  events
associated with microradar sensor 2 (start of the trajectory)

i. Identify any microradar sensor 3 event which overlaps with the previously
identified sensor 2 event.

b. Exit lane detection: Once both crosswalk detections have been identified,  find the
first  available  unclassified  magsensor  event  associated with sensor  9.  (end of  the
trajectory)

c. Resume the classifier from the next available unclassified crosswalk microradar 2.
 Additional constraints on the trajectory:

 A completed trajectory should not take more than 3 seconds from the time microradar 2 is

de-activated. 
 Physical consideration based on distance separation: The time difference between exit

lane and crosswalk de-activation should be at least 1 second.
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4.3.4 Identifying All Straight (EW) Movements

Figure 4.6 highlights the sensors that can be potentially triggered by a straight moving vehicle from
east to west. The trajectory described in Figure 4.6 traverses the following types of detectors:

4. Stop bar lane detection (Magsensors 19, 20, 21, 22)
5. Crosswalk detection (Microradars 9, 10, 11, 12)
6. Exit lane detection (Magsensors 1, 2, 3)
Similar to the right (WS) movement, the relevant magsensors in the exit lanes and stop bar lanes
are not reliable. Consequently, searching for complete trajectories is this case can be difficult. To
supplement  the  missing  information,  the  approach  taken  for  this  particular  movement  classifier
incorporates additional microradar event information, such as the subchannel status, bulk value, etc. 

Even though the lack of complete trajectories restricts the classification approach, since the straight
(EW)  classification  follows  the  right  (NW)  classification,  some  of  the  microradar  events
associated with sensors 9, 11, and 12 already get classified. Consequently, assuming that the right
(NW)  algorithm  classifies  all  the  underlying  right  turn  trajectories,  information  specific  to
microradars can help differentiate the non-motorized events from the remaining events triggered by
motor vehicles, i.e. the EW movements.

Figure 4.6 Scenario highlighting the sensors which may get activated by a straight movement (EW)

The algorithm for straight movements (EW) is summarized below:

 Input: Dataset of microradars and magsensors sorted by their de-activation times
1. Starting from the beginning of the dataset, progressing chronologically:

30



a. Crosswalk detection: Find the first available unclassified microradar event associated
with sensors 9, 10, 11, or 12 (start of the trajectory)

i. Find any overlapping microradar events with the first microradar event given
the following sensor pairing: (9, 10), (11,12).

b. Exit lane detection: Once the crosswalk sensor pairs have been identified, find the
first available unclassified magsensor event associated with magsensor 1, 2 or 3.

c. End of the trajectory:
i. If  an  exit  lane magsensor  (1,2 or  3)  has  been identified,  and if  the  entire

trajectory takes less than 2 seconds from the first microradar de-activation,
consider the trajectory eligible for classification.

ii. If an exit lane sensor could not be identified, apply the following constraints
for the crosswalk sensor pair to be considered eligible for classification:

1. The  time  difference  between  the  de-activations  of  the  individual
microradar events is less than 0.25 seconds.

2. One of the following criteria should have been satisfied:
a. The microradars  overlap  in  their  detection  times  by at  least

80% (with respect to the microradar detected last)
b. At least one of microradar events observes a maximum bulk

value of 140 or more
c. At least one of the microradar events observes a sub-channel

status of (1,1).
d. Resume the classifier from the next available unclassified microradar.

As is described above, if an eligible exit lane magsensor cannot be identified (to account the scenario
that magsensor 3 is inactive), the crosswalk sensor pair is scrutinized further by imposing constraints
of significant overlap between their respective event durations, or alternatively finding presence of
sensor-specific indicators that might be likely to be associated with motor vehicles. Once again, the
specific values chosen for the rule-based constraints are calibrated using the training data.

4.3.5 Identifying All Straight (WE) Movements

Figure 4.7 highlights the sensors that can be potentially triggered by a straight moving vehicle from
west to east. The trajectory described in Figure 4.6 traverses the following types of detectors:

7. Stop bar lane detection (Magsensor 7)
8. Crosswalk detection (Microradars 4, 5)
9. Exit lane detection (Magsensor 16)
Unlike the straight (EW) classifier, the sensors associated with this trajectory are fully functional.
Consequently, the classification algorithm shall seek to find events for each stage of the trajectory.
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Figure 4.7 Scenario highlighting the sensors which may get activated by a straight movement (WE)

The algorithm for classifying straight (WE) movements is summarized below:

 Input: Dataset of microradars and magsensors sorted by their de-activation times
1. Starting from the beginning of the dataset, progressing chronologically:

a. Stop bar lane detection: Find the first  available unclassified event associated with
magsensor 7 (start of the trajectory)

b. Crosswalk  detection:  Find  the  first  available  unclassified  event  associated  with
microradar 5: 

i. Find  any microradar  4  event  that  overlaps  with  the  selected  microradar  5
event. (optional)

c. Exit lane detection: Once the crosswalk sensors have been identified, find the first
available unclassified magsensor  event  associated with magsensor 16.  (end of the
trajectory)

d. Additional constraints:
i. The time difference between the de-activations of magsensors 7 and 16 should

not be more than 4 seconds.
ii. The time difference between the first crosswalk de-activation and magsensor

16 should not be more than 3 seconds.
e. Resume the classifier from the next available unclassified stop bar magsensor.

Once the right and straight movement classifiers have been sequentially implemented, the remaining
unclassified events are evaluated for detecting crosswalk movements.
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4.3.6 Identifying All Crosswalk Movements (NS, SN)

In order to infer trajectories on the crosswalk, it is important to recognize that during a pedestrian
phase, people are likely to travel in opposite directions and initiate their crossings at different times
and with different  speeds.  Consequently,  the  crosswalk trajectory estimation  must  accommodate
these differences.

The proposed approach uses a simplified crosswalk representation by pairing sensors that are located
in close proximity to each other and assigning them a common location value, as shown in Figure
4.8. Using the simplified Y-axis notation, trajectories are assigned a direction based on the location
of the first unclassified microradar that is observed during the analysis. For instance, if the first
unclassified microradar lies in the top half  of the crosswalk,  it  is assumed that the road user is
traveling from north to south, or else vice-versa. Thereafter, the identification of subsequent sensors
is determined by comparing the time taken between successive sensor detections with a wide range
of crossing speeds. Hence, the proposed methodology allows for speed variation between successive
sensor detections as long as the total duration of the trajectory is within some reasonable bounds. 

In addition, the estimated trajectory is confirmed only when it observes sensor detections at least
three distinct y-axis locations. For instance, if a NS trajectory detects events at sensor pairs (9, 10)
and (7,8), it is necessary to find another unique location further south of these sensor so as to accept
this sequence as a valid trajectory. Herein, the motivation is to include both temporal and spatial
constraints within the trajectory estimation so as to ascertain the movements with greater confidence.

Finally, since movements in opposite directions can take place simultaneously and impact the same
set of sensors, the analysis for NS and SN movements is carried out simultaneously.
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Figure 4.8 Scenarios indicating the crosswalk-related movements

The algorithm for crosswalk movements is summarized below:

 Input: Dataset of microradars and magsensors sorted by their de-activation times
1. Starting from the beginning of the dataset, progressing chronologically:

a. If the first unclassified microradar is in the top of the half of the crosswalk (sensors 7
to 12), initiate a NS trajectory. Otherwise, initiate a SN trajectory.  (start of the
trajectory)

b. Find all unclassified microradar events that can be potentially triggered in the time
taken  to  travel  from the  initial  location  of  the  trajectory  to  the  other  end  of  the
crosswalk at a speed of 4 feet per second plus a buffer of 3 seconds:

i. For each of these unclassified events, if the corresponding microradar can be
potentially triggered along the trajectory’s current direction of travel, include
it to the trajectory, subject to the following conditions:

1. If the microradar under consideration and the current location of the
estimated trajectory belong to the same sensor pair, then their event
durations must overlap.

2. If the microradar under consideration is further along the direction of
travel,  then  the  time  difference  between  the  two  events  should  be
within the following range:

a. Less than the time taken to traverse the distance between the
two sensor locations at  a speed of 4 feet per second, plus a
buffer of 3 seconds.

b. More than the time taken to traverse the distance between the
two  sensor  locations  at  a  speed  of  20  feet  per  second  (to
account for runners and cyclists).

ii. Once the estimated trajectory cannot progress any further along its designated
direction  of  travel,  the  following  condition  must  be  met  for  the  selected
sequence of events to be classified as a valid trajectory:

1. The trajectory should include at least three distinct sensor/sensor pair
locations (start of the trajectory)

c. Resume the classifier from the next available unclassified microradar event.
To illustrate the crosswalk trajectory classification,  consider the sequence of events described in
Table 4.1. Table 4.1 shows two complete trajectories (55 and 56), and a partial representation of a
third trajectory (57). In addition to the classification results, the trajectory also shows the sensor
labels which help validate the classifier results.

Table 4.1 An example of the trajectory estimation

Sensor
ID

Time
Duratio

n
Ped_S_

N
Ped_N_

S
Label

3 0 1.625 55 0
cycle(ride)

(SN)

2 0.625 2.5 55 0
cycle(walk

(SN)

12 1.063 1.125 0 56 cycle(ride)
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(NS)

4 1.375 1.125 55 0
cycle(ride)

(SN)

9 2.313 1.375 0 56 1 ped (NS)

10 2.75 1 0 56
cycle(ride)

(NS)

8 3.188 0.875 55 0
cycle(ride)

(SN)

5 3.313 1.375 57 0
cycle(walk

(SN)

10 5.875 1.625 55 0
cycle(ride)

(SN)

9 5.938 1.125 55 0
cycle(ride)

(SN)

8 6.938 3.125 0 56
cycle(ride)

(NS)

3 7.75 0.75 0 0
cycle(ride)

(NS)

11 8.125 1.375 55 0
cycle(ride)

(SN)

In the case of trajectory 55, sensors 2 and 3, which appear to have been triggered around the same time
by two separate road users, get grouped under the same trajectory. Thereafter, the trajectory seems to
follow the cyclist who is riding the crosswalk from south to north. As part of this trajectory, another
sensor pair (9 and 10) is also grouped together. However, in this instance, the sensors are labeled as a
riding cyclist, which implies that the same user may be triggering both sensors.

Trajectory 56 begins with sensor 12, thus initiating an NS trajectory, as validated by the associated
label. Thereafter sensors 9 and 10 are grouped together, although the labels indicate that two different
user types may have triggered these events. Thereafter, the trajectory is terminated at sensor 8.

Trajectory 57 is initiated at sensor 5, which corresponds to the walking cyclist whose previous position
get grouped under trajectory 55. However, even in the absence of the earlier sensor event, it appears that
there are a enough number of sensor events in this instance to classify this trajectory further upstream on
the crosswalk. 

Finally, there is an event associated with microradar 3 at 7.75 seconds which is not classified under any
trajectory. In this particular instance, the video recording helps identify that the event is associated with
the cyclist  riding from NS. However,  the timeline of the events appears too close as the previous
detection of this cyclist at sensor 8 could not get de-activated once the cyclist departed as another user
entered its detection zone which extended the event even further. This dynamic is illustrated in Figure
4.9.
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Figure 4.9 An example of a microradar getting triggered by one user
 and getting extended by another user

The images in Figure 4.9 also show various road users crossing on the edge of the crosswalk which also
results in trajectories not getting completely captured by the sensor along the crosswalk. Hence, these
sets of examples illustrate the challenges associated with tracking crosswalk movements.

4.4 Results: Training Data
The results of the trajectory classifier using labeled pedestrian phase data from April 22, 24 and October
12-14 are shown in Table 4.2.
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Table 4.2 Results of trajectory-based classification using training data

Mode
Coun

t
Right
NW

Righ
t

WS

Straig
ht

EW

Straig
ht

WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d

Motorize
d

1100 344 40 547 136 0 2 31

Non-
Motorize

d
559 2 6 5 0 117 374 55

Grand
Total

1659 346 46 552 136 117 376 86

 

An evaluation of the unclassified labeled data reveals that some of the Right (NW) movements are not
getting classified in scenarios where the right turn movements do not get detected at the exit lanes.
Consequently,  a modified right turn classifier is implemented at  the end of the crosswalk algorithm
which  gets  initiated  at  the  crosswalk  (microradar  11)  as  opposed  to  the  exit  lane.  The  benefit  of
implementing the right turn algorithm at the end of the analysis is that it can only identify right turn
events using the remaining unclassified microradar events. The revised set of results are shown in Table
4.3. As can be seen from the Right (NW) column, the additional pass of the right turn algorithm added
6 additional microradar events.

Table 4.3 Revised results of trajectory-based classification using training data

Mode
Coun

t
Right
NW

Righ
t

WS

Straig
ht

EW

Straig
ht

WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d

Motorize
d

1100 350 40 547 136 0 2 25

Non-
Motorize

d
559 2 6 5 0 117 374 55

Grand
Total

1659 352 46 552 136 117 376 80

 

The results shown in Table 4.3 indicate that the accuracy of the classifier, defined as the sum of correctly
classified motorized events and non-motorized events divided by the total number of labeled microradar
events, is 94.5%. When excluding the unclassified microradar events from the analysis, the accuracy
jumps to 99.1%. This implies that the misclassification error of the classifier within the training data is
less than 1 %. The relatively poor quality of the right (WS) classifier  is primarily because of the
absence of a functioning magsensor 8 to correctly establish the start of the trajectory. 

Table  4.4  shows  a  more  detailed  evaluation  of  the  classifiers  by  comparing  their  performance  for
different movement types. Herein, the results show that accuracy for classifying right turns, straight
movements, NS and SN crosswalk movements are 93.7%, 97.2%, 87.2% and 85.4% respectively.
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When excluding the unclassified information, the accuracy estimates increase to 96.3%, 99%, 95.7%
and 97.4% respectively.  The accuracy of  the  classified  data  is  important  in  terms  of  understanding
whether there are any biases within the classification, which affects the subsequent analysis of mode-
specific and multi-modal safety critical dynamics. 
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Table 4.4 Movement-based evaluation of classifiers (training data)

Right
Turns

(Ground
Truth)

Right
NW

Righ
t

WS

Straigh
t EW

Straigh
t WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d

411 345 40 15 0 0 0 11

 Straight
Movemen

ts
(Ground
Truth)

Right
NW

Righ
t

WS

Straigh
t EW

Straigh
t WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d

679 5 0 524 136 0 2 12

 Crosswal
k NS

(Ground
Truth)

Right
NW

Righ
t

WS

Straigh
t EW

Straigh
t WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d

429 1 6 4 0 6 376 36

 Crosswal
k SN

(Ground
Truth)

Right
NW

Righ
t

WS

Straigh
t EW

Straigh
t WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d

130 1 0 1 0 111 1 16

Table 4.4 also reveals that in spite of running two passes of the right (NW) classifiers, about 5% of the
microradar  events  get  misclassified  as  straight  moving  vehicles.  The  primary  cause  for  this
misclassification is that sometimes a single magsensor event captures multiple vehicles. In this case,
when vehicles are close to each other at the right turning lane (magsensor 31), a sensor event triggered
by one vehicle  is  extended by another  vehicle.  As a  result,  the  right  turn classifier  cannot  find  an
accompanying magsensor event for the first vehicle, since the triggered sensor event may eventually end
after the first vehicle traversing the crosswalk microradars.

Also, since the evaluation period includes some buffer period around the pedestrian phases, there are
nine left turn movements which get included in the training data. These events are classified as straight
(EW) trajectories, since the stop bar lane sensors associated with the straight (EW) movement are not
used for the analysis.

4.5 Results: Test Data
While the trajectory classification algorithm wasn’t  completely trained on the classifier  data,  it  was
calibrated  by  iteratively  improving  the  classification  accuracy  using  the  labeled  training  data.
Consequently, it is important to evaluate the accuracy of the classifier using the two days of labeled
microradar data were exclusively kept as test data. 

Table 4.5 Results of trajectory-based classification using test data
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Mode
Coun

t
Right
NW

Righ
t

WS

Straigh
t EW

Straigh
t WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d

Motorize
d

401 164 20 136 50 2 2 27

Non-
Motorize

d
210 0 4 3 0 32 143 28

Grand
Total

611 164 24 139 50 34 145 55

Table 4.5 indicates that the accuracy of the classifier, when evaluating the test data, is 89.2%. When
excluding  the  unclassified  microradar  events  from the  analysis,  the  accuracy increases  to  98%.  In
comparison to the training data, the results are worse by five percent, which is largely driven by an
increase in the unclassified events. In particular, the misclassification errors are associated with right
(WS) and straight (EW) classifiers, both of which suffer from non-functioning magsensors. In the
case  of  right  (WS)  classification,  it  appears  that  successive  right  turn  movements  can  lead  to
overlapping microradar 3 detections, which leads to a long sensor event capturing multiple vehicules.
Consequently, a fully functional sensor setup can help improve accuracy for these vehicle movements by
providing additional sensor events to infer the trajectories from.

The movement-based evaluation of the classifiers is shown in Table 4.6. The accuracy for classifying
right turns, straight movements, NS and SN crosswalk movements are 85.4%, 95.6%, 82.6% and
76.3% respectively. When excluding the unclassified information, the accuracy estimates increase to
93.3%, 98.9%, 93.4 % and 96.7% respectively. These results reveal that the crosswalk movements have
a higher percentage of unclassified movements. When only considering the misclassified events, the
crosswalk (NS) movement has the highest percentage of misclassifications.

Table 4.6 Movement-based evaluation of classifiers (test data)

Right
Turns

(Ground
Truth)

Right
NW

Righ
t

WS

Straigh
t EW

Straigh
t WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d

213 162 20 10 0 1 2 18

Straight
Movemen

ts
(Ground
Truth)

Right
NW

Righ
t

WS

Straigh
t EW

Straigh
t WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d

182 2 0 124 50 0 0 6

Crosswalk
NS

(Ground
Truth)

Right
NW

Righ
t

WS

Straigh
t EW

Straigh
t WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d
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172 0 4 3 0 3 142 20

Crosswalk
SN

(Ground
Truth)

Right
NW

Righ
t

WS

Straigh
t EW

Straigh
t WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d

38 0 0 0 0 29 1 8

Similar to the training data, there are two left turn events in the test data, which are classified as straight
(EW) trajectories.

4.6 Comparisons with other mode classification techniques
With regards to the performance of the trajectory-based classifier vis-à-vis other mode classification
efforts within the traffic safety literature, Zangenehpour et al. (2015) developed an image recognition
and  trajectory  speed-based  classification  method  to  differentiate  between  pedestrians,  cyclists  and
pedestrians, which had an accuracy between 86 and 93.3%. Kumar et al. (2005) developed a Bayesian
network-based classifier  for categorizing objects  within a  video as  different  vehicle  categories.  The
classification accuracies of their algorithm for pedestrians, motorcycles, cars, trucks and heavy trucks
was  vehicles were 86.7%, 92.5%, 96.3%, 93.3%, and 93.6% respectively. Based on these comparisons,
it can be said that the trajectory-based classifier performs similarly to some of the computer vision-based
mode-classification techniques, although some of the classification errors with regards to the trajectory-
based classification method can be minimized with a fully functioning sensor network. At the same time,
it is acknowledged that the proposed method does not differentiate between cyclists and pedestrians as
yet, which shall be investigated in the future.

4.7 Discussion
After evaluating the classification results of both the training and test data, here are some observations
associated with the trajectory-based classification:

 Presence  of  fully  functioning  sensors  along  a  vehicle’s  path  is  important  for  accurately

estimating the trajectory (e.g., straight (WE) classification)
 In the absence of  complete  trajectories,  it  is  possible  to  use sensor-specific  information and

interactions between sensors to estimate events (e.g., straight (EW) trajectories). However, it is
important to ensure that the subset of the trajectory used to classify the events do not match with
other types of unclassified movements.

 A major limitation of the proposed trajectory is that it limits the sensor events to be associated to

only one trajectory. As evidenced in the case of right turn as well as the crosswalk movements, a
single sensor event can comprise of multiple objects traveling in close proximity. Consequently,
relaxing this assumption in future approaches can improve the accuracy significantly. 
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5 Extracting Variables for Right Turn Safety Analysis

At  a  signalized  intersection,  pedestrians  encounter  potential  conflicts  with  vehicles  under  three
circumstances: right turns on a green (RTOG), right turns on a red (RTOR), and permitted left turns on a
green (LTOG) (Hubbard et al, 2009). RTOR and LTOG may be prohibited by signal timing, however,
the conflicts resulting from RTOG are more difficult to address. Thus, the present study, focuses mainly
on pedestrian-vehicle interactions under RTOG, to determine vehicle yielding behaviors, and to assess
the  safety  level  of  right-turn  and  improve  pedestrians’ walking  environment.  The  first  step  of  the
analysis involves extracting the necessary variables.

5.1 Overview of Raw Data
The locations of mag-sensors and micro-radars are shown in Figure 5.1, to help explain the following
algorithms. The raw data is listed in Table 5.1. Because the focus is on right turns on a green (RTOG),
the raw data include only the events that occurred during two phases (pedestrian green and vehicle green
for North-South direction). 

Figure 5.1 Configuration of sensors
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Table 5.1 Raw data set

Event timestamp (hour, minute, second)

Event duration (of time)
Event Location (Mag-sensor or Micro-radar ID)

Event classification (ped or veh)
If ped event, the walking direction (NS or SN).

If veh event, whether car stops or not.

If veh event, whether a right-turn or through-driving vehicle

5.2 Variables
Table 5.2 Variable list

Behavior Variables

Pedestrian (a) Go/No-go

(c) Age, gender, color of clothing

(d) Group population

(e) Walking direction

(f) Walking speed

Vehicles (b) Yield/Not-yield
(g) Right-turn traffic volume

(h) Upstream speed

(i) Position in a platoon

Intersection ---

(j) Time

(k) Phase

(l) Location
(m) Geometry layout

The  potential  variables  are  listed  in  Table  5.2.  Below  is  a  brief  description  of  variables  and  data
accessibility. 

(b): Yield/Not Yield: When confronting pedestrians, whether or not vehicles yield or continue forward.
Many researchers use a binary output to simplify the modeling (Hubbard, 2009; Ling et al, 2012). The
current study identifies three different types of behavior, categorized into three classes. This variable is
obtained using the yielding algorithm described in the following sections.

(c)(d)(f): Age, gender, color of clothing, group population, and walking: These variables are obtained via
video data or field investigation, which are not incorporated in the current study.

(e): Walking direction: from north to south, or south to north. This variable was identified in Chapter 4.
Some researchers have found a behavioral difference between the far-side and near-side pedestrians as
they perceive the same right-turn car moving toward them (Alhajyaseen, 2013).

(g): Right-turn traffic volume are obtained from the mag-sensors. Akin (2007) has shown its significant
impact on yielding behavior.

(h): Upstream speed: Vehicles’ operating speed at the upstream of the approach, which can be calculated
based on the location of sensors and the time at which a vehicle passes them. Abdulsattar et al. (2013)
observed that vehicle speed impacts drivers’ decisions, but upstream speed is less of a factor.
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(i): Position in a platoon: Whether the vehicle is in a leading or following position in the traffic flow.
Since headway can be calculated by the mag-sensors, position of a platoon can also be obtained. 

(k): Phase: Whether the interactions between vehicles and pedestrians occur at pedestrians green only
(early phase), vehicle green only (end phase), or both (middle phase). 

(l)(m): Location is related to land use, such as whether the intersection is in CBD. Geometry layout is
related  to  the  turning  radius,  width  of  crosswalks,  and  other  characteristics.  Although  as  found by
Hubbard  (2009),  drivers  in  CBD are  more  likely to  look for  pedestrians  and yield  to  them in  the
crosswalks. Since the study focuses on a single intersection, these data are not considered, but warrant
further research in the future.

The following sections elaborate on the algorithms of each variable.

5.3 Yielding 
Definition: For right-turn vehicles, the driver who yields has two choices: to wait at the stop line or to
wait at the turning area. Thus, the yielding algorithm is divided into two parts.

For the first case, a yielding maneuver is defined as a vehicle which stops at the stop line and leaves
after the pedestrian exits the conflict area. For the second case, yielding is defined as car which arrives at
the intersection before the pedestrian, but exits the conflict area after the pedestrian.

Algorithm: The  basic  idea  of  the  yielding  algorithm  is  to  determine  the  time  difference  between
consecutive vehicle and pedestrian events under different conditions. A brief description of the algorithm
is shown in Figure 5.2. The procedure is as follows:

i) Loop over the entire dataset chronologically.
ii) Select the vehicle event if “its sensor ID = 31” AND “a right-turning event,” then record the

event’s timestamp and its right-turn id.
iii) Select the pedestrian event if “its sensor type is 1 (micro-radar)” AND “its sensor ID = 9, 10,

11, 12,” then record the event’s timestamp.
iv) Calculate the time difference between the recorded vehicle and pedestrian events.
v) Label the vehicle event as yielding (at the stop line) if “it’s a stopped vehicle” AND “time

difference≤7s.” 
vi) Label the vehicle event as yielding (at the turning area) if “time difference≤0s” AND “second

time difference>0s,” where the second time difference is obtained by:
a) Using right-turn id, find the corresponding vehicle event in the same trajectory after passing the

turning area. Record the timestamp.
b) Calculate the time difference between this new vehicle event and the pedestrian event.
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Figure 5.2 Algorithm: Yielding at the stop line (left) and yielding at the turning area (right)

A threshold of seven seconds is established as the maximum waiting time of vehicles after the last
pedestrian leaves the conflict area. If the time difference is greater than seven seconds, it is determined
that there was no interaction between vehicles and pedestrians.  This threshold is determined by the
experimental data collected from April 22nd to April 24th and Oct 12th to Oct 16th. Five to nine second
periods are checked based on video data,  and seven seconds offers the best accuracy. The accuracy
analysis will be provided in the following section..

Example: Data collected on April 22, 2015 at 15:31:53 PDT is used as an example.

Figure 5.3 Yielding example: data*

*Note: Right_N_W=10000 denotes that this is a pedestrian event; 0<Right_N_W<10000 denotes that 
this is a right-turn vehicle event, the number is ordered chronologically. Veh_yield=1 represents 
yielding; Veh_yield=-2 represents no interaction.

45



Figure 5.4 Yielding example: screenshot of video.

5.4 Non-Yielding

Definition: A non-yielding maneuver is defined as a vehicle which passes the conflict area just a few
seconds before a pedestrian passes.

Algorithm: Similar to the yielding algorithm, the  time difference is a crucial index to classify non-
yielding events. A brief description of the algorithm is shown in Figure 5.5. The procedure is as follows:

i) Loop over the entire dataset chronologically. Select events at the conflict area where “its sensor ID =
9, 10, 11, 12” AND “its sensor type is 1 (micro-radar).” 

ii)  If  it  is  a  vehicle  event,  mark it  as  a  current  vehicle  event  and restore  the  timestamp;  if  it  is  a
pedestrian event, mark it as current pedestrian event and restore the timestamp. 

iii) If the timestamp of the current vehicle event is three seconds less than the timestamp of the current
pedestrian event, then label that vehicle event as non-yielding (0). 
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Figure 5.5 Algorithm: Non-yielding

Three seconds is a critical threshold for judging the situation of non-yielding. Time periods of 2s, 3s, 4s
and 5s were used to determine whether different thresholds offer different results. By comparing the
video data, the 3s time period captures the non-yielding feature more accurately.

Example: 

A non-yielding case that occurred at on October 12, 2015 at 07:34:37 PDT is used as an example. 

Figure 5.6 Non-yielding example: data*.

*Note: Veh_yield=0 represents non-yielding; Veh_yield=-2 represents no interaction.
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Figure 5.7 Non-yielding example: screenshot of video.

Error Analysis:

Error analysis shown in Table 5.3, using the 8-hour video data.

The results are as follows: 

 Accuracy of identified interactions: 100%.
 Missing rate of actual interactions: 13.16%.

Table 5.3 Accuracy of yielding and non-yielding algorithm.

Error analysis

Ground Truth (8-hour video data)

No interaction Yielding Non-yielding

Automated
algorithm

results

No interaction --- 5 0

Yielding 0 31 0

100%

Non-yielding 0 0 2

13.16%
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Of the five missing interactions, four were caused by pedestrians (usually one of the crossing guards)
who walked outside of the crosswalk area, and thus were unable to be detected by the micro-radar. This
phenomenon results in the time difference between consecutive vehicles and pedestrians being greater
than the actual value and is therefore not included in the yielding events category.

The last of the missing interactions is related to the threshold of seven seconds in the yielding algorithm.
For this missing interaction, the time difference is eight seconds, one second longer than the current
threshold. If the threshold is reset to eight seconds, the accuracy remains acceptable, however, seven
seconds was established as the threshold for the present study.

In summary, the yielding/non-yielding algorithms present good accuracy and robustness.

Strengths and Weaknesses:

The yielding/non-yielding algorithms are established by sensor data and can automatically obtain 
yielding behavior for long periods of time, which offers convenience and feasibility for future yielding-
related research. The high rate of accuracy (100% correctly identified interactions) makes it nearly as 
reliable as video data.

However, the thresholds in the algorithms may be intersection-specific. Researchers must calibrate them 
again for new intersections. In addition, all sensors must be operational, which is challenging since in 
California it is quite common for sensors to break down.

5.5 Speed

Detection Zone:

For the mag-sensors, sensor 31 and sensor 30 share a rectangular detection zone, shown in Figure 5.8. 
Initially, the following formula was used: speed = (detection zone distance + car length)/(time difference
between two events + duration of Sensor 30) to accurately calculate the speed. However, recently Sensor
30 ceased working and yielded no data. An approximation was generated by dividing the detection zone 
in half and using the new detection distance to calculate the speed.

The detection zones of micro-radar are irregular (more like an ellipse), as shown in Figure 5.9, therefore
the detection area is roughly identified as a rectangular region. Follow up field investigation to test the
accuracy of the algorithm indicates that the speed is reasonable under such an assumption.
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Figure 5.8 Detection zone of mag sensors (Source: Sensys Networks, Inc.)

Figure 5.9 Detection area of micro-radars (Source: Sensys Networks, Inc.)

Algorithm:

i) For vehicle events at sensor ID = 9, 10, 11, 12, speed = (approximate detecting distance + car length) /
duration of event = (4m + 4.4m) / duration of event.

ii) For pedestrian events at sensor ID = 9, 10, 11, 12, speed = (approximate detecting distance) / duration
of event = 3m / duration of event.

iii) For vehicle events at sensor ID = 29, 30, 31, speed = (detecting distance + car length) / duration of
event) = (2.285m + 4.4m) / duration of event.

iv) Convert the unit from meter/second to mile/hour.
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Accuracy:

A field study was conducted at the intersection in Danville on Dec 2, 2015, including a test  of the
accuracy of the speed. A speed gun to was used to test the speed upstream of the approach (Figure 5.10),
near the stop line and the speed of vehicles passing the crosswalk (Figure 5.11). 

The results from the speed gun confirmed the expectations. The speed of vehicles passing the crosswalk
was approximately 12 mph, the upstream speed was approximately 20 mph but shows variability. Figure
5.10 illustrates how the speed gun was used in the field study.

Figure 5.10 Detect speed using speed gun in field study.
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5.6 Position in a Platoon

Definition: Research of yielding behavior did not include vehicles’ positions in the platoon in which the
interactions occurred, but should be noted before the driver makes a decision.

Algorithm:

i) Select events at sensor ID = 29.

ii) Store two consecutive vehicles' timestamp. If the time difference between the two timestamps is less
than five seconds, then the second car is a following car, label the leading variable as 0; if not, the
second car is a leading car, label the variable as 1. 

iii) For each right-turn vehicle event, A, labeled as either yielding or non-yielding, using its right-turn ID
find the corresponding vehicle event, B, at Sensor 29 in the same trajectory. Assign the value of position
in a platoon for event  B to event  A (1 represents  a leading vehicle  while  0 represents  a  following
vehicle).

5.7 Right-Turn Volume

Algorithm: Right-turn volume is calculated for each fifteen-minute period. Thus, the right-turn volume
at 7:05 a.m. is determined as the volume from 7:00 a.m. to 7:15 a.m., which is generated based on how
many vehicles passed Sensor 31 from 7:00 a.m. to 7:15 a.m. 

Phase

Pedestrian phase

Vehicle phase

Early phase Middle phase End phase

Figure 5.11 Definition of phase variable

Algorithm: Early phase, middle phase, and end phase are dummy variables. For an interaction, if the
corresponding vehicle event occurs in the early phase,  it  should be labeled as 1,  and the other two
dummy variables as 0. Interactions that occur during the middle phase and the end phase are labeled
similarly.
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6 Assessment of Right-Turn Related Safety

This chapter provides surrogate measures to evaluate the safety of the intersection and offers additional
quantitative analysis to identify factors to explain yielding/non-yielding behavior.

6.1 Surrogate Measures

The  safety  of  intersections  is  typically  evaluated  using  historical  crash  data.  However,  many
intersections experience zero, or very few crashes, and therefore do not provide enough information
about the countermeasures that are needed to improve safety. Monitoring safety-critical events, such as
yielding and non-yielding interactions, can be used as surrogate safety measures that allow proactive
assessment of safety hazards without the occurrence of a crash. Two indicators are used to assess right-
turn related safety at the intersection.

6.2 Yielding Rate

The yielding-related statistics are summarized in Table 6.1. The dataset is from April 22nd to April 24th
and from Oct 12th to Oct 16th; all weekdays. 

Table 6.1 Statistics summary: yielding rate

# of total interactions 197

# of yielding events
Waiting at stop line

179
156 (87.15%)

Waiting at turning area 23 (12.84%)

# of non-yielding events 18

Yielding rate 90.86%

Non-yielding rate 9.14%

The non-yielding rate is approximately 10%, which is at normal level. However, since the intersection in
near a primary school, and considering the vulnerability of children, the aim is to eliminate the non-
yielding  cases  as  much  as  possible.  Therefore,  it  is  important  to  determine  which  factors  can
significantly affect vehicles’ yielding behavior, as analyzed in the following chapter.

Another  interesting  finding  is  that  up  to  30%  of  yielding  vehicles  stop  at  the  turning  area.  This
phenomenon can be explained by two potential causes. One is that a group of drivers is accustomed to
yielding by slowing approaching to the crosswalk instead of coming to a full stop. The other is that some
drivers fail to see pedestrians until they turn right, leading to a sudden braking at the turning area. More
attention to yielding at the turning area warrants future research.

6.3 Post-Encroachment Time (PET)

For cyclist safety, PET is defined as the time difference between the moment when a  rear part of the
vehicle leaves (or arrives at) the area of potential collision and the moment when a bicycle’s front wheel
arrives at (or the rear wheel departs from) this area (Kassim et al. 2014).
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Similarly, for pedestrian safety, PET is defined as the time difference between the moment when a rear
part of the vehicle leaves (or a pedestrian leaves) the area of potential collision and the moment when a
pedestrian arrives at (or the rear wheel arrives at) this area. PET statistics are summarized in Table 6.2.

Table 6.2 Statistics summary: PET (s)

Date Yielding A* Yielding B* Non-yielding

4/22/15 5.8816 1.2813 1.2917

4/23/15 4.6442 1.0625 ---

4/24/15 5.2356 1.8333 1.7083

10/12/15 5.2188 1.1250 2.3750

10/13/15 5.3073 0.2500 ---

10/14/15 5.6447 1.5417 1.1563

10/15/15 5.5486 2.1875 1.8125

10/16/15 4.7868 0.7500 0.2188

Weighted average* 5.3109 1.3000 1.1389

* Yielding A denotes yielding at the stop line.

* Yielding B denotes yielding at the turning area.

* Weighted average: The average of PET is weighted on the number of yielding or non-yielding events
in each day.

Great differences between PETs in yielding and non-yielding cases can be observed. Since PET data is
easier to obtain than yielding data, it can alternatively be used as a reference of assessing safety.

6.4 Preliminary Analysis

6.4.1 Yielding Rate & Time

The yielding rate and the histogram of total number of interactions over time are plotted, as shown in
Figure 6.1. The yielding rate is the average value of eight days’ data; the number of interactions is the
sum of eight days’ data. 
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Figure 6.1 Yielding rate and total number of interactions over time

From 8-9 a.m., 4-5 p.m. and 7-8 p.m., the yielding rate gets to the highest point of the entire day while
the yielding rate at other time slots maintains approximately 85%. Thus, time can be considered as an
important factor that may impact yielding rate. 

Furthermore, the yielding rate does not present a strong relationship with the number of interactions,
which also imply that yielding rate might not be related to volume. 

6.4.2 Yielding Rate & Crosswalk Guard

Combining the eight-hour videos and the field study, it appears that from 8-9 a.m., there was a crosswalk
guard who raised a warning sign to the right-turn vehicles when the pedestrians walked on green. Thus,
the 100% yielding rate from 8 to 9 a.m. might also be connected to the presence of guard. 

6.4.3 Yielding & Position of a Platoon

For all interaction events, 92.9% of them are leading vehicles.

For yielding cases, 93.3% of them are leading cars.

For non-yielding case, 88.9% of them are leading cars.

For the leading cars, 91.3% of them yield.

For the following cars, 85.7% of them yield.

These numbers imply that the following vehicles are more likely to make non-yielding choice while the
leading vehicles are more inclined to make yielding choice. However, the relationship is not notable and
needs further analysis.
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6.4.4 Yielding & Pedestrian Direction

For all interaction events, 48.3% of pedestrians are walking from north to south (N-S).

For non-yielding case, 61.1% of them confront N-S pedestrians.

For yielding case, 46.8% of them confront N-S pedestrians.

For N-S pedestrians, 86.9% of vehicles they meet yield.

For S-N pedestrians, 92.2% of vehicles they meet yield.

These numbers imply that vehicles are more likely to yield to S-N pedestrians than N-S ones. Still, the
difference is not obvious enough and needs further analysis.

6.4.5 Yielding & Speed

Figure 6.2 plots the average speed change of right-turn trajectories under different scenarios. Sensor 29
is the upstream of the approach where appears a clear difference between non-yielding case and yielding
(plus non-interaction) case. Thus it can be assumed that upstream speed can largely affect vehicles’
yielding behavior. Quantitative analysis will be presented in following chapter.

In addition, a similar change pattern of speed is observed between non-yielding and non-interaction,
suggesting that these non-yielding drivers behave as though they fail to see the pedestrians. 

Figure 6.2 Change of speed under three scenarios

6.5 Discrete Choice Model 

6.5.1 Limitations of Previous Literature

Previous studies (Abdulsattar et al., 1996; Leden, 2002;  Akin and Sisiopiku, 2007;  Alhajyaseen et al.,
2013; Elmitiny et al, 2010; Hubbard et al., 2009; Ling et al, 2012) are mostly conducted based on video
data, thus they contain a relatively wide range of choices of potential factors which cannot be obtained
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from sensor data, such as the group population, the dressing color of the pedestrians. However, there
exist some problems.

i) These studies are based on several hours’ video data, which are restricted to the data size and might
weaken the reliability of results.

ii) Some of the studies only conduct qualitative analysis from psychology perspective. More statistical
tests should be addressed. 

iii) For the studies that conducted quantitative analysis, to simplify the model, most used a binary output
to denote yielding or non-yielding, ignoring the variations of vehicles’ responses.

iv) Furthermore, additional characteristics have not been counted into consideration, such as the phase
factor discussed in Chapter 5.

v) Some variables need further revised. For example, for the variables, speed and the vehicle’s position
in a platoon, these two attributes of the upstream events that occurred prior to the interactions should be
considered. 

Weaknesses in  this  study were addressed by the use of eight-day sensor data,  carefully constructed
variables,  and use of  logistic  regression to  quantitatively analyze vehicles’ yielding behavior.  Three
discrete  choice  models,  including  Binary Logit  model,  Multinomial  Logit  model  and Nested  Logit
model  were  used,  to  probe  how the  potential  factors  affect  yielding  behavior  and  the  correlations
between each kind of behavior, yielding at the stop line, yielding at the turning area and non-yielding.

6.5.2 Binary Logit Model

The two behaviors, yielding at the stop line and yielding at the turning area are considered as one. Thus
in Binary Logit model, there are two alternatives (or outputs, choices), yielding and non-yielding. The
deterministic utility of each alternative is as follows:

platoon
i

position¿ β4 ×upstream speedi+ β5 × n2 si+ β6 × crosswalkguardi+β7 ×early phasei+β8 ×end phasei

V Yielding=β2 × volumei+β3× ¿

V Non− yielding=β1

The utility function of each alternative is:

 UYielding=V Yielding+ε1

UNon− yielding=V Non− yielding+ε2

ε1 , ε2 are error terms which follows same extreme value distribution.

Estimate these ten parameters on R-studio, the results is shown in Table 6.3.

Table 6.3 Estimation of parameters for Binary Logit Model*

Name Estimate Std Error P-value

Volume -2.668e-03 7.518e-03 0.723

Position in platoon 1.547 1.362 0.256

Upstream speed 1.009e-01 1.078e-01 0.349

N_S 8.075e-01 1.060 0.446

Crosswalk guard -1.706e+01 3.293e+03 0.996
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Early phase -4.077e+01 5.911e+03 0.994

End phase 4.798e-01 1.482 0.746

* Note: The total number of observations of the model is 165 based on our eight-day sensor data.

The p-values clearly show that these factors are all not significant. Thus, Binary Logit Model is not a
good choice. One of the possible reason might be that yielding at the stop line and yielding at the turning
area cannot  be considered as a  same kind of behavior,  yielding behavior  is  treated as  two and the
Multinomial Logit Model is constructed.

6.5.3 Multinomial Logit Model

Figure 6.3 Structure of Multinomial Logit Model

The two behaviors; yielding at the stop line and yielding at the turning area are treated as independent
from each other. Thus in a multinomial logit model, there are three alternatives, in which the error terms
corresponding to utility functions are independent. The model structure is shown in Figure 6.3. The
deterministic utility of each alternative is as follows:

platoon
i

position¿ β4 ×upstream speedi+ β5 × n2 si+ β6 × crosswalkguardi+β7 ×middle phasei+ β8 × end phasei

V YieldingA=β2× volumei+β3 ×¿

platoon
i

position¿ β12×upstream speedi+β13× n2 si+ β14 ×crosswalk guardi+β7 ×middle phasei+β8 × endphasei+β15

V YieldingB=β2 × volumei+β11 ×¿

V Non− yielding=β1

The utility function of each alternative is:

 UYieldingA=V YieldingA+ε1

UYieldingB=V YieldingB+ε2

UNon− yielding=V Non− yielding+ε3

ε1 , ε2 , ε3 are error terms which follows same extreme value distribution.

The estimation results are shown in Table 6.4.

Two types of variables are significant. One is phase; the other is upstream speed. And the Rho-square
shows a good fit of the model. However, the signs of the coefficients are out of our a-prior expectation
since we expected that the higher the upstream speed, the less likely the vehicles will yield to non-
motorized modes.
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Table 6.4 Estimation of parameters for Multinomial Logit Model

Name Estimate Std Error t-test P-value

Constant (NonYielding) 10.0 1.18e-07 8.49e+09 0.00

Constant (Yielding A) 2.98 1.11 2.69 0.01

End phase dummy 8.63 2.18 3.96 0.00

Middle phase dummy 8.84 2.22 3.99 0.00

Position in platoon A 1.40 1.27 1.10 0.27

Position in platoon B 1.79 1.56 1.15 0.25

Presence of crosswalk guard A 0.713 1.23 0.58 0.56

Presence of crosswalk guard B -0.307 1.39 -0.22 0.83

Upstream speed A (mph) 0.122 0.0710 1.72 0.09

Upstream speed B (mph) 0.151 0.0725 2.08 0.04

Volume (veh/min) -0.100 0.317 -0.32 0.75

Walking direction A (1:north to south) 0.0591 1.06 0.06 0.96

Walking direction B (1:north to south) 1.13 1.16 0.98 0.33

Final log likelihood:

-72.670

Rho-square-bar

0.527

6.5.4 Nested Logit Model

Next a nested structure was considered to capture the heterogeneity of scenarios of yielding at stop line
and yielding at turning area while at the same time they have some correlation since they both include
“yielding.”  The  structure  of  this  model  is  shown  as  Figure  6.4.  And  this  model  is  estimated  in
Pythonbiogeme.

Figure 6.4 Structure of
Nested Logit Model

The parameters 
estimation is 

shown as Table 6.5.
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Table 6.5 Estimation of parameters for Nested Logit Model

Name Estimate Std Error t-test P-value

Constant (NonYielding) 8.78 3.23 2.72 0.01

Constant (Yielding A) 0.173 0.0443 3.91 0

End phase dummy 10 0.000692 14456.47 0

MU1 17.1 15.1 1.14 0.26

Middle phase dummy 10.2 2.01 5.06 0

Position in platoon A 1.52 1.79 0.85 0.4

Position in platoon B 1.54 1.79 0.86 0.39

Presence of crosswalk guard A 0.606 1.81 0.33 0.74

Presence of crosswalk guard B 0.546 1.81 0.3 0.76

Upstream speed A (mph) 0.135 0.183 0.74 0.46

Upstream speed B (mph) 0.137 0.183 0.75 0.45

Volume (veh/min) -0.0725 0.47 -0.15 0.88

Walking direction A (1:north to south) 0.198 1.5 0.13 0.9

Walking direction B (1:north to south) 0.261 1.5 0.17 0.86

Constant (NonYielding) 8.78 3.23 2.72 0.01

Final log likelihood:

-72.610

Rho-square-bar

0.563

Do T-test to justify if it is a reasonable model.

H0: MU1=1

H1: MU1≠1

t-statistics = (17.1-1)/15.1=1.067 < 1.65 < 1.96

The null hypothesis at 95% confidence level cannot be rejected, which also implies that the multinomial
model should be applied and that the two types yielding behavior should be considered independently.

6.6 Discussion
The comparison of the multinomial logit model and nested logit model reveals that two types of yielding
should be treated independently from each other. In addition, the phase time and upstream speed show
high statistical significance. However, according to the signs of the coefficients, vehicles arriving during
the middle and end phases are more inclined to yield to pedestrians/bicycles than those arriving in the
early phase (leading pedestrian interval). Similarly, the coefficient associated with the upstream speed
indicates that the higher the upstream speed, the more likely the vehicles will yield to pedestrians. These
observations do not match with the a-priori expectations since the leading phase aims to provide an
independent  and safe environment  for pedestrians/cyclists  crossing the road,  and a higher  upstream
speed usually represents lower yielding rate. 

Some of the biases associated with these results might come from:

1. The accuracy of extracting each variable using sensor data; 
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2. Errors propagating from the trajectory-based analysis; 
3. The model specifications; 
4. The size of the dataset is small (due to low levels of non-motorized activity at the intersection). 

Thus, to further research on the yielding analysis, the following steps can be undertaken in the future: 

1. Enlarge our dataset to check if the new results are consistent with our previous ones.
2. Revise the model specification, such as try nonlinear formula of utility function.
3. Increasing the accuracy of the algorithms by probing other methodology instead of using time

difference.
4. Improve the accuracy of the mode classification algorithms.
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7 Analysis of Mode-Specific Safety-Critical Behavior 
The  trajectory-based  classification  developed  in  chapter  4  facilitates  the  inference  of  vehicle  and
crosswalk movements. The trajectories in effect provide an estimate of the number of modes traveling
across different parts of the intersection. Chapter 5 and 6 reveal the application of the trajectories for
inferring multi-modal safety-critical dynamics such as right-turn yielding. In this chapter, a couple of
other applications of the trajectories shall be explored to identify mode-specific safety-critical events. In
particular, this chapter will focus on red light running and crosswalk movement in the absence of a
pedestrian phase.

7.1 Crosswalk Movement in the Absence of a Pedestrian Phase
The analyses in the previous chapters have focused on events surrounding the pedestrian phase, which is
activated  by a  push-button  at  the  edges  of  the  crosswalk.  However,  it  has  been observed in  urban
surroundings  that  pedestrians  may choose  to  cross  the  street  when  there  is  a  green  signal  for  the
accompanying straight movement, but the road user is unable to activate the pedestrian phase in time.
The safety concern in this setting is that in the absence of a dedicated pedestrian phase, the road user
may not get sufficient time to cross.

The analysis presented in this section focuses exclusively on finding vehicle green phases associated
with the NS movement, and which do not have any overlapping lead pedestrian phase. The search for
such instances in both the training and test data revealed a total of 4925 phases (~615 phases per day). In
comparison, the number of NS movement phases with a lead pedestrian phase averaged 55/day. The
difference in the number of pedestrian-activated and non-pedestrian-activated phases is indicative of the
relatively low levels of non-motorized traffic at this crosswalk location. 

The results of the trajectory-based analysis using the training and test data are shown in Table 7.1. The
accuracy of  the  classifier  vis-à-vis  differentiating  motorized  and  non-motorized  modes  was  98.4%.
However, about 4% of the right (NW) movements were misclassified as straight (EW) movements,
for reasons described earlier. 

Table 7.1 Results of trajectory-based classification during non-pedestrian NS movement phase

Mode
Coun

t
Right
NW

Righ
t

WS

Straigh
t EW

Straigh
t WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d

Motorize
d

1126 920 82 98 8 0 0 18

Grand
Total

1126 920 82 98 8 0 0 18

The results  reveal  that  there were no non-motorized modes crossing the crosswalk during the time
periods that video recordings were available. In fact, for the eight days of sensor data available, there
were only two crosswalk trajectories estimated for the NS vehicle phases without a pedestrian-actuated
signal. Both the crosswalk trajectories corresponded to the same vehicle phase, which took place during
5:32 and 5:33 PM on March 22, 2015. While there was no video evidence for this time period, the time-
space  diagram plotted  within  the  data  visualization  tool  shows  the  trend  to  correspond  to  a  NS
movement (Figure 7.1).

63



Figure 7.1 Crosswalk movement detected during non-pedestrian phase

Using Figure 7.1, it can be inferred that the NS vehicle movement phase is active, and much of the
traffic is moving from NE as part of a dedicated left turn movement. In comparison, the exit lanes in
the western leg of the crosswalk are inactive, indicating an absence of any evidence of right (NW)
movements. Given the evidence, the most likely scenario is follows:

In the absence of a pedestrian actuation upfront (probably because there were no pedestrian
available on site at first), only the vehicle phase was activated. Subsequently, it appears that two
(or more) pedestrians arrive at the intersection. Even though the pedestrian phase was not active,
they  decide  to  cross  12-14  seconds  into  the  vehicle  phase.  The  undertaken  crossing  was
completed by the time the vehicle phase ended.

Under the given circumstances, the crossing seems to have been navigated safely, and the surrounding
traffic conditions do not appear to pose any threat to the road users crossing the intersection. However,
in the absence of a dedicated pedestrian signal, there may not always be sufficient time for pedestrians
and cyclists to cross the intersection, and thus such a manoeuver can be safety-critical for non-motorized
modes. 

The  detection  of  such  a  low  probability  event  shows  the  advantages  of  round-the-clock  routine
monitoring—a peak period analysis may not capture such a dynamic. In fact, at other locations where
the non-motorized traffic is more in number and spread across in time, the probability of a pedestrian
arriving during a vehicle phase maybe not be as low. Considering that different people have different
risk-taking preferences, it lead may lead to vehicle-pedestrian interactions, which can be captured by this
automated framework.

7.2 Vehicles Running Red Lights
Figure 7.1 shows some EW and WE movements taking place during the NS (and NE) green phase,
which is typically not to be expected. A deeper look at the data reveals that these events correspond to
spillovers from the end of the previous phase. It is possible that some of those trajectories may have
been initiated prior to the end of the previous green, but their arrival at the crosswalk at the start of
another phase can be a cause for concern.
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To capture the red light violations, it is possible to classify trajectories within a short time window which
begins at the end of the phase corresponding to EW and WE movements (phases 2 and 6) and ends
three  seconds  later  (capturing  the  loss  time).  More  specifically,  the  trajectory  classification  was
conducted using the following approach:

 Find the ends of all phases which correspond to EW and WE movements. For each such time,
t : 
o Find the magsensor events as follows:

 Find all events associated with magsensors 4, 5, 19, and 21 which took place in

the time period (t , t+3) . These sensors are the stop bar magsensors associated
with the EW and WE movements,  and the time period under consideration
ensures that the motor vehicles leave the stop bar locations after the signal has
turned red.

 For all other magsensors, find events which took place between (t−10, t+10) ,

so as to capture both exit lane events as well as any other trajectories which may
be getting triggered during the study period.

o Find all microradar events getting de-activated between (t+1, t +4) . 

The cross-validation of the results associated with this classification against the labeled training and test
data, is shown in Table 7.2. 

Table 7.1 Results of trajectory-based classification during the loss time
 following EW and WE movements

Mode
Coun

t
Right
NW

Righ
t

WS

Straigh
t EW

Straigh
t WE

Crosswal
k SN

Crosswal
k NS

Unclassifie
d

Motorize
d

213 93 10 93 8 0 0 17

Grand
Total

213 93 10 93 8 0 0 17

The accuracy of the trajectory-based classifier vis-à-vis classifying motorized and non-motorized modes
is 93% with all the errors associated with unclassified events. The accuracy for classifying the straight
vehicle movements and right turning movements are 96% and 90.3%, respectively. The errors associated
with the right turn movements are some right (NW) movements which got misclassified as straight
(EW) movements, and some right (WS) movements which remained unclassified.

The  results  of  the  analysis  reveal  that  red  light  violations  can  be  identified  using  trajectory-based
classification, the accuracy of which would also improve with all the magsensors functioning properly. A
snapshot from the video recordings of one of the classified events is shown in Figure 7.2 wherein a
pickup truck is shown to be crossing the crosswalk while a couple of vehicle on the top-right corner of
the image are getting ready to move. 
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Figure 7.2 An example of a vehicle violating the red light

Overall, across the eight days of observations, there were 485 red-light violation trajectories (76 WE 
and 409 EW trajectories) which were estimated to have taken place at the end of 5166 EW/WE 
phases. Assuming a 96% accuracy, the probability of seeing such red light violations is 9.02% during a 
straight movement phase.

The distribution of all red light violations by time of day is shown in Figure 7.3. The distribution reveals
that there are two spikes between 8 to 9 AM, and 3 to 4 PM.

0.0%
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4.0%
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14.0%
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% of red light violations by phase

Figure 7.3 Distribution of red light violation by time of day
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8 Sensor-Based Classification of Motorized/Non-Motorized Modes
In Chapter 4, a trajectory-based classification method was proposed to distinguish the microradar events
by movement type. Since the movements themselves can also be differentiated by whether they are
oriented along the crosswalk or not, the trajectory-based classification method also implicitly classifies
the  microradar  events  by  whether  they  were  triggered  by  a  motorized  or  a  non-motorized  mode.
However,  as  the  results  indicated,  a  majority  of  the  classification  errors  using  the  trajectory-based
approach were linked to unclassified events.

In this chapter, the labeled microradar events shall be used to train a binary logit model to differentiate
between motorized  and non-motorized  events.  In  contrast  to  the  trajectory-based classification,  this
model shall evaluate individual microradar events, which imposes fewer restrictions on the classifier.
The explanatory variables used to develop the model include microradar event information such as event
duration, bulk values, sub-channel statuses, etc.  In addition, information such as overlapping sensor
events, time difference between other sensor events, can also be utilized. 

In the following sections, the binary logit models developed for microradar sensors 2 to 12 will  be
described. For each of these models, the deterministic utility function for the motorized modes will be
assumed to be 0, and the explanatory variables described will be associated with the utility function
defined for non-motorized modes. As a result, the utility functions can be written as follows:

UNon−Motorized=β X+ε1

U Motorized=ε2

Once the binary logit  models  are  trained,  the in-sample  and out-of-sample predictions  are  done by
comparing the value of the utility functions for a given sensor event. 

The data used to train and test the sensor-specific models are the labelled data described in chapter 4.
The binary logit model was estimated in MATLAB as a generalized linear model.

8.1 Microradar 12
The explanatory variables associated with the deterministic utility function for non-motorized modes at
microradar 12 are show in Table 8.1. The p-values indicating a statistical significance of more than 99%
are shown in bold.

Table 8.1 Binary logit model for microradar 12

Microradar 12 (Accuracy: 287/290)

X β p

Constant -0.11935
0.93

9

Bulkchanges -0.86464
0.06

1

Log(mrad_11_aft)
0.65881

6
0.07

9

Log(min(mrad_10_bef, mrad_10_aft)) -1.67191
0.01

3

Log(min(mrad_7/8_bef,
mrad_7/8_aft)) -1.66184

0.04
4
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Log(min(mag_1_aft, mag_2_aft))
3.13150

8
0.00

1

The results of the classification using the model developed in Table 8.1 leads to an accuracy of 98.9%
for  the  microradar  12  events  in  the  training  data.  The  description  and  the  interpretation  of  the
explanatory variables are provided below:

 Bulkchanges:  This  variable  represents  the number  of  times  the bulk  value changes  during a

single event. The negative sign of this variable matches the a-priori expectation, which is that a
motorized vehicle has a more variation in the single strength, thus leading to more bulk changes
than an event associated with non-motorized mode.

 Log(mrad_11_aft):  mrad_11_aft represents  the  time  difference  between  the  sensor  12

deactivation and the earliest sensor 11 de-activation after that. Since motor vehicle movements
across microradar 12 are also likely to cross microradar 11 in quick succession, the positive sign
associated with this variable implies that longer the time difference between successive events at
these two microradar locations, the more likely that the associated sensor 12 event is a non-
motorized mode.

 Log(min(mrad_10_bef, mrad_10_aft)): This variable seeks to capture the closest microradar 10

event either before and after the microradar 12 event under consideration. Since microradar 10 is
just downstream of microradar 10, the detection of an event at this location maybe an indication
that a non-motorized mode may have left from or is approaching microradar 12. Hence, a longer
time interval between successive microradar 10 and 12 events would correspond to a higher
probability  of  the  sensor  being  triggered  by  a  motorized  mode  due  to  the  corresponding
coefficient’s negative sign. 

 Log(min(mrad_7/8_bef,  mrad_7/8_aft)):  This  variable  captures  the  time  difference  between

closest microradar 7 or 8 event, with the rationale that detecting other events along the crosswalk
can be indicative of crosswalk movement. As a result, a large value of this variable would be
more likely to be associated with motorized modes.

 Log(min(mag_1_aft, mag_2_aft)): Similar to the time comparisons with other microradars on the

crosswalk,  this  variable  looks  at  the  time  lag  between  events  on  microradar  12  and  the
magsensors in the exit lanes. Since vehicles traversing the crosswalk at microradar 12 are likely
to trigger an event in the exit lane, a smaller time gap between these two types of sensor events is
more likely to be indicative of a motor vehicle event.

8.2 Microradar 11
The explanatory variables associated with microradar 11 are shown in Table 8.2. The results show a p-
value  of  1,  which  was  primarily  because  the  estimation  process  could  not  be  completed  once  the
underlying algorithm achieved a 100% accuracy. 
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Table 8.2 Binary logit model for microradar 11

Microadar 11 (Accuracy: 362/362)

X β p

Constant
10.8548

1
1.00

0

Duration
19.1519

8
1.00

0

BulkMax + BulkMax*Channel
-

0.65941
1.00

0

Log(min(mrad_7/8_bef,
mrad_7/8_aft)) -68.106

1.00
0

Log((mrad_12_bef))
13.1070

7
1.00

0

Log(min(mag_1_aft, mag_2_aft))
103.563

3
1.00

0

Log(mag_19_bef)
5.59857

2
1.00

0

The variables associated with the deterministic utility model for non-motorized modes are described in
further detail below:

 Duration: The duration of a microradar event is typically longer for non-motorized modes which

travel across the length of the crosswalk, as opposed to motorized vehicles which travel across
the  width  of  the  crosswalk.  Hence,  a  positive  sign  indicates  that  longer  the  duration  of  a
microradar event, the more likely that it is a non-motorized event.

 BulkMax + BulkMax*Channel:  This variable combines the signal strength of the event along

with the presence of a sub-channel status of (1,1). The negative sign is consistent with the a-
priori hypothesis that motorized events are more likely to have higher bulk values as well as
trigger the sub-channel status of (1,1).

 Log(min(mrad_7/8_bef,  mrad_7/8_aft)):  The  negative  sign  associated  with  this  variable  is

consistent with the a-priori expectations, which is to detect the presence of activity along the
crosswalk.

 Log(mrad_12_bef):  The  positive  sign  indicates  that  the  longer  the  time  separation  between

events at microradars 12 and 11, the more likely that the event at microradar 11 is triggered by a
non-motorized mode.

 Log(min(mag_1_aft, mag_2_aft)): The positive sign of the coefficient indicates that the longer

the time separation between events on the crosswalk and the exit lane, the more likely that the
event is triggered by a non-motorized mode.

 Log(mag_19_bef):  Similar  to  the previous  variable,  a longer  time separation between events

associated at the crosswalk and the approach lane at the other end of the intersection leads to a
higher probability that the event is a non-motorized mode.
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8.3 Microradar 10
The explanatory variables associated with microradar 10 are shown in Table 8.3. Once again, the p-value
of 1 is a result of the estimation process getting interrupted once the underlying algorithm achieved
100% accuracy. 
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Table 8.3 Binary logit model for microradar 10

Microradar 10 (Accuracy: 231/231

X β p

Constant
1662.41

6
1.00

0

Duration
143.725

9
1.00

0

BulkMax -12.3136
1.00

0

BulkMax + BulkMax*Channel -0.48317
1.00

0

Log(min(mrad_9_bef, mrad_9_aft))
7.05611

8
1.00

0

Log(min(mrad_7/8_bef,
mrad_7/8_aft)) -86.5482

1.00
0

Log(magbef_19)
23.8377

6
1.00

0

Log(magaft_2)
2.66074

5
1.00

0

The variables described in Table 8.3 can be divided into sensor-specific information (duration, bulkmax,
channel), sensor events that can be part of vehicle trajectories (microradar 9, magsensors 2 and 19), and
sensor  events  that  can  be  part  of  crosswalk  movements  (microradars  7  and  8).  The  signs  of  the
coefficients match the a-priori expectations.  

8.4 Microradar 9
The explanatory variables associated with microradar 9 are shown in Table 8.4. This classifier  also has
an accuracy of 100%. 

Table 8.4 Binary logit model for microradar 9

Microradar 9 (Accuracy: 248/248)

X β p

Constant -83.7352
1.00

0

Duration
272.387

6
1.00

0

BulkMax + BulkMax*Channel -1.347
1.00

0
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Log(min(mrad_7/8_bef,
mrad_7/8_aft)) -275.973

1.00
0

Log(magaft_2)
160.248

6
1.00

0

The variables described in Table 8.4 match the a-priori expectations.  

8.5 Microradar 8
As the results in Table 8.5 show, the binary logit model for microradar 8 has an accuracy of 100%.
However, since the data looks at events around the pedestrian phase, it turns out that all the microradar
events in the training data correspond to non-motorized events. Consequently, the coefficient estimates
of all variables are close to zero, while the constant sign dominates the classification (the positive sign of
the constant term means that all events will be assigned to be non-motorized modes).

Table 8.5 Binary logit model for microradar 8

Microradar 8 (Accuracy: 71/71)

X β p

Constant
102.566

1
1.00

0

Duration
-3.14E-

13
1.00

0

BulkMax
-1.82E-

13
1.00

0

BulkMax + BulkMax*Channel 1.25E-14
1.00

0

Log(min(mrad_10_bef,
mrad_10_aft))

-8.56E-
14

1.00
0

Log(min(mrad_7_bef, mrad_7_aft))
-6.20E-

14
1.00

0

Log(magbef_5) 4.29E-12
1.00

0

8.6 Microradar 7
Similar to micrordar 8, all but one of the 67 events in the training data corresponds to non-motorized
modes. In addition, the one motorized event in the training data corresponds to a vehicle which stops
beyond the stop bar location, thus triggering the microradar for a long period of time (~30 seconds), but
with a low bulk strength (130). As a result, the classifier seeks to distinguish that single motorized event
from the rest, which is reflected in the negative sign associated with the duration of the event. 

Table 8.6 Binary logit model for microradar 7

Microradar 7 (Accuracy: 64/64)
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X β p

Constant -106.368
1.00

0

Duration
-

6.47E+00
1.00

0

BulkMax 1.60E+00
1.00

0

BulkMax + BulkMax*Channel -3.03E-02
1.00

0

Log(min(mrad_9_bef, mrad_9_aft))
-

2.06E+00
1.00

0

Log(min(mrad_8_bef, mrad_8_aft))
-

1.60E+00
1.00

0

Log(magbef_5) 2.93E+00
1.00

0
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8.7 Microradar 5
For the binary logit model associated with microradar 5, in addition to the sensor-specific information,
the  other  explanatory  variables  include  microradar  events  occurring  at  its  neighrboring  sensor
(microradar 4), as well as the magsensors which lie along the straight WE movement (magsensors 7
and 16). The accuracy of the classifier is 100% and signs of the coefficients are consistent with the a-
priori expectations.

Table 8.7 Binary logit model for microradar 5

Microradar 5 (Accuracy: 126/126)

X β p

Constant
2302.43

5
1.00

0

Duration
11.9837

1
1.00

0

BulkMax -17.3867
1.00

0

Log(min(mrad_4_bef, mrad_4_aft)) -3.4733
1.00

0

Log(magbef_7+magaft_16)
40.7762

6
1.00

0

8.8 Microradar 4
The binary logit model associated with microradar 4 is described in Table 8.8. The accuracy of the
classifier is 100% and signs of the coefficients are consistent with the a-priori expectations.

Table 8.8 Binary logit model for microradar 4

Microradar 4 (Accuracy: 113/113)

X β p

Constant
747.817

4
1.00

0

Duration
53.7961

2
1.00

0

BulkMax + BulkMax*Channel -6.47204
1.00

0

Log(min(mrad_3_bef, mrad_3_aft)) -17.9803
1.00

0

Log(magbef_7+magaft_16)
60.3105

8
1.00

0
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8.9 Microradar 3
The binary logit model associated with microradar 3 is described in Table 8.9. In this case, the best fit
model utilized only the bulk and sub-channel status, as well as using the information that sensors 7 and 8
events are almost always likely to indicate the presence of non-motorized modes. The accuracy of the
classifier is 96.6% and the signs of the coefficients are consistent with the a-priori expectations.

Table 8.9 Binary logit model for microradar 3

Microradar 3 (Accuracy: 84/87)

X β p

Constant
11.2401

7
0.0
0

BulkMax + BulkMax*Channel -0.02441
0.0
2

Log(min(mrad_7/8_bef, mrad_7/8_aft)) -3.42847
0.0
0

8.10 Microradar 2
The binary logit model associated with microradar 2 is described in Table 8.10. The accuracy of the
classifier is 100% and the signs of the coefficients are consistent with the a-priori expectations even
though the p-values could not be appropriately estimated within MATLAB.

Table 10 Binary logit model for microradar 2

Microradar 2 (Accuracy: 67/67)

X β p

Constant
488.886

9
1.0
0

BulkMax + BulkMax*Channel -1.22736
1.0
0

Log(min(mrad_7/8_bef,
mrad_7/8_aft)) -127.847

1.0
0

Log(magaft_9)
53.7889

3
1.0
0

8.11 Analysis of Test Data
The results of the sensor-specific classification shown in the previous section reflect a high level of
accuracy of the binary logit models. However, it is possible that the models developed using the training
data may have been overfitted. Consequently, it is important to test the validity of the models against the
test data. These results are shown in Table 8.11. The overall accuracy of 96.9% when labeling the test
data is significantly higher than the trajectory-based classification accuracy of 89.2%. 
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Table 8.11 Accuracy of the binary logit models on the test data

Test Data: Oct 15-16 (incomplete)

Sensor ID Matched Total Accuracy

12 117 118 99.2%

11 151 154 98.1%

10 60 63 95.2%

9 63 68 92.6%

8 24 24 100.0%

7 22 25 88.0%

5 42 42 100.0%

4 41 41 100.0%

3 37 39 94.9%

2 35 37 94.6%

Total 592 611 96.9%

 

The worst performance corresponded to sensor 7, which was due to the misclassification of three events
which were triggered by vehicles stopping in front of the stop bar location, but for short time intervals.
Since such events were not observed in the training data, the binary logit model could not classify such
events accurately. 

When  compared  to  the  performance of  video-base  mode classifiers,  the  prediction  accuracy of  the
sensor-based  classification  system  might  be  superior.  However,  the  future  work  should  look  into
incorporating additional modes such as cyclists, buses, and trucks, into the classifier using additional
labeled data. 

Based  on  the  results  of  the  sensor-based  classification,  some  of  the  major  difference  between  the
trajectory-based and the sensor-specific classification can be summarized as follows:

 Trajectory-based  classification  is  primarily  a  rule-based  approach,  while  the  sensor-specific

classification is  a  more data-driven approach. Consequently,  while  the latter  can let  the data
identify the appropriate features that best classify the events, it also relies on a large enough
sample  of  events  to  cover  all  possible  scenarios.   In  comparison,  the  trajectory-based
classification can still be developed with limited data based on the spatio-temporal aspects of the
trajectories.

 Trajectory-based classification simultaneously classifies multiple sensor events at once, or none

at all. This leads to unclassified events when the requisite conditions are not met. In comparison,
the sensor-specific analysis provides the flexibility of classifying individual sensors.

 Trajectory-based  classification  can  facilitate  counts  by  movements  and  modes,  whereas  the

proposed sensor-specific classification is thus far limited to mode differentiation.
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9 Additional Algorithms for Inferring Non-motorized Trajectories
In the mode classification frameworks presented thus far, a major challenge has been differentiating the
number of non-motorized modes using the crosswalk. In the case of the trajectory-based approach, the
limiting factor was the assumption that a microradar event can be uniquely associated with only one
trajectory. In the sensor-based classification, it might be possible to extend the binary logit classification
to a multinomial/mixed logit specification which can accommodate a wide variety of modes. However,
since these models are implemented on individual sensors, the mode trajectories do not get directly
inferred from such a framework. 

As part of this research effort, some trajectory estimation algorithms have been approached which can
utilize classified non-motorized mode events as inputs. The objective of these approaches is to utilize the
duration of the microradar events to ascertain if one or more trajectories may be crossing the crosswalk.
The proposed frameworks are exploratory in nature and are thus not evaluated as exhaustively using the
labeled events.

9.1 Hough Transform
The Hough transform is a technique originally used in image analysis for edge detection. It seeks to
identify line segments which can be formed from individual points in an image. The approach works as
follows: 

For each point, for all lines going through this point, there exists a unique distance-angle relationship
that  can be used to  characterize the lines.  For each point,  it  is  possible  to  plot  in  a  distance-angle
diagram all possible lines going through, which is represented as a sine curve. In an ideal setting, a
perfect overlap of all curves at a unique point results in the identification of a straight line that passes
through all the points of interest. An example of this approach is shown in Figure 9.1.

Figure 9.1 Implementation of Hough Transform (Source: Wikipedia)

In the context of this study, a potential application of this technique is to plot the Hough transform of all
microradar events in the time-space diagram and then apply the clustering method to combine disjointed
lines. Figure 9.2 illustrates an implementation of the Hough transform using the microradar data.
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Figure 9.2 Implementation of Hough Transform using microradar data

The steps required to implement the Hough Transform shall be outlined in the following sections.

9.1.1 Data Preparation

For each pedestrian phase, the labeled data from the binary logit models can be used to identify potential
non-motorized mode events. For each of those events, the event duration is discretized using a sampling
rate of 8 Hz. The y-axis values of each microradar are used to represent the sensor location. As a result, a
collection of points, referred to by their (t,y) co-ordinates, is available as an input for Hough Transform.

9.1.2 Hough Transform Algorithm

Using the (t,y) pairs associated with each non-motorized mode, it is possible to implement the Hough
Transform algorithm within each pedestrian phase. Herein, for each point, an array of potential straight
lines passing through it are identified. These lines are parameterized using an (r,θ) pair, as illustrated in
Figure 9.3. 

Figure 9.3 Representing a line as an (r,θ) pair
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However, since each sensor event is discretized into multiple points (1 second duraction = 8 discrete
points), the Hough Transform can identify multiple similar-looking straight lines which can pass through
all sensor events. In order to infer unique trajectory events from the distribution of (r,θ) values, Kernel
Density Estimation is used.

The role of Kernel Density Estimation is to produce a smoothened distribution of (r,θ) by summing up
the values associated with independent and identically distributed kernels centered at each observation.
The  size  of  the  kernels  is  determined  by a  bandwidth  parameter,  and  the  output  of  KDE can  be
visualized as a heatmap, as shown in Figure 9.4.

Figure 9.4 A heatmap representing the distribution obtained using KDE

The heatmap can  help  identify different  locations  within  the  (r,θ)  plot  with the highest  density,  by
finding modes with the highest density. At this juncture, bounds can also be imposed on the range of θ’s
and/or r’s, so as to ensure meaningful trajectories. In addition, since there can be many modes within the
density distribution, some metric needs to be identified to limit the number of trajectories that can be
identified, such as by creating a threshold for the density distribution or evaluating the decay of the
highest values within the density distribution. 

The results associated with the Hough Transform are still preliminary but some initial attempts look
promising. Figure 9.5 illustrates an example where the heatmap reveals two distinct modes, which in
turn reflect in two separate trajectories being inferred. 
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Figure 9.5 An example of the Hough Transform capturing multiple trajectories

In order to refine the Hough Transform, future work must look into identifying a method to determine
the threshold for identifying trajectories using the labeled non-motorized data. While the straight line
representation of trajectories can accommodate some variation in the speed of the underlying modes, the
inherent can be restrictive under conditions where the modes change their speeds drastically midway
through the trajectory.

9.2 Particle Filtering
Particle filtering is an example of a state estimation problem, wherein the challenge is to accurately track
the true states of the targets given noisy observations and also follow their through time. The tracking of
the  target  maybe  done  through  a  motion  model,  and  the  state  estimation  is  conducted  through  a
measurement model. In order to account for the noisy observations, the underlying, unobserved state of
an object can be modeled as part of a hidden Markov model which depends on the observed sensor state
(Figure 9.6).

Figure 9.6 Representation of a Hidden Markov Model

The main idea of particle filtering is to simulate all possible trajectories with a sample of “particles”
using Monte Carlo methods. The advantage of a simulation-based framework is that it is possible to
create a large sample of trajectories with varying speeds which can potentially trigger the observed
sensor events. 

A preliminary implementation  of  a  particle  filtering  algorithm using  a  Markov Chain  Monte  Carlo
(MCMC) simulation technique is explained below:
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9.3 Definitions
 Unallocated point (false negative):  when a microradar is triggered in the ground truth but there

is no trajectory estimated to go through the detection zone. 
 Non-existent point (false positive): when a trajectory goes through a detection zone but the radar

does not actually light up
 Hidden Markov model:

o Assume we know position and speed at time t
o Between t and t+dt, speed is modified according to a Gaussian noise with mean zero in

both directions x and y. 
o We can compute now position at time t+dt

 Trajectory Likelihood:  the likelihood that a pedestrian had such a trajectory given the Markov

model. It is the product of the likelihoods of all the Gaussian noises from each step  dt in the
Hidden Markov model.

9.4 Algorithm
1. Define the physics of the model

a. Microradars 
i. Positions

ii. Detection zone dimensions and shapes (approximate)
b. Hidden Markov model

i. Variance of noise in speed
ii. Probabilities of false positive and false negative

c. Data parameters
i. Time sampling interval dt

2. Initialization
a. Load pedestrian phase data 
b. All points are considered as unallocated (or ‘false negative’)

3. For each time t in the phase
a. For each unallocated point p at time t

i. Assume speed vt at time t is
1. Negative if p is in the ‘upper part’ of the crosswalk
2. Positive otherwise

ii. Assume position of pedestrian is yt, the position of the radar p
iii. Trajectory Sampling:

1. Samples N random trajectories such that at time t, position is yt, and speed
is vt

2. For each trajectory, computes the added likelihood: 
a. Trajectory Likelihood (see definitions)
b. Add  likelihood  of  inexistent  points  added  by  trajectory  (see

definitions)
c. Substract likelihood of  unallocated points removed by trajectory

(thus called allocated points)
3. Returns trajectory with maximum added likelihood

iv. If added likelihood > threshold
1. Add the trajectory as a new pedestrian
2. Remove newly allocated points from the set of unallocated points
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While the implementation of the algorithm still needs to be refined further, it can be seen that particle
filtering  can  provide  a  lot  of  flexibility  in  estimating  different  types  of  movement  trajectories.  For
instance, Figure 9.7 shows an example of the trajectories identified using particle filtering for a sample
pedestrian phase. Herein, the simulated movements are captured along the time-space diagram, as well
as a top-down representation of the crosswalk. The ellipses are represented as approximate detection
zones for the microradars.  In this  case,  the particle filter  is  able to  classify the two emerging SN
trajectories efficiently. However, the trajectory in green is estimated to be a pedestrian reversing his/her
direction.  While  such  a  pedestrian  movement  is  feasible,  if  the  sensor  classification  as  non-
motorized/motorized modes is either unavailable/inaccurate, the particle filter can overfit the data.

Once again, as part of the future work, the particle filtering algorithm needs to be improved to optimize
the trajectory identification, as well as identify appropriate thresholds to terminate the process so as to
not overfit the model.

Figure 9.7 An example of a particle filtering simulation

9.5 Discussion
In summary,  the trajectory estimation approaches discussed above represent  potential  approaches  to
utilize classified non-motorized data. While the particle filtering framework provides a lot of flexibility
in identifying a wide variety of trajectories, its current implementation is computationally inefficient. In
comparison, the Hough Transform provides a computationally efficient technique to infer movements
across the crosswalk. Since these frameworks use labeled microradar events as inputs, the future work
shall  look  into  distinguishing  events  triggered  by  2+  pedestrians/cyclists,  so  as  to  better  isolate
overlapping trajectories.  
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10 Computer Vision-based Tracking of Modes 
The focus of the chapters presented thus far has been on developing algorithms to infer movements and
interactions  between  different  transportation  modes  using  in-pavements  sensors.  The  in-pavement
sensors  summarize  all  the  transportation  activity  taking  place  in  their  vicinities  as  individual,
disaggregated events, which enables long-term data collection. However, the quality of information is
determined by the number of sensors involved as well as their placement with respect to the several
traffic  movements.  In  addition,  the  sensing  architecture  cannot  be  shared  by multiple  locations  to
conduct short-term studies. In comparison, a mobile sensing platform, such as video cameras, is more
flexible  in  nature,  and can be easily deployed for both short-term and long-term studies.  However,
historically, a major limitation of video analysis has been the capability to automatically infer modes and
their  trajectories.  In recent times,  there have been some research efforts to harness computer vision
techniques to automate traffic safety analysis using video data, and this chapter will briefly explore their
suitability for the study location.

This chapter utilizes an open-source computer vision code repository called Traffic Intelligence which
implements a feature-based tracking algorithm that infers movements of objects by grouping trajectories
of distinguishable features that move in similar fashion. The details of the algorithms are provided in
Saunier and Sayed (2006). In order to customize the tool for the study location, the following steps are
required to be undertaken:

1. Compute a homography matrix to calibrate the camera for the study location.

2. Develop a mask for the video analysis which determines the parts of the video are available for
identifying features and objects. 

3. Calibrate the parameters of the feature-based tracking algorithm to identify the modes accurately.

10.1 Computing Homography Matrix 
The homography matrix provides the ability to translate distances within the video frames (represented
in pixels) into the real world setting. It can be computed for a given location by comparing the images
seen from the video with an aerial view. The advantage of using aerial imagery is that distances between
different parts  of the intersection can be inferred using the distance scale associated with the aerial
image. 

The images used to develop the homography matrix for the study location are shown in Figure 10.1. In
order to compute the homography matrix, points referring to different parts of the intersection are first
established from within the image captured by the camera. Thereafter, the corresponding intersection
locations are identified within the aerial image. Using the paired points from the two images, along with
information about the distance scale of the aerial image, the homography matrix can be computed using
a  pre-written  code  provided  by  Traffic  Intelligence.  Further  details  associated  with  the  camera
calibration procedure are available at Ismail et al (2013).
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(a) View from the camera            (b) Aerial view

Figure 10.1 Images used to compute the homography matrix

10.2 Preparing Mask for Video Analysis
The  mask  is  a  black-and-white  image  with  the  same dimensions  as  the  video frame.  The primary
purpose of the mask is to limit the scope of the video analysis to locations of interest. For instance, in the
videos under consideration, the top part of the videos contains a timestamp. Since the changes in the
timestamp are not relevant for the purposes of feature extraction, it can be omitted from the analysis
using a  mask.  Alternatively,  a  mask can also be prepared which focuses  the analysis  solely on the
crosswalk. These mask representations are provided in Figure 10.2.

        

        (a) Excluding the timestamp                           (b) Including only the crosswalk region

Figure 10.2 Examples of masks

10.3 Feature-Based Tracking & Grouping
Once the camera calibration and mask preparation is complete, the final step involves the parameters
associated  with  tracking  and  grouping  features.  The  term  “features”  refers  to  any  distinguishable
points/lines  within  an image which  can  be  tracked across  frames.  Since  a  moving object  can have
multiple features associated with it, a subsequent procedure groups features which move in a similar
fashion across several frames within the video. Both feature-tracking and feature-grouping are a function
of several  different  parameters which need to be calibrated to be able  to infer the different  objects
observed within the video.

Some of the parameters associated with feature-tracking include maximum number of features added at
each frame, minimum distance between features (in pixels), minimum displacement to keep features (in
pixels), maximum feature deviation, etc. Changing these parameter estimates influences both the quality
and the quantity of features that would be tracked by the algorithm.   
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Once the features are tracked and stored, the feature-grouping component of the algorithm evaluates
each feature with respect to other features to ascertain the ones that are in close proximity along both
space  and time.  For  instance,  maximum distance  between features  for  grouping would  identify the
maximum separation between two trajectories over time and group them into a single object if their
relative  separation  was  below the  chosen threshold.  Another  similarly functioning parameter  is  the
segmentation distance,  which is  defined as  the upper  limit  for  the  difference in  the maximum and
minimum relative distance between two features. In other words, the segmentation distance limits how
much relative  separation  is  allowed between two features.  Connection  distance is  used  to  evaluate
whether  a  new feature  added  at  any given  time,  t,  can  be  grouped  with  an  existing  feature—this
parameter helps combine features which may potentially represent the same object, but are initiated as
trajectories at different points in time. Other parameters may also put constraints on whether a group of
trajectories  can  be  considered  to  be  a  valid  vehicle  hypothesis  or  not.  These  parameters  include
minimum average number of features per frame,  minimum length of feature,  minimum cosine of the
angle between the velocity vectors, etc.

But  more  generally,  the  principal  trade-off  that  is  required  to  be  made  as  part  of  feature-tracking
algorithm is  to  maintain a  balance between erring towards over-segmentation versus  over-grouping.
Over-segmentation refers to a single mode being inferred as two or more object trajectories, while over-
grouping refers to two or more modes being grouped as single object.

Once the parameters are chosen, the feature-tracking and feature-grouping elements of the algorithm can
be computed in succession.  Thereafter these trajectories/objects can be overlaid on top of the video
frames  to  visualize  how  the  chosen  parameters  influence  the  tracking  process.  It  is  important  to
recognize here that while the code repository comes with a set of default values, the calibration process
may lead to some different values based on the orientation of the camera, the angle of view, the quality
of the video, and the types of modes being tracked. 

10.4 Initial Findings
While an exhaustive comparison of video analysis and in-pavement sensor-based detection could not be
completed  as  part  of  this  effort,  some  preliminary  observations  associated  with  calibrating  Traffic
Intelligence can be reported using some illustrative case studies. 

Consider the images shown in Figures 10.3 that correspond to events taking place on April 24, 2015.
These  images  show  different  types  of  traffic  movements.  While  Figure  10.3  (a)  shows  turning
maneuvers  by  automobiles,  Figure  10.3  (b)  shows  light  non-motorized  traffic  on  the  crosswalk  (a
pedestrian, a crossing guard, and a cyclist) along with an automobile traveling from north to south.
Finally, Figure 10.3 (c) shows a large group of cyclists crossing the intersection that can be used as an
example of heavy non-motorized traffic at the intersection. Using these scenarios, the performance of
Traffic Intelligence is evaluated for three types of settings:

(a) Using parameters calibrated to favour motorized traffic 
(b) Using parameters calibrated to favour non-motorized traffic, and 
(c) Using parameters calibrated for non-motorized traffic using a mask for crosswalk.

These  settings  help  understand  how feature-tracking  and  feature-grouping  parameters  influence  the
output, especially in terms of the issues of over-segmentation and over-grouping. In addition, role of the
mask as a tool to restrict the tracking to a part of the intersection is also be explored.
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(a) Automobile movements

(b) Light non-motorized traffic

(c) Heavy non-motorized traffic
Figure 10.3 Different types of traffic movements
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10.4.1 Motorized Mode-Based Calibration

The results associated with calibrating feature-tracking and feature-grouping to favour motorized modes
are shown in Figure 10.4. Herein, the features and the objects identified for the three types of traffic
movements are shown in the left and right panes of each subfigure respectively.   Since automobiles are
bigger objects than non-motorized modes, it can be seen that their presence within a video frame leads to
a large number of features. Hence, in order to ensure that the inferred objects do not get over-segmented,
high segmentation and connection distances are used to facilitate grouping of features. As a result, the
various motor vehicles are able to be represented by unique object trajectories. However, an unintended
consequence  of  grouping features  in  close  proximity is  that  features  associated  with different  non-
motorized modes can also get grouped together, as seen in Figures 10.4 (b) and (c). This also adversely
affects the motion of the inferred object, which is determined as the mean of the individual features
within the group.
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(a) Automobile movements (left:features, right:objects)

(b) Light non-motorized traffic (left:features, right:objects)

(c) Heavy non-motorized traffic (left: features, right: objects)
Figure 10.4 Resultsassociated with motorized mode-based calibration

10.4.2 Non-Motorized Mode-Based Calibration

Based  on  the  results  of  the  motorized  mode-based  calibration,  it  can  be  inferred  that  in  order  to
distinguish non-motorized modes better, lowering the segmentation and connection distances may be
helpful. The impact of the adjustments made to the feature-tracking and grouping parameters so as to
favour non-motorized modes are reflected in Figure 10.5. In choosing a lower segmentation distance, the
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motor vehicle trajectories end up with an over-segmented representation, as shown in Figure 10.5(a). In
contrast,  a large number of unique non-motorized object  trajectories can now be observed within a
heavy non-motorized traffic setting (Figure 10.5 (c)). The non-motorized object trajectories inferred in
Figure 10.5 (c) also show the advantage of video analysis over in-pavement sensors, as the former is
able to capture trajectories which emanate from beyond the crosswalk. Unfortunately, in the case of the
light non-motorized traffic setting (Figure 10.5 (b)), feature-grouping is only able to provide an over-
segmented  representation  of  the  pedestrian  crossing  the  crosswalk  while  not  suggesting  any object
trajectory for the other modes.
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(a) Automobile movements (left:features, right:objects)

 

(b) Light non-motorized traffic (left:features, right:objects)

 

(c) Heavy non-motorized traffic (left: features, right: objects)
Figure 10.5 Results associated with non-motorized mode-based calibration

10.4.3 Non-Motorized Modes-Based Calibration Using a Crosswalk Mask

While the results using the parameters favouring non-motorized modes were somewhat encouraging, in
the quest for identifying individual trajectories for non-motorized modes, over-segmentation becomes a
concern for automobiles. A potential solution in this regard is to apply a more restrictive mask to explore
the possibility of analyzing only a part of the intersection. Figure 10.2 (b) shows an example of a mask,
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which restricts the analysis to the crosswalk and a buffer region surrounding it. By super-imposing this
mask on to the original video, it is ensured that the feature trajectories start and end within the region of
interest. The results associated with this analysis are shown in Figure 10.6. 

The feature trajectories observed for the various traffic movements in Figure 10.6 (all left panes) reveal
that the feature tracking is now restricted only to the region surrounding the crosswalk, which limits
inference  of  motor  vehicle-based  trajectories.  In  comparison,  it  appears  that  there  are  more  non-
motorized mode features getting tracked, as inferred from a thicker set of lines associated with them in
Figures 10.6 (b) and (c). Consequently, in the case of Figure 10.6 (b), the presence of more features
might be leading to the identification of both the cyclist as well as the pedestrian crossing the street.
Also, in the case of the heavy non-motorized traffic shown in Figure 10.6 (c), the feature-grouping is
still able to differentiate a large number of trajectories. 
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(a) Automobile movements (left:features, right:objects)

(b) Light non-motorized traffic (left:features, right:objects)

(c) Heavy non-motorized traffic (left: features, right: objects)
Figure 10.6 Results using a mask for crosswalk

The results associated with the crosswalk-related mask are promising in terms of isolating non-
motorized modes from the motorized modes. Hence, customizing the parameters and masks for different
modes may help mitigate the issue of over-segmentation/over-grouping. However, more work is 
required to integrate these parameters to jointly estimate the motorized and non-motorized modes and 
test it against the ground truth.
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Finally, it is acknowledged that the trajectory of the crossing guard could not get captured using the 
parameters described above, probably because of they can remain stationary for prolonged periods of 
time. 

10.5 Discussion
In  this  chapter,  a  feature-based  tracking  algorithm  called  Traffic  Intelligence was  explored  as  an
alternative  to  tracking  modes  using  in-pavement  sensors.  The  preliminary  findings  based  on  the
calibration process reveal that identifying a unique set of parameters to accurately track both motorized
and non-motorized modes is a concern. However, developing masks to isolate the non-motorized modes
from the motor vehicle activity may be helpful for developing customized parameters for non-motorized
and motorized modes separately. Based on a qualitative analysis of the accuracy of the feature-grouping
analysis, the results shown in Figure 10.3 (for motorized modes) and Figure 10.5 (for non-motorized
modes) look promising. 

While more work is required to compare the performance of the video-based sensing framework with
the in-pavement sensing framework, based on the case studies, it can be said that video analysis can
provide a cost-effective alternative to analyze locations of interest without the significant investment of
installing sensing infrastructure. Unlike the in-pavement sensors, the accuracy of the computer-vision
based algorithms appears to be relatively less dependent on the placement of the video camera itself,
although  a  more  top-down  perspective  is  recommended  to  be  more  effective  for  feature-tracking.
Consequently, the approach relies on identifying the right set of parameters for tracking and grouping
features  to  infer  modes,  and  that  requires  a  more  comprehensive  understanding  of  the  underlying
algorithms.  To facilitate  this  calibration process,  additional  post-processing techniques  must  also be
looked into for customizing a general purpose code to meet the needs of the study location.

In comparison, an in-pavement sensing platform, while  being limited in  its  information over space,
provides precise markers of activity which are easier to store and process over long periods of time. It is
possible  that  combining  the  relative  merits  of  video  processing  and  in-pavement  sensing  can  help
develop a superior mode detection/tracking framework.
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11 Conclusions and Future Work 
The work presented as part of this research project focuses on developing an automated framework for
analyzing and monitoring mode-specific and multi-modal safety-critical interactions using in-pavement
sensors at a study intersection in Danville, CA. The sensing platform comprises of: (i) magnetometer
sensors (magsensors) deployed at  intersection stop bars and departure lanes,  (ii)  microradar  sensors
deployed along different parts of one crosswalk, (iii) signal conflict monitor card providing signal phase
information.  Together,  these  sensors  provide  round-the-clock  time-synchronized  event  information
which  in  turn  is  processed  using  various  algorithms  to  infer  motorized  and non-motorized  vehicle
movements which are necessary to analyze mode-specific and multi-modal safety-critical interactions.
The performance of the algorithms and classifiers in tracking and distinguishing movement through the
intersections are described below.

11.1 Research Findings
Sensor and video data were obtained for the study location for April 22 and 24, 2015, and October 12-
16, 2015, with the data associated with October 15 and 16 being reserved exclusively for testing the
algorithms developed as part of this effort.

11.1.1 Classifying movements across modes

The results associated with tracking non-motorized and motorized trajectories provide an accuracy of
94.5% when using the training data and 89.2% in the test  data.  When evaluating the results of the
different turning movements, the accuracy for classifying right turns, straight movements, NS and SN
crosswalk movements is 93.7%, 97.2%, 87.2% and 85.4% respectively in the training data, and 85.4%,
95.6%,  82.6%  and  76.3%  respectively,  in  the  test  data.  In  addition,  when  classifying  individual
microradar  sensor  events  as  motorized/non-motorized  modes,  the  accuracy  of  the  sensor-specific
classifiers is 99.6% for the training data and 96.9% for the test data.

11.1.2 Driver yielding behavior

The analysis of the multi-modal safety-critical analysis focuses on motor vehicles’ yielding behavior, the
key methodology of which is to use the time difference between consecutive vehicle and pedestrian
events under different conditions. The results indicate that there are two types of yielding behavior of
right-turning vehicles during a green phase: (i) drivers who wait behind the crosswalk while allowing
pedestrians  to  cross;  and  (ii)  drivers  who  yield,  but  after  encroaching  into  the  intersection.  This
distinction in the types of yielding behavior (passive versus aggressive yielding) is typically difficult to
capture, and quantify, in traditional observational studies. 

11.1.3 Signal violation by drivers and non-motorized modes

The analysis of driver red-light violations revealed that the probability of witnessing such a violation at
the end of a straight movement phase is 9.02%, with about 25% of the daily red-light violations take
place between 8 to 9 AM, and 3 to 4 PM. The results associated with identifying non-motorized modes
crossing the street without pedestrian signal actuation revealed only two such trajectories over a period
of eight complete days of observation.
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Finally, the implementation of an automated video analysis methodology, while incomplete, provided
insights into classifying automobile and non-motorized movements. In particular, the analysis reveals a
flexible, cost-effective approach to conducting short-term traffic safety studies. However, implementing
such analysis over multiple days of video data may be computationally prohibitive.

11.2 Contributions
To the best knowledge of the researchers, no study prior to this has been undertaken that evaluates multi-
modal safety-critical behavior at an intersection for extended periods of time. The performance of the
trajectory-based algorithms in classifying motorized and non-motorized modes is, given the absence of
some  critical  of  magsensors,  comparable  to  the  video-based  mode  classification  frameworks.  The
performance  of  the  sensor-based  classification  method  is  superior  to  the  video-based  classification
techniques, and thus can be incorporated into the trajectory-based classification method to improve its
accuracy.

The development of the classification algorithms in conjunction with the signal phase information helps
provide valuable insights for both mode-specific as well as multi-modal safety-critical dynamics. For
instance,  the  insights  gained  about  the  different  types  of  yielding  behavior  can  have  important
implications  for  other  intersections  as  well  (both  signalized  and  non-signalized),  where  aggressive
yielding behavior may be more common in reality (but not as well documented). Similarly,  even in
instances where ground truth was not available, the trajectory-based classifier was able to identify events
which can be intuitively visualized using the data visualization tool.

In summary, this study demonstrates the feasibility of using a sensor-based classification framework to
automatically monitor safety-critical interactions at intersections. 

11.3 Future Work

11.3.1 Improving the classification framework

One of  the  major  shortcomings of  the  trajectory-based classification  framework was the significant
number  of  unclassified  events  on  the  crosswalk.  In  addition,  the  identification  of  non-motorized
trajectories has been inferior in comparison to motorized modes, which is also a common shortcoming
of computer vision-based approaches.  While there are a number of ways to improve the algorithms,
some of which have been documented elsewhere in the manuscript, it is important to recognize that the
classification errors also have implications on subsequent analyses, in particular when evaluating multi-
modal interactions. Consequently, future work shall prioritize improving the accuracy of the underlying
mode-classification algorithms further. Finally, the automated video analysis methodology will also be
refined so as to undertaken a comprehensive comparison between the two automated safety evaluation
frameworks.

11.3.2 Vision for a Smart Intersection  

With the advent of emerging technologies which can assist cities to develop “smart” and/or “intelligent”
transportation infrastructure systems, urban intersections are being increasingly equipped with various
types  of  video  and  in-pavement  sensor  architectures  to  facilitate  round-the-clock  monitoring  and
optimization of multi-modal flows. In comparison, the assessment of the safety performance of these
facilities continues to be largely based on either crash history or citizen grievances.  Using collision data
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as the only metric for traffic safety represents a reactive approach, and it may take a long time for a
recurring safety-concern to reveal itself. 

In comparison, the use of surrogate measures of traffic safety can help analyze large number of traffic
conflicts and document any emerging traffic safety concerns prior to an occurrence of a crash. While
there  has  been a  push  in  recent  times  to  develop automated  algorithms to  compute  such surrogate
measures using video data, the work presented as part of this research effort shows that the scope for
proactively (and non-intrusively)  monitoring  multi-modal  interactions  can be  significantly expanded
when  including  in-pavement  sensors.  To  support  this  vision  future  work  should  also  study  the
association between various surrogate measures and different types of crashes. Establishing the link
between crashes and surrogates safety measures will  provide valuable opportunities to fully harness
technology to enhance existing safety management practices.
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