UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
The Origin of Clusters in Recurrent Neural Network State Space

Permalink
https://escholarship.org/uc/item/33d62z5x9

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 16(0)

Author
Kolen, John F.

Publication Date
1994

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/33d6z5x9
https://escholarship.org
http://www.cdlib.org/

The Origin of Clusters in Recurrent Neural Network State Space

John F. Kolen

Laboratory for Artificial Intelligence Research
Department of Computer and Information Science
The Ohio State University
Columbus, OH 43210
kolen-j@cis.ohio-state.edu

Abstract

Cluster analysis has been successfully applied to the problem
understanding hidden unit representations in both feed-for-
ward and recurrent neural networks. While the topological
properties of feed-forward networks may support the use of
cluster analysis, the results described within this paper suggest
that applications to recurrent networks are not justified. This
paper illustrates how clustering fails to provide useful insights
into the underlying task-dependent information processing
mechanism of recurrent networks. In this paper, I first demon-
strate that randomly generated networks display a surprising
amount of clustering before training. Then I explain that the
clustering structure emerges, not in response to the task train-
ing, but because of the volume-reducing iterated mappings
that comprise the commonly used recurrent neural networks
models.

Introduction

The popularity of clustering analysis of neural network
internal representations suggests that there is some merit to
this approach. This technique has been successfully applied
to the problem of understanding hidden unit representations
in both feed-forward and recurrent networks. The applica-
tion of hierarchical clustering to this particular problem was
originally suggested to Sejnowski and Rosenberg by Stephan
Hanson (as reported in (Hanson & Burr, 1989)). Clustering
of internal representations of the NETtalk system provided
evidence of vowel/consonant discrimination in the hidden
units (Sejnowski & Rosenberg, 1987). Elman also used this
tool to illustrate the internal state clustering in his simple
recurrent network (Elman, 1990). In this tradition, many
studies have reported the emergence of various “concept” or
“state” clusters during recognition and production tasks
(e.g., (Servan-Schreiber et al., 1988; Cleeremans et al., 1989;
Pollack, 1990; Elman, 1992; Meeden et al., 1993a; Cummins
& Port, 1994, Crucianu, 1994)). State-vector clustering algo-
rithms serve as the base mechanism for the extraction of
finite state machine descriptions from recurrent networks
(Giles et al., 1992; Watrous & Kuhn, 1992). While the topo-
logical properties of feed-forward networks may support the
use of cluster analysis, the results described within this paper
illustrate an application of clustering which fails to provide
any useful insights into the underlying rask-dependent infor-
mation processing mechanism of recurrent networks.

The assumption confronted below is that the neighborhood
relationships between internal state vectors of a recurrent

508

network will help us understand the processing performed
by the network at a cognitive level. In fact, we can explain
the clustering phenomena without appealing to informa-
tion processing: the key is the theory of iterated function
systems (IFS's). IFS theory also helped explain why recur-
rent networks often produce infinite state spaces (Kolen,
1994c¢) and why finite state machine extraction techniques
can produce finite state descriptions with high, but illu-
sionary, complexity (Kolen, 1994b).

Iterated Function Systems

The foundational work was originally developed by
Barnsley (1988) as a method of describing the limit behav-
ior of systems of transformations. The limit behavior of a
single linear or affine transformation can be determined by
examining eigenvalues of the transformations. The trajec-

tories can either be fixed points or limit cycles.! While the
effects iterating of linear systems have been fully mapped
out at this time, only recently did anyone consider the case
of multiple affine transformations in parallel, ie.,
n
fix) = U w,(x). Such systems have now been shown to
i=1

be a generalization of Cantor’s “middle third” sets.What
makes IFSs so fascinating is that the limit behavior of a
single transformation is just a point, the limit set over the
union of the transformations can be extremely complex
with recursive structure. A review of IFS theory as it
applies to recurrent networks appears in (Kolen, 1994a;
Kolen, 1994c). Suffice it to say that a recurrent network in
an environment consisting of a finite set of input vectors
will behave as a nonlinear IFS.

The notion of IFS address is important for the current
discussion. Every IFS attractor, the limit behavior of the
composite mapping, has an addressing scheme defined by
the set of transformations (Equation 1).

o,((x,¥)) = (0.5x,05y +0.5)
@,((x, y)) = (0.5x, 0.5y)
@,((x,y)) = (0.5x+0.5,0.5y)

(Eqn 1)

An address of a point on an attractor is the infinite

1. Another regime exists, known as quasiperiodicity, and occurs
in iterated maps with limit cycles whose angle of rotation is
irrational.

mailto:kolen-j@cis.ohio-state.edu

The Sierpinski Triangle

3333

First Iteration Second Iteration

13
3 NED)
13 23
\
1 2 N\ 12\ 21\] 22

Third Iteration

113

111 112

Figure 1: The Sierpinski Triange and an addressing
scheme for points on the attractor. Notice that some
points can have multiple addresses because the transfor-
mations touch or overlap.

sequence of transformations whose limit is that point when
the starting point is the entire space. In the case of the Sier-
pinski triangle, the first entry of the address of all the points
in the upper left corner are the same. This process continues
recursively within each mapping of the state space. Because
the IFS relies on contractive mappings, the regions shrink
with each transformation application, the limit of which is
our target point. Figure 1 illustrates the addressing scheme
for the Sierpinski triangle. The numbers refer to the transfor-
mation number. Starting with the final attractor (top of
Figure 1), each transformation copies the original image into
three regions (see First Iteration). Each copy has been
labeled the transform that placed it. This is the address. On
the second iteration, the copying process continues. This
time, however, the transform number is prepend to any exist-
ing label. This labeling process will continue indefinitely as

509

Start

Vi

[8]{x][s] [P) [x] [v] [E]

Hidden Units

1
Context j 8] [1] [s] [p] [x] [V][E]

Figure 2: The Reber grammar and the simple recurrent
network described in (Servan-Schreiber et al., 1988).

each region becomes smaller and smaller. In the limit, the
regions will be points. At this time, the address will be an
infinite sequence of transformation labels.

Clustering the Reber Grammar in Arbitrary
Networks

The IFS address is the reverse of the input alphabet to a
recurrent network. The first element of the address was the
most recent input symbol. The second element of the
address was next recent input. If the transformations in the
recurrent network are contractive, one could predict clus-
tering on recency solely from the mathematics of the state
transformations and independent from the learning task.

To demonstrate the validity of this claim, I will refer to
experimental findings encountered during the grammar
learning (Servan-Schreiber et al., 1988; Cleeremans et al.,
1989). In their paper, they took a simple recurrent network
(SRN) and trained it in the prediction task for the Reber
grammar. The finite state machine underlying the Reber
grammar and the network used to predict it is displayed in
Figure 2. The rationale behind selecting this grammar over
others is its historical position of being used in several
psychological experiments on implicit learning (Reber,
1967). The goal of the network’s task is to predict the next
symbol, or symbols, given the current context. The net-
work received input in the form of a one-in-seven encod-
ing of the seven characters of the Reber alphabet. The
output consisted of seven units in a similar encoding
scheme, Recall that the dynamics of the SRN look like

Equation 2, where g is the sigmoid function and W is the
weight matrix.

s®
s = gw- |

1

(Eqn 2)

In (Kolen, 1994c¢) I demonstrate that this dynamic can be
rewritten given that the set of input vectors is finite. For each
input vector, [, there exists a weight matrix W, that the

dynamics of Equation 2 will be reduced to Equation 3.

(n
g+l _ g(W, - [Sl })

When an input appears, the correct weight matrix is
selected and applied to the current state. This particular
implementation is indistinguishable from iteration of
Equation 2. In light of this, I will generate a set of indexed
transformations and perform a cluster analysis of the states
encountered during the processing of the Reber grammar.
Table 1 lists the parameters of the five transformations for,
one for each symbol in the grammar. The parameters of the
transformation were selected from a normal distribution with

a mean of zero and standard deviation of one.2 Recall that
different recurrent network architectures have different IFS
interpretations. To implement the behavior of a SRN, the
individual transformations must only differ in their the addi-
tive factors. In this demonstration, I have constructed SRN-
like transformations with a representation dimension of two
(Equation 4).

S“‘"l) = g{[a b:|5(n+ @)
cd

The motivation for the number of hidden was presenta-
tional: it’s easier to view planar transformations. Similar
arguments will hold for higher dimensional representation
spaces. Table 1 lists the parameters of the five transforma-
tions, one for each symbol in the grammar (excluding B and
E). Because the SRN architecture precludes input modifica-
tion of the multiplicative parameters, the first four columns
of Table 1 (corresponding to the parameters a, b, ¢, and 4,
of Equation 4) are equal across each transformation. The
transformation parameters were selected from a normal dis-
tribution with a mean of zero and standard deviation of one.

The five plots labeled t, p, s, x, and v, in Figure 3 show
how the individual transforms map a 15x15 grid of equally
spaced points covering the unit plane back onto the unit

plane. Also in that figure is a chaos gamc3 exploration of the
state space (Kolen, 1994c). Each transformation had 0.2

(Eqn 3)

(Eqn 4)

2. No learning is taking place, any emerging structure in the state
space will be independent of any task.

3. The chaos game creates a sequence of points from a seed point
by selecting a random sequence of IFS transformations, applying
it to the current point (Barnsley, 1988). The sequence of current
points is a useful approximation to the attractor by ignoring the
transient points at the beginning of the sequence.

510

\

1 v Chaos game
\ g)

\

1 1

Figure 3: The SRN transformations and hidden unit rep-
resentations. The axes measure the activations of state
nodes one and two.

probability of selection. The first 100 points were ignored
as transients, and the last 500 points were plotted. This
plot provides an approximate picture of the state represen-

tations of ¥ .

Figure 4 illustrates the SRN state representation of all
Reber strings of length eight or less. The graphs labeled
#1, #2, #3, #4, and #5 report the activation of the state vec-
tor when the generator was in the corresponding state. The
final graph, labeled “All Reber States”, is the union of the
other five state graphs. Notice the similarity between the
attractor approximation and the set of valid Reber states.
Any decision mechanism using hyperplanes will have a
difficult time differentiating between Reber and non-Reber
strings solely on the basis of the state activation.

In an earlier report, Servan-Schreiber et al. (1988) pro-
duced a cluster diagram of hidden unit activations before
any training has occurred. This diagram clearly shows that
the internal representations of the network were clustering
by most recent symbol. Cleeremans’ et al went on to claim
that the clustering of hidden unit representations was a
product of training the network in the prediction task.
These representations, in their eyes, captured regularities
in the previous symbols. I disagree with this explanation.
Since the Reber grammar states are uniquely determined
by the last two symbols, the clustering comes for free once
the transforms no longer overlap. Figure 4 shows the state
vectors for all strings up to length 8 which still lie on the

#1
1 1 =
L 1 0 1
#3 #4
1 1
0 1 8 1
1 #5» 5‘111 Reber‘ States
8 1 a 1

Figure 4: The hidden unit representations of all Reber
strings of length eight or less. The axes measure the acti-
vations of state nodes one and two

Reber state graph. As you can see, the states clump together
well. A cluster diagram of these vectors, in Figure 5, empha-
sizes this observation. Since most learning systems start with
small weight assignments, one can conclude that much of the
learning time is spent waiting for the recurrent state transfor-
mation to separate and be able to encode input symbol histo-
ries

The mechanism producing state space clusters in SRNs is
not unique to this particular recurrent network formalism.
Other recurrent networks display similar volume-reducing
transformations. For instance, to implement the behavior of a
SRN, the individual transformations must only differ in their
the additive factors. Sequential Cascaded Networks (Pollack,
1991), on the other hand, can have independent transforma-
tions. An SCN is a second-order version of the SRN. A sam-
ple set of transformations appears in Table 2. An analysis,
like the one described above, produced the state transforma-
tions appear in Figure 6 and the Reber states plotted in
Figure 7. (A complete analysis is detailed in (Kolen,
1994a).) Even though the multiplicative parameters differ for
each transformation, creating more variability in the shapes
and orientations of the transformations, the states always dis-
play a hierarchical organization paralleling the IFS address-
ing scheme. These arguments easily extend to Jordan
networks and any other discrete time recurrent neural net-
works with a finite set of input vectors.

511

tsHl
ss#l (2)
xs#5 (3)
bt#l

rr pt#2
L oee#2 (4)

xt#2 (2)

(_ bp#2

L xp#d (3)

__ wvv#5 (4)

‘ pv#d

‘ | pv#s (2)

i tvid (4)
! xv#d (2)
‘ tx#3

sx#3 (2)

xx#2 (3)

Figure 5: The resulting cluster diagram of all Reber
strings of length eight or less on a random set of SRN
transformations. The tree has been simplified, the num-
bers in parentheses is the total number of strings at that
node with the same last two symbols.

Conclusion

Neural information processing approach to cognitive
science and artificial intelligence problems, such as formal
language learning (Gold, 1969), involves the use of recur-
rent networks that embody the internal state mechanisms
underlying automata models (Pollack, 1991; Elman, 1992,
Giles et al., 1992; Servan-Schreiber et al., 1988; Watrous
& Kuhn, 1992). Unlike traditional automata- and gram-
mar-based approaches, learning systems relying on recur-
rent networks carry a difficult burden: it is still unclear what
these networks are processing, let alone what they are learn-
ing.

The IFS approach explains the phenomena of state clus-
tering in recurrent networks. Servan-Schreiber er al
reported significant clustering in simple recurrent net-
works both before and after training from the Reber gram-

1 1 |
%\\\é
Qe ‘—i 0 1
1 . 1 %
=
S
=
S
0 1 0 1
l‘ b Chaos game
1

=

1 1

Figure 6: The Sequential Cascaded Network (SCN)
transformations and hidden unit representations. The
axes measure the activations of state nodes one and two.

mar prediction task. A set of random transformations will
normally reduce the volume of the recurrent networks state
space, and place an upper bound on the distance between
two transformed points. The upper bound has a significant
effect on the clustering, especially when the transformations
map to very small regions of state space. The prediction task
requires that the network arrange it state clusters to satisfy
constraints imposed by the single layer network generating
predictions.

Thus, the single most cited “discovery™ attributed to recur-
rent network training is, in fact, a property independent of its
training. It appears that the network is adjusting its observa-
tion of the internal state, the state-to-output mapping, to
accommodate the task. Such observation shifts are capable
of inducing a wide variety of behavioral complexities
(Kolen, 1993). Given that the recurrent network states clus-
ter themselves, it is always possible to construct a disjunc-
tive output function for a randomly generated network that
arbitrarily labels these regions with the correct state labeling.

In order to understand the behavior of recurrent networks,
these devices should be regarded as dynamical systems
(Kolen, 1994a). In particular, most common recurrent net-
works are actually iterated mappings, nonlinear versions of
Barnsley’s iterated function systems (Barnsley, 1988). While
automata also fall into this class, they are a specialization of
dynamical systems, namely discrete time and state systems.
Unfortunately, information processing abstractions are only
applicable within this domain and do not make any sense in

512

#1
1 1 "
0 1 0 1

#3 #4
1 1
0 1 0 1
1 #5 Xill Reber States
0

1 g 1

Figure 7: The hidden unit representations of all Reber
strings of length eight or less in the SCN. The axes mea-
sure the activations of state nodes one and two

the broader domains of continuous time or continuous
space dynamical systems.

Acknowledgments

This work was supported by the Office of Naval
Research through grant number N00014-92-J-1195.

References

Barnsley, M. (1988). Fractals Everywhere. San Diego, CA:
Academic Press.

Cleeremans, A., Servan-Schreiber, D. & McClelland, J. L.
(1989). Finite state automata and simple recurrent net-
works. Neural Computation, 1, 372-381.

Crucianu, M. (1994). Looking for structured representa-
tions in recurrent networks. In Proceedings of the 1993
Connectionist Models Summer School. American
Elsevier. 170-177.

Cummins, F. & Port, R. F. (1994). On the treatment of time
in recurrent neural networks. In Proceedings of the 1993
Connectionist Models Summer School. American
Elsevier. 211-218.

Elman, J. L. (1990). Finding structure in time. Cognitive
Science, 14, 179-211.

Elman, J. L. (1992). Distributed Representations, Simple
Recurrent Networks, and Grammatical Structure. Machine
Learning, 7.

Giles, C. L., Miller, C. B,, Chen, D., Sun, G. Z., Chen, H. H.
& Lee, Y. C. (1992). Extracting and Learning an Unknown
Grammar with Recurrent Neural Networks. In J. E. Moody,
Steven J. Hanson & Richard P. Lippman, (Eds.), Advances
in Neural Information Processing Systems 4. Morgan
Kaufman.

Gold, E. M. (1969). Language identification in the limit.
Information and Control, 10, 372-381.

Hanson, S. J. & Burr, D. J. (1989). What connectionist mod-
els learn: learning and representation in connectionist net-
works. Behavioral and Brain Sciences,13,471-518.

Kolen, J. F. & Pollack, J. B. (1993). The apparent computa-
tional complexity of physical systems. In Proceedings of
the Fifteenth Annual Conference of the Cognitive Science
Society. Hillsdale, NJ: Earlbaum.

Kolen, J. F. (1994a). Exploring the Computational Capabili-
ties of Recurrent Neural Networks. Ph.D. thesis. Depart-
ment of Computer and Information Science. The Ohio
State University.

Kolen, J. E (1994b). Fool's Gold: Extracting Finite State
Machines From Recurrent Networks Dynamics. In J. D.
Cowan, G. Tesauro & J. Alspector, (Eds.), Advances in
Neural Information Processing Systems 6. Morgan Kauf-
man.

Kolen, J. F. (1994c¢). Recurrent networks: State machines or
iterated function systems? In Proceedings of the 1993 Con-
nectionist Models Summer School. American Elsevier.
203-210.

Meeden, L., McGraw, G. & Blank, D. (1993). Emergent Con-
trol and Planning in an Autonomous Vehicle. In Proceed-

ings of the Fifteenth Annual Conference of the Cognitive
Science Society. Hillsdale, NJ: Earlbaum. 735-740.

Pollack, J. B. (1990). Recursive autoassociative memories.
Artificial Intelligence, 46, 77-105.

Pollack, J. B. (1991). The induction of dynamical recogniz-
ers. Machine Learning, 7, 227-252.

Reber, A. S. (1967). Implicit learning of artificial gram-
mars. Journal of Verbal Learning and Verbal Behavior,
5, 855-863.

Sejnowski, T. J. & Rosenberg, C. R. (1987). Parallel net-
works that learn to pronounce english text. Complex Sys-
tems, 1, 145-168.

Servan-Schreiber, D., Cleeremans, A. & McClelland, J. L.
(1988). Encoding sequential structure in simple recurrent
networks. UCSD Technical Report.

Watrous, R. L. & Kuhn, G. M. (1992). Induction of Finite-
State Automata Using Second-Order Recurrent Net-
works. In J. E. Moody, S. J. Hanson & R. P. Lippman,
(Eds.), Advances in Neural Information Processing Sys-
tems 4. Morgan Kaufman.

Table 1: The SRN Transformations

SYM a b c d e f
t -0.444983 -0.433067 0.759095 0.492625 -0.719507 1.23284
p -0.444983 -0.433067 0.759095 0.492625 0.528296 0.121272
s -0.444983 -0.433067 0.759095 0.492625 -1.44764 0.700865
X -0.444983 -0.433067 0.759095 0.492625 -0.369454 -1.00214
v -0.444983 -0.433067 0.759095 0.492625 1.11458 1.59991

Table 2: The SCN Transformations

SYM u a b (- d e f
t || 0633273 | -0558169 | -1.73999 | 0431231 | 0259375 | 0.89197 |
p -0.025588 -0.677765 0.962798 -0.277900 1.317470 1.12233
S 1.300490 -0.697644 1.21811 0.243118 -0.262879 -0.76881
X 1.171490 0.866640 0.111505 -0.496449 -0.464076 2.37686
v -1.220900 -1.254000 0.09564 -0.82854 -0.105562 -0.36281

513

	cogsci_1994_508-513

