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Abstract	

Introduction	–	Many	novel	treatments	for	Alzheimer’s	Disease	(AD)	are	aimed	to	target	Aβ,	one	of	

the	pathological	hallmarks	of	AD,	but	are	hampered	by	potential	non	responders	due	to	lack	of	

target	Aβ	pathology	in	their	brains.	Specifically,	about	~25-40%	of	those	clinically	diagnosed	with	

AD	or	mild	cognitive	impairment	(MCI)	would	not	have	significant	Aβ	pathology.	In	this	study	we	

used	a	deep	learning	framework	to	predict	Aβ	pathology	positivity	from	baseline	clinical	

assessments	and	structural	MRI	data	routinely	acquired	from	the	Alzheimer’s	Disease	

Neuroimaging	Initiative	(ADNI).	Graph	convolutional	networks	(GCNs)	were	trained	on	graphs	

derived	from	MR	imaging	and	their	performances	was	assessed	to	see	their	predictive	value	based	

on	ground-truth	Aβ-positivity	estimates	from	AV45-PET	scans.	Hidden	layers	of	the	first	

convolutional	layer	were	visualized	to	observe	pertinent	networks	the	model	has	learned	to	be	

important	towards	predicting	Aβ-positivity.	

	

Methods	–	Baseline	MRI	and	AV45-PET	along	with	demographic	and	other	AD-related	predictors	

(age,	gender,	education,	genotype,	baseline	cognitive	performance)	from	771	participants	(248	

healthy	controls	(HC),	381	MCI,	101	AD)	from	the	ADNI	database	were	used	for	evaluation.	An	

undirected	graph	model	reconstructed	from	diffusion	MRI	served	as	inputs	for	the	GCNs.	

Anatomical	brain	parcellations	with	atrophy	estimates	from	structural	MRI	constitute	the	vertices;	

tractography	based	connectivity	estimates	defined	the	edges	of	the	graph	model.	Separate	GCNs	

models	were	trained	for	each	clinical	diagnostic	group.	The	best	performing	model	architecture	

were	used	to	assess	model	performance.	Predictive	value	was	compared	with	models	trained	on	

atrophy	data	and	models	with	atrophy	and	AD-related	predictors.	A	10-fold	cross	validation	on		

independent	training	and	test	sets	were	performed	to	assess	the	model	performance	in	terms	of	

classification	accuracy,	sensitivity,	specificity,	positive	and	negative	predictive	values.	

	



	

	

v	

Results	–	GCNs	were	able	to	learn	from	atrophy	descriptors	and	network	connectivity	derived	from	

MRI	and	predict	Aβ-positivity.	Atrophy	was	a	significant	predictor	of	Aβ-positivity	in	the	AD	model,	

but	at	a	lesser	degree	in	HC	and	MCI	models.	The	inclusion	of	other	AD-related	predictors	showed:	a	

significant	improvement	in	test	accuracy	to	68±4%,	sensitivity	to	84±7%,	specificity	to	52±13%,	

negative	predictive	value	to	77±5%,	and	positive	predictive	value	to	64±4%	in	MCI	models;	and	a	

significant	improvement	in	test	accuracy	to	69±2%	and	specificity	to	97±4%	in	HC	models.	In	one	

MCI	network	model,	filters	of	the	first	hidden	layer	suggest	greater	contribution	of	atrophy	in	left	

superior	parietal,	right	inferior	temporal,	right	entorhinal,	and	left	postcentral	regions.		

	

Conclusion	–	Patterns	of	regional	brain	atrophy	within	large-scale	brain	networks	might	offer	

predictive	value	to	whether	or	not	a	subject	will	test	positive	for	an	AV45-PET	exam.	Predictions	

are	more	accurate	with	the	addition	of	well-established	AD-related	predictors,	however	more	

features	may	be	necessary	to	increase	the	predictive	ability	in	HC	and	MCI	subjects.	This	

assessment	offers	a	practical	adjunct	to	deciding	the	next	course	of	action	for	the	patient.	 	
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Chapter	1		

Introduction	

Alzheimer’s	disease	(AD)	is	a	progressive	neurodegenerative	disease	and	the	most	common	type	of	

dementia.	Synaptic	dysfunction	can	be	attributed	to	the	accumulation	of	β-amyloid	and	tau	proteins	

that	spread	in	a	disease-specific	topographic	pattern1,2.	Aβ	deposits	first	appear	in	the	neocortex	

and	spread	to	the	outer	cortical	regions	primarily	affecting	the	frontoparietal	regions	and	then	

temporal	regions	of	the	brain2.	In	contrast,	neurofibrillary	tangles	or	tau	aggregates	develop	in	

locus	coeruleus	and	spread	to	broad	areas	of	the	neocortex2.	Evidence	largely	from	the	autopsy	

studies	suggest	that	spread	of	AD-related	tau	pathology	is	facilitated	in	presence	of	significant	brain	

Aβ pathology.	The	increasing	cost	both	in	the	healthcare	and	familial	setting	is	alarming3.	Therefore	

it	is	crucial	to	develop	predictive	models	to	help	better	understand	the	dynamics	between	

formation	and	spread	of	AD	pathologies	to	lower	costs	and	provide	effective	treatment.	

	

According	to	two	independent	phase	3	drug	trials,	about	27%	of	those	who	meet	the	clinical	criteria	

for	mild-AD	are	Aβ-negative4,5.	The	presence	of	Aβ-negative	subjects	in	trial	cohorts	represents	a	

potential	confound	that	may	introduce	variability	and	dilute	a	treatment	signal	in	analyses	where	a	

slowing	of	clinical	progression	is	hypothesized.	Therefore,	measure	of	brain	Aβ	as	an	inclusion	

criterion	has	been	crucial	in	recent	clinical	trials	of	putative	therapeutics	for	AD.	Both	positron	

emission	tomography	(PET)	imaging,	using	Aβ-specific	radiotracers	such	as	[11C]-PIB	or	[18F]-

florbetapir,	and	measurement	of	Aβ	proteins	from	cerebral	spinal	fluid	(CSF)	samples,	are	widely	

used	in	the	research	setting	to	quantify	brain	Aβ	plaque	load.	However,	PET	and	CSF	methods	can	

be	challenging	to	implement	in	global	clinical	trial	sites	outside	the	western	hemisphere,	for	

reasons	including	patient	acceptance,	cost,	and	availability.		
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Could	Aβ	pathology	status	of	clinical	trial	participants	be	predicted	from	measurements	widely	

available	and	already	included	in	clinical	trial	protocols?	Our	aim	in	this	work	to	answer	this	

question	by	developing	a	predictive	model	based	on	participant’s	demographics,	baseline	cognitive	

and	clinical	assessments,	and	state	of	brain	atrophy	quantified	from	structural	magnetic	resonance	

imaging	(MRI),	which	is	already	included	in	global	clinical	trial	protocols	for	radiological	

monitoring.	

	

Recent	analytical	developments	have	demonstrated	that	Aβ	status	can	be	predicted	to	a	high	

accuracy	in	both	early	and	amnestic	mild	cognitive	impairment	(MCI)	subjects	from	Alzheimer’s	

Disease	Neuroimaging	Initiative	(ADNI)	using	a	macroscopic	pattern	of	brain	structural	

deformation	obtained	from	structural-MRI	data6,7.	Furthermore,	recent	developments	in	

convolutional	neural	networks	(CNNs)	have	started	revolutionizing	computational	medicine8,9.	In	

particular,	CNN	computed	over	graph	structures	could	potentially	have	high	impact	in	

neurodegenerative	disease	models	by	taking	advantage	of	brain’s	intrinsic	connectivity	while	

developing	predictive	models10.	In	this	work,	we	will	further	extend	these	two	approaches,	in	

particular,	by	representing	the	brain	as	a	graph	and	by	learning	the	best	Aβ	status	classifier	via	a	

weakly	supervised	neural	network.	Nodes	of	the	graph	represents	different	anatomical	regions	of	

the	brain	and	their	structural	connectivity	is	derived	from	diffusion	tensor	imaging	(DTI).	Each	

node	can	contain	features	describing	shape	variations	like	atrophy	from	structural	MRI	which	have	

been	shown	to	be	a	good	biomarker	for	predicting	the	Aβ-positivity6,11.		Additional	AD-related	

predictors	like	age,	genetic	background,	cognitive	assessments	are	also	included	as	these	are	the	

strongest	known	risk	factors	for	AD7.		
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An	implementation	of	this	model	is	proposed	to	predict	Aβ-positivity	from	MR	imaging	along	with	

demographic,	genetic,	and	cognitive	assessment	information.	The	associated	AV45-PET	labels	serve	

as	the	ground	truth	and	is	used	for	learning	and	optimizing	the	model.	This	model	will	be	used	to	

test	the	hypothesis	that	a	disease	stage	specific	anatomical	variation	pattern	detected	in	structural	

brain	MRI	is	predictive	of	Alzheimer's	related	brain	Aβ pathology.	The	purpose	of	this	study	is	

twofold:	1)	to	accurately	predict	Aβ-positive	without	AV45-PET	imaging	and	2)	identify	the	

important	features	and/or	patterns	of	regional	brain	atrophy	that	are	predictive	of	Aβ-positivity.		

	

Chapter	2	

Methods	

2.1	 Study	Data	

Data	used	in	this	study	were	obtained	from	the	ADNI	database	(adni.loni.usc.edu).	The	ADNI	was	

launched	in	2003	as	a	public-private	partnership,	led	by	Principal	Investigator	Michael	W.	Weiner,	

MD.	The	primary	goal	of	ADNI	has	been	to	test	whether	serial	MRI,	PET,	other	biological	markers,	

and	clinical	and	neuropsychological	assessment	can	be	combined	to	measure	the	progression	of	

MCI	and	early	AD.	For	up-to-date	information,	see	www.adni-info.org.	Subjects	of	this	study	were	

ADNI	participants	who	underwent	AV45-PET	imaging	and	had	structural	MRI	acquired	within	60	

days	of	PET	scan.	According	to	the	clinical	assessment	done	closest	in	time	to	neuroimaging	visit,	

the	study	cohort	was	composed	of	248	healthy	control	(HC)	elderly	individuals,	381	individuals	

with	MCI,	and	101	individuals	with	AD	clinical	diagnosis.	The	diagnostic	criteria	for	HC	and	MCI	

participants	in	ADNI	were	previously	described12.	The	available	ADNI	data	was	combined	and	

organized	from	multiple	files	into	one	main	file	using	custom	Python	scripts	and	widely	available	

large-scale	data	processing	modules	(iPython,	NumPy,	Pandas,	SciPy)	installed	with	Anaconda	
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(Continuum	analytics,	http://www.continuum.io/anaconda).	Baseline	PET-AV45	exams	from	all	

unique	participants	were	compiled	first	and	then	the	patient’s	associated	data	was	added.		

	

2.1.1	 MRI	Acquisition	

Structural	MRIs	were	acquired	at	ADNI	sites	equipped	with	3T	MRI	scanners	using	3D	MP-RAGE	or	

IR-SPGR	T1-weighted	sequences	with	sagittal	slices	and	voxel	size	of	1.1×1.1×1.2mm3,	as	described	

online	(http://adni.loni.usc.edu/methods/documents/mri-protocols).	A	designated	center	quality	

controlled	the	MP-RAGE/IR-SPGR	images	and	corrected	for	system-specific	image	artifacts	such	as	

geometry	distortion,	B1	non-uniformity,	and	intensity	inhomogeneity13.	

	

2.1.2	 Regional	Atrophy	Information	

Baseline	T1-weighted	brain	MRI	within	60	days	of	their	first	PET-AV45	scan	date	was	used	for	

evaluation.	An	algorithm	(FreeSurfer,	https://surfer.nmr.mgh.harvard.edu/)	was	used	to	

automatically	parcellate	of	the	brain	into	86	distinct	anatomical	regions	(Appendix	A	lists	regions	in	

detail).	Each	FreeSurfer	parcellation	was	visually	checked	for	anatomical	accuracy.	Only	subjects	

that	passed	the	overall	FreeSurfer	quality	check	were	included	in	the	model	training	and	testing.	

The	parcellated	volumes	were	divided	by	the	subject’s	total	intracranial	volume	to	account	for	

gross	differences	in	head	size.	The	values	were	then	standardized	(z-score)	with	respect	to	an	

average	of	healthy	controls	(HC)	who	are	cognitively	intact	on	neuropsychological	testing,	lack	

Apolipoprotein	E	(APOE	ε4)	copies,	and	are	Aβ-negative on the PET-AV45 exam.	

	

2.1.3	 Graph	Representation	

The	white	matter	connectome	was	derived	by	diagnostic	group	and	constructed	by	taking	the	mean	

of	diffusion	MRI	data	from	a	subset	of	263	ADNI	subjects.	A	sample	size	of	86	HC	subjects	(37	men,	



	

	 5	

49	women,	72.3±5.5	years),	128	MCI	subjects	(79	men,	49	women,	72.5±7.2	years),	and	49	AD	

subjects	(29	men,	20	women,	74.9±8.5	years)	were	used	to	create	the	respective	connectivity	

information	in	the	form	of	tractograms.	Raw	diffusion	weighted	MRIs	were	corrected	for	image	

artifacts	including	eddy	current,	motion,	and	echo	planar	imaging	distortions	using	FSL	toolbox14-16.	

A	single	diffusion	tensor	was	modeled	at	each	voxel	in	the	brain	from	the	corrected	diffusion	

weighted	MRIs	using	CAMINO	toolbox17.	Afterward,	deterministic	simple	whole	white	matter	

streamlining	has	been	applied	on	the	DTI	using	CAMINO	software17.	The	tissue	masks	from	

FreeSurfer	processing	was	rigidly	registered	to	the	first	frame	of	the	diffusion	weighted	MRI	and	

used	in	the	white	matter	tractography.	Subject-specific	FreeSurfer	anantomical	parcellations	

mapped	in	the	DTI	subject	space	is	used	to	calculate	the	ROI-ROI	connectivity	matrix.	

	

DTI	and	graph	theory	methods	provide	a	means	to	probe	the	organization	of	whole-brain	white	

matter	networks.	DTI	elucidates	the	brain’s	structural	organization	using	information	from	the	

diffusion	signal	to	calculate	the	most	likely	direction	of	water	directional	diffusion18.	Probabilistic	

tractography	(as	described	above)	was	used	to	estimate	the	connectivity	matrix,	or	equivalently,	a	

graph,	representing	the	brain’s	anatomic	network.	The	network	model	consists	of	nodes	

corresponding	to	brain	regions	and	edges	reflecting	connections	between	nodes19.	

		

The	resulting	matrices	in	the	current	study	were	of	size	86	x	86,	per	the	86	cortical	and	subcortical	

structures	from	the	FreeSurfer	(Desikan-Killarney	atlas)	gray	matter	parcellation.	To	control	for	

inter-subject	variance	in	total	fiber	count,	the	number	of	connections	between	each	tract	was	

divided	by	the	total	number	of	tracts	based	on	each	subject’s	tractography	data.	The	subsequent	

undirected	connectomes	were	not	thresholded	and	kept	as	weighted.	These	networks	were	

represented	as	a	weighted	adjacency	matrix,	A∈ℝ86×86.	
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2.1.4	 PET	Acquisition	

The	radiochemical	synthesis	of	AV45	was	overseen	and	regulated	by	Avid	Radiopharmaceuticals	

and	distributed	to	the	qualifying	ADNI	sites.	PET	imaging	was	performed	at	each	ADNI	site	

according	to	standardized	protocols.	The	AV45	protocol	entailed	the	injection	of	10	mCi	of	tracer	

followed	by	an	uptake	phase	of	50	min.	At	50	minutes	subjects	were	positioned	in	the	scanner	and	

4×5	min	frames	of	emission	data	collected.	PET/CT	scans	preceded	these	acquisitions	with	a	CT	

scan	for	attenuation	correction;	PET-only	scanners	performed	a	transmission	scan	following	the	

emission	scan.	All	AV45-PET	scans	underwent	a	rigorous	quality	control	protocol	and	were	

processed	to	produce	final	images	with	standard	orientation,	voxel	size,	and	8	mm3	resolution20.	

	

2.1.5	 Global	Aβ	Burden	Analysis	

Each	AV45-PET	scan	was	analyzed	in	native	space	using	participant’s	structural	MRI	acquired	

closest	to	the	time	of	the	[18F]-florbetapir	PET	scan	as	described	previously21.	Based	on	FreeSurfer	

cortical	parcellation,	the	averaged	cortical	AV45	SUVR	in	lateral	and	medial	frontal,	anterior	and	

posterior	cingulate,	lateral	parietal,	and	lateral	temporal	cortical	gray	matter	regions	normalized	

with	respect	to	average	uptake	from	a	composite	reference	region	(including	the	whole	cerebellum,	

pons/brainstem,	and	eroded	subcortical	white	matter	regions)	was	used	as	an	index	of	global	

cortical	AV45	burden.	Furthermore,	subjects	were	characterized	as	AV45-positive	or	AV45-

negative	based	on	a	threshold	value	of	0.79	as	published	previously22.	

	

2.1.6	 AD	predictors	

An	additional	9	AD-related	predictors	was	also	included	for	analysis.	Demographic	information	

included	age,	gender,	and	years	of	formal	education.	Genetic	factors	included	APOE	ε4	and	its	

measure	was	described	as	the	number	of	copies:	0,1,	or	2.	Baseline	clinical	assessments	include	
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Alzheimer's	Disease	Assessment	Scale	(ADAS),	Executive	Functioning	(EF),	Mini-Mental	State	

Examination	(MMSE),	and	clinical	dementia	rating	(CDR).	

	

2.1.7	 Data	Export	

Regional	atrophy	data,	AD-related	predictors,	and	AV45-PET	labels	were	segregated	into	diagnostic	

groups:	HC,	MCI,	and	AD.	The	distribution	of	Aβ-positive and Aβ-negative was	determined	within	

each	diagnostic	group	and	this	distribution	was	maintained	when	creating	a	training,	validation,	or	

test	set.	Random	sampling	and	reordering	of	the	data	was	also	performed	prior	to	exporting	these	

lists.	Data	within	each	diagnostic	group	were	divided	into	50%	training,	20%	validation,	and	30%	

test	sets	for	hyperparameter	search	and	model	optimization.	Similarly,	a	training	and	test	set	for	

model	performance	evaluation	was	60%	and	40%	respectively.	

	

2.2	 Graph	Convolutional	Network	

A	graph	classifier	via	a	convolutional	neural	network	previously	demonstrated	by	Defferrard	et	al	

was	implemented	and	built	upon10.	A	graph	convolutional	network	(GCNs)	is	a	generalization	of	

classical	CNNs	from	low-dimensional	regular	grids,	where	neuroimaging	data	is	represented,	to	

high-dimensional	irregular	domains,	such	as	brain	connectomes,	represented	by	graphs.	To	

properly	use	this	method,	the	number	of	nodes	of	the	input	and	succeeding	hidden	layers	need	to	

be	divisible	by	a	factor	of	2.	This	allows	for	the	pooling	operation	to	group	nodes	of	the	previous	

layer	to	the	next	layer	evenly.	Because	the	graph	was	initially	setup	with	86	nodes	to	be	fed	as	

input,	ten	additional	empty	nodes	were	added	to	act	as	placeholders	and	allow	for	proper	pooling.	

These	placeholder	nodes	do	not	significantly	alter	the	original	information	passing	through	the	

network.	The	main	neural	network	components	consist	of	two	convolutional	layers	and	a	fully	

connected	layer	(Figure	1).	Graphs	that	flow	into	each	convolutional	layer	gets	filtered,	then	
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coarsened	to	less	nodes	(pooling	operation),	and	then	thresholded	using	a	rectified	linear	unit	

function	to	produce	an	activation	map.	A	fully	connected	or	dense	layer	was	append	to	the	2nd	

pooling	layer	which	is	then	fed	into	a	logistic	regression	layer	just	prior	to	prediction:	Aβ-negative	

or	Aβ-positive.		This	framework	was	written	in	Python	and	used	the	Python	API	for	TensorFlow	

(Version	1)	to	build	and	run	predictions.		

	

	

Figure	1.	Graph	Convolutional	Network.		Grey	nodes	are	actual	data	flowing	through	the	network	

and	the	extra	nodes	with	empty	values	are	white.	The	numbers	on	the	left	indicate	the	number	of	

nodes.	The	purple	nodes	show	the	AD-related	predictors	appended	just	prior	to	the	logistic	

regression	layer	if	applicable.	

	

Graphs	are	abstract	data	structures	and	to	define	and	perform	convolutions	in	the	nodal	domain	is	

cumbersome	(Figure	2).	Instead,	graphs	passing	through	the	network	are	analyzed	in	its	spectral	

counterpart	and	the	development	of	convolutional	filters	used	for	learning	and	optimizing	the	

predictive	model	was	accomplished	through	localized	fast	spectral	filters	in	the	fourier	domain10.	
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Models	in	this	work	used	Chebyshev	polynomials	to	filter	the	graph	signals.	The	extent	of	local	

spectral	filters	was	defined	by	the	degree	of	a	polynomial	or	number	of	coefficients	in	the	

polynomial	matrix;	the	more	polynomial	coefficients,	the	larger	the	filter.			

	

	

Figure	2.	Graph	Signal	in	the	Nodal	and	Spectral	Domain.		(a)	Nodal	(b)	Spectral	

	

2.3	 Hyperparameter	Search	and	Model	Optimization	

Hyperparameters	are	values	that	need	to	be	set	prior	to	training	the	model,	but	the	most	optimal	

settings	are	not	known	a	priori.		A	random	search	was	noted	to	be	as	effective	as	a	grid	search	and	

thus	was	used	in	this	work23.	The	ranges	of	the	hyperparameter	search	is	listed	in	Table	1.		An	

initial	group	of	200	iterations	was	performed	with	a	broad	range	and	coarse	values.	The	prediction	

accuracy	of	the	training	and	validation	set	was	evaluated	to	identify	are	more	narrow	

hyperparameter	range.	A	random	search	was	then	performed	again	with	another	500	iterations	

using	a	narrower	range	with	finer	values.		

	

Batch	size	 Filter	
Number	

Filter	Size	 Dense	
Layer	

Learning	
Rate	

L2	
Regularization	

2–10	 5–50	 5–50	 64–256	 1e-1	–	1e-6	 1e-1	–	1e-6	

Table	1.	Searched	Hyperparameters	
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Training	the	model	occurred	through	a	series	of	steps.	Each	step	involved	a	batch	of	samples	that	

flowed	through	the	network	to	make	a	prediction	that	was	compared	to	the	AV45-PET	ground	truth	

label.	The	error	of	the	model	prediction	was	described	with	a	loss	function.	Gradients	with	respect	

to	all	the	weights	in	the	network	were	computed	by	propagating	the	prediction	error	backwards	

through	the	neural	network.	The	weights	used	for	prediction	in	this	training	step	were	then	

updated	accordingly	with	the	aim	to	minimize	the	prediction	error	for	the	next	batch	of	samples.	An	

optimizer	was	used	to	determine	how	much	to	change	the	weights	during	the	training	process.	The	

learning	rate	described	the	amount	to	adjust	the	weights	of	the	network.	Two	optimizers	were	

experimented	with:	gradient	descent	and	ADAM.	In	gradient	decent,	all	weights	in	the	network	

were	adjusted	with	a	global	learning	rate	and	the	learning	rate	attenuated	as	specified	by	the	

number	of	decay	steps.	In	contrast,	the	ADAM	optimizer	adjusted	the	learning	rate	on	a	per	weight	

basis	such	that	each	weight	will	be	adjusted	by	different	amounts.	A	L2	regularization	method	was	

used	during	training	to	prevent	over	fitting	the	training	data.	

	

Training	may	not	progress	through	all	the	specified	training	steps	and	was	programmed	to	cease	

early	when	a	criteria	was	met.	Training	ceased	when	the	value	of	validation	loss	of	the	current	step	

was	larger	than	the	mean	of	the	last	10	evaluated	steps.	Similarly,	when	training	without	a	

validation	set,	training	ceased	when	the	training	loss	of	the	current	step	was	larger	than	the	mean	

of	the	last	10	evaluated	steps.	

	

2.4	 Model	Assessment	

Selection	of	the	best	performing	models	was	based	on	outcome	of	the	test	and	validation	set.	Each	

model	was	trained	on	10	independent	and	randomly	sampled	training	sets.	After	training	the	

models	performance	was	evaluated	on	10	independent	and	randomly	sampled	test	sets.	The	mean	

and	standard	deviation	of	the	sensitivity,	specificity,	and	predictive	value	was	calculated.	In	each	
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diagnostic	group,	a	t-test	was	performed	to	compare	any	significant	differences	(p<0.05)	between	

model	types:	I)	regional	atrophy	values,		II)	atrophy	with	AD-related	predictors	added	to	the	fully	

connected	layer	(see	Figure	1),	and	III)	atrophy	and	AD-related	predictors	as	input.	Model	Types	I	

and	II	had	a	2D	input	of	[number	of	samples	x	96]	and	Model	Type	III	had	a	3D	data	input	[number	

of	samples	x	96	x	10].	In	the	case	of	model	type	III,	each	AD-related	predictors	had	in	its	own	

dimensions	with	the	same	values	repeated	in	every	node	of	the	graph.	

	

The	trained	MCI	models	of	each	type	and	instance	were	used	to	predict	Aβ-positivity	on	a	cohort	of	

subjects	with	their	3	month	MRI	follow	up	exam.	The	mean	and	standard	deviation	of	the	

sensitivity,	specificity,	and	predictive	value	was	also	calculated.	

	

2.5	 Hidden	Layer	Outputs	

The	best	performing	models	with	high	prediction	accuracy	in	the	test	set	was	used	to	study	the	

outputs	of	the	learned	filters	from	the	first	hidden	layer.	A	batch	of	input	data	from	the	test	set	was	

fed	into	these	trained	networks	to	obtain	the	output	of	each	filter.	The	log	percent	between	the	

initial	and	output	value	was	calculated	and	exported	to	a	comma	separated	value	(CSV)	file	format.	

This	CSV	file	was	then	imported	in	Matlab	(R2014b,	MathWorks,	Natick,	MA)	and	BrainNet	was	

used	to	plot	and	visualize	the	filter	response	with	respect	to	each	brain	region24.	
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Chapter	3	

Results	

3.1	 Model	performances	

Of	the	total	1093	unique	participants	with	baseline	AV45-PET	scans,	771	had	a	baseline	MRI	scans	

within	60	days	and	was	the	total	allotment	of	subjects	used	in	this	study.	The	best	performing	

neural	net	architecture	was	different	among	diagnostic	groups	and	model	types	within	each	

diagnostic	group.	An	example	of	GCN	architecture	used	for	evaluation	is	reported	in	Table	2.		

Preliminary	results	identified	that	the	ADAM	optimizer	performed	better	than	gradient	descent,	

usually	producing	~5%	greater	accuracy	on	the	validation	and	test	set,	and	was	the	optimizer	used	

for	evaluation.	

	

Diagnostic	Group	 Healthy		 MCI	 Alzheimer’s	Disease	
Batch	size	 6	 4	 5	

Number	of	Filters	
[1st	Layer,	2nd	Layer]	 [	11,	11	]	 [	10,	5	]	 [	11,	5	]	

Filter	Size	
[1st	layer,	2nd	layer]	 [	14,	12	]	 [	4,	4]	 [	14,	14	]	

Fully	Connected	
Layer	 64	 128	 64	

Optimizer	 ADAM	 ADAM	 ADAM	
Learn	rate	 0.01	 0.001	 0.01	

L2	Regularization	 0.1	 0.001	 0.001	
Table	2.	Example	of	Top	Performing	GCN	Architecture	and	Settings	

	

The	results	of	the	model	evaluations	are	reported	in	Table	3.	Prediction	accuracy,	sensitivity,	

specificity	and	predictive	value	evaluated	on	the	respective	test	sets	generally	increased	with	the	

addition	of	AD-related	predictors	either	fed	into	the	dense	layer	or	at	the	beginning	of	the	neural	

network.		
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The	Normal	III	model	with	all	patient	descriptors	fed	as	an	input	to	the	GCN	had	the	highest	

prediction	accuracy	that	was	significant	compared	to	using	atrophy	by	itself	(Normal	I).		This	model	

also	had	the	lowest	sensitivity	and	highest	specificity,	both	were	significantly	different	compared	to	

the	Normal	I	model.	There	was	no	significant	difference	between	positive	predictive	value	(PPV)	

and	negative	predictive	value	(NPV)	across	all	three	healthy	control	models.		

	

It	made	no	difference	where	the	AD-related	predictors	was	fed	in	MCI	models	and	both	MCI	II	and	

MCI	III	models	produced	similar	results.	Both	these	models	however	was	significantly	better	than	

using	atrophy	descriptors	alone	(MCI	I),	except	for	PPV	of	the	MCI	III	model.	Each	of	these	MCI	

models	showed	a	higher	sensitivity	than	specificity	and	showed	a	slightly	higher	NPV	than	PPV.	

	

All	three	AD	models	performed	just	as	well	on	prediction	accuracy,	sensitivity,	and	PPV.	The	AD	

models	in	particular	did	now	show	any	major	difference	with	the	addition	of	the	AD-related	

predictors.	No	significant	difference	was	observed	between	AD	II	and	AD	III	models.	On	average,	the	

AD	II	model	was	able	to	identify	more	Aβ-negative	than	the	other	AD	models.	

	

Model	 Test	Set		(n)	 Accuracy	 Sensitivity	 Specificity	 PPV	 NPV	

Normal	I	 149	 61.3	±	2.8	 27.0	±	7.1	 76.2	±	5.1	 32.9	±	4.9	 70.6	±	1.6	
Normal	II	 149	 63.2	±	9.0	 43.0	±	34.8	 72.0	±	27.8	 52.9	±	23.0	 77.5	±	8.5	
Normal	III	 149	 69.2	±	2.2	 6.0	±	6.8	 96.6	±	4.3	 31.2	±	34.3	 70.3	±	1.1	
MCI	I	 152	 56.6	±	2.9	 65.6	±	8	 47.5	±	6.9	 55.6	±	2.4	 58.3	±	4.5	
MCI	II	 152	 69.4	±	2.5	 80.0	±	9.0	 58.7	±	12.9	 66.7	±	4.6	 75.9	±	5.4	
MCI	III	 152	 67.6	±	3.5	 83.6	±	6.7	 51.5	±	13.0	 63.8	±	4.1	 76.9	±	4.5	
AD	I	 40	 88.8	±	1.8	 98.3	±	2.0	 2.5	±	8.0	 90.0	±	0.8	 2.5	±	15.8	
AD	II	 40	 90.5	±	1.1	 100	±	0	 5	±	10.5	 90.5	±	1.0	 5	±	42.2	
AD	III	 40	 89.3	±	1.2	 99.1	±	1.4	 0	 89.9	±	0.1	 0	
Table	3.	Model	Results.	Mean	and	standard	deviation	values	reported.	
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An	improvement	in	prediction	accuracy,	sensitivity,	specificity,	and	predictive	value	was	noted	in	

all	three	MCI	models	evaluated	on	MCI	subjects	with	their	3	month	MRI	T1	scan.	These	results	are	

listed	in	Table	4	along	with	models’	baseline	MRI	results	for	comparison.	The	amount	of	3	month	

follow	up	MRI	exams	used	for	evaluation	that	met	the	filtering	criteria	specified	above	was	33.	

	

Model	 Test	Set	(n)	 Accuracy	 Sensitivity	 Specificity	 PPV	 NPV	

MCI	I	 152	 56.6	±	2.9	 65.6	±	8	 47.5	±	6.9	 55.6	±	2.4	 58.3	±	4.5	
MCI	I		
3	month	 33	 63.9	±	3.6	 74.1	±	5.0	 53.1	±	8.5	 62.9	±	3.8	 65.9	±	3.9	

MCI	II	 152	 69.4	±	2.5	 80.0	±	9.0	 58.7	±	12.9	 66.7	±	4.6	 75.9	±	5.4	
MCI	II	
3	month	 33	 76.1	±	3.7	 76.5	±	5.9	 75.6	±	12.0	 78.2	±	8.2	 75.4	±	2.7	

MCI	III	 152	 67.6	±	3.5	 83.6	±	6.7	 51.5	±	13.0	 63.8	±	4.1	 76.9	±	4.5	
MCI	III	
3	month	 33	 76.9	±	6.5	 77.6	±	7.2	 78.1	±	17.0	 81.1	±	10.7	 76.8	±	4.7	

Table	4.	Comparison	of	MCI	Model	Results	on	Baseline	and	3	Month	MRI	Data	
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3.2	 Learned	Hidden	Features	

This	section	describes	learned	filters	from	trained	models	of	each	diagnostic	group	and	their	

response	to	regional	atrophy	data.	In	these	illustrations,	the	size	of	the	nodes	depict	the	magnitude	

and	the	color	indicates	the	direction	of	the	change	with	respect	to	the	input	values.	All	examples	are	

outputs	from	the	first	convolutional	layer.	

	

Learned	filters	from	the	first	hidden	layer	tend	to	increase	regional	atrophy	values	and	activate	

more	networks	(more	red	nodes)	as	graph	models	progress	from	healthy	to	Alzheimer’s	disease.	An	

example	of	brain	networks	largely	affected	by	a	filter	from	a	HC,	MCI,	and	AD	model	is	shown	in	

Figure	3.	The	nodes	in	these	plots	represent	the	top	50%	of	the	maximum	absolute	value	observed	

in	the	graph.	For	example,	healthy	control	nodes	with	values	greater	than	0.0865	(50%	of	0.173)	

was	plotted.	In	all	three	of	these	cases	the	left	postcentral	and	right	entorhinal	was	reduced.		

	

	

Figure	3.	Example	of	Highlighted	Brain	Networks	from	Learned	Filters		
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3.2.1	 Healthy	Control	Filter	Outputs	

Outputs	of	five	different	filters	in	response	to	regional	atrophy	data	is	shown	in	Figure	4	to	Figure	8.	

In	most	of	these	filters,	the	largest	magnitude	in	change	is	negative	with	less	enhanced	regions	than	

reduced	regions.	

	

	

Figure	4.	Convolutional	Filter	#1	Output	from	a	Healthy	Control	Model	
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Figure	5.	Convolutional	Filter	#2	Output	from	a	Healthy	Control	Model	

	

	

Figure	6.	Convolutional	Filter	#3	Output	from	a	Healthy	Control	Model	
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Figure	7.	Convolutional	Filter	#4	Output	from	a	Healthy	Control	Model	

	

	

Figure	8.	Convolutional	Filter	#5	Output	from	a	Healthy	Control	Model	
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3.2.2	 Mild	Cognitive	Impairment	Filter	Outputs	

Examples	of	five	filters	from	a	MCI	model	is	shown	in	Figures	9-13.	Output	of	these	filters	show	a	

mixture	of	activation	and	reduction.		

	

	

Figure	9.	Convolutional	Filter	#1	Output	from	a	Mild	Cognitive	Impairment	Model	
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Figure	10.	Convolutional	Filter	#2	Output	from	a	Mild	Cognitive	Impairment	Model	

	

	

Figure	11.	Convolutional	Filter	#3	Output	from	a	Mild	Cognitive	Impairment	Model	



	

	 21	

	

Figure	12.	Convolutional	Filter	#4	Output	from	a	Mild	Cognitive	Impairment	Model	

	

	

Figure	13.	Convolutional	Filter	#5	Output	from	a	Mild	Cognitive	Impairment	Model	
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3.2.3	 Alzheimer’s	Disease	Filter	Outputs	

Outputs	from	five	different	filters	of	an	AD	model	are	shown	in	Figures	14	to	Figure	18.	Two	of	

these	filters	show	similar	filtering	patterns	(Figure	14	and	Figure	15).	Atrophy	in	the	cortical	

regions	are	more	apparent	these	examples,	some	filters	show	more	regions	than	others.	

	

	

Figure	14.	Convolutional	Filter	#1	Output	from	an	AD	Model	
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Figure	15.	Convolutional	Filter	#2	Output	from	an	AD	Model	

	

Figure	16.	Convolutional	Filter	#3	Output	from	an	AD	Model	
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Figure	17.	Convolutional	Filter	#4	Output	from	an	AD	Model	

	

	

Figure	18.	Convolutional	Filter	#5	Output	from	an	AD	Model	
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Chapter	4	

Discussion	

4.1	 Summary	of	Findings	

The	dense	image	information	from	structural	MRI	can	be	reinterpreted	as	graph	which	can	be	fed	

into	a	convolutional	neural	network	to	predict	whether	or	not	a	person	would	test	positive	in	the	

AV45-PET	exam.	This	method	can	be	used	as	a	practical	adjunct	to	deciding	the	next	course	of	

action	for	the	patient.	With	proper	validation	of	the	model,	the	costs	involved	with	using	Aβ	

targeted	radiopharmaceuticals	and	amount	of	related	diagnostic	tests	like	AV45-PET	and	CSF	assay	

could	be	minimized.	Additionally,	areas	with	limited	access	to	Aβ	radiotracers	and	PET	scanners	or	

persons	hesitant	with	getting	their	CSF	probed	would	benefit	from	using	this	predictive	modeling	

method.	

	

Training	the	model	and	running	predictions	with	it	can	be	performed	with	today’s	off	the	shelf	

laptops	or	desktops	without	the	need	of	specialized	resources	like	using	graphics	processor	units	or	

cloud	services	dedicated	to	these	kinds	of	computations.	The	network	which	describes	connectivity	

between	the	86	brain	regions	in	this	study	is	sparse	and	allows	for	even	fewer	convolutional	

computations.	By	comparison,	convolutions	in	deep	learning	frameworks	with	images	for	

classification	would	normally	require	the	filter	to	transverse	through	all	or	most	of	the	image	

without	the	option	to	skip	unnecessary	regions.	An	idea	maybe	worth	exploring	would	be	to	

combine	a	graph	neural	network	coupled	with	its	image	neural	network	counterpart	for	higher	

predictive	power	and	more	insight	into	understanding	the	progression	of	Alzheimer’s	disease.	

Activated	regions	in	the	graph	network	could	specify	more	important	regions	to	look	at	in	the	

image	network	or	visa	versa.	
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The	learned	features	or	filters	provide	clues	as	to	which	regions	are	pertinent	for	classification	and	

disease	staging.	The	filter	output	from	the	first	hidden	layer	directly	corresponds	with	the	original	

input	data	making	it	easier	to	interpret	as	it	is	a	one	to	one	relationship.	Additionally,	these	filters	

may	identify	characteristic	networks	or	groups	of	regions	that	could	be	attributed	to	a	particular	

disease	stage.	In	contrast	with	neural	networks	trained	in	the	task	of	image	classification,	the	first	

convolutional	filters	provide	simple	but	meaningful	descriptors	useful	for	classification	like	the	

detection	of	edges.	A	similar	but	not	direct	relationship	could	also	be	noted	with	the	first	

convolutional	layer	filter	of	the	graph	neural	network.	While	analyzing	the	2nd	hidden	layer	filters	

may	offer	an	added	value,	they	are	harder	to	interpret	as	the	describe	even	more	abstraction	of	the	

input	data	that	depends	on	the	activations	from	the	first	hidden	layer.		A	detailed	look	into	the	

interpreting	the	complete	hierarchal	learning	of	the	hidden	layers	may	offer	additional	insight	to	

how	combined	brain	regions	or	networks	contribute	to	classification,	but	this	analysis	will	be	left	

for	future	endeavors.		

	

The	sensitivity,	specificity,	and	predictive	value	was	generally	enhanced	with	the	addition	of	AD	

related	cofactors.	The	MCI	model	improved	the	most	with	the	addition	of	the	AD	related	cofactors	

and	was	significant	across	all	measures.	With	the	MCI	group	being	the	heterogeneous	among	other	

diagnostic	groups,	using	atrophy	descriptors	alone	may	not	offer	high	enough	predictive	value	with	

this	method.	Even	with	the	AD	related	cofactors,	the	average	prediction	accuracy	was	~70%	and	

may	require	additional	biomarkers	to	train	and	improve	predictions.	The	least	affected	with	the	

addition	of	AD	related	factors	was	noted	in	the	AD	model.	This	result	could	possibly	mean	that	the	

use	of	atrophy	descriptors	provided	enough	context	to	predict	Aβ-positive	reliably.	The	AD	group	

contained	small	portion	of	Aβ-negative	(~10%)	which	was	difficult	for	the	model	to	identify,	

however	some	model	instances	was	able	to	identify	1	of	3	Aβ-negative	subjects	in	the	test	set.		The	

healthy	control	model	showed	marginal	improvement	on	prediction	accuracy	with	AD-related	
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predictors.	Nonetheless,	the	healthy	control	models	can	better	identify	Aβ-negative	and	a	

somewhat	reasonable	portion	of	Aβ-positives.	Normal	III	model	in	particular	showed	a	very	high	

specificity	and	NPV,	which	showed	that	the	model	learned	more	features	that	characterize	a	healthy	

brain.	

	

Most	models	reported	in	Table	3	showed	a	relatively	marginal	variance	in	their	measures	of	

predictive	value,	sensitivity,	and	specificity.		One	model	that	deviated	from	this	was	the	Normal	II	

model	where	there	was	a	large	standard	deviation	in	sensitivity	and	PPV.	This	larger	variance	could	

be	attributed	the	random	sampling	of	the	training	and	test	set	where	some	datasets	had	more	

difficult	subjects	to	classify.	Moreover,	every	model	begins	training	with	randomly	chosen	initial	

values	of	the	networks’	parameter	weights	and	this	affects	the	learning	trajectory.	A	model	with	the	

same	training	and	validation	sets,	for	example,	will	have	slightly	different	outcomes	if	ran	again	de	

novo.	The	values	being	initialized	however	are	from	a	tight	distribution	with	a	mean	of	0.0	and	

within	a	standard	deviation	of	0.1.	

	

Trained	MCI	models	are	robust	enough	to	predict	Aβ-positivity	on	3	month	MRI	data	with	

comparable	accuracy	to	baseline	MRI	predictions,	albeit	the	evaluation	was	performed	on	a	smaller	

test	set.	The	narrow	list	could	be	attributed	to	the	variability	of	when	participants	actually	come	in	

for	the	3	month	MRI	exam	and	also	the	strict	tolerance	of	15	days	when	aggregating	the	data.	A	

larger	test	set	size	is	warranted,	but	this	at	least	demonstrates	the	potential	flexibility	of	the	learned	

MCI	models.	
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4.2	 Limitations	

This	model	assumes	that	the	density	of	tracts	describing	the	connectivity	between	brain	regions	is	

consistent	among	all	subjects	at	a	particular	disease	stage,	that	each	diagnostic	group	could	be	

described	as	one	network	topology.	For	example,	subjects	diagnosed	with	MCI	will	have	the	same	

connection	strength	between	the	amygdala	and	the	hypothalamus	as	others	who	are	diagnosed	

with	MCI.	Incorporating	the	person’s	unique	network	topology	in	training	the	model	to	predict	Aβ-

positivity	may	be	of	value	especially	if	diffusion	MRI	becomes	readily	available	and	implemented	as	

a	standard	routine	of	care.	Another	aspect	of	this	modeling	method	to	note	is	that	the	learned	filters	

cannot	be	transferred	to	other	graph	structures	so	any	changes	such	as	an	addition	of	another	node	

or	node	connection	would	require	re-training	and	optimizing	the	model.	The	sample	size	is	limited	

to	participants	in	the	ADNI	study	and	could	be	larger.	

	

4.3	 Future	Work	

More	work	can	be	done	to	reap	the	full	potential	of	this	numerical	modeling	method.		While	this	

work	looked	at	two	hidden	layers,	the	pooling	combinations	and	number	hidden	layers	have	not	

been	explored	in	detail.	One	thing	to	explore	would	be	to	augment	the	input	and	feed	more	graph	

signals	into	the	neural	network	with	varying	regional	information.	Regional	metabolite	

concentrations	(i.e.	N-acetyl-asparate,	creatine/phosphocreatine,	choline,	and	myo-inositol)	

derived	from	magnetic	resonance	spectroscopy	could	also	be	included	with	regional	atrophy	

information.	Another	idea	worth	exploring	would	be	to	incorporate	a	multi-scaled	graph	whereby	

each	node	would	contain	another	network.	Each	brain	region	can	hold	another	network	

information	like	the	interplay	of	protein	expression,	metabolite	concentration,	and	finer	structural	

characteristics.	
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Appendix	A	

Left	Cerebellum	Cortex	 	 Left	Rostral	Middle	Frontal	

Left	Thalamus	 	 Left	Superior	Frontal	

Left	Caudate	 	 Left	Superior	Parietal	

Left	Putamen	 	 Left	Superior	Temporal	

Left	Pallidum	 	 Left	Supramarginal	

Left	Hippocampus	 	 Left	Frontal	Pole	

Left	Amygdala	 	 Left	Temporal	Pole	

Left	Accumbens	Area	 	 Left	Transverse	Temporal	

Left	Ventral	DC	 	 Left	Insula	

Right	Cerebellum	Cortex	 	 Right	Bankssts	

Right	Thalamus	 	 Right	Caudal	Anterior	Cingulate	

Right	Caudate	 	 Right	Caudal	Middle	Frontal	

Right	Putamen	 	 Right	Cuneus	

Right	Pallidum	 	 Right	Entorhinal	

Right	Hippocampus	 	 Right	Fusiform	

Right	Amygdala	 	 Right	Inferior	Parietal	

Right	Accumbens	Area	 	 Right	Inferior	Temporal	

Right	Ventral	DC	 	 Right	Isthmus	Cingulate	

Left	Bankssts	 	 Right	Lateral	Occipital	

Left	Caudal	Anterior	Cingulate	 	 Right	Lateral	Orbitofrontal	

Left	Caudal	Middle	Frontal	 	 Right	Lingual	

Left	Cuneus	 	 Right	Medial	Orbitofrontal	

Left	Entorhinal	 	 Right	Middle	Temporal	
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Left	Fusiform	 	 Right	Parahippocampal	

Left	Inferior	Parietal	 	 Right	Paracentral	

Left	Inferior	Temporal	 	 Right	Pars	Opercularis	

Left	Isthmus	Cingulate	 	 Right	Pars	Orbitalis	

Left	Lateral	Occipital	 	 Right	Pars	Triangularis	

Left	Lateral	Orbitofrontal	 	 Right	Pericalcarine	

Left	Lingual	 	 Right	Postcentral	

Left	Medial	Orbitofrontal	 	 Right	Posterior	Cingulate	

Left	Middle	Temporal	 	 Right	Precentral	

Left	Parahippocampal	 	 Right	Precuneus	

Left	Paracentral	 	 Right	Rostral	Anterior	Cingulate	

Left	Pars	Opercularis	 	 Right	Rostral	Middle	Frontal	

Left	Pars	Orbitalis	 	 Right	Superior	Frontal	

Left	Pars	Triangularis	 	 Right	Superior	Parietal	

Left	Pericalcarine	 	 Right	Superior	Temporal	

Left	Postcentral	 	 Right	Supramarginal	

Left	Posterior	Cingulate	 	 Right	Frontal	Pole	

Left	Precentral	 	 Right	Temporal	Pole	

Left	Precuneus	 	 Right	Transverse	Temporal	

Left	Rostral	Anterior	Cingulate	 	 Right	Insula	






