
UCLA
UCLA Previously Published Works

Title
De Novo Occurrence of a Variant in ARL3 and Apparent Autosomal Dominant Transmission 
of Retinitis Pigmentosa

Permalink
https://escholarship.org/uc/item/33b5c4vt

Journal
PLOS ONE, 11(3)

ISSN
1932-6203

Authors
Strom, Samuel P
Clark, Michael J
Martinez, Ariadna
et al.

Publication Date
2016

DOI
10.1371/journal.pone.0150944

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/33b5c4vt
https://escholarship.org/uc/item/33b5c4vt#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/
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Abstract

Background

Retinitis pigmentosa is a phenotype with diverse genetic causes. Due to this genetic hetero-

geneity, genome-wide identification and analysis of protein-altering DNA variants by exome

sequencing is a powerful tool for novel variant and disease gene discovery. In this study,

exome sequencing analysis was used to search for potentially causal DNA variants in a

two-generation pedigree with apparent dominant retinitis pigmentosa.

Methods

Variant identification and analysis of three affected members (mother and two affected off-

spring) was performed via exome sequencing. Parental samples of the index case were

used to establish inheritance. Follow-up testing of 94 additional retinitis pigmentosa pedi-

grees was performed via retrospective analysis or Sanger sequencing.

Results and Conclusions

A total of 136 high quality coding variants in 123 genes were identified which are consistent

with autosomal dominant disease. Of these, one of the strongest genetic and functional can-

didates is a c.269A>G (p.Tyr90Cys) variant in ARL3. Follow-up testing established that this

variant occurred de novo in the index case. No additional putative causal variants in ARL3
were identified in the follow-up cohort, suggesting that if ARL3 variants can cause adRP it is

an extremely rare phenomenon.
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Introduction
Retinitis pigmentosa (RP) [MIM: 268000] is a clinical finding defined by peripheral vision loss
due to impaired retinal function which affects approximately 1:3,000–1:5,000 individuals [1, 2].
The genetic basis of RP is highly heterogeneous, with at least fifty genes identified to date as
associated with non-syndromic RP [3–8]. Most known forms of inheritance have been demon-
strated for RP, including single-gene autosomal recessive, autosomal dominant, and X-linked
inheritance and digenic inheritance [9–11].

Due to this extreme heterogeneity, massively parallel DNA sequencing has become an inte-
gral part of both clinical diagnostics and research of the genetic basis of RP and other retinal
dystrophies [6, 10, 12–17]. Gene panels are now used clinically to identify variants in known
retinal dystrophy genes, with a success rate of approximately 20–40% [6, 16]. Exome sequenc-
ing, the genome-wide identification and analysis of DNA variants resulting in a predicted
change in any known protein-coding gene, has been particularly powerful for variant and dis-
ease gene discovery for retinal dystrophies [12, 17] and across nearly all areas of genetics [18–
21]. These tools provide a cost-effective measure to ending the diagnostic odyssey so often
endured in medical genetics.

Pedigree RP02 consists of a four-person nuclear family of reported European Caucasian
descent. Three individuals in this pedigree are affected with non-syndromic retinitis pigmentosa
(Fig 1). As the trait is observed in the mother and one child of each gender, autosomal dominant
inheritance was considered a strong possibility. Given the large number of genes and variants
which can cause autosomal dominant retinitis pigmentosa (adRP) [7, 8, 22], exome sequencing
was performed on the three affected individuals to identify possible causal DNA variants.

As each individual exome contains 20,000–25,000 DNA variants compared to the human
genome reference sequence, a series of bioninformatic analyses were performed first to identify
variants within known retinal disease genes and then, if negative, to continue the search for
potentially novel disease genes.

Materials and Methods

Patient Samples
This study was conducted within an Institutional Review Board (IRB)-approved human sub-
jects research program at the University of California Los Angeles (IRB#11–000020, "Genetic
Studies in Inherited Ocular Disorders") and the study was conducted in accordance with regu-
lations of the Health Insurance Portability and Accountability Act of 1996 (HIPAA). All three
individuals enrolled in the Genetics research study and signed a consent form. The UCLA
HIPAA consent form specifies the use of the information for publications and research presen-
tations. DNA samples from the nuclear family were obtained from whole blood specimens
using standard protocols. DNA samples from parental samples of the index case were collected
and extracted using Oragene DNA Saliva kits (DNA Genotek Inc., Ottowa, Ontario, Canada).

Retrospective case report. Mother: At 58 years old at presented with difficulty reading
with mild decreased visual acuity and bilateral visual field concentric constriction. She has a
history of cataract surgery at age 41 years. Her visual acuity measured as 20/60 in the right eye
and 20/80 in the left. Intraocular pressures (IOP) were 12 and 10 for the right and left eye
respectively. Visual fields were “central islands” bilaterally, and the retina showed the classic
pattern of mid-peripheral pattern of pigmentation with attenuated vessels. Optical coherence
tomography (OCT) showed no edema. No other relevant medical problems were reported. Pre-
vious genetic testing included mutation screening in the following genes: CRX, PRPH2, RP1
and IMPDH1. All were negative.
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Daughter: At 27-years old had late onset nyctalopia, decreased vision with difficulty of read-
ing and driving, flashes and floaters for several years and progressive loss of peripheral vision.
She has also medical history of difficulties with gait, headaches, difficulties with balance,
increased urinary frequency and severe ankle swelling (partially responsive to Lasix, possibly
familial lymphedema).

Visual acuity for right and left eyes was 20/80-1 20/60-2. IOP right and left were 13 and 14.
Bilateral visual field constriction was observed. A posterior subcapsular cataract (PSC) was
identified in the left eye only. Intraocular lens (IOC) noted in the right eye only. Fundus exami-
nation revealed vitreous floater in the right eye only. Bilateral attenuation of retinal vessels and
bone-spicules were observed in the periphery. OCT showed cystoid macular edema.

Son.: At 30 years-old presented with retinitis pigmentosa and related cystoid macular
edema. The patient continues to be very bothered by flashes of light that are severe enough to
be almost disabling. Also he has floaters and progressive loss of peripheral vision. The patient
had different surgical procedures as Lasik OU (2003), cataract removal OD (2008), Yag, stra-
bismus for exotropia 15–20Δ at 12 and 14 years old. Medical history

Visual acuity for right and left eyes was 20/20 and OS: 20/25+2. IOP left and right were 13
and 14. Both visual fields were constricted. A posterior subcapsular cataract PSC was identified
in the left eye only and IOC noted in the right eye only, the same pattern as in his sister. No
other relevant medical problems were reported.

Exome Sequencing
Exome sequencing was performed using the Accuracy and Enhanced Content Exome (ACE)
pipeline developed by Personalis (Menlo Park, CA). This pipeline is a clinically validated and
published protocol including all stages of analysis including: library preparation, target capture,
sequencing, alignment, variant calling, and variant annotation [23]. This methodology detects

Fig 1. Pedigree of family with apparent autosomal dominant retinitis pigmentosa. De novo occurrence of a variant in ARL3 in an individual with retinitis
pigmentosa and subsequent transmission to affected offspring.

doi:10.1371/journal.pone.0150944.g001
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single nucleotide variants and small insertions and deletions up to approximately 20 nucleo-
tides in length. Larger genetic changes such as deletions, duplications, and copy-neutral struc-
tural rearrangements were not analyzed.

The following in silico tools were used to predict the likely impact on protein function of
observed DNA variants: LRT, PolyPhen2 [24], SIFT [25], MutationTaster [26], and intra-spe-
cies conservation (GERP, PhyloP, PhastCons).

Variant Filtering
Variants were filtered for quality by removing any variant with a VCF flag of anything except
“PASS” and/or having a QUAL score<500. The maximum of 1000 Genomes and Exome
Sequencing Project (ESP5400) used as the estimate of minor allele frequency (MAF). Variants
below 1%MAF were considered “rare” while variants> = 1% were filtered out of analysis. Syn-
onymous and intronic variants not known to cause splice defects were also removed during fil-
tering (see S1 Table and S2 Table).

Protein-Protein Interaction Prediction
The predicted impact of candidate variants on protein-protein interactions were estimated
using mCSM [27].

Sanger Confirmation and Follow-Up
PCR amplification followed by dideoxy capillary electrophoresis DNA sequencing was per-
formed to validate the variant in ARL3 (S1 Fig).Primer sequences are listed in S3 Table. Parent-
age of the grandparents was confirmed by the UCLAMolecular Diagnostics Laboratories via a
clinically validated DNA Identity Test.

Retrospective exome data from 13 probands of the previously described UT adRP cohort of
265 families with a high likelihood of autosomal inheritance were analyzed for mutations in
ARL3[28, 29]. An additional 47 probands from the UT adRP cohort and 34 adRP probands
sent to the Laboratory for the Molecular Diagnosis of Inherited Eye diseases were also tested
for mutations using fluorescent di-dexoy sequencing [30–32]. All probands had previously
tested negative for mutations in known adRP genes. All six coding exons and a minimum of
20bp of flanking intronic sequence were tested for mutations (S3 Table).

Results
A total of 1,787 rare coding variants were observed in at least one individual (annotated vari-
ants in S2 Table). Of these, 96 variants in 88 different genes passed all filtering criteria:
observed as heterozygous or “no call” in all three individuals; MAF<0.1%, high sequencing
quality; not in a gene known to cause an unrelated condition; not in a likely pseudogene (sum-
mary in Table 1; annotated variants list in S2 Table).

Table 1. Variants meeting various filter criteria. Maximum of 1000 Genomes and Exome Sequencing
Project (ESP5400) used as minor allele frequency (MAF). “Problematic gene” is a gene which is known to be
poorly assessed by exome sequencing, such as genes in the mucin family and HLA genes.

Filter # of variants

Coding and MAF <1% 1,787

Het (or “no call”) in all 3 347

High quality (no flags, Q>500) autosomal 187

Very rare (MAF <0.1%) 135

Not in unrelated OMIM disease gene or “problematic gene” 96

doi:10.1371/journal.pone.0150944.t001
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Two variants were identified within genes known to be implicated in retinal degeneration,
one each in RP1L1 andMFRP. The c.3978_3979insGAA (p.Lys1326_Thr1327insGlu) variant
in RP1L1 (NM_178857.5) identified as heterozygous in all three individuals has not been previ-
ously observed in the general population or in individuals with retinal dystrophy. It is an in-
frame insertion of a single amino acid. This variant was considered unlikely to be pathogenic
for several reasons. As RP1L1 has reduced penetrance [10] and a very high non-synonymous
rare variant rate in the general population [33], the prior probability of identifying such a vari-
ant is quite high regardless of retinal phenotype. Additionally, the age of onset and retinal phe-
notype are not consistent with occult macular dystrophy, the clinical condition associated with
RP1L1. At this time, this variant must be considered a variant of uncertain clinical significance.
The c.1374G>T (p.Leu458Phe) variant inMFRP gene (NM_031433.2) is observed with a
minor allele frequency of nearly 1% in Europeans [33], suggesting this variant is unlikely to
cause highly penetrant disease in the heterozygous state.

Ranking of the 96 variants passing all filters was performed using clinical keywords. Manual
interpretation of variants identified one strong candidate: a c.269A>G (p.Tyr90Cys) variant in
the ARL3 (ADP-ribosylation factor-like 3) gene (NM_004311.3, chr10:g.104449696T>C). It's
gene product, the Arl3 protein, contains only 182 amino acids, making it a very small target for
genetic variation. Likely due to the size of the gene, only 12 out of approximately 6,500 individu-
als (0.18%) in the Exome Sequencing Project dataset carry a rare heterozygous missense variant
in ARL3 [33]. None of these variants are within 10 amino acids of the p.Tyr90Cys variant identi-
fied in this study, suggesting that this interval may be relatively depleted of protein variation due
to natural selection. All in silico prediction methods used supported the hypothesis that the p.
Tyr90Cys variant is likely deleterious to the function of ARL3 (Table 2). Of the vertebrate species
with available data, all organisms (95 species spanning fish to primates) have a tyrosine at this
aligned position in ARL3, indicating extremely strong evolutionary conservation of this amino
acid [as per the Vertebrate Multiz Alignment & Conservation (100 Species) track of the UCSC
genome browser accessed November 2015] (Fig 2). In silico analysis of protein-protein

Table 2. In silico prediction tests. Results for the p.Tyr90Cys variant in ARL3.

Test Result

LRT Score (prediction) 0 (deleterious)

Polyphen2 HumDiv Score (prediction) 1 (probably damaging)

SIFT Score (prediction) 0 (probably damaging)

MutationTaster Score (Prediction) 0.99 (disease-causing)

PhyloP 2.1 (supports conservation)

PhastCons 15.5 (supports conservation)

GERP 5.3 (supports conservation)

doi:10.1371/journal.pone.0150944.t002

Fig 2. Evolutionary conservation of exon 5 of ARL3. Includes the tyrosine (Y) amino acid at position 90 (boxed), across vertebrate species.
Representative set of 9 species shown using the UCSCGenome Browser.

doi:10.1371/journal.pone.0150944.g002
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interactions between Arl3 and two of its major binding partners—RP2 and UNC119—predicts
that the p.Tyr90Cys variant has a destabilizing effect on heterodimerization (Table 3).

The c.269A>G variant was confirmed as heterozygous in the three affected individuals and
homozygous reference (“wild type”) in the unaffected grandparents by Sanger sequencing (S1
Fig). No rare coding variants in ARL3 were found in an additional set of 94 families with RP.

Discussion
ARL3 encodes Arl3, a small GTPase which is a known binding partner of RP2 [34–36] and
UNC119 [37]. Variants in RP2 (retinitis pigmentosa 2) which encodes RP2 are associated with
X-linked retinitis pigmentosa type 2 [MIM: 312600][38, 39]. Model organism work suggests
that UNC119 function is critical to the visual system in mice [40]. Other known interaction
partners include PDE6D, a protein whose gene is associated with primary cilia function [37]
and disruption of which may cause Joubert Syndrome 22 [MIM: 615665][41]. Publicly avail-
able microarray data shows that ARL3 is most highly expressed in the retina and pineal gland
(GeneAtlas U133A, gcrma)[42]. These facts are consistent with functional studies demonstrat-
ing that the Arl3 protein is involved in protein trafficking of proteins to the outer segment of
photoreceptor cells [34, 35, 43, 44]. A biochemical study of the RP2-null mouse model for RP
suggests that the disease mechanism includes hyperactivity of Arl3 leading to mistrafficking of
prenylated cargo in photoreceptor cells [45]. Given its expression pattern, binding partners,
and biochemical, ARL3 is a strong a priori candidate gene for retinitis pigmentosa in humans.

This candidacy is strengthened by the fact that the p.Tyr90Cys variant identified in the
three affected individuals occurred de novo and transmitted with disease to a subsequent gener-
ation in a pedigree consistent with dominant RP. The failure to identify additional ARL3 vari-
ants in our follow-up cohort suggests that even if the ARL3 variant identified in our original
family is truly causal for RP, such variants are responsible for only a small fraction of RP cases.
Functional studies are merited to assess the biochemical impact of the p.Tyr90Cys variant on
the Arl3 protein, and future genome-wide variant identification efforts of RP patients should
consider ARL3 as a gene of interest. Until functional studies are performed or additional fami-
lies with ARL3 variants are identified, this gene will remain a candidate for autosomal domi-
nant retinitis pigmentosa.

Supporting Information
S1 Fig. Representative electropherogram results. Positive (top, proband) and negative (bot-
tom, proband's mother) Sanger sequencing traces for the c.269C>A variant in ARL3. Arrows
point to nucleotide of interest. Full electropherograms for all individuals in this family are
available upon request.
(PDF)

S1 Table. Description of data columns found in S3 Table.
(XLS)

Table 3. Protein-protein interaction predictions. Results for the p.Tyr90Cys variant in ARL3. Calculated using the web tool mCSM [27].

Arl3 Interaction Partner PDB entry ARL3 chain mCSM ddG (Kcal/mol) mCSM description

RP2/GDP-AlF4 3BH7 A -0.719 Destabilizing

RP2/GppNHp 3BH6 A -605 Destabilizing

UNC119A 4GOJ A; B -0.663; -0.741 Destabilizing; Destabilizing

doi:10.1371/journal.pone.0150944.t003
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S2 Table. All potentially causative rare coding variants identified in proband. For a descrip-
tion of column headers, please refer to S1 Table.
(XLS)

S3 Table. Primer sequences. Used for ARL3 coding sequence resequencing
(XLSX)
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