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Shell, G. H. Fredrickson, “Predicting surfactant phase behavior with a molecularly
informed field theory”, J. Colloid Interface Sci. 638, 84-98 (2023).

7. M. Nguyen, N. Sherck, K. Shen, C. E. R. Edwards, B. Yoo, S. Köhler, J. Speros,
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S. Shell, G. H. Fredrickson. “Molecularly Informed Field Theories from Bottom-up
Coarse-Graining.” ACS Macro Letters. 10, 576 (2021).

10. K. Shen, N. Sherck, M. Nguyen, B. Yoo, S. Koehler, J. Speros, K.T. Delaney, M.S.
Shell, G.H. Fredrickson. “Learning composition-transferable coarse-grained models:
Designing external potential ensembles to maximize thermodynamic information.”
The Journal of Chemical Physics. 153, 154116 (2020).

11. J. T. Batley, M. Nguyen, I. Kamboj, C. Korostynski, E. S. Aydil, and C. Leighton.
“Quantitative understanding of superparamagnetic blocking in thoroughly charac-
terized Ni nanoparticle assemblies.” Chemistry of Materials. 32, 6494-6506 (2020).

Oral Presentations
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Abstract

Molecularly Informed Field Theories for Complex Formulation Design

by

My Nguyen

Understanding the solution behavior of complex soft materials is crucial for designing

and optimizing formulations that are relevant in everyday consumer products, including

processed foods, detergents, hair care products, and various industrial applications such

as lubricants, pesticides, and coatings. These formulations are highly multi-component

and involve a wide range of charged molecules, such as polyelectrolytes, surfactants, and

colloids, often in the presence of salt and other non-ionic (macro)molecules. While ex-

perimental investigations provide valuable insights, they are often limited in their ability

to directly observe molecular-level interactions and explore the vast design space, en-

compassing numerous parameters such as composition, specific chemical species, macro-

molecule architecture, molecular weight, temperature, pH, and more. Computational

simulations offer a powerful tool to complement experimental studies, providing a high-

throughput screening approach to deepen our understanding of the underlying molecular

interactions and the behavior of complex formulations.

In this thesis, we present a multi-scale simulation approach that parameterizes meso-

scopic models of the field theory based on information obtained from small-scale atom-

istic simulations. We employ the relative entropy minimization framework to derive

chemically-sensitive coarse-grained interaction parameters from all-atom simulations. Sub-

sequently, we utilize the exact transformation to convert the coarse-grained particle-based

model into field-theoretic form, facilitating the prediction of solution phase behavior. The
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overall workflow preserves the chemical specificity in complex mixtures of interest, en-

abling de novo studies of solution phase behavior in the field theory without the need for

any experimental input.

The simulation framework is highly adaptable and can be applied to investigate a

wide range of soft-matter formulations. This thesis focuses on formulations that rely on

the complexation of charged macromolecules. The presence of charged assemblies, such

as micelles, in typical formulations introduces further complexity, including long length

and time-scale phenomena that are intractable with other high-resolution simulation

techniques. Through the exploration of various complex formulations, we demonstrate

the predictive capability of this simulation workflow in exploring the thermodynam-

ics and complex structures arising in such formulations. By integrating atomistic and

mesoscopic simulation techniques, this work contributes to a fundamental understand-

ing of the underlying mechanisms governing solution behavior in complex formulations.

It offers valuable insights for the rational design and optimization of soft matter for-

mulations, thereby contributing to advancements in various industries and sustainable

chemical product development.
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Chapter 1

Introduction

1.1 Overview

This thesis aims to employ molecular simulations to gain insights into the solution behav-

ior of representative formulations found in everyday consumer products. These formu-

lations, besides being highly ubiquitous in processed foods,3–5 detergent formulations,6

hair care formulations,7 also have high potential in advanced oil recovery,8,9 wet adhe-

sives,10–13 and drug and gene delivery vehicles.14–17 Their applications rely heavily on

molecular-level interactions among the components and, more importantly, complexa-

tion that involves a wide range of natural or synthetic charged molecules, such as syn-

thetic polyelectrolytes, biological polyelectrolytes (e.g., proteins, proteoglycans, polynu-

cleotides), surfactants, and colloids, typically in the presence of salt and other non-

ionic macromolecules. For instance, rheological properties of shampoo are related to the

molecular-level structure of the raw ingredients as well as the strength of complexation
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between the charged macro-ions.7,18,19 Similarly, the ability to enclose dirt particles in

detergents heavily depends on the self-assembly of surfactants and their interactions with

other molecules, such as polymers.6 In these formulations, the presence of salt is particu-

larly relevant as it significantly affects the electrostatic interactions and overall behavior

of the charged molecules and, consequently, the macroscopic properties.20–22 Therefore,

understanding the solution behavior in these formulations is crucial for various industries

as it directly influences their performance and functionality.

Experimental investigations provide valuable insights into the solution phase behav-

ior,20,21,23 but they are often limited by the difficulty of directly observing and quan-

tifying molecular-level interactions. Moreover, realistic formulations are highly multi-

component, comprising both ionic and non-ionic macromolecules, small ions, and sol-

vents and co-solvents, with numerous design parameters, including composition, spe-

cific chemical species, macromolecule architecture, molecular weight, temperature, pH,

and more.7,24 Exploring this vast design space through brute-force experimentation is

challenging. Furthermore, with the increasing emphasis on sustainability and environ-

mentally friendly practices in chemistry, it becomes crucial to intelligently probe and

select ingredients from the green chemical space while maintaining product performance.

Therefore, computational simulations offer a powerful tool to complement experimental

studies and provide a detailed understanding of the underlying molecular interactions

and the behavior of complex formulations.

Simulation techniques, such as molecular dynamics, Monte Carlo simulations or field-
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theoretic simulations,25–27 offers unique advantages in studying systems involving charged

macromolecules. Simulations enable the investigation of molecular-level details and pro-

vide access to information that is otherwise challenging to obtain experimentally such

as precise local density, chain conformation, hydrogen bonding, etc. They also allow for

the systematic manipulation of various parameters, such as charge density, concentration,

and salt concentration, facilitating a comprehensive exploration of the effects of these fac-

tors on the solution behavior of charged molecules. However, all-atom simulations,28–30

while providing detailed chemical information and benefiting from extensive force field

development efforts, are intractable for investigating complex formation due to the com-

putational cost. To overcome this computational challenge, other studies have employed

coarse-grained descriptions of the components. However, these approaches often rely on

simplified toy models31–33 or fitted parameters based on experimental observations34,35

to represent the intricate interactions among different species. This limits the direct

comparison between simulations and actual formulations, as well as restricts the studies

to known compounds with available experimental data.

To address these challenges, we have developed and utilized a multi-scale simula-

tion approach that involves parameterizing a mesoscopic model based on information

obtained from atomistic simulations. Our work has showcased the predictive capabil-

ity of this workflow for a range of representative soft matter formulations. Moreover,

the simulation framework is highly adaptable and can be applied to investigate other

soft-matter formulations beyond those considered in this thesis. This contribution sig-
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nificantly enhances our fundamental understanding of the underlying mechanisms that

govern solution behavior. It provides valuable insights into the factors influencing sta-

bility, self-assembly, and overall performance in complex formulations.

1.2 Complex coacervation in soft matter formula-

tions

One of the most studied complexation mechanisms in mixtures comprised of charged

macro-ions is coacervation.36–39 This process is a liquid-liquid phase separation that is

driven by the complexation free energy with entropic and enthalpic contributions.40 Ex-

periments suggest one major driving force of coacervation is the entropy gain from coun-

terion release.41 Although there is a loss in configurational and translational entropy of

the macro-ions upon complexation, this contribution is small relative to the counterion

entropy for high-molecular-weight macro-ions. The resulting dense phase comprised of

the majority of the oppositely charged macro-ions is referred to as a complex coacervate.

Complex coacervates typically exhibit high viscosity due to the dense packing of charged

macromolecules within their liquid phase. This high viscosity is often advantageous for

certain applications where enhanced stability and control over the encapsulated mate-

rials are desired as well as in personal care products such as shampoo where a gel-like

consistency is preferred.7,42

Mixtures of oppositely charged polyelectrolytes are the simplest models for coacervate-
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forming formulations.1,21,43–46 Polyelectrolytes are polymers that contain ionizable groups

along their backbone, which can dissociate into charged ions when dissolved in a polar

solvent such as water. The degree of ionization refers to the extent to which the ionizable

groups are dissociated into charged species. Based on the tendency of ionization, poly-

electrolytes are classified into strong and weak polyelectrolytes. Strong polyelectrolytes

exhibits a high degree of ionization in a solution for most reasonable pH values. In con-

trast, weak polyelectrolytes are often partially charged and their ionization states depend

on the solution pH and the dissociation constant of the ionizable groups. Charge density,

charge stochiometry, pH, temperature, and salt concentration are critical factors that

play pivotal roles in influencing coacervation in these systems.20,32,33,44 Although it has

been observed that mixtures of polyelectrolyte pairs with high charge density can form

solid precipitate at low salt concentrations,20,44 this thesis mainly focuses on the regime

of liquid complexes.

In realistic formulations, there are often additional charged assemblies present, such

as micelles, as well as small molecules like active ingredients and perfumes alongside poly-

electrolytes. Micelles, which form through the self-assembly of amphiphilic molecules, in-

cluding surfactants and block copolymers, are particularly valued for their encapsulating

properties, detergency, and foaming characteristics.47–49 Recently, there has been grow-

ing interest in a class of colloidal systems called complex coacervate core micelles. These

nanostructures feature a complex coacervate core and a neutral hydrophilic corona.50,51

Complex coacervate core micelles are formed through the spontaneous assembly of ionic-
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neutral copolymers and oppositely charged polyelectrolytes, making them an intriguing

subject of investigation in the field. The presence of these charged assemblies introduces

further complexity to the coacervation behavior and the overall solution properties.24,52

Understanding the interplay between various interactions, including hydrophobic and

electrostatic interactions, in such systems is crucial for the design and optimization of

complex formulations.53

1.3 Theories and simulations for studying complex-

ation

Voorn-Overbeek theory is a classical theory of coacervation that attempts to understand

coacervation by approximating the complexation free energy as the combination of the

Flory-Huggins mixing entropy and the Debye-Hückle electrostatic energy:54,55

a3βF

V
=
∑
i

ϕi
Ni

ln(ϕi) +
∑
i

∑
j<i

χijϕiϕj −
√
4π

3

(
lB
a

)3/2
(∑

i

σiϕi

)3/2

(1.1)

where β = 1/kBT , a is the size of a monomer. The volume fraction, chain length, and

charge density of species i are denoted ϕi, Ni, and σi, respectively. The Flory-Huggins

χij describes excluded volume interactions between species i and j. The last term is

the Debye-Hückle where lB = e2/4πrkBT is the Bjerrum length. Although being widely

used to explain experimental observations,35,50 it has certain limitations that should be
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acknowledged. Primarily, this theory assumes a mean-field electrostatic environment

around individual ions, which is only valid in dilute electrolytes (5-10 mM).56 Conse-

quently, the theory fails to provide accurate quantitative predictions at higher salt con-

centrations commonly encountered in coacervate systems, reaching up to approximately

3 M.1 Additionally, the theory treats polymer charges as unconnected ions, which is

an oversimplified representation of polyelectrolytes that often exhibit high linear charge

density.33

The limitations of the Voorn-Overbeek theory emphasize the need for more advanced

theoretical models and simulation techniques that can account for the intricate interac-

tions and diverse molecular structures present in coacervating systems. One such theoret-

ical model is the Edwards approach to polymer field theory properly connect the bound

charges to the chain conformations.57 For such models, the Gaussian approximation

(often referred to in the literature as the random phase approximation) is a common an-

alytical method providing the lowest-order perturbation correction to mean-field theory,

where the latter is qualitatively inadequate for describing electrostatically driven phase

separation.58–64 Prior studies have shown that the Gaussian approximation captures a

significant portion of the fluctuation effects.27,63,65–69 At low charge densities, however,

it overestimates the strength of charge correlations and the size of the two-phase region,

i.e., the supernatant phase is predicted to be overly depleted of polyelectrolytes by many

orders of magnitude.65,68,70

While traditional theories have been valuable for gaining fundamental understanding
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of coacervation, they may not be suitable for investigating the intricacies of complex

systems encountered in modern formulation design. These systems often consist of mul-

tiple species of different lengthscales and advanced architectures, necessitating a more

comprehensive and sophisticated approach to accurately capture their behavior. In this

context, simulations have emerged as powerful tools that offer insights into regimes be-

yond the reach of analytical techniques. Among particle-based simulation methods used

in the field of soft matter formulation, dissipative particle dynamics (DPD) has gained

popularity as a mesoscopic simulation technique.71–73 In DPD, particles represent groups

of atoms and interact through pairwise dissipative and random forces. This approach

is particularly attractive due to its efficiency in accessing longer length and time scales

compared to higher resolution techniques, such as all-atom molecular dynamics simula-

tions. While the soft potentials used in DPD allow for longer time steps and the study of

larger systems, probing macroscopic phenomena and understanding the complex behav-

iors of soft matter formulations can still be more efficiently achieved through continuum

mesoscopic approaches, such as field-theoretic simulations (FTS).

FTS utilize the exact statistical field theory to account for field fluctuation effects,

which are critical for the study of coacervation.68,74–76 FTS replaces particle-particle inter-

actions with interactions between individual particles and one or more fluctuating fields,

allowing for efficient sampling of configurational integrals over particle configurations. As

a result, this simulation method is uniquely suited to the study of high molecular weight

and high density charged systems. Moreover, in the field representation the species’

8
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chemical potentials are readily available from ensemble-averaged operators without the

need for sophisticated, often expensive, free energy techniques required in molecular dy-

namics simulations.77 A range of studies have used FTS to elucidate the effects of charge

patterning, electrostatic environment and inclusion of explicit counterions on complex

coacervation.27,65–69,78

Despite significant efforts in theory and simulation, incorporating the complex inter-

action environments arising from charged moieties remains challenging. For instance,

theoretical models often assume that the polyanion and polycation, as well as the anion

and cation, in complex coacervates have identical chemical structures except for opposite

charges. However, this assumption leads to nonphysical symmetric phase diagrams con-

cerning the oppositely charged species.79,80 In many simulation studies, chemistry-specific

effects are simplified through parameters such as persistence length or non-bonded cut-off

distances.26,31 Phenomenological parameters associated with coarse-grained potentials,

such as χ parameters,34 are also introduced to capture chemistry-specific interactions,

but they require prior knowledge of the component chemistries and lack predictive capa-

bilities.

In this regard, high-resolution approaches such as atomistic molecular dynamics (MD)

offer a better alternative for incorporating the underlying chemical building blocks. A few

studies have attempted to calculate the coacervation binodal using MD that employ the

slab geometry to simulate the coexisting dense and dilute phases.32 This method is, how-

ever, prone to finite-size errors due to the large interfaces between the coexising phases.

9
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Moreover, due to the computational constraints, the system size is typically limited to

a few nanometers and the simulation time is limited to nanoseconds or microseconds.

These limitations restrict the direct investigation of long length and time-scale phenom-

ena, such as the formation of coacervate, self-assembly of surfactants, diffusion, macro-ion

exchange, and fission and fusion of charged assemblies, in MD simulations. Despite these

challenges, MD simulations can provide valuable insights into the underlying molecu-

lar mechanisms and local structure within coacervating systems, which can inform and

complement experimental observations.28,31

In this work, we employ a bottom-up simulation strategy that uses the atomistic

simulations to parameterize field-theoretic models. Briefly, we use relative entropy coarse-

graining to derive chemically-sensitive coarse-grained interaction parameters from all-

atom simulations.81 Subsequently, we employ the exact transformation to take the coarse-

grained particle-based model into field-theoretic form,74 facilitating the prediction of

the solution phase behavior. The overall workflow preserves the chemical specificity in

complex mixtures of interest, enabling de novo studies of solution phase behavior in the

field theory bypassing the need for extensive experimental input. This approach enables

us to explore the behavior of complex systems and the underlying mechanisms governing

formation of complexation between macromolecules. Through the integration of the

atomistic and mesoscopic simulation techniques, we aim to provide valuable insights into

the equilibrium structural and thermodynamic properties of these systems, ultimately

contributing to the rational design and optimization of soft matter formulations.

10
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1.4 Outline

The thesis is organized as follow:

• Chapter 2: Constructing Molecularly Informed Field-Theoretic Models

• Chapter 3: Coacervation of Oppositely Charged Polyelectrolytes82

• Chapter 4: Complexation between Polyelectrolyte with Oppositely Charged Mi-

celles83

• Chapter 5: Estimating Critical Micelle Concentrations of Intrinsically Disordered

Protein Surfactants

• Chapter 6: Effect of the Acetylation Pattern on the Miscibility of Cellulose Acetate

Chapter 2 provides a comprehensive overview of the computational details involved

in constructing field-theoreric models of complex formulations. We discuss the selection

of the all-atom reference simulation, the mapping from all-atom to coarse-grained repre-

sentation, and the particle-to-field transformation. These steps outline the main simula-

tion workflow employed throughout this thesis. Subsequently in Chapter 3, we demon-

strate that the proposed simulation framework accurately captures important effects in

coacervation of a well-characterized polyelectrolyte mixture. Chapter 4 investigates the

adsorption of polyelectrolytes on micelles and explores equilibrium complex structures,

establishing a systematic approach to studying complex formulations. In the last two

chapters, we extend the study to bio-based components which are promising biodegrad-

able alternatives to the synthetic counterparts. Chapter 5 showcases the capability of

11
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molecularly informed field theories in predicting the critical micelle concentration of in-

trinsically disordered protein surfactants. Finally in Chapter 6, we provide a discussion

on how different acetylation pathways can lead to the diverse solution phase behaviors

of cellulose acetate observed in experiments.
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Chapter 2

Constructing Molecularly Informed

Field-Theoretic Models

Figure 2.1: Schematic of the multi-scale simulation workflow to parameterize a molecularly
informed field-theoretic model.

We first introduced molecularly informed field theories in our 2021 publication,84 and

since then, we have applied the workflow to study various systems, ranging from aqueous

and non-aqueous mixtures to formulations involving surfactants, polyelectrolytes, and
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block copolymers. In this chapter, our focus is to provide a comprehensive discussion on

the construction of a molecularly informed field theory model, which can be summarized

into three steps:

1. Performing reference all-atom (AA) simulations

2. Deriving the interaction parameters for the coarse-grained (CG) by minimizing the

relative entropy

3. Transforming the CG particle-based model into the field representation

The overall workflow enables us to directly determine the free energy and chemical po-

tential necessary for phase diagram prediction while preserving important information

about the underlying chemical components.

2.1 All-atom simulations

In classical AA simulations, the interactions between the atoms in the system are de-

scribed via a potential energy function of the atomic coordinates, also called a force field.

The classical force field approximates the quantum ground-state potential energy surface

due to electronic structure. Generally, such potential energy function for a system of n

particles has the form
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UAA(r1, r2, ..., rn) =
∑
bonds

kb(r − r0)
2

+
∑
angles

kθ(θ − θ0)
2

+
∑

dihedrals

Vx(1 + cos(xϕ− γ))

+
n−1∑
i=1

n∑
j=i+1

qiqj
4πϵ0rij

+ 4ϵij

[(
rij
σij

)−12

−
(
rij
σij

)−6
]

(2.1)

where kb, r0, kθ, θ0, Vx, γ, qi, qj, σij are parameters of the force field. These parameters

are taken from a combination of electronic structure calculations on small molecules and

experimental data, e.g., crystallographic and microwave data, vibrational frequencies,

heat of vaporization. Thus, these classical force fields are semi-emperical. Classical force

fields are developed by a wide community and there now exist accurate and systematic

approaches to finding reasonably good models for a wide variety of organic systems.

Some of the major families of classical force fields are AMBER, CHARMM, GROMOS,

and OPLS.85–88 Often time, we adopt force fields that have been developed for specific

system of interest or generalize force fields that can reasonably reproduce experimental

observations to perform AA simulations.

2.2 Coarse-graining

2.2.1 Atomistic-to-coarse-grained mapping

To obtain reference trajectories for coarse-graining, we translate AA trajectories by map-

ping center-of-mass coordinates of groups of atoms in the AA representation. Equiva-
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lently, the coordinates of coarse-grained (CG) sites are defined as:

RI =

( ∑
i∈atoms in I

miri

)( ∑
i∈atoms in I

mi

)−1

(2.2)

where RI are coordinates of CG site I, ri and mi are coordinates and mass of atom

i in the AA model. While there are different ways to define this mapping function, each

small molecule, including water and salt ions, is mapped to a single bead in our work. For

macromolecules, a common approach is to map one residue to one CG bead. The charges

of the CG beads, σα, are assigned based on the net charge of the corresponding group

of atoms in the AA description. For example, the water bead carries a neutral charge,

while the Na+ and Cl− ions carry a +1 and −1 charge, respectively. It is important to

note that the choice of CG mapping in our studies is not unique, and different types of

CG beads can lead to different force fields. However, the focus of this work is not on

exploring different mapping schemes, and therefore, this aspect is beyond the scope of

our research.

2.2.2 Relative entropy coarse-graining

After mapping the AA trajectories to the CG degree of freedoms, we use relative entropy

coarse-graining81,89–91 with these as references to derive CG interaction potentials that

are amenable to efficient field-theoretic simulations. Briefly, this is a bottom-up param-

eterization strategy to derive interaction parameters for the CG model from the higher

resolution AA trajectories. Since a detailed discussion of the method is outlined in a

monograph by Shell in ref. 81, we only summarize the main points here. The relative
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entropy, Srel, describes how accurately a CG model can reproduce properties of an AA

model and is given by

Srel =

∫
℘AA (R) ln

℘AA (R))

℘CG(R)
dR (2.3)

where ℘CG(R) is the equilibrium ensemble probability for the CG configurations, and

℘AA(R) =
∫
℘AA(r)δ(M(r) − R)dr is the equilibrium ensemble probability for atomic

positions r that are projected onto CG coordinates R.

The relative entropy can be interpreted as a measure of the information loss in moving

from a higher resolution system to a system with fewer degrees of freedom. The optimal

CG potential is determined by minimizing Srel with respect to parameters of the potential.

For a parameter λ, this gives the condition

∂Srel
∂λ

=

〈
∂UCG
∂λ

〉
AA

−
〈
∂UCG
∂λ

〉
CG

= 0 (2.4)

where the angle brackets indicate averages over the AA and CG ensembles. If the AA and

CG models’ potential energy consists of pair potentials, the optimal CG pair interaction,

uCG(R), satisfies

δSrel
δuCG(R)

=

〈
δUCG[uCG(R)]

δuCG(R)

〉
AA

−
〈
δUCG[uCG(R)]

δuCG(R)

〉
CG

=

〈∑
i<j

δ[R−Rij]

〉
AA

−

〈∑
i<j

δ[R−Rij]

〉
CG

= gAA(R)− gCG(R) = 0

(2.5)

where g(R) is the radial distribution function. Hence, the optimal CG model is one that

best reproduce the AA radial distribution functions.
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2.2.3 Coarse-grained force field

In our CG interaction model, bonded interactions are described using a harmonic bond

potential:

βUb,αγ(r) =
3

2b2αγ
r2 (2.6)

where β = 1/kBT and bαγ is interpreted as the root-mean-square length of a bond

between bead species α and γ. For non-bonded interactions, we opt for soft, regularized

potentials that are amenable to the field theory. These nonbonded interactions consist of

an excluded volume and smeared Coulomb interaction between all site pairs, including

bonded pairs:

βUev,αγ =vαγe
−r2/2(a2α+a2γ) (2.7)

βUel,αγ =
lBσασγ
r

erf

 r

2
√
a2α/2 + a2γ/2

 (2.8)

where vαγ is the excluded volume strength between bead species α and γ, and aα and σα

are the Gaussian regularization length and charge of bead species α, respectively. The

charge σα is fixed to the net charge of the corresponding CG bead. In addition, we also

fix the regularization range, aα, of each CG bead to approximately the cube root of its

molecular volume. By this convention, the water interaction range, aw, is typically set to

0.31 nm in our work. The Bjerrum length lB charaterizes the strength of the electrostatic
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interactions and is chosen to be 0.74 nm, which is that of OPC water at 298 K and 1

atm92. The smeared Coulomb interaction behaves as an unscreened Coulomb ∼ 1/r at

large separations r but is regularized to be finite at r = 0 to accommodate the soft-core

repulsions of the Gaussian repulsive excluded volume potential. Our choice of regularized,

soft potentials is physically motivated by the desire to retain long-length-scale physics

while coarse-graining over sharp, short-length-scale features. The remaining parameters

to be optimized, playing a role as λ in Eq. 2.4, are the root-mean-square bond lengths,

bαγ, and the excluded volume strengths, vαγ.

For complex systems with many components, we derive these CG parameters in

stages. This allows us to systematically reduce the parameter space in each coarse-

graining step. Typically, the earlier stages involve studying pure component solutions or

binary mixtures, while the later stages involve mixtures of multiple components. Once

the parameters are determined for a specific stage, they remain fixed for subsequent steps

in the coarse-graining process. This coarse-graining procedure subsequently determines

a set of AA simulations one needs to perform.

2.3 Field theory transformation

The CG potential defined in Section 2.2.3 can be readily represented and simulated in

a field theoretic representation via the Hubbard-Stratonovich-Edwards transformation.

This field-theoretic transformation decouples nonbonded pair interactions, resulting in

particles interacting only with an auxiliary field. As a result, particle coordinates can

19



Constructing Molecularly Informed Field-Theoretic Models Chapter 2

be analytically integrated, yielding a partition function in terms of integrals over field

configurations:

Z =

∫
drn e−βU(rn) →

∫
Dw e−H[w] (2.9)

where H is an effective Hamiltonian describing the statistical weight of the auxiliary field

configuration w(r), and is systematically described in ref. 74. It should be emphasized

that w represents a set of auxiliary fields that is sufficient to decouple all pairwise inter-

actions of the functional forms defined in Section 6.2.2. As a result, the field-theoretic

transformation is exact for the CG model, and full field-theoretic sampling of the par-

tition function is equivalent to performing coarse-grained molecular dynamics (CGMD).

To accomplish this, complex Langevin simulations are employed to sample the com-

plex weights in field theory models.76 One critical advantage of the field representation

is that the species’ chemical potentials and free energy can be readily obtained from

ensemble-averaged operators, eliminating the need for sophisticated and often computa-

tionally expensive free energy techniques required in molecular dynamics simulations.77

This capability allows for the determination of phase diagrams that would otherwise be

challenging to obtain using particle-based techniques.93

Another strength of the field-theoretic representation is that it is amenable to a host

of analytical tools that facilitate its evaluation, including the mean field approximation,

also termed self-consistent field theory (SCFT):

Z ≈ e−H[w∗] ≡ e−H
∗

(2.10)

where w∗ is the saddle-point value of each auxiliary field, representing the dominant
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field configuration contributing to the partition function, and H∗ is the mean-field effec-

tive Hamiltonian. In addition to the mean-field treatment, the Gaussian approximation

is another frequently used analytical method that offers the lowest-order perturbation

correction to mean-field theory, which is qualitatively insufficient for accurately describ-

ing phase separation driven by electrostatic interactions.58–64 Despite not capturing the

fluctuating field configurations, both of these analytical approximations prove to be sur-

prisingly valuable in the investigation of self-assembly and macrophase separation phe-

nomena in polymeric systems.27,66,68,94

2.4 Other considerations

There are two potential sources of errors can arise from this workflow: (1) the accuracy of

the AA force field, and (2) the fidelity of the CG model to the AA reference. Error of type

(1) can be mitigated by the development of new force fields with increased accuracy; this

efforts have been a focus of many research groups and is outside the scope of this thesis.

Improvement of error type (2), on the other hand, can be addressed by considering:

• CG potential energy functional

• AA-to-CG mapping scheme

• Coarse-graining protocol

CG models with more sophisticated potential energy functionals are anticipated to

provide improved thermodynamic representations of the AA model. However, in the
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present thesis, we litmit the treatment of excluded volume effects to pairwise Gaussian

interactions (Eq. 2.7). This choice allows the ease of computing its functional inverse,

which is necessary in the Hubbard-Stratonovich transformation. Nevertheless, recent

investigations have proposed methods to obtain an effective inverse for realistic pairwise

interactions, thereby enabling the incorporation of a broader range of pair interaction

functions.95,96

The choice of mapping operator M is another factor that can affect the quality of

the CG model. Previous studies showed that the 1-site and 3-site model of heptane, sur-

prisingly, is better at capturing the radial distribution function than the 2-site model.97

Furthermore, it has been observed that specific mapping functions provide more infor-

mative representations, leading to simpler potential of mean force (PMF) profiles that

are easier to capture.98 These findings underscore the significance of carefully selecting

an appropriate mapping operator to enhance the fidelity of the CG model.

The coarse-graining protocol is critical to the resulting CG model. This involves

decisions regarding the order of parameter optimization and the choice of simulation

ensemble. In the bottom-up coarse-graining approach, the goal is to find an effective

potential that accurately represents the underlying PMF. Typically, this optimization is

performed at a single state point, which means that the resulting CG model may not be

suitable for describing other state points that were not considered during the parame-

terization process. To address this limitation, one common approach is to perform the

coarse-graining in the extended ensemble.99 In this framework, a single CG model is
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parameterized by combining information from an ensemble of AA reference simulations

conducted at different state points, such as compositions, conformations, isomerization

states, chemistries, and so on. A closely related approach, discussed in our recent work,100

employs spatially-varying external potentials to inhomogeneous response in the compo-

sition. This can be viewed as an extended ensemble in the composition space, but with

continuous changes in the composition. In fact, we have shown that with a simple po-

tential energy functional such as that of Eq. 2.7, the external potential ensemble can

produce a CG model that achieves near-quantitative capture of activity coefficients across

the entire composition range. An application of this approach on aqueous solutions of

NaCl is discussed in Appendix B.
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Chapter 3

Coacervation of Oppositely Charged

Polyelectrolytes

Reproduced in part with permission from:

Nguyen, M., Sherck, N., Shen, K., Edwards, C.E., Yoo, B., Köhler, S., Speros, J.C.,

Helgeson, M.E., Delaney, K.T., Shell, M.S. and Fredrickson, G.H., 2022. Predicting Poly-

electrolyte Coacervation from a Molecularly Informed Field-Theoretic Model. Macro-

molecules, 55(21), pp.9868-9879.

3.1 Introduction

Many technological applications and everyday consumer formulations involve complex-

ation of oppositely charged macro-ions, including processed foods,3–5 detergent formu-

lations,6 advanced oil recovery,8,9 wet adhesives,10–13 and drug and gene delivery ve-

24



Coacervation of Oppositely Charged Polyelectrolytes Chapter 3

hicles.14–17 The complex phase can form in aqueous mixtures consisting any number

of natural or synthetic charged species, including synthetic polyelectrolytes, biological

polyelectrolytes (e.g., proteins, proteoglycans, polynucleotides), surfactants and colloids,

typically in the presence of salt. These mixtures can undergo a liquid-liquid phase sepa-

ration with the majority of the oppositely charged macro-ions partitioning into the dense

phase, which is referred to as a complex coacervate.36–39

The formation of complex coacervates is governed by the complexation free energy

with entropic and enthalpic contributions.40 Experiments suggest that one major driving

force of coacervation is the entropy gain from counterion release.41 Although there is a

loss in configurational and translational entropy of the macro-ions upon complexation,

this contribution is small relative to the counterion entropy in the limit of long polymers.

The aforementioned entropic gain and the enthalpic driving force due to favorable elec-

trostatic interactions weaken as the salt concentration is increased. Adding salt above

a critical concentration leads to the dissolution of the complex coacervate due to the

salt’s screening of electrostatic interactions.20,101 Many other variables have been shown

to influence coacervation behavior, including the chemical nature of the charged species,

stoichiometry, pH, polymer size, and temperature.1,20,21,35,39,79

Voorn-Overbeek theory is a classical theory of coacervation, which attempts to under-

stand coacervation by approximating the complexation free energy as the combination

of the Flory-Huggins mixing entropy and the Debye-Hückle electrostatic energy.54,55 The

theory, however, only captures the mean-field electrostatic environment around individ-
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ual ions which is only valid in dilute electrolytes (5-10 mM),56 resulting in quantitative

inadequacies at typical coacervate salt concentrations (up to ∼ 3 M).1 Furthermore,

polymer charges are treated as unconnected ions; this is an unrealistic depiction of poly-

electrolytes that can have high linear charge density. Other theoretical models such as

the Edwards approach to polymer field theory properly connect the bound charges to

the chain conformations.57 For such models, the Gaussian approximation (often referred

to in the literature as the random phase approximation) is a common analytical method

providing the lowest-order perturbation correction to mean-field theory, where the latter

is qualitatively inadequate for describing electrostatically driven phase separation.58–64

Prior studies have shown that the Gaussian approximation captures a significant portion

of the fluctuation effects.27,63,65–69 At low charge densities, however, it overestimates the

strength of charge correlations and the size of the two-phase region, that is, the super-

natant phase is predicted to be overly depleted of polyelectrolytes by many orders of

magnitude.65,68,70

Simulations, on the other hand, provide in-roads to probe regimes where analyti-

cal techniques cannot push further. Field-theoretic simulations (FTSs) utilize the exact

statistical field theory to account for field fluctuation effects, which are critical for the

study of coacervation.68,74–76 FTS replaces particle-particle interactions with interactions

between individual particles and one or more fluctuating fields, allowing for efficient sam-

pling of configurational integrals over particle configurations. As a result, this simulation

method is uniquely suited to the study of high-molecular weight and high-density charged
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systems. Moreover, in the field representation the species’ chemical potentials are read-

ily available from ensemble-averaged operators without the need for sophisticated, often

expensive, free energy techniques required in molecular dynamics (MD) simulations.77 A

range of studies have used FTS to elucidate the effects of the charge patterning, electro-

static environment and inclusion of explicit counterions on complex coacervation.27,65–69,78

Despite significant effort by theory and simulation with fine-tuned models beyond

Voorn-Overbeek theory, the asymmetry in coacervation phase diagrams due to the dif-

ferent chemical structures of the involved charged moieties proves difficult to capture

accurately. For example, it is often assumed in theoretical models that the polyanion

and polycation (and the anion and cation) have the same chemical structure except for

opposite charges, resulting in nonphysical symmetric phase diagrams with respect to

the oppositely charged species.79,80 In other studies, chemistry-specific effects are simply

reduced to parameters such as the persistence length or non-bonded cut-off26,31 or in-

troduced by including phenomenological parameters associated with CG potentials (e.g.,

χ parameters).34 The latter, although providing chemistry-specific interactions that are

consistent with experiments, requires a priori knowledge of the component chemistries

and thus is not predictive.

We present here a molecularly informed field-theoretic model of polyelectrolyte coac-

ervation, which utilizes a bottom-up coarse-graining approach discussed in Chapter 2

and in our previous publication.84 We build upon our prior work–a multiscale approach

to simulating binary water-PEO phase behavior–by introducing more components and
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electrostatic interactions. In short, the approach leverages the efficiency of the field the-

ory in simulating systems that are large, dense, and composed of high-molecular weight

species, while providing chemical specificity through small-scale, all-atom (AA) simula-

tions. We derive parameters for field theory by performing a systematic coarse-graining

of representative AA simulations, using a strategy based on the minimization of the rela-

tive entropy, Srel.
81,89–91 The proposed simulation strategy enables efficient calculation of

phase diagrams in the field representation while retaining chemical details via systematic

coarse-graining of AA simulations. We demonstrate the predictive capability by com-

paring the phase behavior of a well-characterized model coacervate system consisting of

poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) in a sodium chloride

(NaCl) aqueous solution. PAA, which serves as the polyanion species, has a pKa of 4.5

while PAH, which is the polycation species, has a pKa of 8.5.102,103 Coacervation in a

mixture of PAA and PAH is sensitive to the pH, salt concentration, and molecular weight

of the polyelectrolytes.1,20,101 This sensitivity results from the variable ionization state

of the weak polyelectrolytes and the screening of the long-range electrostatics upon the

addition of salt.104 For the sake of simplicity, we only investigate coacervation in mixtures

of fully charged PAA and PAH, corresponding to a pH ≈ 6.5, with the polyelectrolytes

having the same degrees of polymerization.
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3.2 Computational details and methods

3.2.1 Reference all-atom systems and bottom-up coarse-graining

procedure

We refer the reader to Chapter 2 for a detailed discussion on the workflow for developing a

molecularly-informed field theory. Here, we define five CG bead types for the coacervate

model: PAA and PAH monomers, Na+, Cl−, and water (Fig. 6.4). CG sites are generally

defined as center-of-mass coordinates of groups of atoms in the AA representation. For

the CG model presented in this paper, we use this mapping for each small molecule

(water, Na+ and Cl−) and each polyelectrolyte monomer, to obtain mapped AA reference

trajectories for coarse-graining. In addition, CG beads represent the PAA monomer (p−),

PAH monomer (p+), Na
+, and Cl− each carry an integer charge of ±1.
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Figure 3.1: From left to right and top to bottom, the AA-to-CG mappings for PAA monomer
(p−), PAH monomer (p+), Na

+, Cl− and water (w). The CG bead radius is 0.45 nm for the
polyelectrolyte monomers and 0.31 nm for the small molecules. See main text for details on the
coarse-graining procedure.

We use three reference systems (Fig. 3.2) to parameterize the CG model: pure wa-

ter, NaCl aqueous solution, and an aqueous polyelectrolyte-NaCl mixture. We use the

optimal point charge (OPC) force field for water92 and Joung-Cheatham’s force field for

Na+ and Cl− ions.105 For PAA, we use the general Amber force field (GAFF2), while

for PAH, we use the AMBER ff99 force field.106,107 We employ the restrained electro-

static approach to assign atomic fixed-point partial charges for the polyelectrolytes at

the HF6/31G* level in gas-phase calculations using the Gaussian16 software package.108
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We find excellent agreement between aqueous solution densities from simulations and

experiments for 45-mer PAA and 187-mer PAH in water at 1 atm and 298.15 K, when

compared to experiments with synthetic polymers of matching average molecular weight

(Fig. D.1). This agreement suggests that this set of force field parameters (OPC, Joung-

Cheatham, GAFF2, and AMBER ff99) is a reasonable model for the polyelectrolyte

mixture.
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Figure 3.2: All-atom simulations used to derived coarse-grained interaction parameters for
the polyelectrolyte coacervate model via the relative entropy coarse-graining framework.

The physical behavior of the AA system is coarse-grained into mesoscale models

amenable to analytical conversion to a field theory, the CG force field is presented in

Section 2.2.3. The field theory representation of the same coarse, particle-based model is

then constructed using the Hubbard-Stratonovich-Edwards transformation as detailed in
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Section 2.3. As done in our previous work,84 we enforce specific interaction radii to retain

the desired, long-length scale physics without resorting to an aggressive high-resolution

AA to CG atom mapping. A convenient choice is the cube-root of the CG beads’ specific

volumes approximated from AA simulations of the pure component for water and single-

component aqueous solutions for the other components: aw = aNa+ = aCl− = 0.31 nm,

ap− = ap+ = 0.45 nm. We then use Srel minimization to obtain the remaining 17 param-

eters in the following order: (1) vw,w from a pure water system in the NPT ensemble, (2)

vw,Na+ , vw,Cl− , vNa+,Na+ , vCl−,Cl− , and vNa+,Cl− from NaCl aqueous solution in the exter-

nal potential ensemble,100 and lastly, (3) vw,p−, vw,p+, vNa+,p−, vNa+,p+, vCl−,p−, vCl−,p+,

vp−,p−, vp+,p+, vp−,p+, bp−, and bp+ from the 10 weight % polyelectrolyte-NaCl mixture in

the NPT ensemble. Once the parameters are determined, they are fixed in subsequent

steps.

The necessary three reference AA simulations are conducted with the OpenMM sim-

ulation package.109 We use a 1 nm cutoff for the direct space non-bonded interactions

and use the particle mesh Ewald method to compute long range interactions for both

Coulomb and Lennard-Jones (LJPME method in OpenMM). In addition, we constrain

the length of all bonds that involve a hydrogen atom and employ a time step of dt = 0.002

ps. The temperature is set to 298.15 K using the Langevin thermostat with a friction

coefficient of 5 ps−1, while the pressure is set to 1 atm using the Monte Carlo barostat

with an update frequency of 1/(25 dt). Details on the system size, components, and

simulation parameters are provided in Appendix D.
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With the pure water reference simulation in the NPT ensemble, we parameterize the

water-water interaction such that the CGmodel has a compressibility κT ≈ 0.062 kBT/a
3
w ≈

4.51 ×10−10 Pa−1, near that of OPC water. As discussed in our prior studies,84 match-

ing κT between AA and CG simulations uniquely determines a CG pressure of PCG ≈

8.5 kBT/a
3
w.

We employ an external potential ensemble100 to determine the self (Na+ to Na+ and

Cl− to Cl−) and cross-interactions (Na+ to Cl−, Na+ to water, and Cl− to water) in a

salt-water solution. For miscible mixtures, coarse-graining in the external potential en-

semble shows improved thermodynamic fidelity and transferability of CG models over the

widely used single, uniform-composition ensembles. As detailed in our previous work,100

the coarse-graining is performed in a state of inhomogeneous response in the composition

due to an applied spatially-varying external potential on different species. The resulting

CG model is then optimized such that its interactions reproduce the same response as

that by the AA reference system while capturing the dependence on the locally varying

composition. Here, we observe improved NaCl mixing thermodynamics in water, evi-

denced by the mean ionic activity in Fig. B.3, when we derive the CG model in the

presence of the sinusoidal external potential (visualized in Fig. B.1). We choose the

optimal external potential ensemble to optimize the CG parameters by maximizing the

trace of the Fisher information matrix (the Hessian of Srel with respect to the interac-

tion parameters); we find the maximum in the Fisher information matrix for external

sinusoidal potentials to lie near an amplitude of 2 kBT , Fig. B.4.
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The last reference simulation is a solution of 10 weight % polyelectrolytes (50:50

mol/mol PAA to PAH; 24-mers, fully-ionized) and 0.3 M NaCl in the NPT ensemble.

We model the polyelectrolytes as atactic polymers; they are built with the target dyad

composition of around 0.44 meso and 0.56 racemic as per the Bernoullian distribution,

Fig. D.2.110,111 We note that the CG force field is composed of soft interaction potentials

that do not account for the bending stiffness that partially dictates the chain conformation

in the reference model. Chain conformation embeds information about the bending

rigidity, intramolecule interactions, volume exclusion effects, and solvent screening; thus,

it is essential for the CG model to reproduce this characteristic of the reference system.

We reduce this complex interplay to a simple quantity - the average radius of gyration,

Rg, and require the CG model to reproduce the average Rg of PAA and PAH in the

reference AA simulation. This constraint is enforced during the Srel minimization by

modifying the objective function according to an augmented Lagrangian method:112–114

Fobj(λ) = Srel(λ)− ζ
(
⟨Rg⟩CG (λ)− ⟨Rg⟩AA

)
+
c

2

(
⟨Rg⟩CG (λ)− ⟨Rg⟩AA

)2
(3.1)

where λ are the CG force field parameters of interest, and the coefficient c, typically

∼ O(1010), is chosen to bias the CG model’s average radius of gyration, ⟨Rg⟩CG, towards

that of the mapped AA system,⟨Rg⟩AA. The Lagrange multiplier at iteration k is defined

as ζk = ζk−1−c
(
⟨Rg⟩CG,k−1 − ⟨Rg⟩AA

)
. In contrast to neutral polymers, polyelectrolytes

often have long persistence lengths (∼ 10 nm as suggested by our simulations and other

studies)115,116 due to the repulsion of backbone charges. Hence, the mismatch in the chain

conformation between the CG and AA systems will be significant without considering
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chain stiffness in the coarse-graining, especially for stiff polymers. We tabulate all force

field parameters for the CG model and provide them in Tables D.1 and D.2.

3.2.2 Multi-component phase boundary calculations

Figure 3.3: Schematic of the Gibbs ensemble. Coexisting dilute and coacervate phases are par-
titioned into separate simulation boxes. Neutral pairs of charged molecules (p−/Na+, p+/Cl−

and Na+/Cl−) and water are exchanged to achieve electrochemical equilibrium, and phase vol-
umes are exchanged to achieve mechanical equilibrium.

We determine the multi-component phase equilibrium conditions within field theory in

the Gibbs ensemble where the coexisting phases are partitioned into separate simulation

boxes as illustrated in Fig. 3.3.117 The overall Gibbs ensemble consists of two subsystems;

each is treated in the canonical ensemble, with the distribution of mass and volume in each

subsystem being constrained by the overall species densities. At phase coexistence, the

overall free energy, F , is minimized, and the system is in mechanical and electrochemical
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equilibrium,

∂F

∂V I
= −(P I − P II) = 0 (3.2)

∂F

∂nIm
= µIm − µIIm + σm∆Ψ = 0 (3.3)

where V is the simulation box volume, P is the pressure, nm is the number of molecules

m and µm is its chemical potential, and the superscript denotes phase I or II. The last

term in Eq. 3.3 accounts for the electrostatic potential difference between the two phases

and depends on the charge of molecule m, σm, and the Galvani potential, ∆Ψ. Instead of

exchanging individual molecular species, we exchange neutral pairs of charged molecules

such that the equilibrium condition of Eq. 3.3 becomes

∂F

∂nIi
= µIi − µIIi = 0 (3.4)

where i denotes the following neutral pairs: p−/Na+, p+/Cl− and Na+/Cl−, in addition

to water. We note that n − 1 linearly independent neutral pairs are sufficient to span

all possible values of n − 1 independent densities in a system of n charged species. We

define the effective chemical potentials of the neutral pairs from the chemical potentials

of the charged molecules as

µp−/Na+ = µp− +Np− µNa+ (3.5)

µp+/Cl− = µp+ +Np+ µCl− (3.6)

µNa+/Cl− = µNa+ + µCl− (3.7)

37



Coacervation of Oppositely Charged Polyelectrolytes Chapter 3

where Np− and Np+ are the degrees of polymerization of PAA and PAH, respectively,

and µi are the per molecule chemical potentials. The mass balance gives the expression

for the overall monomer density of pair i

ρi = f IρIi + f IIρIIi (3.8)

where the volume fractions of phase I is f I = V I/V and phase II is f II = 1 − f I .

Equilibrium is achieved by performing mass and volume swaps between the simulation

boxes formulated as the following differential equations in a fictitious time t

df I

dt
= P I − P II

dρIi
dt

= −(µIi − µIIi )

(3.9)

In practice, we conduct a series of iterative simulations. In each iteration, we perform two

separate canonical simulations that represent phases I and II. We update the volume

fractions and species’ densities with the following scheme until the equilibrium conditions,

Eq. (3.2),(3.4), are satisfied:

ρtot(k + 1) = ρtot(k)−∆tρtot(P
I − PCG) (3.10)

f I(k + 1) = f I(k) + ∆tf
(
P I(k)− P II(k)

)
(3.11)

ρIi (k + 1) = ρIi (k)−∆tρi
(
µIi (k)− µIIi (k)

)
(3.12)

f II(k + 1) = 1− f I(k + 1) (3.13)

ρIIi (k + 1) =
ρi − f I(k + 1)ρIi (k + 1)

f II(k + 1)
(3.14)
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where k is the discrete time index, ∆tf , ∆tρtot , and ∆tρi are step sizes for volume fraction,

overall density, and species density swaps, respectively. Eq. 3.10 updates the overall

bead density, ρtot =
∑

m∈[p−,p+,Na+,Cl−,w] ρm, at fixed overall species fractions such that

the coexisting phases will be at the pressure of the CG model, PCG. This condition

emulates the experimental conditions at constant temperature and pressure. We find that

∆tρtot = 0.002, ∆tf = 0.01 and ∆tρi = 0.1min(ρIi , ρ
II
i ) work well. From our definitions

of neutral pairs, the bead density for each charged species follows as

ρp− =ρp−/Na+ (3.15)

ρp+ =ρp+/Cl− (3.16)

ρNa+ =ρp−/Na+ + ρNa+/Cl− (3.17)

ρCl− =ρp+/Cl− + ρNa+/Cl− (3.18)

To rapidly screen phase behavior, we use a Gaussian approximation to evaluate the

pressure and chemical potentials used in field-theoretic Gibbs ensemble simulations. Pre-

vious efforts have shown that the Gaussian approximation, while it only includes field

fluctuations up to the second order, is semi-quantitative in reproducing the dense branch

of the coacervate phase diagram.27,65,67 Specifically in our work, we add Gaussian fluctua-

tion modes of the electrostatic interactions on top of a mean-field treatment of excluded-

volume interactions. The derivation of analytical expressions for the requisite thermody-

namic quantities are provided Appendix A.
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3.3 Results and discussion

3.3.1 Polyelectrolyte mixture with no added salt

Prior experiments have suggested that the propensity for coacervation decreases with the

degree of non-stoichiometry in charged monomer compositions.20,101 We probe the effect

of charged monomer stoichiometry in a salt-free mixture consisting of PAA, PAH, the

appropriate ion needed to neutralize the system, and water. The amount of PAA relative

to PAH in the mixture is controlled by the PAA fraction parameter defined as fp− =

ρp−/ρp where ρp = ρp− + ρp+ is the total bead number density of the polyelectrolytes.

The bead density of PAH is thus ρp+ = (1− fp−)ρp−/fp−. When fp− > 0.5(< 0.5), PAA

(PAH) is in excess and we include Na+ (Cl−) to neutralize the system.
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Figure 3.4: (A) Phase diagram for the salt-free condition of a PAA/PAH mixture at varying
chain length, N . The solid lines denote the binodals, and dotted lines are example tie lines.
Gray solid lines represent compositions corresponding to specific fp− values, as annotated on
the figure. The faded dashed line is the hypothetical binodal for excess PAA conditions at
N = 30 if the phase diagram is symmetric (ρp− = ρp+). The red arrow shows a path traversing
from a PAH-rich mixture (fp− → 0) to a PAA-rich mixture (fp− → 1) for N = 20. (B) Plot of
the monomer fraction of PAA in the coexisting dilute, f Ip−, and coacervate phases, f IIp−, along
this path at N = 20.

Fig. 3.4A shows the binodals for the polyelectrolyte chain lengths N = 20, 24 and 30.
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The tie line, connecting the compositions in the dilute and coacervate phases, shortens

with increasing deviation from charged monomer stoichiometry. The stoichiometric con-

dition is denoted by the diagonal line, whereas other stoichiometries are gray lines above

(fp− > 0.5) or below (fp− < 0.5) the diagonal. The increased propensity for coacervation

with increasing N is reflected by both the longer tie lines (evident at fp− = 0.5) and

larger range of composition enclosed by the binodal.

For values of N shown here, the alignment of tie lines and the stoichiometry lines

suggest that the coacervate retains the overall stoichiometry. This also indicates that

most of the excess polyelectrolytes go into the coacervate phase (with the excess charges

being neutralized by the counterions), while the dilute phase is almost devoid of both

species of polyelectrolyte. This observation of the coacervate’s stoichiometry relative to

the overall mixture’s is qualitatively different from previous theoretical work by Zhang et

al.79 In their work, the tie lines are almost parallel to the diagonal line, suggesting that

the polyelectrolytes re-distribute in the coexisting phases such that the coacervate phase

composition is less asymmetric in terms of the number of oppositely charged monomers

as compared to that of the overall mixture. These differences could be the results of the

enhanced charged connectivity in the Gaussian approximation of the field theory and

chemical specific interactions that we employ here.

For the dilute phase, it is more illustrative to show the trajectory of the stoichiometry

in the coexisting dilute phase (phase I) and coacervate phase (phase II), Fig. 3.4B, as

we follow the path traversing across tie lines starting from fp− → 0 to fp− → 1 (red arrow
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in Fig. 3.4A). Although the PAA fraction in the coacervate phase varies continuously

from 0 to 1, this value is either near 0 for fp− < 0.5 or near 1 for fp− > 0.5 in the

dilute phase, suggesting that the dilute phase, while being depleted of polyelectrolytes,

is composed of mostly the polyelectrolyte species in excess. It is also inferred from Fig.

3.4B that the coacervate is stabilized for all range of stoichiometry, even at fp− → 0 and

1. We hypothesize that the stability of the coacervate over the full range of stoichiometry

is due to the parameterization of the CG polyelectrolyte models at the phase separated

state (at fp− = 0.5 and 0.3 M NaCl). Interaction parameters derived from this reference

state are biased toward the collapsed configurations of PAA and PAH, which promote

phase separation even when only one polyelectrolyte species is present. This is related

to the transferability of the polyelectrolyte model across stoichiometries which can be

improved by employing the external potential ensemble in the parameterization step of

the polyelectrolyte-NaCl mixture.
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Figure 3.5: RDFs between the center-of-mass of the polyelectrolyte monomers and (A) that
of the same polyelectrolyte species and (B) water in the CG simulation (solid lines) and the AA
simulation (dotted lines) calculated from a mixture corresponding to simulation 3 in Fig. 3.2.
Red and blue lines correspond to PAA and PAH monomers, respectively. The CG models do
not retain liquid structuring of the AA model due to our choice of large interaction radii that
only resolves long length-scale physics.

Lastly, we want to note that the phase boundaries are not symmetric across the

diagonal; comparing actual phase boundaries to hypothetical boundaries by assuming
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ρI,IIp+ = ρI,IIp− clearly shows the asymmetry (faded dashed lines in Fig. 3.4A and Fig.

D.3). The coacervate dense phase incorporates slightly more PAH in non-stoichiometric

mixtures with excess PAH (e.g., fp− = 0.3), as compared to the incorporation of PAA

when it is in excess by the same amount (e.g., fp− = 0.7). The tendency of PAH to form

a denser coacervate is explained by the radial distribution functions (RDFs) in a mixture

of 10 wt % PAA and PAH at fp− = 0.5 and 0.3 M NaCl (the composition of the third

reference AA system discussed earlier). The analysis of the CG model shows that the

PAH monomer-PAH monomer RDF has higher intensity than the PAA monomer-PAA

monomer RDF (Fig. G.5A) while the PAH monomer-water RDF shows less pronounced

structuring than the PAA monomer-water RDF (Fig. G.5B). This suggests that PAH

is less soluble in water; the same trend is observed in the AA model (dotted lines).

This asymmetry arises from the chemistry embedded in our model that leads to different

interaction parameters among the charged moieties.
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3.3.2 Polyelectrolyte mixture with added salt

Figure 3.6: (A) Binodals at fp− = 0.5 for varying N . Dotted lines are tie lines for N = 100.
The negative slope in the tie lines suggests that there is slightly more salt in the dilute phase than
in the coacervate phase. This is more evident in (B), a plot of the ratio of salt concentrations
in the coacervate phase and the dilute phase as a function of the excess salt concentration in
the coacervate. The ratio is always below unity for any values of the added salt concentration
and N .
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We now consider the addition of salt in a polyelectrolyte mixture where the ions stem

from both the counterions (one counterion per polyelectrolyte charge) and added salt, i.e.,

ρNa+ = ρp−+ρsalt and ρCl− = ρp−+ρsalt. Since the small ions have different partitioning

behavior in the coexisting phases, we report their concentration in each phase as the

smaller value of the Na+ and Cl− concentrations, i.e., ρI,IINaCl = min
(
ρI,IINa+ , ρ

I,II
Cl−

)
; this is

equivalent to assessing the excess salt in each phase.

Fig. 3.6A shows how the dense branch concentration of the two-phase coexistence

region for the stoichiometric mixture reduces with the salt concentration. The dilute

branch concentration, on the other hand, becomes denser with added salt (Fig D.4) as

the binodal region shrinks from both sides. Increasing the salt concentration reduces

the effective electrostatic strength due to screening from the increased charge density.

Both the entropic and enthalpic driving forces for coacervation diminish with increasing

ionic strength before coacervation is thermodynamically unfavorable, at which point the

complexation free energy becomes 0 (Fig. D.5). The salt concentration at this transition,

ρ∗salt, characterizes the salt resistance of the coacervates, i.e., the minimum amount of

salt to dissolve the coacervate phase. The two-phase region also has a lower bound at

N ≈ 15 and increases with molecular weight until approximately saturating above N ≈

150. The higher solubility of shorter polyelectrolytes is not surprising and is a result of

their increased translational entropy and weaker electrostatic correlation energy.65

The negatively sloped tie line suggests that the excess salt concentration in the dilute

phase is slightly higher than that in the coexisting coacervate phase. This is readily
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apparent from the ratio of the salt concentration in the coacervate phase with respect to

that in the dilute phase in Fig. 3.6B, which is less than unity for all salt concentrations;

observations that are consistent for the individual anion and cation species are shown in

Fig. D.6. As salt is increased at constant N , or as N is decreased at constant ρIINaCl,

the polyelectrolyte concentration in the coacervate phase decreases. This reduces the

excluded volume asymmetry between the two phases, and, as a result, the salt partitioning

ratio increases from values less than 1 toward 1. While experimental efforts have shown

that the salt partitioning behavior is not universal and depends on other factors such

as the chemistry of the polyelectrolyte and charge density,118,119 our prediction of higher

salt partitioning in the dilute phase is consistent with the experimental observations for

the stoichiometric PAA/PAH mixture.1,2
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Figure 3.7: Overall polyelectrolyte stoichiometry fp− along a tie line by varying the dilute
phase volume fraction f I for the case of the coacervate stoichiometry of 0.1. Different series
represent tie lines corresponding to different excess salt concentrations in the coacervate (in
nm−3). Cross symbols denote the overall compositions used in Gibbs ensemble calculations
to obtain the coexisting phases. Inset: expanded region near the dilute phase to highlight the
continuous transition of the stoichiometry from 0.1 to 0 at moderate to high salt concentrations.

Using the same protocol, we construct phase diagrams for N = 150 under non-

stoichiometric conditions. Although in general the stoichiometry of the coacervate phase

can be different from that of the initial mixtures and depends on the overall composition,

we find that the coacervate maintains the overall stoichiometry, and this observation

is mostly independent of the overall composition. As a demonstration, for a pair of

the coexisting phases we calculate the overall stoichiometry of different mixtures with

overall compositions at different points along the tie line by varying the dilute phase

volume fraction f I , which controls the relative proportion of the two phases. The overall

stoichiometry along the tie line for the coacervate stoichiometry f IIp− = 0.1 is presented

in Fig. 3.7 where different series represent tie lines at different salt concentrations.
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The overall stoichiometry, fp−, approaches the coacervate (dilute phase) stoichiometry

as the dilute phase volume fraction approaches 0 (1). At low salt concentrations, the

stoichiometry along the tie line is the same as that of the coacervate phase and has a

discontinuity in the dilute phase (f I = 1). At moderate to high salt concentrations,

the stoichiometry varies continuously from 0.1 to 0 as we approach the dilute phase.

This transitional region is indeed quite narrow and appears very close to the dilute

phase (f I ≳ 0.8) for all stoichiometries we investigated (Fig. D.7), suggesting most

compositions enclosed by the binodals of Fig. 3.8A have the same stoichiometry as

that of the corresponding coacervate phase. This is expected because the dilute phase

has very low concentrations of polyelectrolyte and contributes very little to the overall

polymer mass. Going forward, we refer to “non-stoichiometric” mixtures as those with

the coacervate phase at non-stoichiometric conditions.
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Figure 3.8: (A) Binodals for N = 150 at stoichiometries f IIp− = 0.1, 0.3, 0.5, 0.7, 0.9 with
dotted lines denoting tie lines. The reduced number of potential ion pairs in non-stoichiometric
mixtures leads to the shrinkage of the coacervation region. (B) Same salt concentration vs the
excess polyelectrolyte concentration ρp,excess = |ρp− − ρp+ | in the coexisting phases. ρp,excess is
essentially 0 for the stoichiometric mixture.

Notably, the coacervation regions for non-stoichiometric mixtures are smaller than

those for stoichiometric mixtures as evident in Fig. 3.8A. At the same overall polyelec-

51



Coacervation of Oppositely Charged Polyelectrolytes Chapter 3

trolyte concentration ρp, more asymmetric mixtures have fewer potential ion pairs. Thus,

less salt is needed to screen the electrostatic interactions and dissolve the coacervate as

compared to that under the stoichiometric condition. Unlike those in the stoichiometric

mixture, cations and anions have different partitioning behavior in non-stoichiometric

mixtures (Fig. 3.9) due to the electroneutrality constraint: excess-PAA (PAH) coac-

ervate require excess Na+ (Cl−) in the same proportion to neutralize the charge. For

f IIp− = 0.5, the coacervate phase has equimolar amounts of oppositely charged monomers

such that the small ions have freedom to partition in the dilute phase where it is less

crowded. We show in Fig. 3.10 the partitioning ratio of “free ions” that do not neutral-

ize the excess polyelectrolytes and have concentration ρI,IIfree ion = ρI,IINa+ + ρI,IICl− − ρI,IIp,excess.

This characterizes the degree of ion partitioning after accounting for the partitioning due

to neutralization of the excess polyelectrolytes in both phases. As expected, when the

polyelectrolyte complex is sufficiently neutralized, small ions preferentially partition in

the dilute phase.
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Figure 3.9: Partitioning ratios of (A) Na+ and (B) Cl− across excess salt concentrations in
the coacervate for different f IIp− at N = 150.

Interestingly, under non-stoichiometric conditions, the dense branch shows a looping-

in shape that has been observed experimentally in other non-stoichiometric polyelec-

trolyte systems.118 This looping-in feature is representative of a salting-out phenomenon,
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where a homogeneous solution undergoes phase separation upon an initial addition of

salt.120 Friedowitz et al. attribute the looping-in feature in their phase diagrams to

the competition of the counterion mixing entropy and the electroneutrality constraint

in the coacervate when there is charge asymmetry. They argue that when excess poly-

electrolytes preferentially partition into the coacervate, as is observed in our system, salt

ions that do not participate in neutralization of the complex preferentially populate the

dilute phase to maximize their translational entropy. Consequently, the polyelectrolyte

concentration in the coacervate must increase in order to maintain the osmotic pressure

balance between the two phases. With sufficient added salt, the salt partitions more

evenly across the two phases, and eventually, the screening effect dominates, leading to a

decrease in the coacervate concentration with increasing salt. Fig. 3.10 shows a drastic

decrease in the free ion partitioning ratio for non-stoichiometric mixtures as compared

to that under the stoichiometric condition, especially at low added salt concentrations,

which is consistent with the earlier argument of the increased accumulation of free ions

in the dilute phase. Furthermore, the salt concentration where the free ion partitioning

ratio crosses ∼ 0.8 (the partitioning of the fp− = 0.5 mixture at low salt concentration)

is qualitatively where the looping-in feature ends, suggesting that the looping-in shape

in the dense branch is indeed related to the partitioning behavior of small ions.
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Figure 3.10: Partitioning ratios of the free ions, ρI,IIfree ion = ρI,II
Na+

+ ρI,II
Cl− − ρI,IIp,excess, across

excess salt concentrations for different f IIp− at N=150. At low added salt concentrations, this
ratio is significantly lower in non-stoichiometric mixtures as compared to that in stoichiometric
mixtures.

Similar to that under the salt-free condition, we note that the change in the coac-

ervation region is not symmetric between the excess PAA (f IIp− > 0.5) and excess PAH

(f IIp− < 0.5) conditions. Specifically, the two-phase window for excess PAH is larger than

that for the excess PAA case at the same degree of non-stoichiometry (e.g. f IIp− = 0.1 vs

0.9, 0.3 vs 0.7, etc.). In addition, the polyelectrolyte complex carries more charge, char-

acterized by the excess polyelectrolyte concentration ρIIp,excess = |ρIIp−−ρIIp+ |, in the case of

excess PAH conditions relative to excess PAA conditions at the same ionic strength (Fig.

3.8B); thus, more counterions (Cl− for f IIp− < 0.5, Na+ for f IIp− > 0.5) are needed to neu-

tralize coacervates with excess PAH (Fig. 3.9). Lastly, it is inferred that the propensity

for coacervation at a fixed degree of non-stoichiometry is higher when the excess species

55



Coacervation of Oppositely Charged Polyelectrolytes Chapter 3

is PAH than when it is PAA. A similar observation is suggested by the experimental

ternary phase diagrams at moderate salt concentrations by Chollakup et al. where the

critical stoichiometry, beyond which coacervation does not occur, appears to be biased

toward mixtures with a higher degree of excess PAH.20 The fact that we can predict this

asymmetry provides some validation of the workflow’s ability to preserve the chemical

specificity of the AA model in the CG model.

Figure 3.11: Phase diagrams for stoichiometric mixutures at N = 150 from the Gaussian
approximation (black line) and CG MD (circles) compared to the experimental data by Li et
al. (triangles) and Luo et al. (squares).1,2 MD simulations are conducted in the NPT ensemble
at 298.15 K and PCG in a rectangular box of dimensions ∼ 11×11×80 nm3. Red circles reflect
the polyelectrolyte and salt compositions in the coacervate, while black circles are the overall
compositions. The polyelectrolyte composition in the dense branch from CG MD approaches
the bulk with the increasing salt concentration much faster than the Gaussian approximation.
The two simulation snapshots from CG MD, showing PAA (red chains) and PAH (blue chains),
correspond to the highest (top) and lowest (bottom) salt concentrations shown here; water
molecules are not shown for clarity.

The phase diagram from the Gaussian approximation forN = 150 at 1:1 stoichiometry

56



Coacervation of Oppositely Charged Polyelectrolytes Chapter 3

is directly compared to experimental results of the similar system reported by Li et al.

and Luo et al. at pH = 6.5 (Fig. 3.11).1,2 While qualitatively capturing the screening

effect of added salt, the phase diagram shown here: 1) overestimates the critical salt

concentration; and, 2) underestimates the polyelectrolyte compositions in the coacervate

phase. Deficiency 1) is largely attributable to the Gaussian approximation which neglects

higher-order fluctuations that become more important near the critical point (can be

resolved by including fields other than the electrostatic potential). From a limited number

of particle-based MD simulations of coacervates in equilibrium with a supernatant phase

(circles in Fig. 3.11), we show that with full incorporation of fluctuations, the CG model

indeed has a comparable salt resistance with experiments and becomes homogeneous

above ρNaCl ≈ 4.5 nm−3.

In contrast, the underestimation of the coacervate phase polymer density is attributed

to the assumption of a constant dielectric screening effect of the solvent with added

salt and polyelectrolyte. The current CG model assumes the Bjerrum length of pure

water throughout the coexisting regions while in reality the Bjerrum length is likely

larger in the dense coacervate (corresponding to a smaller dielectric constant). With an

increased Bjerrum length, the attractive interactions between polyelectrolyte monomers

will be stronger, resulting in more concentrated coacervate branch. A more sophisticated

model that better describes the actual electrostatic environment would be one with a

dielectrically active solvent. Specifically, one can model the solvent as a polarizable or

fixed-dipole solvent such that the screening depends on the local environment;121 we leave

57



Coacervation of Oppositely Charged Polyelectrolytes Chapter 3

investigating such a model to future work.

A potential further refinement to the workflow would be to coarse-grain the polyelectrolyte-

polyelectrolyte, polyelectrolyte-ion and polyelectrolyte-water interactions in the external

potential ensemble. Deriving the CG parameters in this ensemble improves thermo-

dynamic faithfulness and transferability across state points (e.g., salt concentrations,

polyelectrolyte concentrations and stoichiometries) by applying spatially varying exter-

nal potentials to one or more species to force local composition variations and fluctua-

tions.100 From the profound improvement observed in the thermodynamics of the NaCl

model across concentrations (Fig. B.3), we expect that this strategy will also improve the

quality of the polyelectrolyte-NaCl model. However, probing fluctuations in both poly-

electrolyte and salt compositions will require multiple external potentials to be applied

on different components, the design of which is not obvious. Thus, further investigation

is necessary to find an optimal reference ensemble for coarse-graining the polyelectrolyte-

NaCl system.

3.4 Conclusions

This work presents phase diagrams for a PAA/PAH complex coacervate system from

a molecularly-informed field theory that captures not only the effects of charged group

stoichiometry, electrostatic screening with added salt, and salt partitioning behavior, but

also chemistry-specific effects due to the molecular details of the polyelectrolytes (i.e.,

PAH-PAA asymmetries in non-stoichiometric mixtures). At the same overall polyelec-
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trolyte concentration, the coacervation propensity decreases as the PAA ratio, fp− =

ρp−/(ρp− + ρp+), deviates from the stoichiometric condition (fp− = 0.5). By reducing

the number of potential ion pairs, the coacervate phase is more dilute, evidenced by

shorter tie lines (Fig 3.4), and less salt is needed to dissolve the coacervate, resulting in

a smaller two-phase region (Fig. 3.8A). The two-phase region shrinks at higher salinity

(Fig. 3.6A and 3.8A) and the model predicts that small ions favor the dilute phase for sto-

ichiometric mixtures (Fig. 3.6B). For non-stoichiometric mixtures, however, cations and

anions have different partitioning patterns due to the electroneutrality constraint such

that Na+ (Cl−) ions populate the coacervate phase when PAA (PAH) is in excess (Fig.

3.9). The looping-in behavior in non-stoichiometric mixtures at low salt concentrations,

also observed previously in experiments,118 is attributed to the competition between

maximizing the translational entropy of the free ions (ions that do not neutralize the

excess charge in the coacervate) and the electroneutrality constraint in the coacervate.

While the simulations do not produce quantitative agreement with the experiments, they

nevertheless capture qualitative trends with no fit parameters, providing an important

screening tool. Nonetheless, with simple potential functional forms and assumption of

a constant electrostatic screening environment throughout the phase separating regimes

(constant Bjerrum length), the model qualitatively captures the coacervation response

to the added salt concentration and mixing stoichiometries.

Atomic-scale details are extremely important in formulation and material design in-

volving the fine-tuning of component chemistries. We believe that molecularly-informed
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field theories are a promising way to overcome long-standing challenges in studying coac-

ervation physics with either (1) traditional particle-explicit models that struggle to sam-

ple meaningful conformations or (2) phenomenological field theories that lack chemical

specificity. For example, it is often assumed in theoretical models that the polyanion

and polycation have the same chemical structure except for opposite charges, resulting

in often nonphysical symmetric phase diagrams with respect to the two polyelectrolyte

species. We have demonstrated a bottom-up coarse-graining methodology that molecu-

larly informs the field-theoretic model with chemical details from atomistic simulations.

A notable outcome is the prediction of a non-symmetric diagram where coacervation is

more favorable when the polyelectrolyte in excess is PAH. We believe that the present

coacervate model of PAA/PAH represents a significant step forward over prior simulation

and theoretical studies in that it retains chemical specificity of the involved components

while still making use of a computationally efficient field representation capable of rigor-

ous phase diagram calculations.
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4.1 Introduction

Solutions of polyelectrolytes and surfactants underpin many applications covering per-

sonal care products,6,7,122–124 food products,4,5,125 and drug encapsulation.126–128 These

systems feature an interesting range of self-assembly and phase behaviors, driven by the

interplay of hydrophobic and electrostatic interactions.53,129–132 Additionally, polyelectrolyte-

surfactant systems are often highly multi-component, featuring at least one polyelec-

trolyte, a mixture of both neutral and ionic surfactants, cationic and anionic salt species,

and water, with many parameters (composition, specific chemical species, molecular

weight, temperature, etc.) that can be tuned to achieve desired properties.23,133,134 The

emergent self-assembly and phase behavior sets a range of rheological properties such as

viscosity, lubrication, foamability, and wettability that are key performance targets in

formulation design.135,136

There is a significant number of experimental works on the behavior of polyelectrolyte-

surfactant mixtures. In polyelectrolyte-free solutions of surfactants, the critical micelle

concentration (CMC) describes the onset of surfactant self-assembly into micelles.53,137

In the presence of polymers or polyelectrolytes, there is usually a critical aggregation con-

centration (CAC) that precedes the CMC, where attractions between polymer and sur-

factant enables the formation of aggregates at concentrations lower than the surfactant’s

intrinsic CMC;138 these aggregates are also referred to as complexes.139 Hydrophobic

polymers are expected to partition to the core of the resulting aggregates and micelles,

while charged polymers typically decorate the surfaces of ionic surfactant aggregates
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and micelles.53,133,140,141 At higher concentrations, aggregates and micelles are known

to undergo morphological changes into cylindrical micelles, spherical vesicles, lamellar

structures, precipitates, and gels.142–146 These structures in turn can be highly sensitive

to the chemistry of the employed polyelectrolytes, surfactants, and salt.23,130,144,147

Mixtures of polyelectrolytes with oppositely charged micelles can also undergo phase

separation through complex coacervation.141,148–151 This charge-driven phenomenon re-

sults in a coacervate phase rich in macroions, and a supernatant phase lean in macroions,

and naturally is highly sensitive to factors like the salt concentration, macroion surface

charge, and polymer charge density. Complex coacervation is a very general phenomenon

such that the macroions can be polyelectrolytes,152 surfactant micelles,141 charged col-

loids,153,154 and proteins among others,155–157 and as a result has garnered significant

interest across many fields. Out of these various systems, mixtures of micelles with poly-

electrolytes are particularly challenging to study and understand because of the propen-

sity of micellar sizes and morphologies to change significantly with solution conditions.

Additionally, experimental systems often employ mixtures of surfactants in order to tune

micelle properties, underscoring the importance of understanding self-assembly.23,141

In this work we develop a multiscale modeling framework that directly addresses

surfactant self-assembly in the presence of polyelectrolytes, and we focus on experimental

studies by Dubin et al.23,147 In a series of titration and dilution experiments, Dubin

and coworkers revealed how polyelectrolyte-surfactant complexation is highly sensitive

to polyelectrolyte linear charge density, micelle surface charge density, and the ionic
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strength of the solution.133,147,158 Additionally, the ratios of polyelectrolytes to surfactants

were also shown to affect the resulting self-assembly behavior.23 Taken together, these

observations corroborate the intuition that electrostatic interactions are a primary driving

force for the attraction of polyelectrolytes to charged surfactant micelles.

We model one of the systems they studied, featuring the cationic polyelectrolyte

polydiallyldimethylammonium (PDADMA), anionic surfactant sodium dodecyl sulfate

(SDS), nonionic ethoxylated surfactants (CmEOn), sodium chloride salt, and water (Fig.

6.4). In these studies, SDS surfactant solution was prepared above the CMC, and a

mixture of PDADMA and CmEOn was iso-ionically titrated by the SDS micellar solution,

thus steadily increasing the molar ratio of charged to neutral surfactants. Turbidity was

monitored and demonstrated distinctive changes upon titration with the SDS solution.

At modest mole fractions of charged surfactant SDS (∼0.15-0.3) compared to the total

surfactant concentration, the turbidity begins gradually increasing corresponding to the

onset of the formation of soluble complexes, before exhibiting a sharp increase indicating

a biphasic coacervation regime at higher mole fractions.147 In addition to quantifying

the effects of charge, Dubin and coworkers also demonstrated how changing the nonionic

surfactant species CmEOn (i.e., by changing the length n of the hydrophilic EO group)

quantitatively changes the observed transitions.

While there are numerous theoretical and simulation models of oppositely charged

polyelectrolytes,34,70,118,152,159–168 there is comparatively less theoretical work addressing

the complexation of polyelectrolytes with surfactants.139,140,146,169–172 Directly simulating
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these systems by molecular dynamics (MD), even coarse-grained MD, is usually con-

fined to relatively small systems. Additionally, the equilibration of micellar structures

is itself limited by the slow processes of diffusion, surfactant exchange, and micelle fis-

sion and fusion.173–176 The characteristic time for these processes is easily on the order

of µs for common surfactants.177,178 Adding slowly equilibrating polymer chains only

makes it more difficult to confidently equilibrate the resulting systems. As a result,

many molecular dynamics simulations of polyelectrolyte-surfactant systems model the

micelles as pre-assembled colloidal particles.154,179 Similarly, many theoretical treatments

of polyelectrolyte-surfactant mixtures also avoid the difficult equilibration of surfactants

into micelles altogether,139 and make approximations such as treating the micelles as

spheres with fixed size and charge.139,180,181 In these models, the micelles act as external

potentials on the surrounding polyelectrolyte solution, which is in turn modeled using

field-theoretic models. Such approaches neglect the self-assembly of surfactants into mi-

celles in order to facilitate evaluation of the mixture phase behavior.

In contrast to modeling micelles as colloids with fixed properties, in this study we ex-

plicitly study the self-assembly of surfactants and polyelectrolytes in soluble complexes.

We achieve this by developing a molecularly informed field-theoretic model based on

the strategy outlined in Chapter 2 and our publications (Fig. 6.4).82,84,182 Briefly, the

approach utilizes the field theory to efficiently simulate large, dense systems contain-

ing high-molecular-weight species, while providing chemical specificity through small-

scale, all-atom simulations. Specifically, we use relative entropy coarse-graining to derive
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chemically-sensitive coarse-grained interaction parameters from all-atom simulations.81

The chemical specificity preserved by this approach allows us to make direct compar-

isons to the mixed micelle experimental studies by Dubin and coworkers.147 To facil-

itate the calculation of equilibrium micelle properties we transform the coarse-grained

particle-based model into field-theoretic form.74 This alternative representation of the

same particle-based model provides facile access to the free energy, and has been used to

evaluate micelle properties and self-assembled morphologies of surfactants.140,182

Figure 4.1: Schematic of the the multi-scale simulation workflow for deriving a field-theoretic
model of polyelectrolyte and micelle complex. The left panel lists the components we consider in
this work. From left to right and top to bottom, chemical structures of the polycation PDADMA
monomer, Na+, Cl−, water, anionic surfactant SDS and non-ionic surfactant C13EOn overlaid
by the corresponding coarse-grained bead types. The middle panel shows a coarse-grained
model parameterized by relative entropy minimization, while the right panel shows the exact
mapping from a coarse-grained particle-based description of a PDADMA-SDS/C13EOn mixed
micelle complex to a field-theoretic model (cross-section of the micelle).

Using this approach, we self-consistently determine the mixed micelle size and mor-

phology in tandem with polyelectrolyte adsorption. Subsequently, we show that the

adsorption of polyelectrolytes to micelles correlates well with experimental measures of

turbidity, and our model correctly predicts the effect of salt concentration and nonionic

surfactant identity. The proposed simulation strategy facilitates the rigorous determina-
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tion of equilibrium micelle structures, which is challenging to achieve in particle-based

simulations, while considering the intricate balance of interactions among all components

present in the solution. This establishes a basis for examining complexation propensity

in other polyelectrolyte-surfactant mixtures, enabling efficient exploration of formulation

space.
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4.2 Computational details and methods

4.2.1 All-atom simulations

Figure 4.2: All-atom simulations used to derived coarse-grained interaction parameters via
the relative entropy coarse-graining framework. Simulations details are provided in Table G.1

We parameterize the pair-wise interactions and bonded interactions for the eight coarse-

grained (CG) bead types (Fig. 6.4, first panel) via four stages based on nine reference all-

atom (AA) simulations as presented in Fig. 6.3. We use the Optimal Point Charge (OPC)

4-point water model92 and the Joung-Cheatham ion model.105 For the PDADMA and the
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ethylene oxide block on C13EO7, we use the General Amber Force field (GAFF2).106 We

model the alkyl block (appearing in SDS, C13EO7, and dodecane) with the Lipid 14 force

field.183 We adopt the same force field used in our previous work for the headgroup sulfate

SO−
4 ,

182 which combines the parameters from Yan et al. (2010)184 and subsequently

adjusted nonbonded Lennard Jones interaction between sodium ions and oxygens bound

to the sulfate headgroup to reproduce the surface tension of SDS deposited at a water-

vacuum interface.

We conduct reference AA simulations with the OpenMM simulation package.109 We

use a 1 nm cutoff for the direct space non-bonded interactions and use the Particle Mesh

Ewald method to compute long range Coulomb and Lennard-Jones interactions (LJPME

method in OpenMM). In addition, we constrain the length of all bonds that involve a

hydrogen atom and employ a time step of dt = 0.002 ps. The temperature is set to 298.15

K using the Langevin thermostat with a friction coefficient of 5 ps−1, while the pressure

is set to 1 atm using the Monte Carlo barostat that is updated every 25 time steps.

We generate the initial configurations for the simulations with the Packmol package.185

Details of the system sizes are provided in Table G.1 in Appendix E.

4.2.2 Bottom-up coarse-graining procedure

As detailed in Chapter 2, after performing AA simulations as described in the previous

section, we use relative entropy coarse-graining81 with these as references to derive CG

interaction potentials (Section 2.2.3) that are amenable to efficient field-theoretic simu-
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lations. We translate AA reference trajectories for coarse-graining by mapping center-of-

mass coordinates of groups of atoms in the AA representation to CG sites. Specifically,

we map each water molecule to a single neutral bead and each Na+ and Cl− ion to a

single bead with +1 and −1 charge, respectively. Each monomer of PDADMA is mapped

to one bead that bears a +1 charge. The 12-carbon alkyl tails on both SDS and C13EOn

are mapped to six neutral C2 beads of two carbons each. The sulfate head group is

represented as a single SO−
4 bead of charge −1. Lastly, the ethylene oxide repeating unit

(CH2OCH2) on C13EOn is mapped to one neutral EO bead and the terminal CH2OH

group is modeled as a neutral COH bead. We fix the Gaussian regularization range, aα,

of each bead species to approximately the cube root of its molecular volume. By this

convention, the water interaction range, aw, is set to 0.31 nm in this work. Values for

other bead types are listed in Table G.3. The CG bead types and corresponding CG

molecules are presented in the first panel of Fig. 6.4.

We derive CG parameters in successive stages; once the parameters are determined,

they are fixed in subsequent steps. In the first stage, we determine CG parameters for

the interactions between intramolecular bead species. The water-water repulsion vww was

derived in Chapter D from a pure water AA simulation to reproduce the compressibility of

OPC water, κT ∼ 0.062 kBT/a
3
w ∼ 4.51 × 10−10 Pa−1. This determines the CG pressure

of PCG = 8.5 kBT/a
3
w that we use in the subsequent coarse-graining stages. We follow the

previously published coarse-graining procedure182 to parameterize pairwise and bonded

interactions for the CG beads in SDS (vC2 C2 , vSO−
4 SO

−
4
, vC2SO

−
4
, bC2C2 , and bC2SO

−
4
) from
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SDS deposited at a water/dodecane interface at 298.15 K. The EO-EO repulsion vEOEO

and root-mean-square bond length bEOEO are derived using a neat PEO simulation in

the NPT ensemble. Similarly, pairwise excluded volume and bonded parameters for the

polycation monomer, vp+p+ and bp+p+ , are also determined from neat PDADMA chains

in the NPT ensemble.

In the second stage, we parameterize the ions and cross-interactions involving water

as well as those between PDADMA and SDS. We adopt the ion parameters (vNa+Na+ ,

vCl−Cl− , vNa+Cl− , vNa+w, and vCl−w) from our previous polyelectrolyte work (Chapter

3)82 in which we coarse-grained from an aqueous NaCl solution in the external potential

ensemble.100 From the AA simulation of the non-ionic surfactant C13EO7 micelle, we

derive the following parameters: vCOH COH , vCOH C2 , vCOH EO, vC2EO, vCOH w, vC2 w, vEOw,

bC2EO, and bCOH EO. Lastly, we determine the cross-interactions among PDADMA, SDS

and water (vp+C2
, vp+SO−

4
, vp+w, vSO−

4 w
) from a mixture of PDADMA with a SDS micelle.

In stage three, we derive the ions-PDADMA and ions-SDS pair-wise interaction pa-

rameters (vp+Cl− , vp+Na+ , vC2Cl− , vC2Na+ , vSO−
4 Cl

− , and vSO−
4 Na

+) from a similar PDADMA

and SDS micelle system in the presence of NaCl. In the last stage, the remaining pa-

rameters (vp+COH , vp+EO, vCOH Cl− , vCOH Na+ , vCOH SO−
4
, vEOCl− , vEONa+ , and vEOSO−

4
)

are derived from a mixture of a SDS/C13EO7 micelle, PDADMA, and NaCl, around the

composition range that we target in this study. We tabulate the parameters in Tables

G.2 and G.3.
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4.2.3 Coarse-grained molecular dynamics (CGMD)

CGMD simulations are conducted using a Langevin Dynamics integrator. The Langevin

relaxation time τCG is taken as the unit of time. Due to the soft nature of the CG

interactions and bonds, large time steps of 0.1 τCG are feasible. The inner-loop of relative

entropy optimization requires CGMD simulations, which we run for 2× 105 − 1.5× 106

time steps (2 × 104 − 1.5 × 105 τCG of simulation time), sufficient to equilibrate slow

relaxation modes in the systems, such as the surface area in the interfacial system used

to parameterize SDS interactions with water and salt.

4.2.4 Micelle simulations with the field theory

As discussed in Section 2.3, the nonbonded CG potentials defined in Section 2.2.3 can

be readily represented and simulated using a field-theoretic representation by means

of a Hubbard-Stratonovich-Edwards transformation. This field-theoretic transformation

decouples nonbonded pair interactions, resulting in particles interacting only with an

auxiliary field. As a result, particle coordinates can be analytically integrated, yielding

a partition function in terms of integrals over field configurations. In this chapter, we

invoke the mean-field approximation (Eq. 2.10) to study surfactant self-assembly. SCFT

provides a readily-accessible approximation of the free energy, which is a powerful tool

for evaluating the relative stability of competing structures particularly in comparison to

conventional MD-based methods requiring significant, often intractable efforts to evaluate

phase free energies. For example, minimizing the free energy at constant concentration
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Figure 4.3: (A) Concentrations of SDS (chain basis), C13EOn (chain basis), and DADMA
(monomer basis) as the titration proceeds. (B) An example density profile and a cross section
of the micelle from SCFT. Dashed line indicates the 0.1 EO locus introduced in the main text.
A representative snapshot from CGMD is shown in (C).
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with respect to the simulation cell size allows one to determine equilibrium sizes and

aggregation number of molecular self-assemblies. Additionally, one can compare the free

energies of different morphologies (e.g., spherical, cylindrical, lamellar) under stress-free

conditions to determine the putative equilibrium structure.

In this work, we take advantage of this particular strength of the field-theoretic

transformation to characterize the equilibrium self-assemblies of the multi-component

polyelectrolyte-surfactant mixture. We perform simulations of micelles at varying com-

positions as in the titration experiment outlined by Dubin et al. (2017).147 Briefly, 60

mM SDS in NaCl is added to solutions of 1 g/L PDADMA (with Cl− counterions), 20

mM C13EOn, and the same NaCl concentration as in the SDS stock solution. As the

titration proceeds, the anionic surfactant fraction increases and the composition changes

according to Fig. 4.3A. This fraction is defined by the surfactant number densities as:

Y =
ρSDS

ρSDS + ρC13EOn

. (4.1)

Fig. 4.3B presents an example density profile of a micelle from SCFT. A CGMD

snapshot of an equivalent particle-based model is shown in Fig. 4.3C. The mixed micelle

comprises of the non-ionic surfactant C13EOn and SDS with an alkyl-rich core and a

corona of SO−
4 , EO, and COH groups. At conditions where the micelle surface charge is

above a critical value, the density profile shows an enrichment of PDADMA around the

peak concentration of the SO−
4 head group, indicating the adsorption of polyelectrolytes

on the micelle surface.

We define several variables to characterize surfactant assembly. First, the number
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density of PDADMA monomers adsorbed onto the micelle is calculated by summing over

their densities ρp+,m at mesh points m that are enclosed within a cut-off distance from

the micelle center:

ρp+,adsorbed =
∑

m ∈r=[0,0.1 EO locus]

ρp+,m (4.2)

Here, we choose the cut-off distance where the EO density is 10% of its peak value to

the right of the peak (dashed line in Fig. 4.3B); we refer to this as the “0.1 EO locus”.

We note that results are not very sensitive to the exact choice of this locus, as long as

the adsorbed polyelectrolyte layer lies fully within its radius. Consequently, the fraction

of adsorbed PDADMA monomers is

fp+,adsorbed =
ρp+,adsorbed∑

m ρp+,m
(4.3)

The micelle surface charge density is calculated based on contributions from the sur-

factant only, i.e., SDS and C13EOn. Since SO−
4 is the only charged species, the surface

charge density is

σ =
σSO−

4

4πr2s

∑
m ∈r=[0,0.1 EO locus]

ρSO−
4 ,m

(4.4)

where σSO−
4
= −1 e is the charge of SO−

4 bead. The cut-off distance rs is taken to be at

the 0.1 EO locus and is used to estimate the surface area in the normalization factor.

The aggregation numbers for SDS and C13EOn are

Nagg,SDS = ∆V
∑

m ∈r=[0,0.1 EO locus]

ρSO−
4 ,m

(4.5)

Nagg,C13EOn =
∆V

n

∑
m ∈r=[0,0.1 EO locus]

ρEO,m (4.6)

where n is the number of EO beads in each non-ionic surfactant molecule. In addition,
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we measure the core and micelle radii at the 0.1 C2 and 0.1 EO loci, respectively.

4.3 Results and discussion

4.3.1 SDS titration

We assess the the binding between the polyelectrolyte and the surfactant micelle via the

amount of 100-mer PDADMA chains adsorbed onto the micelle, as defined in Eq. 4.3,

as the SDS mole fraction Y increases during the titration. Fig. 4.4A shows that the

fraction of adsorbed PDADMA relative to the total PDADMA in the simulation box

increases with Y for both SDS/C13EO11 and SDS/C13EO7 mixed micelle systems in 0.4

M NaCl, indicating more PDADMA binds to the mixed micelles with the addition of

SDS to the mixture. This is expected as micelle surface charge density becomes more

negative with increasing anionic surfactant mole fraction (Fig. 4.4B) which strengthens

electrostatic interactions. Experimental measurements that infer micelle charge via zeta

potential measurements also find that the micelle surface charge density increases with

increasing SDS content.147
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Figure 4.4: (A) SCFT-predicted binding isotherms showing the fraction of bound PDADMA
(100-mer) as the anionic surfactant mole fraction, Y , increases during the course of the titration
at a constant NaCl concentration of 0.4 M for SDS/C13EO11 and SDS/C13EO7 micelles. Solid
lines are fits to sigmoid functions and Yc is the Y value at the inflection point. (B) Corresponding
micelle surface charge density.

CGMD provides further insight about the interactions between the micelle and poly-

cations. In the first set of CGMD runs, Fig. 4.5, we initialize a single micelle using

the aggregation numbers obtained from SCFT simulations and observe the interaction

between a 24-mer PDADMA and the micelle for 2 × 104 τCG. As expected from SCFT

results, PDADMA does not interact with the micelle at Y = 0 whereas it adsorbs to the

micelle surface when the SDS content increases to Y = 0.31. We further investigate the

inter-micelle binding at Y = 0.31 by doubling the system size to realize two identical mi-

celles and one 48-mer PDADMA. The polycation initially binds to one of the micelles at

t = 0 and quickly binds to both as the simulation proceeds (Fig. 4.6A). This inter-micelle

binding results in an aggregation of the two micelles, evidenced by the decrease in the

78



Complexation between Polyelectrolyte with Oppositely Charged Micelles Chapter 4

center-of-mass distance between them as shown in Fig. 4.6B. This observation aligns with

experimental hypothesis that the increased number of multi-micelle aggregates increases

solution turbidity near the onset of complexation.147

Previous experimental studies23,147 have quantified the onset of polyelectrolyte-micelle

complexation with the critical composition Yc, indicated by the initial increase in the tur-

bidity. For comparison, we choose the inflection point of the PDADMA binding isotherms

shown in Fig. 4.4A as Yc. While this choice is arbitrary, it has relevant implications:

complexation is considered to begin when a substantial number of polycation monomers

(50% in this case) adsorb onto micelles, and the complexation is detectable through in-

creased turbidity. Notably, the calculated Yc values from the simulations are 0.18 and

0.23 for SDS/C13EO7 and SDS/C13EO11 mixed micelles, respectively, which are in good

agreement with the Yc values of 0.17 and 0.28 from experimental works by Dubin et

al. (2017, 2018).23,147 Good quantitative (Yc of SDS/C13EO7) and qualitative (increas-

ing Yc from SDS/C13EO7 system to SDS/C13EO11 system) agreement with experimental

Figure 4.5: CGMD snapshots of a single SDS/C13EO11 micelle with a 24-mer PDADMA in 0.4
M NaCl at (A) Y = 0 (no SDS) and (B) Y = 0.31, respectively, with the aggregation numbers
taken from SCFT solutions at same conditions. CGMD confirms that PDADMA binds to the
micelle at high Y , as suggested by the SCFT binding isotherms. Water and NaCl molecules
are not shown for clarity.
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results suggests that the Y value at the inflection point of the binding isotherm can re-

liably describe the onset of complexation observed in previous experimental works. We

note that the qualitative trend of SDS/C13EO11 micelles exhibiting higher Yc values than

SDS/C13EO7 micelles remains consistent, even when considering other fractions of bound

PDADMA as the criteria for the onset of complexation. This agreement helps to vali-

date that our coarse-graining procedure produces a reasonable parameterization of this

complex multicomponent system.

Figure 4.6: (A) CGMD snapshots of the same system of Fig. 4.5B at Y = 0.31 but at double
the system size with a 48-mer PDADMA. PDADMA initially binds to one micelle t = 0 then
bridges the two micelles as the simulation proceeds. (B) Center-of-mass distance between the
two micelles during the course of the simulation. For reference, the average simulation box size
length is 24.3 nm.
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Figure 4.7: (A) SDS aggregation number and (B) micelle radius measured at 0.1 EO locus as
a function of Y .

Dubin et al.147 defined polyelectrolyte-micelle binding affinity as the resistance of

polyelectrolyte-micelle complexes at fixed salt concentration to dissociation by the ad-

dition of non-ionic surfactant (decreasing Y ), where smaller resistances indicate higher

affinity. Thus, from this point of view, lower Yc in the SDS/C13EO7 system from both

simulations and experiments implies that SDS/C13EO7 micelles have higher polyelec-

trolyte binding affinity than SDS/C13EO11 micelles. This is supported by the higher

micelle surface charge density when the non-ionic surfactant is C13EO7 (Fig. 4.4B). At a

given value of Y , SDS/C13EO7 micelles have a higher SDS aggregation number Nagg,SDS

than SDS/C13EO11 (Fig. 4.7A). The radius of the SDS/C13EO7 micelle is also larger than

that of the SDS/C13EO11 micelle as expected from significantly higher aggregation num-
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bers of SDS and the nonionic ethoxylated surfactant (Fig. E.4). Despite having larger

surface area, SDS/C13EO7 micelles still have higher surface charge density (Fig. 4.7B)

which leads to stronger electrostatic interactions between PDADMA and SDS/C13EO7

micelles. Interestingly, the critical micelle surface charge density σc (σ at the Yc transi-

tion) is more negative for SDS/C13EO7 than SDS/C13EO11 (Fig. E.3), suggesting higher

charged micelles are required for complexation with the former system. We also note

that experimentally-reported hydrodynamic radii of the complexes are in the range of

4-8 nm, which is in relatively good agreement with our simulation predictions.

Figure 4.8: Dependence of critical (A) SDS content Yc and (B) micelle surface charge density
on added salt concentration for SDS/C13EO11 micelles. Solids lines are linear regressions with
respect to the square root of the salt concentration.

Next, we investigate the effects of salt on the complexation between PDADMA and

SDS/C13EO11 micelles by repeating the titration procedure at various NaCl concentra-

tions. Fig. 4.8 presents critical conditions for polyelectrolyte-micelle complexation at
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added salt concentrations between 0.1 and 1.0 M. While the micelle surface charge den-

sity at fixed Y is essentially constant with salt concentration (Fig. E.6), the critical SDS

content Yc shifts upward. The increase in Yc with increasing salt concentration coincides

with an increase in the magnitude of the critical micelle surface charge σc, which accounts

for the salt’s screening of electrostatic interactions. Notably, McQuigg et al. has also ob-

served the linear dependence of the critical SDS content, Yc, and micelle surface charge

density σc with the square root of the added salt concentration in their experimental

study of a similar system, PDADMA and SDS/C12EO6 micelles.186 According to their

simplified model for the binding of a polyelectrolyte to an oppositely charged colloid,

such scaling arises when the electrostatic potential in the vicinity of the colloidal particle

is less than 0.5 kBT and the colloidal radius is large relative to the Debye length. As

shown in Fig. E.8, the electrostatic potential at the 0.1 EO locus in our work is also less

than 0.5 kBT , and the micelle radius, either the core or total micelle radius (Fig. E.7C,

D), is consistently larger by a factor of ∼2-10 than the Debye length, which varies from

0.96 to 0.30 nm in the 0.1-1.0 M salt concentration range. This implies that McQuigg’s

simplified model offers a reasonable representation of the micelles in our study, and the

consistency in the scaling is justifiable.
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4.3.2 Mesophase transitions

Figure 4.9: (A) SCFT free energy densities for mixtures of PDADMA and SDS/C13EO11

micelles in 0.4 M NaCl at Y = 0.3 and stoichiometric charge. The considered phases are simple
cubic sphere (sc), hexagonal cylinder (hex), and lamellae (lam). The disordered free energy is
used as reference values. (B) CGMD snapshots at solid (PDADMA, SDS, and C13EO11) weight
fractions 0.08, 0.38, and 0.75.

So far, we have demonstrated that the CG model presented here shows good agree-

ment with experimental observations for the binding of PDADMA and SDS/C13EOn

micelles in the low concentration regime. Next, we utilize field theory to determine self-

assembled structures across a larger range of compositions for mixtures of PDADMA

and SDS/C13EO11 micelles in 0.4 M NaCl. We set the SDS mole fraction to a fixed

value of Y = 0.3 and maintain a charge stoichiometry of 1 between PDADMA and SDS.

Then, we search for stable phases at increasing weight fractions of PDADMA, SDS, and

C13EO11. As detailed elsewhere, the free energy density for a given mesophase, which can

be directly accessed in SCFT, is minimized with respect to the simulation cell size.187 A
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structure is stable when its free energy density is the lowest relative to other candidate

structures as well as the homogeneous disordered phase. Here, we consider three phases:

simple cubic spheres, hexagonal cylinder, and lamellae (Fig. 4.9).

Fig. 4.9A presents free energy densities of these three phases relative to that of the

homogeneous disordered phase. At low weight fractions, less than 0.21 weight fraction,

SCFT predicts the stable structure is simple cubic with discrete micelles. When fluctua-

tions are included, i.e., in CGMD, unbinding of the lattice occurs and and we observe a

solution of spherical micelles (Fig. 4.9B). Previous assessments of polyelectrolyte-micelle

binding reported in Section 4.3.1 lie in this regime (the solid weight fraction at Y = 0.5 on

the titration path is ∼ 0.015). As the concentration increases above 0.21 weight fraction,

we cross over to a region where infinitely long cylindrical structures are stable. Since

fluctuations are not included in SCFT, the infinitely long hexagonal cylindrical struc-

ture serves as an idealized estimate to an elongated micelle, and can correspond to both

wormlike micelles as well as well-ordered hexagonal cylinder phases. Nevertheless, the

infinitely long cylinder is a reasonable approximation, as evidenced by the CGMD snap-

shot of elongated micelles at 0.38 weight fraction. Lastly, lamellar structures, which are

also captured in CGMD, are predicted to form above 0.59 weight fraction. This overall

sequence of microstructures follows fairly standard, commonly-reported sequences (so-

lution of spherical/rod micelles → ordered cubic and/or cylindrical phases → lamellar

structures) in other surfactant systems.182,188 Additionally, we show in Fig. E.2 that equi-

librated micelle structures from SCFT closely match those of CGMD (corresponding to
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micelles and simulation conditions shown in Fig. 4.5A, B). This suggests the mean-field

treatment invoked in this work is sufficiently good to describe surfactant self-assembly

and polyelectrolyte-micelle complexation, in line with the observation in our previous

publication.182

Lastly, we note that in CGMD it is difficult to properly equilibrate micelle (both

spherical and cylindrical) and periodic cell sizes to compare with the equilibrium cell

dimensions obtained in SCFT. The exception is for lamellar structures, for which the

lamellae can reorient in the simulation cell and thereby find an equilibrium interlayer

spacing. For the lamellar simulation condition (weight fraction 0.75) shown in Fig. 4.9

we find that the CGMD interlayer spacing is ≈ 5.2 nm, which is in good agreement with

the SCFT equilbirium layer spacing of 5.1 nm (Fig. E.9), confirming that SCFT is a

good approximation for simulating these surfactant systems.

4.4 Conclusions

In this work, we have developed a molecularly informed field theory that faithfully de-

scribes the complexation behavior between polyelectrolytes and micelles. The model uses

relative-entropy minimization to systematically coarse-grain from all-atom simulations.

The resulting coarse-grained models are then transformed into a field-theoretic descrip-

tion, which enables rapid self-consistent field-theoretic simulations. Most importantly,

field-theoretic simulations allow for direct the evaluation of free energies, and hence the

rigorous determination of equilibrium micelle size and structure. In turn, we were able to
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show how self-assembled micelles change over varying compositions of the nonionic and

ionic surfactants, the polyelectrolyte, and salts. Such calculations are possible but much

more difficult to perform accurately with equivalent particle-based representations owing

to long time scales associated with micelle equilibration processes. Using our workflow,

we were able to build a fully-parameterized model of the same molecular system consid-

ered by Dubin et al.147 and studied how mixed micelle size and properties can change

dramatically as surfactant concentration and mixing ratios change along experimental

titration paths. Additionally, at high surfactant concentrations, we were also able to

locate morphological transitions to cylindrical and lamellar structures to confirm that,

for the system under consideration, no cylindrical micelles are expected for the titration

paths we considered.

We found that the degree of polyelectrolyte adsorption correlated well with experi-

mentally observed turbidity transitions that announce the onset of polyelectrolyte-micelle

complexation. The turbidity transition was also estimated to within 5% of the exper-

imentally reported anionic surfactant mole fraction. Additionally, our model correctly

predicts that nonionic ethoxylated surfactants with shorter hydrophilic groups undergo

complexation transitions at lower mixing ratios of anionic to nonionic surfactants. While

ethoxylated surfactants with shorter head groups tend to form larger micelles than their

counterparts with longer head groups, the micelles formed from ethoxylated surfactants

with shorter head groups also exhibit higher surface charge density, thus explaining their

stronger interaction with polyelectrolytes. Lastly, the critical mole ratio of anionic surfac-
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tants and surface charge density of micelles were shown to vary linearly with the square

root of salt concentration, in agreement with experimental observations.186

In conclusion, we have demonstrated that molecularly informed field theories are a

powerful tool for exploring the self-assembly of multi-component systems like polyelectrolyte-

surfactant mixtures. These field theories have the potential to be chemically specific and

allow direct comparison with experiment. Using this tool, we studied how equilibrium

self-assemblies of mixed micelles change with solution mixing conditions, and found that

polyelectrolyte adsorption curves correlate well with experimental turbidity curves and

the onset of soluble polyelectrolyte-micelle complexes. Although previous work182 and the

semi-quantitative agreement with experiments validate that the mean-field approxima-

tion used in this work is qualitatively good to describe surfactant self-assembly, including

fluctuation effects could further improve predictions of the field-theoretic model. Within

the confines of field theory, composition fluctuations that are ignored in the mean-field

approximation could be incorporated using techniques such as complex Langevin sam-

pling.74,76 By fully sampling the partition function, complex Langevin recovers the same

thermodynamic properties as CGMD while retaining rapid equilibration. However, while

collective variables like the density are readily accessed within a field theoretic simulation,

single-molecule properties require more care.94 In this study, we focused on investigating

the soluble polyelectrolyte-surfactant complexes which only covers a small region of a

much richer phase diagram in these systems.133 Future work can extend this study and

rigorously determine phase boundaries in biphasic regions with complex coacervation
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Chapter 5

Estimating Critical Micelle

Concentrations of Intrinsically

Disordered Protein Surfactants

Reproduced in part with permission from:

Nguyen, M., Dolph, K., Delaney, K.T., Shen, K., Sherck, N., Köhler, S., Gupta, R.,

Francis, M.B., Shell, M.S. and Fredrickson, G.H. Estimating Critical Micelle Concentra-

tions of Intrinsically Disordered Protein Surfactants. In preparation.

5.1 Introduction

The self-assembly of amphiphilic molecules, such as block co-polymers, surfactants, and

biomolecules, plays a critical role in many natural and industrial processes. Examples
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include the formation of biological cell membranes through lipid molecules, the micel-

lization of surfactants in detergents, and drug encapsulation.6,17,128,189 In these systems,

the critical micelle concentration (CMC), which is the concentration of surfactants at

which micelles begin to form, is a key design parameter that quantifies the propensity for

self-assembly. The CMC is also important for understanding the solution phase behavior

of surfactants, offering insights into their interfacial activity, solubility, and emulsifica-

tion properties.47–49 This has been highlighted by recent simulation efforts to predict the

CMC, providing a systematic route for evaluating self-assembly in a vast design space

(chemistry, molecule architecture, molecular weight, pH, temperature, etc.).190–197 More-

over, with the rising emphasis on sustainable and environmentally friendly practices in

chemistry, there is a growing demand for the development of high-throughput screen-

ing methods as our chemical feedstocks shift from petroleum- to bio-based sources. A

predictive computational approach that is suitable to explore these new chemistries can

offer an efficient means to screen and assess potential surfactant candidates, facilitating

the exploration of greener and more sustainable alternatives to conventional commercial

surfactants.198

Current computational tools such as coarse-grained molecular dynamics190 and dissi-

pative particle dynamics191,192 are commonly used to calculate the CMC in particle-based

simulations. Most studies are performed in the NPT or NVT ensemble and use the con-

centration of free surfactants as an estimate for the CMC. To mitigate the need for

large simulation boxes required near the CMC (typically on the order of mM for com-

91



Estimating Critical Micelle Concentrations of Intrinsically Disordered Protein
Surfactants Chapter 5

monly studied surfactants),191 most particle-based simulation work at concentrations

much higher than the CMC rely on the assumption that the free surfactant concentra-

tion is constant above the CMC. This assumption has been proven to be inaccurate,

especially for ionic surfactant systems.193,199–201 Studies have shown that employing em-

pirical corrections to account for crowding effects due to aggregate formations can provide

more accurate predictions of the CMC.193,194,202 These corrections, however, are system

dependent and not known a priori, and thus require careful investigation. Consequently,

particle-based simulations remain limited in their ability to accurately calculate the CMC,

especially for strongly micellizing systems with CMC values in the µM range. This is

due to both the inaccuracy of the extrapolation and high computational cost of the large

simulation boxes required to study near the CMC. In addition to the length-scale chal-

lenge, the self-assembly involves inherently long-time-scale processes related to diffusion,

and micelle fission and fusion, which occur on the order of microseconds.173–176 While

atomistic simulations are intractable for capturing such the time-scale of phenomena,

coarse-grained models also face challenges193 in sufficiently sampling the free surfactant

concentration and equilibrium distribution of aggregate sizes required for accurate esti-

mation of the CMC in particle-based approaches.

In principle, a better approach is to calculate the free energy of micelle formation

in the grand canonical ensemble. This approach directly determines the stability of the

micelle state by comparing its grand free energy with the homogeneous (non-aggregated)

state at the same chemical potentials. One advantage of using the grand canonical en-
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semble is the reduced simulation box size required for studying micelle formation. Unlike

some previous methods that necessitate large simulation boxes to accommodate multiple

micelles, the grand canonical ensemble allows for simulations in smaller boxes containing

a single micelle. A second advantage is the ability of the grand canonical ensemble to

handle fluctuations in the number of particles at a constant chemical potential, which is

beneficial when studying micelle formation because prior knowledge of the aggregation

number is not required. In contrast to traditional approaches that use the free surfactant

concentration as a proxy for the CMC, the grand canonical ensemble directly provides

the composition at which micelle formation begins, which is precisely the definition of

the CMC.

While the grand canonical ensemble method is in principle exact and direct, it requires

matching of chemical potentials between the two states (aggregated and homogeneous)

by allowing the particle number to fluctuate. This step is computationally expensive

or even intractable in particle-based simulations, particularly for systems that involve

macromolecules, due to the need to evaluate chemical potentials, which requires molec-

ular insertion and relaxation. In contrast, field theory has been successfully employed to

calculate CMCs for block copolymer and homopolymer mixtures in the grand canonical

ensemble,195 as chemical potentials and free energies can be directly evaluated through

analytical approximations, including mean-field and Gaussian approximations58,65,82, or

numerically computed without approximation through field-theoretic simulations via

complex Langevin sampling.75,77 Furthermore, one can determine equilibrium sizes and
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aggregation numbers of micelles in the field theory by minimizing the free energy at con-

stant concentration with respect to the simulation cell size, a task that is known to be

challenging in particle-based approaches.

In this chapter, we apply the multiscale simulation framework to enable chemistry-

specific estimation of the CMC, and we validate the accuracy of our method through

experimental comparisons. Our demonstration focuses on a model system based on a bio-

based surfactant class inspired by intrinsically disordered protein (IDP) sequences found

in human neurons and previously studied by Francis and coworkers.15,203 This class of

bio-inspired, protein-based surfactants possesses a remarkable degree of tunability, which

arises from the diverse selection of the 20 naturally occurring amino acids. These amino

acids offer a wide range of characteristics, including hydrophobicity, charge, polarity, and

aromaticity. Such a rich chemical diversity enables precise engineering of the surfactant’s

properties, making them versatile and adaptable for various applications. In addition,

IDP surfactants offers more precise control over chain length and the individual building

block sequence than the synthetic counterparts. Importantly, prior studies demonstrated

that these surfactants possess encapsulating properties similar to commonly used syn-

thetic counterparts with the CMC ∼ 10µM.15,203 This suggests that IDP surfactants

are promising candidates as sustainable replacements for petroleum-based components

in many industrial applications including care formulations, coatings, and drug delivery

vehicles.

In the field theory literature, studies of bio-based (macro)molecules are relatively lim-
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ited. In many regards, this arises from the challenges associated with obtaining accurate

chemistry-specific interaction parameters that adequately capture the diverse amino acid

compositions inherent to bio-based macromolecules. Previous studies of often circumvent

this by reducing the complex interactions to hydrophilic and hydrophobic interactions

in simplified heteropolymer systems .204,205 Here, we employ molecularly informed field

theory, as described Chapter 2 .The method uses relative entropy coarse-graining81 to

derive chemistry-specific coarse-grained (CG) interaction parameters from small-scale,

reference all-atom (AA) simulations. Subsequently, the coarse, particle-based model is

exactly transformed into the field-theoretic representation.74 Because free energies and

chemical potentials are readily calculated by operators in the field-theoretic representa-

tion, this approach enables us to directly determine the grand canonical free energy and

chemical potential for CMC calculation while preserving important information about

the underlying chemical components.
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5.2 Computational details and methods

Figure 5.1: Schematic of the multi-scale simulation workflow to construct a molecularly in-
formed field-theoretic model of IDP surfactants. (A) Species involved in the all-atom system
which include the IDP surfactant and water. Instead of simulating the full surfactant sequence,
we split the surfactant into the head (blue), composed of nh repeats of the sequence (SPAEAK-
SPVEVK), and the tail (red) domains. At the connection point of the two domains in the full
sequence, we attach neutral C-terminal amide (NME) and N-terminal acetyl (ACE) capping
groups to the head and tail, respectively. (B) A coarse-grained particle-based model param-
eterized by relative entropy minimization. (C) An exact mapping from the coarse-grained
particle-based description of the micelle to a field-theoretic model. This schematic also illus-
trates the CMC calculation approach, which involves matching the chemical potentials in the
micellar, µi,mic, and disordered, µi,dis, states of compositions ρi,mic and ρi,dis, respectively.
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5.2.1 All-atom simulations

Figure 5.2: Reference AA systems and CG mapping schemes considered in constructing the
IDP surfactant model.

To parameterize the CG model, we employ two sets of reference AA simulations: pure

water (3305 water molecules) and aqueous solutions of the IDP surfactant fragments.

The IDP surfactant is comprised of a hydrophilic head and hydrophobic tail as shown in

Fig. 5.1A. The hydrophilic head sequence is inspired by neurofilament heavy arm side-

chain protein found in human neurons comprised of nh repeats of the amino acid sequence

(SPAEAKSPVEVK). The self-assembly of this surfactant is driven by the hydrophobic

tail appended to the head domain at its C-terminus. To circumvent the long equilibration

time of large IDPs in the AA simulations, we use a short sequence of the hydrophilic

domain with nh = 2 and split the surfactant molecule into the head and tail segments.

Subsequently, at the connection point of the two domains in the full sequence, we attach
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neutral C-terminal amide (NME) and N-terminal acetyl (ACE) capping groups to the

head and tail, respectively, according to Fig. 5.1A. The purpose of these capping groups is

to mimic the interaction that would occur between the amino acid at the connection and

its neighboring amino acids in the full sequence. We note that these capping groups are

not considered in the AA-to-CG mapping process. We consider two choices of reference

systems for the IDP surfactant as shown in Fig. 5.2: a simulation of the head and

tail fragments, and an extended ensemble99,206 of three simulations, each containing two

fragments from the full sequence (head-head, tail-tail, and head-tail). In each of these

simulations, we solvate the two surfactant fragments with 25500 water molecules and

do not include explicit counterions since the hydrophilic head, while carrying charges, is

overall neutral.

Although we only simulate two short fragments of the protein, it can still be difficult to

obtain accurate distributions at room temperature with explicit solvent by conventional

simulation methods because it is easy to get trapped in local minimum-energy states at

low temperatures. To circumvent this, we add a Gaussian repulsion between the centers

of mass of any two amino acids, including the bonded pairs, in all simulations involving

IDP fragments. The added repulsion has the following form:

βUbias(r) = vbiase
−r2/4a2 (5.1)

where vbias is the strength of the repulsion and a = 0.5 nm defines the interaction range.

The functional form of this repulsion is identical to the excluded volume interaction of the

CG model, which will be discussed in Section 6.2.2. This allows us to simply subtract the
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bias term later to recover the unbiased interaction. Conceptually, the added repulsion

makes the IDP fragments less hydrophobic, reducing local minima that correspond to

collapsed configurations in the unbiased system and smoothing out the energy landscape.

Since we only consider short IDP fragments, this method serves as a practical alternative

to more computationally intensive advanced sampling techniques like replica exchange

molecular dynamics. In this work, we select vbias = 0.25 kBT , a value sufficient to reduce

the probability of collapsed configurations as evidenced by the reduction in the intensity

of lower peaks in the radius-of-gyration and end-to-end distributions shown in Fig. F.1

for the tail-tail simulation.

We employ the a99SB-disp force field, which was developed by Robustelli et al.. (2018)

to accurately describe both folded and disordered proteins in tandem with the modified

TIP4P-D water model.207 We conduct reference AA simulations with the OpenMM sim-

ulation package.109 A 1 nm cutoff is employed for the direct-space non-bonded interac-

tions and we use the Particle Mesh Ewald method to compute long-range Coulomb and

Lennard-Jones interactions (LJPME method in OpenMM). In addition, we constrain the

length of all bonds that involve a hydrogen atom and employ a time step of dt = 0.002

ps. The temperature is set to 298.15 K using the Langevin thermostat with a friction

coefficient of 5 ps−1, while the pressure is set to 1 atm using a Monte Carlo barostat

with an update frequency of 1/(25 dt). We generate the initial configurations for the

simulations with the Packmol package.185
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5.2.2 Bottom-up coarse-graining procedure

We follow the coarse-graining procedure detailed in Chapter 2. For simplicity, we use

one universal bond length for all amino acid pairs, bαγ = b in Eq. 2.6. We translate AA

reference trajectories for coarse-graining by mapping center-of-mass coordinates of groups

of atoms in the AA representation to CG sites. Specifically, we map each water molecule

to a single neutral bead, and each amino acid is mapped to one neutral bead, with the

exception of glutamic acid and lysine, which bear a −1 and +1 charge, respectively. To

reduce the parameter space of the CG model, we categorize the amino acids into three

CG bead types based on their hydrophobicity and using two different trial mapping

schemes as shown in Fig. 5.2. Both schemes share the same definition of bead species 3,

which includes polar (serine (S) and glutamine (Q)) and charged amino acids (glutamic

acid (E) and lysine (K)). We note that charges of glutamic acid and lysine are described

explicitly via the electrostatic interaction of Eq. 2.8. In scheme a, the small neutral

amino acids are grouped into bead species 2, while the larger amino acids are lumped

into bead species 1. On the other hand, in scheme b, CG bead 1 only includes tyrosine

(Y) and tryptophan (W), which have bulky aromatic side chains, while the rest of the

hydrophobic and neutral amino acids are mapped to CG bead 2. In principle, one can

further subdivide the amino acids into more CG bead types to achieve greater chemical

specificity. For instance, each individual amino acid could be mapped to its own dedicated

CG bead type. In this scenario, the method would follow a similar process as outlined

here.
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We fix the Gaussian regularization range, aα, of each CG bead to approximately the

cube root of its molecular volume. By this convention, the water interaction range, aw,

is set to 0.31 nm and those of the amino acids, a1, a2, and a3, are set to 0.5 nm in this

work. The water-water repulsion parameter is obtained from a pure water AA simulation

following the same procedure in our previous publication.84 In this step, we derive vww

in the NPT ensemble at the CG pressure PCG to 3.218 kBT/a
3
w. This determines the CG

pressure that we use in the subsequent coarse-graining steps of the IDP surfactant.

We derive the remaining CG parameters (v11, v22, v33, v12, v13, v1w, v23, v2w, v3w, and

b) for the surfactant from two choices of reference systems: a single simulation and an

extended ensemble of three simulations, as illustrated in Fig. 5.2. With the two choices

of reference systems (I and II) and two mapping schemes for the surfactant (a and b),

we have four candidate surfactant models in this work: Ia, Ib, IIa, and IIb. In each of

these cases, the coarse graining is performed by running Srel minimization multiple times

to obtain replicates of the CG force field. This allows us to perform error analysis and

sensitivity assessment of the CMC that will be discussed in Section 5.4. We tabulate the

parameters in Tables F.1-F.5.
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5.2.3 Calculating the critical micelle concentration with field

theory

Figure 5.3: Example grand free energy difference β∆Ω between a spherical micelle and the
homogeneous phase as a function of (A) surfactant concentration in the homogeneous phase
ρidp,dis (chain and monomer basis) and (B) surfactant chemical potential βµidp. (C) To account
for finite-size errors, we extrapolate the CMC linearly with respect to the inverse of the box
size length.
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To determine the CMC, we compute the grand free energy difference between a spherical

micelle and the homogeneous phase in chemical equilibrium with that micelle, following

the procedure outlined by Zhou et al. (2011).195 Specifically, we perform SCFT simu-

lations of a spherical micelle in the canonical ensemble for various values of IDP mole

fraction, ϕidp,mic. This results in a series of micelles at different IDP and water chemical

potentials, µw,mic and µidp,mic, respectively. The composition of the homogeneous disor-

dered state that is in chemical equilibrium with each of these micelle states is determined

from a grand canonical simulation at µi,dis = µi,mic ≡ µi. This process is illustrated in

Fig. 5.1C, which depicts a micelle in chemical equilibrium with the homogeneous phase.

The grand free energy difference β∆Ω = βΩmic − βΩdis is obtained for a series of

ϕidp,mic values. Fig. 5.3A-B shows example free-energy-difference curves as a function

of the IDP surfactant concentration in the disordered homogeneous solution and the

surfactant chemical potential, respectively. For large ρidp,dis, the negative free energy

difference β∆Ω indicates the micelles are more stable than the homogeneous state. As

ρidp,dis decreases, β∆Ω increases and eventually becomes positive. The CMC, ρidp,CMC ,

is defined as the surfactant concentration in the homogeneous state at which the free

energy of micelle formation is 0.

To investigate finite-size effects, we conduct micelle simulations using different box

sizes, ranging from approximately 10 to 22 nm in side length. We then extrapolate the

CMC values against the inverse box side length, 1/L, (Fig. 5.3C) and extract the CMC

at 1/L → 0 or as the micelle simulation box size approaches infinity (L → ∞). We
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repeat these steps for each surfactant model and report the mean and median values of

the CMC.

5.3 Determination of the critical micelle concentra-

tion via pyrene-based fluorescence assay

Figure 5.4: Pyrene II/IIII fluorescence emission ratio across concentrations of the IDP sur-
factant with nh = 6.5. Solutions containing 0.1 µM to 300 µM surfactant in 2 µM pyrene and
10 mM phosphate buffer, pH 6.5 was excited at 330 nm and the emission was recorded at 373
nm (II) and 384 nm (IIII).

We experimentally determine the CMC of the surfactant with the hydrophilic block

length of nh = 6.5 experimentally by a solvatochromic pyrene-based fluorescence assay,

as described previously.15,203 In short, fluorescence emission intensities from the first

(II) and third (IIII) vibronic bands of pyrene are dependent on the polarity of its local

environment. For a 2 µM pyrene solution in 10 mM phosphate buffer, the II/IIII ratio is

approximately 1.3 and lowers to approximately 0.8 when pyrene is encapsulated in the less

polar hydrophobic core. The CMC was determined by plotting triplicate measurements
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of the II/IIII ratio across a range of surfactant concentrations. We fit a nonlinear least

squares regression to the following equations:

EC50 = ECF

(
100− F

F

)1/HillSlope

(5.2)

y = Bottom+
Top−Bottom

1 + (EC50/x)HillSlope
(5.3)

In Fig. 5.4, we report the CMC and its standard error as the ECF of this nonlinear fit,

where F is 80, 50, or 20. Previous studies suggest that the inflection point, EC50, is a

better approximation for surfactants with CMC values less than 1 mM.208,209
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5.4 Results and discussion

5.4.1 Coarse-grained model evaluation

Figure 5.5: (A) Binodals calculated from representative parameter sets for four IDP models
at varying number of hydrophilic repeating units, nh. Symbol denotes the experimentally
determined CMC (EC50 value) at nh = 6.5. (B) Corresponding χ parameters against nh.
Dotted line denotes χ = 0.5.

To calculate the CMC, it is necessary to have a well-defined homogeneous phase in co-

existence with a micelle. In other words, the system should not undergo macrophase

separation at compositions near the expected CMC values. To identify the two-phase

boundary, we employ the Gibbs ensemble method and invoke the mean-field approxima-

tion for the free energy and chemical potential calculations. A detailed discussion of this
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procedure can be found in Section 3.2.2. Fig. 5.5A shows the binodals using represen-

tative parameter sets for the four different IDP models. As the number of the repeating

hydrophilic unit nh increases, the fraction of hydrophilic beads also increases resulting

in a reduction in the tendency for macrophase separation. Consequently, the two-phase

region becomes narrower.

At the hydrophilic block length of nh = 6.5, which corresponds to the experimental

system, the dilute branch of models IIa and IIb extends down to approximately ∼ 10−10

µM . This value is orders of magnitude smaller than the experimentally determined

CMC range (6.201-107.7 µM). This indicates that these models are likely too hydropho-

bic and will undergo macrophase separation, instead of micelle formation, at low IDP

concentrations. In contrast, models Ia and Ib exhibit smaller two-phase regions that

disappear at nh ∼ 6. This indicates that the homogenous state remains stable over a

larger composition range when using models Ia and Ib, allowing for the formation of

micelles before reaching concentrations where macrophase separation occurs. Based on

these observations, we only proceed to focus on models Ia and b for the CMC calculation.

To better understand the differences between the four CG models, we simplify the

parameter space by reducing the 10 pair-wise interactions to a single effective Flory-

Huggins parameter, χ.210,211 The Flory-Huggins binary interaction χ approximates the

overall affinity between IDP chains in solution and is correlated with the mixture phase

behavior: a higher value of χ indicates a greater tendency towards phase separation. In

this work, χ is defined as
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χ = vref

(
ρ∗wρ

∗
idpUidp w − 1

2
(ρ∗2idpUidp idp + ρ∗2w Uw w)

)
, (5.4)

where the reference volume vref is taken to be the molecular volume of water, vref =

(ρ∗w)
−1. The neat chain density of species i, ρ∗i , is estimated from using the mean-field

approximation (detailed in Appendix A) as follows:

ρ∗i =
−1 +

√
1 + 2UiiPCG
Uii

. (5.5)

Eq. 5.4 and 5.5 involve the excluded volume parameter Uij between molecules i and

j, which is defined by summations over bead and molecule species:

Uij =
∑

α,γ ∈[w,1,2,3]

∑
i,j ∈[w,idp]

uα γfi,αfj,γNiNj (5.6)

where uαγ is the integrated value of the excluded volume interaction βUev,αγ between

beads α and γ, i.e., uαγ = vαγ(2π(a
2
α + a2γ))

3/2. The number fraction of bead α on

chain i is denoted as fi,α, and the chain lengths of water and surfactant are Nw = 1

and Nidp = 12 nh + 20, respectively. According to this definition, the excluded volume

strength between water molecules is the same in both the bead-basis and molecule-basis

definitions, i.e., Uww = uww.

The previous observation of wider two-phase regions in models IIa and IIb is sup-

ported by the fact that they consistently have larger χ values than those of models Ia

and Ib at all values of nh, as illustrated in Fig. 5.5B. As a first approximation, phase

separation typically occurs at χ ≳ 0.5212, indicating that models with χ values exceeding

the critical threshold are more likely to undergo macrophase separation. In such sys-

tems, the CMC is either very small and lies to the left of the dilute branch or does not
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Table 5.1: SCFT-predicted results for IDP surfactant at nh = 6.5 and experimental data

Model nh χ CMC (µM chain) Diameter (nm) nagg
mean median

Ia 6.5 0.523 ± 0.003 90 ± 25 49 17.37 ± 0.21 7.58 ± 0.58
Ib 6.5 0.503 ± 0.004 260 ± 44 237 17.08 ± 0.42 6.75 ± 0.41

6.20 ± 0.35 (EC80)
experiment 6.5 - 25.84 ± 1.21 (EC50) 19.6 ± 4.9 a -

107.7 ± 10.1 (EC20)
a reported in ref. 203

exist at all. The distinct behavior of models IIa and IIb compared to Ia and Ib can be

attributed to the choice of the reference simulation. Reference system II is an extended

ensemble that includes the tail-tail simulation. As evidenced from the small center-of-

mass distance between the tail fragments (∼ 1 nm, Fig. F.2), the aggregated state is the

dominant conformation, which overemphasizes hydrophobic interactions that occur in

the tail regions. In comparison to reference system I which is composed of the head-tail

simulation, system II has a higher number of contacts between IDP residues (Table F.6).

Consequently, this results in IDP models that are more hydrophobic in models IIa and

IIb, which promotes macrophase separation, as reflected in the large χ parameter and

wide binodal region.

5.4.2 Critical micelle concentration

While the CMC calculation procedure with SCFT is deterministic, the derivation of

CG parameters via relative entropy minimization involves stochastic samplings from

short CGMD simulations, leading to CG parameter variation. Therefore, we repeat

the parameterization process 20 times and perform the necessary calculations for each
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of these replicates to obtain statistically meaningful values. In Table 5.1, we present

Flory-Huggins χ, as well as the mean and median values of the CMC for the hydrophilic

block length nh = 6.5 using surfactant models Ia and Ib. The CMC distributions from

the two models are right-skewed, with the mean values larger than the medians. It is

noteworthy that model Ia yields smaller mean and median CMC values that are in bet-

ter agreement with experimental CMC at EC50 as compared to model Ib. The CMC

value calculated from model Ia shows relatively good agreement with the experimental

result, particularly when considering the median values, which are within a factor of 2

of the experimental EC50 value. It is important to note that micellization is not a true

thermodynamic phase transition such that properties, e.g., free surfactant concentration,

osmotic pressure, volume occupied by micelles, exhibit rapid continuous changes through

the CMC instead of a sharp transition.213 Therefore, different methods of inferring the

CMC can yield slightly different values.194,214–217 Specifically in this case, it is reason-

able to expect micelles to form at any concentration between the EC80 and EC20 values,

6.201-107.7 µM . Taking this into account, both the median and mean values from model

Ia fall within the experimental CMC range and are both reasonable proxies for the CMC.
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Figure 5.6: CMC at nh = 6.5 calculated from 20 replicates for models Ia and Ib against χ.
Higher average χ of model Ia suggests that this model is slightly more hydrophobic than model
Ib, resulting in a lower average CMC value.

Despite the comparable χ values at nh = 6.5, the difference in CMC values is signifi-

cant between the two models. The sensitivity of the CMC to χ is evident from Fig. 5.6,

where higher χ values promote micellization, resulting in smaller CMCs. This is reflected

in model Ia, which has a higher average χ value, and thus exhibits a lower CMC compared

to model Ib. To further evaluate this sensitivity, we analyze the impact of perturbing

individual excluded volume parameters, v11, v33, and v13, on the CMC of a replicate in

model Ia. Fig. 5.7 illustrates that even small perturbations in the interaction parameters

can significantly affect the CMC. Specifically, a mere increase of approximately 0.02 kBT

in the excluded volume strength between species 1 and 3, v13, can cause the CMC to vary

by up to 100%. Considering that ∼ 6 out of 9 excluded volume parameters involving IDP

residues exhibit variations larger than 0.02 kBT across 20 replicates for both models Ia

and Ib (Fig. F.4), it is expected that the CMC will exhibit substantial variation between

different replicates. It is important to acknowledge that these observed uncertainties in
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the parameters are relatively small compared to the typical error in solvation energies of

atomistic force fields, which can be up to 0.5 kJ/mol or 0.8 kBT .
218

Figure 5.7: Sensitivity analysis of the CMC with respect to the change in excluded volume
parameters v11, v33, and v13. A plot that shows the percentage of change in the CMC with
respect to the change in the excluded volume parameter from the base value.

The variation in the excluded volume parameters across the replicates arises from

the inherent stochastic nature of finite-length CGMD simulations, which are used to

evaluate derivatives for updating parameters during the relative entropy minimization.81

In this study, we have chosen a simulation length that provides ≳ 50 independent samples

of the fragment end-to-end distance, which we believe is adequate while maintaining a

reasonable computational cost for the relative entropy minimization. However, it is

worth noting that increasing the simulation time of the trial CGMD simulations could

potentially further reduce parameter variations, and this will be carefully considered in

future work.
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Figure 5.8: Density profile of micelles at nh = 6.5 from representative parameter sets for
models (A) Ia and (B) Ib at the corresponding CMCs. Inset is a snapshot of the micelle
from CGMD reconstructed based on the equilibrium aggregation number calculated in the field
theory.

Taking the high sensitivity of the CMC to the CG interaction parameters into ac-

count, the proposed CMC calculation workflow using molecularly informed field theories

demonstrates good agreement with experimental data, particularly when using model

Ia. Additionally, we calculate the equilibrium micelle size measured at the corresponding

CMCs from SCFT density profiles (Fig. 5.8). Micelle diameter is defined as the distance

where the local concentration of IDP is 2.5% of the peak value at the micelle center. Us-

ing this criterion, we find that both models produce micelles of similar diameter to that

determined by dynamic light scattering experiments203 as reported in Table 5.1. SCFT

simulations also reveal that the average aggregation number nagg, is 7.58 ± 0.58 and
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6.75± 0.41 for models Ia and Ib, respectively. Remarkably, this quantitative agreement

in CMC and micelle diameter is achieved using a simplified CG surfactant model that

reduces the complexity of the 12 unique amino acids found in the actual IDP surfactant

chemistry to only 3 CG bead types. The ability to achieve such agreement with a reduced

CG model underscores the potential of the approach. By incorporating more chemical

detail into the CG model, such as specifying additional CG bead types, we anticipate that

even higher accuracy can be obtained. This refinement would enhance the representation

of the molecular interactions of the surfactant systems, thereby improving the predictive

capability of the CMC calculation. Furthermore, leveraging the efficiency of the field

theory in obtaining equilibrium micelle structures, one can readily use the predicted ag-

gregation number to reconstruct micelles in particle-based CGMD simulations, as shown

in the inset of Fig. 5.8. This can be done through pre-assembling micelles based on the

SCFT-predicted aggregation numbers or implementing a backmapping strategy proposed

by Lequieu.219 The flexibility to transform between the particle and field-theoretic rep-

resentations allows for a detailed examination of micelle conformations while overcoming

the challenge of long time scales faced by particle-based approaches.

5.5 Conclusions

In this study, we have presented a workflow for calculating the critical micelle concen-

tration (CMC) of bio-based surfactants using molecularly informed field-theoretic mod-

els. Our approach incorporates chemical-specificity effects, which are often overlooked
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in field-theoretic studies, by employing relative entropy coarse-graining to systematically

determine field theory parameters by coarse-graining from all-atom simulations. We have

illustrated the effectiveness of the field-theoretic models in capturing the self-assembly

behavior of a model intrinsically disordered protein surfactant. Despite using a simplified

coarse-grained surfactant model with only three distinct chemical species to represent the

complex chemistry of the surfactants composed of 12 unique amino acids, our simulations

have yielded a CMC that falls within the experimental CMC range and is within a factor

of 2 of the experimental EC50 value. Notably, our approach is capable of tackling a chem-

ical space characterized by significantly lower CMC values (in the µM range) compared

to previous simulation studies in the literature.191,192 This highlights the potential of this

approach, particularly in modeling bio-based molecules where complex interactions could

arise from a diverse set of amino acids.

We proposed factors that affect the accuracy of the CMC prediction, including the

choice of the reference simulations for coarse-graining and the definition of coarse-grained

bead types (Fig. 5.2). We have found that the coarse-grained models derived from

an extended ensemble of three simulations, each composed of a pair of the hydrophilic

head and/or hydrophobic tail domains in water, tend to overemphasize hydrophobic

interactions due to aggregation in the tail regions. Consequently, this overly promotes

macrophase separation at much lower surfactant concentrations than the experimentally

determined CMC, suggesting that coarse-grained models parameterized from this type

of reference system are not representative of the surfactant. In contrast, a reference
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system comprising a hydrophilic head and a hydrophobic tail fragment is a more suitable

reference for coarse-graining. Coarse-grained models derived from this system exhibit less

hydrophobicity compared to those obtained from the extended ensemble approach. This

alternative reference system mitigates the tendency toward macrophase separation at low

surfactant concentrations, which allows micelles to form at concentrations close to the

experiments. Lastly, we have compared two schemes for defining the coarse-grained bead

types; both schemes have the same number of bead types. We found that scheme a, which

groups the aromatic and hydrophobic residues into one coarse-grained (CG) bead type

produces better agreement in the CMC with experimental data as compared to scheme

b in which the aromatic residues are grouped into one CG bead and the hydrophobic

residues are grouped together with neutral residues into another CG bead. Overall, this

highlights the influence of CG bead definitions on the accuracy of the predicted CMC.

In general, we can readily extend the workflow to include more chemical species in the

CG model. Increasing the number of bead types is expected to enhance accuracy by

providing greater chemical specificity but at the cost of a more complex CG force field

and potential challenges in sampling. The latter arises from the fact that, with more

bead types, the pair interactions are now parsed into statistically smaller groups, thus

longer simulations are needed to sufficiently sample the different contacts.

We note that the current work employs the mean-field approximation, which ignores

fluctuation effects in the field-theoretic model. While this approximation is reasonable for

studying surfactant self-assembly based on our previous findings in Chapter 4,83 incorpo-

116



Estimating Critical Micelle Concentrations of Intrinsically Disordered Protein
Surfactants Chapter 5

rating w-field fluctuations using techniques such as complex Langevin sampling74,76 could

improve the model’s accuracy and change the quantitative prediction of the CMCs. The

grand free energy and chemical potential can be directly calculated in such simulations

from ensemble average operators.77

In conclusion, our study showcases the capability of molecularly informed field theories

in systematically predicting the CMC of bio-based molecules. Our simulation framework

offers an efficient route for calculating the CMC, particularly for strongly micellizing

systems, where traditional particle-based simulations face challenges. This work opens up

possibilities for employing molecularly informed field theories in the study and design of

bio-based macromolecules, providing valuable insights into their self-assembly properties

and facilitating the optimization of their performance in various applications. Overall,

our approach contributes to the design of sustainable formulations and advances our

understanding of bio-inspired surfactant systems.
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Chapter 6

Effect of the Acetylation Pattern on

the Miscibility of Cellulose Acetate

Reproduced in part with permission from:

Nguyen, M., Sherck, N., Köhler, S., Gupta, R., Shell, M.S. and Fredrickson, G.H.

Elucidating the Effect of the Acetylation Pattern on the Miscibility of Cellulose Acetate

from a Molecularly Informed Field-Theoretic Approach. In preparation.

6.1 Introduction

Carbohydrates are appealing from a sustainability perspective as they are bio-sourced

and often biodegradable, such as cellulose.220 Cellulose is seen to hold great potential

for chemical modification due to the three hydroxyl functionalities per glucose monomer,

however since cellulose is crystalline they remain shielded. Among the derivatives of

119



Effect of the Acetylation Pattern on the Miscibility of Cellulose Acetate Chapter 6

cellulose, cellulose acetate (CA) is one of the most widely used chemistries, utilized in

films, membranes, fibers, and drug delivery, among others.221 Cellulose itself is insolu-

ble in many solvents including water due to strong intra- and inter-molecular hydrogen

bonding between chains with a high degree of crystallinity which greatly hampers its

utility in industrial formulations. To improve cellulose solubility, the alcohols are func-

tionalized (e.g., acetylated) disrupting the intra- and inter-cellulose hydrogen bonding

network. Throughout the literature there are numerous studies demonstrating that tun-

ing the degree-of-substitution (DS) of the alcohols (yellow highlights in Fig. 6.1) with

acetate, modulates cellulose solubility in a variety of solvents.

Figure 6.1: Representative cellulose structure consisting of two glucose monomers, each with
two alcohols at the C6 and C2 positions substituted with acetate groups (DS=2). The yellow
highlights denote the oxygens in the alcohols available to acetylation, while the red numbers
denote the carbon numbering.

Broadly speaking, in the literature there are two routes to achieve partially acety-

lated CA. The first and oldest technique is a 2-step process that involves first completely

acetylating the cellulose (DS ∼ 3) followed by partial deacetylation under acidic or basic

conditions.222,223 This is a harsh process and leads to degradation of the acetal linkages

along the cellulose backbone. More recent developments have aimed at 1-step strate-
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gies that are less harsh and less involved, such as acetylation in an ionic liquid.221 A

critical difference between the one- and two-step synthesis techniques is that they typi-

cally yield different ratios of substitution between the three alcohol sites. Albeit, in the

two-step method during the deacetylation step, reacetylation is believed to occur which

obscures direct measurement of alcohol reactivities through quantification of the rela-

tive DS substitutions.224 In the one-step method the C6 position is preferably acetylated

with relative ratios of acetylation for C6:C3:C2 of 14.1:3.7:1.0, respectively (total DS was

0.63).221 Kamide et al. have observed that one-step protocols indeed lead to a greater

fraction of C6 substitution relative to the two-step method; however they didn’t observe

a region of water solubility for CA produced by a one-step protocol.223 Since Kamide

et al. observed a more even DS among the alcohol sites in the two-step method, they

concluded that acetylation at both the C2 and C3 positions is more important for water

solubility than for C6 alone.
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Figure 6.2: Cellulose acetate solubility data compiled from the literature. Circle and cross
symbols denote one-step and two-step routes while , respectively. Colors denote insoluble (red),
swollen/partially soluble cellulose acetate (yellow), and soluble (blue). Shaded blue region
indicates soluble or swollen cellulose acetate from the two-step synthesis route.

Data on cellulose acetate (CA) solubility in water, compiled from various literature

sources,221,223–230 indicate a loosely defined region of solubility for CA in water, spanning

DS values between 0.3 to 1.3 (Fig. 6.2). Unfortunately, many of the literature sources

do not clearly define their protocols for assessing “solubility”. There are several factors

that can change the solubility in addition to the DS and synthesis method (one- or

two-step): (1) CA molecular weight and polydispersity, (2) temperature, (3) method

to mix and assess if soluble, and (4) the relative ratios of acetylation at three alcohol

sites which is somewhat correlated with the particular protocol, either one- or two-step.

When considering all available data (Fig. 6.2, both circle and cross symbols), there is

uncertainty around where CA and water are miscible, with both insoluble and soluble

datasets overlayed; however only considering two-step data reveals a clear DS region
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appears for which CA is either soluble or swollen, shown in the shaded blue region of

Fig. 6.2. Overall, there is a lack of detailed investigation into the factors that contribute

to the miscibility of CA in water. Further research and detailed studies are needed to

gain a better understanding of the factors influencing CA solubility and to establish a

more comprehensive and accurate phase diagram.

In this work, our main objective is to develop a molecularly informed field-theoretic

model to systematically study the impact of DS on the aqueous phase behavior of CA,

validating the potential of this multiscale approach in studying polysaccharides. The

construction of our CA model is based on the discussions presented in Chapter 2. Lever-

aging the computational efficiency of the field theory, we determine the phase boundary,

which not only sheds light on how acetylation pattern and DS influence the miscibility of

CA but also precisely identifies the CA composition that leads to miscible samples. More

importantly, this work delineates the role of distinct acetylation sites and underscores

their significance in CA’s miscibility. Such insights are vital for guiding the design and

synthesis of water-soluble CA with targeted properties for a wide range of applications

and provide a computational platform for in silico screening of CA formulations.
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Figure 6.3: All-atom simulations used to derived coarse-grained interaction parameters via the
relative entropy coarse-graining framework. In simulations 2-6, we overlay the coarse-grained
bead types corresponding to the repeating units defined in Fig. 6.4; water is not shown for
clarity. We denote underneath simulations 3, 4, and 6 the relative ratio of different glucose
monomers in the simulation. Gx denotes a glucose repeating unit with x alcohol sites being
substituted for acetate. For G1 and G2 monomers, the subscripts denote the acetylated alcohol
sites (2, 3, or 6). Simulations details are provided in Table G.1
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6.2 Computational details and methods

6.2.1 All-atom simulations

We parameterize the pair-wise and bonded interactions for the coarse-grained (CG) model

via three stages based on six reference all-atom (AA) simulations as presented in Fig. 6.3.

We use the CHARMM carbohydrates atomistic force field231 with modifications for the

dihedrals of the acetate group on the primary alcohol pulled from the CHARMM General

FF (CGenFF), along with the Optimal Point Charge (OPC) 4-point water model.92

The first simulation is a pure water box with the average side length of 4.7 nm.

For simulations 2-6 (refer to Fig. 6.3), we perform molecular dynamics simulations on

cellulose oligomers, each consisting of 8 repeat units, with varying DS. During these

simulations, we randomly select alcohols along the backbone of each cellulose chain to

acetylate, while ensuring that the acetate groups are distributed equally among the three

alcohol sites whenever applicable (simulations 3, 4, and 6). In simulations 2-5, we addi-

tionally constrain the DS of all repeating units to be the same. In contrast, in simulation

6, we consider mixed DS values (DS=0, 1, 2, or 3) for the repeating units and ensure all

there is an equal number of monomers for each DS value.

We conduct reference AA simulations with the OpenMM simulation package.109 A 1

nm cutoff is employed for the direct space non-bonded interactions and we use the Particle

Mesh Ewald method to compute long range Coulomb and Lennard-Jones interactions

(LJPME method in OpenMM). In addition, we constrain the length of all bonds that
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involve a hydrogen atom and employ a time step of dt = 0.002 ps. The temperature is set

to 298.15 K using the Langevin thermostat with a friction coefficient of 5 ps−1, while the

pressure is set to 1 atm using a Monte Carlo barostat with an update frequency of 1/(25

dt). We setup the initial configurations for the CA using the CHARMM builder feature

inside of VMD 1.9.3232 (http://www.ks.uiuc.edu/Research/vmd/) and solvate the chains

with water using Packmol.185 Details of the system sizes are provided in Table G.1.

6.2.2 Bottom-up coarse-graining

Figure 6.4: Schematic of 9 CG bead types for unsubstituted (G0), partially substituted (G1i
and G2ij), fully substituted (G3) glucose monomers, and CG water composed of, on average,
6 atomistic water molecules. Subscripts i, j denote the alcohol site that acetylation occurs;
i = 2, 3, 6 corresponds to sites C2, C3, and C6, respectively.

We translate AA reference trajectories for coarse-graining by mapping center-of-mass

coordinates of groups of atoms in the AA representation to CG sites as shown in Fig.
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6.4. Specifically, we map each repeating glucose unit of cellulose into a single neutral

bead. We use eight bead types to represent the different chemistries of the glucose

monomers based on the DS and location of acetate group. There are three monomer

types with DS = 1, G12, G13, and G16, corresponding to acetylation at C2, C3, and C6

sites, respectively. Similarly, G223, G226, and G236 represent monomers of DS = 2 with

sites C2 and C3, C2 and C6, and C3 and C6 acetylated, respectively.

In this work, we represent several atomistic water molecules by a single neutral bead.

This is inspired by the challenge of studying long length and time-scale phenomena in

explicit-solvent simulations, even with the reduced resolution in coarse-grained simula-

tions. It also aims to ensure uniform bead sizes across all CG bead types. Here, we use

the k-means clustering algorithm233–235 to identify clusters of water molecules in each

reference trajectory frame by minimizing the within-cluster sum of variances of coordi-

nates. This procedure is discussed in Appendix C. In short, we perform the clustering

such that the average cluster size is 6, i.e., each CG bead of water represents, on aver-

age, 6 atomistic water molecules. We fix the Gaussian regularization range, aα, of each

bead species to approximately the cube root of its molecular volume, estimated from AA

simulations. Since the molecular volume of all CG bead types are comparable, we set

aα = 0.6 nm for all species.

We derive CG parameters in successive stages; once parameters are determined, they

are fixed in subsequent steps. In the first stage, we determine the water-water repulsion

vww from pure water AA simulation to reproduce the compressibility of OPC water, κT ∼
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4.51 × 10−10 Pa−1. This determines the CG pressure of PCG = 285.99 kBT/nm
3 that

we use in the subsequent coarse-graining stages.

In the second stage, we parameterize the excluded volume interactions between glu-

cose monomers of same DS values (DS = 0, 1, 2, and 3) and their cross interactions

with water via 4 reference simulations, each composed of uniformly substituted cellulose

molecules in water (simulations 2-5 in Fig. 6.3). The parameters derived in this step

are vG0G0, vG1iG1j , vG2ij G2kl , vG3G3, vG0w, vG1i w, vG2ij w, and vG3w, where the subscripts

i, j, k, and l denote the alcohol sites that are acetylated (i, j, k, l ∈ [2, 3, 6]).

In stage three, we derive the remaining cross-interactions among the glucose monomers

(vG0G1i , vG0G2ij , vG0G3, vG1iG2jk , vG1iG3, and vG2ij G3) along with one universal bond

length, b, for all monomer types from a simulation at DS = 0.5 (simulation 6 in Fig. 6.3)

where monomers are randomly substituted while maintaining the ratio G0 :
∑

iG1i :∑
ijG2ij : G3 as 1:1:1:1 and acetate groups are distributed equally to three alcohol sites.

We tabulate the parameters in Tables G.2 and G.3.

6.2.3 Coarse-grained molecular dynamics (CGMD)

CGMD simulations are conducted using a Langevin Dynamics integrator. The Langevin

relaxation time τCG is taken as the unit of time. Due to the soft nature of the CG

interactions and bonds, large time steps of 0.02 τCG are feasible. During the relative

entropy minimization step, CG configurations are sampled from short trial CGMD which

we run for 5× 104 time steps, or 2.5× 106 τCG. We employ a cutoff of 3 nm (5× aα) for
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the non-bonded pair-wise interactions, sufficient for the excluded volume interactions to

become negligible after the cutoff.

6.2.4 Phase diagram calculation with the field theory

To identify the two-phase boundary for CA aqueous mixtures, we employ the Gibbs en-

semble method and invoke the mean-field approximation for the free energy and chemical

potential calculations. A detailed discussion of this procedure can be found in Section

3.2.2.
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6.3 Results and discussion

Figure 6.5: (A) Count of 8 CG bead types comprising CA at varying DS for N = 100 and
rset = 0.36 : 0.47 : 0.17. rset represents the relative ease of substitution at the C2, C3, and C6
sites (see main text for its definition). The count is averaged over 1000 sequence generations at
each DS value to obtain the most representative sequence. (B) Relative substituent ratios at
C2, C3, and C6 corresponding to the representative sequences in (A). Dashed lines represent
rset.

At zero and full substitution (DS = 0 and 3), cellulose is composed solely of the unsub-

stituted and fully substituted monomers, G0 and G3, respectively. For intermediate DS

values, we determine the monomer composition of cellulose by assigning acetate indepen-

dently to three alcohol sites (C2, C3, and C6) based on the ratios C2:C3:C6 ≡ rset. At

a given DS value, we restrict the number of substitutions to DS ×N , where N is the de-

gree of polymerization. This process is repeated 1000 fold to obtain an average monomer
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composition at each DS value. An example of the resulting monomer counts averaged

over the generated sequences at DS values ranging from 0 to 3 is shown in Figure 6.5A.

In this specific example, we set the acetylation ratio rset = 0.36 : 0.47 : 0.17, which aligns

with the average relative substituent composition reported for water-soluble CA samples

by Buchanan et al. (1991).236

Figure 6.6: (A) Effective χ of CA as a function of DS for the representative sequences in
Fig. 6.5. Shaded gray area denotes the standard deviation of χ over 1000 sequence generations.
A miscibility window, denoted by shaded blue region, is predicted for intermediate DS values
in which χ < 0.5. This is consistent with results in (B), phase diagrams calculated using the
Gibbs ensemble method for N = 50 and 100. Open red symbols indicate compositions of the
dense phase calculated from CGMD for N = 100. Again, the shaded blue region is the miscible
region from (A).

We note that for DS > 1.0, the design space defined by the ratio C2:C3:C6 becomes
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more constrained as DS increases (illustrated by the shaded region in Fig. G.1). For

instance, at DS=3, it is not feasible to have a monomer composition with all substitutions

at the C2 alcohol and none at C3 or C6 alcohols (C2:C3:C6 = 1:0:0). In this case, all three

sites need to be substituted, such that only the ratio C2:C3:C6 = 1:1:1 is possible. This

illustrates that when we set a specific C2:C3:C6 (rset) ratio during acetate assignment,

we are not directly determining the resulting ratio C2:C3:C6 in the generated cellulose

sequence. Consequently, by defining the ratio C2:C3:C6 during acetate assignment, we

influence the probability of substitutions at the respective sites, but the actual relative

substituent ratio, ractual, is also determined by the design space imposed by the chosen

DS value. Figure 6.5B presents the actual substituent ratio at the three alcohol sites,

showing that ractual is not equal to rset. Instead, ractual varies with DS and approaches

1:1:1 at DS=3.

We first characterize the propensity for macrophase separation as a function of DS by

the effective χ parameter as defined in Eq. 5.4. The binary interaction χ approximates

the overall affinity between CA in solution where a higher value of χ indicates a greater

tendency towards phase separation. In our definition of χ, only the relative composition

of monomer types is important and χ is independent of patterning, which means that the

specific arrangement or pattern of the monomers within the cellulose sequence does not

influence its value. After obtaining χ for all the generated sequences at a particular DS,

we calculate the average of these values to arrive at a representative or typical χ value

for the given DS. We plot the average χ as a function of DS for rset = 0.36 : 0.47 : 0.17

132



Effect of the Acetylation Pattern on the Miscibility of Cellulose Acetate Chapter 6

in Fig. 6.6A. As a first approximation, phase separation occurs at χ ≳ 0.5,212 suggesting

that the our model predicts CA is insoluble for DS ≲ 1 and ≳ 2.

Fig. 6.6B shows the phase diagram for two different chain lengths, N = 100 and

N = 50, calculated directly in the mean-field limit using the Gibbs ensemble approach

based on the average monomer compositions (Fig. 6.5A) at rset = 0.36 : 0.47 : 0.17.

The miscibility window is observed at intermediate DS values from 1.0 to 2.0, in line

with the predictions made by the effective χ values. In contrast to the χ analysis, the

binodal calculation rigorously accounts for composition dependence which provides the

specific composition and DS at which CA becomes miscible. The agreement between

the binodal phase diagram and the effective χ values suggests the viability of using the

approximate effective χ as a proxy to quickly determine phase separation in CA solutions.

Additionally, we find that the 2-phase boundary is insensitive to the chain length N (Fig.

6.6B), indicating that the results presented here has approached the long-chain limit.

This suggests that results obtained at N = 100 can be safely extrapolated to larger chain

lengths that are used in experiments. Additionally, the close agreement between the

CA composition in the dense phase as predicted by the mean-field approximation and

CGMD simulations at DS values of 0, 0.5, and 2.5 further suggests that the mean-field

approximation provides a reasonable description of phase separation in this system.

More importantly, we are able to qualitatively reproduce the miscibility window at

intermediate DS values that have been previously observed for DS ∼ 0.3− 1.3 by various

experimental studies224,228,236 for CA as summarized in Fig. 6.2B. The emergence of the
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miscible region with increasing DS in CA has been attributed to the disruption of the

hydrogen bonding network within the cellulose matrix.221,224 Intra-molecular hydrogen

bonding contributes to the rigidity of CA, which helps to maintain cellulose’s crystallinity,

while inter-molecular hydrogen bonding keeps the close packing of cellulose chains. As

the AA simulations suggest (discussed shortly), when DS increases, more alcohol groups

are replaced by acetate groups, leading to a disruption of the hydrogen bonding network

between cellulose molecules. Consequently, the unsubstituted alcohol groups become

more exposed and readily form hydrogen bonds with water. When a significant portion

of the alcohol groups is substituted by acetate at high DS, the chain becomes hydrophobic

because acetate groups cannot form as many hydrogen bonds with water as the alcohol

groups. Consequently, this leads to the reappearance of the immiscibility window at high

DS values.
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Figure 6.7: Number of total, inter-, and intra-molecular hydrogen bonds between monomers
of cellulose that involve the alcohol groups at the C2, C3, and C6 sites calculated from AA
simulations of 8-mers at (A) DS=0, (B) DS=1, and (C) DS=2, corresponding to simulations
2, 3, and 4 in Fig. 6.3. In each simulation, all monomers have the same DS value and acetate
groups are equally distributed to all sites. Inset shows the schematic of the monomer with
oxygen (green) and carbon (red) numbering.

To understand the origin of the miscibility window predicted by our model at low

DS values, we compute the effective χ values for homopolymers made of each of the 8

monomer types. This provides a simple metric to assess the individual monomer’s pref-
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erence for hydration. Notably, Fig. G.2 illustrates that the G13 monomer has the lowest

effective χ value, below 0.5, in comparison to the other monomers. This finding suggests

that the emergence of miscibility, as predicted by our model at intermediate DS values,

stems from the increase in hydrophilicity associated with the increase in the number of

G13 monomer relative to the more hydrophobic monomers like G0 and G12. Notably, this

observation aligns with experimental observations that selectively acetylating C3 results

in water-soluble CA because it disrupts hydrogen bonding involving the alcohol group

at the C3 position, which plays a crucial role in maintaining the crystalline structure of

cellulose.221,224

We verify this hypothesis by calculating the number of hydrogen bonds between all

monomers from reference AA simulations of 8-mers, where all monomers have the same

DS value and substituents are equally distributed to all alcohol sites at DS values 0, 1,

and 2 (simulations 2, 3, and 4 in Fig. 6.3, respectively). As depicted in Fig. 6.7, there are

more total hydrogen bonds involving the oxygen at the C3 alcohol group (O3) compared

to those involving the oxygen at the C2 and C6 alcohol groups (O2 and O6, respectively).

Consequently, disrupting the hydrogen bonding at C3 through the substitution of C3

alcohol groups leads to a more significant increase in water solubility of CA. The ability

of the CG model to qualitatively capture these subtle effects of substitution sites on

solubility underscores the model’s ability to predict nontrivial phase behavior without

any experimental input.
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Figure 6.8: Effective χ of CA as a function of DS for sequences generated from three rset values.
Black series is from rset = 0.36 : 0.47 : 0.17, same as Fig. 6.6A. Blue and red series are for
sequences with a higher substitution rate at C3. Their actual relative substituent compositions
are shown in Fig. G.3.

While Fig. 6.6 illustrates that the miscibility window occurs approximately between

DS values of 1 and 2, which is higher than observed in experiments, Fig. 6.8 demonstrates

that this miscibility window is influenced by the relative composition of substituents at

three alcohol sites. By increasing the substitution rate of C3 by 15% and correspondingly

reducing it at C6 (from modifying rset accordingly), the lower boundary of the miscibility

window shifts to 0.6.
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Figure 6.9: Miscibility assessed by evaluating the effective χ parameter in the acetylation
composition space for DS = 0.5, 1.0, 1.5, 2.0, and 2.5. Blue cirles denote water-soluble CA with
χ < 0.5 while red cirles correspond to water-insoluble CA with χ ≥ 0.5. The black dashed line
indicates the outer boundary of possible compositions for DS values larger than 1.

Using the developed model we further probe substituent compositions to develop

design principles for engineering water-soluble CA. Specifically, at a fixed DS value, we

calculate the effective χ for sequences spanning all possible values of C2:C3:C6 by varying

rset as described earlier. Similar to the data presented in Fig. 6.6A, we obtain the average

χ and actual relative acetylation ratios, ractual, over 1000 sequence generations at each

rset value. As we have previously established a strong correlation between effective χ

values and miscibility, we use χ as a metric to assess miscibility: χ < 0.5 corresponds

to miscible samples while χ ≥ 0.5 corresponds to immiscible ones. Based on the results
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depicted in Fig. 6.9, which shows the miscibility of CA in the acetylation composition

plane (ractual), water-soluble CA is achieved when the majority of substitutions occur

at C3 sites for DS values below approximately 0.5. At intermediate DS values, around

1.0-1.5, samples with substituents evenly distributed at C2 and C3 sites exhibit water

solubility. This is consistent with the experimental study by Miyamoto that lowering the

relative substitution at C6 via altering the synthesis route results in water-soluble CA.224

Finally, at high DS values, water-soluble CA can be obtained when the substituents are

distributed relatively evenly among all three sites, with a slightly higher propensity for

C2 and C6 sites.

In a more detailed analysis of the hydrogen bonding interactions presented in Fig.

6.7, we find that most of the hydrogen bonds involving O3 are intra-molecular with

the heterocyclic oxygen (O5) (Fig. G.4). We hypothesize that substituting alcohol

groups at the C3 site can have a detrimental effect on backbone rigidity, leading to

increased flexibility. Consequently, the remaining alcohol groups become more exposed

to water, supporting our earlier observation that enhanced substitution at C3 sites results

in water-soluble CA at low DS values. On the other hand, at high DS values, the

backbone of CA is already sufficiently flexible, and removing additional intra-molecular

hydrogen bonds between O3 and O5 has minimal impact on the miscibility. Instead, inter-

molecular hydrogen bonding involving O2 and O6 becomes more crucial in maintaining

the cohesion between cellulose chains. Consequently, substitutions at C2 and C6 sites

become necessary to disrupt the cellulose network at higher DS values. This analysis
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provides a proposed mechanism that elucidates the role of specific hydrogen bonding

interactions and how they contribute to the solubility behavior of CA at varying DS

values. By understanding the impact of these interactions, one can strategically choose

a synthesis route that selectively acetylates either the alcohols at C2, C3, or C6 sites to

achieve the desired water solubility at a given DS.

Lastly, one inconsistency we observe in the current model is that CA becomes miscible

at DS=3, indicated by the disappearance of the two-phase region. In fact, DS=3 is right

on the cusp of immisicibility with a χ ∼ 0.5 (see Fig. 6.6)A. Importantly, we also observe

this weakening of immiscibility with increasing acetylation in the AA simulations, as

evidenced by the decrease in the peak intensity of the radial distribution function (RDF)

between inter-molecular C1 carbons as DS approaching 3 (Fig. G.5). Thus, CA also

becomes more hydrated at DS=3 in the AA simulations. The fact that the CG model

correctly captures the AA model’s solution phase behavior at DS=3 indicates that the

model performs well in this regard. Nevertheless, the discrepancy with experimental

findings might be attributed to the crystallization of CA, a phenomenon not captured

in AAMD due to the long timescales and the relatively small molecular weight of the

CA used in our study. Consequently, the model inadequately considers the free energy

gain from crystallization, which can drive phase separation at high DS values. While

acknowledging this limitation’s impact on DS → 3 and planning to address it in future

work, our focus has been on addressing CA miscibility within the intermediate DS range,

which is more relevant in formulation design.
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6.4 Conclusions

In this study, we developed a molecularly informed field-theoretic model for cellulose ac-

etate (CA), an important ester derivative of cellulose, and investigated its phase behavior

in aqueous solutions. Our coarse-grained (CG) model represents CA with 8 monomer

types, categorized by the degree-of-substitution (DS) and the specific acetylation sites.

Particularly, our model predicts a miscibility window at intermediate DS values (approx-

imately 0.6-2), which qualitatively aligns with experimental findings. This is especially

remarkable since we are able to capture the nontrivial phase behavior, where CA solu-

tions become insoluble → soluble → insoluble with increasing DS, all achieved without

relying on experimental input.

While experimental studies have a wide range of DS values over which CA is water-

soluble, we are able to use a molecularly informed field theory to directly probe CA

solution behavior as a function of the relative DS at the three alcohol sites, C2, C3, and

C6. Selective acetylation of C3 alcohols leads to water-soluble CA at low DS values (DS

≲ 0.5) because C3 alcohols participate in intra-molecular hydrogen bonding with hete-

rocyclic oxygens, crucial for maintaining cellulose’s rigidity and well-packed crystalline

structure. By acetylating C3 sites, chain flexibility increases at low DS, exposing the

remaining alcohol groups and allowing them to form hydrogen bonds with water.

At intermediate DS values (approximately 1-1.5), water-soluble CA is achieved when

C2 and C3 alcohols are selectively acetylated. However, at high DS values (DS ≳ 2),

we predict water-soluble CA with evenly distributed acetate, having a slightly higher
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propensity for C2 and C6 sites. We hypothesize that the shift in the relative DS for

water solubility from higher substitution at C3 to C2 and C6 with increasing DS is due

to the fact that the CA backbone is already sufficiently flexible at higher DS, minimizing

the impact of removing additional intra-molecular hydrogen bonds involving C3 alcohols.

Instead, inter-molecular hydrogen bonding involving C2 and C6 alcohols becomes crucial

in maintaining the cohesion between cellulose chains, making substitutions at C2 and C6

sites necessary to disrupt the cellulose network at higher DS values.

Overall, our model provides insights and proposes a mechanism for CA’s solubility

at different DS values. This understanding can guide the design and synthesis of water-

soluble CA with tailored properties for a wide range of applications. While in this

work we have focused solely on cellulose and its acetate derivative, this methodology

is generally applicable to other carbohydrates and their derivatives in a wide variety of

solvents. We believe there is great promise in coupling this level of modeling with wet-lab

experimentation to aid in the engineering of next-generation polymeric materials with

tailored properties, such as solubility.
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Chapter 7

Conclusions and Outlook

In this thesis, we present a novel framework for constructing a predictive multi-scale sim-

ulation workflow to investigate the solution phase behavior of soft matter formulations.

By parameterizing large-scales field-theoretic models based on small-scale atomistic sim-

ulations, we overcome the long-standing challenges in studying complexation driven by

electrostatics with either (1) traditional particle-explicit models that struggle to sample

meaningful conformations or (2) phenomenological field theories that lack chemical speci-

ficity. We address the first limitation by the leveraging the computational efficiency of the

field theory in simulating dense systems composed of high-molecular-weight molecules. In

addition, the direct access to free energies and chemical potentials in the field theory allow

us to rigorously determine the thermodynamics that govern the macroscopic properties.

Chemical specificity is achieved through a bottom-up coarse-graining technique, minimiz-

ing relative entropy to derive chemically sensitive coarse-grained interaction parameters,
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eliminating the need for experimental input and enabling high-throughput screening of

unexplored parameter space. We summarize the procedure to construct such molecularly

informed field theory model in Chapter 2. Overall, the molecularly informed field theory

offers a promising approach for understanding complex formulations in a computationally

efficient and chemically informed manner.

In Chapter 3, we present phase diagrams for a well-characterized model coacervate

system consisting of poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH)

in a sodium chloride (NaCl) aqueous solution that capture the effects of charged group

stoichiometry, electrostatic screening of salt, and chemistry-specific effects due to poly-

electrolyte molecular details (PAA-PAH asymmetries) on coacervation. Coacervation

propensity decreases as the charged group stoichiometry deviates from stoichiometric

conditions, resulting in a more dilute coacervate phase and a smaller two-phase region.

The two-phase region shrinks at higher salt concentrations, and the model correctly pre-

dicts that small ions preferentially partition in the dilute phase. This field-theoretic

model of polyelectrolyte coacervate captures key qualitative trends relevant to formula-

tion design, which are often challenging to observe using particle-based approaches.

Building on top of the simplified coacervate model, in Chapter 4, we investigate a more

realistic system involving 5 components: cationic polyelectrolyte polydiallyldimethylam-

monium (PDADMA), anionic surfactant sodium dodecyl sulfate (SDS), nonionic ethoxy-

lated surfactants (CmEOn), NaCl salt, and water. The molecularly informed field theory

allows us to systematically explore the self-assembly behavior of these multi-component
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systems and investigate how equilibrium self-assemblies of mixed micelles change un-

der various solution mixing conditions including the ratio of SDS to CmEOn, charge

stoichiometry between polyelectrolyte and micelle, salt concentration, and the overall

concentration of solids. Moreover, we establish a correlation between the degree of poly-

electrolyte adsorption and the onset of polyelectrolyte-micelle complexation, as char-

acterized by the solution turbidity observed in experiments. Remarkably, our model

correctly predicts that nonionic ethoxylated CmEOn surfactants with shorter hydrophilic

groups undergo complexation transitions at lower mixing ratios of anionic to nonionic

surfactants, showing semi-quantitative agreement with experimental observations.

In Chapter 5, we utilized the molecularly informed field-theoretic approach to cal-

culate the critical micelle concentration (CMC) of intrinsically disordered protein (IDP)

surfactants. Our results showcase the predictive power of this approach, yielding a CMC

value within a factor of 2 of experimental data for strongly micellizing systems with

CMCs in the µM range, a challenging regime for traditional particle-based methods.

The success of our approach in capturing the self-assembly behavior of IDP surfactants

highlights its ability to handle the complex interactions arising from diverse amino acids

in bio-based macromolecules. This study underscores the potential of the molecularly

informed field-theoretic workflow in designing novel sustainable materials, thereby mini-

mizing environmental impacts through the replacement of petroleum-based ingredients.

Cellulose acetate (CA) is another promising sustainable ingredient as alternative to

synthetic polymers in formulations. It has been established in the literature that water
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solubility is achieved for cellulose when the alcohols are substituted with acetate. In

Chapter 6, we investigate the factors contributing to CA’s water solubility. Remarkably,

our molecularly informed field-theoretic model predicts a miscible window at intermedi-

ate degree-of-substitution (DS), in qualitative agreement with experimental observations

without any experimental input. We attribute CA’s solution behavior to the relative

DS at three alcohol sites, C2, C3, and C6. Selective acetylation of C3 alcohols leads to

water-soluble CA at low DS values (DS ≲ 0.5), while at intermediate DS values (∼ 1-1.5),

water solubility is achieved when C2 and C3 alcohols are selectively acetylated. At high

DS values (DS ≳ 2), water-soluble CA with evenly distributed acetate, having a slightly

higher propensity for C2 and C6 sites, is predicted. Our model provides valuable insights

into CA’s solubility behavior, enabling the design and synthesis of tailored water-soluble

CA for various applications.

In summary, we have presented a comprehensive investigation into the solution phase

behavior of various soft matter formulations with increasing complexity. Chapters 3,

4, 5, and 6 demonstrate the application of molecularly informed field theories to study

polyelectrolyte coacervation, polyelectrolyte-micelle complexation, self-assembly of IDP

surfactants, and cellulose acetate miscibility, respectively. Notably, our predictions are

in good agreement with experimental observations without any experimental input. The

success of this workflow highlights its potential in designing sustainable materials, reduc-

ing reliance on petroleum-based ingredients in formulations, and optimizing soft matter

systems for various applications.
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Future work can focus on several potential directions to enhance the accuracy and

applicability of the molecularly informed field-theoretic approach. Firstly, refining the

atomistic force field used in the parameterization process can help resolve discrepan-

cies between the model predictions and experimental data. Additionally, increasing the

complexity of the coarse-grained model by introducing higher-resolution coarse-grained

species and incorporating dipole solvents such that the electrostatic screening depends

on the local environment can provide more accurate representations of complex mixtures.

Moreover, incorporating field fluctuations in the field theory via complex Langevin sam-

plings75,77 can further enhance the model’s accuracy, enabling better predictions of ther-

modynamic properties and self-assembly behaviors. As the workflow is highly adaptable

to different chemistries, future research can explore more complex systems, encompassing

a broader range of soft matter formulations. Overall, the work we present here opens

up exciting avenues for the development and application of the molecularly informed

field-theoretic workflow in de novo soft materials design.
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Appendix A

Analytical Field Theory for

Multi-Species Systems

In the following, we derive the analytical approximation for the field theory of a system

consisting of S bead species andM molecule types. Each molecule type m has nm copies,

each has the chain length of Nm. A molecule m consists of ρα,mV/nm number of any bead

species α that carries charge σα in the unit of the electronic charge e. The total bead

concentration of species α is ρα =
∑M

m ρα,m. The interaction potentials for the bonded

and non-bonded terms are

βU0(r) =
M∑
m

Nm∑
i=1

3

2b2m
|rm,i − rm,i−1|2 (A.1)

βU1(r) =

∫
dr

∫
dr′ ρ̂(r) · βU(|r − r′|) · ρ̂(r′) (A.2)
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where the microscopic particle number density, ρ̂(r), is a vector of length S with its

element (ρ̂(r))α = ρ̂α(r) =
∑M

m

∑Nm

i=1 δ(r − rm,i)δψi,m,α. This is equivalent to counting

all beads i on all chains m that are of species α, i.e., ψi,m = α, at position r. βU is

a SxS pair interaction matrix and can be a sum of the excluded volume term and the

electrostatic term

(βU ev)αγ(r) =
uαγ

(2π(a2α + a2γ))
3/2
e−r

2/2(a2α+a
2
γ) (A.3)

(βU el)αγ(r) =
lbσασγ
r

erf

 r

2
√
a2α/2 + a2γ/2

 (A.4)

Here, we include both terms while deriving the mean-field solutions, βU = βU ev+βU el,

but only consider the electrostatic contribution in the Gaussian approximation about the

mean-field solutions, βU = βU el.

Upon the particle-to-field transformation described in74, we introduce the chemi-

cal potential fields, w = [w1, w2, ..., wS], in addition to the bead density fields, ρ =

[ρ1, ρ2, ..., ρS], and the canonical partition function of this model can be expressed as a

complex-valued statistical field theory

Z = Z0

∫
Dρ

∫
Dw e−H[ρ,w] (A.5)

where Z0 = eβUSI
∏M

m
1
nm!

(
Z0,m

λ3Nm
T

)nm

is the partition function for an ideal gas of discrete

Gaussian chains, and Z0,m is the path integral of molecule m in zero field. The first term

in Z0 subtracts the self-interactions present in βU ,
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βUSI =
β

2

S∑
α

ραV

(
uαα

(4πa2α)
3/2

+
lb√
πaα

)
(A.6)

Lastly, the effective Hamiltonian in Eq. A.5 is

H[ρ,w] =− i

∫
dr (w · ρ)

+
1

2

∫
dr

∫
dr′ ρ(r) · βU(|r − r′|) · ρ(r′)

−
M∑
m

nm lnQm[iw]

(A.7)

A.1 Mean-field approximation

The mean-field (MF) approximation is the most important analytical approximation

technique that assumes a single field configuration dominates the functional integral in

Eq. A.5, i.e., Z = Z0e
−H[ρ∗,w∗]. The MF solution of field f is obtained by solving for

δH[f ]
δf(r) f∗

= 0.

δH

δwα(r) ρ∗,w∗
= −iρ∗α −

M∑
m|α∈m

nm
δ lnQ[iw]

δwα

= −iρ∗α + i
M∑

m|α∈m

ρα,m = 0

ρ∗α =
M∑

m|α∈m

ρα,m = ρα

(A.8)
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δH

δρα(r) ρ∗,w∗
= −iw∗

α +
1

2

∫
dr

S∑
γ

ρ∗γ(βU)αγ

= −iw∗
α +

1

2

S∑
γ

∫
dr ρ∗γ(βU ev)αγ +

1

2

S∑
γ

∫
dr ρ∗γ(βU el)αγ

= −iw∗
α +

S∑
γ

uαγργ = 0

w∗
α = −i

S∑
γ

uαγργ

(A.9)

Here, the
∫
dr integrals are reduced to a simple summation by recognizing that the

excluded volume term is a Gaussian integral and the electrostatic term is zero due to the

charge neutrality constraint. Finally, the last term in Eq. A.7 involving the MF single

chain partition functions is

−
M∑
m

nm lnQm[iw
∗] = iVw∗ · ρ∗

The MF Hamiltonian is

H[ρ∗,w∗] = −iVw∗ · ρ∗

+

∫
dr

∫
dr′ρ∗ · βU · ρ∗

−
M∑
m

nm lnQm[iw
∗]

=
V

2
ρ∗ · u · ρ∗

(A.10)

where u is a SxS matrix of the excluded volume parameters defined in Eq. A.3.
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A.2 Gaussian approximation

The Gaussian approximation is derived by applying small perturbations to each fields

about their MF solutions, i.e., w = w∗ + δw, ρ = ρ∗ + δρ. The effective Hamiltonian

of Eq. A.7 is re-written with perturbation terms up to second order

H = −iVw∗ · ρ∗ − i

∫
dr δρ · δw +

V

2
ρ∗ · u · ρ∗

+
1

2

∫
dr

∫
dr′ δρ(r) · βU · δρ(r′)−

M∑
m

nm lnQm[iw]

(A.11)

We follow the derivation in ref. 74 to get the Gaussian approximation of the single chain

structure factor,

Qm = e−i
∑

α|α∈m
ρα,mV

nm
w∗

α

(
1− 1

2V 2

Nm∑
l=1

Nm∑
j=1

∑
k

δŵψl,m
(k)δŵψj,m

(−k)e−
k2b2m|l−j|

6

)
(A.12)

where the δŵ is the Fourier transforn of δw field, bm is the root-mean-squared bond

length of a homogeneous polymer m and the factor ρα,mV/nm is the number of bead α

on one molecule m.

We introduce the intramolecular structure factor matrix

Ĝ(k) =
M∑
m

Ĝm(k) (A.13)

where Ĝm is the form factor of molecule type m and its element is

(
Ĝm(k)

)
αγ

=
nm
V

Nm∑
l

Nm∑
j

e−
k2b2m

6
|i−j|δψl,m,αδψj,m,γ (A.14)

With these definitions, the −
∑M

m nm lnQm term reduces to
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−
M∑
m

nm lnQm = iVw∗ · ρ∗ +
1

2V

∑
k

δŵ(k) · Ĝ · δŵ(−k)

= iVw∗ · ρ∗ +
1

2

∫
dr

∫
dr′δw(r) ·G · δw(r′)

(A.15)

and the Hamiltonian in Eq. A.11 becomes

H =
V

2
ρ∗ · u · ρ∗ − i

∫
dr δρ · δw

+
1

2

∫
dr

∫
dr′ δρ(r) · βU · δρ(r′)

+
1

2

∫
dr

∫
dr′δw(r) ·G · δw(r′)

(A.16)

where the first term is just the MF Hamiltonian defined in Eq. A.10. The partition

function is

Z = Z0 e
−H[ρ∗,w∗]∫

Dδρ exp

(
−1

2

∫
dr

∫
dr′ δρ(r) · βU · δρ(r′)

)
∫

Dδw exp

(
i

∫
dr δρ · δw − 1

2

∫
dr

∫
dr′δw(r) ·G · δw(r′)

)
= Z0 e

−H[ρ∗,w∗]∫
Dδρ exp

(
−1

2

∫
dr

∫
dr′ δρ(r) · (βU +G−1) · δρ(r′)

)
∫

Dδw exp

(
−1

2

∫
dr

∫
dr′δw(r) ·G · δw(r′)

)
(A.17)

where in the last line we have evaluated
∫
Dδw per the Gaussian integral formula.

Lastly, we continue simplify H by re-expressing and evaluating the Gaussian integrals in

k-space,
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Z = Z0 e
−H[ρ∗,w∗]∏

k

∫
dδρ̂k exp

(
−1

2
δρ̂(k) · β

V

(
Û + Ĝ

−1
)
· δρ̂(k)

)
∏
k

∫
dδŵk exp

(
−1

2
δŵ(k) · 1

V
Ĝ · δŵ(k)

)
= Z0 e

−H[ρ∗,w∗]
∏
k

(2πV )S∣∣∣βÛ + Ĝ
−1
∣∣∣1/2 ∣∣∣Ĝ∣∣∣1/2

= Z0 e
−H[ρ∗,w∗]

∏
k

(2πV )S∣∣∣βÛ(k) · Ĝ(k) + I
∣∣∣1/2

= Z0 e
−H[ρ∗,w∗]

∏
k

(2πV )S∣∣∣βÛ el(k) · Ĝ(k) + I
∣∣∣1/2

(A.18)

This is the partition function that is used to derive the free energy, pressure and chemical

potentials.

A.3 Thermodynamics from the Gaussian approxi-

mation

The Helmholtz free energy is

βF = − lnZ

= −βUSI +
M∑
m

(
−nm ln

(
Z0,m

V λ3Nm
T

)
+ nm ln

nm
V

− nm

)
+
V

2
ρ∗ · u · ρ∗

+
V

4π2

∫
dk k2 ln

(∣∣∣βÛ el(k) · Ĝ(k) + I
∣∣∣)

(A.19)

For phase diagram calculation in the Gibbs ensemble, the first two terms can be ne-

glected. The pressure and chemical potential are derived from the following free energy
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expression,

βF ′ =
M∑
m

(
nm ln

nm
V

− nm

)
+
V

2
ρ∗ · u · ρ∗ +

V

4π2

∫
dk k2 ln

(∣∣∣βÛ el(k) · Ĝ(k) + I
∣∣∣)

(A.20)

The pressure of the system and chemical potential of chain m are

βP = −
(
∂βF ′

∂V

)
T,nm

=
M∑
m

nm
V

+
1

2
ρ∗ · u · ρ∗

+
V

4π2

∫
dk k2

(
Tr
[
(βÛ el(k) · Ĝ(k) + I)−1(βÛ el(k) · Ĝ(k))

]
+ ln

∣∣∣(βÛ el(k) · Ĝ(k) + I
∣∣∣)

(A.21)

βµm =

(
∂βF ′

∂nm

)
V,T,nn ̸=m

= ln
nm
V

+
S∑

α∈m,γ /∈m

ρα,mV

nm
ρ∗γuαγ +

1

2

∑
α∈m,γ∈m

(
ρα,mV

nm
ρ∗γ +

ργ,mV

nm
ρ∗α

)
uαγ

+
Nm

4π2

∫
dk k2Tr

[
(βÛ el(k) · Ĝ(k) + I)−1βÛ el(k) · Ĝm(k)

nmNm/V

] (A.22)
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Appendix B

Coarse-Graining NaCl from the

External Potential Ensemble

In a recent publication,100 we proposed an approach to enhance the fidelity of a coarse-

grained (CG) model by employing a more intelligent choice of simulation ensemble. Our

findings revealed that coarse-graining in the external potential ensemble offers improved

thermodynamic accuracy and transferability of CG models compared to the commonly

used single, uniform-composition ensembles. As explained in our previous work, the

coarse-graining is performed at a state of inhomogeneous response in the composition due

to an applied spatially-varying external potential on different species. The resulting CG

model is then optimized to reproduce the same response as the all-atom (AA) reference

system while capturing the dependence on the locally varying composition. Here, we

adopt the same strategy to assess the quality of a CG model for an ionic NaCl salt
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solution.

Figure B.1: Simulation snapshot with the sinusoidal external potential (red line) applied on
Na+ (pink) and Cl− (yellow) ions along the longest box dimension. The ions partition into the
region where the potential amplitude is lower, corresponding to smaller difference in the free
energy. Water molecules are not shown for clarity.

Figure B.2: One-dimensional density profiles of NaCl in the reference simulations at varying
external potential amplitude, Uext, from 0 to 5 kBT . Uext = 0 kBT is equivalent to simulating
in the NVT ensemble without the applied external potential.

In reference simulations of 2 M NaCl (246 NaCl molecules, and 6432 water molecules),

we apply an sinusoidal external potential, βUsin(x) = βUext sin(2πx/Lx), on both Na+

and Cl− ion species at varied amplitudes Uext (0− 5kBT ). Lx is the box dimension along

which the potential is applied. We first perform a NPT (1 atm, 298.15 K) simulation

without the external potential for 40 ns and record the average box dimensions: 4.65
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nm × 4.65 nm × 9.30 nm. We then conduct the final NVT simulations initiating from

the last frame of the preceding NPT run and apply the external potentials on Na+ and

Cl− ions along the longest box dimension. After a 2 ns warm-up period, we run for an

additional 40 ns and collect the trajectories for coarse-graining. The response to the

applied external potential and the density profile are visualized in Fig. B.1 and Fig. B.2,

respectively.

We investigate the thermodynamic fidelity of the CG model of NaCl solution by

comparing the predicted mean ionic activity coefficient curve to that of the AA model.

We follow the strategy of Mester et al. to calculate the activity coefficient in the AA

model: we insert a pair of non-interacting Na+ and Cl− ions then slowly turn on the van

der Waals and Coulombic potentials to determine the excess chemical potential.237 The

mean ionic activity coefficient, γ, is given by

ln γ(m) = β
µig + µex − µ0

2
− ln m (B.1)

where µig and µex are the ideal gas and excess parts of the chemical potential, µ0 is

the chemical potential at infinite dilution, and m is the molality of NaCl. For the CG

model, we have direct access to the chemical potential from conducting field-theoretic

simulations on its field representation, discussed in section 2.3. The activity coefficient

curve, Fig. B.3, from the Uext = 2kBT best matches that of the AA system. The

trace of the Fisher information matrix (the Hessian of Srel with respect to interaction

parameters) has a maximum near Uext = 2kBT and is consistent with our earlier findings

that maximizing the Fisher information improves the thermodynamics of CG models.100
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Figure B.3: Natural logarithm of the mean ionic activity coefficient ln γ as a function of the
molality m for different Uext ensembles. Uext = 2kBT ensemble shows the best match to the
AA model’s activity curve. Dotted lines are a guide to the eye.

Figure B.4: The trace of the Hessian of Srel with respect to interaction parameters plotted
against the external potential amplitude. The maximum is found at Uext = 2kBT

Tables B.1 and B.2 summarize the CG parameters for NaCl in water obtained min-

imizing the relative entropy in the Uext = 2kBT ensemble, while keeping the like-

interaction of water fixed.
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Table B.1: Optimized parameters derived from Srel minimization

Parameter Value
vw,Na+ 0.0 kBT
vw,Cl− 0.51301 kBT
vNa+,Na+ 0.59897 kBT
vCl−,Cl− 1.44760 kBT
vNa+,Cl− 0.0 kBT

Table B.2: Fixed parameters

Parameter Value
vw,w 0.33897 kBT
aw 0.31 nm
aNa+ 0.31 nm
aCl− 0.31 nm
σw 0 e
σNa+ +1 e
σCl− -1 e
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Coarse-Grained Models of Water

Despite the significant improvement in computational efficiency due to the reduced reso-

lution in CG models, studying long length and time-scale phenomena in explicit-solvent

simulations is still challenging. It is beneficial to develop computationally efficient mod-

els of CG solvents, specifically water, that can be utilized in studying complex formula-

tions. In bottom-up coarse-graining approaches, reference trajectories used in deriving

CG parameters are obtained by mapping each water molecule to a CG site. For multiple

water models, one straight forward strategy is mapping a cluster of more than one water

molecules into one CG bead, with the bead’s coordinate determined by the center-of-mass

of the cluster. Here, we use the k-means clustering algorithm233–235 to identify clusters of

water molecules in each trajectory frame by minimizing the within-cluster sum of vari-

ances of coordinates. While the number of molecules in each cluster cannot be directly

specified, the total number of clusters k, or the total number of CG water molecules,
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determines the average number of water molecules in each cluster.

Prior to clustering, we need to transform the center-of-mass Cartesian coordinates

of individual water molecules into new coordinates that account for periodic boundary

conditions. For a Cartesian coordinate r = (x, y, z) and a simulation box of lengths

L = (Lx, Ly, Lz) in 3D, the corresponding transformed coordinates are:

θ = cos
2πr

L
(C.1)

ϕ = sin
2πr

L
(C.2)

Upon the transformation, each Cartesian coordinate, e.g. x, is represented by two

new coordinates θ and ϕ. This allows molecules that are in close in distance but located

across a periodic boundary to be included in the same cluster, as illustrated in Fig. C.1

in 2D.

We perform separate k-means clustering that groups, on average, 2, 3, and 6 water

molecules. This results in mapped trajectories that are used as references to derived

the CG parameters for the 2-, 3-, and 6-water models, respectively. The Scikit-learn

library238 is employed to carry out the clustering process. We set the maximum number of

iterations to 500 and repeat the k-means algorithm with different centroid seeds 20 times.

We ensure that these parameters are sufficiently large by monitoring the convergence of

the average number of water molecules per cluster and the average cluster sphericity index

(Fig. C.2). The latter is a metric used to evaluate the shape of a cluster of molecules

and is calculated as follows239:
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Figure C.1: Example of k-means clustering in 2D that groups neighboring molecules located
across a periodic boundary. The shaded regions depict periodic boundary images. Molecules
are represented by filled dots and color-coded according to their clusters. The transparent
circles represent CG sites with coordinates determined by the center-of-mass of the member
molecules.

Ψ =

(
c2

ab

)1/3

(C.3)

Here, the sphericity index is calculated based on the lengths of the three representative

axes of an object, denoted as a, b, and c, arranged from the longest to the shortest axis.

The sphericity index ranges from 0 to 1, with 1 indicating a perfect sphere. In our case,

we represent the shape of a cluster by the minimum volume enclosing ellipsoid of the

molecules belonging to the cluster.

The parameters for the excluded volume interaction (Eq. 2.7) are derived following
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Figure C.2: Average number of water molecules per cluster and cluster sphericity index,
Ψ, with (A, B) varying number of repetition (n init) at the maximum number of iterations
(max iter) of 500 and (C, D) varying maximum number of iterations at the number of repetition
of 20 for the 6-water model. Solid bars represent the standard deviations.

the same procedure in Chapter 3. We enforce the interaction radius to approximately the

cube-root of the specific volume of n water molecules for n-water model. The water-water

interaction strength, vw,w, is determined by minimizing the relative entropy in the NPT

ensemble such that the CG model has a compressibility κT ≈ 4.51 ×10−10 Pa−1, near

that of OPC water. Matching κT between AA and CG simulations uniquely determines

a CG pressure of PCG ≈ 285.99 kBT/ nm
3. Table C.1 summarizes the parameters for

different water models, including the conventional 1-water model.
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Table C.1: Parameters for different coarse-grained water models

Model aw (nm) vw,w (kBT )
1-water 0.31 0.33897
2-water 0.40 0.67589
4-water 0.50 1.42035
6-water 0.60 1.88049
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Supplemental Information for

Chapter 3

D.1 All-atom simulations

D.1.1 Forcefield validation

We show the solution densities for one component PE aqueous solutions at full ionization

and zero added salt across PE composition. Densities of PAA and PAH aqueous solutions

are used as a metric to quantify the reliability of the AA forcefield. We use N = 45 for

PAA and N = 187 for PAH to match the average chain lengths used in experiments.

Experimental densities for PAA (Mw = 4.31 kg/mol, Mn = 2.4 kg/mol) are provided by

BASF. PAH densities are collected in the Helgeson lab with an Anton Paar DMA 4101

density meter, using PAH (Mw = 17.5 kg/mol) purchased from Sigma-Aldrich without
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further purification. The simulation box is at least 7 nm and we conduct all simulations

for at least 30 ns (preceded by a 10 ns equilibration period) in the NPT ensemble at

1 atm and 298.15 K using the Monte Carlo barostat with the update frequency of 25

timesteps. We note that solution density has a short correlation time (∼ 10 ps) and 30

ns is more than sufficient to sample uncorrelated states.

Figure D.1: Comparison between solution densities from experiments (open circles) and sim-
ulations (closed diamonds) for fully ionized PAA and PAH solutions at 1 atm and 298.15 K for
various PE weight fractions (counterion included). The degrees of polymerization are 45 for
PAA and 187 for PAH in the simulations. Dotted lines are a guide to the eye.

D.1.2 All-atom reference simulations

Pure water

The pure water simulation box is composed of 3305 water molecules. We perform the

simulation in the NPT ensemble at 1 atm and 298.15 K with a 4 ns equilibration followed

by a 40 ns production run. The average box side length is 4.7 nm.
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NaCl solution

See Appendix B for more details.

Polyelectrolytes-NaCl mixture

The AA reference system consists of 10 of each 24-mer PE species, 325 NaCl molecules,

and 12500 water molecules in a cubic box. We build atactic PEs of random stereo-

chemistries (Fig. D.2) with target dyad fractions of 0.44 meso and 0.56 racemic. The

resulting average meso fractions are 0.42 for PAA and 0.46 for PAH. After the energy

minimization step, we relax the initial configuration at 400 K for 4 ns and cool down to

298.15 K for 10 ns. Lastly, we collect the trajectory for coarse-graining in the last 400

ns. We perform all simulation steps in the NPT ensemble at 1 atm. The average box

side length from the production run is ∼ 7.46 nm.

Figure D.2: Dyad compositions of (A) PAA and (B) PAH chains in the reference simulation.
A 24-mer has 23 chiral centers which results in a total of 22 dyads per chain. Full symbols
indicate meso dyads while open symbols are racemic dyads.
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D.2 Coarse-grained parameters

Table D.1: Fixed parameters

Parameter Value
aw 0.31 nm
aNa+ 0.31 nm
aCl− 0.31 nm
ap− 0.45 nm
ap+ 0.45 nm
σw 0 e
σNa+ +1 e
σCl− -1 e
σp− -1 e
σp+ +1 e
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Table D.2: Optimized parameters derived from Srel minimization

Parameter Value
vw,w 0.33897 kBT
vw,Na+ 0.0 kBT
vw,Cl− 0.51301 kBT
vNa+,Na+ 0.59897 kBT
vCl−,Cl− 1.44760 kBT
vNa+,Cl− 0.0 kBT
vp−,p− 0.89475 kBT
vp−,p+ 0.68023 kBT
vp−,Na+ 0.0 kBT
vp−,Cl− 0.86294 kBT
vp−,w 0.40998 kBT
vp+,p+ 0.87466 kBT
vp+,Na+ 0.15057 kBT
vp+,Cl− 0.64160 kBT
vp+,w 0.47948 kBT
bp− 0.36434 nm
bp+ 0.35817 nm
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D.3 Additional figures from the Gaussian approxi-

mation

Figure D.3: Phase diagram for salt-free conditions at varying chain length, N . Faded dashed
lines are hypothetical binodals for excess PAA conditions if the phase diagram is symmetric
(ρp− = ρp+).

172



Supplemental Information for Chapter 3 Appendix D

Figure D.4: Binodals at fp− = 0.5 for varying N plotted in the log scale for the polymer
concentration. Dotted lines are example tie lines for N = 100.

We calculate the complexation free energy, ∆F , defined as the difference between the free

energy of the final phase separated system Ff , and of the initial PE mixtures (aqueous

PAA and aqueous PAH) before mixing, Fi. For each set of coexisting phases found from

the Gibbs ensemble simulation, we pair it with an initial state consisting of an aqueous

PAA and aqueous PAH solutions. Although there are many routes to get to the same final

coacervate mixture, we choose the initial PE mixtures to each have the same PE, salt,

and water concentrations as the overall composition used in determining the coexisting

phases, Fig. D.5A. With this choice, the initial volumes, Vp− and Vp+, are related to

the overall stoichiometry by Vp−/(Vp− + Vp+) = fp−. As expected, the complexation free

energy becomes less negative with added salt and finally becomes zero, Fig. D.5B. This

indicates the reduced coacervation driving forces as salt concentration increases.
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Figure D.5: (A) Schematic showing an experiment of mixing two aqueous PE solutions at the
same PE, salt and water densities, resulting in a phase separated system. The initial volumes,
Vp− and Vp+, are related to the overall stoichiometry in the final solution by Vp−/(Vp−+Vp+) =
fp−. (B) Complexation free energy density with added salt. This value becomes less negative
with salt concentration, indicating the reduced driving force to coacervate.
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Figure D.6: (A) Na+ and (B) Cl− concentration in the coacervate phase relative to the dilute
phase for different N at fp− = 0.5. Both the anions and cations preferentially partition in the
dilute phase.
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Figure D.7: The overall PE stoichiometry fp− as marching along the tie line by varying
the dilute phase volume fraction f I for coacervate stoichiometries f IIp− of 0.3, 0.5, 0.7, and
0.9. Different series represent tie lines corresponding to different excess salt concentrations
in the coacervate phase. Cross symbols are the overall compositions used in Gibbs ensemble
calculations.
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Figure D.8: Three-dimensional plot of the binodals (solid lines and color coded based on the
PE stoichiometry in the coacervate, f IIp−) for N = 150. Horizontal dashed lines are contours at
various excess salt concentrations. Note that these are not tie lines and simply connect points
of the same excess salt concentration.
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Table E.1: Reference all-atom system sizes. Each row represents a simulation shown in Fig.
6.3.

nw nNa+ nCl− nDS n6mer
PDADMA nC13EO7 n20mer

PEO ndodecane box(nm) ensemble

1 3305 4.7× 4.7× 4.7 NPT
2 140 5.7× 5.7× 5.7 NPT
3 5880 980 11.4× 11.4× 11.4 NPT
4 3300 96 96 179 4.5× 4.5× 10.2 NVT
5 6432 245 245 4.7× 4.7× 9.3 NVT
6 14500 90 8.0× 8.0× 8.0 NPT
7 15000 126 21 8.1× 8.1× 8.1 NPT
8 15000 280 280 126 21 8.1× 8.1× 8.1 NPT
9 31500 345 345 42 7 137 10.3× 10.3× 10.3 NPT
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Table E.2: Optimized excluded volume interaction parameters, vα,γ (kBT )

α
γ

w Na+ Cl− SO4 C2 p+ COH EO

w 0.33897
Na+ 0.0 0.61704
Cl− 0.52264 0.0 1.47764
SO4 0.26396 0.0 0.0 2.55051
C2 0.99291 0.65940 3.20991 1.51615 1.67953
p+ 0.47581 0.14099 0.36890 0.0 1.02659 1.70031
COH 0.47273 0.0 1.31378 0.64582 1.02802 0.39340 0.0
EO 0.56090 0.0 0.81420 0.46855 1.26004 0.94159 0.95735 1.07767

Table E.3: Remaining coarse-grained interaction parameters: optimized root-mean-square
bond length bαγ and fixed parameters which include charge σα and excluded volume interaction
range aα.

Parameter Value
bC2 C2 0.30157 nm
bC2 SO

−
4

0.15422 nm

bp+ p+ 0.57983 nm
bC2 EO 0.24657 nm
bEO COH 0.26315 nm
bEO EO 0.31829 nm
σw 0.0 e
σNa+ +1.0 e
σCl− -1.0 e
σSO−

4
-1.0 e

σC2 0.0 e
σp+ +1.0 e
σCOH 0.0 e
σEO 0.0 e
aw 0.31074 nm
aNa+ 0.31074 nm
aCl− 0.31074 nm
aSO−

4
0.31074 nm

aC2 0.31074 nm
ap+ 0.63 nm
aCOH 0.31074 nm
aEO 0.375 nm
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Figure E.1: Comparison of micelle density profiles between CGMD and SCFT for
SDS/C13EO11 micelle and 24-mer PDADMA in 0.4 M NaCl at (A) Y = 0 (no SDS) and
(B) Y = 0.31, respectively. Since it is difficult to obtain equilibrium micelle sizes from CGMD,
we use the cell size and molecule numbers from equilibrated field theory to run its CGMD
counterpart.
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Figure E.2: Radial density profiles of (A) polycation monomer p+ and (B) alkyl bead C2 for
various SDS fractions Y at 0.4 M NaCl with C13EO11 as the nonionic surfactant.

Figure E.3: Fraction of adsorbed PDADMA against micelle surface charge density for mix
micelles of SDS with nonionic C13EOn surfactants at 0.4 M NaCl. σc is the micelle surface
charge density at the Yc transition.
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Figure E.4: (A) Aggregation number of ethoxylated nonionic surfactant C13EOn and (B) core
radius (measured at 0.1 C2 locus) of the mixed micelle as a function of Y at 0.4 M NaCl.
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Figure E.5: SCFT-predicted (A) binding isotherms and (B) micelle surface charge density
as the anionic surfactant mole fraction, Y, increases during the course of the isoionic titration
for SDS/C13EO11 micelles at salt concentrations from 0.1 to 1.0 M. Dashed lines indicate the
composition Yc at the inflection.

Figure E.6: Fraction of adsorbed PDADMA against micelle surface charge density for
SDS/C13EO11 micelles at salt concentrations from 0.1 to 1.0 M. Dashed lines indicate the
surface charge density σc at the inflection.
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Figure E.7: SCFT-predicted aggregation numbers of (A) SDS and (B) C13EO11 as a function
of Y for various salt concentrations. (C) Core and (D) micelle radii at the same conditions.
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Figure E.8: SCFT-predicted electrostatic potential as a function of the radius from the micelle
center for various anionic surfactant fractions, Y , at (A) 0.1 (B) 0.4 and (C) 1.0 M NaCl. The
x-axis is normalized by the micelle total radii at same conditions reported in Fig. E.7D.
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Figure E.9: SCFT-predicted density profile of the lamellar structure at 0.75 weight fraction
for the polyelectrolyte-micelle mixture corresponding to Fig. 9. The equilibrium spacing from
SCFT is 5.1 nm.
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Table F.1: Water excluded volume strength vww and fixed parameters.

Parameter Value
vww 0.1 kBT
σw 0.0 e
σ1 0.0 e
σ2 0.0 e
σ3 0.0 e
σ3+ +1.0 e
σ3− -1.0 e
aw 0.31 nm
a1 0.5 nm
a2 0.5 nm
a3 0.5 nm
a3+ 0.5 nm
a3− 0.5 nm

Fig. F.2 suggests that including the tail-tail simulation as one of the reference simu-

lations increases the sampling frequency of the aggregated state. This can be quantified
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Figure F.1: (A) Radius of gyration and (B) end-to-end distance distribution of the hydropho-
bic tails AA simulation with (solid line, vbias = 0.25 kBT ) and without the repulsive potential
(dashed line, vbias = 0 kBT ).

by the Gaussian weighted number of contacts between any residues i and j of the IDP

in the mapped reference simulations:

X =
∑
i,j

exp(−rij)2/2(a2i + a2j)(
2π(a2i + a2j)

)3/2 , (F.1)

where ai = 0.5 nm is the Gaussian regularization length of the amino acid CG beads.

Eq. F.1 calculates the number of contact between any two residues weighted by their

distance, rij. Conceptually, X is the structural variable corresponding to the employed

Gaussian interaction potential that the relative entropy minimization tries to match when
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Table F.4: Model IIa - Optimized root-mean-square bond length b and excluded volume
strength vαγ of replicates.

Parameter 1 2 3 4 5 6
b (nm) 0.42703 0.42861 0.42953 0.42979 0.43028 0.42997
v11 (kBT ) 2.14475 2.14194 2.17733 2.13583 2.15696 2.12751
v12 (kBT ) 1.31010 1.33362 1.32762 1.30144 1.30557 1.35289
v13 (kBT ) 0.98507 0.99424 0.85433 0.99116 0.96647 0.95341
v1w (kBT ) 0.48517 0.48677 0.48498 0.48429 0.48281 0.48456
v22 (kBT ) -0.14156 -0.08206 -0.13154 -0.10071 -0.04072 -0.10613
v23 (kBT ) 0.58323 0.53698 0.46693 0.57534 0.54284 0.54677
v2w (kBT ) 0.23278 0.23440 0.22839 0.23471 0.23839 0.23766
v33 (kBT ) 2.72227 2.68802 2.92339 2.68625 2.68400 2.68386
v3w (kBT ) 0.32302 0.31986 0.32742 0.32162 0.31887 0.31915

Table F.5: Model IIb - Optimized root-mean-square bond length b and excluded volume
strength vαγ of replicates.

Parameter 1 2 3 4 5 6
b (nm) 0.43532 0.43653 0.43520 0.43483 0.43356 0.43575
v11 (kBT ) 2.62957 2.64275 2.66497 2.67106 2.64449 2.70540
v12 (kBT ) 1.14924 1.18237 1.14619 1.15980 1.21354 1.14914
v13 (kBT ) 1.67453 1.55666 1.68777 1.62585 1.53982 1.55289
v1w (kBT ) 0.52428 0.52061 0.52262 0.52157 0.52638 0.52436
v22 (kBT ) 0.14899 0.13910 0.14036 0.10959 0.07190 0.13550
v23 (kBT ) 0.85076 0.87990 0.90642 0.87477 0.95256 0.91057
v2w (kBT ) 0.27176 0.27807 0.27446 0.27179 0.27633 0.27444
v33 (kBT ) 2.85672 2.81779 2.77738 2.92479 2.75814 2.75883
v3w (kBT ) 0.36290 0.35852 0.36058 0.36486 0.35715 0.36044

deriving CG parameters. As listed in Table F.6, reference system I (a single simulation

of the head and tail IDP fragments) with a small number of amino acid contacts will

likely produce a CG model that is less hydrophobic than reference system II (expanded

ensemble of three simulations).

Table F.6: Gaussian weighted number of contacts between any IDP residues.

Reference system X X/npairs
a

I 61 0.065
II b 79 0.088

a Weighted by the total number of possible contacts

b Average over three reference simulations
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Figure F.2: Center-of-mass distance between the IDP fragments in three reference simulations.
The simulation of two tail fragments (tail-tail) observes higher frequency of the aggregated state
than the other two simulations.

Figure F.3: Average integrated excluded volume interactions, uαγ = vαγ(2π(a
2
α + a2γ))

3/2, for
models Ia and Ib. Overall, model Ib exhibits higher repulsion, evidenced by higher values of
uαγ , between the amino acids. This results in less hydrophobic IDP, thus higher CMC, using
model Ib.
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Figure F.4: Histogram for standard deviations of 9 excluded volume parameters, vαγ , across
20 replicates for models Ia and Ib.
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Appendix G

Supplemental Information for

Chapter 6

Table G.1: Reference all-atom system sizes. Each row represents a simulation shown in Fig.
6.3 in main text.

nw ncellulose (8-mer) DS nG0 nG12 nG13 nG16 nG123 nG126 nG136 nG3 box(nm) ensemble

1 3305 4.7× 4.7× 4.7 NPT
2 15278 33 0.0 264 8.0× 8.0× 8.0 NPT
3 15278 33 1.0 88 88 88 8.1× 8.1× 8.1 NPT
4 15278 33 2.0 88 88 88 8.1× 8.1× 8.1 NPT
5 15278 33 3.0 264 8.1× 8.1× 8.1 NPT
6 15278 33 0.5 66 22 22 22 22 22 22 66 8.1× 8.1× 8.1 NPT
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Table G.2: Optimized excluded volume interaction parameters, vα,γ (kBT )

α
γ

w G0 G12 G13 G16 G223 G226 G236 G3

w 0.33897
G0 1.91172 1.87274
G12 2.62044 2.09653 3.45210
G13 2.51129 2.86779 3.43468 3.39547
G16 2.49281 2.35662 3.56470 3.05431 3.21460
G223 3.23102 2.81463 5.48032 4.54609 4.97849 5.38668
G226 3.18075 3.43011 3.70639 3.89624 4.19072 5.46667 5.23067
G236 3.14279 3.04176 5.78957 3.60610 3.33025 5.34429 5.21189 5.14820
G3 3.83704 4.04721 4.88777 4.59731 5.38941 6.30660 6.88359 6.30443 7.74686

Table G.3: Remaining coarse-grained interaction parameters: optimized root-mean-square
bond length b and fixed excluded volume interaction range aα.

Parameter Value
b 0.46953 nm
aw 0.6 nm
aG0 0.6 nm
aG12 0.6 nm
aG13 0.6 nm
aG16 0.6 nm
aG223 0.6 nm
aG226 0.6 nm
aG236 0.6 nm
aG3 0.6 nm
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Figure G.1: Composition space specified by the relative acetylation ratio C2:C3:C6 for various
DS values. Each shaded region corresponds to the combination of C2:C3:C6 ratios that are
achievable within the constraints of the specific DS value.

Figure G.2: Effective χ for 8 CG bead types. Dashed line denotes χ = 0.5

196



Figure G.3: Relative substituent ratios at C2, C3, and C6 corresponding to (A) rset = 0.36 :
0.57 : 0.07 and (B) rset = 0.36 : 0.62 : 0.02. Dashed lines represent rset.
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Figure G.4: Number of total, inter-, and intramolecular hydrogen bonds between all monomers
of cellulose categorized by the hydrogen donor-acceptor pairs calculated from AA simulations
of 8-mers at (A) DS=0, (B) DS=1, and (C) DS=2, corresponding to simulations 2, 3, and 4 in
Fig. 6.3.
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Figure G.5: Interchain radial distribution functions (RDFs) between C1 carbons of the glucose
monomers as a function of DS. DS=0, 1, 2, and 3 correspond to reference AA simulations 2-5,
respectively.
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Interactions of cationic surfactant-fatty alcohol monolayers with natural human
hair surface: Insights from dissipative particle dynamics. Journal of Molecular
Liquids, 375:121385, 2023.

[74] Glenn Fredrickson et al. The equilibrium theory of inhomogeneous polymers, volume
134. Oxford University Press on Demand, 2006.

[75] Glenn H Fredrickson, Venkat Ganesan, and François Drolet. Field-theoretic com-
puter simulation methods for polymers and complex fluids. Macromolecules,
35(1):16–39, 2002.

[76] Erin M Lennon, George O Mohler, Hector D Ceniceros, Carlos J Garćıa-Cervera,
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Stephan Köhler, Joshua C Speros, Matthew E Helgeson, Kris T Delaney, M Scott
Shell, et al. Predicting polyelectrolyte coacervation from a molecularly informed
field-theoretic model. Macromolecules, 55(21):9868–9879, 2022.

[83] My Nguyen, Kevin Shen, Nicholas Sherck, Stephan Köhler, Rohini Gupta, Kris T
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