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ABSTRACT OF THE DISSERTATION 

Electrical and Mechanical Properties of Graphene 

by 

 

Wenzhong Bao 

 

Doctor of Philosophy, Graduate Program in Physics 

University of California, Riverside, March 2012 

Dr. Chun Ning Lau, Chairperson 

 

Graphene is an exciting new atomically-thin two-dimensional (2D) system of 

carbon atoms organized in a hexagonal lattice structure. This “wonder material” has 

been extensively studied in the last few years since it’s first isolation in 2004. Its 

rapid rise to popularity in scientific and technological communities can be attributed 

to a number of its exceptional propertiess. In this thesis I will present several topics 

including fabrication of graphene devices, electrical and mechanical properties of 

graphene. 

I will start with a brief introduction of electronic transport in nanosclae system 

including quantum Hall effect, followed by a discussion of fundamental electrical 

and mechanical properties of graphene. Next I will describe how graphene devices 

are produced: from the famous “mechnical exfoliation” to our innovative “scratching 

exfoliation” method, together with the traditional lithography fabrication for 

graphene devices. We also developed a lithography-free technique for making 

electrical contacts to suspended graphene devices. Most of the suspended devices 
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presented in this thesis are fabricated by this technique.  

Graphene has remarkable electrical properties thanks to its crystal and band 

structures. In Chapter 3, I will first focus on proximity-induced superconductivity in 

graphene Josephson transistors. In this section we investigate electronic transport in 

single layer graphene coupled to superconducting electrodes. We observe significant 

suppression in the critical current Ic and large variation in the product IcRn in 

comparison to theoretic prediction; both phenomena can be satisfactorily accounted 

for by premature switching in underdamped Josephson junctions.  

 Another focus of our studies is quantum Hall effect and many body physics in 

graphene in suspended bilayer and trilayer graphene. We demenstrate that symmetry 

breaking of the first 3 Landau levels and fractional quantum Hall states are observed 

in both bilayer and trilayer suspended graphene devices. A surprising finding in these 

systems is the observation of insulating states in both suspended bilayer and trilayer 

graphene devices, which arises from electronic interactions. In bilayer graphene, we 

observe a phase transition between the single-particle metallic state and the 

interaction-induced insulating state in ultra-clean BLG, which can be tuned by 

temperature, disorder, charge density n and perpendicular electric field E. In trilayer 

graphene we demonstrate dramatically different transport properties arising from the 

different stacking orders, and an unexpected spontaneous gap opening in charge 

neutral ABC-stacked trilayer graphene.  

One of graphene’s unique properties is that it is nature’s thinnest elastic 
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membrane with exceptional mechanical properties. In chapter 7 I will describe the 

first direct observation and controlled creation of one- and two-dimensional periodic 

ripples in suspended graphene sheets, using both spontaneously and thermally 

generated strains. We are able to control ripple orientation, wavelength and 

amplitude by controlling boundary conditions and exploiting graphene's negative 

thermal expansion coefficient, which we measure to be much larger than that of 

graphite. In addition, we also study the morphological change of suspended 

graphene sheets by apply gate voltages, which is a simple and direct method to strain 

and buckle graphene. 

Our experimental results contribute to the fundamental understanding of 

electrical and mechanical properties of graphene, and may have important 

implications for future graphene based applications.  
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1. Chapter 1. Introduction 

For the past few years, when people ask “what you do in the lab”, I replied two 

words: nano science, which is at both self-explanatory and cool-sounding– just 

imagine iPod-Nano
®
. 

 

Fig. 1-1 A boy and an iPod Nano 

 

More specifically, I use another word graphene [1, 2] starting from 2010, thanks 

to the Physics Nobel Prize awarded Geim and Novoselov, who have started the field 

and made “graphene” into a household term.  

The thesis is structured as follows. Chapter 1 contains a brief introduction of 

transport in nanosclae system and fundamental electronic properties of graphene. In 

Chapter 2 I will describe standard and new methods of isolating graphene and device 

fabrication, with particular emphasis on ultrclean suspended graphene devices.  
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The rest of my thesis could be naturally divided into two parts: electrical and 

mechanical properties, which correspond to chapter 3-6 and chapter 7-8, 

respectively.  

In Chapter 3, I will first focus on proximity induced superconductivity in 

graphene Josephson transistors, which is also my first Ph.D. project. Next in chapter 

4 I will discuss quantum Hall effect in graphene and focus on our experimental 

works of suspended bilayer and trilayer graphene. Moreover in chapter 5 and 6 I will 

also discuss an electronic-interaction driven effect -- insulating state in both 

suspended bilayer and trilayer graphene devices, while the latter has a stacking order 

dependence. 

In Chapter 7, we will investigate mechanical properties of suspended graphene. 

We will characterize suspended graphene ripples and exploit the effective control of 

this ripple texturing, and discuss the gating-induced morphological change of 

suspended graphene sheets in chapter 8. 

Chapter 9 concludes the thesis with a brief discussion of future outlook. 
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1.1 Two Dimensional Electron Systems 

If the thickness of a conductor is smaller than the size of the electron wavelength, 

the conductor forms a two-dimensional electron system (2DES). When Coulomb 

interactions are ignored, the electrons can be approximated as a “gas” of free 

particles, which roam freely in the 2D plane and their motion in the third dimension 

could be ignored. Interesting quantum effects could arise in this system. Typically, 

2DES could be realized in 1) MOSFETs (metal–oxide–semiconductor field-effect 

transistor), as shown in Fig. 1.2(a); 2) HEMTs (high-electron-mobility transistors), 

as shown in Fig. 1.2(b); and 3) the surface of a material such as free electrons floated 

on the surface of liquid helium [3], or graphene sheets [4, 5], using the field effect.  

 

        

 

Fig. 1-2 (a) A cross section of MOSFET device. 

(http://en.wikipedia.org/wiki/File: MOSFET _functioning_body.svg) (b) 

A schematic and cross section band structure of a GaAs/AlGaAs HEMT 

device (http://www.ecse.rpi.edu/shur/sdm2/Notes/Notes pdf 

/18HFET.pdf) 
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1.2 One Dimensional Quantum Wire Systems 

Now we consider a one-dimensional (1D) wire, which is long in the longitudinal 

direction but short in the transverse directions so that its width and thickness are 

comparable to the Fermi wavelength of the electrons. Because of quantum 

confinement of conduction electrons in the transverse directions, their transverse 

energy is quantized into a series of discrete values. In the transverse direction, in the 

absence of impurities, electrons propagate and we can view the wire as a waveguide 

for transmission of electron quantum waves between two reservoirs. 

One consequence of 1D propagation of electron wavefunctions is that the Ohm’s 

Law, in which the electrical resistivity of a wire R=ρl/A, is no longer valid. Here ρ is 

the resistivity, l is the length, and A is the cross-sectional area of the wire. Instead, in 

such a system conductance is quantized, which can be easily derived. In 1-D the 

current I is equal to the current density, which is given by: 

1 2( )
dn

j I ev
dE

     , 

where v is the group velocity of an electron at the Fermi energy EF in one channel, 

1 2( )   is the difference in electrochemical potential between the two reservoirs 

shown in Fig. 1.3, and 
dn

dE
 is the density of energy states (per unit length) at EF, 

then we can write it as: 

dn dn dk

dE dk dE

  
   
  

. 

Since 1/ 2
dn

dk
 , 

2dE k
v

dk m
   and 1 2( ) e V     , 
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2

1 2
1 2

( )
( )

2

edn e V
I ev

dE h

 
 



 
      . 

Thus 

2I e
G

V h
  . 

If the there are N waveguide channels are populated, the total conductance is then 

22e
G N

h
 . 

Here the factor 2 is included owing to the spin degeneracy. 

 

 

Fig. 1-3 One dimensional wire connecting two reservoirs with different chemical 

potentials. 

 

Carbon nanotube (Fig. 1.4(a)) could be an ideal quantum wire system [6], 

together with other one-dimensional chemically grown nanowires (Fig. 1.4(b)). Both 

types of systems have been extensively studied [7-11].    
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Fig. 1-4 (a) An atomically resolved STM image of chiral carbon natube. ( http:// 

www.ncnr.nist.gov/staff/taner/nanotube/types.html) (b) An SEM image of silicon 

nanowire grown in CVD http://www.firstnano.com /applications/sinanowire/1/) 

 

1.3 Zero Dimensional Quantum Dots  

A quantum dot (QD) is a conductor that is confined in all three spatial 

dimensions [12-17]. Typically, QDs are conducting island connected to reservoirs of 

electrons by tunnel barriers (Fig. 1.5). The number of electrons in the island can be 

changed by a nearby electrostatic gate. 

 

         

Fig. 1-5 (a) A quantum dot defined by 5 metallic gates fabricated on the surface of 

a GaAs based heterostructure, in which a two-dimensional electron gas recides 

(http://pages.unibas.ch/ phys-meso/Pictures/pictures. html). (b) A theoretical 

sketch of a QD (http://www.fkf.mpg.de/ metzner/research/qdot/qdot.html). 
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The Coulomb interaction among electrons in the QD creates an energy barrier so 

that exactly an integer number of electrons N is localized within the dot. When an 

electron tunnerls onto the dot, the total energy of the dot increases by e
2
/2C, the 

charging energy (C is the total capacitance of the QD). Therefore in the zero-bias 

limit, it is impossible to add or remove electrons if added engergy is smaller than 

e
2
/2C, resulting in zero or very low conductance. This phenomemon is known as 

Coulomb blockade.  

To properly localize a discrete number of electrons on the dot, the charge energy 

e
2
/2C needs to exceed the quantum energy uncertainty E

t RC
  


associated 

with the RC time constant, which is also the lifetime of charges on the island. Thus 

we obtain: 

2 2 2 2

2 2 2 2
( ) ( )

2 2 2

h h
R

e e e e



 
    ~12.9 kΩ,  

which is also the quantum resistance we derived in the previous section. Secondly, 

the thermal fluctuation energy kT< e
2
/2C is also required to avoid thermal 

fluctuations washing out the features, which requires that the capacitance of QD (and 

hence QD itself) should be rather small. 

 When we increase the gate voltage Vg, more electrons can be added. Adding 

each electron onto QD will result in  

⊿Vg= e/Cg, 

where Cg is the gate-QD capacitance. Actually applying source-drain voltage Vsd has 

a similar effect if  
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⊿Vsd = e/Ctotal, 

where  

Ctotal = Cg + Csource+ Cdrain, 

and Csource and Cdrain are contacts-QD capacitance, Therefore by fixing the Vsd and 

changing Vg, a series of spikes of measured current IQD could be observed and the 

spacing is⊿ Vg. 

 

1.4 Density of states of 2D, 1D and 0D 

The density of states (DOS) of an n-dimentional system describes the number of 

states per interval of energy at each engergy level. If the dispersion relation of a 

system is  

0

p

kE E c k  . 

Therefore 

1/0( ) p

k

E E
k

c


 . 

We also define ( ) n

n nk c k   as the volume in n-dimentions k space containing 

wave vectors smaller than k (here 1 2c  , 2c  , 3 4 / 3c  ), then the substitution 

of dispersion relation gives the volume of occupied states 

/

0/
( ) ( )n pn

n n p

k

c
E E E

c
   . 

Differentiating this volume with respect to the energy gives the DOS of such a 

dispersion relation: 
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/ 1

0/

( )
( ) ( )n pn n

n n p

k

d E nc
DOS E E E

dE pc


   . 

Assuming a parabolic dispersion relation 
2

2

2 *
E k

m
 , the DOS for 

n-dimentional system is shown in Fig. 1.6. In chapter 1.6.2 we can also use this to 

calculate 2D DOS of graphene using derived dispersion relation in graphene.  

 

Fig. 1-6 DOS of 3,2,1 and 0 dimentional systems. 

(http://www.ecse.rpi.edu/~schubert/) 
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1.5 Quantum Hall effect 

The classical Hall effect is observed when a current flows in a conductor placed 

in a magnetic field. As shown in Fig. 1.7, a uniform current flow I along the 

x-direction results in a longitudinal voltage drop Vxx=(V1-V2), and transverse (or 

Hall) voltage drop Vxy=(V2-V3). Therefore we can define Hall and longitudinal 

resistivities: 

xx
xx

V W

I L
   (Longitudinal) and 

xy

xy

V

I
  (Hall), 

and the corresponding Hall and longitudinal conductivities are 

2 2

xy

xy

xx xy




 



 and 

2 2

xx
xx

xx xy




 



. 

 

Fig. 1-7 Two dimensional electronic device with Hall bar geomety. 

 

German physicist Klaus von Klitzing first studied the Hall ( xy ) and 
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longitudinal ( xx ) resistivity of 2-D Si MOSFET samples in 1980 [18]. In strong 

magnetic field and at low temperature, he found that at low density Hall resistivity 

exhibits quantized plateaus at values of 

2xy

h

ne
  . 

This quantization is referred to as the quantum Hall effect (QHE) [19, 20]. The 

longitudinal resistivity xx vanishes at the plateaus, as shown as in Fig. 1.8, 

implying that the transport is non-dissipative.  

 

 

Fig. 1-8 Typical measurement of the integer quantum Hall effect in a 

GaAs-GaAlAs heterojunction (Image created by D.R. Leadley, Warwick 

University).  

 

The vanishing of xx  therefore also results in the quantization of Hall conductivity: 
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2 2

xy

xy

xx xy




 




2e
n

h
 . 

The oscillations in xx at small B are called as Shubnikov-deHaas (SdH) oscillations, 

arising from that the DOS of 2-DEG breaks up into a sequence of  -function 

Landau levels (LL, see definition below) spaced by c at high magnetic fields: 

0

2 1
( , ) ( )

2
c

n

eB
DOS E B E n

h
 





 
   

 
 , 

where n is integer numbers, B is magnetic field and /c eB m   is the cyclotron 

frequency. Therefore at a fixed charge density ns, filled LLs also changes with B. 

xx then goes through a maximum every time this number is half-integer, when 

Fermi energy lies at the center of a LL. If B1 and B2 correspond to two successive 

maximums, they must be related by: 

1 2

1
2 / 2 /

s sn n

eB h eB h
  , 

thus 

1 2

2

1 1
s

e
n

h
B B


 

 
 

. 

In this equation we also notice that the period 
1

B

 
 
 

 in SdH oscillation is constant 

and we can use this to determine charge density. 

To understand plateau features of Hall conductivity in QHE, we derive the 

electronic spectrum by solving the Schrödinger equation in a rectangular conductor:   

1
( ) ( )

2
n cE n U y   . 
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Actually each set of wave functions with the same value of n is called a Landau 

level. This is illustrated in Fig 1.9 and here ( )U y  is a confining potential resulted 

from boundary condition. The dispersion of the LLs readily implies the existence of 

the conducting 1-D channels propagating along the edge. These edge states are 

distributed on opposite sides of the 2-DEG system; they are well separated and travel 

in opposite directions, therefore it completely diminishes backscattering and makes 

system dissipationless. At filling factor  , there are   (due to diminishing of at the 

same edge) conducting edge channels, which give rise to quantized Hall conductivity 

of 
2e

h
 .  More discussion about the QHE could be found in [21]. 

 

 

Fig. 1-9 Edge states topologically separated by the magnetic field. In the absence 

of scattering the quantum of conductance e
2
/h carried by each channel contributes 

into the quantization of the Hall conductivity xy . 
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1.6 Introduction to Graphene 

 

As conventional electronics already pushes Moore’s law to extremely high 

densities, the traditional Si-CMOS technology faces several critical challenges such 

as self-heating due to increased dissipated power density, mobility degradation, and 

leakage currents due to charge tunneling. Thus researchers have been seeking for 

alternative electronic materials to supplement or replace Si-CMOS technology. 

Graphene has been proposed to be a very important candidate for future 

generation nanoelectronics. As the thinnest isolated materials ever discovered, 

graphene was only first isolated from graphite several years ago [5, 22], it has 

quickly become a “wonder” material in condensed matter physics field [23]. 

The linear energy-momentum relation of charges in single layer graphene and 

quadratic relation in bi-layer graphene are among the most interesting electronic 

properties of graphene. Beyond this, due to its remarkably high electron mobility [24, 

25], special thermal [26], mechanical [27-30] and optical properties [31-34], 

graphene is a promising material with many potential applications, such as chemical 

and biological detection, components in integrated circuits, transparent electrodes, 

ultra-capacitors and quantum computers using anionic circuits [35].  

http://en.wikipedia.org/wiki/Electron_mobility
http://en.wikipedia.org/wiki/Quantum_computer


15 

 

1.6.1 Graphene Lattice structure 

Graphene is an allotrope of carbon, consisting of one-atom-thick planar sheets of 

sp
2
-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. 

Each carbon atom has six electrons which occupy the atomic orbitals 1s
2
, 2s

2 
and 2p

2
. 

The two electrons in the 1s
2 

orbital are strongly bonded; the four remaining valence 

electrons 2s, 2px, 2py and 2pz (excitation of one 2s electron into 2pz) have very 

similar energies, hence their wavefunctions can mix up in a process called 

hybridization. The resulting states are shown in Fig. 1.10. Three states lie in the 

xy-plane and the adjacent two has an angle of 120
o
. These are the so-called σ states 

that form covalent bonds with their neighbors and give rise to the hexagonal lattice 

structure of graphene. The remaining state is the 2pz orbital, the π state, is aligned to 

the z-direction. Electrons in this state are weakly bonded and can hop easily between 

neighboring atoms.  

        

 

Fig. 1-10 (a) By combining the s-orbital with two p-orbitals, three sp2 orbitals 

plus a single p orbital are produced, each containing a single electron. (b) The 

shape of an SP
2
 hybridized orbitals 

 

http://en.wikipedia.org/wiki/Allotrope
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Plane_(geometry)
http://en.wikipedia.org/wiki/Sp2_bond
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As shown by Figure 1.11(a), graphene is monolayer of carbon atoms arranged 

by honeycomb lattice. Such lattice can be seen as a triangular lattice with a basis of 

two atoms per unit cell (Here gray rhombus and hexagon indicate two 

representations of the unit cell, each containing two atoms). 

 

 

Fig. 1-11 (a) Graphene hexagonal lattice. The gray rhombus and hexagon are two 

representations of unit cell. (b) Real space of Graphene lattic with primitive 

vectors. (c) Graphene reciprocal lattice with primitive reciprocal vectors and 

high-symmetry points Γ, K and M. 

 

The graphene lattice has two primitive vectors (as shown in Fig. 1.11(b)): 

1a  = 0a (
3 1

,
2 2

),  2a  = 0a (
3 1

,
2 2

 ), 

where a0 =2.46Å is the lattice spacing constant. Correspondingly the primitive 

reciprocal lattice vectors are given by (as shown in Fig. 1.11(c)): 
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1b  = 
0

1

a
(

2
,2

3


 ),  

2b  = 
0

1

a
(

2
, 2

3


 ). 

Here we notice that 2i j ija b   , which satisfies the standard definition of 

reciprocal space. In Fig. 1.11(c) there are two high-symmetry inequivalent K points 

at the corners of the hexagonal Brillouin zone labeled K and K’. 

 

1.6.2 Unique Dispersion Relation of Graphene 

Given that the honeycomb lattice of graphene has two atoms per unit cell, one 

can use Bloch’s theorem to write down the eigenstate of the lattice Hamiltonian. The 

tight-binding approximation uses linear combinations of atomic wavefunctions to 

calculate the wavefunction for the lattice,  

( ) ( ) ( ) ( ) ( )

1
            [ ( ) ( ) ( ) ( )]j

k A Ak B Bk

ik R A A B B

j

j

r c k r c k r

e c k r R c k r R
N

  

 


 

   
, 

where N is the number of an elementary cell, and the functions ( )r  are the 

wavefunctions of the zp orbitals of the carbon atoms. The coefficients lc  are 

chosen so that ( )k r  is an eigenstate of the tight-binding Hamiltonian. 

1 2jR na ma   indicates the positions of the A and B atoms, with ( , )j n m specify 

the position of each graphene unit cell. The three nearest neighbor B atoms 

surrounding the A atom could be described as: 

1 = a 0(
3 1

,
2 2

), 2 = a0 (
3 1

,
2 2

 ), 3 = a0 ( 0, 1 ). 

The Hamiltonian matrix H can be written as: 
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0 ( )

*( ) 0

f k
H

f k

 
  
 

, 

where ( ) lik

l

f k t e
 

   , where t is the nearest neighbors hopping energy ≈2.8 eV. 

From )r()k(E)r(H   , the energy bands are derived to be:  

2 0 0 03
( ) ( ) 1 4cos 4cos cos

2 2 2
x x y

a a a
E k f k t k k k       . 

 

 

Fig. 1-12 Energy dispersion relation of graphene. Right top: linear dispersion 

relation close to Dirac points. Right bottom: corresponding high symmetric points 

in k-space. 

 

Clearly, at K and K’ points, 0)'K(E)K(E   . In their vicinity, after Taylor 

expansion in terms of (')k k K    we obtain conical dispersion relation 

corresponding to relativistic massless Dirac Fermions as shown in Figure 1.12:  
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(') (')

0

3
( )

2
FE k a t k K v k K       , 

where
Fv  = 3 a0t/2≈110

6
 m/s, or 1/300 the speed of light in vacuum. Such a linear 

dispersion relation is in contrast to the usual parabolic case 
2 2

2 *

k
E

m
  in metals and 

semiconductors, where m* is the effective mass of the charge carriers. Therefore 

charge carriers in graphene behave like relativistic particles with an effective speed 

of light given by the Fermi velocity. This behavior is one of the most intriguing 

aspects about graphene, and underlies the tremendous interest generated by 

graphene. 

 

1.6.3 Chirality of graphene 

We notice that for electrons within ~1eV of the Dirac point K, the Hamiltonian 

resembles that of low-energy massless Dirac fermions: 

0

0

x y

k F

x y

k ik
H v k

k ik


 
   

 
. 

Similarly, close to the K’ point, ' *k FH v k  , where   is the Pauli matrices and 

* denotes the complex conjugate.   describes a quantity that is analogous to, but 

completely different from the ‘real’ spin, therefore is named “pseudospin”, and it 

accounts for contributions from different sublattices A and B.  

This special effect is also called chirality which has another physical description: 

the propagating direction and phase of an electron in k-space are not independent. 
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The concepts of chirality and pseudospin are important because many electronic 

processes (such as Klein tunneling [36-38]) in graphene can be understood as a 

consequence of the conservation of these quantities. 

An alternative view on the origin of the chirality in graphene is based on the 

concept of “Berry phase” [2, 39, 40]. Since the electron wave function is a 

two-component spinor, it has to change sign when the electron moves along the 

closed contour. Thus the wave function gains an additional phase π.  

This Berry’s phase can further be probed in the magnetic field regime in single 

layer graphene, in which a semi-classical magneto-oscillation description holds:  

1
2

( , ) cos[2 ( / )]xx FR R B T B B      . 

Here R(B,T) is the SdH oscillation amplitude, BF is the frequency of the SdH 

oscillation in 1/B, and   is the associated Berry’s phase.  =0 (or 1) corresponds 

to the trivial case, and  =1/2 is an indication of new physics, implying the existence 

of Dirac particles. 

The band structure of bilayer graphene is gapless and the fermions in BLG, as in 

SLG, are also chiral but with a Berry phase equal to 2 instead of  . 

 

1.6.4 Stacking order of graphene 

Bilayer is stacked in a regular Bernal AB configuration which is usually named 

as Bernal staking, while trilayer graphene (TLG) has two natural stable allotropes: (1) 
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ABA or Bernal stacking, where the atoms of the topmost layer lie exactly on top of 

those of the bottom layer (Fig. 1.13a); and (2) ABC or rhombohedral stacking, where 

one sublattice of the top layer lies above the center of the hexagons in the bottom 

layer (Fig. 1.13b).  

 

Fig. 1-13 ABA (B-stacked) and ABC (r-stacked) stacking of TLG 

This subtle distinction in stacking order results in a dramatic difference in band 

structures. The dispersion of B-TLG is a combination of the linear dispersion of 

single layer graphene (SLG) and the quadratic relation of bilayer (BLG) (Fig. 1.14a), 

whereas the dispersion of r-TLG is approximately cubic, with its conductance and 

valence bands touching at a point close to the highly symmetric K and K’ points (Fig. 

1.14b) [41-44].  
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Fig. 1-14 (a) and (b): Band structures (main panel) and schematics (inset) of B- 

and r-stacked TLG, respectively. 

 

1.6.5 Mechanical Properties of graphene 

The static mechanical properties of an isotropic 2D membrane are described by 

four parameters: the in plane Young's modulus Y, the Poisson ratio  , the breaking 

stress/strain, and the bending rigidity B. These parameters are detailed in table 1.1, 

and they dictate, e.g. response to strain, bending rigidity, or the resonant frequency 

of a graphene nanoelectromechanical resonator [28, 45], etc. 

Graphene's static mechanical properties are as impressive as its electrical 

properties. As of 2009, graphene appears to be one of the strongest materials ever 

tested [30]. Measurements have shown that graphene has a breaking stress 200 times 

greater than steel, with a 2D tensile stress of 42 N/m corresponding with a stran of 

25%. Its Young's modulus is about 1000 GPa, which also differs from that of the 

http://en.wikipedia.org/wiki/Breaking_strength
http://en.wikipedia.org/wiki/Steel
http://en.wikipedia.org/wiki/Young%27s_modulus
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bulk graphite.  

 definition formula 

Young's 

modulus 

The relation between the linear restoring force x  

in a membrane due to a linear (uniaxial) strain x  

on the membrane. 

x xY    

Poisson ratio A measure of how much a membrane contracts along 

a direction perpendicular to an applied (uniaxial) 

strain. (for a perfectly incompressible object since it 

deformes elastically at small strains it would have a 

Poisson's ratio of exactly 0.5, and for a very soft 

object it is almost 0.) 

y x    

Breaking 

stress/strain 

The point at which the graphene membrane breaks 

due to in-plane stress/strain. 

 

Bending 

rigidity 

The amount of energy per unit area needed to bend 

an object. (R is a radious of curvature, A is area) 

2

1

2

bendE B

A R


 

Table 1-1 Expression of parameters related with material’s mechanical properties 

 

From these values, we can see that graphene is very strong and rigid, and is a 

promising candidate for NEMS applications such as pressure sensors and resonators. 

Another interesting feature in graphene is its susceptibility to ripple formation 

[46-53], that arises from the nonlinear coupling of the bending modulus to the strain 

http://en.wikipedia.org/wiki/Nanoelectromechanical_systems
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in a membrane through the Poisson ratio. This will be discussed in details in chapter 

7. 
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2. Chapter 2. Fabrication and Experimental Setup 

In this chapter I will describe some essential techniques for graphene device 

fabrication. The most difficult aspects include: 

1) Isolation and identification of graphene sheets from bulk graphite.  

2) Fabricating electrodes with transparent contacts to graphene  

3) Fabricating suspended graphene devices. 

This chapter will start with the well-known “Scotch tape method” (section 2.1) 

followed by introduction of our improved “scratching exfoliation method” (section 

2.2). We will then describe regular lithography fabrication in section 2.3.1 and 

finally a detailed introduction of an innovative lithography-free technique for singe 

gated (section 2.1.2) and double gated devices (section 2.1.2).  

 



26 

 

2.1 Graphene Exfoliation 

The most well-known method to obtain exfoliated graphene is so-called “Scotch 

tape” or “mechanical exfoliation” method. It was well-known within the scanninng 

tunneling microcopy community that scotch tape can be used to peel layered 

compounds, though Geim group popularized this technique. It was described in an 

article in Scientific American in 2008 [54]: anyone with a chunk of graphite, a roll of 

scotch tape and a clean wafer can start to produce graphene in a few days. 

Table 2.1 shows the scotch tape technique for producing graphene. The 

procedure is also demonstrated on Youtube: 

http://www.youtube.com/watch?v=rphiCdR68TE.  
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1. Wafer 

preparation 

1. Clean the Si/SiO2 wafers by sonicating in acetone for ~15 minutes.  

2. Remove wafers from acetone, rinse with isopropyl alcohol (IPA) and 

sonicate in IPA for 20 min. 

3. Blow dry in nitrogen (N2) gas. 

2. Peel off 

thin 

graphite 

flakes onto 

tape 

Attach a small piece of Kish graphite flake to single sided plastic sticky 

tape. Fold the tape right next to the flake so that you sandwich it 

between the tape's sticky sides. Press down then peel the tape apart 

slowly so that the graphite cleaves smoothly in two. Repeat until 

graphite spreads all over the tape. 

 

3. Attach 

tape to 

wafer then 

peel of the 

tape 

Carefully lay the cleaved “graphite tape” onto the clean wafer. Using 

soft tools to gently press and squeeze out any air between the tape and 

sample. Then slowly peeling off the tape. 

  

Table 2-1 Procedure of “Scotch tape” mechanical exfolication of graphene 
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During my five years of “exfoliation career”, I also developed another method to 

exfoliate relative large graphene flakes, which were used in all projects covered in 

this thesis. I named this method “scratching exfoliation” as described below: 

 

Wafer 

preparation 

Same as table 2.1 

Peel off  

thin graphite 

flakes and 

attach them 

to wafer 

directly 

1. Prepare a small stick such as L-wrench. 

2. Use double-sided tape to attach a Kish graphite (or HOPG) to one 

end of the stick (make sure the tape is fully covered by graphite 

flake to prevent glue residues) 

3. Use the scotch tape to peel and expose a fresh surface of the 

graphite. Then press it directly to a clean wafer.  

Press and 

scratch 

1. First use a soft object (better with surface covered by same 

graphite material) to rub on the peeled graphite until it is well 

adhered to the substrate surface. 

2. Then use a clean and sharp knife to scratch the graphite, usually 

graphene flakes are located close to the areas that are scratched by 

the knife.  

            Table 2-2 Procedure of “scratching exfoliation” of graphene flakes 
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2.2 Graphene Location and Layer Identification 

After mechanical exfoliation of graphene flakes on Si/SiO2 wafers, we need to 

identify the number of graphene layers and locate their position for further device 

fabrication. 

Si wafers cover by 300-nm thick SiO2 yield the best color contrast for 

identifying graphene[55], thus allowing us to identify and locate graphene under 

optical microscope (Figure 2.1). The confirmation of single layer, bilayer graphene, 

and even trilayer graphene can be performed by either Raman spectroscopy [31, 34] 

or quantum Hall effect measurements [1, 2, 56]. 

 

 

Fig. 2-1 (a) Optical microscope images of single layer graphene and (b) bilayer 

and trilayer graphene attached with a multiple layer bulk graphite. (c) AFM image 

of single layer, bilayer and trilayer graphene in serious. 

 

Tapping mode Atomic Force Microscopy (AFM) is also used to observe 

mesoscopic features of the graphene flakes, as shown in Figure 2.1 c. The measuree 

thickness of single layer graphene flake is around 0.8-1 nm, which is larger than 

graphite interlayer spacing 0.34 nm, possibly because of the presence of a “dead” 
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layer (such as water or contaminants) on graphene or between graphene and the 

substrate. 

 

 

Fig. 2-2 Layer dependence of graphene Raman spectrum. Figure adapted from 

(Yu, 2010). 

 

2.3 Electrodes Fabrication 

To date mechanically exfoliated graphene has much higher quality than that of 

CVD grown graphene. Thus current electrical transport studies mainly focus on 

exfoliated graphene based devices. In the next three sections we will demonstrate 

fabrication procedures of electrically contacted graphene devices. We will give a 

detailed description of the lithography-free processes and highlight the key 

innovations in this method. 
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2.3.1 Electron-beam lithography fabrication 

We usually use electron-beam lithography (EBL) to pattern electrodes with 

complicated geometries. Two steps of EBL are necessary for patterning graphene 

devices: the first step puts a large array of alignment marks (Ti) close to targeted 

graphene for accurate alignment in the second step that patterns electrodes. Between 

these two steps of EBL, we anneal our devices in a furnace at 300C in oxygen, in 

order to clean resist residues induced by the first EBL step. We found that this step is 

very important for obtaining good electric contacts between electrodes and graphene.  

 

 

Fig. 2-3 An SEM image of a graphene device whose geometry was designed for 

thermal power measurement. Notice that two allignment marks are coverd by 

circular metal due to the exposure during the second step of EBL. 

 



32 

 

The standard EBL fabrication processes consist of several steps described in 

table 2.3 and shown in Fig. 2.4. 

1 Spin coat MMA/PMMA double layer Ebeam resist (8.5 MMA EL 9 and 

PMMA 950 A4 from Microchem) and bake at 170C for 10 minutes for each 

layer. 

2 Perform EBL (LEO SUPRA 55) to pattern designed electrodes designed 

by DesignCAD LT2000 (typical area dosage used is ~460 nC/cm
2
 for 120pA 

beam current to write patterns smaller than 20 m. For bonding pads, typical 

area dosage used is ~400 nC/cm
2
 for 4300pA beam current to write features 

smaller 150 m). Develop samples in Methyl Isobutyl Ketone/Isopropyl 

Alcohol (MIBK/IPA) (1:3) for 65 seconds followed by 1-min rinsing in IPA. 

3 Deposit electrodes metal in Ebeam evaporator (Temescal BJD 1800 

system); the pressure of vacuum during evaporation is usually below 810
-6

 

torr. A 5-nm adhesion layer of Ti or Cr is deposited at a rate of ~1Å/s, 

followed by 50nm of Al or Au at a rate of ~2 Å/s.  

4 Immerse samples in hot acetone (60C to 80C) for ~3 hours. Then rinse 

the samples in IPA for a few minutes and blow them dry in N2 gas. Metals 

deposited on unexposed resist will be lifted off. 

Table 2-3 Procedure of E-beam lithography for graphene devices. 
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Fig. 2-4 Schematics of EBL fabrication. (a) Graphene flake on SiO2/Si substrate; 

(b) Spin coating double layers of positive electron-beam resist; (c) Electron-beam 

exposure on pre-designed regions; followed by metal evaporation; (d) Lift-off 

metals deposited on unexposed resist. 

 

2.3.2 Lithography-free electrodes fabrication for single gated devices 

Lithographical processes described above, which have been used to fabricate 

almost all graphene devices to date, are known to be detrimental to the mobility of 

graphene devices. As graphene consists of only a single atomic layer, it is 

particularly sensitive to surface contaminants, including resist residues left by 

lithographical processes, which locally modify the electrochemical potential and 

provide extra scattering sites [57, 58]. Though annealing techniques have been 

demonstrated to improve device mobility [58, 59], they are not well-controlled and 

do not always produce consistent results. Lithography-free fabrication techniques 

have been reported [60, 61]; however, the procedures are complicated and yield 

devices that are restricted to simple geometries. We develop a lithography-free 

device fabrication technique [62] for graphene devices, via metal evaporation 

through silicon hard masks. This technique is simple, inexpensive, and does not 

require any resist processing; thus, it greatly increases device throughput, produces 
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transparent contacts between graphene and electrodes, and yields high quality 

graphene devices. Additionally, hard masks, and hence devices, with complex 

patterns can be readily fabricated. Using this technique, we fabricate both 

substrate-supported and suspended devices.  

The first and most crucial step in our fabrication procedure is the synthesis of 

hard silicon shadow masks, as illustrated in Fig. 2.5(a). Here we use 500-μm 

double-side-polished, {100} orientation silicon wafers that are 1 x 1 cm
2
 in size. 

Firstly, a 200-nm layer of chromium is evaporated on one side of the wafer, followed 

by the deposition of a thin layer of poly (methyl methacrylate) (PMMA) E-beam 

resist. This chromium layer will serve as an etching mask for later KOH and 

inductively coupled plasma (ICP) etching processes. Since controllable etching of 

thick (>100-μm) Si layer is difficult, we reduce the thickness for the final pattern 

etching by using photolithography and KOH etching to open a large, 400-μm deep 

window on the back of the wafer, leaving a 100-μm thick Si layer to be etched in the 

final step. The shadow mask structure is then patterned on the front side using 

e-beam lithography. After exposing and developing the resist, we use a chromium 

etchant (1020AC) to remove the exposed chromium layer. Finally, the shadow mask 

is completed by using ICP to etch through the exposed silicon layer, creating a Si 

wafer with patterned openings.  

 

https://webmail.ucr.edu/wm/mail/read.html?sessionid=g7d9b502b95a2f933f21aacc5c5e1a7944khp2h7mkl&uid=6537&msgid=2386&mbox=user.wbao001
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Fig. 2-5 Fabrication of silicon shadow masks. (a). Schematic illustration of the 

fabrication process. (b, c). SEM images of two silicon shadow masks. The red 

arrows in (c) indicate the alignment windows. Scale bars: 5 μm and 50 μm 

respectively.  

 

SEM images of two ready-to-use silicon shadow masks with different 

geometries are shown in Fig. 2.5 (b) and (c). Features as small as 100 nm can be 

reliably fabricated. The masks typically also contain alignment windows that assist 

with precision alignment during fabrication, as indicated by the red arrows in Fig. 

2.5(c). These shadow masks are exceedingly robust, and can be used more than 50 

times. We note that traditional shadow masks, which consist of silicon nitride Si3N4 

membranes that are partially released from Si substrates [63-66], often exhibit 

distorted edges [63, 65, 66]. In contrast, our silicon shadow mask has a flat 

sample-contacting surface, and is sufficiently rigid for complicated structures such as 

Hall bar geometries as shown in Fig. 2.6. 
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Fig. 2-6 Si shadow mask with Hall bar geometry. 

 

To fabricate graphene devices, we exfoliate graphene sheets on standard Si/SiO2 

wafers. With the help of alignment windows, we use micromanipulator XYZ 

translation stages to carefully align the shadow mask to identified graphene sheets, 

and then place the entire assembly in a vacuum chamber as shown in Fig. 2.7(a) for 

further metal deposition. The mask nominally rests closely on the substrate (Fig. 

2.7b and c), though the effective mask–substrate separation, which is typically about 

few hundred nanometers, is determined by the thickness of the graphite residues on 

the substrate surface.  
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Fig. 2-7 (a) Graphene devices can be fabricated by direct deposition of metallic 

electrodes through these masks. (b,c) top and side views of shadow mask and 

sample combination. 
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In completed devices, we find that the metal electrodes typically extend beyond 

the shadow mask openings by ~0.2–0.5 μm, due to the extended size of the metal 

source and the finite mask–device separation, which is illustrated in Fig. 2.8. 

 

 

Fig. 2-8 Schematic of metal diffusion, The gray area indicates an extension of 

metal deposition. 

 

To compare the qualities of graphene devices made by conventional E-beam 

lithography and shadow mask evaporation, we fabricate devices using both 

techniques on the same graphene sheet. To this end, we use a shadow mask to 

deposit four electrodes (labeled A, B, C, D in Fig. 2.9), and subsequently e-beam 

lithography to deposit three additional electrodes (E, F and G in Fig. 2.9), on a 

single-layer graphene sheet. The electrodes are designed to yield devices with 
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similar aspect ratios. After each fabrication, the device was characterized by atomic 

force microscope (AFM) imaging and electrical measurements.  

 

Fig. 2-9 Optical and AFM (side panels) images of a single-layer graphene sheet 

device. The electrodes A, B, C and D were deposited by evaporation through a 

shadow mask, and E, F and G were fabricated using standard electron beam 

lithography. Scale bar in the optical image: 5 μm. Left lower is an STM image of 

an as-fabricated device using the shadow mask technique. The main panel 

displays an image of 85 nm x 85 nm area, and the inset shows the atomic lattice 

over an area of 2.5 nm x 2.5 nm. 

 

The right panel of Fig. 2.9 displays an AFM image of the graphene surface after 

lithography, revealing a thin layer of resist residue. The device was annealed in an 

H2/Ar atmosphere at 200 ºC for 45 minutes to remove the contaminants. Using 

standard lock-in techniques, the two-terminal conductance, G, of the devices were 

measured as a function of the back gate voltage, Vg, that controls the density n and 
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type of the charge carriers. The device mobility was calculated from the slope of 

the plots of G vs. Vg: 

g

W t G

L V








, 

where t is the thickness of the silicon oxide layer, W and L are the width and length 

of the source-drain channel and =3.9 is the dielectric constant of silicon oxide. For a 

typical device fabricated by lithography, was found to be 1500 and 3000 cm
2
/(V·s) 

at room temperature and 4.2 K, respectively (Fig. 2.10 (b)). 

 

 

Fig. 2-10 Plots of two-terminal conductance (G) vs. back gate voltage (Vg) for the 

electrode pairs (a) BC and (b) FG at room temperature (red) and 4.2 K (black). 

 

In contrast, for devices fabricated by shadow mask evaporation, the graphene 

surface remains clean after evaporation, as shown by the AFM images (left panel, 

Fig. 2.9). Atomic resolution images of the honeycomb lattice over large areas can be 
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obtained using scanning tunneling microscopy, without any annealing treatment (Fig. 

2.9 left lower). From transport measurements, the device mobility is ~4000 

cm
2
/(V·s) at room temperature, and increases to ~7000 cm

2
/(V·s) at 4.2 K (Fig. 

2.10(a)). Thus, eliminating lithography yields devices with significantly higher 

mobility. 

This shadow mask technique can be applied to fabricate devices with a variety 

of geometries. As another demonstration of its power and versatility, we extend it to 

the fabrication of suspended devices via two complementary methods. In the first 

technique (Fig. 2.11a–c), a completed device supported on a substrate was fabricated 

on the substrate, followed by etching by hydrofluoric acid (HF), which releases the 

graphene sheet from the SiO2 layer, and critical point drying. Here the Cr/Au 

electrodes double as etch masks, and HF etches anisotropically and preferentially 

along graphene [25], resulting in suspension of the entire graphene sheet. The 

HF-etched devices are annealed using current-induced Joule heating [59]. The 

mobilities were found to be 20,000 and 120,000 cm
2
/(V·s), respectively, at room 

temperature and 4.2 K. The plots of G vs. Vg display pronounced sub-linear 

curvature, indicating the high mobility of the material [24, 25] (Fig. 2.11d).  
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Fig. 2-11 (a–c) Fabrication of suspended graphene devices via HF etching. (d) 

Plots of two-terminal conductance (G) vs. back gate voltage (Vg) for an 

HF-released single layer graphene device at room temperature (red) and 4.2 K 

(black). Inset: SEM image of such a device. Scale bar: 1 μm (e–g) Fabrication of 

suspended graphene devices over pre-defined trenches on the substrate. (h) Plots 

of G vs. Vg for a bi-layer graphene device over a trench at room temperature (red) 

and 4.2 K (black). Inset: SEM image of such a device. Scale bar: 3 μm 

 

Using the second technique to fabricate suspended devices, a graphene sheet is 

directly exfoliated across pre-defined trenches on the substrate; electrodes are 

deposited by evaporating through shadow masks that are carefully aligned with the 

trenches (Fig. 2.11e–g). The inset in Fig. 2.11(h) shows an image of a bi-layer 

device fabricated using this technique. Since these suspended devices do not undergo 

any chemical processing, they are extremely clean. The device mobility of this 
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bi-layer device was measured to be ~2000 cm
2
/(V·s) at room temperature, and 60000 

cm
2
/(V·s) at 4.2 K (Fig. 2.11h).  

In conclusion, we have demonstrated a lithography-free technique for 

fabrication of high quality graphene devices, which may be either 

substrate-supported or suspended. Applications of this technique include ultra-clean 

devices for scanning tunneling microscope (STM) and optical measurements, or 

devices coupled to specialized (e.g. superconducting or ferromagnetic) electrodes. In 

particular, it provides an especially powerful approach for investigation of the 

mobility bottleneck for graphene devices, as it allows fabrication of ultra-clean 

devices that are free of both lithography contaminants and substrates.  

 

2.3.3 Lithography-free double gated electrodes fabrication 

Doubly gated suspended devices (Fig. 2.12) are capable to independently 

control perpendicular electrical field E and charge carrier density n. Using Eq. (2.1) 

and (2.2) we can tune E and n independently in the suspended BLG by applying top 

and back gate voltages Vtg and Vbg.  

E.=(Vtg- Vtg)/2eo                                (2.1) 

ntot=(Vbg+ Vtg)                       (2.2) 
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Fig. 2-12 Schematic diagram of doubly suspended graphene device  

 

This fabrication technique is based on basic shadow mask fabrication method 

described in the last section. Fig. 2.13 illustrates the entire fabrication process. We 

first exfoliate graphene sheets on Si/SiO2 (500 m/300 nm) wafers with 

pre-patterned trenches which are 250nm in depth (Fig. 2.13b), then source and drain 

electrodes are fabricated by direct deposition of Ti/Au (5nm/100nm) metals through 

shadow masks that are carefully aligned to selected suspended graphene sheets (Fig. 

2.13c). Subsequently, another piece of Si/SiO2 (100 m / 300nm) wafer is added 

with the SiO2 surface contacting the whole device (Fig. 2.13e). The two wafers are 

then combined by epoxy. We note that the separation between two wafers is usually 

limited by dust particles left between wafers, therefore the surface of wafers need 

cleaning and whole process is performed in cleanroom. A smaller size of the top 

wafer is also preferred to decrease this separation.  
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Fig. 2-13 Fabrication procedure of doubly suspended graphene device.  

 

2.4 Experimental Setup 

After successful fabrication of graphene devices, we first mount them onto chip 

carriers and use wire-bonder to connect electrodes to carrier’s pins, then insert the 

whole chip carrier into our measurement system (He3 or He4 cryostat) and perform 

measurement. The procedures are detailed Ph.D. theses of Feng Miao[67] and Gang 

Liu[68].  
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3. Chapter 3. Proximity Induced Superconductivity in Graphene 

Josephson Transistors 

Graphene coupled with superconducting electrodes yields graphene Josephson 

junctions. In this chapter, we will discuss our study of proximity induced 

superconductivity in graphene Josephson transistors. 

We will start this chapter by introducing graphene Josephson junctions in 

section 3.1. Then we will discuss two main characteristics of graphene Josephson 

junctions -- multiple Andreev reflections and the proximity induced bi-polar 

supercurrent. We observed large depression in the critical current Ic and large 

variation in the product IcRn (where Rn is the normal state resistance of the junction) 

with gate voltage, in contrast to theoretical predictions in ballistic model. In section 

3.4 we will investigate the important role of thermal fluctuations in electronic 

transport in graphene Josephson transistors. We will also introduce a RCSJ 

(resistively and capacitively shunted junction) model, in which the depression of Ic 

can be explained by premature switching in underdamped Josephson junctions. In 

section 3.5, we calculate the gate dependence of product IcRn by considering the 

effect of premature switching, and its agreement with experimental data shows 

evidence of premature switching in our graphene Josephson junctions. In the last 

section we briefly describe our efforts toward suspended graphene Josephson 

transistors. 
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3.1 Introduction of Graphene Josephson Junctions 

Graphene can be easily coupled to special electrodes such as superconductors 

with controllable interfaces. Thus, coupling graphene to superconducting electrodes 

provides an ideal platform for investigating the interplay between superconductivity 

and relativistic quantum electrodynamics, which will be useful for understanding of 

high temperature and heavy-element superconductors[69]. Superconducting order is 

also predicted to emerge in pure and doped graphene [70].     

Coupling superconducting electrodes to graphene yields a Josephson junction 

(JJ). In contrast to traditional JJ, in which the weak links are insulators, normal 

metals (N) or constrictions (Fig. 3.1(a)), a superconductor/graphene/superconductor 

(SGS) JJ consists of a 2D relativistic system with gate-tunable (and potentially 

ballistic) conductance (Fig. 3.1(b)) [71, 72].  

 

  

Fig. 3-1 (a) Schematic diagram of Josephson junction. (b) An SEM image of a 

graphene Josephson junction device.  

 

Several unusual phenomena have been predicted to arise in this novel system, 

such as specular Andreev reflection [73], novel propagating modes of Andreev 
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electrons [74] and oscillation of tunneling probability with barrier width [75]. 

Experimentally, the observation of a bi-polar supercurrent and multiple Andreev 

reflection (MAR) in graphene Josephson junctions has been reported by several 

groups [76-78]. 

In SGS junctions, the electronic transport in graphene is strongly affected by the 

so-called proximity effect, in which Cooper pairs in superconducting electrodes 

penetrate into graphene and render it superconducting. Experimentally, proximity 

induced superconducting phenomena in graphene include multiple Andreev 

reflections and bi-polar supercurrent in graphene. 

 

3.2 Multiple Andreev Reflections in Graphene 

Andreev reflection is a type of particle scattering that occurs at interfaces 

between a superconductor (S) and a normal (N) state material, as illustrated in Fig. 

3.2. During an Andreev reflection, an electron in the normal metal incident on the 

N/S interface is retro-reflected as a hole, while transferring charge 2e to the 

superconducting Cooper pair condensate [79].  

 

http://en.wikipedia.org/wiki/Scattering
http://en.wikipedia.org/wiki/Superconductor
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Fig. 3-2 An electron (red) meeting the interface between a normal conductor (N) 

and asuperconductor (S) produces a Cooper pair in the superconductor and a retro 

reflected hole (green) in the normal conductor. Vertical arrows indicate 

the spin band occupied by each particle 

 

In SNS junctions, an electron in graphene can be reflected back and forth several 

times between the two N/S interfaces, gaining energy eV each time when it 

transverses the junction (electrons and holes, moving in opposite directions, are both 

accelerated by the bias voltage V), until it accumulates sufficient energy to exit 

graphene into a superconducting electrode as a quasiparticle (Fig. 3.3). Thus 

multiple Andreev reflection (MAR) gives rise to features [80]. 

 

http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Superconductor
http://en.wikipedia.org/wiki/Cooper_pair
http://en.wikipedia.org/wiki/Retroreflection
http://en.wikipedia.org/wiki/Retroreflection
http://en.wikipedia.org/wiki/Electron_hole
http://en.wikipedia.org/wiki/Spin_(physics)
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Fig. 3-3 Schematic energy diagram of the multiple Andreev reflection process in 

an SNS junction with an energy gap ∆. The electron  is retro-reflected as a 

positively charged hole, creating a Cooper pair in the superconductor; conversely, 

retro-reflection of a hole annihilates a Cooper pair.  

 

To observe MAR in SGS junctions, we measured differential conductance of 

devices as a function of voltage across the junction, as shown in Fig. 3.4, for a 

typical device at Vg=0V. The giant center peak at V=0 indicates the 

proximity-induced supercurrent. The peaks at V=±202 V mark the onset of 

quasiparticle conductance and correspond to 2, where  is the superconductor 

energy gap. Thus, for this SGS junction, we infer =101 eV, which is smaller than 

180 eV for bulk Aluminum. For our other devices,  ranges from 90 to 120 V. 
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Fig. 3-4 Differential conductance vs. voltage showing MAR peaks corresponding 

to n = 1, 2, 3 and 4 (arrows, left to right).  

 

At V<2, there are a series of smaller conductance peaks and such sub-gap 

features arise from the phenomenon of MAR in conductance. This MAR gives 

subharmonic features [80] at differential conductance when bias Vn=2Δ/ne, where Δ 

is the energy gap of superconducting electrode, n is an integer and e is electron 

charge. From Fig. 3.4, the sub-gap features occur at V=100, 68.7 and 47 V, 

corresponding to n=2, 3 and 4, respectively. The observation of MAR demonstrates 

the high transparency of graphene/superconducting electrode interfaces. Similar 

observations were also reported by several other research groups [76, 77]. 

We also note that specular Andreev reflection was not observed in our SGS 

devices. In specular Andreev reflection, when the electron-hole conversion occurs at 
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the N/S interface, the trajectory of the reflected hole is specular to that of the 

incident electron. Just like in the more common retro-Andreev reflection, the 

electron is converted into a hole, but the reflection angle is inverted, as shown in Fig. 

3.5. 

This was predicted to occur in weakly doped graphene for EF << , where  is 

the superconducting gap, and EF is the Fermi energy. Thus, the Fermi wavelength in 

graphene is required to be large compared to the superconducting coherence length 

[73]. This regime is difficult to achieve experimentally, requiring very high mobility 

devices with extremely sharp Dirac point, and specular Andreev reflection has not 

been observed to date.  

 

Fig. 3-5 Schematic diagram of the specular Andreev reflection process. 

 

3.3 Bi-polar Supercurrent in Graphene 

Besides MAR, the proximity effect is also evident from the observation of 

supercurrent in graphene Josephson junctions. We current biased the device and 

measured voltages dropped on graphene (color) as a function of both bias current 
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(y-axis) and gate voltage (x-axis), as plotted in Fig. 3.6 (a) and (c) for two different 

devices. The separations L between two electrodes of the devices are less than 300n. 

Supercurrent was observed in all devices (>10) with transparent 

graphene/superconducting electrode interfaces.  

 

Fig. 3-6 Supercurrent in graphene. (a) Voltage across the junction as a function of 

biased current (y-axis) and gate voltage (x-axis). The color scale of voltage is in 

units of V; (b) V-I line traces at different gate voltages taken from (a); (c) and (d) 

are the similar data sets from another device.  

 

Strikingly, supercurrent is observed in electron-doped, hole-doped and even 

around the charge neutrality point which has nominally zero charge density. The 
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values of critical current, at which the junction switches from zero resistance state to 

a resistive state, are strongly dependent on the applied gate voltages, as shown by V-I 

curves at different gate voltages in Fig. 3.6 (b) and (d). For this particular device 

corresponding to Fig. 3.6 (a), the critical current is about 200nA around Dirac point 

and about 450 nA at highly doped regions. Similar observation of gate-dependent 

supercurrent in graphene has recently been reported by other groups [76, 77]. 

The observation of gate tunable supercurrent sets SGS junctions apart from 

conventional Josephson junctions, whose V-I characteristics are typically fixed at a 

certain temperature and magnetic field. In Josephson junctions, the critical current Ic 

is a parameter indicating the strength of the weak link between two superconducting 

electrodes, which is about 2Δ/eRn for diffusive SNS or S/Insulator/S (SIS) junctions 

or about 2πeΔ/h for two superconductors coupled via a single quantum channel with 

perfect transmission [81]. Thus, both Ic and the product IcRn are expected to be 

constants for a given device, and the latter is only determined by the energy gap Δ of 

superconducting electrodes. However, for SGS junctions, both quantities are gate 

dependent, as shown in Fig. 3.6 (a) and (b). 

Josephson effects in graphene were first calculated for the ballistic case in 

reference [82] as shown in Fig. 3.7(a) Here  stands for Fermi energy, which is 

related to gate voltage by 

g
10

FF V102.7E   , 

where F ≈ 110
6
 m/s. At T=0, for a wide and short strip of graphene coupled to 
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superconducting electrodes, the values of Ic and IcRn are predicted to be: 

                    



Ic 1.33
eW

L   and  e
08.2RI nc




.              (3.1a) 

At the Dirac point they reach asymptotic values when highly doped: 

     



Ic 1.22
e


kFW

   and       e
44.2RI nc




.          (3.1b) 

In these expressions, W and L are the channel width and length of the graphene, 

respectively, h is the Planck’s constant and kF is the Fermi wavelength.  

 

Fig. 3-7 (a) Critical current Ic and Product of IcRN of a ballistic Josephson junction, 

as a function of the Fermi energy  in the normal region. (b) Critical current Ic vs. 

gate voltage showing bi-polar supercurrent; (c) Product of IcRN as a function of 

gate voltage for the same device.  

 

Our experimental results shown in Fig. 3.7 (b) and (c) qualitatively agree with 

them, e.g. Ic and IcRn attain their minimum values at the Dirac point, and increase 

with charge density. However, the agreement fails at the quantitative level. Taking 

W/L=10 and Δ=110 V extracted from MAR measurements, theory yields Ic~110nA 

at the Dirac point, where the experimental value is observed to be 6 nA. Another 

important discrepancy is that the IcRn product is predicted to have relatively weak 
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dependence on gate voltage – it increases by ~20% from half filling to highly doped 

regimes, in contrast to the experimentally observed increase of 200-300%. Similarly 

large variations in IcRn vs Vg were also reported by other groups [76, 77]. 

 

3.4 Premature Switching in RCSJ Model and Suppression of Ic 

The discrepancies between theoretical and experimental values of IcRn and Ic 

were tentatively attributed to disorder [83]. Here we explore the roles played by 

thermal fluctuations in SGS Josephson junctions. The strong depression of Ic is 

reminiscent of the behavior of premature switching in underdamped junction 

described in RCSJ model, in which the junction is shunted by a resistance Rj and a 

capacitance Cj [84]. For SNS junctions, we can take Rj~Rn. Within this model, the 

superconducting phase across the junction has the mechanical analogue of a particle 

in a titled washboard potential (Fig. 3.8), with a frictional force (dissipation) that 

scales with 1/Rn. Hence, the bias current corresponds to the tilting slope of the 

“washboard”, the superconducting state of the junction corresponds to the particle 

localized within one of the potential minima, and the resistive state to that rolling 

continuously down the potential. 
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Fig. 3-8 The “tilted washboard” model 

 

The RCSJ model is usually parameterized by the “quality factor” Q, which is 

defined by: 



QpR jC j , 

where ωp=(2eIc0/ħC)
1/2

 is the plasma frequency of the junction and Ic0 is the intrinsic 

critical current in the absence of fluctuation. The parameter Q indicates the 

dissipation experienced by the particle: the junction is overdamped if Q<<1, and 

underdamped if Q>1.  

Experimentally, an underdamped junction can be uniquely identified by its 

hysteretic V-I characteristics, that is, the retrapping current Ir (at which the junction 

switches from the resistive state to the superconducting state) occurs at a lower value 

than Ic, reflecting the effect of the inertia of a particle moving in a low friction 

potential. On the other hand, a junction with non-hysteretic V-I characteristics may 

either be overdamped, or under-damped but with weak Josephson coupling or strong 

thermal fluctuations. Examining our SGS devices, hysteretic V-I curves were 
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observed in the majority of the junctions, indicating that most, if not all, of the 

devices are underdamped. As shown in Fig. 3.9, we also observe that the hysteretic 

feature in SGS junctions is gate tunable: the hysteresis becomes much smaller or 

even vanishes when Vg tunes graphene from highly doped to zero doping regimes. 

 

Fig. 3-9 V-I curves at different gate voltage showing gate tunable 

hysteresis observed in SGS junctions 

 

In the presence of thermal and other fluctuations, premature switching is 

expected to occur in underdamped junctions, as the particle is thermally activated 

over the energy barrier. Due to the low damping, once an event of “escape” happens, 

the particle accelerates down the washboard and is never re-trapped. This premature 

switching is stochastic and induces a distribution in measured values of Ic, the 

average of which can be much smaller than Ic0. The mean value of Ic can be 
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approximated by the formula [84]: 



Ic  Ic0{1[(kBT /2EJ )ln(pt /2)]
2/3}

,                (3.2) 

where kBT is the thermal energy, EJ=ћIc/2e is the Josephson couple energy and 

Δt~0.1s is the sweeping time of the biased current through the dense part of the 

distribution of observed Ic values. Thus Ic will be significantly reduced from its 

“intrinsic” value 0cI  at finite temperature, if thermal fluctuation is non-negligible 

compared with the Josephson coupling energy.  

For our devices, ωp~ 10
11

 – 10
12 

Hz, so the logarithmic term yields ~ 21-23. At 

the Dirac point, if we estimate Ic=110nA from Eq. (3.1a), the ratio kBT/2EJ is ~0.05. 

This implies that the critical current is almost completely suppressed, and that the 

junction’s V-I curves is non-hysteretic due to thermal fluctuations, in agreement with 

experimental observation. When graphene is highly doped, the ratio kBT/2EJ 

decreases proportionally with increasing Ic0, indicating the decreasing importance of 

thermal energy. Thus premature switching can readily account for the much-reduced 

values of Ic observed in all experiments to date, as well as V-I characteristics that are 

hysteretic at high charge carrier density, and non-hysteretic at the Dirac point.  

We now seek to understand the unexpectedly strong dependence of IcRn on Vg 

within the model of premature switching in underdamped Josephson junctions. The 

gate-dependent Rn, which sets SGS apart from other JJs, plays a vital role here: 

changing gate voltage can effectively tune Ic0 and all other parameters that depend on 

Ic0, including EJ, ωp, and Q. Thus, as Vg increases from the Dirac point, Rn decreases, 
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leading to a smaller kBT/2EJ ratio and a less-suppressed Ic. Such relative increase in 

Ic is more than compensates of the decrease in Rn, resulting in a larger IcRn product. 

Quantitatively, we assume Ic0Rn=constant from Eq. (3.1) and calculate Ic0 using 

measured values of Rn(Vg); then the values of Ic(Vg) in the presence of thermal 

fluctuation are readily calculated using Eq. (3. 2) and multiplied by Rn. The resulting 

IcRn(Vg) are normalized to the value at the Dirac point (hence the exact value of the 

constant is inconsequential), and shown in Fig. 3.10 (a). For comparison, normalized 

data are shown in Fig. 3.10 (b). In the simulation, between the Dirac point and the 

highly doped regimes, IcRn varies by a factor of ~3-3.5, in reasonable agreement with 

the factor of 2.2-2.8 observed in the data.  

 

 

Fig. 3-10 (a) Calculated and (b) experimental curves of normalized IcRn 

vs. Vg, where IcRn is normalized to the value at the Dirac point.  

 

We also note that our simple simulation assumes IcRn=constant, and does not 
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take into account the 20% variation predicted by Eq. (3.1). This can partially explain 

the larger variation in IcRn in the simulation. Moreover, although our calculation is 

motivated by theoretical predictions for transport in the ballistic regime, both the 

RCSJ model and the assumption of a constant, “intrinsic” IcRn product are quite 

general; hence our results should have wide applicability.  

Finally, the gate dependence of the junction’s resistance leads to similar tunable 

behavior in its quality factor Q or dissipation. This is similar to the gate-tunable 

dissipation observed in carbon nanotube JJ [67, 85]. Because of its relatively large 

range of tunable Rn, graphene can be used to provide a tunable shunt resistor in other 

JJ for study of dissipation and quantum coherence [86]. 

In summary, our observation of depression of critical current Ic and the strong 

dependence of IcRn on charge density of SGS junctions can be satisfactorily 

accounted for by premature switching in underdamped Josephson junctions.  

 

3.5 Seeking for superconductivity in suspended graphene 

The key to observation of specular Andreev reflection in graphene is high 

mobility and sharp, well-defined Dirac points. Thus, we attempted to produce 

suspended-graphene Josephson transistors using lithography-free and 

ultranarrow-separation shadow mask technique (Fig. 3.11). Though preliminary 

results showed signatures of proximity-induced supercurrent, it is difficult to get 

devices with both high mobility and large Ic at the same time.  
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Fig. 3-11 Si shadow mask with 100-nm separation between two 

electrodes. 
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4. Chapter 4. Quantum Hall effect in graphene 

The integer quantum Hall effect (IQHE) is a prototypical quantum phenomena 

arising in 2DES. The key experimental signature is that, under a strong magnetic 

field, the Hall conductivity 
xy  of 2DES is quantized in integer numbers of e

2
/h, 

while the longitudinal resistivity vanishes. Furthermore, similar experiments on 

2DES with higher mobility and/or in higher magnetic fields reveal a fractional 

quantum Hall effect (FQHE) [87], where quantization of the Hall conductivity 

quantized at fractional values of e
2
/h. Although transport behaviors in FQHE and 

IQHE are quite similar, the underlying physical mechanisms are completely different. 

While the IQHE is essentially due to single-particle localization, the FQHE is due to 

many-body effects of strongly correlated electron liquids, with the quantization of 

the 
xy  resulting from localization of collective electronic excitations [87] 

In this chapter we will start with a brief introduction of QHE in graphene and 

followed by discussion of our experimental observation of IQHE and FQHE in both 

bilayer (section 4.2) and trilayer graphene (section 4.3). In section 4.3.2 we will also 

report a split of QH plateaus in rhombohedral-stacked trilayer graphene (r-TLG). 

Such splitting is a signature of Lifshitz transition, a topological change in the Fermi 

surface, which could be found BLG or r-TLG. 
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4.1 Introduction to QHE in graphene 

4.1.1 Integer QHE in single layer and bilayer graphene 

Fig 3.12 illustrates the first experimentally measured transport data of single 

layer graphene (SLG) from A. Geim’s group [1] at 14T. The Hall conductivity 

exhibits a set of quantized plateaus situated symmetrically with respect to the Dirac 

point, with quantized values 2, 6, 10, 14….[1, 2]: 

21
4 ( )

2
xy

e
N

h
    , 

and the energy of massless relativistic fermions in quantized fields 

2sgn( ) 2N FE N ev B N , 

where Fv  is Fermi velocity. The factor of 4 in the conductivity expression is due to 

the double spin and double valley degeneracies. Notably, this expression differs from 

that in standard 2DES by the extra ½ constant in the parentheses; as a result, there is 

no plateaus at E=0, and the first quantized plateau occurs at 2e
2
/h in the 

electron-doped regime and -2e
2
/h in the hole doped regime. Thus this is often 

referred to as the anomalous “half-integer” QHE. The behavior of the longitudinal 

resistivity xx  is largely similar to that observed in GaAs and Si based systems, 

except that at E=0 it has a berry phase β=1/2. The Berry’s phase also arises due to 

the zero effective carrier mass near the Dirac points in SLG. On the other hand, 

studies of the temperature dependence of the Shubnikov-de Haas oscillations in SLG 

reveal that the carriers have a non-zero cyclotron mass [1], despite their zero 
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effective mass from the E-k relation. 

 

Fig. 4-1 Integer quantum Hall effect in single layer graphene. The inset shows 

IQHE of bilayer graphene [1].  

The observed half-integer QHE is due to the linear dispersion relation in SLG. A 

different example is that in BLG, which has parabolic bands touching at zero energy, 

exhibits a different integer QHE at sufficiently high magnetic fields: 

2

4xy

e
N

h
  

,  

where N=-3, -2, -1, 1, 2, 3…and experimental results are shown in the inset of Fig. 

4.1.  This is similar to the behavior in other conventional 2-DEG materials, except 

that there is no N=0 state. So the step between the two lowest quantum Hall plateaus 

is 8 e
2
/h, arising from BLG’s 8-fold (spin, valley and orbital) degeneracy at zero 

energy.  
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In magnetic fields the LL (see section 1.5 for definition) energies of BLG are: 

 1
*

N

eB
E N N

m
   , 

where m*~0.02 -- 0.04me is the effective mass of charge carriers in BLG and me is 

electron’s rest mass. Therefore the QHE signature provides a tool to distinguish SLG 

and BLG. 

Unlike normal metals, the longitudinal resistivity of SLG shows maxima rather 

than minima for integral values of the Landau filling factor in measurements of the 

Shubnikov-de Haas oscillations, which show a Berry’s phase shift of π, known as 

Berry’s phase [2], which has already been discussed in chapter 1.6.3.  

 

4.1.2 Spin and valley split QHE states in SLG and BLG 

In sufficiently high magnetic field and/or high mobility samples, new quantized 

plateaus can appear [88] [89]. This is illustrated in Fig.4.2, which show evolution of 

the Hall conductivity 
xy as B increases from 9T to 45T. At B<15T the quantized 

values are still given by the half-integer sequence 2, 6, 10…, and at higher fields  

2

0, 1, 4xy

e

h
     

start to develop. This is illustrated in the lower left inset in Fig. 4.2, indicating the 

lifting of the valley and spin degeneracy of the n=0 LL, and the lifting of valley or 

spin degeneracy of n= 1 LLs. 

http://en.wikipedia.org/wiki/Shubnikov-De_Haas_effect
http://en.wikipedia.org/wiki/Geometric_phase
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Fig. 4-2 
xy  as a function of Vg at different magnetic fields: 9 T (circle), 25 T 

(square), 30 T (diamond), 37 T (up triangle), 42 T (down triangle), and 45 T (star).  

Left upper inset: Longitudinal and Hall resistivity for the same device measured at 

B =25 T. Left lower inset: a schematic drawing of the LLs in low (left) and high 

(right) magnetic field. Right inset: detailed Hall conductivity data near the Dirac 

point for B = 9 T (circle), 11.5 T (pentagon), and 17.5 T (hexagon) [88]. 

 

The longitudinal resistivity xx  at 1, 4   plateaus vanishes, similarly to 

the conventional QHE, however the 0  state is rather special, despite exhibiting a 

clear plateau in 
xy the longitudinal resistivity xx does not vanish, but 

monotonically increases as function of magnetic field at B>10T [88]. Origin of this 

insulating =0 state is controversial [89] 

At 1, 4  , xx also exhibits activated temperature dependence [90], from 
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which gaps between split LLs can be extracted. The gaps at 1   have a square 

root B dependence [90], and are much larger than the bare Zeeman splitting, thus 

indicating the interacting nature of these split QH states. Furthermore the sensitivity 

of the gaps at 4  to the in-plane magnetic field suggests that they are spin split 

rather than valley split. 

In bilayer graphene, besides spin and valley degeneracy, layer can provide 

another degree of freedom for each electron, the lowest LL at zero energy has 

eight-fold degeneracy. All degeneracies of the lowest LL can be completely lifted by 

many-body interactions in high magnetic field [91-93] as shown in Fig. 4.3. Like SG, 

the =0 state is also insulating, and as we show in Chapter 5, is related to the ground 

state of BLG at the charge neutrality point. 

 

 
Fig. 4-3 Symmetry breaking in (a) suspended bilayer graphene and 

(b) substrate supported bilayer graphene at ultra-high field. The 

8-fold degeneracy is lifed for the lowest LL level. 
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4.1.3 Fraction QHE in single layer graphene 

 FQHE is due to many-body effects of strongly correlated electron liquids, it 

can be understood as the realization of the integer QHE for weakly interacting 

quasiparticles called composite fermions, which could be described as an even 

number of magnetic flux vortices interact with an electron to form a particle with 

reduced effective charge that is a fraction of e.  

In graphene, FQHE was first observed in suspended single layer graphene (Fig. 

4.4(a) and (b)) [94, 95]. A recent measurement from a h-BN supported graphene (Fig. 

4.4(c)) with Hall-bar geometry showed filling factors appear in the following 

sequence [96]:  

1 2 4 7 8 10 11 13
, , 1, , 2, , ,3, , , 4, ....

3 3 3 3 3 3 3 3
           
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Fig. 4-4 (a) and (b) FQHE in suspended graphene. (c) h-BN supported graphene 

exhibits multiple plateaus at fatrational filling factors [96]. 
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4.2 Symmetry Breaking and Evidence for Fractional Quantum Hall States 

in Suspended BLG 

4.2.1 Device fabrication and chracterization 

The graphene devices are fabricated by “scratching exfoliating” of Kish graphite 

over pre-defined trenches on degenerately doped Si/SiO2 substrates. BLG sheets are 

identified by color contrast in an optical microscope and/or Raman spectroscopy. 

The trenches are 250±50 nm deep, with typical areas ~10-100 μm
2
 (Fig. 4.5). Since 

the graphene sheets do not undergo any chemical processing, they are exceedingly 

clean. 

 

 

Fig. 4-5 SEM image of a suspended BLG device. 

 

The devices are measured at low temperatures using standard lock-in techniques. 

The blue curve of Fig. 4.6 displays the two terminal conductance G vs. gate voltage 

Vg, for an as-fabricated BLG device at 4.2 K; BLG’s Drude mobilities  

are typically ~10,000-30,000 cm
2
/Vs, where  is the two terminal device 

conductivity and e is the electron charge. After current annealing, which is 
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performed at a current density of ~ 0.1 – 0.2 mA/m/layer, the G(Vg) characteristics 

displays much sharper Dirac points that are closer to zero (red curves, Fig. 4.6). For 

a typical post-annealed BLG device, Drude mobilitiesD ranges from 100,000 to 

274,000 cm
2
/Vs at n~10

10
 cm

2
, while their field effect mobility 1 d

FE e dn
   ranges 

from 28,000 to 200,000. These values are exceedingly high, especially considering 

that the mobility of a BLG device is typically an order of magnitude lower than that 

of SLG. Thus, both the mobility values and the device areas of our devices are 

significantly larger than those previously reported.  

 

 

 

Fig. 4-6 G(Vg) for a BLG device at T=4.2K. The blue and red curves are taken 

before and after current annealing, respectively. 

 

 

4.2.2 SdH oscillation and integer QH features 

We now examine the conductance of a bilayer device BL1 in finite B at 

T=300mK (similar data were observed on 2 other samples). As shown by Fig. 4.7(a), 
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which plots G vs. 1/B at 10 different gate voltages, G displays pronounced SdH 

oscillations, which are discernible at B as low as 0.2 T.  

 

 

Fig. 4-7 Data from a bilayer device BL1 at 300mK. (a). G vs. 1/B at Vg=3, 4, 5, 

6,7, 7.5, 8, 8.5, 9 and 9.8V (bottom to top). The traces are offset for clarity. (b). BF 

vs. Vg. The straight line is a linear fit to the data points. 

 

The exceedingly high mobility of the devices, together with the low field at 

which SdH oscillations become visible, underscore the high quality of our devices. 

Yet, the device conductance is not properly quantized, even at the highest attainable 

magnetic field. This absence of quantization is not fully understood, but could be 

attributed to 3 factors: Firstly, the devices’ two-terminal geometry leads to 

conductance comprising of both longitudinal and transverse contributions [97]. The 

non-square geometry of the device then gives rise to non-monotonous dependence of 

G on n, and, for sufficiently broadened LLs, non-quantized conductance. Another 

possible reason is the presence of strain and/or ripples in our devices [52], which are 

up to 5 m long and rests on the rigid banks of the trenches. Their deflection under 
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applied Vg, which scales with the 4/3 power of the length, could produce significant 

strain close to their rigid boundaries, which in turn result in gauge fields [49] that 

partially destroy the conductance quantization [98, 99]. A third possible factor is the 

small substrate-supported area of the device (typically <10% of the total device area), 

which presumably has lower mobility and may not exhibit QHE at low B, thus 

destroying the overall conductance quantization. 

Despite the lack of conductance quantization, it is still possible to extract 

information on QH states from the data. For this device that is short and wide, filling 

factors  of the conductance minima can be used to identify QH features [97]. To 

this end, we note that BF = nh/4e = (Vg)h/4e, where 1/ BF is the period of the SdH 

oscillations, and =n/Vg is the coupling efficiency of the back gate (here Vg is 

measured from the Dirac point). Plotting the measured values of BF vs. Vg indeed 

yields a straight line, with a best-fitted slope of a=0.26 T/V (Fig. 4.7b). This 

indicates a(4e/h)≈2.5 x 10
10

 cm
-2

 V
-1

, in agreement with that independently 

estimated from the device geometry. We can thus unequivocally determine the filling 

factor corresponding to any given data point: 

   nh/Be=4a(Vg/B)1.05(Vg/B).                  (3.3) 

 To examine the data more closely, we plot several G(Vg) traces at different 

values of B (Fig. 4.8). The conductance exhibits pronounced oscillations, with the 

minima occurring at Vg that correspond to integer , as calculated using Eq. (3.3). 

The filling factor of each minimum is labeled.  
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Fig. 4-8 G(Vg) at B=3, 2 and 1.5T (bottom to top). For clarity, the upper two 

curves are offset by 7 and 15 e
2
/h, respectively. The numbers indicate the || 

values that correspond to the local conductance minima. 

 

For instance, clear conductance minima for -4≤  ≤ 0 are visible at B=2T, 

and resolved successively in the order  =-4, 0, -2, -3, -1. This is reminiscent of the 

data reported in ref. [91, 92], in which the =0 QH plateau appears at the lowest 

field, followed by the plateaus =2, 3 and 1. Hence, the observations of conductance 

minima at integer filling factors, and their resolution in the same order as in previous 

reports, suggest that these minima arise from integer QH effect in BLG, with the 

orbital, spin and valley degeneracies lifted. 

To demonstrate scaling of the integer QH features with magnetic field B, we 

take line traces G(Vg) at different magnetic fields (Fig. 4.9 left panel). These traces 

are then replotted as a function of filling factor , which is calculated using Eq. 3.3. 

As shown by the right panel in Fig. 4.9, the curves are nicely ordered, with the 
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conductance minimum occurring at  ≈0, -1, -2, and -3, respectively, suggesting 

that they indeed arise from the spin- and valley- resolved QH states. 

 

Fig. 4-9 G(Vg) and G() taken at B=2.5, 3, 3.5, 4, 4.5, and 5T. 

 

We also plot the evolution of G in units of e
2
/h (upper panel) and dG/dVg (lower 

panel) as functions of B and Vg (Fig. 4.10). The bands of colors that radiate from Vg~ 

0.3V, which is inferred to be the Dirac point, mark the onset of SdH oscillations. The 

MC can be seen more clearly by differentiating G with respect to Vg, where the blue 

(red) regions indicate negative (positive) values of dG/dVg; the local conductance 

minima appear as white regions in the Vg-B plane, as outlined by the dotted lines. 
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Fig. 4-10 (upper) and dG/dVg (lower panel) vs B and Vg. The dotted lines 

correspond to features with integer between =0 and -8.  

 

 Strikingly, from their slopes in the Vg-B plane and Eq. (3.3), the filling factors 

of these minima are identified to span all integers between 0 and -8 when the device 

is hole-doped (albeit the =-5 and -6 minima are just barely distinguishable); for the 

electron doped regime, because of the limited Vg range, only minima with=2 and 4 

are identified. Such persistence of these conductance dips at integer values of 

which are observed for all accessible values of Vg and B, provides very strong 

evidence that they indeed arise from orbital-, spin- and valley-resolved QH states. 

We note that this is the first report of possible symmetry breaking for the N=2 LL, 

which is expected to exhibit interaction effects. For instance, we observe that the 

=7 state is resolved before the  =5, 6 states, suggesting a larger energy gap for the 

former. This is quite surprising, since the even integer states are expected to be 

resolved first. Further investigation would be necessary to provide further insight 
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into these symmetry-broken higher LL states in BLG devices. 

 

4.2.3 FQH features in higher magnetic field 

We now focus on the BLG device behavior in higher fields 4<B<31T. To avoid 

collapsing of the atomic membranes, we restrict the applied |Vg| to <10V; thus, for 

B>10T only QH state with | <1 are experimentally accessible. In the G(Vg, B) plot 

(Fig. 4.10a), a white/pink feature with a shallow slope is discernible. Its slope in the 

Vg-B plane is Vg/B~0.32, yielding ≈0.33. This feature can be seen more clearly by 

taking discrete line traces at different B values (Fig. 4.11b) – it appears as a 

broadened peak for B<15T, but develops into a small plateau with increasing B. Fig. 

4.11c replots these traces as G(, where  is calculated using Eq. (3.3) with the 

small offset in Dirac point taken into account. As expected, for B>15T, the traces 

nearly collapse into one, with the small plateau located at =0.33.  

 

Fig. 4-11 High field data for BL1. (a). G (Vg, B) at 300 mK. (b-c). Line traces 

from (a) at B=15T, 17.5T, 20T, 23T and 28.5T (right to left in (b)), plotting 

against Vg and , respectively.  

 

Taken together, this provides strong evidence that we have observed the 
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fractional =1/3 QHE state in BLG. In previous works on SLG, the =1/3 fractional 

state is surprisingly robust and persists up to 20K at B=12T, with a large, Coulomb 

interaction-induced energy gap 
1/3

SL  ~ 10 K·√B [94, 100]. In contrast, there is 

little theoretical effort on fractional QHE in BLG [101] [102] [103, 104]. Taking the 

features in our data as an evidence for the 1/3 FQH state in bilayer, we can obtain an 

order-of-magnitude estimate for 1/3

BL  by measuring G(Vg) at several different 

temperatures T (Fig. 4.12).  

 

Fig. 4-12 G(Vg) at B=20T and different T. The traces have not offset. 

 

At B=20T, the small 1/3 plateau persists at T=1.3K, but disappears completely at 

T=5.5K, yielding an estimated 1/3

BL ~ 0.4 K·√B, which is much smaller than that 

of SLG. The increase in the overall conductance with T also suggests the presence of 

significant thermally activated conduction through the bulk of the device.  

During the last year of my Ph.D. study I improved my device fabrication 

technique by 1) using better designed aligning windows for shadow mask-graphene 
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alignment. 2) using Ti instead of Au for contact electrodes since Ti is less mobile on 

surface of suspended graphene. 3) using well-defined electrodes design to get 

completely suspended graphene devices. Therefore experimental results show more 

quantized quantum Hall plateaus in two-probe measurement as shown in Fig. 4.13. 

In a relative low magnetic field B, both devices display QH plateaus with the 8-fold 

degeneracy of the zero energy Landau level (LL) fully lifted.  

A close inspection of Fig. 4.13 (b) and (d) reveals that FQH features are also 

possibly observed in these devices (black arrows). Comparing with the previous 

discussed results, the FQH features observed in this work require much lower 

magnetic fields, indicating an improved sample quality of these devices.  

 

Fig. 4-13 G(Vbg) taken at different magnetic fields from two BLG devices. 
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4.3  Quantum Hall effect in Trilayer graphene 

4.3.1 Integer and fractional QH features in r-TLG  

The exfoliation and fabrication of TLG graphene devices are the same as those 

for BLG. From tight-binding calculations that include only nearest-layer coupling, 

the Landau level (LL) spectrum for B-TLG (ABA stacking) is a superposition of 

those for SLG and BLG [41, 105, 106]: 

2

1, 2ABA

N FE v eB N    and 
2

2, ( 1)ABA F
N

v eB
E N N

t
   . 

For r-TLG (ABC stacking), the LL energies are given by:  

 
3/2

2

2

2
( 1)( 2)

FABC

N

v eB
E N N N

t
    . 

In these expressions, N is an integer denoting the LL index, vF~10
6
 m/s is the 

Fermi velocity, e is the electron charge, h is Planck’s constant and ~0.2-0.4 eV is 

the nearest-layer coupling energy. For both types of stacking order, the LL at zero 

energy is 12-fold degenerate, giving rise to quantized conductance plateaus with 

integer values ...-10, -6, 6, 10, 14... of e
2
/h. When other interlayer and intralayer 

hopping terms are included, certain degeneracies could be broken [107, 108], though 

the LL are expected to retain 4-fold degeneracy for B-TLG and 2-fold degeneracy 

for r-TLG. 

Our experimental measurements on a TLG device with FED ~50,000 cm
2
/Vs 

at 260mK reveal pronounced MC oscillations. Using the slopes of the conductance 

features in the Vg-B plane, we identify QH features at =0, 11±1, -4, -2, -3 and -1, 
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which are resolved in the order listed. We note that, albeit without proper 

quantization, these features’ conductances are within ~30% of the expected values. 

Fig. 4.14(a) displays G(Vg, B) for 2B8T for such a device TL1. At Dirac point 

Vg~0.6V, G<5nS, suggesting the presence of an insulating state at  =0. Line traces 

G(Vg) at different B values are shown in Fig. 4.14(b) and Fig. 4.15(a). 

 

 

Fig. 4-14 (a). G (Vg, B) at 260mK. (b-c). G(Vg) and G() at B=2.2, 2.5, 3.0, 3.5, 

3.8T. 

 

By plotting the same data as G(), these traces collapse into a single curve (Fig. 

4.14c, and Fig. 4.15b), with plateaus or shoulders at integer  In particular, Fig. 

4.15(b) exhibits two identifiable features: “A” that appears at  =-1.00.03, and “B” 

at  =0.500.07. Both features are relatively robust in temperature and persist up to 

4.5K (Fig. 4.15c).   



83 

 

 

 

Fig. 4-15 (a) and (b) G(Vg) and  at B=4, 5, 6,7 and 8T. (c). G(Vg) at 

B=8T and T=4.5, 2.7, 1.9, 1.6, 1.3, 1.0, 0.7, 0.4 and 0.26 K(top to bottom). 

The traces are offset for clarity. 

 

Feature “B” is particularly intriguing, since it may correspond to the  =1/2 or 

2/5 state. A similar feature in SLG has been observed [95], yet its origin is still under 

debate, since the=1/2 feature in Rxx in traditional GaAs devices arises from a Fermi 

liquid state, not FQHE [109]. However, we note that a =1/2 FQH state is observed 

in bilayer GaAs devices [110]; thus, though not conclusive, feature “B” may in fact 

indicate a FQH state in TLG with a relatively large energy gap. The absence of the  

=1/3 state may be attributed to the presence of the =0 insulating state, which, if 

sufficiently wide, is shown to mask signatures of FQH states in suspended single 

layer devices [94].  

 

4.3.2 Evidence of Lifshitz transition in r-TLG  

Fig. 4.16(a) plots the differentiated conductance dG/dB (B, Vg) of an r-TLG 

device, which allows the oscillations to be clearly discerned. The QH states appear 
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as features radiating outward from the CNP at B=0. Since the device has a large 

aspect ratio (length/width ~3), we use conductance peaks to identify the filling 

factors of the QH plateaus [97], which are determined from their slopes in the Vg-B 

plane: =nh/Be=Vgh/Be, where  is estimated to be 2.5x10
10

 cm
-2

V
-1

 from 

geometrical consideration as well as the periods of SdH oscillations [93]. This is the 

same as what we discussed in the previous chapter about BLG devices since both 

type of devices underwent same fabrication process.  

 

 

Fig. 4-16 (a) dG/dB(Vg, B). The numbers indicate the filling factors of the 

features. (b) and (c): G(Vg) and G() at T=1.5 K and B=0.5(blue), 0.6(cyan), 

0.8(green), 1(yellow), 1.2(orange), 1.5(red), and 1.7 T(magenta). 1.25 

been subtracted from device resistance to account for the contact resistance 

and line resistance of the cryostat.  

 

Using this relation, the features in Fig. 4.16a are determined to correspond to 

=-30±1.2, -18±1,-9.3±0.5, 0, 9±0.5, 18±1, 30±1.2 and 42±2, respectively, as 

indicated on the figure. Fig. 4.16(b) plots the device conductance G in units of e
2
/h 

as functions of Vg taken at different values of B; when plotted against , the 7 curves 

almost collapse into one, with plateaus at ~±9 and -18, respectively (Fig. 4.16(c)). 
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We note that the conductance values approximately agree with the filling factors.  

The emergence of filling factors at 9 and 18 are unexpected. A close 

examination of Fig. 4.16(b) reveals yet another surprising feature -- some plateaus 

that appear at low fields unexpectedly disappear at higher values of B. For instance, 

the = -18 feature is visible at B=0.25T and develops into a well-quantized plateau 

for 0.5<B<0.7T, yet it disappears for B>0.8T. Similarly, the = -9 state is a 

well-developed plateau at 0.5T, but vanishes for B > 1.5T. Instead, each of the ~ ±9, 

±18 and -30 QH features splits into 3 branches at Vg~ 13-16V and B~ 0.6 – 1.3T. The 

splittings at ~9, -18 are indicated by the dotted circles in Fig. 4.16 (a). Such 

apparent 3-fold degeneracy of QH plateaus is highly surprising, and has not been 

observed in BLG or B-TLG devices with comparable mobility. 

Such splittings are signatures of the Lifshitz transition (LT), a topological 

change in the Fermi surface as a function of electron doping or other parameters 

such as strain. For multilayer graphene, it may be induced by trigonal warping [106, 

111, 112]: at very low n, the Fermi surface in r-TLG breaks up into 3-legged pockets, 

thus leading to triply degenerate LLs [111] as shown in Fig. 4.17; these LLs should 

split in higher B or n, corresponding to the merging of the pockets at the LT.  
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Fig. 4-17 Equi-energy contour plots of the lowest electron band of ABC 

trilayer graphene, with different values of nearest-layer coupling 

 

Indeed, the observed splittings occur at |Vg|~15V and B~1T, within 60% of the 

theoretically predicted values. The overall device behavior is in semi-quantitative 

agreement with theoretical simulations of r-TLG’s density of states (Fig. 4.18), 

which is satisfactory, considering that the simulation uses bulk graphite parameter 

values that are likely different for sheets of atomic thickness.  

 

 

Fig. 4-18 Calculated density of states for r-TLG vs. B and n. 
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We note that the biggest discrepancy between the data and simulation lies in the 

filling factor of the first non-zero plateau. Theoretically, one expects the =6 plateau 

to be the most energetically stable; however, ~9 was observed instead, suggesting 

the presence of large valley and spin splitting. 
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5. Chapter 5. Insulating state and Phase Transitions in Ultra-clean 

Bilayer Graphene 

In this chapter we will discuss an electronic-interaction driven effect -- the 

insulating state in charge neutral suspended bilayer graphene devices. 

We will start from a systematic study of the minimum conductivity min in a 

large number of single-gated and double-gated BLG samples, with mobilities 

ranging from 500 to 2000 cm
2
/Vs for substrate-supported samples, and 6000 to 

350,000 for suspended samples. We find a surprisingly constant min value ~ 2-3 e
2
/h 

for the majority of devices, independent of device mobility and the presence or 

absence of substrates. However, the best devices manifest an insulating state with an 

energy gap ~ 2-3 meV. This insulating behavior in BLG at the CNP is only observed 

in devices with both high mobility and low charged impurity density.  

We also observe a phase transition between the single-particle metallic state and 

the interaction-induced insulating state in ultra-clean BLG, which can be tuned by 

temperature, disorder, charge density n and perpendicular electric field E. 

 

5.1 Introduction 

Bilayer graphene (BLG) has provided a fascinating new platform for both 

post-silicon electronics and exotic many-body physics [40, 56, 113, 114] . Because 

its conduction and valence bands touch at two points in momentum space and have 

approximately quadratic dispersion with associated sublattice pseudospin chirality, 
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charge neutral BLG is likely to have a broken symmetry ground state in the absence 

of disorder [112, 115-119]. Theoretical work on the character of the ground state in 

neutral bilayer graphene has argued for a variety of distinct states including gapped 

anomalous Hall states and layer antiferromagnetic states that break time-reversal 

symmetry and gapless nematic states which alter Dirac point structure and reduce 

rotational symmetry. Recent experimental advances [120-124] report 

low-temperature conductivity min values for neutral BLG that vary over a large 

range, from 0.05 to 250 S. Because radically different transport characteristics are 

observed in samples that are apparently quite similar, it has been difficult to draw 

firm conclusions.  

 

5.2 Device fabrication, current-anneal cleaning and characterization 

We fabricate single-gated BLG devices using a lithography-free technique 

(described in section 2.1.3) and a typical device is shown in Fig. 5.1(a), and 

suspended double-gated BLG by combining acid etching with a multi-level 

lithographic technique to make devices with suspended top gates (Fig. 5.1b). These 

double-gated devices [120, 123] allow independent adjustment of induced charge 

density n and perpendicular electric field E. 



90 

 

 

Fig. 5-1 (a) and (b): False-color scanning electron micrograph of BLG device 

with and without top gate, respectively. Scale Bar: 2um.  

 

After fabrication we transfer our suspended BLG devices into high vacuum 

cryostat, and current annealing is performed at 1.5K. A typical procedure is shown in 

Fig. 5.2. We first ramp up the source-drain bias Vsd at a rate ~10mV/s, and monitor 

the current I across the device, while keeping the gate electrode(s) grounded. The 

I-V curve, which is linear at low bias, becomes sub-linear at larger bias (Fig. 5.2a). 

At this point Vsd is ramped down to zero, and we examine field effect mobility µ and 

minimum conductivity σmin (inset of Fig. 5.2a). Generally µ significantly increases 

and σmin decreases. Several cycles of current annealing are performed until current 

saturation is observed (Fig. 5.2 b-c), and there is no further change in µ or σmin; at 

this point optimal annealing result is attained. If Vsd is increased further, the 

suspended membrane will start to break due to electromigration, and µ will decrease 

again.   

We also note that the annealing process is typically different for single layer, 

bilayer and trilayer suspended graphene devices. For instance, current saturation is 
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not reliably observed in the single layer graphene during annealing process. Such a 

difference could be attributed to different phonon -electron scattering and 

capabilities of carrying electrical currents in different layers of graphene. 

 

Fig. 5-2 Current annealing cycles displayed as current I as a function of 

source-drain bias Vsd in successive sequence (from left to right). Insets: 

σ (Vbg) after eacn current annealing cycle. 

 

Fig. 5.3 displays the two terminal differential conductivity σ=(L/W)dI/dV of two 

suspended BLG devices vs. back gate voltage Vbg at T=1.5K after current annealing. 

Here L/W is the aspect ratio of the device. Both curves are steeply V-shaped, with 

CNPs close to Vbg=0V. Surprisingly, min of the devices are drastically different – 2.5 

and 0.02
 
e

2
/h, respectively. The latter insulating behavior is also confirmed by I-V 

curves. In a magnetic field B, both devices display quantum Hall plateaus with the 

8-fold degeneracy of the zero energy Landau level (LL) fully lifted (24). From the 

Landau fan diagram that plots the differential conductance G (color) vs. Vbg and B 

(Fig. 5.3, insets), the =0 state is visible for both devices at B>0.5T and persists 

down to B=0 for the device with very low σmin .  
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Fig. 5-3 (a) and (b): Main panels and insets: σ (Vg) and G(Vbg, B) for two BLG 

devices with and without insulating state at CNP (T=1.5K).  

 

Line traces of Gmin(B) taken at CNP in insets of Fig. 5.3 show that both types of 

suspended BLG exhibit insulating state at high magnetic field up to 10T; for the 

suspended BLG that is conductive at B=0, we observe a precipitous transition to an 

insulating state as B increases to ~1T.  
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Fig. 5-4 Gmin as a function of B (in log scale) at CNP for suspended 

BLG devices shown in Fig. 5.3.  

5.3 Minimum conductivity of BLG at Dirac point 

With the goal of discovering the origin of the large range of σmin, we investigated 

9 substrate- supported BLG devices and 23 suspended BLG devices with aspect ratios 

between 0.5 and 2, and areas 1-18 m
2
. The results are summarized in Fig. 5.5, which 

plots σmin as a function of field effect mobility µ= 
1 d

e dn


for each device. Evidently, 

the data points separate into two groups. Most data points fall into group I, in which 

σmin is almost independent of mobility and similar for suspended and supported 

devices. Within this class of devices the CNP conductivity ~ 100S ~2.8 e
2
/h [39, 

125-127].  
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Fig. 5-5 min(µ) for 9 substrate supported BLG devices (square symbols) and 23 

suspended BLG devices (triangular symbols) at 1.5 K (except for one device in 

region 2, which was taken at T=0.3K) 

 

Very different behavior is found in the 7 devices that fall into group II with very 

low σmin, which is at most 0.4 e
2
/h, and as low as 1 S. Notably, all 7 devices have 

very high mobility. To shed further light on the physical difference between the two 

groups, we also examine VCNP, the devices’ applied Vbg at the CNP, which indicates 

the overall doping level. Fig. 5.6(a) and (b) display σmin andvs. VCNP for all 

suspended samples with the insulating devices denoted by blue triangles.  
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Fig. 5-6 (a) and (b): µ (VCNP) and min(VCNP) for suspended BLG 

devices. The blue symbols denote devices in region II.  

 

Two striking features are evident: (1)  decreases with increasing VCNP in 

agreement with previous reports in substrate supported graphene [57, 128], suggesting 

that charged impurities remain important scatterers even in these high mobility 

devices; (2) the insulating-BLG devices in Fig. 5.6 cluster around VCNP=0. Thus, the 

insulating behavior in BLG at the CNP is only observed in devices with both high 

mobility and low charged impurity density. The insulating state, apparently masked 

by impurities in group I samples, cannot be explained by single-particle physics.  

 

5.4 Temperature dependence of BLG devices 

Fig. 5.7 displays σ(Vbg) at different temperatures T for suspended insulating BLG, 

suspended non-insulating BLG and substrate-supported BLG devices, respectively. 

We observe minimal T-dependence for the substrate-supported devices. For both 

suspended devices, σ at large doping is only weakly temperature dependent, whereas 

σ at half-filling decreases sharply with temperature. In particular, σmin(T) of the 
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insulating BLG has the strongest T-dependence, falling by several orders of 

magnitudes to ~ 0.05 e
2
/h. 

 

Fig. 5-7 (a) and (b): Temperature-dependent  (Vbg) for suspended 

insulating and noninsulating BLG devices, respectively. (c): 

Temperature dependent  (Vbg) for a substrate supported BLG device. 

 

To obtain further insight we compare the temperature dependences of group I 

and group II devices. Fig. 5.8(a) displays σmin on a logarithmic scale vs 1/T for 

1.4≤T≤100 K for one non-insulating device and two different insulating BLG 

devices. The inset plots the same data sets σmin(T) on linear-log scales. Amazingly, 
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for 10<T<100K, the σmin(T) curve of all 3 devices collapse into a single curve. This 

is in contrast with the previous work on single layer [129] and trilayer graphene [130, 

131], which reported large sample-to-sample variation in σmin(T), thus strongly 

suggesting that we are indeed observing intrinsic attributes of BLG. 

 

Fig. 5-8 (a) min(1/T) for insulating and noninsulating-BLG devices. 

Inset: σmin(T) of data set. The solid lines are fits to data T<5K to 

σmin(T)=Aexp(-EA/2kBT). (b) T-dependence of σ(Vsd) at CNP for an 

insulating-BLG device. 

 

Notably, the behaviors of the two types of devices start to deviate at ~ 5-7 K – 

σmin of the non-insulating device decreases only modestly for T<5K; in contrast, the 

σmin of both insulating ones exhibit an abrupt change in slope and drops precipitously, 

where the data are well-described by σmin(T)=A exp(-EA/2kBT) (here A is the 

pre-factor, EA is the activation energy and kB is the Boltzmann constant). The best fit 

is obtained by using A=17 e
2
/h and EA~18K, indicating thermally activated transport 

over a gap >~ 1.6 meV.  
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These data suggest the presence of a gap in insulating devices for T<5K. To 

investigate this further, we focus on σ vs. source drain bias Vsd at the CNP [122, 

123](Fig. 5.3b). At T=1.4K, σ increases precipitously when |Vsd| increases from 0, 

adopting a “U”-shaped profile and reaching two dramatic peaks at ±2.8 mV, and 

deceases again to ~ 8e
2
/h for |Vsd|>5mV. Such a σ(Vsd) curve strongly resembles the 

density of states (DOS) for gapped phases such as superconductors or charge density 

waves, and in particular, the DOS of a gapped BLG near the CNP. Since the device 

has symmetric coupling to both electrodes, we take the magnitude of the gap to be 

half of the separation between the two peaks, ~2.8 meV. This is larger than the value 

~1.6 meV obtained from thermal activation measurements, but hardly surprising 

since the gap probably increases with decreasing T. Thus, the σ(Vsd) curves, together 

with the σmin(T) measurements, unequivocally establishes the presence of a 

low-temperature gap ~ 2-3 meV in group II BLG’s spectrum.  

We now examine the σ(Vsd) curves of the insulating device at different 

temperatures (Fig. 5.3b). When T increases from 1.4 K, σmin increases, σ(Vsd) adopts a 

“V”-shaped profile, and the magnitudes of the two peaks decrease and vanish entirely 

at ~5K (Fig. 5.3b). All these observations suggest the disappearance of the gap for 

T>5K. Our data thus provide strong evidence for a finite temperature phase transition 

to an insulating state with a critical temperature Tc~5K and a gap kB (~20-30K). 

Because the gap disappears with temperature, it cannot be due to single-particle origin, 

and must arise from many-body interaction effects. The rough correspondence 
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between the critical temperature and gap scales suggests that the broken symmetry is 

reasonably well described by mean-field theory.  

Our data thus far suggests a T-dependent phase transition in charge-neutral BLG 

between a metallic phase and an interaction-induced insulating phase. This metallic 

phase could be manifestation of single particle effects, or alternatively, could consist 

of domains of gapped phases with opposite pseudospin polarizations. Future 

experiments would be necessary to ascertain the nature of the metallic behavior at the 

CNP. 

 

5.5 Quantum phase transition in BLG devices 

An intriguing possibility is that a quantum phase transition, i.e. one that is tuned 

by parameters other than T such as disorder or electric field may take place at T=0. To 

this end, we examine the σ(Vsd) curves of 2 non-insulating devices, which have 

mobility 140,000 and 24,000 cm
2
/Vs, respectively, at T=1.4K (Fig. 5.9a). Data from 

an insulating device is also plotted for comparison. Remarkably, the σ(V) of both 

non-insulating devices bear a striking resemblance to those of insulating BLG at 

higher temperatures. In particular, the device with =140,000 cm
2
/Vs has a 

“V-shaped” profile at small Vsd, elevated σmin and smaller peaks at Vsd ~±2.5 mV, 

and resembles the curve in Fig. 5.9(b) at T~4K. For the one with =24,000 cm
2
/Vs, 

σ(V) is flatter without the side peaks, thus resembling the curve from the insulating 

device at T~10K. Taken together, charge disorder has a similar effect as temperature 
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by annihilating the broken symmetry gaps of all the BLG spin-valleys. 

 

 

Fig. 5-9 (a) σ(Vsd) for insulating and noninsulating-BLG devices at the 

CNP. (b) σ (Vsd) at n=0 for a doubly gated BLG at E=0, -5, -7 and 

-15 mV/nm. (c) (Vsd) at E=0 for a doubly gated BLG at different 

values of n. 

 

Finally we examine the influence on the insulating state of changes in carrier 

density and of an applied E that induces an interlayer potential difference (24). In 

our doubly gated BLG devices we can control n and E(24) independently. Several 

line traces of σ(Vsd) for different values of E are shown in Fig. 5.9(b). As E 

increases from 0 to -7mV/nm, the “U”-shaped σ(Vsd) curve becomes “V”-shaped, 

with less prominent side features and an elevated σmin, i.e. the gap size appears to be 

diminished by E. For still larger fields the well-known single-particle gap [44, 113, 

132] of unbalanced bilayers gradually emerges. The influence of total carrier density 

on the insulating state is extremely sharp. At E=0 (Fig. 5.9c) – a small density n ~ 

6.2 × 10
9
 cm

−2
 is sufficient to significantly obscure the gapped correlated state; when 

n ~1.2 × 10
10 

cm
−2

, the gapped feature completely vanishes and min reaches ~ 5e
2
/h.  

Our experimental results thus provide strong evidence for a quantum phase 
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transition between insulating and conducting states that is tuned by E, n or charge 

disorder. Indeed these transitions are expected in the mean-field theory (MFT) of 

gapped spontaneous quantum Hall states in BLG. These states break layer inversion 

symmetry in each spin-valley flavor which improves electronic correlations and 

induces large momentum space Berry curvatures. Consequently, there are quantized 

anomalous Hall contributions which change sign with the sense of layer polarization 

of flavors. Increasing carrier density works against broken symmetry order by Pauli 

blocking layer polarization and by increasing screening. MFT predicts that the 

spontaneous quantum Hall states disappear once the carrier density is larger than 

1.47 × 10
10 

cm
−2

 which is consistent with our experimental findings. The role of 

temperature is similar to that in BCS theory of superconductivity and there is no 

Anderson Theorem to mitigate the role of disorder. Quite different with T and n, 

further increasing E reopens the gap and induces a phase transition to a 

layer-polarized state with an abrupt change of the band topology only for two of the 

four flavors [116, 133]. Such a gap is expected to increase with E and is enhanced 

by correlations as well. 
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6. Chapter 6. Stacking-Dependent Band gap opening in Trilayer 

Graphene   

In multilayer graphene [130, 134], stacking order provides an important yet 

rarely-explored degree of freedom for tuning its electronic properties[135]. For 

instance, Bernal-stacked trilayer graphene (B-TLG) is semi-metallic with a tunable 

band overlap, and rhombohedral-stacked (r-TLG) is predicted to be semiconducting 

with a tunable band gap [41-44, 107, 136-139]. These multilayer graphene sheets are 

also expected to exhibit rich novel phenomena at low charge densities due to 

enhanced electronic interactions and competing symmetries.  

In this chapter we demonstrate the dramatically different transport properties in 

TLG with different stacking orders, and the unexpected spontaneous gap opening in 

charge neutral r-TLG. At the Dirac point, B-TLG remains metallic while r-TLG 

becomes insulating with an intrinsic interaction-driven gap ~6 meV. Our results 

underscore the rich interaction-induced phenomena in trilayer graphene with 

different stacking orders, and its potential towards electronic applications.  

 

6.1 Introduction  

The distinctive band structures in B-TLG and r-TLG discussed in section 1.6.4 

are expected to give rise to different transport properties. For instance, owing to the 

cubic dispersion relation, r-TLG is expected to host stronger electronic interactions 

than B-BLG. This is because the interaction strength rs is approximately the ratio of 

the inter-electron Coulomb energy to the Fermi energy. In graphene, rs 
( 1)/2pn 

, 
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where n is charge density and p is the power of the dispersion relation; p=1, 2, 3 for 

SLG, BLG and r-TLG, respectively[140]. Consequently, at low n, the interaction 

strength in r-TLG is significantly higher than that in SLG, BLG and B-TLG (the last 

can be considered as a combination of SLG and BLG) [116]. Hence, r-TLG 

potentially allows the observation of interaction-driven phenomena, e.g. spontaneous 

gap formation, that are not easily accessible in BLG or B-TLG. Thus we seek to 

experimentally explore the transport properties of TLG with different stacking 

orders. 

The stacking order of the devices is identified using Raman spectroscopy [141]. 

In particular, the 2D peak of r-TLG is more asymmetric with a pronounced shoulder 

than that of B-TLG (Fig. 6.2). 

 

Fig. 6-1 Raman spectroscopy of TLG with different stacking orders. 

 

6.2 Device fabrication, current-anneal-cleaning and chracterization 

Graphene devices are fabricated by shadow mask evaporation of electrodes onto 

graphene sheets that are either supported on substrates or suspended across 
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pre-defined trenches in Si/SiO2 substrates. These devices have no contaminants 

introduced by lithographical processes, with field effect mobility  ranging from 210 

to 1900 cm
2
/Vs for non-suspended devices, and 5000 to 280,000 for suspended 

samples, which are significantly higher than those fabricated by lithography. We 

measure their electrical properties using standard lock-in techniques in a He
3
 or 

pumped He
4
 cryostat. 

Similarly to BLG devices, we also current anneal TLG devices before 

measurement. Such annealing is performed at 4 K in vacuum by slowly ramping up 

the applied voltage while monitoring the current. Typically, optimal annealing is 

reached when the measured current starts to saturate (Fig. 6.3(a)); the applied 

voltage is then ramped down to zero. A representative saturation current is about 

0.2mAm/layer for both Bernal and rhombohedral stacking suspended TLG 

samples.  

 

Fig. 6-2 (a) Current-voltage characteristics of a trilayer graphene 

devices during current annealing. The arrows indicate voltage ramping 

direction. Optimal annealing is reached when current starts to saturate. 
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Inset of (a): G(Vg) of an r-TLG device before and after annealing. (b) 

R(Vg) data of this device in logarithmic scale at T=1.5K. Note that 

Rmax~10M. 

 

 After current annealing, the devices exhibit much higher mobility, with the 

charge neutrality point shifting to almost zero. For r-TLG devices, the minimum 

conductivity decreases significantly with annealing (Fig. 6.3(b)).  

Fig. 6.4 displays the two-terminal conductance G of two suspended TLG 

devices with different stacking orders as a function of back gate voltage Vg at 

T=1.5K. Both curves are “V”-shaped, characteristic of high mobility samples.  

 

Fig. 6-3 G(Vg) for two different suspended TLG devices at T=1.5K. 

Upper inset: R(Vg) in log-linear scales for the same devices. Lower inset: 

SEM image of a suspended graphene device. Scale Bar: 2 m. 

 

Surprisingly, the two devices display drastically different minimum conductance 

Gmin at the charge neutrality point (CNP) – Gmin for B-TLG is ~ 50 S, but <~1 S 
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for r-TLG. The strikingly large difference in minimum conductivity min, as well as 

the very low min in certain high mobility samples, is unexpected and unique to TLG. 

 

6.3 Effect of stacking order on smin of TLG devices 

To systematically examine the effect of stacking order on min, we investigated 

21 substrate-supported and 22 suspended devices. After electrical measurements, the 

stacking order of the devices are identified using Raman spectroscopy [141]. Our 

findings are summarized in Fig. 6.5, which plots min at T=4K vs. the field effect 

mobility , revealing several interesting observations.  

 

 

Fig. 6-4 Minimum conductivity min vs. field effect mobility  at 4K for 

suspended and non-suspended graphene devices. 

 

For instance, for all B-TLG devices, min decreases with increasing sample 
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mobility but remains finite, presumably because the same scattering mechanisms 

that yield low mobility also give rise to electron and hole puddles [142], hence 

smearing Dirac points and leading to higher min. Amazingly, min for r-TLG devices 

is significantly smaller than B-TLG. The difference is at least a factor of 2 or 3 for 

substrate-supported devices, and becomes dramatic for suspended devices – min, 

B-TLG remains almost constant at ~100 S for >5x10
4
 cm

2
/Vs, while min, r-TLG ~ 0, 

suggesting the presence of metallic and insulating states, respectively.   

 

6.4 Temperature dependence of TLG devices 

 The insulating state in neutral r-TLG is not anticipated from non-interacting 

electron pictures. To elucidate its nature and compare transport in TLG with different 

stacking orders, we investigate the devices’ temperature dependence. Fig. 6.6 (a) and 

(b) plot the G(Vg) curve for B- and r-TLG devices, respectively, at T between 1K and 

120K.  
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Fig. 6-5 (a) and (b): G(Vg) for B- and r-TLG devices, respectively, taken at 

different temperatures. Inset in (b): Zoom-in plot of G(Vg) curves at T=0.6, 0.8, 

5.2, 7.7 and 10K (bottom to top). The curves at 0.6 and 0.8 K are 

indistinguishable. 

 

In both data sets, G at small n declines quickly with temperature, but stays 

almost constant or increases modestly for high n. The opposite G(T) dependence in 

these two density regimes is similar to that observed in SLG [25, 129], where the 

weak T-dependence at large n is attributed to electron-phonon interaction [129]. 

At the CNP, Gmin, B-TLG displays a moderate T-dependence, typically decreasing 

by a factor of 2 -8 when T is reduced from 200 to 1.4K (Fig. 6.7 (a)). Variable range 

hopping, which has an stretched exponential T-dependence, cannot adequately 

describe the data. We thus compare data in Fig. 6.7(a) to a model of thermally 

activated transport 

/

min 0 e A BE k T
G G A


                     (3.4) 

where EA is the activation energy, kB the Boltzmann constant, and G0 and A are fitting 

parameters. An adequate fit to Eq. (3.4) can be obtained by using EA=25K, though 
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the fit is not entirely satisfactory. 

 

 

Fig. 6-6 (a) and (b): Gmin vs. 1/T. The blue lines are best fits to Eq. (3.4), 

with EA=25K and 32K for B-stacked and r-stacked TLG, respectively. 

Insets: Gmin(T) for the same data sets shown in the main panels.  

 

In contrast, Gmin of r-TLG displays an exceedingly strong temperature 

dependence – it decreases exponentially with 1/T by 2-3 orders of magnitude for 

5<T<105K, crossing over to a constant value at lower temperatures (Fig. 6.7(b)). 

Using EA=32.0K, we obtain excellent agreement between the experimental data and 

Eq. (3.4), demonstrating that transport in r-TLG at the CNP occurs via thermal 

activation through an energy gap of 2EA ~5.5 meV. The constant G0 is 

sample-dependent, and decreases from 10 to 0.1 S with improved mobility, 

indicating that it arises from scattering from residual impurities on the suspended 

membranes. 
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6.5 Insulating state in r-TLG devices 

To gain further insight into the insulating state of r-TLG, we measure its 

differential conductance dI/dV at T=300 mK vs. Vg and source-drain bias V (Fig. 

6.8(a)). The resulting stability diagram reveals a diamond-like structure centred at 

CNP, where dI/dV ~0 at V=0. For V>0.7 mV, dI/dV increases almost linearly with 

bias up to 15 mV with a width of ~7.5 mV, consistent with that determined from the 

activation energy. As V increases further to ~21 mV, dI/dV rises sharply to ~ 400 S 

within 2mV (Fig. 6.8(b)). Such an abrupt jump in dI/dV strongly resembles that in 

charge neutral bilayer graphene as described in Chapter 5, with the difference that 

the profile of the curve is “V”-shaped as opposed to “U”-shaped. This is reasonable 

since here our TLG devices are single gated thus we cannot tune the internal 

electrical field, which can destroy this intrinsic insulating state at the CNP. 

 

 

Fig. 6-7 (a) dI/dV(Vg,V) for an r-TLG at B=0 and T=300mK. (b) Line trace of (a) 

at Vg=0. 
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To sum our experimental findings: at B=0, we find that B-TLG remains 

metallic at the CNP, while r-TLG becomes insulating at low temperatures. Gmin of 

the latter is thermally activated for T>5K, with a gap-like feature in its dI/dV curve. 

Taken together, these results strongly suggest the presence of an intrinsic band gap in 

r-TLG. Such a gap is not anticipated from tight-binding calculations, and likely arises 

from electronic interactions, as expected from r-TLG’s large interaction parameter rs. 

For instance, a band gap may occur if spatial inversion symmetry is broken by strain 

or an external electric field, or if electronic interactions cause spontaneous symmetry 

breaking such as those predicted [117, 143, 144] or reported [120] for BLG. Drawing 

from our BLG data, we believe that the gap opening in r-TLG is interaction-driven, 

and may be as large as 30 meV (the bias value at which the sharp rise in G occurs), if 

TLG is double-gated, so that both n and electric field can be tuned to zero. 
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7. Chapter 7. Controlled Ripple Texturing of Suspended Graphene 

In this chapter we discuss a direct observation and controlled creation of one- 

and two-dimensional periodic ripples in suspended graphene sheets, using both 

spontaneously and thermally generated strains.  

By elucidating the ripple formation process, which can be understood in terms 

of classical thin-film elasticity theory, we are able to control ripple orientation, 

wavelength and amplitude by controlling boundary conditions and 

thermo-mechanical manipulation. In the end of this chapter we also use in-situ SEM 

imaging to exploit graphene's negative thermal expansion coefficient, which we 

measure to be much larger than that of graphite.  

Our results should lead to a better understanding of suspended graphene devices 

[145, 146], controlled engineering of thermal stress in large scale graphene 

electronics, and enabling a systematic investigation of the effect of ripples on the 

electronic properties of graphene. 
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7.1. Introduction 

Ripples are an intrinsic feature of graphene sheets [147], similar to those seen on 

plastic wrap tightly pulled over a clamped edge.  

Induced by pre-existing and/or thermally generated strains in graphene, ripples 

in graphene are expected to strongly influence electronic properties by inducing 

effective magnetic fields and changing local potentials [148-153]. Thus the ability to 

control ripple structure in graphene could enable device design based on local strain 

[154] and selective bandgap engineering [155].  

On the other hand, despite a theoretical calculations and debate [156-158] over 

graphene’s negative thermal expansion coefficient (TEC), TEC has never been 

experimentally measured in graphene. In this chapter we will use a special in-situ 

SEM imaging method to exploit graphene's negative TEC, which we measure to be 

much larger than that of graphite. 

 

7.2. Device fabrication, furnace cleaning and ripple chracterization 

Suspended graphene membranes are prepared by the standard mechanical 

cleavage technique on Si/SiO2 wafers with pre-patterned trenches. Membranes that 

are 1, 2 and 3-layer thick are identified by color contrast in an optical microscope 

and/or Raman spectroscopy. The Si substrates are p-doped to act as back gates, and 

the thickness of silicon and SiO2 are 500 m and 300 nm, respectively. The trenches 

are defined by photolithography followed by plasma etching in a reactive ion etcher 



114 

 

(RIE) system. The depths of trenches range from 100 to 250 nm, and width from 2 to 

4 μm. Devices with electrodes are fabricated by direct deposition of Ti/Au metals 

through shadow masks that are carefully aligned to selected graphene sheets. 

The graphene membranes are annealed in a standard chemical vapor deposition 

(CVD) furnace in argon gas at a flow rate 0.6 slm for 20 minutes. The annealing 

temperature varies from 400K to 750K. Some of the membranes are annealed inside 

an SEM chamber in vacuum, as will be discussed below. 

Graphene membranes, ranging from single layers to ~ 16 nm in thickness, and 

~0.5 to 20 m in width, are suspended across pre-defined trenches on Si/SiO2 

substrates. We examine their morphology under a scanning electron microscope 

(SEM) or an atomic force microscope (AFM).  

 

 

Fig. 7-1 (a) and (b) Data from two different graphene membranes suspended 

across trenches. The center horizontal stripe, indicated by the left bracket in (a), 

corresponds to the trench. Upper panels: AFM topographical images. Lower 

panels: line traces taken along the dotted lines. Note the different amplitudes 

and wavelengths of the devices. (c) SEM image of a bi-layer suspended 

membrane. 

 

Strikingly, most of the graphene sheets are not flat, but spontaneously form 
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nearly periodic ripples (Fig. 7.1). Typically, the ripple crests are perpendicular to the 

edges of the trench (y-direction), although oblique ripples (i.e. with crests at an angle 

to the trench) are occasionally observed. The out-of-plane displacement  of the 

ripples is well-described by a sinusoidal function, 

     =Asin(2y/).                      (4.1) 

where A is the amplitude and the wavelength. We have imaged and measured more 

than 50 different membranes, with A ranging from 0.7 to 30 nm, and  ranging from 

370 nm to 5 m.  

We also observe that the ripples in graphene are not visible in SEM unless the 

device is imaged at a high tilting angle, typically 75-85º. As shown in Fig. 7.2, the 

graphene membrane appears to be flat and ripple-free when imaged at 0º (i.e. top 

view) or 45º; however, when imaged at large angles (>75º), the membrane displays 

prominent, periodic ripples. The majority of the images presented in the manuscript 

are taken at 80º.  

 

 

Fig. 7-2 SEM Images of a graphene sheet imaged at different tilting angles. 

Note that the ripples are observable only at a large tilting angle, >75º. 
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Most of the as-prepared graphene membranes display strain-induced ripples. 

Occasionally, however, flat graphene or sagging sheets are also observed (Fig. 7.3). 

 

 

Fig. 7-3 SEM images of several different as-deposited few-layer graphene 

membranes. 

 

To understand the origin of these ripples, we note that for an elastic thin film, 

ripples described by Eq. (4.1) may be induced by either transverse compression in 

the y direction, or by longitudinal strain and/or shear in the x-direction [159]. From 

classical elasticity theory [160], we expect the clamped boundary conditions 

imposed by the banks of the trenches suppress lateral movement and induce local 

biaxial stress. For a thin film of thickness t with clamped boundaries at x=0 and x=L, 

the presence of a longitudinal tensile strain  leads to [159]: 
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Here  is the Poisson ratio, which is predicted to range from 0.1 to 0.3 for 

single layer graphene [161, 162]. Combining Eqs. (4.2a) and (4.2b), we eliminate  

and obtain an equation with only experimentally accessible parameters: 

    t
L

A

)1(3

8
2




  .                      (4.3) 

If instead the applied stress is dominated by in-plane shear, the equation takes a 

different prefactor [163]: 

    t
L

A

)1(3

8






 .                   (4.4) 

Using values of A, L,  and t as determined from AFM images, we plot A/L vs. 

t for 51 devices that display periodic ripples, as shown by the data in Fig. 7.4. Eqs. 

(4.3) and (4.4) are plotted as the lower and upper lines, respectively, using =0.165 

[164] for graphite in the basal plane, which is well within the theoretical range of 

values.  
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Fig. 7-4 AL vs t for 51 membrane devices. The lower and upper lines are 

calculated using =0.165 and Eqs. (3) and (4), respectively. Inset: AL vs t for 

single(red)-, bi(green)- and triple(blue)- layer devices. The number of layers is 

inferred from colour contrast in optical microscope, though only measured 

thickness is used. 

 

We notice that most of the data points fall on the lower solid line, indicating 

that the ripples are induced by pre-existing longitudinal strains in graphene. However, 

the 6 data points that fall above the upper line have a similar slope to the latter, 

suggesting the presence of shear in these devices. Actually Eqs. (4.2) – (4.4) are 

derived based on classical thin-film elasticity theory, and may not be valid a priori 

for atomically thin membranes. The inset of Fig. 7.4 displays A/L vs. t for samples 

that are 1, 2 and 3 layers thick. Remarkably, the data points falls on a straight line, 

suggesting that Eq. (4.3) holds even for single atomic layer membranes.  

The strains in these atomic membranes, while difficult to determine using 

conventional techniques, can be readily obtained from Eq. (4.2a) or (4.2b). In Fig. 
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7.5, we use Eq. (4.2a) to compute  for membranes with strain-induced ripples, and 

plot  vs t. For thicker films,  is relatively small, ~0.016% to 0.3%. In contrast, 

thinner films are more easily strained, and exhibit  up to 1.5%.  

 

Fig. 7-5 Strain in suspended devices, calculated using Eq. (4.2a). 
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7.3 Thermal manipulation of graphene ripples 

The above observation of periodic ripples in graphene membranes suggests that 

they can be further controlled to enable strain-based graphene electronics. Here we 

show that ripples can be controllably produced via simple thermal manipulation. The 

graphene membranes are annealed in a furnace in argon up to 700 K, and imaged 

again at room temperature. Surprisingly, almost all graphene membranes undergo 

dramatic morphology changes, displaying one or both of the following changes: (1) 

the ripple geometry is significantly altered, with apparently larger amplitudes and 

longer wavelengths (see also Fig. 3a); (2) the graphene membrane buckles, typically 

sagging toward the substrate, or occasionally buckling upwards. In fact, the buckling 

can be quite dramatic: the central portions of several membranes settled on the 

bottom of the trenches without breaking. 

To understand these observations, we perform in situ SEM imaging of our 

devices at different temperatures T, using a custom-built SEM stage with a built-in 

heater and a thermocouple.  Standard graphene samples on silicon substrates (4 mm 

x 4 mm x 0.5 mm) were mounted to a heated aluminum base plate using a thin layer 

of high-temperature cement (thermal conductivity 1.6 W/m.K).  Temperature was 

measured using a fine-gage K-type thermocouple (diameter 2 mil 50 m) cemented 

directly to the top of the silicon chip. To minimize errors in the temperature 

measurement, the thermocouple bead was embedded approximately 1 mm into the 

cement and located as close as practical to the top of the silicon (Fig. 7.6 ).  
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Fig. 7-6 Schematic of the heater stage for in situ SEM imaging. 

 

This configuration exploits heat conduction through the cement to bring the 

temperature of the thermocouple junction as close as possible to the temperature of 

the silicon substrate. We assume conservative values for the thermal conductivity of 

the thermocouple wires (50 W/m·K), and the worst-case emissivity (=1) of all 

materials. Using standard heat transfer theory, we calculate that the temperature of 

the thermocouple junction is within 2K of the silicon temperature even at 725K. We 

have also conservatively estimated the temperature difference between the silicon 

and the center of the graphene flake to be 0.05K or less, which considers temperature 

gradients within the silicon, heat transfer through the oxide layer, contact resistance 

between graphene and oxide, heat conduction through the graphene, and black-body 

radiation to the surroundings. Taken together, the overall uncertainty in our 

temperature measurement is estimated as 4K at 725K, with the largest contribution 

simply being the uncertainty in the thermocouple calibration.   
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Fig. 7.7 (a) and (b) show image sequences for two different membranes. When T 

is raised to 450-600K, the membranes are flat, and any pre-existing ripples almost 

completely disappear. However, upon cooling down to 300K, ripples invariably 

appear, usually with much larger amplitudes than any pre-annealing ones. The device 

in Fig. 7.7(b) also exhibits longitudinal buckling and sags into the trench.  

 

Fig. 7-7 Dependence of ripple morphology on temperature. (a-b) In situ SEM 

images of two devices taken before, during and after annealing. Bottom panels 

of (b) are higher magnification images of the edge of the graphene membrane, 

which sags into the trench after annealing. (c) Schematic of buckling of a 

graphene membrane due to thermal contraction. From left to right, the panels 

depict the membrane in its original state, during heating and during cooling, 

respectively. The arrows indicate the contraction/expansion of the substrate 

and graphene.  

 

The above observations suggest that, after thermal annealing, a graphene sheet 

experiences biaxial compression [165]; the different behaviours (rippling vs. 
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buckling) arise from the different boundary conditions in x and y directions. This is 

only possible if graphene’s TEC is much smaller than that of silicon, so that it 

effectively contracts relative to the trench during heating, and expands during 

cooling. In fact, a negative TEC is expected as a consequence of graphene’s 

two-dimensionality, in which the energies of out-of-plane (bending) phonon modes 

is lower for smaller lattice parameters (in contrast to increasing phonon energy in 

bulk materials) [166]. Furthermore, during thermal cycling, the graphene membranes 

experience a competition between three forces: (1). Fpin, the substrate-pinning force 

that prevents the graphene membrane from sliding; (2) Fb, the bending/buckling 

critical compression force, which is generally << Fpin; and (3). Fstretch, the elastic 

restoring force under tension. A schematic of the process is shown in Fig. 2c. When 

T increases, the substrate and the trench width expand biaxially, while graphene 

contracts; this differential in TEC places the membrane in biaxial tension.  Once 

Fstretch > Fpin, the taut membrane slides over the substrate into the trench, hence 

“erasing” any pre-existing ripples. Conversely, the cooling process applies 

compressive stress; since Fb << Fpin, the ends of the graphene remain pinned to the 

banks of the trench, resulting in transverse (y) ripples and/or longitudinal (x) 

buckling.  

Such interplay between the thermal expansion of the substrate and the 

membrane suggest a simple way to control both the amplitude (or, if desired, the 

wavelength) and orientation of the ripples. Since the membranes buckle readily 
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under compression, the transverse compressive strain is  



 ~ 1
 2

2
1. Hence A 

and  of the post-annealed wrinkles are related by 

    



A ~                            (4.5) 

for A<< Since  arises from the difference in TEC between the substrate and 

graphene, we expect  to scale with max, the maximum annealing temperature rise 

above ambient. This can be clearly seen in Fig. 7.8(a), in which the ripples’ 

amplitudes become considerably more prominent after successive annealing to 425K 

and 475K, respectively.  

 

Fig. 7-8 Thermo-mechanical manipulation of amplitude and orientation of 

ripples. (a) SEM images of a membrane before annealing (left), after 

annealing to 425K (middle) and to 475K (right). Notice the increase in 

wavelength and amplitude of the ripples with annealing temperature. (b) A vs. 

max
1/2

 for post-annealed devices. 

 

Fig. 7.8(b) plots A vs 



 max  for 6 different devices, each thermally cycled to 

several different temperatures. Indeed, the data points fall approximately on a 

straight line. Thus, for a given set of boundary conditions, the wavelength and 

amplitude of the ripples can be controlled by max. 
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After annealing, all graphene membranes display more prominent ripples in the 

y-direction, and/or buckling in the x-direction (Fig. 7.9). Apart from membranes that 

buckle or sag towards the substrate (Fig. 7.7(b)), upward buckling is also observed 

(Fig. 7.9(d)). For graphene membranes that have been thermally cycled to high 

temperatures (>~600 K), some completely collapsed, settling onto the bottom of the 

trenches without breaking (Fig. 7.9 (a)-(c)).  

Fig. 7.10 shows the morphological changes of graphene membranes through 

several thermal cycles via in situ SEM imaging in vacuum. Invariably, the graphene 

sheets become smoother (rippled) upon heating (cooling) with each cycle. 

 

Fig. 7-9 (a), (b) and (c): SEM images of three graphene membranes before 

(left) and after annealing (right). (d) SEM image of a few-layer graphene 

membrane that buckles upwards after annealing. (e) an AFM image of a 

graphene membrane device before annealing (Upper panel: AFM topography 

image. Lower panel: Line trace along the dotted line in the upper panel.). (f) 

same as (a), after annealing to 550 K.  
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In addition to mechanical strains, thermal fluctuations may also induce ripples. 

However, numerical simulations [47, 167, 168] show that thermally induced ripples 

are random, dynamic, with amplitudes of ~ 1 Å at 300K. In contrast, the ripples in 

our devices are periodic, static, with amplitudes 1-3 orders of magnitude large than 

those predicted, thus are unlikely to arise from thermal fluctuations.  

Another ripple-inducing mechanism is molecular adsorption, which has been 

shown theoretically to yield ripples in as-prepared, suspended graphene [168, 169]. 

However, for devices thermally cycled under vacuum, any desorbed molecular 

species are unlikely to adsorb on the graphene surface again. Thus, if molecular 

adsorption is the main rippling mechanism, the graphene sheet is not expected to 

exhibit further morphological changes after the first thermal cycle. This is 

incompatible with experimental data: Fig. 7.10 establishes the repeatability of the 

morphological changes through several thermal cycles. We therefore exclude 

molecular adsorption/desorption as the ripple formation mechanism in our 

experiments. 
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Fig. 7-10 In situ SEM imaging of graphene sheets through thermal cycles. 

Scale bars: 1 m. (a) A bilayer graphene sheet with pre-existing ripples are 

thermally cycled between 300K and 675 K. (b) A single layer graphene sheet 

is relatively flat immediately after deposition. It is then thermal cycled to 

successively higher temperatures up to 575K. 

 

To control the orientation of the ripples, we note that the ripple patterns are 

determined by the substrate-imposed boundary conditions (e.g. buckling vs. 

wrinkling in x and y-directions, respectively). This is similar to that in metallic thin 

films on elastomeric substrates that were patterned with relief structures [170]. In 

both experiments, ripples patterns, in which crests are aligned perpendicular to the 

step-like structures on the substrate, arise from the redistribution of compressive 

stresses due to the TEC differential between the substrate and the thin film. Hence, 
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as the first step towards controlled creation of 2D ripples, we pattern openings of 

different shapes on the substrates. Graphene membranes are suspended over these 

openings; annealing in temperature up to 700K yields striking patterns of 2D ripples, 

with the crests perpendicular to the edges of the opening (Fig. 7.11).  

 

 

Fig. 7-11 Formation of periodic 2D ripples in graphene membranes suspended 

over openings of various shapes. Scale bars in all images are 1 m. 

 

These 1D or 2D ripple patterns may be desirable for novel devices such as 

in-plane electronic superlattices [171, 172]. In the long term, just as the creation of 

complex patterns was demonstrated in the metal/elastomer systems [170], simple 

thermal manipulation, coupled with pre-patterned relief structures on substrates, can 

be used to engineer graphene’s local morphology, and alter its electronic properties. 

Such processes are also compatible with large-scale device applications. 

 

7.4 Negative thermal expansion of suspended graphene 

Our experimental system also enables us to explore the interplay between 
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graphene’s mechanical, thermal and electrical properties. For instance, the 

thermo-mechanical manipulation of the ripples proves to be exceedingly effective, 

since graphene’s negative TEC  accentuates the TEC-difference between the 

substrate and graphene. On the other hand, despite theoretical calculations and a 

debate over its temperature dependence [156, 172],  has never been 

experimentally measured. 

Our experiment readily enables measurement of the TEC . To this end, we 

anneal a single-layer graphene sheet in a furnace up to 700K to create a sagging 

membrane. This device is then inserted into the SEM chamber, and heated up to 

~450 K, at which the membrane is apparently taut across the trench. The heater is 

then turned off to allow the membrane to cool to 300K in 2 hours. We take a series of 

images to capture the sagging process. At a given temperature T, we compute the 

ratio l(T)=Lg(T)/Lt(T), where Lg is the length of graphene membrane as measured 

along the arc, and Lt is the length of the trench measured along the chord (Fig. 7.12a 

inset). Both quantities are measured independently for every image to minimize 

errors induced by, e.g., slight variations in the imaging conditions. Since the 

membrane’s vertical displacement 1tL l   , even a miniscule deviation of l from 

unity produces notable changes in   that are readily detected in the SEM images. 

In Fig. 7.12 we plot l(T) for a single layer graphene sheet. The slope of the graph 

is the effective TEC of the graphene-trench system, and can be approximated by 

eff t

dl

dT
     , where t is the TEC of the trench, ~120% of that of Si, and a 
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detailed discussion is given below: 

 

Fig. 7-12 TEC measurement of suspended graphene membranes. Upper Panel: 

l(T) for a single layer graphene membrane. We use two mathematical 

functions to approximate and interpolate the data: the solid line is a 4th-order 

polynomial fit to the data points, and the dotted line (almost indistinguishable) 

is an exponential function fit. The inset displays an SEM image of a sagging 

few-layer graphene sheet; scale bar: 1 m. Lower Panel: Slope eff (red) and 

TEC (blue) of a single-layer graphene membrane. The solid and dotted lines 

correspond to results obtained using the polynomial and exponential functions, 

respectively. The trench’s TEC is taken to be 120% of Si, and plotted as the 

green dotted line.  

 

Graphene’s TEC (T) is calculated from the slope of the curve l(T) 

=Lg(T)/Ltrench(T). The slope is given by:  
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if we take first order expansions, assuming T<<1. Here  and sub are the thermal 

expansion coefficients of graphene and substrate, respectively. Since the prefactor 

Lg(T)/Lt(T) is within 0.1% of unity, b ≈ -sub or  

      ≈ b+sub.                        (4.6) 

To determine , we substitute subSi into Eq. (4.6), since thermal 

expansion of the trench is mainly determined by the underlying Si substrate (rather 

than the thin SiO2 layer) – to the first order, the thermal expansion of the trench is 

mainly determined by the underlying Si substrate, which is 1700 times thicker and 

twice as stiff as the SiO2 layer. A more careful consideration indicates that the 

presence of the thin SiO2 layer with a smaller TEC may give rise to two different 

effects that may modify the trenches’ TEC.  

(a). Upon a temperature increase T, The difference in TEC between the 

substrate and the thin oxide gives rise to an interfacial thermal stress; as a result, the 

substrate is strained and acquires a finite curvature. This phenomenon is qualitatively 

similar to, although much smaller in magnitude, that observed during the thermal 

expansion of a bi-metallic strip. The strain  and radius of curvature R can be 

estimated using the well-known Stoney formula [173] for a thin-film-on-substrate 

system, given by  
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 is the thermal stress in the oxide. Here  is the TEC, 

d is the thickness, T is the temperature increase,  is the Poisson’s ratio, E is the 

elastic constant, and the subscripts f and s indicate thin film and substrate, 

respectively. Using ds=500 m, df=300 nm, and standard values Si~3x10
-6

 K
-1

, 

SiO2~5x10
-7

 K
-1

, ESi≈160 GPa, ESiO2≈70 GPa, Si≈0.22 and SiO2≈0.16, we estimate 

f≈62.5 MPa, R~450m, and≈-2x10
-7

. Thus, within an accuracy of 1 part per 

million, the expansion of Si is unaffected by the oxide layer. 

(b). A second, and more prominent, factor is the free edge effect – while the 

bottom of the SiO2 is bonded to and expands as much as silicon, the top layer is free 

and expands at a smaller rate; thus, the walls of a trench are no longer vertical but 

slant outwards. In fact, if the expansion of the top of the thin film is independent of 

that of the bottom, and if the thin film is perfectly incompressible, the trench length 

as measured from the top will be increased by (2sub-f)T . To quantify this effect, 

we use COMSOL, a finite element analysis software, to simulate our experimental 

situation. Our results show that the thermal expansion of the trench is roughly 125% 

that of bare silicon, which is reasonable considering the small thickness and 

Poisson’s ratio of SiO2. 

 To obtain eff, the data points are interpolated by an analytical function, which 

is then differentiated. Two different fitting functions are used to illustrate the error 
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range of this procedure. Using values of Si(T) from ref. , we can determine  for 

graphene (lower panel of Fig. 7.12, blue lines). We find that at 300K, ~x0
-6

 K
-1

, 

which indeed greatly exceeds than the in-plane TEC of graphite, ~ x0
-6

 K
-1

; its 

magnitude decreases with increasing T. On the other hand, the measured  is 

roughly twice that from theoretical calculation, and approaches zero more quickly 

than expected [156]. Though more experimental and theoretical works are warranted 

to resolve such discrepancies, our first quantitative measurement of graphene’s TEC 

provides important insight into graphene’s unique thermal properties.  

This result has important implications towards controlling thermally induced 

stress in graphene electronics, as the difference in TECs between the substrate and 

thin film is the most common mechanism that give rise to stress and even cracks in 

devices. It is also important for understanding the transport and mechanical 

properties of suspended graphene devices. For instance, because of its anomalously 

large and negative TEC, a flat, suspended graphene sheet almost invariably become 

rippled after annealing, or after cooling by 100-200 K. This may account for the 

disappearance of quantum Hall features in suspended graphene devices after 

annealing, and the unusual G(T) behaviour with large sample-to-sample variations 

reported in ref. [146]. 
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8. Chapter 8. Gating effect of suspended graphene devices 

Although transport measurements have been performed in suspended graphene 

(SG) devices for years [24, 25, 92, 129], direct observation of morphology for SG at 

external electrical field or low temperature still remains undetected. In this chapter 

we will first discuss the buckling of suspended graphene sheets when applying a Vg 

to the back gate. Such a gating effect could also modify the morphology of ripples in 

suspended graphene. 

At low temperature, due to graphene’s negative thermal expansion, suspended 

graphene is rippled and buckled with features that resembles “butterfly” forming at 

two free edges, therefore suspended graphene contacts the bottom of trench more 

easily when Vg is applied at low temperature. The above observation has important 

applications for strain and charge density engineering in SG, and these results may 

also indicate the necessity to effectively manipulate both charge density and strain in 

SG devices. 
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8.1 Introduction 

In previous chapters we have already demonstrated that suspended graphene (SG) 

membrane is an ideal platform that enables the investigation of its properties free of 

interaction with substrates. For instance, SG exhibits extraordinary mechanical 

properties [28, 30], large thermal conductivity [26, 174], ultra-high mobility [24, 25] 

that enables the observation of fractional quantum Hall effect [94, 95], and it is also 

an ideal material for an electromechanical oscillator or resonator [28]. In fact, all of 

these important properties could be related to and affected by the morphology of SG, 

in which strains or ripples [52, 53] could induce an effective magnetic field and 

strongly affect the transport properties of SG [148-153]. 

A simple and direct method to strain and buckle graphene is to apply a back gate 

to SG sheet since a gate-created electrostatic force could induce a deflection of 

graphene [175]. Thermal manipulation can also effectively affect SG’s morphology as 

discussed in the last chapter. In the following we first report a successful manipulation 

of graphene’s morphology via electrostatic and thermal control.  

 

8.2 Device fabrication  

SG sheets are prepared by mechanical exfoliation of Kish graphite onto Si/SiO2 

(300nm) wafers with pre-patterned trenches (250nm in depth and ~3 μm in width) as 

shown in Fig. 8.1(a). The trenches are defined by photolithography followed by 

plasma etching in a reactive ion etcher (RIE) system. The number of graphene layers 
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is identified by color contrast under an optical microscope and then confirmed by 

Raman spectroscopy. We directly deposit Ti/Au metal electrodes through shadow 

masks that are carefully aligned to selected graphene sheets. By grounding one of the 

electrodes and applying a gate voltage Vg, we can maintain an electrostatic potential 

and hence an attractive force between SG and Si substrate. The structure of such a 

device is different from hydrogen fluoride etched SG devices [24, 25], since two ends 

of the SG sheet are supported by SiO2 banks instead of attaching to the bottom of 

partially suspended electrodes, therefore excluding the influence of bending of 

suspended electrodes when applying back gate Vg.  

 

Fig. 8-1 (a) Schematic diagram of applying a gate voltage Vg to a suspended 

graphene device. (b) and (c) SEM images of doubly clamped and non-clamped 

SG devices, respectively. 

 

After considering the sliding effect between the graphene and substrate [30, 52], 

we fabricated two types of SG devices: 1) SG sheet is clamped by two parallel metal 
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contacts which are deposited at the edges of trench, as shown in Fig. 8.1(b). 2) SG 

sheet is non-clamped and only the ends of the graphene sheet are connected by metal 

contacts which are greater than 10μm away from the edge of the trench, as shown in 

Fig. 8.1(c). For both types of devices, narrow and rectangular-shaped SG sheets with 

widths less than 1μm are selected for device fabrication. 

 

8.3 Gating effect of suspended graphene devices 

Applying Vg to SG sheet could induce a deflection of graphene [175] due to the 

created electrostatic force. To experimentally explore this effect we perform in situ 

scanning electron microscope (SEM) imaging for profiles of devices described above 

on a tilted stage, while continuously varying Vg. In Fig. 8.2 a series of SEM images 

taken at 85
o
 tilted angle show the morphology change of a single layer SG sheet 

(non-clamped) in response to applied Vg.  
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Fig. 8-2 SEM images of a SG device at different electrical fields created by back 

gate voltage. 
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As Vg increases, the SG sheet gradually buckles downward to the bottom of 

trench. As long as the buckling is elastic, the strain could be released to allow the SG 

to return to the taut state by removing the Vg. Neither sagging nor deformation of SG 

is observed after sweeping Vg back to zero even after multiple cycles of Vg sweeping, 

indicating such a buckling is largely reversible. The out-of-plane deformation h can 

also be readily estimated in such an SEM image and more analysis will be discussed 

in details later. Here h is calculated using measured arc length l1 assuming the 

deformation is nearly parabolic. 

1
0

0

3
( 1)

8

l
h l

l
  ,                          (8.1) 

where l0 is the width the trench. 

 However, when Vg is sufficiently large and once the SG sheet is pulled down far 

enough to contact the bottom of trench, the SG sheet becomes irreversibly collapsed 

due to the Van der Waals force even after Vg is removed, as shown in Fig. 8.2(e). We 

also note that the sufficiently strong Van der Waals force in the collapsed region could 

induce strain in regions that remain suspended, therefore creating ripples [52].  

Since such a deflection of SG arises from the attraction of opposite electrostatic 

charges between the SG and back gate, the attractive force could be described by: 
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                          (8.2) 

where S is the area of SG, 0  is the permittivity of vacuum,   is the permittivity of 

http://dict.cn/recyclable
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SiO2, e is the charge of an electron, d0 =250nm is the depth of trench and d1 =50nm is 

the thickness of the residual SiO2 on the bottom of trench. A theoretical calculation 

has been investigated [175] in a model similar to our SG devices which considers that 

a uniform load of electrostatic force is applied to the SG sheet. The resultant 

out-of-plane deformation h(Vg) (as indicated in the inset of Fig. 8.3a) for single layer 

graphene is hence plotted in Fig. 8.3(a) (dotted line) by setting geometries of the 

model equivalent to our devices. However, such assumption of uniform load no 

longer holds when the buckling of SG is comparable to the separation between the SG 

and Si substrate. Therefore, we consider a modified model that includes the 

buckling-induced, non-uniform charge distribution in SG. This modified model is 

simulated by COMSOL Multiphysics in this work and the corresponding result is 

plotted in Fig. 8.3(a) as solid line for single layer graphene.  

 

Fig. 8-3 (a)-(c): Out-of-plane deformation h(Vg) for single layer, bilayer 

and trilayer SG, respectively. 

 

To compare the above models with experimental results we also plot h(Vg) of 
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single layer graphene for both clamped and non-clamped devices, and for each Vg, h is 

extracted and averaged from several in-situ SEM images. The results of in-situ 

measurement shown in Fig 3a indicate that the clamped SG device agrees well with 

the COMSOL simulation for single layer. However, for bilayer and trilayer SG (Fig 

4.15 b and c), the results deviate slightly from the COMSOL simulation, which could 

be attributed to the incomplete clamping of SG (SG could possibly slide between the 

metal and substrate interface) or other systematic errors such as simply assuming that 

Young’s modulus of bilayer (trilayer) graphene is double (triple) that of single layer 

graphene. Nonetheless, we notice that for all SG with different numbers of layers, the 

deflection of non-clamped devices is obviously larger than that of clamped devices. 

The above observations could be schematically explained in Fig. 8.4: when 

Fstrain > Fpin (where Fstrain is the force induced by strain in SG from electrostatic 

attraction and Fpin is the substrate-pinning force that prevents the graphene sheet from 

sliding), the substrate-supported part of graphene slides into the trench and hence 

increases the value of h. While after gate voltage is removed, Fstrain can possibly pull 

this part back to substrate, therefore no obvious slacking is observed after Vg is cycled 

to zero. Future works of similar experiments might enable us to study the layer 

dependence and substrate dependence of friction between graphene and substrate.  
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Fig. 8-4 Schematic illustration of graphene buckling in (a) clamped SG 

devices and possible sliding in (b) non-clamped SG devices  

 

The non-uniformity of charge density and strain distribution in buckled SG can 

also be simulated by COMSOL and results are shown in Fig. 8.5. It is apparent that 

both charge density and strain increase with increasing Vg, and their non-uniformities 

become significant at large buckling. Simulation results also suggest that at large 

buc()kling, the charge density reaches its maximum at the center of the buckled SG 

sheet, while the strain is maximum at the two edges of the buckled SG.  
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Fig. 8-5 Non-uniformity of (a) charge density and (b) strain distribution 

in buckled SG (from top to bottom: Vbg=1, 10, 20, 30, 33.8V) 

 

These results may now indicate that, instead of assuming uniform charge density 

and zero strain in transport measurements (as one typically does), one may need also 

to consider the non-uniform charge density and strain distribution under applied Vg in 

order to account for the data. 

 

8.4 Combination of rippling, cooling and gating effects 

Another important morphological feature in SG is its rippling effect. It has 

already been demonstrated that both tensile and compressive strains can create 

periodic ripples in SG [52], which are predicted to strongly influence the electronic 

properties of graphene [148-153]. Therefore, we now study the gating effect on SG 

with strain-induced ripples.  



144 

 

In Fig. 8.6 (a) - (c), we show that when Vg is applied to a SG sheet with oblique 

ripples, not only is the whole SG sheet buckled, but also the wavelength of ripples 

becomes altered. Such a phenomenon is expected from the classical elasticity theory 

with a result [52, 159]: λ
4 

~γ
-1

, where λ is the wavelength of ripples and the γ is the 

longitudinal tensile strain. Therefore the gating effect can increase γ which 

consequently decreases λ. In this case we estimate that the strain is ~6 410 at Vg = 

30V.  

 

Fig. 8-6 SEM images of (a)-(c): partially clamped SG sheet with 

oblique ripples at different Vg. (d)-(e): fully clamped SG sheet with 

oblique ripples at different Vg. 

 

Meanwhile, the gating effect also changes the orientation of the ripples from 

oblique to perpendicular to the edges of trench, which could be explained by sliding 

of the substrate-supported region of graphene. However, when metal contacts extend 
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onto the suspended portion of graphene, as shown in Fig. 8.6 d-e, the gating effect no 

longer manipulates the morphology of ripples; therefore the ripples in SG could be 

“frozen” by certain boundary conditions. 

Finally we note that although low temperature transport measurements have 

been performed in SG devices for years [24, 25, 92, 129], direct observation of 

morphology for SG at low temperature has not been reported. Therefore now we 

focus on the cooling effect on SG membranes. Using an SEM cold stage, we perform 

in situ SEM imaging for relatively wide (aspect ratio ~1) SG sheets at room 

temperature and at 100K.  

 

Fig. 8-7 (a)-(c): In-situ SEM images of SG devices at room temperature 

(left panels) and 100K (right panels). (d): At 100K, SEM images of SG 

at different Vg. 

Fig. 8.7(a) shows that ripples appear at 100K in SG sheet which is taut at room 
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temperature (RT). This process could be understood in terms of graphene’s negative 

thermal expansion coefficient (TEC), which induces a compressive stress due to the 

clamped edges of SG and results in the formation of ripples. The expansion due to 

graphene’s negative TEC can also induce the upward buckling of SG’s two free sides, 

forming a “butterfly” feature at two sides of SG, as shown in Fig 4.19(b) and (c). 

This observation readily enables us to measure the lower bound of the TEC by 

measuring the length along the arc of the “butterfly” feature. We estimate that the 

average TEC between 100K and room temperature is up to 52 10  (no unit for 

thermal expansion coefficient) for single layer graphene and 54 10  for multilayer 

graphene, which are much larger than the theoretical expectation [156-158]. The 

mechanism of such an anomalous result is still unclear and more experiments are 

necessary for confirmation. At last, we combine both gating and cooling effect on SG, 

as shown in Fig. 8.7(d). The expanded “butterfly” feature could be easily pulled to 

the bottom of the trench when applying a Vg, though SG may still be suspended 

under similar Vg at room temperature. Therefore SG is easier to collapse at low 

temperature. 

 To conclude, we observe a buckling of SG when applying a Vg to the back gate, 

and such a gating effect could also modify the morphology of ripples in SG. At low 

temperature, due to its negative TEC, SG is observed to be rippled at the center and 

“flares” up at the free edges; therefore SG is more prone to collapse by applying Vg 

at low temperatures. The above observation has important implications for strain 
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engineering in SG and understanding transport data of suspended graphene devices 

at low temperatures. 
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9. Chapter 9. Conclusion 

To conclude, this thesis explored the electrical and mechanical properties of a 

new 2-D atomic thick crystal – graphene. Chapter 1 included an overview of the 

basic concepts of electrical transport and mechanical properties of nano-scale 

material, together with a brief introduction of graphene relevant to the experimental 

results presented in this thesis. In Chapter 2 we describe fabrication techniques of 

graphene devices, in which the innovative shadow mask fabrication method is the 

key to this thesis since most exciting results are produced by ultra-clean graphene 

devices fabricated by this lithography-free method.    

The electrical measurement section begins in Chapter 3. When graphene is 

coupled to superconducting electrodes such as aluminum, we observed both multiple 

Andreev reflections and bi-polar supercurrent in such graphene Josephson junctions. 

We also observed depression of critical current Ic and the strong dependence of IcRn 

on charge density, which can be explained by premature switching in underdamped 

Josephson junctions described by RCSJ model. This demonstrates that thermal 

fluctuation plays an important role in electronic transport of graphene Josephson 

junctions. However, an intended goal of the project, trying to observe specular 

Andreev reflection, was not achieved. This is because specular Andreev reflection 

mainly takes place when the Fermi level is within the energy gap of the 

superconductor, thus a very sharp Dirac point is required. We expect that specular 

Andreev reflection can be observed in the near future if we can couple 
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superconducting electrodes to suspended graphene with high mobility. 

Then in Chapter 4 we focus on quantum Hall effect in suspended BLG and TLG. 

Applying shadow mask technique we successfully fabricated devices with ultra-high 

mobilities. For bilayer devices, we observe conductance minima at all integer filling 

factors  between 0 and -8, as well as a small plateau at =1/3. For trilayer devices, 

we observe features at =-1, -2, -3 and -4, and at ~0.5 that persist to 4.5K at B=8T. 

These features persist for all accessible values of n and B, and suggest the onset of 

symmetry breaking and/or FQH states in these devices. Besides we also observed 

that some well-developed quantum Hall (QH) plateaus in r-TLG split into 3 branches 

at higher fields. Such splitting is a signature of Lifshitz transition, a topological 

change in the Fermi surface, which is found only in BLG and r-TLG till now.   

At high magnetic field, graphene devices with high qualities (including SLG, 

BLG and TLG) always show insulating state at the Dirac point, however in some 

BLG/TLG devices we observe a zero field insulating state which has never been 

observed or predict by single particle calculation. Therefore we went on to study the 

low temperature transport behavior of minimum conductivity of both BLG and TLG 

at zero fields. In chapter 5 we report on a systematic study of the minimum 

conductivity minin a large number of single-gated and double-gated BLG samples. 

We find a surprisingly constant min value ~ 2-3 e
2
/h for the majority of devices, 

independent of device mobility and the presence or absence of substrates. However, 

the best devices manifest an insulating state with an energy gap ~ 2-3 meV. We 
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observe a phase transition between the single-particle metallic state and the 

interaction-induced insulating state in ultra-clean BLG, which can be tuned by 

temperature, disorder, charge density n and perpendicular electric field E. 

In chapter 6 we extended this work on to trilayer graphene, we demonstrate the 

dramatically different transport properties in TLG with different stacking orders, and 

the unexpected spontaneous gap opening in charge neutral r-TLG. At the Dirac point, 

B-TLG remains conductive while r-TLG becomes insulating with an intrinsic 

interaction-driven gap ~6 meV. Our results underscore the rich interaction-induced 

phenomena in trilayer graphene with different stacking orders, and its potential 

towards future gapped graphene applications.  

An experimental study of the mechanical properties of suspended graphene 

membrane began in Chapter 7. We demonstrate that we are able to control ripple 

orientation, wavelength and amplitude by controlling boundary conditions and 

exploiting graphene's negative thermal expansion coefficient, which we measure to be 

much larger than that of graphite. By elucidating the ripple formation process, which 

can be understood in terms of classical thin-film elasticity theory, our results should 

lead to a better understanding of suspended graphene devices, controlled engineering 

of thermal stress in large scale graphene electronics, and enabling a systematic 

investigation of the effect of ripples on the electronic properties of graphene. At last in 

Chapter 8 we observe a buckling of SG when applying a Vg to the back gate, and 

such a gating effect could also modify the morphology of ripples in SG. At low 
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temperature, due to its negative TEC, SG is observed to be rippled and buckled at 

two free edges.  

Our results have contributed to the graphene field for fundamental 

understanding of both electrical and mechanical properties of graphene. However, 

there are still many new and interesting unsolved problems to address, such as 

experimental observation of specular Andreev reflection in graphene, mechanism of 

insulating states in BLG and r-TLG, how ripples affect graphene’s transport 

properties, and layer dependence of graphene’s CTE. I believe this thesis just 

touched the surface of what is possible within this new and exciting material, and 

hopefully a lot more can be explored by more scientists and engineers in this unique 

and wonderful material.  
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