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Arsenic is a ubiquitous toxic element, the global cycle of which is highly affected by microbial redox reac-
tions and assimilation into organoarsenic compounds through sequential methylation reactions. While
microbial biotransformation of arsenic has been studied for decades, the past years have seen the discov-
ery of multiple new genes related to arsenic metabolism. Still, most studies focus on a small set of key
genes or a small set of cultured microorganisms. Here, we leveraged the recently greatly expanded avail-
ability of microbial genomes of diverse organisms from lineages lacking cultivated representatives,
including those reconstructed from metagenomes, to investigate genetic repertoires of taxonomic and
environmental controls on arsenic metabolic capacities. Based on the collection of arsenic-related genes,
we identified thirteen distinct metabolic guilds, four of which combine the aio and ars operons. We found
that the best studied phyla have very different combinations of capacities than less well-studied phyla,
including phyla lacking isolated representatives. We identified a distinct arsenic gene signature in the
microbiomes of humans exposed or likely exposed to drinking water contaminated by arsenic and that
arsenic methylation is important in soil and in human microbiomes. Thus, the microbiomes of humans
exposed to arsenic have the potential to exacerbate arsenic toxicity. Finally, we show that machine learn-
ing can predict bacterial arsenic metabolism capacities based on their taxonomy and the environment
from which they were sampled.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Arsenic is ubiquitous in nature. It is commonly found in one of
two inorganic forms; the pentavalent arsenate (As(V)) and the
trivalent arsenite (As(III)), both of which are extremely toxic [1].
As(V) is taken up via phosphate transporters and As(III) via aqua-
glyceroporins. Because arsenic uptake is incidental, it is assumed
that all organisms have some coping mechanisms to deal with
the toxicity [2]. Both arsenite oxidation and arsenate reduction
can also support respiration, and these pathways are believed to
have evolved before the split between the archaeal and bacterial
domains [3]. Microorganisms play a major role in the global arsenic
cycle, driving both the mineral precipitation and dissolution.
Microbes are also capable of assimilating arsenic into more com-
plex compounds or forming volatilized methylated forms of
arsenic [4]. Taken together, microbes have a huge potential effect
on human exposure to arsenic. While Bangladesh is a prime exam-
ple of the detrimental effects of groundwater contamination, other
hotspots are known around the world, exposing millions of people
to arsenic-contaminated drinking water [5].

The last decade has seen an exponential growth in the availabil-
ity of sequenced genomes, and with it the discovery and expansion
of the known arsenic transforming genes in microorganisms [6].
Currently, there are four types of operons, one dedicated to detox-
ification of arsenic (ars operon) and three respiratory operons
using arsenic as the electron acceptor (dissimilatory arsenate
reduction by the arr operon) or electron donor (respiratory arsenite
oxidation by aio/arx operons) [7]. The ars operon can be split into
an inorganic path (the canonical reduction of arsenate and excre-
tion of arsenite), and an organic pathway. The organic pathway
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starts with the methylation of arsenite by the ArsM enzyme, form-
ing monomethylarsonous acid (MMAs(III)). MMAs(III) can be fur-
ther methylated by ArsM and volatilized, excreted from the cells
via the ArsP efflux system, or oxidized into less toxic compounds
via the ArsH enzyme. An alternative efflux system (ArsJ) can
excrete arsenate by forming an unstable intermediate with glycer-
aldehyde 3-phosphate.

To date, studies have either focused on specific arsenic metab-
olizing microbes or surveyed the presence of a small number of
key genes in larger datasets [8–12]. A few studies that investigated
larger numbers of genes did not look at co-localization of these
genes, which is necessary to improve confidence in pathway iden-
tification. In this study, we utilized a relatively comprehensive set
of bacterial and archaeal genomes, thus a very large set of genes
involved in arsenic transformation, to analyze how arsenic-
related genes are combined in microorganisms. We also relied on
gene co-localization to help overcome low homology or low levels
of differentiation of auxiliary and regulatory genes. Our research
resulted in a database of genes related to arsenic biotransforma-
tion, within which we identified the core arsenic microbial guilds.
We show that the combination of microbial taxonomy and envi-
ronmental information predict the resident arsenic microbial
guilds. Further, we show that arsenic exposure shapes the invento-
ries of arsenic-relevant capacities in human microbiomes, thus
could increase arsenic toxicity.
2. Results

2.1. Genomic sampling of microbial diversity across environments

We constructed a database of genomes (GAsDb) that sampled
the broadest possible taxonomic and environmental diversity,
drawing upon both the RefSeq genomes and �3500 metagenomes
that our laboratories and collaborators have assembled, primarily
from terrestrial environments. We categorized each metagenome
(and, for RefSeq, genome) in terms of its ecosystem of origin: ter-
restrial near-surface, marine, deep subsurface, engineered and
host-associated. Each metagenome was also assigned an environ-
ment type (101 categories, including soil, freshwater, human)
and a geographic location (432 locations, divided into country/pro-
vince/state), and climate (22 types - derived from the dominant cli-
mate of a given location). To assign taxonomy to 91,685 genomes,
we used GTDB-Tk [13], for an initial assignment, but in some cases
corrected the taxonomy to reflect more appropriate standard
nomenclature. The genomes in the database are from both the Bac-
terial and Archaeal domains, with representatives from 92 phyla,
309 classes, 785 orders, 1,610 families, and 3,411 genera.
2.2. Distribution of arsenic genes and arsenic loci in genomes

For the purpose of this work, we designed 29 profile hidden
Markov models (HMMs) targeting five genes of the aio operon, five
genes of the arx operon, five genes of the arr operon (one gene was
targeted with two HMMs), and 14 genes of the ars operon.
Sequences were assigned a single annotation. When a sequence
was found by multiple HMMs, assignments were made based on
HMM scores. Following maximum likelihood tree constructions,
we identified four The four new clades that were all monophyletic
with one of the 29 clades, and closely enough related that we
assumed that they have related functions (see methods and Sup-
plementary information 1). The HMM for ArsR did not yield robust
results so it is not included in this work.

In our analyses, we also considered the co-localization of genes
to support functional assignments based on HMMs. Sets of co-
localized genes involved in arsenic transformations were used to
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define arsenic loci. Loci with no discernible functionality (e.g. all
the genes were auxiliary), or loci with a high ratio of hits below
their HMM score threshold were removed from the dataset. The
GAsDb contains 949 unique arsenic loci (see methods and Supple-
mentary Tables 1-3). Genomes carry between 1 and 12 arsenic loci,
with a median of 2 loci. 41% of genomes only have a single locus
and 40% of loci appear in a single genome. Only ten arsenic loci
appear in > 5% of the genomes, all of them containing genes from
the ars operon involved in arsenic resistance. Five of the ten have
an arsenic efflux system (four loci for export of arsenite and one
for export of methylated arsenic). Another, arsM, is a single gene
locus. Two genes, arsC and arsH, appear in multiple loci.

The richness of microbes, grouped by taxonomy or environ-
ment, was compared to random sampling of the whole dataset
(Fig. 1). Groups with significantly higher richness compared to ran-
dom sampling (marks above standard deviation) are enriched for
arsenic metabolism. No phylum was significantly enriched and
only three types of environments had significantly high arsenic loci
richness: groundwater, hotsprings, and sites associated with
mining.

2.3. Arsenic biotransformation guilds and core arsenic loci

To examine if microbes can be classified into arsenic guilds with
a similar set of genes, we first grouped the genomes to unique
arsenic profiles (AsPRO). This was based on the gene content and
gene count over the whole genome, resulting in 7,178 unique
arsenic profiles. We further reduced the data to 7,141 AsPRO by
eliminating profiles containing a single gene type. While the efflux
systems for arsenite (arsB, ACR3), the efflux system for arsenate
(arsJ), and methylation to volatilization (arsM) can be considered
standalone detoxification pathways, we preferred to remove such
genomes for several reasons. First, our dataset consists of
metagenome-assembled genomes (MAGs) of unknown complete-
ness, due to the large size of the database. That meant that we
could not easily distinguish between true single gene genomes
and noise from low-quality MAGs (this is not a concern for other
AsPRO since the loci analysis shows the genes are co-localized in
genomes). Second, the single gene profiles added too much noise
when analyzing the metabolism of the clusters and their removal
provided improved metabolic resolution, with little effect on the
overall clustering structure (see methods).

The chosen AsPROs were then clustered based on their genes
(Fig. 2). Clustering of AsPROs was conducted twice, once with a
focus on global structure and once with a focus on local structure
(see methods). In global structure, higher weight is given to the
most abundant genes, while in local structure, smaller gene differ-
ences are weighted more. The former enabled a more refined anal-
ysis of metabolism in some of the larger groups. The representative
metabolism for each cluster was based on the proportion of gen-
omes harboring the gene (Table 1). Genes were considered repre-
sentative if they were present in at least 50% of the genomes of a
cluster. An exception was made for the cluster containing ArxAB
as this was the only one containing these genes.

Clustering resulted in 13 arsenic biotransformation guilds
(AsBT-Guild), 12 of which originated from the global structure
and one unique to the local structure (the AsPRO were dispersed
among several guilds or considered noise with global structuring).
In addition, several AsBT-Guilds could be further separated into
subclusters (AsBT-SubGuild). AsBT-Guild 11 and 13 contain two
subclusters, AsBT-Guild 7 contains 4 subclusters, and AsBT-Guild
5 (the largest group) is divided into 8 subclusters (Fig. 2). All but
two AsBT-Guilds contained the inorganic pathway of the ars
operon, and all but one AsBT-Guild had at least one gene of the
organic pathway of the ars operon as part of their representative
detoxification system. Multiple AsBT-SubGuilds had an additive



Fig. 1. Richness of arsenic loci in phyla (green) and environment types (magenta), compared to the mean richness from random sampling (1000 permutations) of the dataset
(black line). Grey dashed lines indicate one standard deviation from the mean. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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proportion exceeding 100% of the two arsC variants (TRX-like pro-
tein family and LMWP protein family). The arsenite pump variants
(arsB and ACR3) on the other hand, rarely overlapped within gen-
omes. Each of the respiration operons arr, arx, and aio were repre-
sented in a separate AsBT-Guild. Of these, the AsBT-Guild enriched
for arx did not have it as representative metabolism (even though
it was unique to it). The AsBT-Guild represented by the aio operon
was further divided into two AsBT-SubGuilds, one containing the
short version of the operon (aioBA) and the other the long version
(aioBAXSR).

We discovered four new AsBT-Guilds in our work. The two lar-
ger AsBT-Guilds (comprising 4,297 and 2,070 genomes) did not
have the inorganic ars path but rather relied on arsM as the sole
detoxification enzyme. The first group (AsBT-Guild 3) paired the
aio two-component system (aioSR) with arsM, and the second
group (AsBT-Guild 9) had arsM and the sibling clade of arsP (arsP-
like), the MMAs efflux system. Members of the two AsBT-Guilds
(3 and 9) are predominantly found in soil environments, where
they account for just over half of the soil derived genomes
(2,918 and 1,698 genomes respectively of a total of 9,181 soil
genomes). Genomes of AsBT-Guild 3 are also found in groundwa-
ter and sediment environments in large numbers (650 and 541
genomes respectively). The other AsBT-Guilds were smaller (com-
prising 404 and 166 genomes). These AsBT-Guilds paired aio reg-
ulation genes with ars detoxification. Genomes in the larger group
(AsBT-Guild 2) contain multiple aio and arx regulatory and auxil-
iary genes combined with a short ars operon and arsM. >75% of
the genomes have five or more unique arsenic genes (not
accounting for gene counts). Genomes in the smaller group
(AsBT-Guild 1) have the full set of regulatory aio genes (aioXSR)
paired with a short ars operon.

Next, we wanted to examine whether we could identify a core
set of arsenic loci. The core arsenic loci is the minimal set of loci
found (in various combinations) in more than half of the genomes
of each phylum. We filtered GAsDB based on the per phylum fre-
quency of the different loci and identified that the core arsenic loci
561
consists of 83 loc (Supplementary Table 2). Over 99% of all gen-
omes are represented by the core arsenic loci (i.e. all these gen-
omes have at least one of the loci in the core set), with a mean
phylum representation of 97.6% and 46 of 92 phyla fully recovered.
One phylum (Candidatus Sumerlaeota) retained 50% of its genomes
and the phylum with the second-lowest retention (Aquificae) was
at 81.5%. All the studied genes were accounted for within the core
loci, except for arsenite oxidation via arxA.

When we observed the proportions of the core loci in different
phyla (Fig. 3a) we discover that there exists a stark difference in
the loci content of the five most represented phyla in GAsDB
(Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria,
Firmicutes, and Actinobacteria), compared to all other phyla. To
see if the difference in loci is also translated into a difference in
functionality we reverted back to examining the proportions of
the different genes in the genomes. Within GAsDB, the most com-
mon genes are for arsenate reduction (ArsC variants) and arsenite
excretion (ArsB/ACR3), followed by MMAs oxidation (ArsH) and
arsenite methylation (ArsM) (Fig. 3b). But, when the proportion
is calculated per phylum a very different picture appears
(Fig. 3c). The median proportion of arsenate reduction (ArsC vari-
ants) in phyla is 0.4, while > 60% of genomes in the database have
the genes. MMAs oxidation (ArsH) is similar with a median propor-
tion < 0.1 in phyla but found in nearly half of the genomes. The dif-
ference between phyla proportion for arsenite excretion (ArsB,
ACR3) and its overall presence is smaller but follows a similar
trend. Arsenite methylation shows the opposite trend, with a med-
ian proportions of � 0.55 across phyla, even though it is present in
20% of genomes. The answer to the difference in proportion lies
with the five largest phyla in GAsDB. In these instances (and in
other genes) the largest phyla are outliers in the distribution of
proportions. These five phyla account for nearly 80% of the gen-
omes in the dataset so they can highly distort the overall view of
arsenic biotransformation. Moreover, the distortion also occurs in
the literature, since these phyla are also the most studied phyla
in microbiology [14].



Fig. 2. Clustering of AsBT-Guilds and AsBT-SubGuilds. A two-dimensional UMAP projection of unique arsenic profiles (AsPRO). Black oval indicates global structure clustering
while colors indicate sub clustering based on local structure. Small black points indicate AsPROs that were not clustered (considered noise).
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2.4. Taxonomic and environmental drivers of arsenic
biotransformation

The above analysis has mostly been independent of taxonomic
and environmental data (referred to below as metadata features)
associated with the genomes. Furthermore, the classification of
AsBT-Guilds was based on AsPRO and not on individual genomes.
Still, the arsenic loci accumulation hinted at significant enrichment
in some environments, while the core arsenic loci analysis revealed
a stark difference between the well-studied phyla compared to all
other phyla. In this section we will examine which metadata fea-
tures are enriched in the AsBT-Guilds, and how well the metadata
features predict the AsBT-Guilds.

To examine the level of metadata feature specificity to AsPROs
(Supplementary Table 4) we examined two parameters. First we
checked what is the variation within the features (Fig. 4a). Feature
variables are the instances of a metadata feature (e.g Actinobacte-
ria is a feature variable of the Phyla feature). Second we examined
562
if one feature variable accounted for the majority of the genomes
(i.e. the dominant feature variant) in a given AsPRO (Fig. 4b). These
parameters are important for downstream analysis that test how
predictive metadata features are of metabolism. The higher the
within variation of a feature, and the more evenly the feature vari-
ables are distributed within AsPROs, the less predictive they would
be.

In both cases, AsPROs that account for a single genome were
excluded from the analysis to prevent bias. In addition, we com-
pared the statistics for AsPROs comprising ten or more genomes
(n = 468) to AsPROs of less than ten genomes (n = 1,357). The envi-
ronmental features have a lower variable count (except for loca-
tion). The high variation in the location feature was an important
indication that the data does not suffer from sampling bias. The
taxonomic features show an increase in variability with higher tax-
onomic levels. Large AsPROs had higher variable counts than small
AsPROs for all metadata features but Domain. The difference
between the means was much more substantial compared to dif-
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Fig. 3. Core loci and gene functionality proportions in genomes. (a) the proportion of the 20 most frequent loci across all phyla. Lighter color in heatmap indicates higher
proportions within the phyla. Loci are sorted from the top in descending order by their overall frequency. Phyla are sorted left to right in descending order based on their loci
richness. (b) the proportion of functions in all of the genomes. (c) the distribution of function proportion by phyla. Each phylum is represented on the boxplot as a green-
shaded dot. The darkness of the dot reflects the order of magnitude size of the phylum. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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ferences in median values or even the third quartile, indicating the
data are skewed by a few highly variable large AsPROs. The average
proportion of the dominant variable ranged from 0.65 (climate) to
0.99 (Domain) with most features above 0.75. Large AsPROs had
only slightly lower mean and median values compared to the smal-
ler AsPROs. This means that although their variable counts are
higher there still exists a single variable for each feature that
accounts for most of the genomes associated with AsPROs. Moving
forward, we chose parameters that had low variability at the
564
AsPRO level: ecosystem and environment types for environmental
metadata, and Domain, Phyla, and Class as the taxonomic
metadata.

To test if certain metadata was enriched in the AsBT-Guilds
(and AsBT-SubGuilds) we used the Fisher’s Exact test (Supplemen-
tary Tables 5–6). We consider only metadata with odds ratio
higher than 1 and bonferroni corrected p-value < 0.05 to be signif-
icantly enriched in a given AsBT-Guild. We also note that enrich-
ment does not necessarily equate to the most common metadata



Fig. 4. Specificity of metadata in AsPROs. (a) mean variable counts for metadata features. Error bars indicate confidence intervals at 95%. (b) distribution of the proportion of
the dominant variable in the features. White stars indicate the mean and black lines indicate median (when median is not observed it is equal to 1).
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feature in an AsBT-Guild. The enrichment results varied greatly
between AsBT-Guilds from very specific (a single environment
type, phyla, and class) to 70 different variables across four features.
At least one variable of Phyla, Class, and environment type was
enriched in each AsBT-Guilds and AsBT-SubGuilds. An ecosystem
variable was enriched in all but a single AsBT-SubGuild. A median
of one ecosystem, three environment types, three phyla, and five
classes were enriched in each guild/subguild. Of the four new
AsBT-Guilds, 1 and 2 (pairing aio/arx regulation with the inorganic
path of the ars operon) were enriched in samples from mining
sites. AsBT-Guilds 3 and 9 (AioSR paired with ArsM) was enriched
in multiple phyla from terrestrial ecosystems, with AsBT-Guild 9
highly specific to soil environments. AsBT-Guild 8 was noteworthy,
because while it was enriched in several environment types, most
of themmarine (seawater, shrimp, mollusca, zooplankton, fish, and
cephalopods). Oxygen levels (deduced from the environment type)
were an important factor for the respiration operons. AsBT-Guild
12 (arr operon) was enriched in anaerobic environments, while
AsBT-Guild 11 (aio operon) was enriched in aerobic environments.
The latter was also more associated with contaminated sites. An
interesting split occurred within the subguilds of AsBT-Guild 7
(long ars operon), based on the reductase and efflux pump variants.
Human associated Gammaproteobacteria have the TRX-like ArsC
variant and ArsB pump, while human associated Firmicutes have
the LMWP ArsC variant and ArsB pump. A third subguild with
the LMWP ArsC variant and ACR3 pump is enriched within both
Gammaproteobacteria and Firmicutes from food products.

The results so far showed that the metadata are specific to
AsPROs and that similar AsPROs had similar metadata. Now we
565
turned the analysis around to test if metadata can be used to pre-
dict the AsBT-Guild of genomes. We chose to use Phyla, Class,
Ecosystem, Environment type, and Climate in order to predict
AsBT-Guild membership by genome. Phyla and Class can robustly
be identified with gene markers and research groups generating
data from their own samples know where the samples are from
so can assign environmental information. A subset of the data that
contained information for all features (n = 46170, split 8:2 for
training and validation sets) was used to create a Random Forest
Classification model (Supplementary information 2). A grid search
was used to refine the model parameters and the best overall
model was chosen based on its accuracy. The selected model had
the following performance indices for the validation set: accuracy
of 0.773, MSE of 0.203, logloss of 0.993, and r2 of 0.977. While the
overall accuracy was relatively high, the mean per-calls error was
0.576. From the confusion matrix it is clear that the model accu-
racy stems from high precision in predicting four AsBT-Guilds.
AsBT-Guild 5 was detected at 0.9 accuracy while accounting for
62% of the genomes in the validation set. AsBT-Guild 3 (n = 814,
accuracy = 0.86), AsBT-Guild 6 (n = 709, accuracy = 0.76), and
AsBT-Guild 9 (n = 374, accuracy = 0.78) accounted for an additional
21% of the genomes in the validation set. It is worth mentioning
that the two AsBT-Guilds (3 and 9) that lack the short inorganic
ars operon were accurately predicted.

The most important metadata features in the model (Fig. 5a) are
phyla (�50%) and environment type (�30%), followed by climate
(�10%), class (�8%) and ecosystem (�2%). When the predicted
AsBT-Guild is compared to the observed AsBT-Guild by phyla or
environment type the accuracy of the results are much better



Fig. 5. Random Forest Classifier model for arsenic metabolism. a) Variable importance in the Random Forest Classifier model. The bar plot shows the scaled importance of
each of the metadata features. The insert table shows the relative importance and percent contribution to prediction. b) Percent of true positive predictions for validation and
test datasets based on phyla. c) Percent of true positive predictions for validation and test datasets based on environment type.
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(Fig. 5b-c). For a given environment type, the lowest true positive
(TP) % is 50% and for 36/46 environments the TP is equal or>75%.
Two important environments with < 75% TP are sediment (74%)
and soil (71%). These are prone to annotation errors in reported
metadata. Other noteworthy environments that require improved
annotation are food products, groundwater, and freshwater.

For phyla, the results are similar with 32 of 46 having 75% TP or
higher. Important phyla with low TP were Gammaproteobacteria,
Betaproteobacteria and Deltaproteobacteria. Incorrect predictions
for the Proteobacteria were assigning them to AsBT-Guild 5 and
for Deltaproteobacteria assigning them to AsBT-Guild 3.

Since climate only accounted for 10% of the prediction, a second
set containing all other genomes that did not have climate infor-
mation, but had the other features (n = 16682) was also tested with
the model. The accuracy for the second test set was 0.767
(MSE = 0.209, logloss = 1.18), but the per class error was very high
(0.81) and only two AsBT-Guild (6 and 5) had low error rates. These
two account for most of the samples in the test data (81.2%).

The breakdown of environments again had soil and sediment at
low TP (Fig. 5c). Mining related sites also showed low TP (�70%)
and were the largest group in the low TP group. Wastewater, salt
water (grouping seawater, brackish water, and hypersaline water),
and mollusca had � 45% TP and were relatively large (group
sizes > 80 genomes).

For phyla (Fig. 5b), most of the error stemmed from the
Alphaproteobacteria, Betaproteobacteria and Gammaproteobacte-
ria. Large groups that performed well in both data sets were the
Actinobacteria, Firmicutes, and Bacteroidetes (Epsilonproteobacte-
ria was also good but not that large). Zetaproteobacteria prediction
improved significantly in the test data from 46% in the validation
(n = 26) to 94% in the test (n = 53). Although the method in which
climate was assigned to genomes was very generalized (to the
most common climate region in a given location), and its impor-
tance in the model is low, it does improve the model predictions.
Climate is easy to include if the geographic location of sampling
is known.
2.5. Effect of arsenic exposure on the human microbiome

Human exposure to arsenic through groundwater and food is a
worldwide concern, most prominently in Bangladesh [15]. A recent
paper analyzed the probability of groundwater arsenic contamina-
tion and identified additional hotspots [5]. In the following analysis
we sought to investigate if human microbiomes from areas of
higher arsenic exposure risk cluster together, based on their
566
arsenic metabolism. This would indicate that arsenic exposure
affects the composition of the human microbiome. Within our
data, we had one group of gut samples from humans from Laksam
Upazila (Bangladesh) in which arsenicosis from arsenic exposure
was confirmed [16]. We used this group as an indicator to locate
the cluster of interest and called it the ‘‘arsenic exposed” cluster
(the quotes are meant to convey we cannot prove arsenic expo-
sure). Human associated microbial genomes were grouped based
on their refined location and bodily source (see methods), and clus-
tered by the counts of AsBT-SubGuilds in those groups (Fig. 6a).
The ‘‘arsenic exposed” cluster was found to be Cluster 16).

We next evaluated the other locations that were clustered with
Laksam Upazila. We found that many (but not all) locations in the
cluster have been shown to have heightened arsenic contamina-
tion in groundwater and soil (Fig. 6b). Asian locations included
West Bengal, Pakistan, Maharashtra (India), several provinces in
China (Liaoning, Shandong, Zhejiang), Taiwan, southeast asian
countries (Thailand, Viet Nam), Japan, and Saudi Arabia. Locations
in the Americas included Mexico, Argentina (Buenos Aires), Colum-
bia (Antioquia), Ecuador, several US states (Nebraska, California,
Michigan, Montana, Florida), and several Canadian provinces (Bri-
tish Columbia and Manitoba). African locations included sub-
saharan nations (Tanzania, Kenya, Mali, and Zambia) while Euro-
pean locations included Denmark, France, Italy, and the United
Kingdom. The main locations in the cluster that match previous
reporting [5] are West Bengal, Pakistan, Liaoning, Mexico and Bue-
nos Aires. Other areas with increase risk of exposure (04.-0.6 prob-
ability As > 10 ppb) were Maharashtra, Thailand (central area), Viet
Nam (southern area), Saudi Arabia, California, Tanzania, Kenya,
Mali, and Zambia.

The AsBT-SubGuilds enriched in the ‘‘arsenic exposed” cluster
were AsBT-SubGuilds 19 and 18. A unique feature of both subtypes
is that all of their genomes contain the arsP efflux system (excret-
ing MMAs from the cells). In AsBT-SubGuild 18 just over 50% of the
genomes also contained arsM. The high prevalence of the arsP
efflux system indicates that the microbiome of humans exposed
to arsenic further exacerbates the toxic effect since MMAs are more
toxic to humans than arsenate and arsenite [17]. The arsenic
exposed human samples have a much lower occurrence of AsBT-
SubGuild 1, which are human-associated actinobacteria. AsBT-
SubGuilds 18 is found in very low numbers in the entire set of
human associated samples (n = 5) compared to AsBT-SubGuild
19, but it is only found in the ‘‘arsenic cluster” and adjacent cluster
11, that has additional genomes from Dhaka, Bangladesh and are
known cholera patients. The cholera-patient samples have some



Fig. 6. Arsenic metabolism in human-associated microbial genomes. a) Clustering of genomes grouped by their geographic location and bodily source of sampling. b)
Geographic location of the ‘‘arsenic-exposed” cluster. Locations in orange are part of the cluster. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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overlap of locations with the arsenic-exposed cluster and the sam-
ples are enriched with AsBT-SubGuilds 5 (all members have the
arsJ efflux pump for As(V)). The human source of the cholera-
patient sample are feces (or clinical samples) while the arsenic-
exposed samples also have multiple samples from the urinary
system.
3. Discussion

In this paper we curated a large genomic database of arsenic
related genes from Bacteria and Archaea, using 29 custom designed
HMMs. Utilizing co-localization of genes, we enhanced the yield of
identified genes to include more distantly related sequences, as
well as new putative genes. Overall we defined nearly 949 unique
arsenic loci (based on gene presence in a given loci), far higher than
the few dozen known to date [8,18]. Our examination of the core
arsenic loci (83 loci) and gene proportions in different phyla
revealed that some of the most studied phyla in microbiology
(Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria,
Actinobacteria, and Firmicutes) [14] have a very different arsenic
metabolism from all other phyla. While they may be dominant in
some environments, it is clear that they are not representative of
the microbial arsenic metabolism and more focus should be given
to other phyla.

Clustering of the genomes based on their arsenic related genes
generated 13 types of representative arsenic metabolic/transfor-
mation capabilities (AsBT-Guilds), some further divided into more
refined groups, totaling at 26 AsBT-SubGuilds. Of these AsBT-
Guilds, four represent newly defined metabolic profiles. Interest-
ingly, three of the four AsBT-Guilds (guilds 1, 2, and 3) paired the
aio regulation system (aioR, aioS, and to a lesser extent aioX) [19]
with the ars operon. While in two of those AsBT-Guilds a subset
of genomes also have the catalytic aio units (aioBA, these are found
at much lower proportions (10–20%) compared to the correspond-
ing arsenate reductases of the ars operon (50–80%). Even though
most of the genomes used in this work are considered to be draft
genomes, we would argue that the results indicating the presence
of aioSR without the aioX or the catalytic unit (aioBA) is strong.
When identifying loci in the genomes we allowed for gaps between
genes (up to five genes apart), but the majority of loci were of
sequential genes (81.5% no gaps, 8.25% a single gene gap). The loci
containing aioSR alone was one of the most commonly found loci
(identified in 5870 genomes), while the loci aioXSR are found in
132 genomes. Other loci had the genes associated with different
genes, even further adding to the results. One interesting, but
unverified, hypothesis is the possibility that aioSR may also acti-
vate other genes (including ars operon genes) in response to
arsenite.

Even more noteworthy are the two large AsBT-Guilds (3 and 9)
that are lacking in the inorganic pathway of the ars operon. Instead
these groups have ArsM that sequentially methylates As(III). Not
only are AsBT-Guilds 3 and 9 predominant in soil environments,
they represent some of the more dominant phyla in soil [20–23].
AsBT-Guild 3 contains two thirds of the Acidobacteria (1,649),
the majority of Deltaproteobacteria (841), Rokubacteria (639),
Gemmatimonadetes (606), and a large portion of Nitrospirae
(126, 23.6% of the phylum) in the GAsDb. AsBT-Guild 9 contains
most of the Dormibacteria (458) and close to half of Verrucomicro-
bia (190 accounting for 47.5%). It also contains a large number of
Actinobacteria (916) which account for nearly 40% of non-
human microbiome Actinobacteria. This indicates that arsenic
methylation in soil may be much more prominent than in other
environments [10,12]. Arsenic methylation can be used by bacteria
as an allelopathic agent [24]. To counteract the toxicity of MMAs,
bacteria can demethylate it and excrete the As(III). Nearly 60% of
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genomes in AsBT-Guild 5, the other large AsBT-Guild in soil, have
the arsH gene, which encodes the oxidation of trivalent MMAs to
a less toxic form of pentavalent MMAs [25]. AsBT-SubGuild 15
(within AsBT-Guild 5) is common in soil environments (1247)
and nearly all genomes contain the arsI gene that encodes the
demethylation of MMAs. This group contains Firmicutes, Betapro-
teobacteria, and Alphaproteobacteria. Here we can show a compet-
itive relationship between different phyla based on their arsenic
metabolism (Fig. 7).

Many other AsBT-Guilds were enriched with a particular combi-
nation of taxa and environment types. AsBT-Guild 2 (and more
specifically AsBT-SubGuild 3) was enriched in Chloroflexi and
Betaproteobacteria from leachate reactors of mining operations.
The genomes in this sub guild have a wide arsenic metabolic
capacity. Genomes in this group had a mean of 8.6 unique genes
and 35% had 12 or more unique genes. Overall, 11 of 32 genes were
present in at least 40% of genomes. Originating from a highly con-
taminated environment the bacteria need multiple pathways to
protect them from arsenic exposure.

AsBT-Guild 8 was enriched in Gammaproteobacteria and
Zetaproteobacteria from seawater and marine organisms. The pos-
session of both the inorganic ars pathway and the arsJ efflux sys-
tem that excretes As(V) is compatible with As(V) being the
dominant arsenic species in the marine ecosystem [4]. AsBT-
Guild 11 (aio operon) and AsBT-Guild 12 (arr operon) are enriched
in environments that match their oxidation reduction potential
needs. Genomes of AsBT-Guild 11 are enriched in aerobic environ-
ments while genomes of AsBT-Guild 12 are enriched in anaerobic
environments. Of the sub-guilds of AsBT-Guild 7 (long ars operon),
three are enriched in human microbiomes (AsBT-SubGuilds 8, 12,
and 16) while the fourth (AsBT-SubGuild 17) is enriched in food
products.

Building on the strong relationship found between the meta-
data and arsenic metabolism we created a random forest classifier
model that is able to predict the AsBT-Guild a bacterium belongs
to, based on its metadata (Phyla and Class for taxonomy. Ecosys-
tem, climate, and environment type for environmental informa-
tion). The model has an overall accuracy > 75% which is also
consistent for most phyla and environment types, the two most
important parameters contributing to the model. Even though
the model’s accuracy is high, the data are still very noisy and
improvements of metadata curation would further improve the
model. The taxonomic assignment was relatively robust, as it
was based on a well established method [13]. Still, the genomes
themselves were not filtered for genome completeness so we were
not able to assign taxonomy to the entire set of genomes we
started with. Assignment of environmental information was even
more subjective. While the curation of metagenomic samples from
sites sampled by our group and collaborators is robust, NCBI-
derived genomes are both lacking in information and the informa-
tion present is at times misleading or incorrect. That said, we
believe the predictive model would be very valuable to groups
and organizations that are unable to conduct in-depth genomic
analyses. Taxonomy can easily be derived from 16S rRNA sequenc-
ing, while the environmental information would be known to the
people generating the data.

An important focus of this work was the analysis of arsenic
exposure in human microbiomes. Our analysis shows that arsenic
exposure changes the human microbiome, enriching for specific
metabolic types. Grouping genomes by their location and cluster-
ing the locations by AsBT-SubGuild abundance, an ‘‘arsenic
exposed” cluster was identified. The cluster contained genomes
sampled from humans known to be exposed to arsenic in Laksam
Upazila [16] that were used as an indicator of the cluster of inter-
est. Examination of the other location groups in the cluster showed
several known hotspots for arsenic contamination, and more from



Fig. 7. Schematic diagram of interaction between different groups of soil microbes based on their arsenic metabolism. AsBT-Guilds 3 and 9 methylate arsenite which is
transported out of the cells. The methylated arsenic can be oxidized by members of AsBT-Guild 5 or demethylated back to arsenite by AsBT-SubGuild 15 (part of AsBT-Guild
5), excreting it back into the environment. Dashed lines indicate expected transport by an unknown mechanism.
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increased exposure (04.-0.6 probability of As > 100 ppb) [5]. Most
of the genomes in the ‘‘arsenic-exposed” cluster are from the gut
microbiome but another prominent source was the urinary system.
Previous research on arsenic exposed humans in Mexico showed
elevated MMAs in their urine [26]. The AsBT-SubGuild 19, charac-
terized by the presence of the arsP efflux pump, was most promi-
nent in the ‘‘arsenic-exposed” cluster. Another unique aspect of
this sub guild is that it is the only one within AsBT-Guild 5 that
has aioR at high proportions (>50% compared to a mean of 4.6%
in the other sub guilds). The arsP efflux pump excretes trivalent
MMAs from microbial cells [6], which are more toxic to humans
than As(III) [17]. The microbial driven increase in methylated
arsenic was experimentally shown in previous research [27,28],
while other work has shown increased methylated arsenic in urine
of exposed individuals [29]. By increasing the host exposure to
trivalent MMAs, the bacteria further exacerbate the detrimental
effect of arsenic exposure to their hosts. AsBT-Guild 6 of human
associated Actinobacteria was the most reduced in the ‘‘arsenic-
exposed” cluster. This group contains both arsH that can oxidize
trivalent MMAs into lesser toxic pentavalent MMAs [25], as well
as arsI that can demethylate MMAs.

Our work shows the importance of analyzing the full spectrum
of genes related to arsenic metabolism as well as utilizing co-
localization data to support gene annotation. While sequence
based analysis cannot provide proof of functionality, the consistent
patterns across thousands of genomes lends support to the poten-
tial functions. We were able to identify microbial guilds with
unique metabolic profiles and linked the aio two component regu-
lation system to the ars operon. Arsenic methylation was revealed
to be significant both in soil environments as well as in the human
microbiome. Our predictive model can be used to further identify
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with high accuracy the metabolic potential of bacteria in most
environments and could support decision making and improve
monitoring of the potential for arsenic exposure around the world.

4. Abbreviations

GAsDb - The Genomic database for arsenic biotransformation.
This includes all the genes found by the HMMs, as well as informa-
tion (taxonomic and environmental) about the genomes from
which they were found.

AsPRO - Unique arsenic gene profile in genomes. Each AsPRO
represents all the genomes that contain the same genes (including
gene frequency).

AsBT-Guild - Arsenic biotransformation guild. A cluster of
AsPRO that shares a representative set of genes that can be trans-
lated into a function.

AsBT-SubGuild - a subset of AsBT-Guild derived from local clus-
tering of the AsPRO.

Methods

4.1. Creating the genomic database

Sequence data was downloaded from NCBI Reference Sequence
Database (89,253 genome assemblies) and the Banfield lab data-
base (3,512 binning projects) were downloaded in 2018 . In both
cases, open reading frames (ORFs) were predicted by Prodigal
[30] with amino acid sequences as the output. For the Banfield
lab database an additional filtering step to remove unbinned scaf-
folds was needed before gene prediction. Due to the size and com-
plexity of the data, it was not possible to access the quality of the
metagenome-assembled genomes (MAGs). To compensate for that,
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we applied strict filtering parameters (see following sections) and
removed data we were less confident about.

Genome taxonomy was assigned using GTDB-Tk [13], followed
by name and taxonomic hierarchy corrections to comply with the
generally accepted knowledge.

Environmental metadata information for the Refseq genomes
was parsed from the genomes genbank file, and for the Banfield
lab genomes information was known for each binning project.
For parameters were chosen: Ecosystem, Environment type, geog-
raphy location, Climate. The information was curated manually to
the best of our capability, recognising that user input may be fuzzy
or mislabeled. Ecosystem of origin included: terrestrial near-
surface, marine, deep subsurface, engineered and host-associated.
Environment type was a more refined parameter including 101
categories. The environmental and engineered ecosystems shared
most of the environment type categories (e.g. sediment, freshwa-
ter) with a few unique categories per ecosystem (e.g. hydrothermal
vent in the marine ecosystem or food product in the engineered
ecosystem). The environment type categories for the host-
associated ecosystem were based on the host identity (e.g human,
sponge). Geographic locations (432 locations) were either country
or state/province for the largest countries (e.g. USA, China, Russia),
as well as countries with a long north–south axis (e.g. Chile, Argen-
tina). For climate we used the Köppen climate classification (re-
trieved from https://en.climate-data.org/) for terrestrial locations
and a more general climate description (i.e. polar, temperate, trop-
ical) for marine locations. When a location contained multiple cli-
mate regions the most common climate was chosen.

4.2. Designing Hidden Markov Model profiles for arsenic related genes

The initial seed sequences for the HMMs were either taken from
TIGRFAM (arsA, arsB, ACR3, arsC Trx type, arsC low molecular
weight type, arsH, aioA, aioB) or from literature describing con-
firmed enzyme function (et al. 2017 [6] and references within).
To each gene, additional putative seed sequences were added
based on pBLAST searches [31] targeting varying phyla to increase
the sequence diversity of the seed sequences.

To verify the monophyletic clustering of the seed sequences a
reference set of sequences was used. Using the NCBI Conserved
Domain Database [32], sequences of each gene family were down-
loaded. Protein sequences were align using MAFFT [33], followed
by tree construction with FastTree [34] and visualized in iTOL [35].

After clustering verification, the seed sequences were used to
build an HMM with HMMER [36]. Threshold scores were assigned
by searching the HMMs back against the reference sequence set
and locating the highest score of a none-seed sequence. The
threshold scores were reevaluated again by randomly subsetting
2000 hits from the Refseq HMM search outputs four times and
checking scores against the seeds.

We were unsuccessful in creating a robust HMM for arsR so this
gene was not included in the study.

4.3. Filtering hits and identifying loci

Initial data filtering was done in R using the Rstudio integrated
development environment [37,38]. Output tables from the HMM
searches were loaded into Rstudio and merged into a single data
table. Sequences with multiple HMMs hits were located and the
best match was chosen based on the HMM score. Sequences were
then filtered by their size, allowing a range between 50% and 200%
of the mean length of the seed sequences. Thresholds were applied
to indicate if a sequence was reliable or unreliable (but sequences
were not filtered out).

Monophyletic clustering of sequence verification was con-
ducted on the sequences as a final filtering step. To reduce compu-
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tational requirements, the sequences were first clustered to
representative sequences using MMseqs2 [39]. The representatives
were then aligned with the seed and reference sequences and built
a maximum-likelihood tree using IQ-Tree [40]. Representative
clustering with the seeds were used to subset the hit database to
include only verified hits.

As loci were identified based on co-localization of genes on scaf-
folds. This was done by parsing the scaffold feature numbers out-
put and locating sequential ORFs. While initially a gap of up to
five features was allowed, the mean distance between ORFs was
1.17 (n = 386334, sd = 0.44). Following the identification of loci,
a primary putative function was assigned to each of them, based
on gene presence. An hierarchical assignment of primary function
priorities oxidoreduction transformations (arsC types, aioA, arrA,
arxA), followed by methyl transformations (arsM, arsI, arsH), trans-
port (arsB, ACR3, arsJ, arsP), regulation (aioR, aioS, aioX, arrS), and
auxiliary genes (all else). Function based filtering included remov-
ing all loci with auxiliary primary function and keeping regulatory
loci that contained > 50% reliable hits.

4.4. Modeling genomes with unsupervised and supervised methods

Unsupervised clustering was done using Uniform Manifold
Approximation and Projection for Dimension Reduction (UMAP)
[41] combined with Hierarchical Density-Based Spatial Clustering
of Applications with Noise (HDBSCAN) [42,43]. These methods
were applied to cluster the arsenic biotransformation guilds and
subguilds (AsBT-Guild and AsBT-SubGuild respectively) as well as
the human microbiome by location clustering. For AsBT-Guild/
AsBT-SubGuild clustering the input table consisted of gene counts
for each unique genomic profile (AsPRO). The human associated
microbiome clustering input was AsBT-Guild counts for each
group, based on location and bodily source. Data was Z-
transformed prior to fit transforming with UMAP. For global struc-
ture clustering UMAP was run with n_neighbors = 120, and
HDBSCAN was run with min_cluster_size = 100, and no value set
for min_samples. For local structure clustering UMAP was run with
n_neighbors = 30, and HDBSCAN was run with min_cluster_size =
100 and min_samples = 10. The first iteration of AsBT-Guild/
AsBT-SubGuild clustering included all AsPROs. The largest result-
ing cluster did not have any defined metabolism and further inves-
tigation showed that the main driver defining the cluster was a low
number of gene types in the AsPROs, primarily AsPROs with a sin-
gle gene. To achieve better cluster metabolic resolution, the single
genes AsPROs were removed and the clustering was redone using
the same parameters. The removal of the single gene AsPROs did
not affect the global structure and within the subclusters of the
local structure split the large AsBT-Guild into subclusters with
resolved metabolism.

Supervised modeling of the relation between genome metadata
and their assigned AsBT-Guild was done usingDistributed Random
Forest with the H2O.ai machine learning software [44]. The soft-
ware was selected since it enables the use of categorical predictor
variables without the need for one-hot encoding, thus keeping the
number of predictor variables low. Train and validation sets were
split at 8:2 ratio. Fixed model parameters included balancing class
distribution (balance_classes = True), and including all predictor
columns at each level (mtries = -2). Additional parameters, selected
by grid search were the method of histogram aggregation (’AUTO’,
’Random’, ’UniformAdaptive’), maximum tree depth (20,40,80),
minimum number of observations for a leaf in order to split
(1,10, 50), the number of bins to be included in the histogram (5,
50, 100, 500, 1000), and the number of trees to build in the model
(50, 200). The best model from the grid search was selected by the
mean per class accuracy index (mean_per_class_accuracy = 0.424).
The resulting model had the following parameter: histogram_type

https://en.climate-data.org/
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= ‘UniformAdaptive’, max_depth = 20, min_rows = 1, nbins_-
cats = 100, ntrees = 200. Feature importance was calculated as fol-
lows: ‘‘H2O-3 looks at the squared error before and after the split
using a particular variable. The difference is the improvement�H2O
uses the improvement in squared error for each feature that was
split on (rather than the accuracy). Each feature’s improvement is
then summed up at the end to get its total feature importance
(and then scaled between 0 and 1)” (https://docs.h2o.ai/h2o/lat-
est-stable/h2o-docs/variable-importance.html).
5. Supplementary information

Supplementary information can be found in the below link:
https://figshare.com/projects/Arsenic_genomics/117447.
CRediT authorship contribution statement

Ray Keren: Conceptualization, Methodology, Formal analysis,
Data curation, Writing – original draft, Writing – review & editing.
Raphaël Méheust: Methodology, Formal analysis, Data curation,
Writing – review & editing. Joanne M. Santini: Resources, Data
curation, Writing – review & editing. Alex Thomas: Resources,
Writing – review & editing. Jacob West-Roberts: Methodology,
Writing – review & editing. Jillian F. Banfield: Resources, Writing
– original draft, Writing – review & editing, Supervision. Lisa
Alvarez-Cohen: Resources, Writing – original draft, Writing –
review & editing, Supervision, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This research was funded by NIEHS Superfund Basic Research
Program, R42 ES004705-19. The authors would like to thank all
research groups that generate valuable sequence data with proper
metadata information.

References

[1] Oremland RS, Stolz JF. The ecology of arsenic. Science 2003;300(5621):939–44.
[2] Slyemi D, Bonnefoy V. How prokaryotes deal with arsenic. Environ Microbiol

Rep 2012;4:571–86. https://doi.org/10.1111/j.1758-2229.2011.00300.x.
[3] van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B. Arsenics as bioenergetic

substrates. Biochim Biophys Acta-Bioenerg 2013;1827:176–88. https://doi.
org/10.1016/j.bbabio2012.08.007.

[4] Neff JM. Ecotoxicology of arsenic in the marine environment. Environ Toxicol
Chem 1997;16(5):917–27. https://doi.org/10.1002/etc.5620160511.

[5] Podgorski J, Berg M. Global threat of arsenic in groundwater. Science 2020;368
(6493):845–50.

[6] Zhu Y-G, Xue X-M, Kappler A, Rosen BP, Meharg AA. Linking Genes to Microbial
Biogeochemical Cycling: Lessons from Arsenic. Environ Sci Technol 2017;51
(13):7326–39. https://doi.org/10.1021/acs.est.7b00689.

[7] Yan Ge, Chen X, Du S, Deng Z, Wang L, Chen S. Genetic mechanisms of arsenic
detoxification and metabolism in bacteria. Curr Genet 2019;65(2):329–38.
https://doi.org/10.1007/s00294-018-0894-9.

[8] Andres J, Bertin PN, Danchin A. The microbial genomics of arsenic.
Fems Microbiol Rev 2016;40(2):299–322. https://doi.org/10.1093/
femsre/fuv050.

[9] Saunders JK, Fuchsman CA, McKay C, Rocap G. Complete arsenic-based
respiratory cycle in the marine microbial communities of pelagic oxygen-
deficient zones. Proc Natl Acad Sci 2019;116(20):9925–30. https://doi.org/
10.1073/pnas.1818349116.

[10] Dunivin TK, Yeh SY, Shade A. A global survey of arsenic-related genes in soil
microbiomes. BMC Biol 2019;17:45. https://doi.org/10.1186/s12915-019-
0661-5.
571
[11] Ben Fekih I, Zhang C, Li YP, Zhao Yi, Alwathnani HA, Saquib Q, et al.
Distribution of Arsenic Resistance Genes in Prokaryotes. Front Microbiol
2018;9. https://doi.org/10.3389/fmicb.2018.02473.

[12] Zhao Yi, Su J-Q, Ye J, Rensing C, Tardif S, Zhu Y-G, et al. AsChip: A High-
Throughput qPCR Chip for Comprehensive Profiling of Genes Linked to
Microbial Cycling of Arsenic. Environ Sci Technol 2019;53(2):798–807.
https://doi.org/10.1021/acs.est.8b0379810.1021/acs.est.8b03798.
s00110.1021/acs.est.8b03798.s002.

[13] Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to
classify genomes with the Genome Taxonomy Database. Bioinformatics
2020;36:1925–7. https://doi.org/10.1093/bioinformatics/btz848.

[14] Schloss PD, Girard RA, Martin T, Edwards J, Thrash JC, Delong EF, et al. Status of
the Archaeal and Bacterial Census: an Update. MBio 2016;7(3). https://doi.org/
10.1128/mBio.00201-16.

[15] Yunus F, Khan S, Chowdhury P, Milton A, Hussain S, Rahman M. A Review of
Groundwater Arsenic Contamination in Bangladesh: The Millennium
Development Goal Era and Beyond. Int J Environ Res Public Health 2016;13
(2):215. https://doi.org/10.3390/ijerph13020215.

[16] Devoto AE, Santini JM, Olm MR, Anantharaman K, Munk P, Tung J, et al.
Megaphages infect Prevotella and variants are widespread in gut microbiomes.
Nat Microbiol 2019;4(4):693–700. https://doi.org/10.1038/s41564-018-
0338-9.

[17] Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Vasken Aposhian H.
Monomethylarsonous Acid (MMAIII) Is More Toxic Than Arsenite in Chang
Human Hepatocytes. Toxicol Appl Pharmacol 2000;163(2):203–7. https://doi.
org/10.1006/taap.1999.8872.

[18] Santini JM, Ward SA, Ward SA. Microbial arsenic response and
metabolism in the genomics era. Metab Arsenite 2018. https://doi.org/
10.1201/b12350-13.

[19] Sardiwal S, Santini JM, Osborne TH, Djordjevic S. Characterization of a two-
component signal transduction system that controls arsenite oxidation in the
chemolithoautotroph NT-26. FEMS Microbiol Lett 2010;313:20–8. https://doi.
org/10.1111/j.1574-6968.2010.02121.x.

[20] Crits-Christoph A, Olm MR, Diamond S, Bouma-Gregson K, Banfield JF. Soil
bacterial populations are shaped by recombination and gene-specific selection
across a grassland meadow. ISME J 2020;14(7):1834–46. https://doi.org/
10.1038/s41396-020-0655-x.

[21] Sharrar AM, Crits-Christoph A, Méheust R, Diamond S, Starr EP, Banfield JF,
et al. Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with
Phylum, Depth, and Vegetation Type. mBio 2020;11(3). https://doi.org/
10.1128/mBio.00416-20.

[22] Fierer N. Embracing the unknown: disentangling the complexities of the soil
microbiome. Nat Rev Microbiol 2017;15(10):579–90. https://doi.org/10.1038/
nrmicro.2017.87.

[23] Janssen PH. Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S
rRNA and 16S rRNA Genes. Appl Environ Microbiol 2006;72(3):1719–28.
https://doi.org/10.1128/AEM.72.3.1719-1728.2006.

[24] Chen J, Rosen BP. The Arsenic Methylation Cycle: How Microbial Communities
Adapted Methylarsenicals for Use as Weapons in the Continuing War for
Dominance. Front. Environ Sci 2020;8. https://doi.org/10.3389/
fenvs.2020.00043.

[25] Chen J, Bhattacharjee H, Rosen BP. ArsH is an organoarsenical oxidase that
confers resistance to trivalent forms of the herbicide monosodium
methylarsenate and the poultry growth promoter roxarsone. Mol Microbiol
2015;96(5):1042–52. https://doi.org/10.1111/mmi.12988.

[26] Urinary Trivalent Methylated Arsenic Species in a Population Chronically
Exposed to Inorganic Arsenic | Environmental Health Perspectives | Vol. 113,
No. 3 n.d. https://ehp.niehs.nih.gov/doi/full/10.1289/ehp.7519 (accessed May
23, 2021).

[27] Van de Wiele T, Gallawa CM, Kubachk KM, Creed JT, Basta N, Dayton EA, et al.
Arsenic Metabolism by Human Gut Microbiota upon in Vitro Digestion of
Contaminated Soils. Environ Health Perspect 2010;118(7):1004–9. https://doi.
org/10.1289/ehp.0901794.

[28] Yu H, Wu B, Zhang X-X, Liu Su, Yu J, Cheng S, et al. Arsenic Metabolism
and Toxicity Influenced by Ferric Iron in Simulated Gastrointestinal Tract
and the Roles of Gut Microbiota. Environ Sci Technol 2016;50
(13):7189–97. https://doi.org/10.1021/acs.est.6b0153310.1021/acs.
est.6b01533.s001.

[29] Navarro Serrano I, Llorente Ballesteros MT, Sánchez Fernández Pacheco S,
Izquierdo Álvarez S, López Colón JL. Total and speciated urinary arsenic levels
in the Spanish population. Sci Total Environ 2016;571:164–71. https://doi.org/
10.1016/j.scitotenv.2016.07.134.

[30] Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal:
prokaryotic gene recognition and translation initiation site identification. BMC
Bioinf 2010;11:119. https://doi.org/10.1186/1471-2105-11-119.

[31] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol 1990;215(3):403–10. https://doi.org/10.1016/S0022-
2836(05)80360-2.

[32] Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/
SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 2020;48
(D1):D265–8. https://doi.org/10.1093/nar/gkz991.

[33] Katoh K, Toh H. Recent developments in the MAFFT multiple sequence
alignment program. Brief Bioinform 2008;9:286–98. https://doi.org/10.1093/
bib/bbn013.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/variable-importance.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/variable-importance.html
https://figshare.com/projects/Arsenic_genomics/117447
http://refhub.elsevier.com/S2001-0370(22)00006-X/h0005
https://doi.org/10.1111/j.1758-2229.2011.00300.x
https://doi.org/10.1016/j.bbabio2012.08.007
https://doi.org/10.1016/j.bbabio2012.08.007
https://doi.org/10.1002/etc.5620160511
http://refhub.elsevier.com/S2001-0370(22)00006-X/h0025
http://refhub.elsevier.com/S2001-0370(22)00006-X/h0025
https://doi.org/10.1021/acs.est.7b00689
https://doi.org/10.1007/s00294-018-0894-9
https://doi.org/10.1093/femsre/fuv050
https://doi.org/10.1093/femsre/fuv050
https://doi.org/10.1073/pnas.1818349116
https://doi.org/10.1073/pnas.1818349116
https://doi.org/10.1186/s12915-019-0661-5
https://doi.org/10.1186/s12915-019-0661-5
https://doi.org/10.3389/fmicb.2018.02473
https://doi.org/10.1021/acs.est.8b0379810.1021/acs.est.8b03798.s00110.1021/acs.est.8b03798.s002
https://doi.org/10.1021/acs.est.8b0379810.1021/acs.est.8b03798.s00110.1021/acs.est.8b03798.s002
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1128/mBio.00201-16
https://doi.org/10.1128/mBio.00201-16
https://doi.org/10.3390/ijerph13020215
https://doi.org/10.1038/s41564-018-0338-9
https://doi.org/10.1038/s41564-018-0338-9
https://doi.org/10.1006/taap.1999.8872
https://doi.org/10.1006/taap.1999.8872
https://doi.org/10.1201/b12350-13
https://doi.org/10.1201/b12350-13
https://doi.org/10.1111/j.1574-6968.2010.02121.x
https://doi.org/10.1111/j.1574-6968.2010.02121.x
https://doi.org/10.1038/s41396-020-0655-x
https://doi.org/10.1038/s41396-020-0655-x
https://doi.org/10.1128/mBio.00416-20
https://doi.org/10.1128/mBio.00416-20
https://doi.org/10.1038/nrmicro.2017.87
https://doi.org/10.1038/nrmicro.2017.87
https://doi.org/10.1128/AEM.72.3.1719-1728.2006
https://doi.org/10.3389/fenvs.2020.00043
https://doi.org/10.3389/fenvs.2020.00043
https://doi.org/10.1111/mmi.12988
https://doi.org/10.1289/ehp.0901794
https://doi.org/10.1289/ehp.0901794
https://doi.org/10.1021/acs.est.6b0153310.1021/acs.est.6b01533.s001
https://doi.org/10.1021/acs.est.6b0153310.1021/acs.est.6b01533.s001
https://doi.org/10.1016/j.scitotenv.2016.07.134
https://doi.org/10.1016/j.scitotenv.2016.07.134
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/gkz991
https://doi.org/10.1093/bib/bbn013
https://doi.org/10.1093/bib/bbn013


R. Keren, Raphaël Méheust, J.M. Santini et al. Computational and Structural Biotechnology Journal 20 (2022) 559–572
[34] Price MN, Dehal PS, Arkin AP, Poon AFY. FastTree 2 – Approximately
Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010;5(3):
e9490. https://doi.org/10.1371/journal.pone.0009490.

[35] Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display
and annotation of phylogenetic and other trees. Nucleic Acids Res 2016;44
(W1):W242–5. https://doi.org/10.1093/nar/gkw290.

[36] Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, et al. HMMER
web server: 2015 update. Nucleic Acids Res 2015;43(W1):W30–8. https://doi.
org/10.1093/nar/gkv397.

[37] Team Rs. RStudio: Integrated Development for R. Boston, MA: RStudio, Inc.;
2015.

[38] R Development Core Team. R: A language and environment for statistical
computing. Vienna: R Foundation for Statistical Computing; 2012.

[39] Mirdita M, Steinegger M, Söding J, Hancock J. MMseqs2 desktop and local web
server app for fast, interactive sequence searches. Bioinformatics 2019;35
(16):2856–8. https://doi.org/10.1093/bioinformatics/bty1057.
572
[40] Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von
Haeseler A, et al. IQ-TREE 2: New Models and Efficient Methods for
Phylogenetic Inference in the Genomic Era. Mol Biol Evol 2020;37
(5):1530–4. https://doi.org/10.1093/molbev/msaa015.

[41] L. McInnes J. Healy N. Saul L. Großberger UMAP: Uniform Manifold
Approximation and Projection JOSS 3 29 861 10.21105/joss 10.21105/
joss.00861

[42] Campello RJGB, Moulavi D, Sander J. Density-Based Clustering Based on
Hierarchical Density Estimates. In: Pei J, Tseng VS, Cao L, Motoda H, Xu G,
editors. Adv. Knowl. Discov. Data Min., Berlin, Heidelberg: Springer; 2013, p.
160–72. https://doi.org/10.1007/978-3-642-37456-2_14.

[43] McInnes L, Healy J. Accelerated Hierarchical Density Clustering 2017.
https://doi.org/10.1109/ICDMW.2017.12.

[44] H2O.ai. Python Interface for H2O, Python module version 3.10.0.8. 2016.

https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1093/nar/gkw290
https://doi.org/10.1093/nar/gkv397
https://doi.org/10.1093/nar/gkv397
http://refhub.elsevier.com/S2001-0370(22)00006-X/h0185
http://refhub.elsevier.com/S2001-0370(22)00006-X/h0185
https://doi.org/10.1093/bioinformatics/bty1057
https://doi.org/10.1093/molbev/msaa015

	Global genomic analysis of microbial biotransformation of arsenic highlights the importance of arsenic methylation in environmental and human microbiomes
	1 Introduction
	2 Results
	2.1 Genomic sampling of microbial diversity across environments
	2.2 Distribution of arsenic genes and arsenic loci in genomes
	2.3 Arsenic biotransformation guilds and core arsenic loci
	2.4 Taxonomic and environmental drivers of arsenic biotransformation
	2.5 Effect of arsenic exposure on the human microbiome

	3 Discussion
	4 Abbreviations
	4.1 Creating the genomic database
	4.2 Designing Hidden Markov Model profiles for arsenic related genes
	4.3 Filtering hits and identifying loci
	4.4 Modeling genomes with unsupervised and supervised methods

	5 Supplementary information
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References




