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ABSTRACT OF THE DISSERTATION

Bayesian and Non-parametric Approaches to Missing Data Analysis

by

Yao Yu

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2012

Dr. Jun Li, Co-Chairperson
Dr. Yaming Yu, Co-Chairperson

Missing data occur frequently in surveys, clinical trials as well as other real data

studies. In the analysis of incomplete data, one needs to correctly identify the missing

mechanism and then adopt appropriate statistical procedures. Recently, the analysis of

missing data has gained more and more attention. People start to investigate the missing

data analysis in several different areas. This dissertation concerns two projects. First,

we propose a Bayesian solution to data analysis with non-ignorable missingness. The

other one is the non-parametric test of missing mechanism for incomplete multivariate

data.

First, Bayesian methods are proposed to detect non-ignorable missing and elim-

inate potential bias in estimators when non-ignorable missing presents. Two hierarchical

linear models, pattern mixture model and selection model, are applied to a real data

example: the National Assessment of Education Progress (NAEP) education survey da-

ta. The results show that the Bayesian methods can correctly recognize the missingness

mechanism and provide model-based estimators which can eliminate the possible bias

due to non-ignorable missing. We also evaluate the goodness-of-fit of these two pro-

posed models using two methods: the comparison of the real data with the predictive

vi



posterior distribution and the residual analysis by cross validation. A simulation study

compares the performance of the two proposed Bayesian methods with the traditional

design-based methods under different missing mechanisms and show the good properties

of the Bayesian methods. Further, we discuss the three commonly used model selection

criteria: the Bayes factor, the deviance information criterion and the minimum posterior

predictive loss approach. Due to the complicated calculation of the Bayes factor and

the uncertainty of the DIC, we conduct the last approach, which fails to correctly detect

the real model structure for the hierarchical linear model.

Second, as an alternative to the fully specified model-based Bayesian method, a

novel non-parametric test is proposed to detect the missing mechanism for multivariate

missing data. The proposed test does not need any distributional assumptions and is

proven to be consistent. A simulation study demonstrates that it has well controlled

type I error and satisfactory power against a variety of alternative hypotheses.
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Chapter 1

Introduction

In Statistics, missingness refers to the phenomenon of lack of data values for

some variables in observations in the data collection step. In general the investigators

should try their best to achieve the completeness of the data. But sometimes, we have

to deal with the missing data issue either because the occurrence of missing data is

unavoidable or the cost of the effort to avoid missingness is too expensive.

Missingness may occur in many real world studies. In social sciences, missing

data are also called non-responses and often arise when either some questions or even

the whole questionnaire is left as blank. In longitudinal studies, missingness can be

intermittent missing or loss to follow-up during the long term study which may be

caused by occasionally forgetting to respond or unwilling to participate.

The existence of missing values may have significant influence on the analysis

of the data and therefore on the conclusion of the data analysis. When missing data are

present, we may have the following issues:

1. Power and variability.

With more missing data, we will have smaller sample size, which means we will have
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less statistical power for the analysis. And often since the extreme cases are more likely

to be missing, we will have loss of data variability and the confidence interval will be

forced to be narrower.

2. Bias.

For some circumstances, such as the situation where the participated interviewees in

a survey are not a random sample of the population of interest, the bias issue exists.

Bias is one of the worst effects that missingness brings. It also brings the issue of

comparability of different groups and representativeness of the observed sample to the

target population, as in some retrospective studies or observational studies.

Due to the above possible significant effects on the conclusion drawn from the

missing data, there is a large amount of research on dealing with missing data in the

literature. For example, Little and Rubin (2002) had a thorough book-length discussion

about the treatment of missing data; Liang and Zeger (1987) proposed generalized

estimating equations for incomplete longitudinal data; Rubin (1976) and Rubin (1987)

elaborated the multiple imputation method, etc.

In modern Statistics, according to Rubin (1976) and Little and Rubin (2002),

three major types of missing data mechanisms are generally accepted and used: missing

completely at random (denoted as MCAR), missing at random (denoted as MAR) and

not missing at random (denoted as NMAR).

Let y = (y1, · · · , yn)′ denote the complete set of the outcome variables, and

r = (r1, · · · , rn)′ be the vector of missing data indicators such that ri = 1 if yi is ob-

served, and ri = 0 if yi is missing. We note that each yi and the corresponding ri can

also be vectors. Let yobs and ymis denote the observed and missing components of y,

respectively. With the above notation, the missing data mechanisms are characterized

by the conditional distribution of r given y, say f(r|y,φ), where φ denotes some un-

2



known parameters.

(a)Missing completely at random (MCAR) denotes the mechanism that missing-

ness does not depend on the values of the data y, missing or observed.

f(r|y,φ) = f(r|φ) for all y,φ

(b)Missing at random (MAR) denotes the mechanism that missingness only depends

on the components yobs of y that are observed, and not on the components that are

missing.

f(r|y,φ) = f(r|yobs,φ) for all ymis,φ

(c)Not missing at random (NMAR) denotes the one that the distribution of r does

depend on the missing values in the data y.

The types of the missing mechanism will affect the choice of the appropriate

statistical analysis procedures. If the missing mechanism is MCAR, then the observed

data can be treated as an unbiased sample of the whole population, therefore the only

loss is the sample size. If the missing mechanism is MAR, by some simple adjustment, we

can easily get unbiased results. For these two missing mechanisms, where the missingness

does not depend on the missing values, they are usually called ignorable missing. On

the other hand, NMAR is also called non-ignorable missing. The analysis of data with

missing not at random, where the probability of missing depends on the missing value

itself, should be handled with extra caution. It is advised to use methods that are robust

to missingness. The commonly used observed mean usually will be biased under NMAR.

And the missing outcomes may have different values from the observed data under
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NMAR. In addition, when the data structures are complicated, such as hierarchical

data or multivariate data, with the presence of missingness, the identification of the

missing mechanism itself is a non-trivial job, not to mention the data analysis.

In this dissertation, we consider two projects in the context of missing data

analysis. In particular, in Chapter 2, we first propose model-based Bayesian estimates

for a multi-level survey with non-ignorable non-responses. The two proposed Bayesian

methods are applied to a real data set, the National Assessment of Education Progress

(NAEP) education survey. In addition, two model adequacy check tools of the NAEP

data are conducted to verify the models eligibility. Also, the simulation study shows that

the performance of these two Bayesian methods can eliminate the bias, if any, compared

with some design-based estimates under different missing mechanisms. Furthermore,

we compared several commonly used model selection criteria in the simulation study.

In Chapter 3, we propose a non-parametric test of missing completely at random for

multivariate incomplete data. The test does not need any distributional assumptions

and is proved to be consistent. The simulation study shows that the non-parametric

test has the type I error well controlled at the nominal level and good power against a

variety of alternative hypotheses.
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Chapter 2

Model-based Bayesian Inferences

For Multi-level Data with

Non-ignorable Non-response

With the fast development in storage capability and computing power, many

demographic and social researchers have the ability to conduct surveys on a nationwide

or even on the worldwide level. The design of these surveys usually contain several

levels. For example, the United States Census is organized to have four census regions

and the four census regions contain nine divisions, which are further divided into sub-

levels: states, counties, cities and families. These broader-domain surveys bring the

challenge of handling incomplete multilevel data.

In this chapter we first give a brief introduction of the motivating data, the

NAEP survey data and discuss the drawbacks of the existing design-based methods.

Aimed to provide unbiased estimates by adjusting the possible impact of missing data,

we propose to use hierarchical linear models to describe the hierarchical data structure
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and to fit the model by Bayesian methods. The proposed methods are applied to the

motivating data.

2.1 Motivating Data

NAEP, which stands for National Assessment of Education Progress, aims

to provide the public with an objective and fair assessment of student performance.

The organization has regularly collected, analyzed and reported information about how

knowledgeable those students are and what they can do in various fields. For example,

they evaluate the student performance in reading and mathematics, etc., by sets of

questionnaires which contain related questions to acquire quantified scores. They have

conducted surveys from samples of fourth-,eighth-, and twelfth- grade students for more

than thirty years. ( In this dissertation, we mainly focus on handling one year data.) A

critical task is to estimate the average performance of students in the population based

on the sampled students. A state-of-the-art multilevel sampling design is employed

to ensure that the sample of students for each assessment is representative. Every

participating school and every participating student is supposed to represent a portion of

the population of interest. Although in different years, the sampling designs are different,

the fundamental structure remains similar. Among the nationwide collection of data,

we are particularly interested in the performance of the California data. Therefore, in

this dissertation, we focus on one state data, the California data. The analysis of the

nationwide data essentially can be treated as the combination of the analyses for each

state.

Basically speaking, the NAEP sampling design for the California data contains

two levels. At the first level, schools are selected with some pre-determined probability.
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At the second level, a sample of students is selected from each selected school. The

student samples are drawn and allocated to sessions using a computer-based system.
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Figure 2.1: Observed trend in California 8th-grade NAEP mathematics average scores.
Data from NAEP, Grade 8 Mathematics Scores

Figure 2.1 shows the observed trend in 8th-grade mathematics average scores

for California students from year 2000 to year 2011. At the second level of the above

multilevel sampling design for the California NAEP data, some of the sampled students

within the participating schools may fail to show up for the assessment, and thus are

considered as non-responses at the student level. We believe that, those students with

low performance may have high probability to refuse to participate. For example, if a

large proportion of students with low performance does not participate in the survey in

2003, the observed mean will be inflated and will not reflect the true trend of the data.

Therefore, a method which can eliminate the bias is of great interest.
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2.2 Classical Method to Deal With Non-ignorable Miss-

ing: Horvitz-Thompson Estimates

The Horvitz-Thompson (HT) (Horvitz and Thompson, 1952) estimator, which

is a very popular method to measure the superpopulation mean in a stratified sample,

is widely used in multi-level sampling designs. The basic idea is to weigh the outcomes

by the inverse of their probabilities of selection.

Suppose the population which we are interested in consists of B schools with

the ith school having Ni students, and the total number of students in the population

is N =
∑B

i=1Ni. Let yij denote the assessment score of student j in school i, and let

Ȳ =
1

N

B∑
i=1

Ni∑
j=1

yij

denote the population mean.

Suppose in the survey, at the first level, a sample of b of the B schools is

selected; at the second level, ni students are selected from the Ni students in the selected

ith school. Each selection is performed with some pre-determined probabilities. For such

a two-level sample with complete responses, the HT estimator is defined as

ŷHT =

∑b
i=1

∑ni
j=1wijyij∑b

i=1

∑ni
j=1wij

with

wij = 1/πij and πij = πiπj|i

where

8



πij is the selection probability of student j of school i;

πi is the selection probability of school i; and

πj|i is the selection probability of student j when school i is selected.

In the NAEP survey data, the schools are selected with probabilities which are

proportional to the school sizes and the students within selected schools are selected

with the probabilities which are inversely proportional to the school size, so that overall

the students across different schools are equally likely to be selected. In this case, we

have πi = Ni
N and πj|i = ni

Ni
, if the ith school is selected.

In reality, a survey or some other research study without non-response hardly

occurs or may cost too much. For our data, some students in the selected school may

refuse to answer the questionnaire. In order to provide an unbiased estimate, we need

to correctly account for those missingness.

Suppose only mi students respond (mi ≤ ni) in the selected ith school. The

student non-response adjustment is obtained by multiplying the student selection prob-

ability, πj|i, by the observed student response rate in school i, i = 1, · · · , b, which is

given by

π∗j|i =
mi

ni
πj|i

where mi
ni

is the observed student response rate in the selected ith school.

Therefore, the non-response adjusted HT estimator is given by

ŷ∗HT =

∑b
i=1

∑mi
j=1w

∗
ijyij∑b

i=1

∑mi
j=1w

∗
ij

9



with

w∗ij = 1/π∗ij and π∗ij = πiπ
∗
j|i

where π∗j|i is defined as above.

The HT estimate approach is simple and easy to implement. When the data

are complete or the response probabilities are constant among all the schools, the HT

estimator is unbiased. But there are certain drawbacks for the HT estimator. First,

when response rates are highly variable, the HT estimator will have a large variance.

In the extreme case, in a school, none of the selected students participate in the survey,

then the HT estimator is even undefined. Ways to solve this problem are to compute

HT estimator by using only schools with respondents, or to combine schools with no

respondents with other schools with similar background, but both approaches may lead

to a biased result. Secondly, the HT estimator may be biased when non-ignorable non-

responses occur. For the NAEP data, the non-responses at student level may depend on

the value of the outcome variable. Those students who have low assessment scores may

be unwilling to take the survey. Therefore, the missing values are not missing randomly

from the population. HT estimators are unbiased only when the non-response mecha-

nism at the student level is ignorable (see Little and Rubin, 2002). More specifically,

if the response probability of student j in school i depends on the value of yij or some

other student level characteristic variable(s), then the HT estimator is biased. This is

a common drawback of design-based estimators. In the next section we will describe

model-based methods to address these limitations.
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2.3 Hierarchical Linear Models

Due to the complexity of the data structure, hierarchical linear modeling

(HLM) (Bryk and Raudenbush, 1992) is often used in multilevel data analysis. Com-

pared with the above design based estimators, it has the following advantages:

1.The feature of HLM provides the model with the flexibility to handle more

sophisticated cases. One model can be built for each level. What’s more, the assessment

score of a student in a particular school can be predicted.

2.Additional information can be included, such as the student missing indica-

tors. With proper modeling accounting for the missingness indicators, the estimator

will be less biased.

3.If the data is complete and the model is correctly specified, the estimator

from HLM is consistent and BLUE (best linear unbiased estimator) (Scott and Smith,

1969)

4.When sample size is large and a non-informative prior is used, results are

comparable to design-based estimators.

2.3.1 Hierarchical Linear Models for NAEP Data

For the NAEP data, the basic model is built as follows.

Level 1(student level): yij = β0i +
∑
l∈L2

βl iXl ij + εij

Level 2(school level): β0i = β0 +
∑
l∈L1

βlZl i + εi

11



where

yij is the assessment score for student j in school i;

β0i is the mean score for school i;

Xl ij is the l-th student characteristic for student j in school i, l ∈ L2, where L2 is the

index set of Xl ij , which is thought to be related with yij ;

βl i is the regression coefficient associated with each Xl ij , l ∈ L2;

εij is the random error at the student level, and is assumed to be independently and

normally distributed with mean 0 and a common variance σ2
2 for all students in the

population;

β0 is the grand mean, adjusted for the school level covariates Zl i;

Zl i is the l-th school characteristic for school i, l ∈ L1, which is thought to be related

with β0i;

βl is the regression coefficient associated with each Zl i, l ∈ L1;

εi is the random error at the school level, and is assumed to be independently and

normally distributed with mean 0 and a common variance σ2
1 for all schools in the

population. Furthermore, εi and εij are independent of each other.

When the data is complete, i.e. no non-response in the data, the estimator of

HLM is consistent and also the best linear unbiased predictor of the population mean

once the model is correctly specified (Scott and Smith, 1969). For the ignorable non-

response case, the estimator of HLM will hold similar properties. However, once the

non-response is non-ignorable, an estimator without taking the missing mechanism into

consideration will fail to be unbiased. (see Little and Rubin, 2002).
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2.3.2 Pattern Mixture Model and Selection Model

The joint distribution of the outcome yij and its corresponding missing indica-

tor rij is of great importance, since the missing mechanism is defined by the conditional

distribution of rij given yij . The fact that there are two ways to factorize the joint

distribution leads to two different model structures. One way is as the product of the

conditional distribution of yij given rij and the marginal distribution of rij , while the

other way is as the product of rij given yij and the marginal distribution of yij . They

correspond to two kinds of hierarchical model structures, Pattern Mixture model and

Selection model namely. Denote all the yij as Y and all the corresponding missing in-

dicator rij as R. The pattern mixture model (Glynn, Laird, and Rubin, 1986; Little,

1993) has the following form:

f(rij , yij |Xij ,γ,φ) = fY |R(yij |rij ,Xij ,γ)× fR(rij |φ)

where γ are parameters that yij may depend on, and φ are parameters that rij may

depend on.

The Selection model, which has been used extensively in the literature (Little and Rubin,

2002), has the following form:

f(rij , yij |Xij ,υ, δ) = fY (yij |Xij ,υ)× fR|Y (rij |yij , δ)

where υ and δ are corresponding parameters for yij and rij respectively.

We illustrate how to use the pattern mixture model and the selection model to

fit the data in the following two sections.

13



2.4 The Proposed Pattern Mixture Model

2.4.1 Pattern Mixture Model Implemented by Using Missing Latent

Variable

Before we illustrate how to fit the data by using pattern mixture model, we

first demonstrate how the latent variable works in the pattern mixture model.

Latent variables are “hidden variables”. They are not directly observed, but

rather are inferred from some other observed variables. For example, let r take value 1

if someone buys a house, 0 if not. We can imagine a continuous variable u which reflects

the desire someone wants to buy a house. If the desire is “high enough”, u is greater

than some threshold c, say 0, someone buys a house.

u ≥ 0⇒ r = 1

Otherwise, not buy.

u < 0⇒ r = 0

u is called the latent variable in this example. It may depend on some explanatory

variable such as income.

u = β0 + β1Income + ε

The latent variable technique is a natural way to describe the relationship of

the data. Originally, the patten mixture model can mix a limited number of models

with different statuses of a categorical outcome. Such as in the above case, we can have

two models, one model for the status of r = 1 (buy a house) and the other model for the

status r = 0 (not buy a house). But the decision making process is a stochastic process.
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If we can repeat the house buying process countless times, by assuming the desire of

buying a house within a range of -100 and 100, the person with that desire equal to 60

will buy a house less times than a person with that desire equal to 80. Crudely dividing

the data into two subsets will make the above difference being ignored. With the help

of latent variables, we can treat the categorical outcome as a random realization instead

of a fixed result, so that we can add the uncertainty into the model. Then the extended

pattern mixture model is capable of describing the data structure by the continuous

latent variable u instead of by the discontinuous categorical outcome r.

To handle the student-level non-ignorable non-responses, inspired by the Tobit

model (Amemiya, 1984), we introduce latent variables to describe the relationship be-

tween the data of interest and their missing mechanism. Intuitively, people would like

to use the missing indicator as a covariate in the model to describe the relationship be-

tween the dependent variable and the missing mechanism. Here, we use the continuous

latent variable for the reason above.

For notation simplicity, we first assume that all of the students share a common

slope of the latent variables and no explaining covariates at both student and school

levels. This model can be easily modified to suit the more complicated situation. For a

more general model, the strategy to solve the model is similar.

Level 1(student level): yij = β0i + αuij + εij

uij = χi + eij

χi = χ+ ζi

rij =


1 if uij > 0,

0 otherwise.

15



where

yij , β0i and εij are the same as in the basic HLM;

uij is the latent variable for student j of school i, and is assumed to follow a normal

distribution with mean χi and variance 1, when χi is given;

α is the regression coefficient associated with the latent variable uij for student j in

school i;

ζi is the random error for χi, and is assumed to be independently and normally dis-

tributed with mean 0 and a common variance ω2 for all the schools;

χi is the mean of uij for school i, and is assumed to follow a normal distribution with

mean χ and variance ω2, when χ is given;

χ is the grand mean of χi;

rij is the student response indicator with rij = 1 for responding students and rij = 0

for non-responding students.

In the above model, the outcome variable yij is modeled as a function of the

latent variable uij . Those uijs are used to characterize the non-response mechanism

in the sense that when uij is positive, the student responds; otherwise, the student

does not respond. Therefore, if α is positive, for the participating students, uij > 0,

they have higher assessment scores and on the other hand, the students who do not

respond have negative uij values and thus tend to have lower scores. Overall, the non-

response mechanism rij is related to the outcome variable yij , and the non-response is

non-ignorable. The analysis for α < 0 is similar, where the low performance ones are

more likely to answer the survey. Therefore, after fitting this hierarchical linear model,

the test for whether the missingness is ignorable or not is equivalent to test whether

α is 0 or not. If α = 0, the outcome variable Y will be independent of the latent
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variable u, furthermore will be independent of the missing indicator R, which means

the meaningness is ignorable. Otherwise, the missingness is NMAR.

Then, at the school level, the model does not include non-response, it is the

same as regular linear model:

Level 2(school level): β0i = β0 + εi

where

β0 is the grand mean for student assessment scores;

εi is the random error at the school level, and is assumed to be independently and

normally distributed with mean 0 and a common variance σ2 for all schools in the

population. Furthermore, εij , ζi and εi are independent of each other.

2.4.2 Gibbs Sampler for the Pattern Mixture Model

For illustration purpose, the complete hierarchical linear model we propose

above can be written in the following way.

For level 1(student level):
[
yij |β0i, α, uij , σ

2
2

]
= N

(
β0i + αuij , σ

2
2

)
[uij |χi] = N (χi, 1)

rij =


1 if uij > 0,

0 otherwise.

[
χi|χ, ω2

]
= N

(
χ, ω2

)
For level 2(school level):

[
β0i|β0, σ

2
1

]
= N

(
β0, σ

2
1

)
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This random effects HLM can be fitted by maximum likelihood. However, a

more convenient way is to use Bayesian methods. The Bayesian methods make infer-

ence based on the posterior distribution, which is a combined knowledge of prior and

likelihood. The prior may be the knowledge from previous studies or the knowledge

from experts. In this study, we add non-informative priors to the parameters, and then

simulate draws from the posterior distribution. This method will bring us asymptoti-

cally equivalent results to maximum likelihood (Gelman et al., 2004). The above HLM

is implemented by Gibbs sampler (Gelfand et al., 1990 and Gilks et al., 1996), which

will be described in details as follows.

We use non-informative priors for the “mean” parameters and diffuse inverse

gamma priors for the errors. So we assume priors for the parameters are of the form

[
β0, σ

2
1

]
∝ IG(a1, b1) ∝

(
σ2

1

)−a1 exp(− b1
σ2

1

)
[
α, σ2

2

]
∝ IG(a2, b2) ∝

(
σ2

2

)−a2 exp(− b2
σ2

2

)
[
χ, ω2

]
∝ IG(a3, b3) ∝

(
ω2
)−a3 exp(− b3

ω2

)

with a1 = b1 = a2 = b2 = a3 = b3 = 0.1. The reason we choose them all equal to 0.1,

is that in the posterior distributions for the errors, the information in likelihood can be

the dominant factor compared with the information in the prior.

The implementation of MCMC chain involving latent variables should be ap-

proached with extra caution to avoid an unidentifiability issue. By using the normally

distributed latent variables, it is equivalent to model the missing indicators by a probit

regression model. And with the help of latent variables, we notice that the difference
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between probit regression model and logistic regression model is the distribution of the

latent variables. If the latent variables are logit distributed, then it is equivalent to

model them with logistic regression. Albert and Chib (1993) proposed to use the trun-

cated normal sampling technique to implement the Gibbs sampler for a probit model

for binary responses. Intuitively, the probit model is a regression where only the sign of

the dependent variable u is observed.

Setting the censoring threshold at 0 is arbitrary (any non-zero threshold will

be offset by a corresponding shift in the intercept). To overcome the scale invariance

problem, we set the scale of uij to be 1 since we only care about the sign of uij . Fur-

thermore, the introduction of latent variables may bring large auto-correlations in the

Bayesian MCMC chain. We need to wait long enough to make sure the independence

of the MCMC draws. Because the direct sampling from the posterior distribution of all

the parameters at the same time is difficult, we use Gibbs sampler, which is a simple

case of MCMC chain to fit the model. The Gibbs sampler will update the parameter

by using the conditional distribution for each of the parameter one at a time. After the

chain converges, the procedure will generate a set of parameters which can be treated

as they are from the joint posterior distribution. Details of fitting these models using

Gibbs sampler are given in the following.

Consider the mth iteration. Let Yobs and Ymis denote values of the survey

outcome Y for respondents and non-respondents, let

u = (u11, · · · , u1n1 , · · · , uij , · · · , ubnb)
′

denote values of the student-level latent variable. The first step is called “data augmen-

tation” (Tanner and Wong, 1987). All the derivations are given in Appendix A.
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STEP 1:

(I) First, when rij = 0, which implies the jth student in the selected school i

does not participate in the survey, the latent variable uij and the missing outcome yij

can be augmented as follows.

[
uij |Yobs, rij = 0, β0i, α, σ

2
2, χi

]
∼ TN[uij<0] (χi, 1)

[
yij |Yobs, uij , rij = 0, β0i, α, σ

2
2

]
∼ N

(
β0i + αuij , σ

2
2

)

The uij for the missing values have to be updated before the missing outcome

variables yij , since it is not completely conditional on all the parameters, but rather is

marginalized over yij . This situation is also called collapsed Gibbs sampling (Liu, 1994),

which has been shown to result in more stable MCMC chains.

Since the value of uij for the missing values only affect the distribution of the

missing yij itself, the collapsed Gibbs sampling does not have any influence on the other

parameter update steps.

(II) When rij = 1, i.e. yij is observed. uij(> 0) is drawn from the following

left-truncated normal distribution:

[
uij |Yobs, rij = 1, β0i, α, σ

2
2, χi

]
∝TN[uij>0]

(
χi +

α(yij − β0i − αχi)
α2 + σ2

2

,
σ2

2

α2 + σ2
2

)
(2.1)
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STEP 2: For these school level means, β0i and χi are drawn from

[
β0i|Yobs,Ymis, α,ui, σ

2
2, β0, σ

2
1

]
∝N

(
niσ

2
1 (ȳi − αūi) + σ2

2β0

nijσ2
1 + σ2

2

,
σ2

2σ
2
1

niσ2
1 + σ2

2

)
[
χi|Yobs,Ymis,ui, χ, ω

2
]
∝ N

(
ω2niūi + χi
ω2ni + 1

,
ω2

ω2ni + 1

)

where ui denotes the vector (ui1, · · · , uini)
′
;

ȳi =
∑ni
j=1 yij
ni

; and ūi =
∑ni
j=1 uij
ni

.

Now, with augmented complete data (Yobs,Ymis,u,β0, ), where β0 denotes

the vector (β1, · · · , βb)
′
, parameters are drawn alternately.

STEP 3: the slope for the missing latent variables and the random error of student

level,
(
α, σ2

2

)
can be drawn from

[
σ2

2|Yobs,Ymis,β,u,
]

∝IG

a2 +
1

2

(
b∑
i=1

ni − 1

)
, b2 +

1

2

b∑
i=1

bi∑
j=1

(yij − (β0i + α̂uij))
2


[
α|Yobs,Ymis,β,u, σ

2
2

]
∝ N

(
α̂,

σ2
2∑b

i=1

∑ni
j=1 u

2
ij

)

where α̂ =
∑b
i=1

∑ni
j=1 uij(yij−β0i)∑b

i=1

∑ni
j=1 u

2
ij

;

β denote the vector of β0i, for i = 1, · · · , b;

u denote the vector of uij , for i = 1, · · · , b, j = 1, · · · , ni; and

IG(·) denotes an inverse gamma distribution.
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STEP 4:
(
χ, ω2

)
are drawn from

[
ω2|Yobs,Ymis,χ

]
∝ IG

(
a3 +

b− 1

2
, b3 +

1

2

b∑
i=1

(χi − χ̄)2

)
[
χ|Yobs,Ymis,χ, ω

2
]
∝ N

(
χ̄,
ω2

b

)

where χ denotes the vector of χi, for i = 1, · · · , b;

χ̄0 = 1
b

∑b
i=1 χi; and[

χ̄|χ, ω2
]
∼ N

(
χ, ω

2

b

)
.

STEP 5:
(
σ2

1, β0

)
are drawn from the conditional distributions

[
σ2

1|Yobs,Ymis,β
]

∝IG

(
a1 +

b− 1

2
, b1 +

1

2

b∑
i=1

(
β0i − β̄0

)2)
[
β0|Yobs,Ymis,β, σ

2
1

]
∝ N

(
β̄,
σ2

1

b

)

where β denotes the vector of β0i, for i = 1, · · · , b; and

β̄0 = 1
b

∑b
i=1 β0i.

The above five steps are the complete procedure for one iteration. Starting

from some appropriate initial values, we follow this procedure to update parameters one

by one. We iterate this procedure several times until the chain converges.

The choice of the initial values is a critical issue in MCMC chain analysis.

Some people propose to use the estimates from some traditional methods as the initial

values. In the pattern mixture model, there is no reference to the parameter α. And we

find that, for some initial values, the MCMC chain does not work correctly. It may be

difficult to converge for some initial values. We demonstrate our point in the following
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Figure 2.2: Ordinary Gibbs sampler for pattern mixture model with the initial value of
α equal to 1

simulation study. Suppose we have a population with 30% of the schools contain missing

values, and the overall missing percentage is 3%. The true value for α is 70. Figure 2.2

shows the trajectory plots of the parameters of interest for the ordinary Gibbs sampler

for pattern mixture model with the initial value of α equal to 1. We can see that all the

parameters converge perfectly, but to wrong values. For example, the trajectory plot

for α converges to 0.24, which is far away from the true value 70. We further start a

MCMC chain with the initial value of α equal to 70. The chain behavior is the same as

in Figure 2.2, unless all the parameters (including the latent variables and the missing
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values) starting from the true value. Figure 2.3, which shows the trajectory plots of the

ordinary Gibbs sampler for pattern mixture model with the initial value of α equal to

0, has all the parameters converge to the right places, although the chain looks not as

nicely converged as in Figure 2.2.

Figure 2.3: Ordinary Gibbs sampler for pattern mixture model with the initial value of
α equal to 0

By a closer look at the chain, we find out that for non-zero starting values like

the starting values in Figure 2.2, the latent missing variable for the observed students

from the completely observed schools and the latent missing variable for the observed
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students from the schools where not all the students are observed have different means.

The difference between the two means are getting bigger until it reaches some point,

which results in a complete separation in the data. We believe the reason is that in the

mean part of the conditional posterior distribution in equation (2.1), a non-zero initial

value of α will bring a cumulation part,
α(yij−β0i−αχi)

α2+σ2
2

, which can never be offset in the

future draws if all the students in this school are observed. In the schools where all the

students participate in the survey, uij ’s all go up to a huge number around 300, while in

the schools some students refuse to participate, the uij ’s for the observed students and

the missing students are all around 0. This brings a complete separation between the

schools that are fully observed and the schools where some of the students are missing.

What we expect is that those observed students, no matter which schools they are from,

their uij value should be comparable. In order to solve this problem, we introduced the

empirical Bayesian method to put a threshold for the prior of uij .

When the total number of students is large enough, by the law of large numbers,

the hierarchical structure of uij leads to the following two equations.

∑b
i=1

∑mi
j=1 rij∑b

i=1mi

= P (θ̃ > 0)

∑b
i=1

∑mi
j=1 rij
mi

b
= P (χ̃ > 0)

where θ̃ has identical distribution as uij and χ̃ has identical distribution as χi. Marginal-

ized over χi,

uij ∼ N(χ, 1 + ω2) (2.2)
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Then

P (θ̃ > 0) = P (
θ̃ − χ√
1 + ω2

>
0− χ√
1 + ω2

) = 1− Φ

(
χ√

1 + ω2

)
P (χ̃ > 0) = P (

χ̃− χ√
ω2

>
0− χ√
ω2

) = 1− Φ

(
χ√
ω2

)

solving the above two equations for χ and ω2, we can get

χ̂ =
|A|B√
B2 −A2

ω̂2 =
A2

B2 −A2

where

A = Φ−1

(
1−

∑b
i=1

∑mi
j=1 rij∑b

i=1mi

)

B = Φ−1

1−
∑b

i=1

∑mi
j=1 rij
mij

b


By using the estimate from the data, we could set the threshold to be within 3 standard

deviations of the mean. (We note that the result is not sensitive for the choice of 3

standard deviations of the mean. We can also choose a wider boundary for the latent

variables as long as there are a threshold for the latent variables.) Referring to equation

(2.2), the thresholds of uij are χ̂ − 3
√

1 + ω̂2 and χ̂ + 3
√

1 + ω̂2. After setting up

the lower and upper boundaries for the missing latent variables, the possible complete

separation between the completely observed schools and the schools with missing value

disappears. In Figure 2.4, we show the trajectory plots of the MCMC chain with the

Bayesian empirical boundaries on the missing latent variables. The initial value of α is
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Figure 2.4: Ordinary Gibbs sampler for pattern mixture model with the initial value of
α equal to 1 and u bounded

set to also be 1, but the chain converges to the true values.

In the above, we find that the ordinary Gibbs sampler solution for pattern

mixture model has some limitations. With some initial values, the chain seems to

“perfectly converge” to some wrong places. So here we propose to use the Gibbs sampler

with empirical Bayesian method, which essentially uses the information from the data

to put a constrain on the chain so that the limitation of using ordinary Gibbs sampler

can be avoided.
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2.5 The Proposed Selection Model

In this section, we illustrate how to use the selection model to fit the data. For

simplicity, we assume all the students have the same slope in the logistic regression for

missing indicators given the assessment score. Then the 2-level selection model is

Level 1 (student level) yij = β0i + εij

rij |yij , γi, λ ∼ Bernoulli
{

exp {γi + λyij}
1 + exp {γi + λyij}

}
γi|γ, ω2 ∼ N

(
γ, ω2

)

where

yij is the assessment score of the jth student in ith school;

β0i is the mean score of ith school;

εij is the random error at student level for jth student in ith school, it is assumed to be

independently and normally distributed with mean 0 and a common variance σ2
2;

rij is the student response indicator, with rij = 1, if yij is observed and rij = 0, if yij is

missing;

γi is the intercept in the logistic regression for ith school;

λ is the slope in the logistic regression;

γ is the grand mean for γi, j = 1, . . . , b, respectively;

ω2 is the variance for γi;

Level 2 (school level) β0i = β0 + εi
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where

β0 is the grand mean assessment score;

εi is the random error at school level for ith school, it is assumed to be independently

and normally distributed with mean 0 and a common variance σ2
1;

For the proposed selection model, by introducing the logistic regression method,

the full joint posterior distribution will no longer be in the exponential family. Further-

more, some of the conditional posterior densities do not belong to exponential family.

The full joint posterior distribution has the form

P
(
Ymis, σ

2
2,β0, β0, σ

2
1,γ, λ, ω

2|Yobs

)
∝

b∏
i=1


mi∏
j=1

1

σ2
exp

{
− 1

2σ2
2 (yij − β0i)

2

}
exp {γi + λyij}

1 + exp {γi + λyij}


×

b∏
i=1


ni∏

j=mi+1

1

σ2
exp

{
− 1

2σ2
2 (yij − β0i)

2

}
1

1 + exp {γi + λyij}


×

b∏
i=1

1

σ1
exp

{
− 1

2σ2
1

(β0i − β0)2

}
×

2∏
l=1

(
σ2
l

)−(al+1)
exp

{
− bl
σ2
l

}
×
(
ω2
)−(a3+1)

exp

{
− b3
ω2

}

×
b∏
i=1

1

ω
exp

{
− 1

2ω2
(γi − γ)2

}

where Ymis and Yobs denote the missing part and observed part of Y respectively;

β0 denotes the collection of β0i for i = 1, . . . , b;

γ denotes the collection of γi for i = 1, . . . , b;

We show two methods, the Gibbs sampler directly based on logistic regression

and the Gibbs sampler based on an approximation of the logistic regression, the robit

regression, to fit the selection model in the following.

29



First, we derive the conditional posterior density function of the ordinary Gibbs

sampler directly based on logistic regression.

STEP 1: We need to augment the missing data when rij = 0, which denotes the case

that the jth student in the ith school did not participate in the survey.

P
(
yij |rij = 0, β0, σ

2
2, γi, λ

)
∝exp

{
− 1

2σ2
2

(yij − β0i)
2

}
· 1

1 + exp {γi + λyij}

This conditional posterior density is not in the exponential family. Directly drawing

a random variable from it is difficult. We utilize the Metroplois-Hasting algorithm

(Chib and Greenberg, 1995) to approximate the original distribution by sampling from

a proposal density with some acceptance rate. We construct a proposal density based

on least squares estimate. Propose ynewij from

ynewij ∼ N
(
β0i, σ

2
2

)

Draw a random variable u from uniform distribution U [0, 1], then we accept ynewij if

log(u) < l
(
ynewij

)
−l
(
yoldij

)
−h
(
ynewij

)
+h
(
yoldij

)
, where l(·) = logp

(
·|β0i, σ

2
2, γi, λ

)
is the

log-likelihood function and h(·) is the log-density of the proposal function. In this case,

l(y)−h(y) = −log (1 + exp {γi + λy}), so we accept ynewij if log(u) ≤ log
(

1 + exp
{
γi + λyoldij

})
−

log
(

1 + exp
{
γi + λynewij

})
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STEP 2: We draw β0i and σ2
2.

P
(
β0i|Yobs,Ymis, σ

2
2, σ

2
1, β0

)
∝

ni∏
j=1

exp

{
− 1

2σ2
2

(yij − β0i)
2

}
× exp

{
− 1

2σ2
1

(β0i − β0)2

}

∝exp

−1

2

(
niσ

2
1 + σ2

2

σ2
1σ

2
2

)[
β0i −

σ2
1

∑ni
j=1 yij + σ2

2β0

niσ2
1 + σ2

2

]2


∝N

(
σ2

1

∑ni
j=1 yij + σ2

2β0

niσ2
1 + σ2

2

,
σ2

1σ
2
2

niσ2
1 + σ2

2

)

P
(
σ2

2|Yobs,Ymis,β
)
∝
(
σ2

2

)−(a2+1)
exp

{
− b2
σ2

2

}

×
(
σ2

2

)− 1
2

∑b
i=1 ni exp

− 1

2σ2
2

b∑
i=1

ni∑
j=1

(yij − β0i)
2


∝ IG

a2 +
1

2

b∑
i=1

ni, b2 +
1

2

b∑
i=1

ni∑
j=1

(yij − β0i)
2


STEP 3: Update γ0 and λ.

P


γ0

λ

 |Yobs,Ymis, γ, ω
2

 ∝ b∏
i=1

ni∏
j=1

exp {rij (γi + λyij)}
1 + exp {γi + λyij}

×
b∏
i=1

exp

{
1

2ω2
(γi − γ)2

}

We utilize the Metropolis-Hasting algorithm here also. First, we use the estimators from

the logistic regression, where school is the random effect, as the mode, (γ̂, λ̂)
′
, and then
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compute the Fisher information matrix. Let

l(γi, λ)
′

= log(L((γ0, λ)
′ |Yobs,Ymis, γ, ω

2))

=
b∑
i=1

ni∑
j=1

rij (γi + λyij)−
b∑
i=1

ni∑
j=1

log (1 + exp {γi + λyij})

−
b∑
i=1

1

2ω2
(γi − γ)2

The first derivatives are

∂l (γ0, λ)
′

∂γi
=

ni∑
j=1

rij −
ni∑
j=1

exp {γi + λyij}
1 + exp {γi + λyij}

− 1

ω2
(γi − γ)

∂l (γ0, λ)
′

∂λ
=

b∑
i=1

ni∑
j=1

rijyij −
b∑
i=1

ni∑
j=1

yijexp {γi + λyij}
1 + exp {γi + λyij}

The second derivatives are

∂2l (γ0, λ)
′

∂γ2
i

= −
ni∑
j=1

exp {γi + λyij}
(1 + exp {γi + λyij})2 −

1

ω2

∂2l (γ0, λ)
′

∂γi∂γj
= 0, for i 6= j

∂2l (γ0, λ)
′

∂γi∂λ
= −

ni∑
j=1

yijexp {γi + λyij}
(1 + exp {γi + λyij})2

∂2l (γ0, λ)
′

∂λ2
= −

b∑
i=1

ni∑
j=1

y2
ijexp {γi + λyij}

(1 + exp {γi + λyij})2

Then I = − ∂2l((γ0,λ)
′
)

∂(γi,λ)′∂(γi,λ)

∣∣∣∣
(γ0,λ)

′
=(γ̂0,λ̂)

′ We draw T5 according to a p-variate standard

t5 distribution, and propose (γnew0 , λnew)
′

=
(
γ̂0, λ̂

)′
+ I−

1
2T5. Draw u ∼ U [0, 1],

and accept (γnew0 , λnew)
′

if log(u) ≤ l (γnew0 , λnew)
′
− l
(
γold0 , λold

)′
− h (γnew0 , λnew)

′
+

h
(
γold0 , λold

)′
, where h(·) is the log density of T5 centered at

(
γ̂0, λ̂

)′
with scale I−

1
2
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STEP 4: Update γ and ω2 The joint distribution of γ and ω2 is

P
(
γ, ω2|Yobs,Ymis,γ0

)
∝

b∏
i=1

1

ω
exp

{
− 1

2ω2
(γi − γ)2

}
×
(
ω2
)a3+1

exp

{
b3
ω2

}

After integrating out γ, the marginal posterior distribution of ω2 is

P
(
ω2|Yobs,Ymis,γ0

)
∝ IG

(
a3 +

b− 1

2
, b3 +

1

2
(γi − γ̄)2

)

and the conditional posterior distribution for γ is

P
(
γ|Yobs,Ymis,γ0, ω

2
)
∝ N

(
γ̄,
ω2

b

)

where γ̄ = 1
b

∑b
i=1 γi

STEP 5: Update β0 and σ2
1

P
(
β0, σ

2
1|Yobs,Ymis,β0

)
∝

b∏
i=1

1

σ1
exp

{
− 1

2σ2
1 (β0i − β0)2

}
×
(
σ2

1

)−(a1+1)
exp

{
− b1
σ2

1

}

Integrate β0 out to get the marginal posterior distribution of σ2
1,

P
(
σ2

1|Yobs,Ymis,β0

)
∝
(
σ2

1

)−(a1+ b
2

+1)
exp

{
− b1
σ2

1

}∫
exp

{
− 1

2σ2
1

b∑
i=1

(β0 − β0i)
2

}
dβ

∝ IG

(
a1 +

b− 1

2
, b1 +

1

2

b∑
i=1

(
β0i − β̄

)2)

P
(
β0|Yobs,Ymis,β, σ

2
1

)
=
p
(
β0, σ

2
1|Yobs,Ymis,β

)
p
(
σ2

1|Yobs,Ymis,β0

) ∝ N (β̄, σ2
1

b

)

where β̄ =
∑b
i=1 β0i
b
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As shown in the above five steps, the proposed selection model involves draw-

ing random variables from a logistic distribution. Since logistic distribution is not in the

exponential family, more specifically, it is not in a close form, we use the Metropolis-

Hasting algorithm to approximate it by a t distribution with degree of freedom 5 with

matching means and covariance matrices. One drawback of this approach is that, the

coefficients for the logistic regression have to be updated at the same time, which may

cause slow convergence. Furthermore, the choice of the initial values is critical for the

selection model based on the logistic regression, especially the initial values for the coef-

ficients in the logistic regression. Some people suggest to use the pattern mixture model

to impute the data, and then use the augmented data to “estimate” the initial values

in the selection model. Here, we will use an alternative method, the robit regression,

to approximate the logistic regression. It will be illustrated as follows. First, the above

selection model is equivalent to the following model:

fY : yij = β0i + εij

β0i = β0 + εi

fR|Y : zij = γi + λyij + eij

γi = γ + ei

Here, zij is the latent variable and the missing indicator can be determined by zij in the

sense that

rij =


1 if zij > 0,

0 otherwise.
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and in the model, εij is the random error at student level and is assumed to be indepen-

dently and normally distributed with mean 0 and a common variance σ2
2 for all students;

εi is the random error at school level and is assumed to be independently and normally

distributed with mean 0 and a common variance σ2
1;

ei is the random error for the latent variable at school level and is assumed to be inde-

pendently and normally distributed with mean 0 and a common variance ω2;

eij is the random error for the latent variable at student level and is assumed to be inde-

pendently distributed with standard logistic distribution, whose cumulative distribution

function (CDF) is logistic function, the inverse of logit function.

Based on the definition of logistic distribution, P (eij < x) = logit−1(x), since

P (rij = 1|yij) = P (zij > 0|yij) = P (γi + λyij + eij > 0)

= P (eij > −(γi + λyij)) = P (eij < γi + λyij)

= logit−1(γi + λyij) = pi

the latent variable method is equivalent to the traditional logistic regression model.

We note that the logistic distribution is not in the exponential family, a more

convenient way is to use t distribution with matched moments to approximate it. By

matching the first four moments ( the skewness of both distributions is always 0, the

other three as shown in 2.3),

µ = 0

n

n− 2
s2 =

π2

3
(2.3)

6

n− 4
=

6

5
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the t distribution with degree of freedom n = 9 and standard deviation s =
√

7
9
π2

3 is a

good approximation as shown in Figure 2.5.
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Figure 2.5: Comparison of logistic distribution and approximating t distribution

Furthermore, t distribution is the compound distribution of a normal distribu-

tion while its variance has an inverse gamma distribution. In this set up, the coefficient

parameters γi and λ in the logistic regression can have conjugate posterior distribution

with a normal prior. To be more specific,

t(x|υ, µ, τ2) ∝
∫
N(x|µ, τ2ρ)× IG(ρ|υ

2
,
υ

2
)dρ

here υ = 9 and τ =
√

7
9
π2

3 ≈ 1.59962. So eij can be drawn from N(0, τ2ρ) where ρ has

distribution IG(9
2 ,

9
2)

36



STEP 1: The first step of the Gibbs sampler is to augment Ymis

[yij |rij = 0, β0i, σ
2
2, zij , γi, λ, ρ]

∝exp
{
− 1

2σ2
2

(yij − β0i)
2

}
× exp

{
− 1

2τ2ρ
(zij − γi − λyij)2

}
∝N

(
β0i +

σ2
2λ (zij − γi − λβ0i)

λ2σ2
2 + τ2ρ

,
σ2

2τ
2ρ

λ2σ2
2 + τ2ρ

)

STEP 2: β0i and σ2
2 can be drawn from the conditional distribution

P
(
β0i|Yobs,Ymis, σ

2
2, σ

2
1, β0

)
∝

ni∏
j=1

exp

{
− 1

2σ2
2

(yij − β0i)
2

}
× exp

{
− 1

2σ2
1

(β0i − β0)2

}

∝exp

−1

2

(
niσ

2
1 + σ2

2

σ2
1σ

2
2

)[
β0i −

σ2
1

∑ni
j=1 yij + σ2

2β0

niσ2
1 + σ2

2

]2


∝N

(
σ2

1

∑ni
j=1 yij + σ2

2β0

niσ2
1 + σ2

2

,
σ2

1σ
2
2

niσ2
1 + σ2

2

)

P
(
σ2

2|Yobs,Ymis,β
)
∝
(
σ2

2

)−(a2+1)
exp

{
− b2
σ2

2

}

×
(
σ2

2

)− 1
2

∑b
i=1 ni exp

− 1

2σ2
2

b∑
i=1

ni∑
j=1

(yij − β0i)
2


∝ IG

a2 +
1

2

b∑
i=1

ni, b2 +
1

2

b∑
i=1

ni∑
j=1

(yij − β0i)
2


STEP 3: β0 and σ2

1 can be drawn from the conditional distribution

P
(
σ2

1|Yobs,Ymis,β0

)
∝
(
σ2

1

)−(a1+ b
2

+1)
exp

{
− b1
σ2

1

}∫
exp

{
− 1

2σ2
1

b∑
i=1

(β0 − β0i)
2

}
dβ

∝ IG

(
a1 +

b− 1

2
, b1 +

1

2

b∑
i=1

(
β0i − β̄

)2)
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P
(
β0|Yobs,Ymis,β, σ

2
1

)
=
p
(
β0, σ

2
1|Yobs,Ymis,β

)
p
(
σ2

1|Yobs,Ymis,β0

) ∝ N (β̄, σ2
1

b

)

where β̄ =
∑b
i=1 β0i
b

STEP 4: For the R|Y model part, we first augment latent variable zij . The original

range of the missing probabilities is (0, 1), and we consider to fix it between (0.001, 0.999)

for real data problems. Then the corresponding threshold for the values of zij is (−7, 7).

(I) For rij = 1, generate zij from a truncated normal distribution so that zij > 0.

[zij |rij = 1,Yobs,Ymis, γi, λ, ρ] ∝ TNzij>0

(
γi + λyij , τ

2ρ
)

(II) For rij = 0, generate zij from a truncated normal distribution so that zij < 0.

[zij |rij = 0,Yobs,Ymis, γi, λ, ρ] ∝ TNzij<0

(
γi + λyij , τ

2ρ
)

Let X be a
(∑b

i=1 ni

)
-by-(b+ 1) matrix, with the first b columns are



1n1 0n1 · · · 0n1

0n2 1n2 · · · 0n2

...
...

...
...

0nb 0nb · · · 1nb


(
∑b
i=1 ni)×b

and the last column is (y11, · · · , y1n1 , · · · , ybnb)
′
. And let Σ1 = τ2ρI(

∑b
i=1 ni)×(

∑b
i=1 ni)

,

µ as a (b+ 1)-by-1 vector with the first b elements equal γ and the last element equal 0,

and

Σ2 =

ω2Ib×b 0

0 ∞


(b+1)×(b+1)
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So the coefficient parameter γi and λ can be updated from a multivariate normal distri-

bution.

[(γ1, · · · , γb, λ)
′ |Ymis,Yobs, z, ρ]

∝MVN

((
X
′
Σ−1

1 X + Σ−1
2

)−1 (
X
′
Σ−1

1 Z + Σ−1
2 µ

)
,

(
X
′
Σ−1

1 X + Σ−1
2

)−1
)

where Z denotes the vector of (z11, · · · , z1n1 , · · · , zbnb)
′
.

STEP 5: γ and ω2 are drawn from

[ω2|Yobs,Ymis,γ] ∝ IG

(
a3 +

b− 1

2
, b3 +

1

2

b∑
i=1

(γi − γ̄)2

)

[γ|Yobs,Ymis,γ, ω] ∝ N
(
γ̄,
ω2

b

)

where γ̄ =
∑b

i=1 γi/b

STEP 6: Then ρ is drawn from

[ρ|Yobs,Ymis,γ, ω] ∝ IG(a4 +

∑b
i=1 ni
2

, b4 +
1

2τ2

b∑
i=1

ni∑
j=1

(zij − γi − λyij)2)

Furthermore, we can standardize the outcome value yij in the R|Y model, so

that the parameter γ’s and λ can be updated less correlated to each other. This extra

step can help to improve the efficiency and is conducted before we run the MCMC

chain.

39



2.6 Application to NAEP Data

In this section, we apply the above two proposed model structures, the pattern

mixture model and the selection model, to the motivating data. In this dissertation,

the primary interest is the 8th-grade math assessment scores of California students in

year 2003. The research data involve two levels, the school and the student levels. The

sample size is 6198 and there are 241 schools in total. The overall student response rate

is 97.13%. By monitoring the MCMC chain behavior, we let the chain contain 61000

iterations and the first 1000 iterations are treated as the burn-in period.

2.6.1 Data Fitting Using Pattern Mixture Model

In this subsection, the observed data are fitted by the proposed pattern mixture

model. We evaluate the MCMC chain behavior by a series of diagnosis plots of the

parameters of interest: the trajectory plots, the auto-correlation plots and the empirical

posterior density plots.

We show the diagnosis plots for the fitted pattern mixture model in Figure

2.6, Figure 2.7 and Figure 2.8. In Figure 2.6, we can see that all the parameters of

interest converge to fixed values. Especially, α, the parameter which we use to test the

missing mechanism, is above zero all the time, which suggests that the missingness is

non-ignorable. Furthermore, the missing values tend to be the low score ones, which

is equivalent to say that the low performance students are more likely to be missing.

Figure 2.7 tells us that for all the parameters of interest, the auto-correlations die down

eventually, which can guarantee that we can generate “independent draws” from the M-

CMC chain. Figure 2.8 shows the empirical posterior density functions of the parameters
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of interest. We can see that these densities do not violate any distributional properties

and they have the same shape as the theoretical posterior densities which we derive in

Section 2.4. For example, from the theoretical derivation, the posterior distribution of

α is of the form of a normal distribution, while the empirical posterior distribution in

Figure 2.8 also keeps the normal form. In each sub-figure, the two vertical dash lines

also mark the 95% credible interval.

In Table 2.1, we show the summary information such as the mean, standard

deviation, median, and the 95% credible interval for the independent draws we select

from the pattern mixture model MCMC chain. The 95% credible interval for α, which

we use to identify the missing mechanism, does not include 0 and is above 0 all the time.

So the missing is not at random and the missing values have smaller values than that of

the observed values. In other words, the low performance students are more likely to be

missing. And with the help of the imputed missing values, we obtain that the average

student performance score is 292.18 over all the selected students, observed or missing.

2.6.2 Data Fitting Using Selection Model

We also fit the motivating data by using the proposed selection model. And the

MCMC chain is evaluated using the above series of plots. The trajectory plots (Figure

2.9) show that all the parameters of interest converge to a fixed value. Especially for the

Para Mean S.D. 2.50% Median 97.50%

α 16.778 2.678 12.349 16.683 21.802
σ2

2 706.794 80.552 538.685 713.512 838.410
β 258.610 5.765 247.921 258.524 268.901
σ2

1 319.072 41.882 246.933 317.097 400.732
χ 1.984 0.060 1.868 1.979 2.104
ω2 0.345 0.059 0.254 0.340 0.469

Table 2.1: Pattern Mixture Model Parameter Estimates for NAEP Data
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parameter we used to test the missing mechanism, λ, the trajectory plot is above zero

all the time, which gives us the consistent result as in the fitted pattern mixture model.

The auto-correlation plots (Figure 2.10) and empirical posterior density plots (Figure

2.11) suggest that the auto-correlation dies down eventually and the subset draws are

legitimate.

Our primary interest is the overall mean of the student performance score.

Originally, the observed mean is 294.20, while the HT estimator, which is adjusted

by response rate, is 293.62. For the Bayesian methods, we can “estimate” the overall

mean based on the implemented data. The estimate is 292.18 by using the pattern

mixture model while estimate is 292.44 by using the selection model. The model-based

Bayesian methods provide us the estimates slightly less than the design based methods.

From the above results, we can see that these two model not only identify whether the

missingness is ignorable or non-ignorable, but also provide us a model-based estimator.

The improvement is not quite big as what we expected it would be. The possible reason

may be because of the small percentage of missingness, since our data only have less

than 3% of missing values. In order to better show the performance of the model-based

Bayesian methods, we artificially delete some of the observed data so that the modified

Para Mean S.D. 2.50% Median 97.50%

β 292.067 1.301 289.871 292.210 294.755
σ2

2 984.206 18.84 946.781 982.160 1019.586
λ 0.0103 0.0020 0.0067 0.0102 0.0141
σ2

1 440.973 47.473 360.461 439.079 537.734
χ -1.648 0.493 -2.447 -1.696 -0.743
ω2 0.115 0.036 0.063 0.107 0.192
ρ 0.142 0.034 0.084 0.139 0.211

Table 2.2: Selection Model Parameter Estimates for NAEP Data
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data set have 15% percent of the data are missing. For an originally observed datum,

the probability that it will be deleted is proportional to its value. By deliberately

deleting the low scores, the observed mean is 298.03 and the HT estimator is 296.32.

Although the true overall mean is unknown, the observed mean and the HT estimator

for the modified data definitely overestimate the truth since they are much higher than

the results we get from the original data. Now, let us see the results of the proposed

Bayesian methods.

The MCMC diagnosis plots are shown in Figure 2.12, Figure 2.13 and Figure

2.14. These plots verify that the MCMC chain for the modified data converges and we

can generate independent draws from the MCMC chain. Compared with the MCMC

chain for the original data, the auto-correlations are smaller for the modified data as we

expected, since we have less information (the observed part) carried out from iteration

to iteration. This makes the lag for the independent draws smaller than the original

MCMC chain.

And in Table 2.3, we observe the following facts. First, the estimates of β,

which is the overall mean adjusted by the missing latent variable, and estimates of α

are different for the observed and the modified data. We believe that this is because

the way we delete the outcomes may be different from the true missing mechanism.

Para Mean S.D. 2.50% Median 97.50%

α 21.055 1.723 17.231 20.955 23.977
σ2

2 636.613 48.020 553.458 638.420 738.957
β 267.199 2.805 262.484 267.361 273.672
σ2

1 266.156 29.932 213.928 266.604 320.513
χ 1.107 0.036 1.038 1.106 1.179
ω2 0.176 0.025 0.129 0.173 0.222

Table 2.3: Pattern Mixture Model Parameter Estimates for the modified NAEP Data
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For example, these two missing strategy have different slopes for the outcome values.

Second, the estimates of σ2
2 and σ2

1 are smaller than these of the original data since

we delete some extreme case. Third, the location parameters, such as α, β and χ have

smaller standard deviation compared with these of the original MCMC chain. Forth, the

estimates of χ and ω of the modified data are totally different from these of the original

data, since these parameters describe the missing structure and the modified data have

different missing structure than the original data. Last but the most importantly, the

estimate for the overall mean of this MCMC chain for the modified data is 290.87. The

difference of the pattern mixture model estimates between using the modified data and

the original data is much more smaller than that for the observed means or the HT

estimators.

In Figure 2.15, Figure 2.16 and Figure 2.17, we show the MCMC chain diagnosis

plots for the selection model for the modified NAEP data. And in Table 2.4 shows the

summary information of the empirical posterior distributions. We can draw similar

conclusion as for the pattern mixture model of the modified data. The estimate for the

overall mean of this MCMC chain for the modified data is 291.97.

Para Mean S.D. 2.50% Median 97.50%

β 291.928 1.497 289.136 291.854 294.447
σ2

2 1008.512 26.170 955.356 1007.894 1059.421
λ 0.0147 0.0016 0.0119 0.0148 0.0174
σ2

1 463.343 50.088 388.219 459.159 565.107
χ -3.274 0.380 -3.906 -3.244 -2.621
ω2 0.037 0.011 0.020 0.035 0.065
ρ 0.251 0.045 0.170 0.250 0.334

Table 2.4: Selection Model Parameter Estimates for the modified NAEP Data
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In this section, we use three plots to evaluate the MCMC chain convergency.

These plot are used to make sure that the MCMC chain converges and the subset draws

can be treated as independent samples from the posterior distribution. As a summary,

we list the results of the overall mean estimators for the original NAEP data and the

modified NAEP data from four methods: the observed mean, the HT estimators, and

the estimators using pattern mixture model and the selection model in Table 2.5. In

order to account for the variability of the MCMC chain, we multiply impute the data

t = 10 times. Schafer (1997) reviewed some methods for combining the results from the

multiply imputed data. Here we utilize Rubin (1987)’s method to pool the results into

a single number. The estimates are the average of the l estimates while the numbers in

the parentheses are the corresponding pooled standard deviation. The pooled standard

deviation aims to not only take the within-chain variability but also the uncertainty

brought by the MCMC chain into consideration. It is calculated in the following way.

Suppose Ôi is the estimate of student average score for MCMC chain i, and Vi

is the corresponding standard error within the chain. Then the proposed estimate Ō is

the mean of the individual estimates

Ō =
1

t

t∑
i=1

Ôi

The overall variance contains two parts, the within-chain variance and the between-chain

Method NAEP data Modified NAEP data

Observed Mean 294.20 298.03
HT Estimator 293.62 296.32

Pattern Mixture Model Estimator 292.14(0.25) 290.88(0.51)
Selection Model Estimator 292.34(0.22) 291.99(0.38)

Table 2.5: Overall Mean Estimate
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variance. The within-chain variance V̄ is of the form

V̄ =
1

t

t∑
i=1

Vi

while the between-chain variance B is

B =
1

t− 1

t∑
i=1

(
Ôi − Ō

)2

So the total standard deviation vpool is

vpool =
√
Vpool =

√
V̄ +

(
1 +

1

t

)
B

From the table, we can see that compared with the design-based estimators,

the model-based Bayesian methods provide us a more robust results. Although the true

value of the overall mean is unknown, we believe that the model-based Bayesian methods

are less biased. We will use a simulation study to better evaluate the performance in

Section 2.8.

2.7 Model Adequacy Checking

For a proposed Bayesian model, after verifying that the corresponding MCMC

chain converges, we also want to see how well the model fits the data, which brings

the issue of checking model adequacy. The assessment of the adequacy of the proposed

hierarchical linear model is always a critical issue in statistics. There is a great amount

of literatures in both the classical and Bayesian viewpoints, which try to meet this

fundamental need after fitting the model. In Bayesian modeling, a good tool to assess

58



the model adequacy is to use the replicates of the observed data. If the proposed model is

the true model for the observed data, then the replication data generated from the fitted

model should have the same, or almost the same distribution as the observed data. Then

the observed data can be treated as a random realization of the replication data. Or if

we consider some function of the data T (Y), we can also compare the observed value

T (Yobs) with the replication values T (Yrep). In Robert (2007), the author reviewed two

major approaches with different choices of the reference distributions used to generate

the replicates.

1. Prior predictive approach (Box, 1980)

fyrep(y) =

∫
f(y|θ)π(θ)dθ

2. Posterior predictive approach (Rubin, 1984)

fyrep|Yobs
(y|Y) =

∫
f(y|θ)f(θ|Yobs)dθ

The prior predictive approach has the limitation that it is undefined under the

scenario of improper prior distribution. This approach requires that all the parameters

in the model have informative prior in order to make a reasonable conclusion. This

requirement usually is very hard to justify in practice. So in the following section, we

examined our proposed models by using the replications generated from the posterior

distribution.

For our motivating data example, the model adequacy is assessed for both

the pattern mixture model and the selection model. We first compare the performance

of replicates with the true observed data. If the model fits the data well, we expect

the posterior predictive distribution is a good approximation of the true distribution,
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so that the replicates generated from the posterior predictive distribution have similar

properties with the observed data. Then, we also evaluate the model by using cross

validation analysis, which evaluates the residual values of the observed data in the

Bayesian Statistics setting.

2.7.1 Model Adequacy Assessment by Using the Replicates of the Pos-

terior Predictive Distribution

In this subsection, we compare the replicates with the observed data. The

replicates are randomly and independently generated from the predictive posterior dis-

tribution f(ypreij |Yobs,R), i = 1, · · · , b and j = 1, · · · , ri:

f(ypreij |Yobs,R) =

∫
Ω
fypre|Ω(ypreij |Ω,Yobs,R)fΩ(Ω|Yobs,R)dΩ

=

∫
Ω
fypre|Ω(ypreij |Ω)fΩ(Ω|Yobs,R)dΩ

where ypreij represents the replicates of the score for jth student in school i. Here the

second equality holds due to the fact that ypreij and (Yobs,R) are independent when Ω

(which represents all the parameters except the latent variables u in the model structure)

is given. In fact, fypre|Ω is the likelihood function. For the ignorable model and the non-

ignorable selection model, fypre|Ω(ypreij |Ω) ∼ N
(
β0i, σ

2
2

)
. For the non-ignorable pattern

mixture model,

fypre|Ω(ypreij |Ω) =

∫ ∞
0

f(ypreij |Ω, uij)π(uij |Ω,Yobs,R)duij
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In the Bayesian MCMC chain setting, we carry out the MCMC chain on the full joint

model f(Yobs,R|Ymis,Ω). Then in order to get the independent samples, we save the

updated values of Ω for the subset of iterations with 1,000 burn-in period and at a

lag of 500. The saved values are denoted as Ω(q), q = 1, · · · , Q. Then the posterior

predictive distribution is approximated by the empirical distribution of a set of random

realizations: y
(q)
ij , q = 1, · · · , Q, where y

(q)
ij is generated from the likelihood function

fypre|Ω(ypreij |Ω(q),Yobs,R).

In Figure 2.18, we display five replicate samples generated from the fitted

pattern mixture model for the observed data in five schools. In the figure, different

rows contain the results for different schools. Take the first row as an example, the

first column, which is isolated from the rest columns, is the histogram of the observed

student scores in the first selected school. The other five columns display five replicated

samples generated from the posterior predictive distribution for the observed data. If

the right side histograms of the replicated samples have a common pattern, which is

obviously different from the left side observed data, we consider the model as misfit.

In Figure 2.19, we summarize the posterior distribution by using four statistics:

the sample minimum, maximum, mean and standard deviation values of the replicated

samples. These statistics are selected to give us a quantified description of the shape of

the posterior predictive distribution. Take the figure for minimum values (the top left

sub-figure) as an example. The histogram is the frequency graph for the minimum values

of 200 replicate samples. And the red vertical line marks the observed minimum value

in the real data while the p-value is essentially the percentile of the observed minimum

value among 200 minimum values of the replicate samples. The other three sub-figures

function in the same way as the figure for minimum statistics.
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Since there is no clear pattern of the replicate samples in Figure 2.18 and in

Figure 2.19, all the p-values are greater than 0.05 (the significant level), we conclude

that the pattern mixture model can be used to fit the real data.

Similarly, in Figure 2.20 and Figure 2.21, we display the five replicates samples

for the observed data in five schools and the summary statistics of interest for the fitted

selection model. Both of the figures show no indication of misfit for the fitted selection

model. So fitting the observed data with the selection model is also acceptable.

2.7.2 Model Adequacy Assessment by Using Residual Plots Based on

Cross Validation Analysis

In classical Statistics setting, residual analysis is a very powerful tool for the

model adequacy assessment. For a data set Y = (y1, · · · , yn)
′
, suppose the predicted

value calculated from the regression model is denoted as ŷ1, · · · , ŷn, then the residual of

the ith observation is defined as the difference of the observed value and the predicted

value:

ei = yi − ŷi

We usually assume that the response variables yi, i = 1, · · · , n, are indepen-

dent and all have the same variance (homoscedasticity). For the general linear regression

model, we have one more assumption that the yi’s, i = 1, · · · , n, are normally distribut-

ed. In order to evaluate the performance of the proposed regression model, we have a

series of residual plots. For example, the plot that the residuals are plotted against the

predicted values, which is a scatter plot used to check the homoscedasticity and zero

mean assumption, the residuals against independent variables, which is used to exam
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the randomness, and qq-plot (or normal probability plot), which is used to check the

normality assumption.

In addition, people define the Studentized deleted residual as follows. For ith

observation yi, the deleted residual di was obtained after the model was re-fit without yi.

Then it was studentized as the division of di and its corresponding standard deviation.

The studentization allows us to compare residuals across different data points even when

the standard deviations of residuals vary greatly from points to points.

In Bayesian framework, the residuals are defined with the help of cross val-

idation in order to analogize the classical Studentized deleted residual setting. Let

(y(ij), r(ij)) denote the observed outcome variables and the corresponding missing indi-

cators with the absence of the (ij)th pair. We re-evaluate the model by using the data

set (y(ij), r(ij)), and compare the posterior predictive density function with the true

value of this observation, yij . The standardized residual of yij is defined as

RESIDij =
yij − E[yij |y(ij), r(ij)]

SD[yij |y(ij), r(ij)]

where E[yij |y(ij), r(ij)] is the posterior mean and SD[yij |y(ij), r(ij)] is the posterior stan-

dard deviation.

If the proposed model fits the observed data well, we expect the standardized

residual have mean 0 and standard deviation 1. Originally, in order to perform the

cross validation, we should generate a MCMC chain for each of the data set (y(ij), r(ij)),

i = 1, · · · , b and j = 1, · · · , ri, which will lead to a total of
∑b

i=1 ri chains. Here,

we utilize the importance sampling technique, which essentially makes the inference

without generating a new MCMC chain. The available independent random draws from

the original MCMC chain are re-weighted by introducing the weight function to correct
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the potential bias by sampling from the “wrong” data. In this way, only one MCMC

chain (the MCMC chain for the original observed data set) is needed.

To be more specific, let Ω denote all the parameters in the model and suppose

for the (y(ij), r(ij)) data set, we want to first generateK realizations of all the parameters,

then for the kth realization, which is denoted as Ω
(k)
(ij) (from the target density function

p(Ω(ij)|y(ij), r(ij))), we can generate y
(k)
ij from f(yij |Ω(k)

(ij),y(ij), r(ij)). Now all we need

is to generate Ω̃(k) (from the proposed density p(Ω|y, r)), and then by multiplying the

weight function w
(k)
ij , we can use the generation of ỹ

(k)
ij from f(yij |Ω̃(k),y, r). The weight

function w
(k)
ij is of the form

w
(k)
ij =

p
(

Ω̃(k)|y(ij), r(ij)

)
p
(

Ω̃(k)|y, r
) ∝

π
(

Ω̃(k)
)
× p

(
y(ij), r(ij)|Ω̃(k)

)
π
(

Ω̃(k)
)
× p

(
y, r|Ω̃(k)

)
=
(
p
(
yij , rij |Ω̃(k)

))−1

(2.4)

For pattern mixture model, the weight function is

w
(k)
ij =

(∫ +∞

−∞
p
(
yij |θ(k)

ij , Ω̃
(k)
)
× p

(
rij |θ(k)

ij , Ω̃
(k)
)
× p(θ(k)

ij |Ω̃
(k))dθ

(k)
ij

)−1

=

(∫ ∞
0

(
2π(σ2

2)(k)
)− 1

2
exp

{
− 1

2(σ2
2)(k)

(
yij − β(k)

0i − αθ
)2
})−1

·
(

(2π)−
1
2 exp

{
−1

2

(
θ − χ(k)

i

)2
}
dθ

)−1

=

φ
yij − β(k)

0i − α(k)χ
(k)
i(

(σ2
2)(k) + (α(k))2

) 1
2

 · Φ


α(k)

(σ2
2)(k)

(
yij − β(k)

0i

)
+ χ

(k)
i(

(α(k))
2

(σ2
2)

(k) + 1

) 1
2



−1

where φ(·) denotes the standard normal density function and Φ(·) denotes the standard

normal cumulative distribution function.
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For selection model, the weight function is

w
(k)
ij =

(
p
(
rij |yij , Ω̃(k)

)
× p

(
yij |Ω̃(k)

))−1

=

φ
 yij − β(k)

0i(
(σ2

2)(k)
) 1

2

 · Φ
 γ

(k)
i + λ(k)yij(
ρ(k)(τ2)(k)

) 1
2

−1

With the appropriate weight function the posterior mean and standard deviation are

E[yij |y(ij), r(ij)] =

∑K
k=1w

(k)
ij ỹ

(k)
ij∑K

k=1w
(k)
ij

SD[yij |y(ij), r(ij)] =

√√√√√∑K
k=1w

(k)
ij

(
ỹ

(k)
ij − E[yij |y(ij), r(ij)]

)2

∑K
k=1w

(k)
ij

When we calculate the predictive posterior mean and standard deviation, by

Rao-Blackwell’s Theorem, the following ones, which first calculate the conditional ex-

pectation of the predictive value given all the parameters, will have smaller variance.

For pattern mixture model we have

E[yij |y(ij), r(ij)] = EΩEθij |ΩEyij |θij ,Ω[yij |Ω, y(ij), r(ij)] = EΩEθij |Ω

(
β

(k)
0i + α(k)θ

(k)
ij

)

= EΩ

β(k)
0i + α(k)

µ(k)
ij +

φ

(
µ

(k)
ij

√
(α(k))

2

(σ2
2)

(k) + 1

)

Φ

(
µ

(k)
ij

√
(α(k))

2

(σ2
2)

(k) + 1

) ((α(k)
)2(

σ2
2

)(k)
+ 1

)− 1
2




=

∑K
k=1w

(k)
ij

β(k)
0i + α(k)

µ(k)
ij +

φ

µ(k)ij

√√√√(α(k))
2

(σ22)
(k)

+1


Φ

µ(k)ij

√√√√(α(k))
2

(σ22)
(k)

+1


(

(α(k))
2

(σ2
2)

(k) + 1

)− 1
2




∑K
k=1w

(k)
ij
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V ar[yij |y(ij), r(ij)] = EΩEθij |ΩEyij |θij ,Ω[y2
ij |Ω, θij , y(ij), r(ij)]−

(
E[yij |y(ij), r(ij)]

)2
=EΩEθij |Ω

[(
β

(k)
0i + α(k)θ

(k)
ij

)2
+
(
σ2

2

)(k)
]
−
(
E[yij |y(ij), r(ij)]

)2

=EΩ


(
β

(k)
0i

)2
+ 2β

(k)
0i α

(k)

µ(k)
ij +

φ

(
µ

(k)
ij

√
(α(k))

2

(σ2
2)

(k) + 1

)

Φ

(
µ

(k)
ij

√
(α(k))

2

(σ2
2)

(k) + 1

) ((α(k)
)2(

σ2
2

)(k)
+ 1

)− 1
2



+
(
α(k)

)2


(
µ

(k)
ij

)2
+ µ

(k)
ij

φ

(
µ

(k)
ij

√
(α(k))

2

(σ2
2)

(k) + 1

)

Φ

(
µ

(k)
ij

√
(α(k))

2

(σ2
2)

(k) + 1

) ((α(k)
)2(

σ2
2

)(k)
+ 1

)− 1
2

+

((
α(k)

)2(
σ2

2

)(k)
+ 1

)−1

+
(
σ2

2

)(k)


−
(
E[yij |y(ij), r(ij)]

)2

where µ
(k)
ij = χ

(k)
i +

α(k)
(
yij−β

(k)
0i −α

(k)χ
(k)
i

)
(α(k))

2
+(σ2

2)
(k) , is the mean parameter in the posterior trun-

cated normal distribution for θij .

Similarly for selection model, we have

E[yij |y(ij), r(ij)] = EΩE[yij |Ω, y(ij), r(ij)] =

∑K
k=1w

(k)
ij β

(k)
0i∑K

k=1w
(k)
ij

SD[yij |y(ij), r(ij)] =
√
EΩE[y2

ij |Ω, y(ij), r(ij)]−
(
E[yij |y(ij), r(ij)]

)2

=

√√√√√√
∑K

k=1w
(k)
ij

[(
β

(k)
0i

)2
+
(
σ2

2

)(k)
]

∑K
k=1w

(k)
ij

−
(
E[yij |y(ij), r(ij)]

)2

Proof of the last equality in the derivation of the weight function for pattern mixture

model:
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∫ ∞
0

(
2π(σ2

2)(k)
)− 1

2
exp

{
− 1

2(σ2
2)(k)

(
yij − β(k)

0i − αz
)2
}

· (2π)−
1
2 exp

{
−1

2

(
z − χ(k)

i

)2
}
dz

=
(

2π(σ2
2)(k)

)− 1
2

(2π)−
1
2

∫ ∞
0

exp

{
−1

2

[((
α(k)

)2(
σ2

2

)(k)
+ 1

)
z2

−2

(
α(k)

(σ2
2)(k)

(
yij − β(k)

0i

)
+ χ

(k)
i

)
z +

1

(σ2
2)(k)

(
yij − β(k)

0i

)2
+
(
χ

(k)
i

)2
]}

=
(

2π(σ2
2)(k)

)− 1
2

((
α(k)

)2(
σ2

2

)(k)
+ 1

)−1
2

exp

{
−1

2

[
1

(σ2
2)(k)

(
yij − β(k)

0i

)2
+
(
χ

(k)
i

)2

−

(
α(k)

(σ2
2)(k)

(
yij − β(k)

0i

)
+ χ

(k)
i

)2

(α(k))
2

(σ2
2)

(k) + 1


×

2π

((
α(k)

)2(
σ2

2

)(k)
+ 1

)−1
− 1

2

∫ ∞
0

exp

−
1

2

((
α(k)

)2(
σ2

2

)(k)
+ 1

)z − α(k)

(σ2
2)(k)

(
yij − β(k)

0i

)
+ χ

(k)
i

(α(k))
2

(σ2
2)

(k) + 1


2 dz

=

(
2π(σ2

2)(k)

((
α(k)

)2(
σ2

2

)(k)
+ 1

))− 1
2

exp

−
1

2

(
yij − β(k)

0i − α(k)χ
(k)
i

)2

(σ2
2)(k)

(
(α(k))

2

(σ2
2)

(k) + 1

)


× Φ


α(k)

(σ2
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In Figure 2.22, we show the boxplots and histograms of the residuals for the

pattern mixture model and the selection model, which indicate that both proposed

models have residuals with mean zero and the standard deviation a little bit smaller

than 1 (tighter than expected).
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Figure 2.22: Deleted residuals for the cross validation analysis

The performance of both models are similar, so the residual analysis has no

preference over the two proposed models based on the observed data only. This result

does not surprise us since the residual plot only involve how the model fit the observed

part. If the missingness is non-ignorable, we seek for the model that can describe the

correct structure for not only the observed part, but more importantly, the missing

part. These two approaches can provide limited help on the model fit assessment for

the missing part, especially when the missing mechanism is non-ignorable. But they

still have positive meanings, since they perform well to assess the model fitting for the

observed data.
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2.8 Simulation Study

In the previous sections, we applied our proposed Bayesian methods to the

NAEP data as well as the modified data, which we artificially delete part of the observed

data so that the missing percentage is around 15%. Table 2.5 shows the performance

of four methods to estimate the overall average score. The Bayesian methods seem

to have smaller differences in the estimates of the original data and the modified data

compared with the observed means and the HT estimators. But the true value of the

overall average score is unknown in the real data analysis. Also we evaluate the model

adequacy of the proposed Bayesian methods by two approaches. But since the true

underline structure remains unknown for the real data analysis, we do not have a clear

evaluation for these two approaches. So in this section, we conduct a simulation study.

We evaluate the performances of the proposed models and the traditional design-based

methods under four scenarios which are from a two-factor design. One factor is the true

model is either pattern mixture model or selection model while the other factor is the

missingness is ignorable or non-ignorable. The details of the simulation setup are given

as follows.

First, we determine the sizes of the sampling populations. Each sampling

population contains B = 800 schools and the number of students in each school Ni is

independently and randomly generated from a uniform distribution with a minimum

size of 60 and a maximum size of 1000. Then the sampling populations are constructed

by using corresponding hierarchical linear model, either the pattern mixture model or

the selection model. In the pattern mixture model setup, the parameter α is used to

determine the degree of non-ignorability of the missing data mechanism in the student

level. We use 0, 20 and 40 as the true values for α. When α = 0, the student score value
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yij does not depend on the latent missing variable zij . Therefore yij does not depend

on the missing indicator rij , since rij can be totally determined by the corresponding

latent missing variable zij , for i = 1, · · · , B and j = 1, · · · , Ni. The generated data

have ignorable missing. Similarly, α = 20 and α = 40, the generated data have non-

ignorable missing and for the generated data with α = 40, the missingness have more

influence on the data, or in another word, the observed data and the missing data are

more “separated” than the data generated with α = 20. In the selection model setup,

λ is the coefficient for y in the R|Y model and serves the same function as α in the

pattern mixture model. We use 0, 100 and 200 as the true values. The intercepts for

different schools in the R|Y model are randomly and independently generated from a

normal distribution with mean 2 and standard deviation 0.5. The hyper parameters in

both the pattern mixture model and the selection model are chosen to make sure that

the overall student response rates are 85%.

In order to mimic the real data, the student level variance σ2
2 is chosen to

be 1000 while the school level variance σ2
1 is chosen to be 500. And the student level

variability of the missing latent variable zij is set as 1. χ is set as 1.4, while ω2 is set

as 0.5 in order to obtain various response rate among school and the overall student

response rate around 85%. All other parameters in the model will be chosen so that the

super-population mean is 318.

Each sampling scheme is repeated for 200 times for each population with the

predetermined selection probability which can guarantee that all the students are equally

likely to be selected. The finite population mean estimator from each method (UW), the

HT estimator (HT) and the model estimator such as the estimator based on the fitted

pattern mixture model (PMM) and the estimator based on the fitted selection model

(SEM), are computed. We also calculate the real sample mean as a reference point and
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denote it as the BD method. We compare those estimators in terms of the following

criteria: the empirical bias (which is the mean of the difference between the estimate and

the true population mean), the root of the mean squared error (RMSE), the relative rate

of the root of the mean squared error (RRMSE), the mean of the estimated standard

error (ESTSE) and the coverage rate of the true mean value. Here, RRMSE is defined

as the ratio of the difference of the estimate RMSE with the RMSE for the real sample

(before deleting the unobserved samples) and the RMSE for the real sample, which is

denoted as RMSE(BD). The differences of RMSE in the original scale may be hard to

compare. RRMSE, which is a monotone transformation of the RMSE, can amplify the

differences and make the comparison result more obvious.

RRMSE =
RMSE− RMSE(BD)

RMSE(BD)

The following six tables (Table 2.6 - Table 2.11) show the results of the simula-

tion study under six different scenarios that we use to generate the real data: ignorable

pattern mixture model structure with α = 0, non-ignorable pattern mixture model

structure with α = 20, non-ignorable pattern mixture model structure with α = 40,

ignorable selection mixture model structure with λ = 0, non-ignorable selection model

structure with λ = 1 and non-ignorable selection model structure with λ = 2.

In Table 2.6 and Table 2.9, which summarize the results of the scenarios that

the missingnes is ignorable, the results of the different estimating methods are very sim-

ilar compared with the reference values of the true sample in terms of all the comparison
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Bias(×100) RMSE RRMSE(%) ESTSE Non-Coverage Rate(%)

BD -0.3246 4.4545 0 4.3544 4.2
UW -19.0780 4.5462 2.0588 4.3793 4.4
HT 3.1234 4.4419 -0.2843 4.4213 4.2

PMM 39.5218 4.7770 7.2396 4.4210 6.2
SEM 29.1811 4.7265 6.1060 4.4160 6.0

Table 2.6: Summary table for data generated from the ignorable pattern mixture model
(α = 0). After fitting the pattern mixture model, the probability of the credible interval
of α covers the true value 0 is 93.4%, the probability of the credible interval of α covers
0 is 0.934. After fitting the selection model, the probability of the credible interval of λ
covers 0 is 0.96.

Bias(×100) RMSE RRMSE(%) ESTSE Non-Coverage Rate(%)

BD -5.6842 4.8386 0 5.1487 3.2
UW 613.0934 7.6828 58.7818 4.9008 22.6
HT 461.6481 6.5249 34.8509 5.0472 14.4

PMM 38.7332 5.3324 10.2052 5.1500 6.0
SEM 70.2019 5.3176 9.8992 6.1409 6.2

Table 2.7: Summary table for data generated from the non-ignorable pattern mixture
model (α = 20). After fitting the pattern mixture model, the probability of the credible
interval of α covers the true value 20 is 93%, the probability of the credible interval
of α covers 0 is 0.464. After fitting the selection model, the probability of the credible
interval of λ covers 0 is 0.516.

criteria. The averages of biases from the true population mean are about the same as

that of the true sample mean and the non-coverage rates of mean estimators are all

around the nominal level 5%. Table 2.7, Table 2.8, Table 2.10 and Table 2.11 show

the results for the data with non-ignorable missing. The sample mean (UW) estimators

have large biases, large RMSEs and the non-coverage rates of the mean estimators are

higher than the nominal level. The HT (WT) estimators, which adjust the UW estima-

tors with the weights proportional to the response rate, slightly improve the results, but

still suffer greatly from the same drawbacks as the UW estimators. The model-based

estimators, estimators based on the pattern mixture model or the selection model, out-

perform the other two design-based estimators in terms of the average bias, RMSE, the

average of the standard deviations and the non-coverage rate of the true population
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Bias(×100) RMSE RRMSE(%) ESTSE Non-Coverage Rate(%)

BD 8.7768 6.5634 0 6.8572 4.6
UW 1097.7829 13.4467 104.8731 6.0777 53.4
HT 840.8640 10.8825 65.8049 6.1902 32.4

PMM -5.0384 6.7636 3.0492 6.8579 5.2
SEM 26.4852 6.6591 1.4573 6.8388 5.0

Table 2.8: Summary table for data generated from non-ignorable pattern mixture model
(α = 40). After fitting the pattern mixture model, the probability of the credible interval
of α covers the true value 40 is 91.2%, the probability of the credible interval of α covers
0 is 0.002. After fitting the selection model, the probability of the credible interval of λ
covers 0 is 0.006.

Bias(×100) RMSE RRMSE(%) ESTSE Non-Coverage Rate(%)

BD 22.1321 4.4847 0 4.5538 5.4
UW 8.6748 4.5520 1.5013 4.5760 5.6
HT 24.9697 4.5403 1.2405 4.5903 5.8

PMM 86.2967 5.3263 18.7679 4.6023 9.2
SEM 59.6201 4.7811 6.6093 4.5786 5.6

Table 2.9: Summary table for data generated from the ignorable selection model (λ = 0).
After fitting the selection model, the probability of the credible interval of λ covers the
true value 0 is 94.6%, the probability of the credible interval of λ covers 0 is 0.946. After
fitting the pattern mixture model, the probability of the credible interval of α covers 0
is 0.978.

mean if the missing mechanism is non-ignorable missing. Furthermore, if the degree

of non-ignorability is higher, which associates with the situation that the value of α in

pattern mixture model or λ in selection model is larger, then the model-based estimators

have bigger improvement especially when we correctly specified model.

We are especially interested in the model fitting when we use the wrong model

to fit the data. In Figure 2.23, Figure 2.24 and Figure 2.25, we show the model adequacy

check when we fit pattern mixture model to the data that are generated from selection

model with λ = 0.02. In Figure 2.24, the p-value for the observed minimum is 0.975;

while in Figure 2.25, the residuals have a non-zero mean. Both figures suggest that the

pattern mixture model does not fit the data well.
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Figure 2.25: Residual plot for the fitted pattern mixture model when data are generated
from selection model
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Bias(×100) RMSE RRMSE(%) ESTSE Non-Coverage Rate(%)

BD 3.7445 4.5018 0 4.5239 5.0
UW 304.3346 5.4119 20.2166 4.4769 11.0
HT 214.3838 4.9410 9.7554 4.4881 8.4

PMM -134.4051 4.9660 10.3103 4.5993 6.6
SEM -26.4022 4.6253 2.7437 4.5526 5.0

Table 2.10: Summary table for data generated from the non-ignorable selection model
(λ = 0.01). After fitting the selection model, the probability of the credible interval of λ
covers the true value 0.01 is 94.2%, the probability of the credible interval of λ covers 0
is 0.466. After fitting the pattern mixture model, the probability of the credible interval
of α covers 0 is 0.722.

Bias(×100) RMSE RRMSE(%) ESTSE Non-Coverage Rate(%)

BD -1.2639 4.4884 0 4.6227 5.4
UW 535.7515 6.8643 52.9328 4.4169 22.0
HT 388.4103 5.7783 28.7368 4.4243 13.8

PMM -139.7375 4.9404 10.0711 4.6974 6.8
SEM -7.9069 4.5950 2.3749 4.6215 6.6

Table 2.11: Summary table for data generated from the non-ignorable selection model
(λ = 0.02). After fitting the selection model, the probability of the credible interval of λ
covers the true value 0.02 is 98.6%, the probability of the credible interval of λ covers 0
is 0.238. After fitting the pattern mixture model, the probability of the credible interval
of α covers 0 is 0.064.

In Figure 2.26, Figure 2.27 and Figure 2.28, we show the model adequacy

checking when we fit selection model to the data which are generated from pattern

mixture model with α = 40. In Figure 2.27, the observed minimum has p-value 0.984

while the observed mean has p-value 0.992, which are greater than 0.975 (we use a two-

sided 95% confidence interval here). In addition, the mean of the residuals in Figure

2.28 is slightly greater than 0. All of the above information suggest that the selection

model does not fit the data well.

From the above discussion, we can see that, when we use the wrong model to

fit the data, these model checking plots suggest that the wrong model does not fit the

data well. In the real data analysis, since we do not know the true distribution of the
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Figure 2.28: Residual plots for the fitted selection model when data are generated from
pattern mixture model
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data, we need a model selection criterion which can identify the right model even when

we have non-ignorable missing.

2.9 Model Selection Problems in Bayesian Statistics

In this section, we discuss several existing approaches in the literature for model

comparison. In model selection problems, two great concerns are how the model fits the

data and the model complexity. There are generally two kinds of situations: the nested

models, and models that have totally different model structures. Two models are said to

be nested models if in the proposed models, both of the models contain the same terms

and one of the model has at least one more term. The model with the extra term(s) is

called full model and the other model is called reduced model. For example the ignorable

pattern mixture model and non-ignorable pattern mixture model in Section 2.4. For the

nested models, the credible interval technique is used to draw the conclusion of whether

to use the full model or the reduced model. To be more specific, at the significant level

α, if the parameter in question has a (1 − α)100% credible interval does not contain

zero, then we say that this parameter is significant at the α level and we will select the

full model.

In Section 2.4 and Sectioin 2.5, we have proposed two different model struc-

tures: pattern mixture model and selection model. It is natural to raise the question

that which model is true model of the data. In the literature, there are three types of

model selection criteria: the Bayes factor, the deviance information criterion (DIC) and

the minimum posterior predictive loss approach.
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2.9.1 Bayes Factor Approach

The Bayes factor approach is the analogue of likelihood ratio test in the classical

hypothesis testing as they share the same formula. Given two models, Bayes factor is

the ratio of marginal likelihood of the two proposed models. In our data example,

we denote the pattern mixture model as Mpmm, and the corresponding parameters as

θpmm, while we denote the selection model as Msem and the corresponding parameters

as θsem. Then given the observed data Y, the Bayes factor B is

B =
P (Y|Mpmm)

P (Y|Msem)
=

∫
P (θpmm|Mpmm)P (Y|θpmm,Mpmm) dθpmm∫
P (θsem|Msem)P (Y|θsem,Msem) dθsem

So that the posterior odds is

P (Mpmm|Y)
P (Msem|Y) =

π(Mpmm)
π(Msem) ×

P (Y|Mpmm)
P (Y|Msem)

posterior odds = prior odds × Bayes factor

Usually, the prior odds ratio is set to be 1, so we can directly use the Bayes factor to

make the decision.

There are some differences between the classical likelihood ratio test and the

Bayes factor approach. The Bayes factor does not depend on any single set of param-

eters as it solely depend on the model structure assumptions by integrating over all

parameters. In addition, for Bayes factor approach, the candidate parameter sets do

not need to share the same parameter space. One more thing worth to point out is that

the Bayes factor also depends on the prior information of parameters.
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While the Bayes factor approach is quite intuitive, unfortunately, it has some

drawbacks. First, it is often very difficult to calculate in practice due to complexity of

the integrating step. Second, the Bayes factor approach is based on the assumption that

one of the candidate models is the true model, while in reality, the truth is unknown.

Third, for certain choice of the prior distributions, such as diffuse prior, the Bayes

factor approach may make different conclusion from what the classical likelihood ratio

test makes. This phenomenon is called Lindley-Barlett’s paradox (Lindley, 1957 and

Shafer, 1982).

Our motivating data is a multilevel data, and the model structure involves the

missing latent variable. The calculation of the Bayes factor is a non-trivial task. So we

do not conduct the Bayes factor due to its computation complexity.

2.9.2 Deviance Information Criterion Approach

DIC is a very popular criterion in Bayesian model selection. It was proposed

by Spiegelhalter et al. (2002) and is a generalization of AIC and BIC. The deviance is

defined as

D(θ) = −2 log f(Y|θ) + 2 log g(Y)

where g(Y) is a function of Y alone and is fully specified. It can serve both as the mea-

surement of model fit and the measurement of model complexity. The model complexity

measurement, which is described as the effective number of parameters, pD, is defined

as

pD = D(θ)−D(θ̄)
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where D(θ) is the posterior mean deviance,

D(θ) = Eθ [−2 log f(Y|θ)|Y] + 2 log g(Y)

which is also functioned as the measurement of goodness of fit.

The DIC is constructed as the combination of the model fit measurement and

the model complexity measurement.

DIC = D(θ) + pD

= 2D(θ)−D(θ̄)

= D(θ̄) + 2pD

The last equality shows that DIC agrees with the classical AIC

AIC = −2 logL(θ̂) + 2p

Where θ̂ is the maximum likelihood estimate and p is the number of parameters in the

classical setting. Furthermore, for a non-hierarchical model with non-informative prior

of θ, we have

DIC = AIC

Based on the above definition of DIC, one may choose the candidate model

with the smallest DIC value.

Although right now, DIC is a popular choice of Bayesian modeling assessment

and comparison, some people also discussed the ambiguity of DIC, especially when the

model is a mixture model (DeIorio, 2002). Celeux (2006) further introduced the eight
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different versions of DIC for hierarchical models when missing data present. The author

stated that

“The fundamental versatility of the DIC criterion is that, in hierarchical
models, basic notions like parameters and deviance may take several equal-
ly acceptable meanings, with direct consequences for the properties of the
corresponding DICs.”

In our data example, both the pattern mixture model and selection model are

solved with the help of the missing latent variables and the missing latent variables

also have the hierarchy feature. Treating the missing latent variables as parameters will

definitely increase the total number of parameters, but the question of which layer we

want to include or which level is our focus for the missing latent variables is very hard

to answer. In addition, one of the advantages of DIC is easy to implement. With a

converged MCMC chain, the measurement of fit is the average of the log-likelihoods of

the selected iterations, while the measurement of model complexity, D(θ̄) is the log-

likelihood calculated at the end of the Gibbs sampler using the posterior means (or

modes) of θ. For our situation, the existence of missing value Ymis and the missing

latent variables u makes the calculation a non-trivial work. What’s more, the DIC

approach inherits all the drawbacks from the AIC approach. So when sample size

increases, the DIC approach tends to select the more complicated model. Based on the

above reasons, especially that we are not clear which level should we focus on, although

DIC is well-known in Bayesian model selection, we do not conduct the DIC approach.

2.9.3 Minimum Posterior Predictive Loss Approach

The third solution is the minimum posterior predictive loss approach (Gel-

man, 1996). With the commonly used squared error loss function, the proposed model
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selection criterion is

PPLk(Mi) =
n∑
l=1

V ar
(
yrepl |Yobs,Mi

)
+

k

k + 1

n∑
l=1

(
E
(
yrepl |Yobs,Mi

)
− yl,obs

)2
(2.5)

where yl,obs denotes the lth observed observation in Yobs, l = 1, · · · , n. We select the

candidate model with the smallest PPLk.

In particular, let k →∞ in (2.5), we have

PPL(Mi) = lim
k→∞

PPLk(Mi) =
n∑
l=1

V ar
(
yrepl |Yobs,Mi

)
+

n∑
l=1

(
E
(
yrepl |Yobs,Mi

)
− yl,obs

)2

which corresponds to the mean square error criterion in the classical statistics setting.

We implement the posterior predictive loss approach in our data example, and

surprisingly find out that this minimum posterior predictive loss approach fails. In Table

2.12, we list the chosen rates of the model structures under three circumstances which

we use to generate the data: the ignorable model, the non-ignorable pattern mixture

model with α = 20 and the non-ignorable selection model with λ = 1. The number of

candidate models are three instead of four since the ignorable pattern mixture model

and the ignorable selection model have the same structure. We can see that no matter

what model structure we used to generate the data, this approach always favors the non-

ignorable pattern mixture model compared with ignorable and non-ignorable selection

models in the simulation study described in the subsection 2.8. So we further studied

the following toy example to evaluate the performance of PPL approach.

Suppose we have two candidate models for a complete data set Y containing

b×m observations without missingness.
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True Model Ignorable Non-ignorable PMM Non-ignorable SEM

Ignorable 0 100 0
Non-ignorable PMM 0 100 0
Non-ignorable SEM 0 100 0

Table 2.12: The chosen rate (%)

In the first model, we treat the data as they are from b separate groups. Then

the proposed model is

yij ∼ N
(
β0i, σ

2
2

)
for i = 1, · · · , b, j = 1, · · · ,m.

Then, the posterior distributions for the parameters are:

σ2
2|Yobs ∼ IG

a1 +
1

2
b(m− 1), b1 +

1

2

b∑
i=1

m∑
j=1

(yij − ȳi)2


β0i|Yobs, σ

2
2 ∼ N

(
ȳi,

σ2
2

m

)

The posterior predictive distribution of yij is

f
(
yrepij |Yobs, σ

2
2

)
=

∫
exp

{
− 1

2σ2
2

(y − β0i)
2

}
× exp

{
− m

2σ2
2

(β0i − ȳi)2

}
dβ0i

=

∫
exp

{
− 1

2σ2
2

[
(m+ 1)β2

0i − 2 (y +mȳi)β0i +
(
y2 +mȳ2

i

)]}
dβ0i

∝ exp

{
− 1

2σ2
2

(
y2 − (y +mȳi)

2

m+ 1

)}

=N

(
ȳi,

m+ 1

m
σ2

2

)
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Following the law of total variance, we have

V ar
(
yrepij |Yobs

)
= V ar

(
E
(
yrepij |Yobs, σ

2
2

))
+ E

(
V ar

(
yrepij |yobs, σ

2
2

))
=V ar

(
ȳi|Yobs, σ

2
2

)
+ E

(
m+ 1

m
σ2

2

)
=
m+ 1

m
·
b1 + 1

2

∑b
i=1

∑m
j=1 (yij − ȳi)2

a1 + 1
2b(m− 1)− 1

And also the square of the bias is

(
E
(
yrepij |yobs

)
− yij

)2
= (ȳi − yij)2

Denote the posterior predictive loss for the first model as PPLk(M1), then

PPLk(M1) =

b∑
i=1

m∑
j=1

V ar
(
yrepij |yobs

)
+

k

k + 1

b∑
i=1

m∑
j=1

(
E
(
yrepij |yobs

)
− yij

)2

= b(m+ 1) ·
b1 + 1

2

∑b
i=1

∑m
j=1 (yij − ȳi)2

a1 + 1
2b(m− 1)− 1

+
k

k + 1

b∑
i=1

m∑
j=1

(ȳi − yij)2

In the second model, we treat all the data are all from one group. Then the

second proposed model is

yij ∼ N
(
β0, σ

2
1

)
for i = 1, · · · , b, j = 1, · · · ,m.

and denote the posterior predictive loss for the second model as PPLk(M2), then simi-
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larly we have

PPLk(M2) =
b∑
i=1

m∑
j=1

V ar
(
yrepij |yobs

)
+

k

k + 1

b∑
i=1

m∑
j=1

(
E
(
yrepij |yobs

)
− yij

)2

= (bm+ 1) ·
b1 + 1

2

∑b
i=1

∑m
j=1 (yij − ȳ)2

a1 + 1
2(bm− 1)− 1

+
k

k + 1

b∑
i=1

m∑
j=1

(ȳ − yij)2

So the difference between PPLk(M1) and PPLk(M2) is

PPLk(M1)− PPLk(M2)

=b(m+ 1) ·
b1 + 1

2

∑b
i=1

∑m
j=1 (yij − ȳi)2

a1 + 1
2b(m− 1)− 1

− (bm+ 1) ·
b1 + 1

2

∑b
i=1

∑m
j=1 (yij − ȳ)2

a1 + 1
2(bm− 1)− 1

− k

k + 1
·m

b∑
i=1

(ȳi − ȳ)2

=− k

k + 1
·m

b∑
i=1

(ȳi − ȳ)2 +
1(

a1 + 1
2b(m− 1)− 1

) (
a1 + 1

2(bm− 1)− 1
)

{[
b(m+ 1)

(
a1 +

1

2
(bm− 1)− 1

)
− (bm+ 1)

(
a1 +

1

2
b(m− 1)− 1

)]

×

b1 +
1

2

b∑
i=1

m∑
j=1

(yij − ȳi)2

− (bm+ 1)

(
a1 +

1

2
b(m− 1)− 1

)
· m

2

b∑
i=1

(ȳi − ȳ)2


=

1(
a1 + 1

2b(m− 1)− 1
) (
a1 + 1

2(bm− 1)− 1
)
(a1 + bm− 1)

b1 +
1

2

b∑
i=1

m∑
j=1

(yij − ȳi)2

· (b− 1)− 2

(
a1 +

1

2
b(m− 1)− 1

)(
a1 + bm− 1− 1

k + 1

(
a1 +

1

2
(bm− 1)− 1

))
·m

2

b∑
i=1

(ȳi − ȳ)2

}

Since the hyper parameter of the scale parameter are chosen to be non-influential (a1 =
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0.1 and b1 = 0.1), if

∑b
i=1 (ȳi − ȳ)2 /(b− 1)

2
(
b1 + 1

2

∑b
i=1

∑m
j=1 (yij − ȳi)2

)
/(b(m− 1))

>
b(m− 1)

2m
(
a1 + 1

2b(m− 1)− 1
) × a1 + bm− 1(

a1 + bm− 1− 1
k+1

(
a1 + 1

2(bm− 1)− 1
))

≈ 2(k + 1)

2k + 1
· 1

m

then PPLk(M1) < PPLk(M2).

Here
∑b
i=1(ȳi−ȳ)2/(b−1)

2(b1+ 1
2

∑b
i=1

∑m
j=1(yij−ȳi)2)/(b(m−1))

≈
∑b
i=1(ȳi−ȳ)2/(b−1)∑b

i=1

∑m
j=1(yij−ȳi)2/(b(m−1))

, which is

the F statistics that we usually use in the ANOVA analysis of k-sample equal means

test. If F > Fα,b−1,b(m−1), we reject the null hypothesis of equal means and treat the data

as they are from different groups (the first proposed model). We can easily choose some

value d, such that 2(k+1)
2k+1 ·

1
m < d < Fα,b−1,b(m−1). Since the following two inequalities

usually hold: 2(k+1)
2k+1 ·

1
m < 1 and Fα,b−1,b(m−1) > 1. Then the PPL approach and the

ANOVA analysis draw conflicting conclusions. So the PPL approach fails to correctly

identify the right model structure.

Concluding remarks for model selection criteria

We draw the following conclusions of the model selection issue for our motivat-

ing multi-level data example. First, the Bayes factor analysis involves the undesirable

complicated integration calculation. Secondly, there are uncertainty problems for the

DIC approach: we are not clear about which level of the information we want to focus

on. Last, we conduct the minimum posterior predictive loss approach in a simulation

study, which shows that this approach fails to correctly identify the true underline data

structure. In addition, we show that it has conflicting conclusions with the traditional

ANOVA test even for a completely observed data set.
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Furthermore, we should note that all the above three Bayesian model selection

criteria are only built on the observed data while the missingness is not taken into

consideration. We can easily construct two data sets that have the observed data in

the same range but have different missing mechanisms. For example, we can generate

the data from standard normal distribution and then we randomly mark 15% of the

observation. The first data set includes the observations that are not marked, while in

the second data set, we add 100 to the marked data so that the marked data have a

normal distribution with mean 100 and standard deviation 1. Based on the modified

data, we delete the observations which are greater than 50. In the above setting, we

artificially make the two data sets have the same observed data. But obviously the first

data set is missing completely at random while the second data set is not missing at

random. In this case, the observed likelihood of these two data sets are exactly the

same, but obviously this two data sets have different missing mechanisms. Therefore,

the model selection result by any of the three model selection criteria will be the same

regardless which missing mechanism is the true one. This inherent identifiability issue

will make it more difficult to identify the underlying missing mechanism by any model

selection criterion.
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Chapter 3

Non-parametric Test of Missing

Completely at Random for

Multivariate Missing Data

3.1 Background

In previous chapter, we show that when missing data present, the choice of the

appropriate statistical approaches not only relies on the data structure but also relies

on the type of the missing mechanism. For ignorable missing, both the design-based

methods and the model-based Bayesian methods can provide appropriate unbiased es-

timators. While for non-ignorable missing, the model-based Bayesian methods outper-

form the design-based methods by providing the estimators with less biases, less mean

square errors and better coverage rates of the true value. This phenomenon suggests

that correctly identifying the missing mechanism is very important before adopting any

statistical approaches. In addition, with a correctly specified model, the Bayesian meth-
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ods are very powerful tools in the missing data analysis. The Bayesian approaches can

not only identify the missing mechanism, whether the missingness is ignorable or non-

ignorable, by performing a hypothesis test on the coefficient parameter in the conditional

model of Y and R, one given another, but also provide a model-based estimator, which

eliminates the possible bias bringing by the non-ignorable missing. But sometimes, the

Bayesian methods are inappropriate since these methods require a pre-specified model

structure. The wrongly specified model structure may cause the analysis results inaccu-

rate. Therefore, there is a great need for a more flexible method, such as a model-free

test, of missing mechanism in the missing data analysis.

Our motivating data is a multilevel data with complex structures, directly

working on the non-parametric solution for this data is a challenging task. Here we

start from a simpler case, the test for incomplete multivariate data. The multivariate

data have arisen frequently in real data analysis, such as surveys with multiple questions

and analyses that each subject is measured for several different variables of interest. The

missingness may occur due to different reasons, some of the participants do not show

up or refuse to answer some of the questions, while some of the participants accidently

skip some of the questions. The missing data issue is extremely critical in multivariate

data analysis due to the complexity of the multivariate data structure. Traditionally,

researchers usually only use the information from the subjects that are fully observed,

which may not only largely reduce the sample size, but more importantly, may cause the

sample not a good representative of the true population. So in this chapter, we propose a

non-parametric test of missing completely at random (MCAR) for multivariate missing

data.

MCAR is the strictest type of missing mechanism among the three of them.

A lot of statistical analysis approaches rely on the assumption of MCAR, such as the
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generalized estimating equations method. In the literature, test of MCAR has gained

a lot of attention. It has been developed in several different areas ((e.g., contigency

tables, Fuchs, 1982; generalized estimating equations, Chen and Little, 1999, Qu and

Song, 2002). For multivariate missing data, people found out that the test of MCAR

is equivalent to test the homogeneity of distributions among different missing-pattern

groups. The missing pattern is defined by the missing indicator: if two subjects have

identical missing indicators, we say they have the same missing pattern and belong to

the same missing-pattern group. By this way, the whole data matrix is re-arranged and

divided into groups according to their missing patterns. The missing pattern concept is

illustrated in Figure 3.1 quoted from Little and Rubin (2002).

Figure 3.1: Examples of Missing Patterns: rows correspond to observations, columns to
variables

In Figure 3.1, we show five examples of missing patterns. In the figure, the

rows correspond to the subjects and columns correspond to the variables of interest.
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The subplot (a) shows the case that missingness is confined to a single variable. The

subplot (b) shows the case that a subset of subjects does not complete the questionnaire.

The subplot (c) shows the case that are very common in longitudinal study: dropout

situation. The subplot (d) is the general case that the missingness can show up any-

where. The subplot (e) shows the case of matching files: there are two versions of the

questionnaires and different people answer different versions; we need to match two sets

of incomplete data together to get the complete data set. Our aim is to propose a test

that can be used even for the general case.

Little (1988) first proposed a test of MCAR for incomplete multivariate data

by testing the homogeneity of means across different missing-pattern groups. The test is

based on the likelihood ratio test assuming the normality for the data. Little (1988) also

mentioned a likelihood ratio test for testing homogeneity of both means and covariances

across different missing-pattern groups as another possible test of MCAR. However, as

noticed both in Little (1988) and Kim and Bentler (2002), this test may not work well

for small or medium sized samples. To overcome this restriction, Kim and Bentler (2002)

proposed a test of homogeneity of both means and covariances across different missing-

pattern groups based on generalized least squares. Under the normality assumption,

this test can be also used to test MCAR assumption.

The tests in both Little (1988) and Kim and Bentler (2002) were developed

under normality assumption, which is not always appropriate in real data analysis. For

example, we may encounter the skewed data, such as survival data, or heavy-tail da-

ta. The above mentioned tests will fail on the non-normality scenarios. In comparison,

nonparametric tests are usually more flexible in accommodating different distributions,

hence are more desirable. Recently, Jamshidian and Jalal (2010) proposed a nonpara-

metric test of MCAR, which focuses only on testing homogeneity of covariances across
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different missing-pattern groups. However, in practice, if the missingness is not com-

pletely at random, it may cause other distributional differences, for example, mean

differences, skewness differences, among the different missing-pattern groups. In this

chapter, we propose a nonparametric test of MCAR which is capable of detecting any

distributional differences in the observed data across the different missing-pattern groups

if the missingness is not completely at random. The test is completely nonparametric

and therefore does not require any distributional assumption for the data. Furthermore,

unlike most of the existing tests for MCAR which require fairly large number of obser-

vations in each missing-pattern group, our test can be applied to any multivariate data

with missing values, no matter how small the sample size is within each missing-pattern

group, as long as we have reasonable size of completely observed cases. Our simulation

study shows that the proposed test has well controlled Type I errors under a variety

of simulation settings and also has good power against a variety of MAR and MNAR

alternatives.

3.2 Notation and the Hypothesis Testing Problem

For incomplete multivariate data, we use the following notation. Let Y =

(y1, ...,yn)′ be the data matrix with n cases, and for each k (k = 1, ..., n), yk is a vector

of p variables. Some of the n cases do not have complete observations for all the p

variables. Based on their missing-patterns, the data matrix is divided into different

missing-pattern groups so that the data have the same set of missing variables within

each group. Let s be the total number of missing-pattern groups in the data, ni be the

number of cases in the ith missing-pattern group and
∑s

i=1 ni = n. We denote the data

matrix for the ith missing-pattern group by Yi = (yi1, . . . ,yini)
′
, where yij is the vector
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for the jth case in the ith missing-pattern group. We assume that there always exist

some cases where all the p variables are completely observed. Without loss of generality,

we choose the group that contains all the complete cases as our first missing-pattern

group Y1.

Let Fi be the complete joint distribution of all the p variables for the data in

the ith missing pattern group Yi, i = 1, ..., s. As mentioned in the previous section,

data are MCAR if missingness does not depend on the data, missing or observed. This

definition of MCAR implies the following.

Proposition 1. (Equivalency) The missingness is MCAR if and only if F1 = · · · = Fs.

The above result then suggests that testing MCAR for incomplete multivariate

data is equivalent to the following hypothesis testing problem,

H0 : F1 = · · · = Fs versus H1 : there exists i 6= j ∈ {1, ..., s}, such that Fi 6= Fj . (3.1)

Since the data have the same set of missing variables within each missing-

pattern group, we use oi and mi as the subsets of {1, 2, ..., p} indicating which variables

are observed and which variables are missing for group i, respectively. We further

define Fi,oi and Fi,mi as the joint distributions of the observed variables and missing

variables, respectively, in group i. For example, with p = 5, for missing-pattern group

i, if the first and last variables are missing and the others are observed, then oi =

{2, 3, 4}, mi = {1, 5}, Fi,oi is the joint distribution of the second, third and fourth

variables, and Fi,mi is the joint distribution of the first and fifth variables. Clearly, the

complete joint distribution Fi is the joint distribution of Fi,oi and Fi,mi . Since there is no

observation available for the variables in mi in missing-pattern group i, it is impossible to

make inferences about the underlying distribution Fi,mi without any further assumptions
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about the missing mechanism. Therefore, there is no way to know whether the complete

joint distribution Fi are all equal, since the Fi,mi as part of the Fi are not inferable. This

implies that the null hypothesis in (3.1) or MCAR can not be tested without any further

assumptions about the missing mechanism. Kim and Bentler (2002) also recognized this

difficulty by stating “this (testing MCAR) is basically impossible without making strong

assumptions about the missing data process”. In Little (1988), Kim and Bentler (2002)

and Jamshidian and Jalal (2010), MAR is assumed for the missing mechanism in order

to carry out the proposed tests. Different from their approaches, we do not impose any

assumption about the underlying missing mechanism, since this is what we want to test

in the first place. Instead, we consider a null hypothesis implied by that in (3.1). Based

on this modified null hypothesis, a nonparametric testing procedure can be developed.

Before we introduce our new null hypothesis, we briefly explain the idea behind

it. We first define oij as the intersection of sets oi and oj . Therefore, oij indicates the

variables that are observed for both groups i and j. If oij 6= ∅, we further denote

the joint distributions of the variables in oij from groups i and j by Fi,oij and Fj,oij ,

respectively. As mentioned above, for groups i and j, no information can be drawn for

Fi,mi and Fj,mj without any further assumption. If oij = ∅, it is not possible to compare

Fi and Fj . If oij 6= ∅, in order to compare Fi and Fj , the best we can do based on the

observed data is to compare Fi,oij and Fj,oij . This motivates us to consider the following

hypothesis testing problem:

H0 : Fi,oij = Fj,oij for all i 6= j ∈ {1, ..., s} and oij 6= ∅

versus

H1 : there exists i 6= j ∈ {1, ..., s} and oij 6= ∅ such that Fi,oij 6= Fj,oij . (3.2)

102



It is clear that the null hypothesis in (3.1), i.e., MCAR, implies the null hy-

pothesis in (3.2). Therefore, the testing procedure proposed for testing H0 in (3.2) in

the following section can be also used for testing MCAR. When used for testing MCAR,

the proposed testing procedure can still control the type I error at the nominal level. In

other words, when the missingness is MCAR, the probability for our proposed testing

procedure to falsely reject the null hypothesis that the missingness is MCAR is con-

trolled at the α-level. Therefore, our proposed testing procedure remains a valid test

for MCAR.

When we reject H0 in (3.2), it implies that the null hypothesis in (3.1) can not

be true either, therefore we can easily conclude that the missingness is not MCAR. When

we fail to reject H0 in (3.2), we may not be able to conclude that the null hypothesis

in (3.1) is true as well, since the Fi may be different and the difference between the Fi

lies in the Fi,mi . In those cases, the missingness is MNAR. In other cases, the Fi may

be the same, and hence the missingness is MCAR. In the following, we give a simple

example showing these two possibilities.

First, we generate a random sample, y1, ...,y20, from a bivariate normal distri-

bution with mean (0, 0)′ and covariance matrix I2, where Ip stands for the p-dimensional

identity matrix. For the first 10 observations, y1, ...,y10, we keep both variables of each

observation, therefore both variables of those observations are completely observed. In

the last 10 observations, y11, ...,y20, we delete the second variable of each observation,

therefore only the first variables of those observations are observed. For this incomplete

bivariate data, the first 10 observations form one missing-pattern group and the last

10 observations form another group. Therefore, we have s = 2, o1 = {1, 2}, m1 = ∅,

o2 = {1}, m2 = {2}, and o1,2 = {1}. The hypothesis testing problem in (3.2) is then

equivalent to testing whether the marginal distributions of the first variable in these two
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missing-pattern groups are the same. It is clear that they are the same. Therefore, we

would not reject H0 in (3.2). Also based on how we generate this incomplete data, we

know the complete joint distributions of both variables before the deletion in these two

groups are the same, and therefore the missingness is MCAR in this case.

Now we generate another set of incomplete data as follows. We first take the

original y1, ...,y20 before the deletion in the above study, add 100 to the second variable

in each of the last 10 observations, and other observations remain the same. This way

we can view the second variables of the last 10 observations as being drawn from the

normal distribution with mean 100 and variance 1. Based on this modified data, we

delete the observations from the second variable which are larger than 50. With a very

high probability, this will lead to the deletion of the second variables in the last 10

observations. Therefore, we get the same incomplete data as in the previous study.

Again, we would not reject H0 in (3.2), since the marginal distributions of the first

variable in the two groups are the same. However, based on the way we make up this

incomplete data, the complete joint distributions of both variables before the deletion in

these two groups are no longer the same, and the missing mechanism is clearly MNAR.

From the above example, we can see that, even with the same set of incomplete

data, if we fail to reject H0 in (3.2), the complete joint distributions can the same or

different across the different missing-pattern groups, and hence the missingness can

be MCAR or MNAR, depending on what are the Fi,mi . With no information about

the Fi,mi , it is impossible to know which one is the real missing mechanism. The

same phenomenon exists for the procedures in Little (1988), Kim and Bentler (2002)

and Jamshidian and Jalal (2010). That is, if those procedures fail to reject the null

hypothesis, they do not automatically guarantee that the missingness is MCAR. The

true missingness can be MCAR or MNAR, depending on the distributions of the missing
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data, which unfortunately will not be known. Therefore, the difficulty associated with

interpreting our testing result when we fail to reject H0 in (3.2) is due to the nature of

the data. If we fail to reject H0 in (3.2), at least we can conclude that the missingness

can be MCAR in this case.

3.3 The Proposed Non-parametric Test

In this section, we describe the proposed procedure for the hypothesis testing

problem in (3.2) without any distributional assumptions on the Fi. Notice that, to test

H0 in (3.2), we need to compare each pair of (Fi,oij , Fj,oij ) for all {(i, j) : i = 1, · · · , s, j =

i + 1, · · · , s,oij 6= ∅}. For this purpose, we first introduce a dissimilarity measurement

used in Rizzo and Székely (2010) to quantify the difference between any two multivariate

random samples. This sample-based dissimilarity measurement can help to identify the

difference between their underlying distributions.

Suppose there are two random samples {x1, ...,xn1} and {z1, ..., zn2} in Rp.

Define the data matrices based on these two samples as X = (x′1, ...,x
′
n1

)′ and Z =

(z′1, ..., z
′
n2

)′. Then the dissimilarity measurement between the two samples is defined as

d(X,Z) = 2g(X,Z)− g(X,X)− g(Z,Z),
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where

g(X,Z) =
1

n1n2

n1∑
i=1

n2∑
j=1

‖xi − zj‖,

g(X,X) =
1

n2
1

n1∑
i=1

n1∑
j=1

‖xi − xj‖,

g(Z,Z) =
1

n2
2

n2∑
i=1

n2∑
j=1

‖zi − zj‖,

and ‖ · ‖ denotes the Euclidean norm. The above dissimilarity measurement can be

considered as the sample version of the following measure,

d(FX , FZ) = 2E‖X1 −Z1‖ − E‖X1 −X2‖ − E‖Z1 −Z2‖,

where FX and FZ are the underlying distributions of samples X and Z, respectively,

X1 and X2 are independent random observations drawn from FX , and Z1 and Z2 are

independent random observations drawn from FZ . It is well known that d(FX , FZ) ≥ 0

with equality if and only if FX = FZ . As a result, if the two samples X and Z have the

same underlying distributions, we expect that d(X,Z) would be close to 0. On the other

hand, if the two underlying distributions are different, we expect that d(X,Z) would be

large. And if there is another sample Z̃, which is obviously far different from X, we

would expect d(X, Z̃) has a even larger value than d(X,Z). Therefore, the dissimilarity

measure d(X,Z) can help detect whether the two underlying distributions are the same.

Before we apply this dissimilarity measurement to our missing-pattern groups

i and j (i.e., Yi and Yj), we introduce a few more notations. Recall that our data have

the same set of missing variables within each missing-pattern group. We define Yi,oi

as the sub-matrix of Yi consisting only the columns associated with the variables in oi,
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i = 1, ..., s, and Yi,oij as the sub-matrix of Yi consisting only the columns associated with

the variables in oij . Since Yi,oij and Yj,oij can be considered as the sample drawn from

Fi,oij and Fj,oij , respectively, the above dissimilarity measure when applying to Yi,oij

and Yj,oij , i.e., d(Yi,oij ,Yj,oij ), can provide information about the difference between

Fi,oij and Fj,oij .

To compare all the possible pairs of (Fi,oij , Fj,oij ), we define the following

overall dissimilarity measure between all the s missing-pattern groups,

B =
∑

1≤i<j≤s
oij 6=∅

(
ninj
2n

)d(Yi,oij ,Yj,oij ).

If H0 in (3.2) is true, we would expect that B is close to 0. If H1 in (3.2) is true, we

would expect a large value of B.

The above dissimilarity measurement B is very similar to the between-sample

variability measurement used in ANOVA. We can also define the following measure

which resembles the within-sample variability measure in ANOVA,

W =
s∑
i=1

nig(Yi,oi ,Yi,oi)/2.

Similar to the F statistic for ANOVA, we define the following statistic for

testing H0 in (3.2),

F =
B/(s− 1)

W/(n− s)
. (3.3)

Intuitively, a larger value of F implies relatively larger between-sample variability com-

pared with the within-sample variability, which indicates that it is more likely for the

underlying distributions of the s missing-pattern groups to be different. Therefore, we

reject H0 in (3.2) if F > cα, where cα is the upper α quantile of the distribution of
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F under H0 in (3.2). Before we describe how to determine cα, we first study some

properties of our proposed test.

Theorem 2. (Consistency) The above F test for the hypothesis testing problem in (3.2)

is statistically consistent against all alternatives with finite second moments.

The above result implies that our proposed F test is capable of detecting any

distributional difference in the observed data among the s missing-pattern groups.

Next we describe in details how to determine cα, the critical value of our F test.

From above, cα is the upper α-quantile of the null distribution of F . In general, the null

distribution of F is not easy to obtain, and so is cα. To circumvent this difficulty, we

resort to the bootstrap method to approximate the null distribution of F . Recall that

Y1 consists of n1 cases with p variables completely observed. To generate a bootstrap

resample under the null hypothesis, we first randomly draw n cases with replacement

from the n1 cases in Y1 and put them in a n-by-p matrix. We denote this matrix by

Y∗complete. We choose the first n1 rows of Y∗complete as the bootstrap resample of Y1. We

then choose the next n2 rows of Y∗complete and delete the observations for the variables

in m2. This way we obtain a bootstrap resample of Y2. We continue this procedure,

and for any missing pattern group Yi, we choose their corresponding rows in Y∗complete,

delete the observations for the variables in mi, and obtain the bootstrap resample of

Yi. After we finish all the missing-pattern groups, we are able to obtain a bootstrap

resample of the incomplete data matrix Y. We denote it by Y∗. In the above procedure,

the way we generate those missing data in Y∗ guarantees that the missingness is MCAR

and Fi,oij = Fj,oij for all i 6= j ∈ {1, ..., s} and oij 6= ∅. Therefore, our bootstrap

resample is generated under H0 in (3.2). We repeat the above bootstrap procedure B

times. Here B is sufficiently large. We denote the bootstrap data matrix Y∗ from the
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k-th bootstrap resample by Y∗k. For each Y∗k, we calculate the F test statistic defined

in (3.3) and denoted it by F ∗k, k = 1, ..., B. Let ĉα be the upper α empirical quantile

of F ∗1, F ∗2, ..., F ∗B. Then this ĉα is our estimate of cα based on our bootstrap method,

and we reject H0 in (3.2) if F > ĉα. Alternatively, we can also calculate the p-value of

the F test based on this bootstrap approximation, i.e.,

p̂ =

B∑
k=1

I
{
F ∗k > Fobs

}
/B, (3.4)

where Fobs is the value of F based on the original data matrix Y.

3.4 Simulation Study

In this section, we present some simulation studies to demonstrate the perfor-

mance of our proposed testing procedure. The simulation settings we use are similar to

those reported in Jamshidian and Jalal (2010).

3.4.1 Type I Error Study

The first simulation study we conduct is to assess the type I error rates for our

proposed F test. The simulation settings consist of the following 64 scenarios from a

four-factor design:

(1) The dimension of the data p: we consider two settings p = 4 and 10.

(2) The total sample size n: three settings are considered, n = 200 and 1000.

(3) The missing percentage q: two settings are considered, q = 0.35 and 0.65.

(4) The underlying distributions F : eight distributions will be considered and they

are: (i) a standard multivariate normal distribution with mean 0 and covariance
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Ip (denoted by N); (ii) a correlated multivariate normal distribution with mean

0 and covariance Σ (denoted by Corr-N); (iii) a multivariate t distribution with

mean 0, covariance Ip and degree of freedom 4 (denoted by t); (iv) a correlated

multivariate t distribution with mean 0, covariance Σ and degree of freedom 4 (de-

noted by Corr-t); (v) a multivariate uniform distribution which has independent

uniform(0, 1) marginal distributions (denoted by U); (vi) a correlated multivari-

ate uniform distribution obtained by multiplying Σ
1
2 to the multivariate uniform

distribution in (v) (denoted by Corr-U); (vii) a multivariate distribution obtained

by generating W = Z + 0.1Z3, where Z is from the standard multivariate normal

distribution (denoted by W ); (viii) a multivariate Weibull distribution which has

independent Weibull marginal distribution and each Weibull marginal distribution

has scale parameter 1 and shape parameter 2 (denoted by Weibull).

Among these eight distributions, t, Corr-t and W are examples of heavy-tailed

distributions, while U and Corr-U are examples of light-tailed distributions. Weibull

distribution can be treated as an example of skewed distributions. For the above corre-

lated distributions in (ii), (iv) and (vi), we choose Σ = 0.71p1
′
p + 0.3Ip, where 1p is a

vector of p ones.

Although our proposed F test is for the hypothesis testing problem in (3.2), as

mentioned in Section 2, this test remains valid for testing MCAR, i.e., it can still control

the type I error at the nominal level for testing MCAR. Therefore, in this section we

investigate the type I error rate of our proposed F test when the missingness is MCAR.

To this end, for each combination of n, p and F , we first generate the complete n-by-p

data matrix Ycomplete with each row corresponding to a random observation from F .

To generate missing data which are MCAR, we generate another n-by-p matrix U with
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elements [U]ij being independently drawn from uniform(0, 1). For the given missing

percentage q, we compare each element of U, [U]ij , with a threshold, which is chosen so

that the percentage of cases with missing values is q. If [U]ij is less than the threshold,

we delete the corresponding element in Ycomplete. After we finish all the deletion, we

obtain the incomplete multivariate data matrix Y. From the above procedure how

we generate those missing data, it is clear that the missingness is independent of the

data Ycomplete, and therefore the missingness is MCAR. After we obtain the incomplete

multivariate data matrix Y, we apply the proposed F test to Y and calculate p̂ as in

(3.4) with the number of bootstrap resamples B = 499. If p̂ is smaller than the nominal

level α = 0.05, we reject the null hypothesis. We repeat the above procedure 1000 times

and the percentage of times when the null hypothesis is rejected is the simulated type

I error rate. Table 3.1 presents the simulated type I error rates for our proposed F

test for testing MCAR for each of the 64 settings. As we can see from the table, all

the simulated Type I errors are all close to the nominal level 5%, which indicates great

performance of our F test under the null hypothesis for testing MCAR.

3.4.2 Power Study

In this subsection, we report two simulation studies to evaluate the power of

our proposed non-parametric F test against the other two missing mechanisms, MAR

and MNAR. We first study the power of our F test when the missingness is MAR. To

generate an incomplete multivariate data with missing data being MAR, we first start

with the complete data matrix Ycomplete for each combination of n, p and F as in the

previous type I error study. Different from the type I error study where the missingness

is independent of observed or missing data, we need to make the missingness depend on
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Dist. q p=4 p=10

n=200 n=1000 n=200 n=1000

N 0.35 4.7 3.7 4.1 6.0
0.65 5.3 5.1 4.9 3.7

Corr-N 0.35 4.7 5.4 5.1 5.3
0.65 4.0 4.6 5.5 4.3

t 0.35 4.4 4.6 6.2 5.2
0.65 5.2 5.3 7.2 4.9

Corr-t 0.35 5.1 4.5 5.9 5.5
0.65 5.0 4.5 4.1 5.8

U 0.35 5.0 4.2 4.7 4.2
0.65 4.6 5.0 4.1 5.0

Corr-U 0.35 4.5 4.6 5.0 4.9
0.65 4.3 5.3 4.0 5.9

W 0.35 4.7 5.9 4.9 5.1
0.65 4.6 5.7 4.9 5.1

Weibull 0.35 4.6 5.0 5.0 4.4
0.65 4.7 4.9 4.3 4.7

Table 3.1: The type I error rates (%)

the observed data in the MAR case. For this purpose, we first denote the jth variable

of the ith case by yij , and then we keep the first variables of all n cases, y11, ..., yn1, as

observed. If yi1 is larger than a threshold c, then each of the other variables from the

same case, yi2, ..., yip, will be independently subject to missing with probability q1. If

yi1 is smaller than c, then each of yi2, ..., yip will be independently subject to missing

with probability q2. Based on this procedure, we obtain the incomplete data matrix Y.

From the above, we can see that the missingness only depends on the values of the yi1,

which are observed. Therefore, the missingness is MAR. In our simulation, we choose c

as the 60 percentile of y11, ..., yn1, and q1 and q2 are determined so that the percentage

of cases with missing values is q.

We apply the proposed F test to the incomplete data matrix Y and calculate

p̂ as in (3.4). We repeat this procedure 1000 times and the percentage of times when

p̂ is smaller than 0.05 is the simulated power of our F test under this particular MAR
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Dist. q p=4 p=10

n=200 n=1000 n=200 n=1000

N 0.35 22.4 96.2 26.2 96.8
0.65 24.9 94.0 18.6 90.4

Corr-N 0.35 33.4 98.3 64.9 100.0
0.65 26.3 95.8 27.4 98.0

t 0.35 20.5 93.5 25.9 58.3
0.65 23.2 94.8 37.3 54.6

Corr-t 0.35 27.6 97.7 43.1 99.4
0.65 23.2 94.8 37.3 100.0

U 0.35 27.2 96.6 36.4 99.4
0.65 26.0 95.4 26.1 99.2

Corr-U 0.35 39.6 99.7 87.2 100.0
0.65 31.4 98.4 75.3 100.0

W 0.35 20.1 94.2 15.8 77.1
0.65 20.7 92.0 12.8 65.1

Weibull 0.35 27.6 96.8 28.3 98.6
0.65 27.2 95.4 30.1 97.6

Table 3.2: Power (%) of the F test with MAR alternatives

alternative. Table 3.2 shows the simulated power of our F test for each of the 64 settings.

To study the power of our F test when the missingness is MNAR, we generate

the incomplete data matrix Y with missing data being MNAR as follows. We first

generate Y as that in the type I error study for each combination of n, p and F , and

then we replace the first missing-pattern group Y1 (the one where all the p variables are

observed) by a different n1-by-p matrix Ynew1 . In Ynew1 , each row is a random observation

from G, a different distribution from F . Therefore, the incomplete data matrix Y we

obtain this way has F1 = G and F2 = · · · = Fs = F . Since our theorem in Section 3.3

suggests that our F test is consistent against all the alternatives, we choose G to have

different location, or different covariance structure, or different distribution form from

F . The different F/G settings we considered are summarized in Table 3.3. In the first

panel of Table 3.3, the G counterpart of each F distribution (for example, “N1” is the

G counterpart of N in the first row) represents the distribution of ynew, where ynew is

obtained by ynew = y + (0.6, 0, ..., 0)′, and y follows the distribution F . Therefore, the
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first panel consists of the settings where F and G differ in the location. The notations

in the second and third panels of Table 3.3 are the same as those in the type I error

study. Therefore, it is clear that the second panel of Table 3.3 consists of the settings

where F and G have different covariance structures, and that the third panel of Table

3.3 consists of the settings where F and G come from different distribution families. For

each Y, we apply our F test and calculate p̂ based on (3.4). We repeat this procedure

1000 times and Table 3.3 reports the simulated power of our F test under different

alternatives. As we can see from Table 3.2 and Table 3.3, our F test performs very well

against all the MAR and MNAR alternatives we consider here. It is not surprising since

the observed data in all the settings have different distributions among different missing-

pattern groups and our F test is capable of detecting any distributional difference among

them. With sample size n increasing, the power of our F test also increases accordingly.

When n = 1000, the power is approaching 1 in many settings, which further confirms

the consistency property of our F test. In the first panel of Table 3.3 where F and G

differ in location, some of the power is not very high. This is mainly due to the fact

that the difference between F and G we consider here is only a location shift of 0.6 in

one out of p variables, which is a very small difference especially for the heavy tailed

distributions (t and W ) with p = 10. If we increase the magnitude of the location shift,

the power of our test will increase significantly in those settings.
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Dist. q p=4 p=10

F/G n=200 n=1000 n=200 n=1000

N/N1 0.35 37.5 100.0 18.1 74.5
0.65 35.6 99.6 7.4 47.4

t/t1 0.35 18.9 94.9 10.1 17.7
0.65 18.6 95.9 7.8 9.1

U/U1 0.35 100.0 100.0 100.0 100.0
0.65 100.0 100.0 99.8 100.0

W/W1 0.35 20.2 95.6 14.9 25.2
0.65 22.5 97.6 6.8 14.8

Weibull/Weibull1 0.35 100.0 100.0 85.7 100.0
0.65 100.0 100.0 54.0 100.0

N/Corr-N 0.35 15.7 96.9 16.5 99.4
0.65 8.2 94.4 7.2 76.7

Corr-N/N 0.35 17.6 97.3 22.3 82.0
0.65 16.0 98.0 14.0 59.2

t/Corr-t 0.35 10.2 80.2 11.3 48.1
0.65 6.5 78.7 11.4 31.6

Corr-t/t 0.35 12.4 77.2 8.9 28.3
0.65 9.4 88.0 10.6 21.6

U/Corr-U 0.35 100.0 100.0 100.0 100.0
0.65 100.0 100.0 100.0 100.0

Corr-U/U 0.35 100.0 100.0 100.0 100.0
0.65 100.0 100.0 100.0 100.0

t/N 0.35 33.9 68.7 79.5 97.8
0.65 20.1 47.7 72.3 91.7

W/N 0.35 31.4 67.9 91.3 99.6
0.65 15.5 47.7 77.8 98.3

Weibull/N 0.35 100.0 100.0 100.0 100.0
0.65 100.0 100.0 100.0 100.0

Table 3.3: Power (%) with MNAR alternatives
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Chapter 4

Concluding Remarks

In this dissertation, we propose two approaches: the Bayesian approach and

the non-parametric approach, to handle missing data analysis.

The Bayesian project is motivated by a real data, the California NAEP data,

which contains the student performance scores. We build the hierarchical linear models

to describe the hierarchy feature of the data and the corresponding missing structures.

In particular, we construct the pattern mixture model and the selection model for this

purpose. Due to the complexity of the model, we propose to use Bayesian methods to fit

the proposed models. The Bayesian methods turn out can not only identify the missing

mechanism but also provide model-based estimators, which outperform the traditional

design-based estimators in terms of bias, mean square error and the converge rate of the

true value if the missing is not at random as shown in the simulation study.

During the research, we find out that the ordinary Gibbs sampler methods do

not work well for our motivating data example. So for the pattern mixture model, we

propose to use the empirical Bayesian method, which essentially utilize the data infor-

mation to set the threshold for the parameter of the model, to avoid the possible false
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convergency issue. On the other hand, to describe the relationship between the outcome

values and the corresponding missing indicators in the ordinary selection model, people

usually use the logistic regression, where the involving parameters usually have posterior

distribution not in a close form. We propose to use the robit regression as an approxima-

tion of the logistic regression in the hierarchical linear model so that all the parameters

having conjugate priors. By using the robit regression, the consuming time of each pa-

rameter updated draw is much shorter compared with the original logistic regression,

which needs to fit a logistic regression in each iteration. But the robit regression involves

the missing latent variables, which bring a big auto-correlation between draws. Over-

all, the robit regression approximation is still more efficient than the original logistic

regression. We evaluate the MCMC chain of both the pattern mixture model and the

selection model by a series of diagnosis plots for the parameters of interest, such as the

trajectory plots, the auto-correlation plots and the empirical posterior plots to verify

that the MCMC chains converge correctly and we can make valid conclusion based on

the MCMC chain we run. Furthermore, we check the fitted models by two methods, the

posterior predictive distribution with its summary information method and the residual

plots by using the cross validation method. Both the pattern mixture model and the

selection model seem to fit our motivating data well under these two criteria. We further

investigate three commonly used model selection criteria in the sense of Bayesian data

analysis, the Bayes factor method, the deviance information criterion and the minimum

posterior predictive loss method namely. We point out that the first two methods have

some limitations in our data example and the last one fails to identify the correct model

structure under the non-ignorable missing.

In addition, although in this dissertation, we focus on the two-level data with

only the student level containing missing values, we can extend our methods to more
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general cases. First, our methods can be extended to involve other covariates in either

the outcome model or the missing indicator model, or both. The explaining covariates

can be gender, race, age and the highest parents’ education level. Second, they can be

extended to solve the nationwide three-level data with both the school level and the

student level containing missingness. For this situation, we use a three-level hierarchical

model to describe the data structure, and introduce two different kinds of missing latent

variables for the student level and the school level missing separately.

The nonparametric project, as an alternative, is about testing the missing

mechanism for multivariate missing data. The test of missing mechanism is very im-

portant since most of the statistical procedures we use are built on the assumption of

MCAR, such as the estimating equation method. For this kind of test, people divide the

data into groups by their missing patterns and the test will be equivalent a homogeneity

test among several groups. In literature, there are several tests based on the normality

assumption, but normality is not always appropriate. Our test is the first distribution

free one. We first develop a nonparametric dispersion measurement for multivariate

missing data and used the between and within distance ratio based on this dispersion

measurement as the non-parametric test statistics, which is similar to ANOVA ratio.

And actually ANOVA ratio can be treated as a special case for the nonparametric ratio.

We also prove the consistency of the test. The simulation result shows this nonpara-

metric test has type I error well controlled at the nominal level and good power under

various alternatives.
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Appendix A

Derivation of the Conditional

Posterior Distribution in the

Pattern Mixture Model Approach

a. The proof of

[
θij | Yobs, rij = 1, β0ij , α, σ

2
2, χij

]
∝TN[θij>0]

(
χij +

α(yij − β0ij − αχij)
α2

2 + σ2
2

,
σ2

2

α2
2 + σ2

2

)
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Since rij = 1⇒ θij > 0

P (θij | Yobs, rij = 1, β0ij , α, σ
2
2, χij)

∝P
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Yobs | β0ij , α, θij , σ

2
2
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b. The proof of
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β0ij | Yobs,Ymis, rij = 1, α,θij(k), σ
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where ȳij = 1
nij

∑nij
k=1 yij ; θ̄ij = 1

nij

∑nij
k=1 θij ;

θij(k) denote the vector of θij , k = 1, · · · , nij ; and[
ȳij | β0ij , α, θ̄ij , σ

2
2

]
∼ N

(
β0ij + αθ̄ij ,

σ2
2

nij

)
.

c. The proof of

[
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Since rij = 1⇒ θij > 0
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d. The proof of

[
θij | Yobs, rij = 0, β0i, α1, σ

2
1, χi
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∝ TN[θij<0] (χi, 1)
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P
(
θij | Yobs, rij = 0, β0i, α1, σ

2
1, χi
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∝P (θij | χi)/P (θij < 0)

∝TN[θij<0] (χi, 1)

e. The proof of
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where 1ij = (

nij︷ ︸︸ ︷
1, · · · , 1);

Iij = diag(

nij︷ ︸︸ ︷
1, · · · , 1);

Jij = 1ij × 1′ij ;

θ̄ij = 1
nij

∑nij
k=1 θij ; and

θij(k) denote the vector of θij , k = 1, · · · , nij ;

yij(k) denote the vector of yij , k = 1, · · · , nij .

For those two-level missing data, not only yij , for i = 1, · · · , nij , but also β0ij are

treated as missing. So we need to generate the conditional distribution of both of them

at the same time. To solve this problem, I will generate the joint distribution of yij ,

i = 1, · · · , nij and β0ij first, and then integrate β0ij out to get the marginal distribution
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of yij , i = 1, · · · , nij . This step is based on the fact

P (A,B | C) = P (A | B,C)× P (B | C)

Since the joint distribution of yij , i = 1, · · · , nij and β0ij is

P
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Let ỹijk = yij − αθij , Aij = β0i + α1θij . Integrate β0ij out
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ỹ2
ijk − 2Aij

nij∑
k=1
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yij , k = 1, · · · , nij | rij = 0, α,θij(k), σ

2
2, β0i, α1, θij , σ

2
1

]
∝N

(
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ij
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where Cij = (cij,st)nij×nij ; and

cij,st =


d (1− sij) if s = t,

d (−sij) otherwise.

129



where d = 1
σ2
2
, sij =

1

σ22
nij

σ22
+ 1

σ21

, then Cij = d (Iij − sijJij). Based on intraclass correlation

matrix inverse formula,

[I− sJ]−1 = I +
s

1− ns
J

we have
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Iij +

sij
1− nijsij

Jij
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Then, use conditional probability formula, then β0ij can be drawn from
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This is the same distribution as at most one-level missing case, i.e. rij = 1.

f. The proof of

[
σ2

2 | Yobs,Ymis, β0(ij),θ(ijk)

]
∝IG

a2 +
1

2

 b∑
i=1

bi∑
j=1

nij − 1

 , b2 +
1

2

b∑
i=1

bi∑
j=1

nij∑
k=1

(yij − (β0ij + α̂2θij))
2



130



and [
α | Yobs,Ymis,β0(ij),θ(ijk), σ
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β0(ij) denote the vector of β0ij , for i = 1, · · · , b, j = 1, · · · , bi

θ(ijk) denote the vector of θij , for i = 1, · · · , b, j = 1, · · · , bi, k = 1, · · · , nij .
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Then integrating α out to get the marginal distribution of σ2
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nij∑
k=1

θ2
ijk

(α− ∑b
i=1

∑bi
j=1

∑nij
k=1 θij (yij − β0ij)∑b

i=1

∑bi
j=1

∑nij
k=1 θ

2
ijk

)2
 dα

×exp

− 1

2σ2
2

 b∑
i=1

bi∑
j=1

nij∑
k=1

(yij − β0ij)
2 −

(∑b
i=1

∑bi
j=1

∑nij
k=1 θij (yij − β0ij)

)2

∑b
i=1

∑bi
j=1

∑nij
k=1 θ

2
ijk




∝
(
σ2

2

)−(a2+
(

1
2

∑b
i=1

∑bi
j=1 nij+1

))
exp

{
− b2
σ2

2

}

×exp

− 1

2σ2
2

 b∑
i=1

bi∑
j=1

nij∑
k=1

(yij − β0ij) (yij − β0ij − α̂2θij)


∝
(
σ2

2

)−(a2+
(

1
2

∑b
i=1

∑bi
j=1 nij+1

))
exp

− 1

σ2
2

b2 +
1

2

b∑
i=1

bi∑
j=1

nij∑
k=1

(yij − β0ij − α̂2θij)
2


∝IG

a2 +
1

2

 b∑
i=1

bi∑
j=1

nij − 1

 , b2 +
1

2

b∑
i=1

bi∑
j=1

nij∑
k=1

(yij − (β0ij + α̂2θij))
2


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Then the conditional probability of α is

P
(
α | Yobs,Ymis, β0(ij),θ(ijk), σ

2
2

)
=
P
(
α, σ2

2 | Yobs,Ymis, β0(ij), ,θ(ijk)

)
P
(
σ2

2 | Yobs,Ymis, β0(ij), ,θ(ijk)

)
∝
(
σ2

2

)− 1
2 exp

− 1

σ2
2

b∑
i=1

bi∑
j=1

nij∑
k=1

[
(yij − β0ij − αθij)2 − (yij − β0ij − α̂2θij)

2
]

∝
(
σ2

2

)− 1
2 exp

− 1

σ2
2

 b∑
i=1

bi∑
j=1

nij∑
k=1

θ2
ijk

(α− ∑b
i=1

∑bi
j=1

∑nij
k=1 θij (yij − β0ij)∑b

i=1

∑bi
j=1

∑nij
k=1 θ

2
ijk

)2


∝N

(
α̂2,

σ2
2∑b

i=1

∑bi
j=1

∑nij
k=1 θ

2
ijk

)

g. The proof of

[
χij | Yobs,Ymis,θij(k), χi0, ω

2
]
∝ N

(
ω2nij θ̄ij + χi0
ω2nij + 1

,
ω2

ω2nij + 1

)

where

θ̄ij =
1

nij

nij∑
k=1

θij

and

[
θ̄ij | χij

]
∼ N

(
χij ,

1

nij

)
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P
(
χij | Yobs,Ymis,θij(k), χi0, ω

2
)

∝P
(
θij(k) | χij

)
× P

(
χij | χi0, ω2

)
∝P

(
θ̄ij | χij

)
× P

(
χij | χi0, ω2

)
∝exp

{
−nij

2

(
θ̄ij − χij

)2}× exp{− 1

2ω2
(χij − χi0)2

}
∝exp

{
−1

2

[(
nij +

1

ω2

)
χ2
ij − 2

(
nij θ̄ij +

χi0
ω2

)
χij

]}
∝N

(
nij θ̄ij + χi0

ω2

nij + 1
ω2

,
1

nij + 1
ω2

)

∝N
(
ω2nij θ̄ij + χi0
ω2nij + 1

,
ω2

ω2nij + 1

)

h. The proof of

[
χi0 | Yobs,Ymis,χi(j), ω

2, χ, ω2
0

]
∝ N

(
ω2

0biχ̄i + ω2χ

ω2
0bi + ω2

,
ω2

0ω
2

ω2
0bi + ω2

)

where

χi(j) denote the vector of χij , for j = 1, · · · , bi,

and

χ̄i =
1

bi

bi∑
j=1

χij

[χ̄i | χi0, ωi] ∼ N(χi0,
ω2

bi
)

134



P
(
χi0 | Yobs,Ymis,χi(j), ω

2, χ, ω2
0

)
∝P

(
χi(j) | χi0, ω2

)
× P

(
χi0 | χ, ω2

0

)
∝P

(
χ̄i | χi0, ω2

)
× P

(
χi0 | χ, ω2

0

)
∝exp

{
− bi

2ω2
(χ̄i − χi0)2

}
× exp

{
− 1

2ω2
0

(χi0 − χ)2

}
∝exp

{
−1

2

[(
bi
ω2

+
1

ω2
0

)
χ2
i0 − 2

(
bi
ω2
χ̄i +

1

ω2
0

χ

)
χi0

]}

∝N

 bi
ω2 χ̄i + 1

ω2
0
χ

bi
ω2 + 1

ω2
0

,
1

bi
ω2 + 1

ω2
0


∝N

(
ω2

0biχ̄i + ω2χ

ω2
0bi + ω2

,
ω2

0ω
2

ω2
0bi + ω2

)

i. The proof of

[
ω2 | Yobs,Ymis,χ(ij),χ(i)0

]
∝ IG

a3 +

∑b
i=1 bi
2

, b3 +
1

2

b∑
i=1

bi∑
j=1

(χij − χi0)2



Where χ(ij) denote the vector of χij , for i = 1, · · · , b, j = 1, · · · , bi.

χ(i)0 denote the vector of χi0, for i = 1, · · · , b.

P
(
ω2 | Yobs,Ymis,χ(ij),χ(i)0

)
∝P

(
χ(ij) | χ(i)0, ω

2
)
× P

(
ω2
)

∝
(
ω2
)−∑b

i=1 bi
2 exp

− 1

2ω2

b∑
i=1

bi∑
j=1

(χij − χi0)2

× (ω2
)−(a3+1)

exp

{
− b3
ω2

}

∝
(
ω2
)−(a3+

∑b
i=1 bi
2

+1

)
exp

− 1

ω2

b3 +
1

2

b∑
i=1

bi∑
j=1

(χij − χi0)2


∝IG

a3 +

∑b
i=1 bi
2

, b3i +
1

2

b∑
i=1

bi∑
j=1

(χij − χi0)2


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j. The proof of

[
ω2

0 | Yobs,Ymis,χ(i)0

]
∝ IG

(
a3 +

b− 1

2
, b3 +

1

2

b∑
i=1

(χi0 − χ̄0)2

)

and

[
χ | Yobs,Ymis,χ(i)0, ω

2
0

]
∝ N

(
χ̄0,

ω2
0

b

)

where

χ(i)0 denote the vector of χi0, for i = 1, · · · , b,

χ̄0 =
1

b

b∑
i=1

χi0

The joint distribution of χ and ω2
0 is

P
(
χ, ω2

0 | Yobs,Ymis,χ(i)0

)
∝P

(
χi0 | χ, ω2

0

)
× P

(
χ, ω2

0

)
∝
(
ω2

0

)− b
2 exp

{
− 1

2ω2
0

b∑
i=1

(χi0 − χ)2

}
×
(
ω2

0

)−(a3+1)
exp

{
− b3
ω2

0

}

∝
(
ω2

0

)−(a3+ b
2

+1)
exp

{
− 1

ω2
0

[
b3 +

1

2

b∑
i=1

(χi0 − χ)2

]}

136



Integrating χ out, we will get the marginal distribution of ω2
0

P
(
ω2

0 | Yobs,Ymis,χ(i)0

)
∝
(
ω2

0

)−(a3+ b
2

+1)
exp

{
− b3
σ2

0

}
×
∫ +∞

−∞
exp

{
− 1

2ω2
0

b∑
i=1

(χi0 − χ)2

}
dχ

∝
(
ω2

0

)−(a3+ b
2

+1)
exp

{
− b3
σ2

0

}
×
∫ +∞

−∞
exp

{
− b

2ω2
0

(χ− χ̄0)2

}
dχ

×exp

{
− 1

2ω2
0

b∑
i=1

(χi0 − χ̄0)2

}
dχ

∝
(
ω2

0

)−(a3+ b+1
2 )

exp

{
− 1

σ2
0

(
b3 +

1

2

b∑
i=1

(χi0 − χ̄0)2

)}

∝IG

(
a3 +

b− 1

2
, b3 +

1

2

b∑
i=1

(χi0 − χ̄0)2

)

Then the conditional distribution of χ is

P
(
χ | Yobs,Ymis,χ(i)0, ω

2
0

)
=
P
(
χ, ω2

0 | Yobs,Ymis,χ(i)0

)
P
(
ω2

0 | Yobs,Ymis,χ(i)0

)
∝
(
ω2

0

) 1
2 exp

{
− 1

2ω2
0

b∑
i=1

[
(χi0 − χ)2 − (χi0 − χ̄0)2

]}

∝
(
ω2

0

) 1
2 exp

{
− 1

2ω2
0

b (χ− χ̄0)2

}
∝N

(
χ̄0,

ω2
0

b

)

k. The proof of

[
β0i | Yobs,Ymis,β0i(j), α1,θi(j), σ

2
1, β0, σ

2
]

∝N

(
biσ

2
(
β̄0i − α1θ̄i

)
+ σ2

1β0

biσ2 + σ2
1

,
σ2σ2

1

biσ2 + σ2
1

)
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where

θ̄i =
1

bi

bi∑
j=1

θij

and

β̄0i =
1

bi

bi∑
j=1

β0ij

[
β̄0i | β0i, α1, σ

2
1

]
∼ N

(
β0i + α1θ̄i,

σ2
1

bi

)
.

P
(
β0i | Yobs,Ymis,β0i(j), α1,θi(j), σ

2
1

)
∝P

(
β0i(j) | β0i, α1,θi(j), σ

2
1

)
× P

(
β0i | β0, σ

2
)

∝P
(
β̄0i | β0i, α1, θ̄i, σ

2
1

)
× P

(
β0i | β0, σ

2
)

∝exp
{
− bi

2σ2
1

(
β̄0i −

(
β0i + α1θ̄i

))2}× exp{− 1

2σ2
(β0i − β0)2

}
∝exp

{
−1

2

[(
bi
σ2

1

+
1

σ2

)
β2

0i − 2

(
bi
σ2

1

(
β̄0i − α1θ̄i

)
+

1

σ2
β0

)
β0i

]}

∝N

 bi
σ2
1

(
β̄0i − α1θ̄i

)
+ 1

σ2β0

bi
σ2
1

+ 1
σ2

,
1

bi
σ2
1

+ 1
σ2


∝N

(
biσ

2
(
β̄0i − α1θ̄i

)
+ σ2

1β0

biσ2 + σ2
1

,
σ2σ2

1

biσ2 + σ2
1

)

l. The proof of

[
σ2

1 | Yobs,Ymis,β0(ij),β0(i),θ(ij)

]
∝IG

a11 +
1

2

(
b∑
i=1

bi − 1

)
, b11 +

1

2

b∑
i=1

bi∑
j=1

(β0ij − (β0i + α̂1θij))
2


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and [
α1 | Yobs,Ymis,β0(ij),β0(i),θ(ij), σ

2
1

]
∝ N

(
α̂1,

σ2
1∑b

i=1

∑bi
j=1 θ

2
ij

)

where

α̂1 =

∑b
i=1

∑bi
j=1 θij (β0ij − β0i)∑b
i=1

∑bi
j=1 θ

2
ij

and

β0(ij) denote the vector of β0ij , for i = 1, · · · , b, j = 1, · · · , bi.

β0(i) denote the vector of β0i, for i = 1, · · · , b.

θ(ij) denote the vector of θij , for i = 1, · · · , b, j = 1, · · · , bi.

Since the joint distribution of α1 and σ2
1 is

P
(
α1, σ

2
1 | Yobs,Ymis,β0(ij),β0(i),θ(ij)

)
∝P

(
β0(ij) | β0(i), α1,θ(ij), σ

2
1

)
× P

(
α1, σ

2
1

)
∝
(
σ2

1

)−∑b
i=1 bi
2 exp

− 1

2σ2
1

b∑
i=1

bi∑
j=1

(β0ij − (β0i + α1θij))
2

× (σ2
1

)−(a11+1)
exp

{
−b11

σ2
1

}

∝
(
σ2

1

)−(a11+ 1
2

∑b
i=1 bi+1)

exp

− 1

σ2
1

b11 +
1

2

b∑
i=1

bi∑
j=1

(β0ij − (β0i + α1θij))
2


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Then integrating α1 out to get the marginal distribution of σ2
1

P
(
σ2

1 | Yobs,Ymis,β0(ij),β0(i),θ(ij)

)
∝
∫ +∞

−∞
exp

− 1

2σ2
1

 b∑
i=1

bi∑
j=1

θ2
ij

α2
1 − 2

 b∑
i=1

bi∑
j=1

θij (β0ij − β0i)

α1

 dα1

×
(
σ2

1

)−(a11+ 1
2

∑b
i=1 bi+1)

exp

{
−b11

σ2
1

}
exp

− 1

2σ2
1

b∑
i=1

bi∑
j=1

(β0ij − β0i)
2


∝
∫ +∞

−∞
exp

− 1

2σ2
1

 b∑
i=1

bi∑
j=1

θ2
ij

(α1 −
∑b

i=1

∑bi
j=1 θij (β0ij − β0i)∑b
i=1

∑bi
j=1 θ

2
ij

)2
 dα1

×
(
σ2

1

)−(a11+ 1
2

∑b
i=1 bi+1)

exp

{
−b11

σ2
1

}
exp

− 1

2σ2
1

b∑
i=1

bi∑
j=1

(β0ij − β0i)
2


×exp

+
1

2σ2
1

(∑b
i=1

∑bi
j=1 θij (β0ij − β0i)

)2

∑b
i=1

∑bi
j=1 θ

2
ij


∝
(
σ2

1

)−(a11+ 1
2(
∑b
i=1 bi+1))

exp

{
−b11

σ2
1

}

×exp

− 1

2σ2
1

b∑
i=1

bi∑
j=1

(β0ij − β0i) (β0ij − (β0i + α̂1θij))


∝
(
σ2

1

)−(a11+ 1
2(
∑b
i=1 bi+1))

exp

− 1

σ2
1

b11 +
1

2

b∑
i=1

bi∑
j=1

(β0ij − (β0i + α̂1θij))
2


∝IG

a11 +
1

2

(
b∑
i=1

bi − 1

)
, b11 +

1

2

b∑
i=1

bi∑
j=1

(β0ij − (β0i + α̂1θij))
2



Then the conditional probability of α1

P
(
α1 | Yobs,Ymis,β0(ij),β0(i),θ(ij), σ

2
1

)
=
P
(
α1, σ

2
1 | Yobs,Ymis,β0(ij),β0(i),θ(ij)

)
P
(
σ2

1 | Yobs,Ymis,β0(ij),β0(i),θ(ij)

)
∝
(
σ2

1

)− 1
2 exp

− 1

σ2
1

 b∑
i=1

bi∑
j=1

θ2
ij

(α1 −
∑b

i=1

∑bi
j=1 θij (β0ij − β0i)∑b
i=1

∑bi
j=1 θ

2
ij

)2


∝N

(
α̂1,

σ2
1∑b

i=1

∑bi
j=1 θ

2
ij

)

140



m. The proof of

[
χi | Yobs,Ymis,θi(j), χ, ω

2
]
∝ N

(
ω2biθ̄i + χ

biω2 + 1
,

ω2

biω2 + 1

)

where

θ̄i =
1

bi

bi∑
j=1

θij

[
θ̄i | χi

]
∼ N

(
χi,

1

bi

)
.

P
(
χi | Yobs,Ymis,θi(j), χ, ω

2
)

∝P
(
θi(j) | χi

)
× P

(
χi | χ, ω2

)
∝P

(
θ̄i | χi

)
× P

(
χi | χ, ω2

)
∝exp

{
−bi

2

(
θ̄i − χi

)2}× exp{− 1

2ω2
(χi − χ)2

}
∝exp

{
−1

2

[(
bi +

1

ω2

)
χ2
i − 2

(
biθ̄i +

χ

ω2

)
χi

]}
∝N

(
biθ̄i + χ

ω2

bi + 1
ω2

,
1

bi + 1
ω2

)

∝N
(
ω2biθ̄i + χ

biω2 + 1
,

ω2

biω2 + 1

)

n. The proof of

[
ω2 | Yobs,Ymis,χ(i)

]
∝ IG

(
a10 +

b− 1

2
, b10 +

1

2

b∑
i=1

(χi − χ̄)2

)
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and

[
χ | Yobs,Ymis,χ(i), ω

2
]
∝N

(
χ̄,
ω2

b

)

where

χ(i) denote the vector of χi, for i = 1, · · · , b.

χ̄ =
1

b

b∑
i=1

χi

Since the joint distribution of χ and ω2 is

P
(
χ, ω2 | Yobs,Ymis,χ(i)

)
∝P

(
χi | χ, ω2

)
× P

(
χ, ω2

)
∝
(
ω2
)− b

2 exp

{
− 1

2ω2

b∑
i=1

(χi − χ)2

}
×
(
ω2
)−(a10+1)

exp

{
−b10

ω2

}

∝
(
ω2
)−(a10+ b

2
+1)

exp

{
− 1

ω2

[
b10 +

1

2

b∑
i=1

(χi − χ)2

]}

Integrating χ out to get the marginal distribution of ω2

P
(
ω2 | Yobs,Ymis,χ(i)

)
∝
(
ω2
)−(a10+ b

2
+1)

exp

{
−b10

ω2

}
×
∫ +∞

−∞
exp

{
− 1

2ω2

[
b (χ− χ̄)2 +

b∑
i=1

χ2
i − bχ̄2

]}
dχ

∝
(
ω2
)−(a10+ b+1

2
)
exp

{
−b10

ω2

}
× exp

{
− 1

2ω2

b∑
i=1

(
χ2
i − χ̄

)2}

∝IG

(
a10 +

b− 1

2
, b10 +

1

2

b∑
i=1

(χi − χ̄)2

)
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Then the conditional probability of χ is

P
(
χ | Yobs,Ymis,χi, ω

2
)

=
P
(
χ, ω2 | Yobs,Ymis,χ(i)

)
P
(
ω2 | Yobs,Ymis,χ(i)

)
∝exp

{
− 1

2ω2

[
b∑
i=1

(χi − χ)2 −
b∑
i=1

(χi − χ̄)2

]}

∝exp
{
− 1

2ω2
b (χ− χ̄)2

}
∝N

(
χ̄,
ω2

b

)

o. The proof of

[
σ2 | Yobs,Ymis,β0(i)

]
∝IG

(
a1 +

b− 1

2
, b1 +

1

2

b∑
i=1

(
β0i − β̄0

)2)

and

[
β0 | Yobs,Ymis,β0(i), σ

2
]
∝ N

(
β̄0,

σ2

b

)

where

β0i denote the vector of β0i, for i = 1, · · · , b

β̄0 =
1

b

b∑
i=1

β0i
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Since the joint distribution of β0 and σ2 is

P
(
β0, σ

2 | Yobs,Ymis,β0(i)

)
∝P

(
β0(i) | β0, σ

2
)
× P

(
β0, σ

2
)

∝
(
σ2
)− b

2 exp

{
− 1

2σ2

b∑
i=1

(β0i − β0)2

}
×
(
σ2
)−(a1+1)

exp

{
− b1
σ2

}

∝
(
σ2
)−(a1+ b

2
+1)

exp

{
− 1

σ2

[
b1 +

1

2

b∑
i=1

(β0i − β0)2

]}

Integrating β0 out to get the marginal distribution of σ2

P
(
σ2 | Yobs,Ymis,β0(i)

)
∝
(
σ2
)−(a1+ b

2
+1)

exp

{
− b1
σ2

}∫ +∞

−∞
exp

{
− 1

2σ2

b∑
i=1

(β0i − β0)2

}
dβ0

∝
(
σ2
)−(a1+ b

2
+1)

exp

{
− b1
σ2

}∫ +∞

−∞
exp

{
− 1

2σ2
b
(
β0 − β̄0

)2}
dβ0

×exp

{
− 1

2σ2

[
b∑
i=1

(
β0i − β̄0

)2]}

∝IG

(
a1 +

b− 1

2
, b1 +

1

2

b∑
i=1

(
β0i − β̄0

)2)

Then the conditional probability of β0 is

P
(
β0 | Yobs,Ymis,β0(i), σ

2
)

=
P
(
β0, σ

2 | Yobs,Ymis,β0(i)

)
P
(
σ2 | Yobs,Ymis,β0(i)

)
∝
(
σ2
)− 1

2 exp

{
− 1

2σ2

b∑
i=1

(β0i − β0)2

}

∝
(
σ2
)− 1

2 exp

{
− 1

2σ2
b
(
β0 − β̄0

)2}
∝N

(
β̄0,

σ2

b

)
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Appendix B

Proofs

B.1 Proof of Proposition 1

We first denote the vector of the p random variables by y, and the vector of

missing indicators for each of the p random variables as r. We define the joint density

function of y and r as f(y, r). We further define ri as the vector of missing indicators for

the ith missing-pattern group, and fi(y) as the joint density function of the p variables

(including the variables both observed and missing) for the ith missing-pattern group,

i = 1, ..., s. It is clear that fi(y) = f(y|ri).

We first prove that, if the missingness is MCAR, F1 = · · · = Fs. Based

on the definition of MCAR, the missingness does not depend on the data, which im-

plies f(r|y) = f(r). Therefore, f(y, r) = f(r|y)f(y) = f(r)f(y). Since f(y, r) =

f(y|r)f(r), we have f(y|r) = f(y). This further implies that f1(y) = · · · = fs(y). In

other words, F1 = · · · = Fs.
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Next, we prove that, if F1 = · · · = Fs, the missingness is MCAR. Since F1 =

· · · = Fs, f1(y) = · · · = fs(y), i.e., f(y|r1) = · · · = f(y|rs) = f(y). Therefore, we have

f(r|y) =
f(y|r)f(r)

f(y)
=
f(y)f(r)

f(y)
= f(r),

which suggests that the missingness is independent of the data. Therefore, the missing-

ness is MCAR.

B.2 Proof of Theorem 2

Suppose the null hypothesis is false, say Fk,okl 6= Fl,okl for some k 6= l ∈

{1, ..., s} and okl 6= ∅. Since F = B/(s−1)
W/(n−s) , B =

∑
1≤i<j≤s

oij 6=∅
(
ninj
2n )d(Yi,oij ,Yj,oij ), and

d(Yi,oij ,Yj,oij ) is always nonnegative, we have

F ≥ nknl
2n
·
d(Yk,okl ,Yl,okl)

s− 1
· n− s
W

.

Therefore,

P (F > cα) ≥ P
(
nknl
2n
·
d(Yk,okl ,Yl,okl)

s− 1
· n− s
W

> cα

)
= P

(
d(Yk,okl ,Yl,okl) >

2cαn(s− 1)W

nknl(n− s)

)
.

Since W =
∑s

i=1 nig(Yi,oi ,Yi,oi)/2 and nig(Yi,oi ,Yi,oi)/(ni − 1) a U -statistic, based on

the properties of U -statistics,

nig(Yi,oi ,Yi,oi)/(ni − 1)→ ηi, a.s.
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where ηi is a constant. This implies that

W/(n− s) =
s∑
i=1

ni − 1

n− s
· 1

2
· ni
ni − 1

g(Yi,oi ,Yi,oi)

→ 1

2

s∑
i=1

λiηi, a.s.

where λi = limn→∞
ni

n1+···+ns . Therefore,

lim
n→∞

P (F > cα) ≥ lim
n→∞

P

(
d(Yk,okl ,Yl,okl) >

2cαn(s− 1)W

nknl(n− s)

)
= lim

n→∞
P

(
d(Yk,okl ,Yl,okl) >

cα(s− 1)
∑s

i=1 λiηi
nλkλl

)
. (B.1)

Next we show that cα is bounded above by a constant which does not depend

on n. Recall that F = B/(s−1)
W/(n−s) , B =

∑
1≤i<j≤s

oij 6=∅
(
ninj
2n )d(Yi,oij ,Yj,oij ). Denote the number

of the pairs (i, j) satisfying 1 ≤ i < j ≤ s and oij 6= ∅ by t. In other words, there are t

terms in B. Clearly, t ≤ s(s− 1)/2. Therefore, for any k,

P (F > k) ≤ P
(

at least one of the
ninj
2n
·
d(Yi,oij ,Yj,oij )

s− 1
· n− s
W

> k/t

)
≤

∑
1≤i<j≤s

oij 6=∅

P

(
ninj
ni + nj

d(Yi,oij ,Yj,oij ) >
2kn(s− 1)W

t(ni + nj)(n− s)

)
,

and

lim
n→∞

P (F > k) ≤ lim
n→∞

∑
1≤i<j≤s

oij 6=∅

P

(
ninj
ni + nj

d(Yi,oij ,Yj,oij ) >
k(s− 1)

∑s
i=1 λiηi

t(λi + λj)

)
.

(B.2)
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Based on Székely and Rizzo (2005), under the null hypothesis of equal distri-

butions, ninjd(Yi,oij ,Yj,oij )/(ni + nj) converges in distribution to a quadratic form

Qi,j =

∞∑
l=1

ωlZ
2
l ,

where the Zl are independent standard normal random variables and the ωl are positive

constants and do not depend on n. Therefore, we can choose k = kα, a constant which

does not depend on n, such that

∑
1≤i<j≤s

oij 6=∅

P

(
Qi,j >

kα(s− 1)
∑s

i=1 λiηi
t(λi + λj)

)
= α.

For such a kα, we have limn→∞ P (F > kα) ≤ α under H0 based on (B.2). Since

limn→∞ P (F > cα) = α under H0, limn→∞ cα ≤ kα. Therefore, we have shown that cα

bounded above by kα, a constant which does not depend on n.

Applying this result to (B.1), we have cα(s − 1)
∑s

i=1 λiηi/(nλkλl) → 0, as

n → ∞. Since d(Yk,okl ,Yl,okl) is a V-statistic, d(Yk,okl ,Yl,okl) converges in probability

to 0 if Fk,okl = Fl,okl , and to some nonzero constant if Fk,okl 6= Fl,okl . Therefore,

lim
n→∞

P

(
d(Yk,okl ,Yl,okl) >

cα(s− 1)
∑s

i=1 λiηi
nλkλl

)
= 1,

which implies that limn→∞ P (F > cα) = 1. As a result, our F test is consistent. This

completes the proof.
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